



**INTERNAL DOCUMENT No. 14**

**Results from the analysis of an International  
Intercomparison Gas Standard**

**S M Boswell & D Smythe-Wright**

**1993**



**Institute of  
Oceanographic Sciences  
Deacon Laboratory**

**Natural Environment Research Council**

**JAMES RENNELL CENTRE FOR  
OCEAN CIRCULATION**

**INTERNAL DOCUMENT No. 14**

**Results from the analysis of an International  
Intercomparison Gas Standard**

**S M Boswell & D Smythe-Wright**

**1993**

Gamma House  
Chilworth Research Park  
Chilworth  
Southampton SO1 7NS  
Tel 0703 766184  
Telefax 0703 767507

## ABSTRACT

There are now a number of laboratories in Europe and the USA that possess the capability to measure oceanic CFC concentrations. Variations in instrument design and methodology have necessitated intercomparison exercises in order to ensure consistent data quality amongst the various laboratories. The lack of suitable aqueous standards requires the use of gas phase standards for this purpose. Several different approaches were taken to constructing the calibration curves and these are discussed.

This report presents the results obtained by this laboratory as part of the WOCE CFC Standard Intercomparison. In it we describe the stages required to perform the analyses, together with a description of the data handling procedures used.

We performed two separate determinations, 6 days apart, of CFC-12 and CFC-11 in cylinder 8348. The first determination yielded concentrations in the range 274.4 to 275.3 pptv for CFC-11 and 499.8 to 501.2 pptv for CFC-12. The second determination yielded ranges of 273.4 to 274.0 pptv and 503.4 to 505.1 pptv respectively. All three approaches had precisions better than 1%.

Multiple analyses of aliquots of a standard of known composition were run as unknowns as a check on the validity of our approach. These analyses yielded accuracies and precisions of 0.5% and 0.8% for CFC-11 and 0.4% and 0.5% for CFC-12. These lie well within the requirements of WHP for CFC measurements.

| <u>CONTENTS</u>                                                          | Page |
|--------------------------------------------------------------------------|------|
| 1 INTRODUCTION                                                           | 4    |
| 2 CALIBRATION OF THE JRC CFC EQUIPMENT                                   | 4    |
| 2.1 Calculating Quantity of Standard Injected                            | 5    |
| 2.2 Correction for Instrument Drift                                      | 6    |
| 2.3 Curve Construction                                                   | 6    |
| 3 ANALYSIS OF INTERCOMPARISON STANDARD                                   | 8    |
| 4 RESULTS                                                                | 8    |
| 4.1 Results from Intercomparison Standard                                | 8    |
| 4.2 Results from Weiss Standard                                          | 9    |
| 5 DISCUSSION                                                             | 9    |
| 5.1 Comparison with WHP Requirements                                     | 10   |
| 5.2 Assessment of Curve Validity                                         | 10   |
| 6 CONCLUSIONS                                                            | 11   |
| 7 REFERENCES                                                             | 13   |
| TABLE 1 - RESULTS FROM THE ANALYSIS OF THE PMEL INTERCOMPARISON STANDARD | 14   |
| TABLE 2 - CONCENTRATION DIFFERENCES FOR FIRST CALIBRATION CURVE          | 15   |
| APPENDIX A - DATA FROM 1ST DETERMINATION                                 | A1   |
| APPENDIX B - DATA FROM 2ND DETERMINATION                                 | A3   |

## 1. INTRODUCTION

There are now a number of laboratories in Europe and the USA that possess the capability to measure oceanic CFC (chlorofluorocarbon) concentrations. However, variations in instrument design and methodology, have led to a need for an intercomparison exercise in order to ensure consistent data quality amongst the various laboratories. The lack of suitable aqueous standards has necessitated the use of gas phase standards for this purpose. This report describes the results obtained by this laboratory as part of such an exercise, organised by J Bullister of PMEL (Pacific Marine Environmental Laboratory).

A number of cylinders were filled with ambient air and were analysed at PMEL for their concentrations of CFC-11 and CFC-12. These were then distributed to the participating laboratories. Each laboratory was required to analyse their cylinder of intercomparison gas for its CFC content, using their normal procedures. Sufficient gas was to be left in the cylinder that it could be reanalysed by PMEL so as to determine any drift in the concentration over the period of the exercise.

This report outlines the analyses undertaken here at the James Rennell Centre as part of this intercomparison. In it we describe the stages required to perform the analyses, together with a description of the data handling procedures. Results are presented from two independent calibrations of the PMEL standard, together with an assessment of the precision of the methods used.

## 2. CALIBRATION OF THE JRC CFC EQUIPMENT

The first step was to calibrate the CFC equipment using a compressed air standard, containing 320.0 pptv (parts per  $10^{12}$  by volume) CFC-11 and 596.0 pptv CFC-12. This was supplied by R Weiss (Scripps Institution of Oceanography), having been prepared as per Bullister (1984), and is one of 3 such standards normally used by JRC for CFC analysis. Calibration was based on multiple injections of volumes of the standard. The JRC instrument has been fully described in Smythe-Wright (1990a and b) and has two sample loops, with volumes of 0.746276 ml (SSV) and 2.91762 ml (LSV). By using combinations of these a range of volumes of standard (0.746276-11.67048 ml) could be introduced into the instrument. For example, the sequence would typically be, in duplicate;

1LSV, 3SSV, 4LSV, 1SSV, 3LSV, 2SSV, 2LSV, 4SSV, LSV + SSV, 2(LSV + SSV), 3(LSV + SSV).

These standard injections were bracketed by system blanks and several LSVs, the latter being used to correct for instrument drift (see Section 2.2 below). All values were corrected for the system blank if one was present.

## 2.1 CALCULATING QUANTITY OF STANDARD INJECTED

There are two approaches to this, either by converting the volumes of standard to an absolute number of moles of gas present using

$$m = \frac{c \cdot P \cdot V}{R \cdot T} \quad (\text{Eqn. 1})$$

or into an equivalent volume of gas at STP using

$$v_s = \frac{c \cdot P \cdot V \cdot T_s}{T \cdot P_s} \quad (\text{Eqn. 2})$$

where

$m$  = number of moles

$v_s$  = equivalent volume at STP

$c$  = standard concentration (pptv)

$P$  = measured pressure (mbar)

$T$  = measured temperature (K)

$T_s$  = standard temperature (273.15 K)

$P_s$  = standard Pressure (1013.25 mbar)

$V$  = volume of standard injected (ml)

$R$  = Gas Constant (83144.1 is used here to give an answer in pmol).

Both approaches were tried for the first analytical run, but the results were so close that only that based on Eqn. 1 are reported here.

## 2.2 Correction for Instrument Drift

The electron capture detector (ECD) is amongst the most sensitive of GC detectors, but it has the disadvantage that its response, as measured by peak area, is prone to drift with time. This was corrected for using the results of the ILSV injections. These were measured periodically throughout each set of analyses and the instrument response used to calculate a Reciprocal Sensitivity factor (moles per unit area) for each of these large loops. A plot of this factor against run number (Figure 1) gave a measure of the degree of instrument drift over the series of analyses. The equation of a linear fit to this data was used to generate a run number dependant sensitivity factor which was applied to the measured area for all points on the calibration curve.

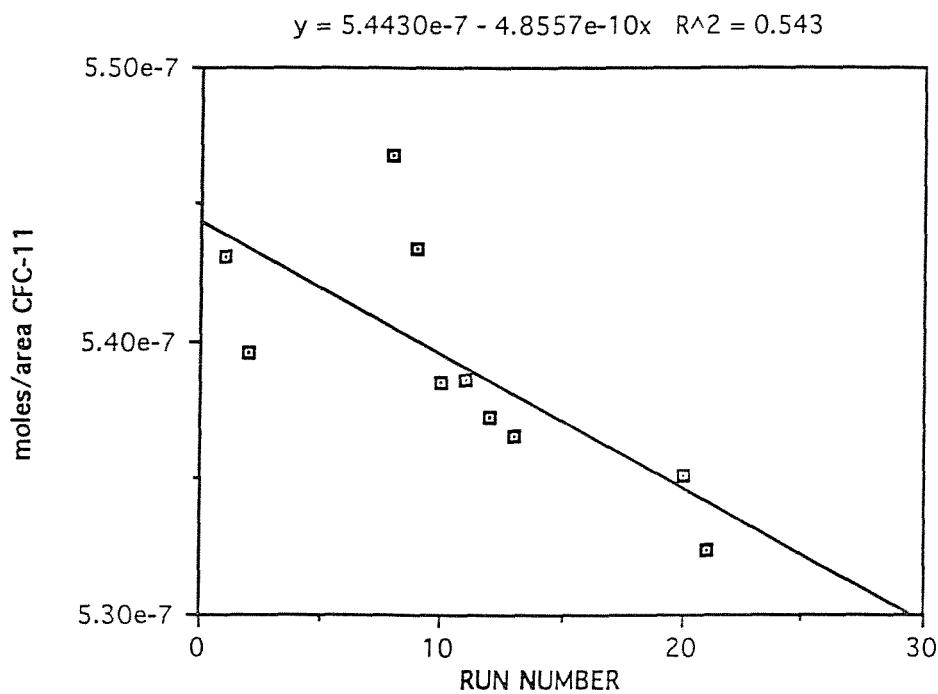



Figure 1 Plot of instrument response vs run number to assess instrument drift.

## 2.3 Curve Construction

The calibration curve was constructed by plotting this drift-corrected area (units = mol) against the quantity of CFC injected.

Since sensitivity drift was corrected for using large loops of standard, it was necessary to force the calibration curve through this value. To do this, the average of all the 1LSV analyses was taken and fifty of this value added to the data before the curve was constructed. Similarly, since blanks were corrected for independently of the curve fitting, it is normal practice to add fifty zero values to the data in order to force the curves through the origin (see Section 5 below). An example of a calibration curve is shown in Figure 2.

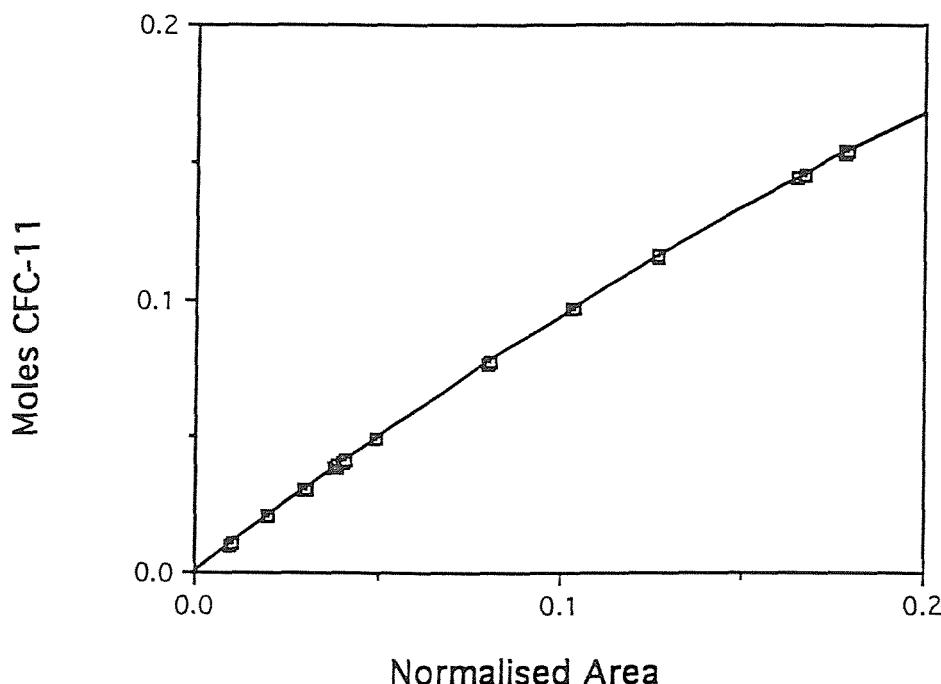



Figure 2 Normalised area calibration curve for CFC-11.

In constructing the calibration curves, four types of weighting were tried in order to assess the effects this had on the calculated concentrations.

- the conventional method: weighting with 50 1LSV and 50 zero values (WZ).
- 50 1LSV, but no zero weighting (W).
- as WZ plus weighting based on 50 of the averaged 1SSV values (WZS).
- unweighted data (U).

The reason for trying these approaches was that the conventional method did not appear to fit the SSV data very well (see Section 5 below).

A polynomial fit to this data was then used to convert the drift corrected measured peak areas of unknowns into moles of CFC. This was finally converted back to a concentration in air, using the inverse of Eqn. 1.

### 3. ANALYSIS OF INTERCOMPARISON STANDARD

Two independent determinations of the intercomparison standard, cylinder number 8348, were made, six days apart. The procedure used was to construct a calibration curve as above and then analyse replicate large loops of the intercomparison standard bracketed by analyses of the Weiss standard. The first measurements of the intercomparison standard were based on a full calibration curve, followed by 7 Weiss standards, 8 intercomparison standards and then 6 more Weiss standards.

The second determination used only a partial calibration curve, with measurements of 6 Weiss standards, 4 intercomparison standards and finally 2 Weiss standards. The use of replicate analyses permit an assessment of the precision of the measurements, the bracketing Weiss standards also providing a check on the accuracy of the curve construction. By the time of this determination the instrument was showing signs of needing to be baked out (cleaned). Therefore we are less certain of the data quality from these measurements.

### 4. RESULTS

The results from both determinations of the intercomparison standard are given in Table 1, together with the associated data from the 1LSV replicates of the Weiss standard. A full listing of the analytical data is given in Appendices A and B. The column headings refer to the construction methods described above. There is good agreement between the results from the two determinations and from the different weighting methods used. The only exception was the results obtained using unweighted data from the first determination which differ markedly from the other results.

#### 4.1 Results from Intercomparison Standard

The results from the weighted analyses of the data covered a range of 499.8 to 501.2 pptv for CFC-12 and 274.4 to 275.3 pptv for CFC-11 from the first determination. The second determination produced values between 503.4 and 505.1 pptv for CFC-12 and between 273.2 and 274.0 pptv for CFC-11. Both sets of results agree internally to well within the precision of the actual analyses. The same is true when comparing the CFC-11 results from the two separate determinations. However, the CFC-12 values obtained from the first determination do appear significantly lower than those from the second. However, even in taking the most extreme case this difference is small, only 5.3 pptv, or 1.1%. One standard deviation of each result would bring both into agreement.

#### 4.2 Results from Weiss Standard

As a check on our approach, it is useful to look at the 1LSV measurements of the Weiss standard, comparing the results from the curve fitting with the known absolute values (596.0 pptv for CFC-12 and 320.0 pptv for CFC-11) for this gas. The variations between the true and calculated values for these 1LSV analyses are small, the maximum differences being 2.4 pptv for CFC-12 and 1.8 for CFC-11. These are respectively only 0.4 and 0.3% from the true values.

### 5. DISCUSSION

The different approaches to calibration curve construction produce very similar results for both the intercomparison standard and the Weiss standard. The offset in the results from the unweighted data might be expected: since all the data are drift corrected by normalising to 1LSV, the calibration curve should pass through this value. If it is not constrained to do so by weighting, the other data may bias the curve fitting routine away from the 1LSV value. This is probably the cause of the discrepancies in the unweighted results from the first determination, where the Weiss standard concentrations measured low and the intercomparison standard results are lower than those produced by the other approaches. The unweighted data will not be further discussed, except to point out that even these results are correct to within WHP standards (see Section 5.1 below).

## 5.1 Comparison with WHP Requirements

It is important to look at these results in relation to the requirements of the WOCE Hydrographic Programme. This calls for an accuracy of 1-2% with precisions of 1%. Multiple analyses of 1LSV of the Weiss standard, yielded precisions well within this requirement for both determinations and all curve fitting approaches. The maximum errors for CFC-12 and CFC-11, based on all three curve constructions, were 1.6 and 1.0% respectively for the first determination, and 1.2 and 1.5% for the second.

## 5.2 Assessment of Curve Validity

The calculated 1LSV values would be expected to be close to the true values as the curves are weighted to pass through this point. It is therefore a good idea to look at the rest of the curve to get a proper assessment of its validity. Table 2 shows the differences from the true values of the calculated concentrations of all the Weiss standard analyses in the first determination. These data show that at volumes above 1LSV all three construction approaches produce concentrations close to the true values. However, the results from the multiple SSV injections fit less well. The conventional curve construction (1LSV and zero weighting) fared worst in this comparison with differences of up to 3.2% for CFC-12 and 5% for CFC-11, both from 1SSV analyses. The other two approaches were similar, with maximum errors of 2.3 and 3.4% for that with no zero weighting and 2.2 and 3.2% for that including 1SSV weighting.

There is an associated problem concerned with the intercept of these curves with the y-axis. This represents an offset to the calculated number of moles which, since blanks have already been corrected for, should be zero. The conventional method, since it is zero weighted, has a small intercept, equivalent to an offset of less than 0.3 pptv for both compounds. The other two approaches however fare worse, with offsets of between 6 and 8 pptv.

There appear to be two possible causes for these discrepancies at the low end of the calibration curves. One is that the small sample loop may not be correctly calibrated. A slightly larger small loop volume would have the effect of pulling the calibration curve up as a whole and especially the SSVs, reducing both the above errors. However, to totally account for these errors a 3% increase in loop volume would be required, which seems unreasonable from its calibration data. Therefore it seems likely that at least some of the errors are due to unseen

blank problems with the small loop. This could arise from contamination of the valve or its connecting pipework, or from a slight leak round the valve rotor, although the purge housings should minimise the latter.

## 6. CONCLUSIONS

- 1) As part of the WOCE CFC Standard Intercomparison, the James Rennell Centre performed two separate analyses for CFC-12 and CFC-11 of cylinder 8348. The first was carried out over two days, 20th-21st January 1992, the second on the 27th January. There was good agreement between results from both determinations.
- 2) Several data processing approaches were tried, applying different weightings to the construction of the calibration curve. The first determination of the intercomparison standard yielded concentrations in the range 274.4 to 275.3 pptv for CFC-11 and 499.8 to 501.2 pptv for CFC-12. The second determination yielded ranges of 273.4 to 274.0 pptv and 503.4 to 505.1 pptv respectively. All three approaches had precisions better than 1%.

Calibration curves constructed without weighted data produced results noticeably different from the three weighted approaches. We therefore feel that such an approach is not suitable for high precision measurements.

- 3) The instrument was calibrated against a standard of known composition. Multiple analyses of aliquots of this standard were run as unknowns as a check on the validity of our approach. These analyses yielded accuracies and precisions of 0.5% and 0.8% for CFC-11 and 0.4% and 0.5% for CFC-12. These lie well within the requirements of WHP for CFC measurements.
- 4) Analysis of our calibration curves indicates that there may have been a slight blank problem associated with our small standard loop. This would result in slightly overestimated concentrations at the lower end of the calibration curve. This effect is quite small, not more than 1% at the concentration of the intercomparison standard, but we might expect our results to be slightly higher than the true values. It is important that this problem be addressed, as it is at low concentrations where blanks pose the most serious threat to data quality.

- 5) Despite zero weighting all the curves displayed a small though significant intercept value. It is unclear from our work to date how this should be handled in calculating concentrations.

7 REFERENCES

Bullister, J. 1984. Atmospheric Chlorofluoromethanes as tracers of ocean circulation and mixing: measurement and calibration techniques and studies in the Greenland and Norwegian Seas. PhD thesis. University of California, San Diego. 172pp.

Smythe-Wright, D. 1990a. Chemical Tracer Studies at IOSDL -1. The design and construction of analytical equipment for the measurement of chlorofluorocarbons in seawater and air. Institute of Oceanographic Sciences Deacon Laboratory Report 274, 78pp

Smythe-Wright, D. 1990b. Chemical Tracer Studies at IOSDL - 2. Method manual for the routine measurement of chlorofluorocarbons in seawater and air. Institute of Oceanographic Sciences Deacon Laboratory Report 275, 63pp

TABLE 1

Results from the analysis of the PMEL Intercomparison Standard.

1st Determination of Intercomparison Standard.

|                          | WZ12  | WZ11  | W12   | W11   | WZS12 | WZS11 | U12   | U11   |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Intercomparison standard | 501.2 | 275.3 | 500.7 | 274.8 | 499.8 | 274.4 | 496.6 | 272.0 |
| standard deviation       | 3.4   | 2.1   | 3.5   | 2.2   | 3.5   | 2.1   | 3.5   | 2.2   |
| % s.d.                   | 0.7   | 0.8   | 0.7   | 0.8   | 0.7   | 0.8   | 0.7   | 0.8   |
| 11sv weiss standard      | 594.6 | 319.5 | 594.9 | 319.7 | 593.6 | 318.8 | 590.5 | 316.6 |
| standard deviation       | 3.3   | 1.7   | 3.4   | 1.7   | 3.4   | 1.7   | 3.4   | 1.7   |
| % s.d.                   | 0.6   | 0.5   | 0.6   | 0.5   | 0.6   | 0.5   | 0.6   | 0.5   |

2nd Determination of Intercomparison Standard.

|                          |       |       |       |       |  |  |       |       |
|--------------------------|-------|-------|-------|-------|--|--|-------|-------|
| intercomparison standard | 505.1 | 274.0 | 503.4 | 273.4 |  |  | 503.4 | 273.2 |
| standard deviation       | 2.7   | 2.4   | 2.7   | 2.4   |  |  | 2.7   | 2.4   |
| % s.d.                   | 0.5   | 0.9   | 0.5   | 0.9   |  |  | 0.5   | 0.9   |
| 11sv weiss standard      | 595.4 | 319.6 | 595.6 | 319.6 |  |  | 595.5 | 319.5 |
| standard deviation       | 4.2   | 1.6   | 4.3   | 1.7   |  |  | 4.3   | 1.7   |
| % s.d.                   | 0.7   | 0.5   | 0.7   | 0.5   |  |  | 0.7   | 0.5   |

TABLE 2  
Concentration differences for 1st calibration curve.

| Sample    | WZ12 | WZ11 | W12  | W11   | U12  | U11   | WZS12 | WZS11 |
|-----------|------|------|------|-------|------|-------|-------|-------|
| 1SSV      | 18.5 | 12.8 | -8.4 | -9.4  | -5.5 | -9.3  | 10.7  | 7.7   |
| 1SSV      | 19.2 | 12.0 | -7.7 | -10.2 | -4.8 | -10.1 | 11.3  | 7.0   |
| 1SSV      | 17.8 | 16.0 | -9.1 | -6.0  | -6.1 | -6.0  | 10.0  | 11.0  |
| 2SSV      | 14.0 | 11.1 | 7.6  | 5.3   | 3.4  | 2.2   | 10.2  | 8.9   |
| 2SSV      | 11.7 | 10.9 | 5.3  | 5.1   | 1.0  | 2.1   | 7.8   | 8.7   |
| 2SSV      | 17.1 | 12.1 | 10.8 | 6.4   | 6.5  | 3.3   | 13.2  | 9.9   |
| 3SSV      | 10.5 | 9.8  | 9.3  | 8.6   | 4.3  | 5.2   | 8.4   | 8.6   |
| 3SSV      | 9.1  | 7.8  | 7.9  | 6.5   | 2.9  | 3.2   | 7.1   | 6.6   |
| 3SSV      | 14.9 | 10.5 | 13.8 | 9.3   | 8.8  | 5.9   | 12.9  | 9.3   |
| 1LSV      | 0.4  | -0.8 | 0.7  | -0.6  | -3.8 | -3.7  | -0.7  | -1.5  |
| 1LSV      | -3.2 | -4.5 | -2.9 | -4.4  | -7.4 | -7.4  | -4.2  | -5.2  |
| 1LSV      | -1.8 | 1.1  | -1.5 | 1.3   | -5.9 | -1.7  | -2.8  | 0.4   |
| 1LSV      | 1.4  | -0.3 | 1.8  | -0.1  | -2.7 | -3.2  | 0.4   | -1.0  |
| 1LSV      | -4.8 | -1.1 | -4.5 | -0.9  | -9.0 | -4.0  | -5.8  | -1.8  |
| 1LSV      | -4.8 | 0.1  | -4.5 | 0.3   | -9.0 | -2.7  | -5.8  | -0.6  |
| 1LSV      | -2.8 | 1.2  | -2.5 | 1.4   | -7.0 | -1.7  | -3.8  | 0.5   |
| 1LSV      | 3.5  | 0.5  | 3.8  | 0.7   | -0.6 | -2.4  | 2.5   | -0.2  |
| 1LSV      | 3.9  | 0.9  | 4.2  | 1.2   | -0.3 | -1.9  | 2.9   | 0.2   |
| 1LSV      | -2.2 | 1.1  | -1.9 | 1.3   | -6.4 | -1.8  | -3.3  | 0.4   |
| 1LSV      | -3.1 | 0.2  | -2.8 | 0.4   | -7.3 | -2.7  | -4.2  | -0.5  |
| 1LSV      | -5.0 | 1.3  | -4.8 | 1.5   | -9.2 | -1.6  | -6.1  | 0.6   |
| 1LSV      | -1.9 | -3.2 | -1.6 | -3.0  | -6.1 | -6.1  | -3.0  | -3.9  |
| 1LSV      | -3.8 | -3.6 | -3.5 | -3.4  | -8.0 | -6.5  | -4.9  | -4.3  |
| 1LSV      | 2.4  | -1.6 | 2.8  | -1.4  | -1.7 | -4.4  | 1.4   | -2.3  |
| 1LSV      | 2.8  | -1.5 | 3.2  | -1.4  | -1.3 | -4.4  | 1.8   | -2.2  |
| 1LSV      | -1.8 | -0.2 | -1.5 | 0.0   | -5.9 | -3.1  | -2.8  | -0.9  |
| 1LSV      | -5.0 | -1.9 | -4.7 | -1.7  | -9.2 | -4.8  | -6.0  | -2.6  |
| 4SSV      | 11.1 | 7.7  | 11.6 | 8.1   | 7.1  | 5.0   | 10.2  | 7.1   |
| 4SSV      | 7.7  | 7.8  | 8.1  | 8.2   | 3.7  | 5.2   | 6.8   | 7.2   |
| 4SSV      | 10.3 | 9.4  | 10.8 | 9.8   | 6.4  | 6.7   | 9.4   | 8.8   |
| 1LSV+1SSV | 0.8  | 1.8  | 1.6  | 2.7   | -2.0 | 0.1   | 0.6   | 1.5   |
| 1LSV+1SSV | -0.1 | 0.7  | 0.7  | 1.6   | -2.9 | -1.1  | -0.4  | 0.4   |
| 2LSV      | 5.7  | -1.5 | 5.9  | -0.8  | 4.8  | -1.9  | 6.7   | -1.1  |

|           |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|
| 2LSV      | 3.7  | -0.7 | 3.9  | -0.1 | 2.8  | -1.1 | 4.7  | -0.4 |
| 2LSV      | -4.2 | -0.3 | -4.0 | 0.3  | -5.1 | -0.7 | -3.2 | 0.0  |
| 2LSV+2SSV | 4.3  | 1.1  | 4.0  | 1.1  | 4.0  | 1.0  | 5.5  | 1.7  |
| 2LSV+2SSV | -4.9 | -0.8 | -5.1 | -0.8 | -5.2 | -1.0 | -3.7 | -0.3 |
| 3LSV      | 2.0  | 0.2  | 1.5  | -0.3 | 2.0  | 0.1  | 3.0  | 0.7  |
| 3LSV      | -1.6 | 1.0  | -2.2 | 0.5  | -1.7 | 0.9  | -0.6 | 1.5  |
| 3LSV      | 2.7  | 0.6  | 2.1  | 0.1  | 2.6  | 0.5  | 3.7  | 1.1  |
| 3LSV+3SSV | -1.6 | 1.6  | -1.8 | 1.4  | -1.6 | 1.6  | -1.6 | 1.7  |
| 3LSV+3SSV | -2.7 | -1.4 | -2.9 | -1.6 | -2.7 | -1.4 | -2.7 | -1.4 |
| 4LSV      | -0.9 | -0.3 | -0.7 | -0.1 | -0.8 | -0.3 | -1.3 | -0.5 |
| 4LSV      | 1.0  | 0.4  | 1.2  | 0.6  | 1.0  | 0.4  | 0.5  | 0.2  |
| 4LSV      | 2.1  | -0.6 | 2.4  | -0.4 | 2.2  | -0.5 | 1.6  | -0.8 |

(+) numbers are overestimates

(-) numbers are underestimates

# Appendix A. Data from 1st determination

| Run Number | Sample    | Loop           | Temp | Press   | Area   | Area   | WZ12   | WZ11   | W12    | W11    | U12    | U11    | WZS12  | WZS11  |
|------------|-----------|----------------|------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|            |           | Volume<br>(ml) | (oC) | (mbar)  | CFC-12 | CFC-11 | (pptv) |
| 1          | 1LSV      | 2.917620       | 24.2 | 1019.10 | 40071  | 68687  | 596.4  | 319.2  | 596.7  | 319.4  | 592.2  | 316.3  | 595.3  | 318.5  |
| 2          | 1LSV      | 2.917620       | 24.3 | 1018.95 | 39828  | 67843  | 592.8  | 315.5  | 593.1  | 315.6  | 588.6  | 312.6  | 591.8  | 314.8  |
| 3          | 3SSV      | 2.238828       | 24.9 | 1019.25 | 31609  | 53921  | 606.5  | 329.8  | 605.3  | 328.6  | 600.3  | 325.2  | 604.4  | 328.6  |
| 4          | 4LSV      | 11.670480      | 25.0 | 1019.20 | 144617 | 318266 | 595.1  | 319.7  | 595.3  | 319.9  | 595.2  | 319.7  | 594.7  | 319.5  |
| 5          | 1LSV+1SSV | 3.663896       | 25.0 | 1019.15 | 49553  | 87776  | 596.8  | 321.8  | 597.6  | 322.7  | 594.0  | 320.1  | 596.6  | 321.5  |
| 6          | 1SSV      | 0.746276       | 25.0 | 1019.10 | 11064  | 17806  | 614.5  | 332.8  | 587.6  | 310.6  | 590.5  | 310.7  | 606.7  | 327.7  |
| 7          | 3LSV      | 8.752860       | 25.1 | 1019.05 | 111152 | 226272 | 598.0  | 320.2  | 597.5  | 319.7  | 598.0  | 320.1  | 599.0  | 320.7  |
| 8          | 2SSV      | 1.492552       | 24.9 | 1019.00 | 21549  | 35763  | 610.0  | 331.1  | 603.6  | 325.3  | 599.4  | 322.2  | 606.2  | 328.9  |
| 9          | 2LSV      | 5.835240       | 24.8 | 1019.05 | 76985  | 143075 | 601.7  | 318.5  | 601.9  | 319.2  | 600.8  | 318.1  | 602.7  | 318.9  |
| 10         | 4SSV      | 2.985104       | 24.8 | 1019.05 | 41562  | 72296  | 607.1  | 327.7  | 607.6  | 328.1  | 603.1  | 325.0  | 606.2  | 327.1  |
| 11         | 2LSV+2SSV | 7.327792       | 24.7 | 1019.15 | 94812  | 185923 | 600.3  | 321.1  | 600.0  | 321.1  | 600.0  | 321.0  | 601.5  | 321.7  |
| 12         | 3LSV+3SSV | 10.991688      | 24.7 | 1019.15 | 136698 | 298807 | 594.4  | 321.6  | 594.2  | 321.4  | 594.4  | 321.6  | 594.4  | 321.7  |
| 13         | 1LSV      | 2.917620       | 24.7 | 1019.25 | 39881  | 69209  | 594.2  | 321.1  | 594.5  | 321.3  | 590.1  | 318.3  | 593.2  | 320.4  |
| 14         | 3SSV      | 2.238828       | 24.8 | 1019.25 | 31555  | 53741  | 605.1  | 327.8  | 603.9  | 326.5  | 598.9  | 323.2  | 603.1  | 326.6  |
| 15         | 4LSV      | 11.670480      | 24.9 | 1019.50 | 145134 | 320196 | 597.0  | 320.4  | 597.2  | 320.6  | 597.0  | 320.4  | 596.5  | 320.2  |
| 16         | 1SSV      | 0.746276       | 24.8 | 1019.55 | 11088  | 17825  | 615.2  | 332.0  | 588.3  | 309.8  | 591.2  | 309.9  | 607.3  | 327.0  |
| 17         | 3LSV      | 8.752860       | 24.7 | 1019.60 | 110715 | 227946 | 594.4  | 321.0  | 593.8  | 320.5  | 594.3  | 320.9  | 595.4  | 321.5  |
| 18         | 2SSV      | 1.492552       | 24.8 | 1019.60 | 21489  | 35858  | 607.7  | 330.9  | 601.3  | 325.1  | 597.0  | 322.1  | 603.8  | 328.7  |
| 19         | 2LSV      | 5.835240       | 24.7 | 1019.55 | 76808  | 143907 | 599.7  | 319.3  | 599.9  | 319.9  | 598.8  | 318.9  | 600.7  | 319.6  |
| 20         | 4SSV      | 2.985104       | 24.7 | 1019.60 | 41375  | 72565  | 603.7  | 327.8  | 604.1  | 328.2  | 599.7  | 325.2  | 602.8  | 327.2  |
| 21         | 1LSV+1SSV | 3.663896       | 24.6 | 1019.60 | 49564  | 87933  | 595.9  | 320.7  | 596.7  | 321.6  | 593.1  | 318.9  | 595.6  | 320.4  |
| 22         | 2LSV+2SSV | 7.327792       | 24.6 | 1019.90 | 93576  | 185354 | 591.1  | 319.2  | 590.9  | 319.2  | 590.8  | 319.0  | 592.3  | 319.7  |
| 23         | 3LSV+3SSV | 10.991688      | 24.8 | 1020.25 | 136563 | 296391 | 593.3  | 318.6  | 593.1  | 318.4  | 593.3  | 318.6  | 593.3  | 318.6  |
| 28         | 1LSV      | 2.917620       | 25.3 | 1023.95 | 40183  | 69306  | 597.4  | 319.7  | 597.8  | 319.9  | 593.3  | 316.8  | 596.4  | 319.0  |
| 30         | 1LSV      | 2.917620       | 25.5 | 1023.85 | 39760  | 69113  | 591.2  | 318.9  | 591.5  | 319.1  | 587.0  | 316.0  | 590.2  | 318.2  |
| 31         | 3SSV      | 2.238828       | 25.5 | 1023.80 | 31907  | 54525  | 610.9  | 330.5  | 609.8  | 329.3  | 604.8  | 325.9  | 608.9  | 329.3  |
| 32         | 4LSV      | 11.670480      | 25.5 | 1023.75 | 145696 | 321123 | 598.1  | 319.4  | 598.4  | 319.6  | 598.2  | 319.5  | 597.6  | 319.2  |
| 33         | 1SSV      | 0.746276       | 25.4 | 1023.60 | 11085  | 18148  | 613.8  | 336.0  | 586.9  | 314.0  | 589.9  | 314.0  | 606.0  | 331.0  |
| 34         | 3LSV      | 8.752860       | 25.4 | 1023.45 | 111615 | 228907 | 598.7  | 320.6  | 598.1  | 320.1  | 598.6  | 320.5  | 599.7  | 321.1  |
| 35         | 2SSV      | 1.492552       | 25.5 | 1023.30 | 21701  | 36181  | 613.1  | 332.1  | 606.8  | 326.4  | 602.5  | 323.3  | 609.2  | 329.9  |
| 36         | 2LSV      | 5.835240       | 25.4 | 1023.05 | 75956  | 144854 | 591.8  | 319.7  | 592.0  | 320.3  | 590.9  | 319.3  | 592.8  | 320.0  |
| 37         | 4SSV      | 2.985104       | 25.5 | 1022.75 | 41566  | 73240  | 606.3  | 329.4  | 606.8  | 329.8  | 602.4  | 326.7  | 605.4  | 328.8  |

# Appendix A. Data from 1st determination

| Run Number | Sample | Loop     | Temp | Press   | Area CFC-12 | Area CFC-11 | WZ12   |        | WZ11   |        | W12    |        | W11    |        | U12    |        | U11    |        | WZS12  |        | WZS11  |  |
|------------|--------|----------|------|---------|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|            |        |          |      |         |             |             | (pptv) |  |
| 38         | 1LSV   | 2.917620 | 25.4 | 1022.65 | 39731       | 69460       | 591.2  | 320.1  | 591.5  | 320.3  | 587.0  | 317.3  | 590.2  | 319.4  |        |        |        |        |        |        |        |  |
| 39         | 1LSV   | 2.917620 | 25.5 | 1022.45 | 39837       | 69677       | 593.2  | 321.2  | 593.5  | 321.4  | 589.0  | 318.3  | 592.2  | 320.5  |        |        |        |        |        |        |        |  |
| 40         | 1LSV   | 2.917620 | 25.5 | 1022.35 | 40232       | 69526       | 599.5  | 320.5  | 599.8  | 320.7  | 595.4  | 317.6  | 598.5  | 319.8  |        |        |        |        |        |        |        |  |
| 41         | 1LSV   | 2.917620 | 25.6 | 1022.15 | 40237       | 69605       | 599.9  | 320.9  | 600.2  | 321.2  | 595.7  | 318.1  | 598.9  | 320.2  |        |        |        |        |        |        |        |  |
| 42         | 1LSV   | 2.917620 | 25.6 | 1022.20 | 39850       | 69660       | 593.8  | 321.1  | 594.1  | 321.3  | 589.6  | 318.2  | 592.7  | 320.4  |        |        |        |        |        |        |        |  |
| 43         | 1LSV   | 2.917620 | 25.6 | 1022.25 | 39797       | 69484       | 592.9  | 320.2  | 593.2  | 320.4  | 588.7  | 317.3  | 591.8  | 319.5  |        |        |        |        |        |        |        |  |
| 44         | 1LSV   | 2.917620 | 25.6 | 1022.20 | 39672       | 69738       | 591.0  | 321.3  | 591.2  | 321.5  | 586.8  | 318.4  | 589.9  | 320.6  |        |        |        |        |        |        |        |  |
| 45         | PMEL   | 2.917620 | 25.6 | 1022.30 | 33779       | 59208       | 498.6  | 274.3  | 498.1  | 273.8  | 494.0  | 271.0  | 497.2  | 273.4  |        |        |        |        |        |        |        |  |
| 46         | PMEL   | 2.917620 | 25.5 | 1022.25 | 34127       | 59383       | 503.9  | 275.0  | 503.4  | 274.4  | 499.3  | 271.6  | 502.5  | 274.1  |        |        |        |        |        |        |        |  |
| 47         | PMEL   | 2.917620 | 25.6 | 1022.25 | 34322       | 59270       | 507.1  | 274.5  | 506.6  | 273.9  | 502.5  | 271.1  | 505.7  | 273.6  |        |        |        |        |        |        |        |  |
| 48         | PMEL   | 2.917620 | 25.5 | 1022.30 | 33979       | 58868       | 501.6  | 272.5  | 501.0  | 271.9  | 497.0  | 269.2  | 500.1  | 271.6  |        |        |        |        |        |        |        |  |
| 49         | PMEL   | 2.917620 | 25.5 | 1022.40 | 34053       | 59806       | 502.7  | 276.6  | 502.2  | 276.1  | 498.1  | 273.3  | 501.2  | 275.8  |        |        |        |        |        |        |        |  |
| 50         | PMEL   | 2.917620 | 25.6 | 1022.50 | 33736       | 59233       | 497.8  | 274.1  | 497.3  | 273.5  | 493.2  | 270.7  | 496.4  | 273.2  |        |        |        |        |        |        |        |  |
| 51         | PMEL   | 2.917620 | 25.6 | 1022.70 | 33664       | 59639       | 496.6  | 275.8  | 496.1  | 275.2  | 492.0  | 272.4  | 495.2  | 274.9  |        |        |        |        |        |        |        |  |
| 52         | PMEL   | 2.917620 | 25.4 | 1022.70 | 34001       | 60563       | 501.5  | 279.6  | 501.0  | 279.2  | 496.9  | 276.4  | 500.1  | 278.8  |        |        |        |        |        |        |        |  |
| 53         | PMEL   | 2.917620 | 25.6 | 1022.45 | 37287       | 61159       | 553.3  | 282.5  | 553.3  | 282.1  | 548.9  | 279.2  | 552.1  | 281.7  |        |        |        |        |        |        |        |  |
| 54         | 1LSV   | 2.917620 | 25.0 | 1022.55 | 39959       | 69052       | 594.1  | 316.8  | 594.4  | 317.0  | 589.9  | 313.9  | 593.0  | 316.1  |        |        |        |        |        |        |        |  |
| 55         | 1LSV   | 2.917620 | 24.6 | 1022.55 | 39891       | 69084       | 592.2  | 316.4  | 592.5  | 316.6  | 588.0  | 313.5  | 591.1  | 315.7  |        |        |        |        |        |        |        |  |
| 56         | 1LSV   | 2.917620 | 24.3 | 1022.55 | 40327       | 69625       | 598.4  | 318.4  | 598.8  | 318.6  | 594.3  | 315.6  | 597.4  | 317.7  |        |        |        |        |        |        |        |  |
| 57         | 1LSV   | 2.917620 | 24.1 | 1022.60 | 40380       | 69697       | 598.8  | 318.5  | 599.2  | 318.6  | 594.7  | 315.6  | 597.8  | 317.8  |        |        |        |        |        |        |        |  |
| 58         | 1LSV   | 2.917620 | 23.9 | 1022.85 | 40119       | 70081       | 594.2  | 319.8  | 594.5  | 320.0  | 590.1  | 316.9  | 593.2  | 319.1  |        |        |        |        |        |        |        |  |
| 59         | 1LSV   | 2.917620 | 23.7 | 1022.90 | 39942       | 69767       | 591.0  | 318.1  | 591.3  | 318.3  | 586.8  | 315.2  | 590.0  | 317.4  |        |        |        |        |        |        |        |  |

## Appendix B. Data from 2nd determination

| Run Number | Sample | Loop      | Temp | Press   | Area CFC-12 | Area CFC-11 | WZ12 (pptv) | WZ11 (pptv) | W12 (pptv) | W11 (pptv) | U12 (pptv) | U11 (pptv) |
|------------|--------|-----------|------|---------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|
|            |        |           |      |         |             |             |             |             |            |            |            |            |
|            |        |           |      |         |             |             |             |             |            |            |            |            |
| 1          | 1LSV   | 2.917620  | 25.3 | 1034.35 | 43282       | 71667       | 591.4       | 320.3       | 591.5      | 320.4      | 591.5      | 320.2      |
| 2          | 1LSV   | 2.917620  | 25.3 | 1034.40 | 44082       | 72133       | 602.9       | 322.1       | 603.3      | 322.2      | 603.3      | 322.0      |
| 3          | 1SSV   | 0.746276  | 25.7 | 1034.15 | 12898       | 18707       | 661.0       | 333.2       | 592.9      | 314.1      | 593.0      | 314.1      |
| 4          | 4LSV   | 11.670480 | 25.2 | 1034.05 | 151936      | 338452      | 595.5       | 319.9       | 596.0      | 320.0      | 596.0      | 320.0      |
| 5          | 2LSV   | 5.835240  | 25.1 | 1033.85 | 82794       | 148850      | 595.9       | 319.8       | 595.9      | 320.3      | 595.9      | 320.3      |
| 6          | 2SSV   | 1.492552  | 25.7 | 1033.80 | 23674       | 37529       | 616.5       | 331.4       | 599.6      | 326.3      | 599.6      | 326.1      |
| 7          | 3LSV   | 8.752860  | 25.3 | 1033.65 | 118918      | 235541      | 597.7       | 320.4       | 596.0      | 320.0      | 596.1      | 320.0      |
| 8          | 1LSV   | 2.917620  | 25.3 | 1033.50 | 43315       | 71113       | 592.4       | 316.3       | 592.6      | 316.3      | 592.6      | 316.1      |
| 9          | 1LSV   | 2.917620  | 25.4 | 1033.05 | 43433       | 71514       | 594.6       | 318.0       | 594.8      | 318.0      | 594.8      | 317.8      |
| 10         | 1LSV   | 2.917620  | 25.4 | 1032.95 | 43849       | 72146       | 600.7       | 320.4       | 601.0      | 320.5      | 601.0      | 320.3      |
| 11         | 1LSV   | 2.917620  | 25.3 | 1032.90 | 43707       | 72157       | 598.5       | 320.1       | 598.8      | 320.2      | 598.7      | 320.0      |
| 12         | 1LSV   | 2.917620  | 25.2 | 1032.75 | 43446       | 72355       | 594.6       | 320.6       | 594.8      | 320.7      | 594.8      | 320.5      |
| 13         | 1LSV   | 2.917620  | 25.2 | 1032.50 | 42934       | 72430       | 587.3       | 320.8       | 587.4      | 320.8      | 587.4      | 320.7      |
| 16         | PMEL   | 2.917620  | 25.3 | 1032.05 | 37219       | 60983       | 505.6       | 270.8       | 503.9      | 270.1      | 503.9      | 270.0      |
| 17         | PMEL   | 2.917620  | 25.1 | 1032.00 | 37431       | 61736       | 508.3       | 273.6       | 506.7      | 273.0      | 506.7      | 272.9      |
| 18         | PMEL   | 2.917620  | 25.0 | 1031.90 | 37182       | 62462       | 504.7       | 276.5       | 503.0      | 275.9      | 502.9      | 275.8      |
| 19         | PMEL   | 2.917620  | 25.1 | 1031.65 | 36964       | 62125       | 501.9       | 274.9       | 500.1      | 274.4      | 500.0      | 274.2      |
| 20         | 1LSV   | 2.917620  | 25.3 | 1031.45 | 43644       | 72525       | 598.5       | 319.6       | 598.8      | 319.7      | 598.8      | 319.5      |
| 21         | 1LSV   | 2.917620  | 25.2 | 1031.40 | 43488       | 72917       | 596.1       | 320.9       | 596.4      | 321.0      | 596.3      | 320.8      |

