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INTRODUCTION 

The Importance of Ocean Circulation 

Oceanography as a science is widely regarded to have begun with the voyage of the 

from 1872 to 1876, This was the Srst voyage with purely scientiGc motives. Before this, 

exploration of the oceans was geared towards charting waters so that trading vessels could use 

prevailing winds and currents to speed their passage. Ports and harbours were sounded for shoals 

and rocks, and the sea bed was examined to discover the best routes for laying telegraph cables. 

The CAayyezzger was commissioned to observe the biological, chemical, geological and physical 

processes in the ocean as it circumnavigated the globe. This gave the 6rst general description of 

the ocean's character. 

During the hventieth century, the emergence of the submarine as a major force in national 

defence was the impetus for much research and development of new instruments to learn more 

about the under-sea environment. The vast resources of the sea, both biological and mineral, were 

strong economic factors influencing the growth of oceanography. 

In recent decades it has become clear that man's activities are having an eEect on the world 

around us. The increased concentration of Carbon Dioxide in the atmosphere since the Industrial 

Revolution is well documented, and the discovery of the hole in the Ozone layer in 1986 

demonstrated that these effects can be damaging, 

The oceans are an integral part of the world's climate system. Solar energy is absorbed at 

the Tropics and transported pole wards at the sea surface. The cooler water from the poles sinks 

down into the deep ocean and flows towards the equator. This process, known as thermohaline 

circulation, transports billions of megawatts of heat towards the poles. The winds driving the ocean 

redistribute heat around ocean basins, aSecting regional climate and rainfall patterns, and generate 

major currents such as the Gulf Stream, The oceans have a huge heat capacity and act as a buffer 

to any atmospheric temperature rises. 

Atmospheric monitoring and forecasting is now an everyday occurrence, with 

meteorologists able to predict regional weather several days in advance. The use of atmospheric 

modelling to predict long term cHmate change is impossible without taking into account the eEect 

of the oceans. There are, however, large gaps in our knowledge of ocean processes. As part of the 

World Climate Research Programme, the World Ocean Circulation Experiment (WOCE) is being 

undertaken by over forty countries. This wiU try to SH in those gaps by taking a global snapshot of 

the oceans, using this to develop numerical models of the ocean, and coupling these with 

atmospheric models. It is a fore-runner to the Global Ocean Observing System, a future project for 

the operational monitoring of the oceans using satellites, ships and buoys. The prediction of the 

time scale and regional eSects of climate change would then be possible to a much higher degree 

of accuracy than is currently possible. 



The James Rennell Centre for Ocean Circnlation 

When the Natural Environmental Research Coimcil (NERQ was formed in 196S its purpose 

was to bring together aU the diSerent environmental agencies under the management and funding 

of one central body. The National Institute of Oceanography was formed at this time. Sited at 

Wormley in Surrey, it combined with the Institute of Coastal Oceanography and Tides and the Unit 

of Coastal Sedimentation in 1973, to become the Institute of Oceanographic Sciences Deacon 

Laboratory (lOSDL). In 1990 the James Rennell Centre was set up b y NERC at Chilworth in 

Southampton, as part of lOSDL, to co-ordinate the UK's contribution to WOCE. The James Rennell 

Centre is now managed independently to lOSDL, and so together these form the Institute of 

Oceanographic Sciences as it is today. 1995 will see the completion of a new dockside centre at 

Southampton, into which will go lOSDL, the James RenneU Centre, Southampton University 

Department of Oceanography and Research Vessel Services (currently situated at Barry in South 

Wales). 

The James Rennell Centre is organised around six scienti&c teams. The Tracer Chemistry 

team examine water samples for concentration of key tracers such as oxygen and CFCs to identify 

water masses and determine their "age" i.e. when they were last at the surface, The role of the 

Survey team is to collect hydrographic data from the areas considered, important to WOCE and 

provide irutial scientiGc interpretation of the data. The Modelling team develop feature models, 

mathematical descriptions of well-mapped physical processes, and the Atlantic Isopycnic Model 

which uses surfaces of constant density to predict the behaviour of the Atlantic Ocean. The 

Biological Modelling team are constmcting Carbon flux models, studying the eSect of phytoplankton 

growth and the Carbon cycle on Carbon Dioxide concentration in the atmosphere. The Satellite and 

Remote E! rnsing team are conducting research into extracting oceanographic measurements G-om 

altimeter ;catterometer and radiometer data, such as wave height and surface wind speed. The 

Surface F. :xes team use data from ships, buoys and satellites to evaluate fluxes of heat, momentum 

and moisture, and improve the scientiSc understanding of the processes that govern these transfers. 

Each week the head of centre holds an informal discussion during the coSee break, where 

recent managerial decisions can be explained and the latest news announced. The centre has an 

internal seminar programme, where work mates present an informal talk at lunch time on their 

current projects. These are informative and maintain an general idea of what other research is 

being undertaken at the centre. Visiting scientists from other establishments around the world are 

frequently asked to give more formal presentatiozis, which attract many of Britain's top 

oceanographers. The scientiSc discussion which follows can be lively and educational. 

Report Layout 

The following section describes the experience I have gained from spending a year working 

at a Research Institute. The third section reproduces the report prepared for my supervisors on my 

main project for the year, the eSect of waves on the drag coeScient of the open ocean, This goes 

into su&cient detail about 61e names, program descriptions, processing routes and instrumentation 

corrections to enable the work to be extended for publication at a later date. 



Computing Facilities at the JRC 

The centre has a Ethernet network linking several Sun workstations, and each individual has 

an Apple Macintosh which acts as a terminal. There are also two Silicon Graphics machines which 

are used to run data visualisation packages. Each team has its own server, linked to a UNIX 

operating system. This spreads the load on the system, and speeds up data access time. The system 

is supported by a data storage device called an Epoch. The Epoch works as an optical jukebox, 

storing unused data to optical disc, and holding recently accessed 61es on a magnetic disc. The 

capacity of the Epoch is in the region of 80 GBytes, aU of which is more or less instantly accessible 

to anyone who needs it. The system is maintained by two on site NERC Computer Services 

personnel. 

UNIX operating system 

As Bath University Lises a similar system, I was familiar with basic UNIX commands and the 

directory structure. I have gained considerably more knowledge of how the system operates, and 

the workings of a distributed network. My initial work was to process several cruises' worth of Ship 

Borne Wave Recorder data from the O.W.S. Cumulus, and it soon became obvious that this involved 

running the same programs repeatedly for each data Gle, with similar inputs. I simpliGed the 

process by creating a script called SurfsUp. It requires the user to provide two Sles, then one 

operation of the script performs aH the processing that is needed to correct and smooth the spectral 

data ready for plotting, and calculate a wave height from the information. SurfsUp is shown as a 

flow chart in Fig 1.3. I also produced scripts to process Propeller anemometer data, send Gles to 

printers, change the format of Met ofSce Gles, and to do various other tasks that would have to be 

performed on a large number of Gles 

Pexec Sysrem 

The Pexec, or pstar, system is a library of Fortran programs, all constructed from a suite of 

data handling subroutines. The pstar format was devised at lOS to handle the large amounts of time 

series data collected during research cruises. Pstar is a self-describing system, each file has a 

header which contains informahon as to the number of variables and data cycles in the Gle, variable 

names and units, and where the data came from. The pstar programs read this header information, 

and can therefore deal with any type of data, and any number of variables. 

The pstar program Hbrary is fairly extensive, containing over 200 programs to perform 

various functions. If you wish to perform a function not catered for in the library, skeleton programs 

are provided that can be customised to your requirements. Owing to the wide variety of tasks I had 

to perform In the course of my project, it was frequently necessary to generate new programs. 

Occasionally, The skeleton programs provided were not suitable for my needs, so I built the 
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programs from scratch in a more logical structure. The programs developed for use in my project 
are given in an inventory in Section 1.3 of the project report. 

One task was to examine an existing on-screen editing program, pZxyed, to increase its 

efGciency, as I would be using it regularly, and its run-time seemed unnecessarily long. Taking a 

complex graphics program that works and looking for the areas in the code where it was inefBcient 

required an understanding of how the various functions were being performed at microprocessor 

level. The reason for the slow operation of the program was a result of its general nature, creating 

and searching through large arrays, which was not necessary when examining time series data. By 

making the program speci6c to time series data I was able to produce a speedier version, p7(yed. 

As a result of this 1 have gained considerable programming experience in Fortran, both in 

the use of the language and in the eScient structuring of programs. 

Packages 

The JRC supports a wide variety of packages, both on the Suns and on the Apple Mac's. On 

the Mac's I have had considerable experience with Microsoft Word S.l (word processing), Cricket 

Graph (data display), MacFlow (flow chart creation), MacDraw Pro (graphics) and Microsoft Excel 

(spreadsheet). I have also used Systat (statistics), and Adobe Photoshop (high deGnition graphics) in 

conjunction with a colour scanner, 

C n the Sun or the Silicon Graphics machines the most commonly used package is Unimap. 

The cen- also has PV-Wave, Vis-SD and Explorer. One of the major problems with most of these 

package s actually getting your data into them in a recognisable form. To evaluate its usefulness 

to the iviet team, 1 familiarised myseK with PV-Wave. The main aim was to see if a general Pstar-to-

PV-Wave conversion program could be created. The conclusion was that owing to the type of work 

the Met team does, the eSort involved far out-weighed the advantages the package had over the 

familiar pstar library in most situations. 

Data processing/analysis 

During my year at the James Rennell Centre I have had experience in almost every stage of 

data collection, processing, analysis and presentation. The opportunity did not arise to participate 

in a research cruise, however, I was able to travel to Greenock near Glasgow to visit the O.W.S. 

Cumulus at one of its port calls. The majority of the instrumentation had been removed a few 

cruises earlier, as the ship went in to dry dock for a reSt, and had to b e replaced in the day and a 

half the ship was in port. I assisted in the down-loading of data from the Ship Borne Wave Recorder 

(SBWR) PC, and reinstallation of the Multimet Logger and GPS systems. I was also volunteered to 

replace the Solent sonic anemometer at the top of the ship's mast. 



Commisaioned Research Reports 

The Met team is part-fimded by Commissioned Research Projects. These occasionally 

involve providing meteorological data for research cruises being undertaken by other institutions. 

The Woods Hole Oceanographic Institute (WHOI) commissioned data &om the R.R.S. Charles Darwin 

Cruise 73, which took place in September/October 1992. The Instrumentation group of the Met 

team handled the deployment of the Multimet logger and instruments before the cruise, and the 

down-loading of data and demobilisation of equipment afterwards. 

I was given the job of transferring the data onto the JRC Sun system, despiking and 

analysing it to detect any calibration errors in the instruments. Once this was done I prepared a 

document on the complete project, bringing together the reports of the scientists who deployed and 

retrieved the data and instruments, along with my own analysis of the quality of the data. This was 

published as a JRC internal document (S Ward a/. 1993) and was sent with the data to WHOI. 

The analytical skills acquired during this work proved valuable in the processing of the O.W.S. 

Cumulus data set, and with my main project for the year. 

Data Management 

Owing to the large amount of data involved with the O.W.S. Cumulus, it is vital to keep a 

record of what data is where, and the state of the processing. As well as simplifying a lot of the work 

by writing scripts, I helped to develop a standard processing and storage procedure, laying out what 

must be done to each of the various data sets: GPS, turbulence, slow sampled and SBWR. This is to 

be published as a JRC internal document, and will make it possible for anyone to perform the 

required processing with no previous knowledge of the Cumulus data set. 

As my work this year involved a large amount of data processing and analysis, I created a 

great number of working Sles. An up-to-date log book became essential to my work, to keep track of 

the programs that had been run on the various 61es, and to store plots of the data at diEerent stages. 

Presentation of Work 

As well as the talk given at Bath in February, I and my two fellow Industrial Training 

Students were each asked to present a 15 minute talk about spending a year at the James Rennell 

Centre, as part of the internal seminar program. The task of presenting the results of my project to 

my work mates was a daunting one. I found a major problem was deciding what to leave out, as IS 

minutes is a very short time in which to present a year's work. I had to examine the reasoning 

behind the diSerent areas of the project, and look at what the most important parts were, which 

were not necessarily the ones that had taken the most time, or the ones I had enjoyed most. The 

discussion following the talk provided some interesting ideas &om people who had worked in 

similar areas in the past, and had experience of the problems involved. This demonstrated the 

usefulness of open discussion with people who aren't necessarily the obvious people to approach 

with a particular problem. 



Working Environmeat 

The Met Team 

The Met team is split into two groups, the Instrumentation group at lOS Deacon Lab, and the 

data analysis group at the JRC, of which I was a part. The data analysis group is a four-man team, 

the industrial training student included. As part of this small group, I found that initially I relied 

heavily on the other members for help when I had problems with my work, or with the computing 

system. It took some months for me to gain enough experience and conndence to present my own 

ideas and opinions. An important aspect of this was being able to explain why I held these 

opinions, or why 1 thought that something should be done one way rather that another, and to 

present data to back up my views. I regularly had to explain my work to my supervisors, especially 

while formulating the corrections for the motion of the O.W.S. Cumulus, (Section 3.4 in the project 

report) as little was known about this at the time. 

The James RenneH Centre 

The JRC is an open-plan building, which promotes communication and a relaxed 

atmosphere. It is easy to approach people with work difficulties, and also to help out if someone is 

obviously struggling with a particular machine, or problem. The internal seminar programme 

provides a neans of informing the rest of the centre about the work being done in each department, 

and in whicn areas other teams are concentrating. 

There are a number of regular sporting/social activities such as football, volleyball and 

rounders going on, which are good fun and generate a Ariendlier atmosphere at work. It was my 

experience that a discussion over a pint could provide a far more interesting view of another's work 

than if the discussion took place during working hours. 

CONCLUSIONS 

During the year 1 have spent at the James RenneU Centre I have been given the opportunity 

to work as a men±ier of a scientific team. I feel I have been shown what it would be like if I was a 

full time employee and have come to appreciate the long time scale over which research progresses. 

1 have met and spoken to a great many scientists at all levels of management, at coffee breaks, 

attending seminars and while traveUing to other institutes, and have been given a clear view of the 

workings of a strategic research centre. 1 have gained an insight into how experiments are set up 

and funded and how the research centres themselves are run. 1 have also seen for myself the 

Brustraiions and rewards that accompany a career in science. 
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THE EFFECT OF SEA STATE ON THE DRAG COEFFICIENT 

1.1: Introduct ion 

The Surface Fluxes team use data from ships, buoys and satellites to evaluate the 

momentum, heat and moisture fluxes at the sea surface, and to improve the understanding of these 

fluxes. The identiGcation of key parameters influencing the processes involved enables botmdary 

layer models to be created and tested. These can then be used as boundary conditions for ocean 

climate models. 

The momentum transfer between the atmosphere and the sea, wind stress, is a function of 

the turbulence in the air, but can be related to the mean wind field via the drag coeScient of the 

ocean. Measurements of this parameter suggest its value changes in different locations, it varies 

with wind speed and with sea state. 

This report details the work completed in studying the egect of waves on the drag coeScient 

of the open ocean. A brief theory of wind stress is given in Section 1.2, followed by an inventory of 

programs and scripts written during the course of the project in Section 1.3. Section 2 describes the 

examination of turbulence data from the R.R.S. Charles Darwin and evaluation of a response 

correction for propeller anemometers. The work involved in processing and analysis of the Ocean 

Weather Ship Cumulus data set is described in Section 3. Section 4 details the analysis of data from 

the R.R.S. Discovery SWINDEX Cruise 201. 

1.2: Theory 

In the lowest SO m of the atmosphere the wind stress is regarded as being independent of 

height (depending on stability). Wind stress is defined as the vertical transport of horizontal 

momentum between the air and the sea: 

T = 

where the brackets denote a time average of u and w, the along and vertical wind speed 

fluctuations. 

In this layer, a friction velocity, u*, may be defined by: 

u * ^ = T / p 

where p is the air density. Wind stress can be related to the mean wind speed, U, relative 

to the sea surface via the Drag CoefScient, CD: 

U * ^ = C D [7 ^ 

This is known as the Bulk Aerodynamic Formula. 

The Drag CoeScient is thought to have a linear dependence on wind speed of the form: 

C D = a + A 



The graph in Fig 1,1 reproduces a summary of recent studies into the value of the Drag 

Coefficient (Geemaert, 1990). The range of values for a and b is broad, and the individual studies 

have a large amount of scatter in their data. It is generally accepted that this scatter is due to the 

presence of other variables which affect the Drag CoeScient, particularly sea state. 

1.3: Program inventory 

In the course of the project it was necessary to develop new scripts and Pexec programs for 

the different stages. These are listed here with a brief description of their function. 

deltawind - Calculates the change in the wind vector with time. The program outputs rate 

of change of magnitude, direction, and along- and across-wind components per unit time. The 

components are relative to the original wind direction, but assigned to the new wind speed and 

direction values. This is shown schematically in Fig 1.2. 

distcalc - Takes a gridded spectral Pstar 61e as input, with frequency, wind speed and 

loglOPSD variables, and outputs a non-gridded 61e of three distance constant values for each spectra 

over three different frequency ranges. These ranges can be altered in the data statements at the 

start of the program, 

f s l cnm - This is a copy of the Pexec program ATpoT̂ d to calculate drag coeBcient values. 

The version A7cuzn has the correct instrument heights for the Cumulus in it (24m for anemometer, 

12m for psychrometers). 

fs ldisc - A copy of the Pexec program Ajpond with the correct instrument heights for the 

Discovery (1 j.S m for anemometer, 17 m for psychrometers). 

fsnencnm - As but with assumed neutral stability i.e. no stability corrections. 

metflnxd - This is a copy of the Pexec program mef/Zux to predict Ariction velocity values 

from bulk formulae. The equation relating the drag coefficient to the mean wind speed is that 

derived from the Discovery Cruise 201 data. 

pltred - This program is an edited version of the Pstar program made more eScient 

by converting the code to apply to time series data only. 

rescorlm/rescorZm Takes gridded spectral Pstar 61e of psd values and outputs PSD*F^'^ 

after applying a response correction to the data. This program also applies corrections for binning 

factors and missing calibrations in the subroutine 'ressiib'. The distance constant value used is set 

in a data statement. 

SnrfsUp - Script to read in spectral data Gles in ascii format from the Ship Borne Wave 

Recorder into Pstar format. This script corrects the data for instniment response, selects a frequency 

range of values, and smoothes the data ready for contour plotting. It also calculates the significant 

wave height from the spectra, and outputs this to a separate 61e. The programs run by the script are 

shown in the flow chart in Fig 1.3. 

windcor/windcors - A correction for ship's speed is applied to the relative wind variable as 

function of relative wind speed and direction. The Brst output variable is true wind. The way the 

data IS treated (i.e. hove-to, port or other) is indicated by the second output variable (called 'modus' 

with 'operandi' as ^jnits) where a value of 1 is hove-to, 2 is port drift and 3 is any other "/find 



direction. This is done in the si±)routine 'windsnb' by selecting for wind directions between 

appropriate ranges. The program tvindco/s outputs calculated ship's speed, aa weU as true wind and 

m.o., as the third output variable. 

Yonnascrp - Script to read in ascii spectral data files from a fast sampled propeHer 

anemometer into pstar format. Input files are the output from the program ZTfcopy on the 

Archimedes. 

2: R.R.S. Charles Darwin Cruise 43 

2.1: Introduction 

This cruise took place in October and November of 1989 in the region of the Faeroe Islands 

to the North of Scotland. One of the aims of the lOSDL Meteorology group, in conjunction with the 

University of Manchester Institute of Science and Technology, was to investigate the transfer of 

momentum in high wind speed conditions and changing sea state. Several anemometers were 

employed in close proximity to each other to evaluate diSerences between the various instruments. 

These included a Young propeller vane of the type deployed on the O.W.S. Cinnulus, and a Kaijo 

Denki sonic anemometer (Taylor eW, 1991). 

The data from this cruise had been processed and the performance of the different 

anemometers compared as part of paper submitted for publication in the Joimial of Atmospheric 

and Oceanic Technology (YeUand ef aJ), The Young propeller raw data was available on 5.25" 

floppy disc, the same format as the data from the O.W.S. CumtHus. The data was re-processed in 

the same way as is necessary for the O.W.S. Cumulus data, then compared to the original data to 

assess the validity the diSerent processing route. Once this was done the frequency range over 

which the average power spectral density (PSD) and propeller distance constant are calculated was 

investigated to see if an improvement could be made in the comparison with the sonic anemometer. 

2.2: Data Processing Route 

The processing route used for the Charles Darwin data set is shown in Fig 2.1. The program 

on the Archimedes reads off the spectra from 5.25" floppies and stores them in ascii files. 

These are transferred onto the Sun by way of 3.5" floppy and the Mac. ybungscrp is i:sed to read in 

all the files for one cruise into a pstar Gle with 80 grids. 'The 61es have one spectra every 18 minutes 

of which 10 minutes 40 seconds is spent data sampling and the remainder is spent calculating the 

spectra and writing them to disk. The variables in the Sle are jday, frequency and logigPSD. The 

multimet data is put on to this file in the following manner: the first row of jday is copied into 

another file t:ising pcopyg , and minzmd is used to average the phydata variables onto this time base. 

Values of zero minutes before and 10 minutes after the times in the Grst 61e are i.:sed. Then p/nergg 

is used to put these variables onto the original gridded psd 61e. As the time bases are identical 

there is no interpolation. 
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The data was selected for winds on the bow only (relative wind direction between 160° and 

200°) then the distance constant was calculated between 1 and 2 Hz using the program disfcaYc, The 

values for the distance constant are shown against wind speed in Fig 2.2. The average value 

between 8 and 12 m/s was found to be 0.81 m. This value was used in rescorJm to calculate 

The subroutine ressub was altered to multiply the PSD value b y several factors that were 

eiiher missing in the original BBC Basic logging program or resulting f rom incorrect calibration of 

the insirument. These values are: 

Wind Speed * 0.9739 wrong calibration 

PSD * 0.9739^ wrong calibration 

PSD * 64 Converts spectral value to Power Spectral Density 

PSD * 1.5 Due to incorrect calculation of windowing correction in original 

logging program. 

N.B. Only the factors of 64 and 1.5 are needed in the Cumulus processing. 

2.3: Data Analysis and Results 

The data was examined to determine the inertial sub-range, the region with a 

(irequency)^'^^ tail, over which the PSD is averaged. In this range the gradient of PSD*F^/^ when 

plotted againsT frequency is zero. The range used in the original processing was 1 to 2 Hz. 

The average PSD*F^/^ was taken between 0.8 Hz and 2.2 Hz for each spectr.im then 

subtracted from the spectrum at each frequency. The difference be tween the mean iind the 

measured PSD*F^/^ values for aU the spectra were binned into frequency ranges. Fig 2.3 shows the 

normalised spectra are flat in the region 1 Hz to 1.8 Hz, 

Djsfcayc was altered to calculate the distance constant over this range, and it was again 

found to be 0.81 m. The complete data set was corrected using this value, then the averaga 

PSD*F^/^ was calculated over the range 1 to 1.8 Hz. The data was compared to that from the Kaijo 

Denki sonic anemometer in the same manner as previously done by YeHand. These comparisons 

are shown in Fig 2.4. The Young propeUer vane is giving a uniformly higher value for the PSD than 

the Kaiio Denki for all wind speeds. In the original processing the propeUer gives lower values of 

PSD for wind speeds below 10 m/s, then higher values for PSD than the Kaijo Denki for wind speeds 

above 10 m/s. The use of a lower distance constant and smaller frequency range has therefore 

improved the comparison with the sonic anemometer. The Sle containing the original sonic 

anemometer and Young data, and the reprocessed Young data is named 'cd43anemoms'. Its 

header is shown in Fig 2.5. 
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3: O.W.S. Cummins Data 

3.1: Introduction 

The Ocean Weather Ship Cumulus is owned by the Meteorological OfGce, and is one of two 

remaining weather ships still in operation. In the 1950's there were a dozen or so ships owned by 

the countries that surround the North Atlantic, as a result of the Ocean Weather Ship Agreement, 

This called for each country to deploy a stationary meteorological ship in a certain area (Hatch, 

1993), The purpose of these ships was to take surface meteorological readings and release 

radiosonde balloons to enable aeroplanes to be informed of weather conditions. The weather ships 

also tracked the trans-Atlantic flights using radar, to update the gyro position systems used by the 

planes, which tended to drift. The advent of satellites and satellite meteorology succeeded the 

capabilities of the weather ships in both accuracy and coverage, so the Ocean Weather Ship Service 

was gradually reduced. 

The 0,W,S. Cumulus is situated at Station Lima, an area of around 10 square miles centred 

at 57°N 20°W. The ship holds station for four weeks in every 6ve, returning to Greenock near 

Glasgow to refuel and take on supplies each month. The Met team has had instrumentation 

deployed on the Cumulus since 1987, providing a long time series of data from the open ocean in 

varied and sometimes extreme weather conditions. 

3.2: Instrumentation 

The instruments deployed on the Cumulus vary from cruise to cruise depending on 

availability and man-power. The instrumentation, quality and processing state of the Cumulus data 

set, up to November 1992, is summarised by Taylor ef a/ (1992). The instruments concerned with 

this project are: 

A Multimet logger taking one-minute averages of 1 Hz sampled meteorological data (wet 

and dry air temperatures, air pressure, wind speed and direction), a fast-sampled Young Propeller 

vane providing turbulence spectra, deployed for several cruises before being replaced with a sonic 

anemometer, the recently installed Global Positioimig System giving one-minute values of position 

over the ground, and a Ship Bome Wave Recorder providing non-directional wave spectra every IS 

minutes. 

3.3: Routine Data Processing 

Data from the Multimet Logger is removed from the ship on tape cartridge in raw ascii 

format. This is transferred onto ]RC Sun system, then converted into pstar format. Calibration 

equations and coefficients are applied to the various channels depending on the instruments used. 

Once in physical units, the data can be examined and despiked. This process is shown in the flow 

chart in Fig 3.1, giving the names of the pstar programs used at each stage. 
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The Ship Bome Wave Recorder writes out spectral data to a 61e every ten minutes. For each 

cruise, there are several hundred Sles. These are read into pstar format in 10-day sections, giving 4 

or 5 files per cruise. Once in pstar format, the data is corrected for sensor response, smoothed and 

gridded ready for contour plotting. A signiGcant wave height (deGned. as the average height of the 

largest third of the waves) is calculated by performing an integral of spectral energies over a 

frequency range 0.04 to 0.99 Hz. The processing route is shown in Fig 3.2. 

The flow chart in Fig 2.1 shows the processing route used, for the Young Propeller 

turbulence data as described in Section 2.2, 

Anemometer Orientation 

The despiking process includes setting the relative wind direction so that 180° refers to wind 

directly on the bow. Histograms of relative wind direction for cruises where the Young Propeller 

Vane was deployed suggested that this was not the case. The Young anemometer had been aligned 

on the ship, however the zero point on the potentiometer used to measure wind direction was not in 

line with the zero mark on the casing of the instrument. A comparison of peaks in relative wind 

direction between cruises with Young data and those where the Solent sonic was deployed was 

made, to determine the exact oHset of the wind vane. Tables 3.1 (Young cruises) and 3.2 (Sonic 

cruises) show the peaks in the relative wind direction histograms which apply to hove to and port 

drift for each cruise, and give an indication of the proportion of the cruise for which the ship was 

hove to. The histograms of relative wind direction for cruise 70 to 77 a re shown in Fig 3.3. 

The mean relative wind direction referring to port drift f rom cruises with the sonic 

anemometer is 93°. The hove to peak averages at 173° for cruises 70 and 76, which have .4 small 

proportion of hove to data, and 180° for cruises 71 and 72, where the ship was hove to for a large 

proportion of the cruise. For the cruises with the Young propeller, the mean port peak is at 69°. For 

those cruises with a small amount of hove to data, the hove to peak is at 158°. The cruises with large 

amounts of hove to data have an average peak at 165°. This information suggests an offset of 21° 

b:.::gs the Young vane into alignment to within 2° of the bow. This has been applied to me 

de.yjiked multimet data. 

3.4: Corrections for the ship's motion 

Introduction 

Navigation and wind speed data &om the O.W.S. Cumulus has been examined with the 

following aims:-

a) To determine the most effective smoothing interval for the GPS data. 

b) To investigate the possibility of a direct relationship between the ship's speed and the 

relative v/ind speed when the ship is drifting. If a relationship can b e found, it may reduce the 

errors involved in using hourly navigaiion data to calculate true winds for cruises for which there is 

no GPS data. 
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The O.W.S. Cumulus has a pattern of behaviour while at Station Lima, knowledge of which 

is important for understanding data received back at the JRC. The ship spends as much time as 

possible while it is on station drifting on a port tack (that is port side to wind) so that the lOS 

meteorological instrumentation on the ship is advantageously exposed to the air flow. If the weather 

becomes too rough to safely maintain this drift, then the ship steams slowly into wind to ride out the 

storm. If the ship's driA takes it to the edge of the station, then it steams back to the other side and 

continues drifting port beam to wind. 

Data available for the study 

The data needed for each cruise is: 

a) GPS navigation data, giving one minute values of position 

b) Wind speed and direction data &om the sonic anemometer, 

sampled at 1 Hz and averaged to give one minute values. 

The GPS system was installed on cruises 63 to 6S, and cruise 70 onwards. The ship was 

struck by lightning on cruise 62 which meant that no wind data was available for the next three 

cruises. At this point all instrumentation was removed as the ship was going into dry dock for a 

reSt. The instruments were replaced prior to cruise 70, however, because of a faulty connection in 

the anemometer lead on cruise 73 and the failure of the GPS system on cruise 74 which required its 

removal to be repaired during the next cruise, concurrent wind and GPS data is available for cruises 

70, 71, 72, 76 and 77 only. 

The histograms in Figs 3.4 and 3.5 show the number of one-minute observations taken at 

each wind speed when the GPS system was in Navigation mode. Fig 3.4 shows data collected when 

the ship was drifting, hove to data is shown in Fig 3,5. The histograms suggest that the ship does 

not maintain a port drift above wind speeds of 17 m/s. The lowest wind speed at which the ship 

heaves is 12 m/s. The percentage of time the ship spends drifting or hove to as a function of wind 

speed is shown in Fig 3.6. This suggests that above wind speeds of 17 m/s, the ship is hove to for 

95% of the time. Below wind speeds of 12m/s the ship drifts for 90% of the time, between 12 and 

17 m/s the ship may be either drifting or hove to. 

GPS Data Filtering 

The GPS position data has the characteristics of a low frequency signal surrounded by 

higher frequency noise. This noise produces errors in the calculated ship's speed and direction. 

The response of the filter used must be such that it allows the signal through in as much detail as 

possible while stopping the noise from passing through. It was decided to use a 'top hat' filter, i.e. 

each data point is the average of a number of equally weighted points on each side, and the eEect of 

using different numbers of points was examined for Cruise 71 GPS data. 

Initially, the position data was selected for when the system was in Navigation mode. This 

was smoothed using filter lengths of 3,5,7,9 27 and 29 points, and the ship's speed calculated 

for each data set produced. The Pstar program panU] was used to Snd the diEerence between the 

speed calculated Arom the original data set and that from the various Gltered ones. Fig 3.7 shows 

the standard deviation of this difference against the number of weights used in the filter. The 
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number of points taken in the average for each individual point is two times the number of weights 

plus one. The plot shows that the optimum number of weights to use in the Glter is six, (a 13-point 

average) as this is the point at which the standard deviation of the m e a n diSerence reaches a 

plateau. Fig 3.8 shows a 3.6 hour sample of GPS data, comparing ship's speed calculated from 

unaltered positions with ship's speed calculated after the positions have b e e n Gltered using the 13-

point average. 

Data Processing 

As stated above, for the purpose of this study concurrent wind data and GPS data is needed. 

The two are logged on separate machines, the wind data from the sonic anemometer by the 

Multimet Logger (Birch ef a/. 1993), and the GPS navigation data on a PC. As a result of this each 

data set is in a separate 61e, with the time bases out of sync. It is also important to note that once the 

GPS data has been selected for Navigation mode only, the time base is no longer continuous, with 

jumps where the GPS was not navigating for any period of time, If the GPS data is interpolated onto 

the -Afind data, these gaps are GHed with interpolated data, which would clearly lead to inaccuracies 

in any wind speed/ship's speed relation produced. For this reason the wind data must be 

interpolated onto the GPS data. The wind data must be in component form, i.e. U and V 

components 5rom the sonic anemometer. If speed and direction variables are used, direction 

changes from 0° to 360° may be interpolated to 180°. 

The data from each cruise was processed in exactly the same way, so that the results would 

be comparable. The flow chart in Fig 3.9 shows the processing route, and gives the names of the 

Pstar programs used to perform each step. Once the wind data had been interpolated onto the GPS 

data, the GPS data was Sltered to remove any scatter. The ship's speed, direction, and vectors East 

and North were calculated, then the wind vectors U and V were converted to wind speed and 

direction. The sonic anemometer is not in line with the ship, so the relative wind direction must be 

increased to assign a relative wind direction of 180° to wind directly over the bow. This value is 30° 

for cr^iises 70, 71 and 72 and 120° for cruises 76 and 77. This was then corrected to beiv/een 0° 

and 360°. It is useful to examine the speed in its component parts, velocity in the fore/aft direction 

and velocity in the port/starboard direction. 

These components are given by:-

& = 6̂  c o s 0 

Ja = s i n ^ 

^ — f f e a c f j j i g ^ 

where Sf is defined positive when the ship moves forward and Ss is deSned positive when 

the ship moves towards its starboard side. Shipdir is the direction the ship is travelling, and 

Heading is the direction the ship is pointed. 

The heading was corrected for the magnetic variation of the North Pole, which was 15.6° at 

Station Lima around the times of cruises 70 to 72, and 15.5° for cruises 76 and 77 (Scales. 1993). 

The difference between the ship's direction and its heading was then foimd and corrected to 

between 0° and 360°. The sine and cosine of the difference between the ship's head and its 

direction had been found, then the components of the ship's speed were calculated for each mode. 

The data was split into two modes, periods when the ship was port-to-wind and drifting, and periods 
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when it was steaming into wind. Histograms of relative wind direction were examined to determine 

the range of values to include in each mode. These are shown in Fig 3,3. The drifting periods were 

selected by choosing relative wind directions between 60° and 130° (giving a 70° 'window' on the 

port side) and ship's speed between 0 and 2.5 m/s. The hove to periods were selected by choosing 

relative wind directions between 145° and 215° , and ship's speed between 0 and 2.5 m/s. The data 

was then put into bins, using wind speed as the binning variable, each bin being 1 m/s wide. The 

mean of the components of the ship's speed, and the standard deviation of these means were 

calculated for each bin. At this stage the data was plotted out, and the relationship between ship's 

drift speed and wind speed examined. 

This processing was carried out for cruises 70, 71, 72, 76 and 77 then the data was 

combined prior to the binning stage for each mode, and binned as a whole. The relations produced 

for winds on the port beam are shown in Fig 3.10, those for winds on the bow are shown in Fig 3.11. 

Data Analysis and Results 

Winds on the Port Beam 

The data suggests: 

1: There is a linear relationship between the ship's movement sideways and the wind speed, 

up to 17 m/s. 

2: There is no signiScant movement in the fore/aft direction. 

3: The ship's drift is non-zero in very low or no wind. 

Points 1 and 2 are what we would expect. Point 3, the apparent movement of the ship in the 

absence of wind forcing may suggest the presence of an ocean current in the area of the ship. 

Admiralty charts of the North Atlantic (HD\401) state a current of O.S knots in a North Easterly 

direction over large part of the ocean in this area. This is of a similar magnitude to the drift of the 

O.W.S. Cumulus in low wind conditions. The charts, however, have very poor resolution so are not 

conclusive proof that the movement of the ship in the absence of wind is due to this current. To 

investigate this movement in low winds further, the data from all the cruises was selected for ship's 

speeds between 0 and 2.5 m/s and wind speeds of between 0 and 2 m/s. An histogram of the 

ship's direction of drift is shown in Fig 3.12. This clearly shows that the ship often drifts towards the 

North East in low winds, and is unlikely to drift in the opposite direction, towards the South West. 

This suggests the ship's drift in low winds is influenced by an ocean current in the vicinity of the 

ship. This should not be corrected for when calculating the true wind, which is deSned as the wind 

speed relative to the sea surface. 

The data between wind speeds of 7 and 17 m/s for the ship's movement sideways is shown 

in Fig 3.13. Cricket Graph was used to apply a linear best 8t curve, forced to pass through the 

origin. The equation of this line is: 

where Sg is the ship's speed towards its starboard side, and UR is the relative wind speed. 
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The histograms in Fig 3.14 show the diEerence between the ship's heading and its direction 

while drifting on a port tack. For the individual cruises, the peaks lie between 87° and 93°. The 

data from all five cruises is shown in Fig 3.14.a. This has a peak at 87°, but the spread of the 

histogram is centred around 90°. This, along with the lack of motion forwards, suggests the wind is 

within three degrees either side of the port beam when the ship is drifting. 

Winds on the Bow 

The hove to data suggests: 

1: The ship's speed decreases with increasing wind speed. 

2: There is a component of sideways motion while hove to. 

Point 1 is what we would expect, as the direction of the wind is such that it opposes the 

movement of the ship. At wind speeds above 26 m/s, however, the ship is travelling backwards over 

the ground. The ship must make enough way through the water to keep its head into wind, so it is 

possible that at high wind speeds there is a wind-driven movement of the sea which carries the ship 

backwards at a greater speed than the ship moves through the water. 

The sideways motion of the ship is of a diEerent magnitude for each of the digerent cruises. 

Consideration of the variation in the hove to peaks given in Table 3.2 suggests that the ship heaves 

to v/ith the ^mnd at varying angles on the bow, depending on the pattern of weather during the 

cruise. When there is little hove to data, this suggests there were few events of heavy weather, and 

the average peak is at 173°. A large amount of hove to data suggests the weather was generally 

rough, and the probability of severe storms increases. For cruises were this is the case, the average 

peak is at 180°. 

The greatest sideways motion is seen in the Cruise 70 data, where the sideways component 

is constant at 0.5 m/s for wind speeds above 12 m/s. If we consider the histogram in Fig 3.5.b, we 

see mat the wind speed during Cruise 70 did not exceed 27 m/s, with less than 20 one-minute 

values for wind speed bins above 25 m/s. The Ship's Log states that the ship was hove to for one 

period of two days throughout the cruise. Table 3.1 shows a peak at 171°, or 9° on the port bow, for 

Cruise 70 from the periods when the ship was hove to. The histograms in Fig 3.15 show the 

difference between the ship's direction and its heading for hove to periods. Fig 3.15.b (Cruise 70 

data) zmows a peak at 50° which corresponds to the hove to periods. From this it can be seen that 

the port movement of the ship during Cruise 70 was due to the ship be ing held with the wind 10° 

on me pon bow when hove to. The diagram in Fig 3.16 shows how the ship travels in this situation. 

In summary, during cruises where the weather is generally rough, the ship tends to heave 

to wth the lArind directly on the bow. When there is less hove to data and the weather is generally 

lighter, the ship heaves to with the wind around 7° on the port bow. 

The ship's movement when hove to can be related to the measured wind speed by two linear 

equations, one describing the ship's motion forwards, the other describing the ship's movement 

sideways. The forward motion relation is a linear best 6t to the data from wind speeds between 12 

and 30 m/s: 
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where Sp is the ship's movement forwards and UR is the relative wind speed. This is shown 

in Fig 3.17. 

The correction for the ship's motion sideways is a constant for wind speeds between 12 and 
30 m/s: 

where Sg is movement towards the ship's starboard side. 

Comments made by the Ship's OScers 

Captain Mackie and the ship's o&cers were shown the initial results from the analysis of 

data from cruises 70, 71 and 72 following Cruise 77 (Taylor, Yelland. 1993). Their comments were 

as foUows: 

They suggested the motion of the ship while drifting was with the wind either directly on or 

just forward of the port beam. While drifting, the ship moves through the water at up to 2 knots. 

The ship would heave to in winds above 17 m/s, unless there was a strong swell present, in which 

case the ship would heave to a lower wind speed. If the weather was coming from the south west, 

the ship would heave to at lower wind speeds in expectation of a heavy swell developing. When 

hove-to the ship is held with the wind one point (-10°) on the port bow, but in higher winds (-55 -

60 knots) the ship is pointed directly into wind. The critical speed range of the Cumulus is wide, 

which suggests that when hove to the engine revs are set at low level then left there. The met 

oScers on board estimated the ship's speed through the water when hove to in relatively light winds 

is about 2 knots, decreasing in higher winds but always greater than half a knot. The ship travels 

backwards over the ground in high winds, while still making way through the water. The Master 

said this was due to the ship sur&ng backwards down swells, coupled with the effect of the wind-drift 

current. 

Conclusions 

The ship's motion as described by analysis of navigation data is con&rmed by the comments 

of the ship's o5cers. The resulting linear relations wiH therefore provide a realistic measure of the 

ship's speed. The correction to apply when the ship is drifting on a port tack does not correct for the 

ship's movement in low winds due to a mean ocean current in the area of the ship, The equation 

used in the program wondcoris: 

J = 0 . 0 5 4 0 Da 

where Sp is the ship's speed forwards and UR is the relative wind speed. This applies for 

wind speeds below 17 m/s. 

At high wind speeds the ship's speed over the ground is not a good approximation to the 

ship's speed through the water, owing to the eSect of the wind-drift current. Further work is being 

undertaken to incorporate a value for the wind-drift current into the ship's speed correction. At this 

time the corrections used in the program wj;]dcor to apply when the ship is hove to are for the ship's 

speed relative to the ground: 

= 2 . O f - 0 . 0 7 9 2 % 
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and 

Ss =0.2 ms 

where Sg is the ship's speed to starboard, Sp is the ship's s p e e d forwards and UR is the 

relative wind speed. This applies for wind speeds greater than 12 m/s, 

Error Evaluation 

The data &om Cruise 70 was examined to evaluate the errors involved in using these 

relationships to calculate the ship's speed from the relative wind data. A comparison was made 

between the ship's speed calculated from the Gltered GPS data, the ship 's speed calculated using 

the relationships and that given by using the one-hourly position data f rom the Met OKcers' Log, 

interpolated to one-minute values. Table 3.2 shows the modulus of t h e diEerence between the 

digerent methods of calculation. 

The comparison between the GPS and the wind-derived speed gives a 30% lower value for 

the modulus of the diSerence than that for the GPS and the hourly position-derived speed, with 25% 

less error. 

3.S: Propeller response correction 

Young Propeller Vane 

The Cumulus fast-sampled Young propeller data from Cruise 51 was processed similarly to 

the R.R.S. Charles Darwin data, as described in Section 2.2, and examined in the same way to 

determine a suitable frequency range over which to calculate the average PSD*F^/^. The range 

differs for the two ships, as the propeller used on the Cumulus was a polypropylene one, heavier 

and more robust than the polystyrene propeDer used on the Charles Darwin Cruise 43. 

The diSerences in the Cumulus analysis are as follows: 

Whereas for the Darwin the frequency range was decided by considering hove to data, for 

the Cumulus, the data examined was that from when the ship was drifting on a port tack (relative 

wind directions between 70° and 110°). 

The PSD*F^/^ flat frequency range is 0.5 to 1.2 Hz, and the distance constant calculated 

over this range flattens oE at 2.4 m. The entire data set was corrected using this value for the 

distance constant, and the average PSD*F^^^ was calculated over the range 0,5 to 1.2 Hz. The 

program tvindcorwas used to calculate the true wind speed. The times when the ship was steaming, 

as stated in the Ship's Log were noted and the true wind and modus operandi variables were set 

absent during these periods. The pstar 61e is called '51avpsd', its header is shown in Fig 3.18. 

The processing and analysis was repeated for Cruise 46 data, t he values for the distance 

constant and the frequency range produced were identical to those for Cruise 51. The data was 

corrected using a distance constant of 2,4 m, and the average PSD*F'̂ '̂ ^ taken in the range 0.5 to 

1.2 Hz. The true wind speed was calculated and steaming times removed. The fUe is called 

'46aypsd', and its header is shown in Fig 3.19. 



Solent Sonic Anemometer 

The fast sampled turbidence data collected during Cruise 70 is from the Solent sonic 

anemometer, so no response corrections are necessary. The average PSD*?^/^ value for each 15-

minute spectrum is calculated by the PC logging program between 2 and 4 Hz, along with the 

mean U, V and W wind speed and the intercept value of the spectral line (coeScient A in the pstar 

Gle). The relative wind speed and direction were calculated both from the U and V components and 

the U, V and W components, The program was used to calculate the ship's speed from the 

U/V relative wind speed and direction, and correct the UA /̂W relative wind to obtain a true wind 

speed. Air temperature and pressure data &rom the Multimet Logger was averaged onto this file 

using sea surface temperature was obtained Arom the Met OfBce Logs. The ratio of the 

PSD*F^^^ value to the intercept (CoefBcient A) gives a coarse value for the gradient of each 

spectrum, and this was used to select for clean data. The range used to deSne clean spectra was 0.7 

to 1.3. This clean data set is called 'cleanvtrue', its header is shown in Fig 3.20. 

3,6: Comparison of drag coeScient values and wave data 

The data was split into periods when the ship was hove to and periods when the ship was 

drifting, then the program A/cum was used to calculate values of UlOn, U*, CD and CDn. The 

neutral drag coefBcient was then plotted against the wind speed at a measurement height of 10 

metres. Cruise 46 is shown in Fig 3.21, Cruise 51 data in Fig 3.22 and Cruise 70 data in Fig 3.23. 

There is a discontinuity between times when the ship is driAing and when it is hove to. Where the 

hove to and drifting data overlap, the drag coefScient measured when the ship was drifting is 

higher than that measured when the ship was hove to at the same wind speed. The drag coefScient 

values are on average higher than the Smith (1980) relationship, the accepted value for the open 

ocean. The signiScant wave height data for Cruises 46, 51 and 70 are shown in Figs 3.24 to 3.26, 

plotted against wind speed at 10 metres. These scatter plots show that for a particular wind speed, 

the significant wave height is lower when the ship is drifting than when it is hove to. This agrees 

with what we know about the ship's motion, from the comments of the crew (Section 3), i.e. that the 

ship heaves to at a relatively low wind speed if there is a heavy swell. This suggests that the drag 

coefBcient is higher in low wave conditions than when a large swell is present 

Discussion 

It is generally thought that the drag coefBcient of the ocean is dependent on small, steep 

waves, of perhaps centimetres in height. The drag coefScient would therefore be higher than 

expected in young, developing seas, where the most energy is found in high frequency waves, and 

lower than expected in fully developed swell conditions. The data from cruises 46, 51 and 70 

suggest that this may be the case. 

We must, however, consider the changing orientation and speed of the ship, when hove to 

compared to when the ship is drifting. For each of the three cruises, the fast sampled anemometer 

was situated on the mid-ship goal post mast, to the port side, at a height of around 24 m above the 

sea surface. It is well exposed when the ship is drifting, but while hove to the ship could have a 

considerable effect on the turbulence in the air, and on the wind profile. The Ship Borne Wave 
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Recorder is unreliable a ship's speeds above 1 m/s, but it is not known whether a change in the 

motion of the ship from drifting sideways to hove to would significantly alter its performance. 

4: R.R.S. Discovery Southern Ocean Cruise 201 

4,1: Introduction 

This cruise took place in early 1993 for SWINDEX (South West Indian Ocean Experiment). It 

was the last in a series of four Southern Ocean cruises undertaken by the R.R.S. Discovery as part of 

the WOCE program. The aims of SWINDEX were to observe the structure and transport of the 

Antarctic Circumpolar Current near the Crozet Plateau, and to deploy moorings to record time 

dependence of the current. 

The ship departed from Cape Town on the 26th March, then made its way towards the Crozet 

Plateau at around 48°S 34°E. It steamed between CTD casts (typically for about six hours) and hove 

to at the CTD stations for about four hours. The ship returned to Cape Town on 3rd May. The cruise 

track is shown in Fig 4.1. 

4.2: Instrumentation 

The instruments deployed on the R.R.S. Discovery included a Ship Borne Wave Recorder, an 

em log (which records the ship's movement through the water) a bow thruster, which enabled the 

ship to hold its head to wind with little or no forward motion through the water when hove to, a 

Muitimet logger taking one-minute averages of 1 Hz sampled meteorological data (air and sea 

temperatures, air pressure) and a fast sampled sonic anemometer giving average values for wind 

vectors and power spectrum density every 15 minutes. 

4.3: Data Processing 

The processing route used for this data set is shown in Fig 4.2. The initial 61e used was 

named mws.met.cln. This was the complete data set from the sonic anemometer after it had had the 

Multimet data averaged onto the fifteen minute wind spectra, then selected for relative wind 

directions between 120° and 240°, the scatter in the relative wind direction as a result of averaging 

the data to be less than 20° and the ratio of the average PSD to CoeScient A to be between 0.7 and 

1.3. The true wind was found by splitting the relative wind data into along- and across-ship 

components, then using the em log data to correct these components for the ship's motion through 

the water. The components were converted to true wind speed and direction. The header of the 51e 

mws.met.cln in shown in Fig 4.3. 

The program was used to predict a value of U* using a relationship for the Drag 

CoefBcient given by the data from the cruise, shown in Fig 4.4. This relation is: 
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C D X10" = 0. S I + 0.0688(^,0 

where Uio is the wind speed at 10 metres above sea level. 

The program /sVdj'sc was used to calculate the measured U* and CD values from the 

turbulence and mean wind speed data. The digerence between the measured and predicted values 

of U*, the U* anomaly, was found, where a positive value means that the measured friction velocity 

is higher than that predicted from bulk formulae. The causes of this anomaly were investigated. 

4.4: Data Analysis and Results 

The time derivative of the true wind speed was found using the program and was 

compared to the U* anomaly. The data is shown in a scatter plot in Fig 4.5.a. The U* anomaly was 

binned on the changing wind, and this is shown in Fig 4,S,b. This shows that when the wind speed 

is decreasing rapidly, the measured friction velocity is higher than the bulk value. As the rate of 

change of wind speed goes more positive, the U* anomaly gets smaller, i.e. there is a smaller 

diEerence between the measured and predicted Miction velocities. 

Data from the Ship Borne Wave Recorder was examined to determine the egect of waves on 

the U* anomaly. The SBWR is not reliable at ship's speeds above 1 m/s, so the data above this limit 

was not used. A relationship between the true wind speed and the signiGcant wave height was used 

to predict a wave height for any wind speed. From this a wave height anomaly was deSned as the 

dinerence between the measured and predicted wave height, a positive value meaning the 

measured wave height is higher than the predicted height. The relation used was: 

H s P = & 3 2 - 0 . 1 3 6 [ f + 0 . 0 1 8 1 [ f ^ 

where HsP is the predicted signiScant wave height in metres and U is the true wind speed 

in m/s. This is shown in Fig 4.6. 

The scatter plot in Fig 4.7.a shows the wave height anomaly against U* anomaly. Fig 4.7.b 

shows the data in bins of U* anomaly. The data shows there is no correlation between the wave 

height anomaly and the U* anomaly. The plots show there is a large amount of scatter in the wave 

height anomaly, which suggests that relating the signiScant wave height at a certain time to the 

wind speed at the same time does not provide an accurate method of prediction. A more sensible 

relation would be between a time lagged wind speed and the wave measurement 

A signiGcant wind-wave height was deSned in a similar way to significant wave height, but 

only taking the higher frequency data from the SBWR spectra. The range of frequencies used was 

0.12 Hz to 0.25 Hz. The time lag which produces the optimum correlation between the wind and 

the waves was investigated by looking at data from jday 113 to 120. This data has relatively few 

gaps, the missing data points were interpolated to provide a continuous monotonic data set. The 

program pcorr calculated the optimum correlation between wind-wave height and true wind speed. 

Fig 4.8 shows this to occur at a 9 point or 2.25 hour lag on the wind data, i.e. the wave height is a 

function of the wind speed from 2.25 hours previously. The 61ter width to use on the "wind was 

found by applying Glters of different widths, Gtting a quadratic relation to the data then comparing 

the correlation coefBcient of the curve fit to the width of Glter used. Fig 4.9 shows the optimum 
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filter wdth is 3 points, or the 45 minute mean wind speed. The relation used to predict the wind-

wave height is: 

W H s f = L 7 0 - 0 1 + 0 . 0 0 8 1 

where WHsP is ± e predicted wind-wave height in metres and U^p is the wind speed in m/s 

lagged by 2.25 hours and smoothed using a 3 point Biter. This is shown in Fig 4.10. 

The -wind-wave height anomaly was calculated and compared to the U* anomaly. This is 

shown in the scatter plot in Fig 4,11 .a. The data is shown binned on U* anomaly in Fig 4.11 .b. Fig 

4.11 .b suggests there may be an inverse linear relationship between U* anomaly and wind wave 

height anomaly. As the U* anomaly becomes more positive, the wind wave anomaly becomes more 

neaative. 

5: Conclusions 

Data &om the Ocean Weather Ship Cumulus shows a possible wave eSect on the Drag 

CoefEcient. The measured Drag CoeScient is higher than the value predicted from bulk formulae 

during heavy swell, fuHy developed sea states, and lower than predicted values in developing sea 

conditions. The ship's effect on the measurements may be responsible for these differences, 

however it is possible the ship's influence increases scatter in the data, without aSecting the mean 

measurements. 

The R.R.S. Discovery SWINDEX cruise shows the measured Miction velocity is higher than 

the predicted values during periods of sharply decreasing winds. There is a correlation between 

differences between the measured and predicted values of wind wave height and di^erences 

between measured and predicted values of the Miction velocity. A measured wind wave height that 

is higher than the predicted height correlates with a friction velocity that is lower than predicted, 

The data from the two ships provide contradictory results, the Cumulus data suggesting the 

Drag Coefficient is high in developing seas and the Discovery data suggesting a lower Drag 

Coe&cient when the waves are higher than predicted, or if the wind s p e e d is decreasing rapidly. 

The Discovery was travelling a large distance each day, and only held its position for CTD casts. 

This means that the ship could pass through weather systems and not see them develop, whereas the 

Czmulus follows the weather conditions. The two ships would have different effects on the 

turbulence measurements as the anemometers were in diKerent positions. On the Cumulus the 

anemometer was mounted amid-ships, on the Discovery it was on the foremast. 

The unknown eSect of the ship's presence on measurements of the turbulence and wind 

Geld denies us conclusive evidence as to the eSect of sea state on the Drag CoeScient. The Met 

team at the JRC have plans to quantify the ship's eSect, by use of fluid dynamic modelling, and in 

the case of the Cumulus to request it to perform changes between drifting and hove to in a range of 

wind and sea states. This information will determine whether the data is erroneous due to the ship's 

operational staius. 
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8: Tables 

Hove to relative 

wind direction/" 
Port Drift relative 

wind direction/° 

Proportion of 

cruise hove to 

1 
Instrument 

44 169 71 Large Young 

45 161 69 SmaU Young 

46 167 69 Small Young 

50 165 71 Medium Young 

51 156 70 Lmrge Young 

52 152 69 Small Young 

54 155 73 SmaU Young 

55 - 69 None Young 

56 - 67 None Young 

57 - 61 None Young 

Mean of Small 159 SmaU Young 

Mean of Large 163 Large Young 

Mean of AH 69 Young 

T a b l e 3.1: Data f r o m h is tograms of relative w ind direction for c r u i s e s w h e n the Young vane 
was deployed. The peaks in the his tograms relating to hove to a n d drifting are shown for 

each cruise. 

Cruise Number Hove to relative 

wind direction/" 
Port Drift relative 

wind direction/" 

Proportion of 

cruise hove to 

Instrument 

70 171 93 Small Solent Sonic 

71 177 92 Large Solent Sonic 

72 183 93 Large Solent Sonic 

76 175 95 Small Solent Sonic 

77 - 93 None Solent Sonic 

Mean of SmaU 173 Small Solent Sonic 

Mean of Large 180 Large Solent Sonic 

Mean of All 93 Solent Sonic 

Table 3.2: Data from histograms of relative wind direction f rom c ru i se s carrying the Solent 
sonic anemoitieter. The peaks in the histograms relating to hove to and drifting are shown 

for each cruise. 
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Cruise 71 Data 

Port 

Winds 

Bow 

Winds 

All Data 

1 GPS-Met 1 rm/sl 0.2±0.22 0.2±0.19 0.21+&25 

IGPS-WDSI W s l 0.2±0.17 0 1 7 1 & 1 8 

IWDS - Metl (m/sl - - 0.22±&19 
Table 3.3: Evaluation of the errors in ship 's speed ar is ing f rom the different methods of 

calculat ion. GPS indicates the ship 's speed calcula ted f rom the f i l tered one-minute GPS 
data , Met indicates the sh ip ' s speed calculated f r o m the one-hourly posit ions in the Met 

Log interpolated to one-mdnute values, and WDS indicates the ship 's speed calculated f rom 
the l inear ship 's speed/wind speed relat ionships. 
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5(diss.) 
O 2.0 

O 1.5 

10 20 

Wind Speed (m/s) 

Figure 1.1: Summary of recent studies of the Drag CoefBcient made by 

Geemaert (1990). The graph shows Neutral D r a g CoefScient 

plotted against wind speed at 10 metres. 

dP 

dA 
4 dV 

f ^ 

V2 at time 

VI at time = t l 

dt = t2 - t l 

Values of dA/dt, dP/dt, dV/dt and dcp/dt 
are assigned to time t2. 

Figure 1,2: Method of calculation of the changing wind vector performed 

by the subroutine in the pstar program deYfaivind. 
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Corrected 
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Hs ualues 

psoup 

SurfsUp 

Htscrp 

Figure 1.3: Row chart showing the programs run by the script SurfsUp. 
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CTurbulence data 
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f f f c o p y 

Cascii spectral 
data fi les 
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Pstar spectral 
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rescor fm 

Corrected 
PSD*F"5/3 

spectral ualues 
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program on 5.25 

disc 
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calculate FFT a n d 
output ualues t o 

an ascil f i le 

Transfer to Sun 
system using 3 .5 

disc to FTP f r o m 
Mackintosh 

Aeads in spect ra l 
data to Pstar 

Met data 
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D.C.Ualues 

Average Met da ta 
onto spectral f i le 

and select f o r bouf 
uwndsonig 

Calculate Distance 
Constants and use 
auerage ualue In 

r e s c o r i m 

Apply correct ion to 
all data 

Figure 2,1: Row chart showing the processing route for Young Propeller 

Vane turbulence data. 
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Figure 2.2: Distance Constant calculated between 1 and 2 Hz against wind 
speed. 
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Figure 2.3: Normalised PSD*F^/^ against frequency, The dashed lines 

show the range in which the spectra are flat. 
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Figure 2.4: Comparison between PSD values from the Young and the Kaijo 

Denki anemometers against wind speed, shown as a 

percentage of the Kaijo Denki value. 
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DATA DESCRIPTION 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Prefix: 

Data Name : *Young ruZD* Postf1: 
* * * * * * * * * * * * * * 

Even samp: 

Archive flag: Platform Depth of Depth of 
Raw data flag: P **Type** * * * * Name**** *Number* instrument water 
InstrumentiMulCiMet ship darwin cr 43 0 OOM O.OOM 

Fields (Vars): 23 Data cycles: 113 (2/3D: NROMS : 0 NPLANE : 0) 
Start time: 0/ 0/000000 Position: 0.0000 o . o o o o ; 0 O.OON 0 O.OOE) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* Field * Units » Lower Limit * Upper Limit * Absent data val * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * " * * * * * * * * * * * * * * * * * * * * * * * 

* 1 .JDAY *DAYOFYR * 308 628 * 323 .161 * - 9 9 9 000 * 
* 2 .PSD NE.M* * 0 005 * 0 .213 * - 9 9 9 000 * 
* 3 .wyg .M*M/S * 4 285 * 17 .866 * -999 000 * 

* 4 .PSDF C.M* * 0 004 * 0 254 * - 9 9 9 000 * 
* 5 .U CORR.M*M/S * 4 522 * 17 720 * -999 000 * 
* 6 .k-s psd%* * -26 595 * 19 003 * -999 000 * 
* 7 .k-y psd%* * -32 593 * 32 256 * -999 000 * 
* 8 .y-s psd%* * -3 6 921 * 26 836 * -999 000 * 
* 9 .k-s u%k * * -8 753 * 4 672 * -999 000 * 

* 10 k-y u%k * * -5 762 * 11 672 * -999 000 * 

* 11 y-s u%k * * -17 607 * 5 184 * -999 000 * 

* 12 DIRN .M*DEGREES * 160 029 * 189 269 * -999 000 * 

* 13 DIRN .S*DEGREES * 1 581 * 9 916 * -999 000 * 
« 14 jday .M*days * 308 631 * 323 162 * -999 000 * 
* 15 jday .S*days * 0 000 * 0 000 -999 000 * 
* 16 Freg .M*Hz * 1 362 * 1 362 * -999 000 * 
* 17 Freq .S*Hz * 0 000 * 0. 000 * -999 000 * 
* 18 vyyg .M*M/S * 4 289 * 17. 841 -999 000 * 

* 19 vyyg .S*M/S * 0 000 * 0. 000 * - 9 9 9 000 * 
* 20 Sf5/3 .M* * 0 004 * 0. 211 * -999 000 * 

* 21. Sf5/3 .S* * 0 000 * 0. 000 * -999 000 * 

* 22. k-y.81 * * -0 024 * 0 060 * -999 000 * 
« 23. k-yg.81 *%k-d * -18 891 * 38. 505 * -999 000 * 

* * * * * * * * 
* * * * * * * * * * 

* * * * * * * * * * * * * * 
* * * * * 

Figure 2.5: Pstar header for the 61e 'cd43anemoin5' where 'PSD NE.M' is 

the original Young PSD, 'PSDF C.M' is the Kaijo Denki PSD 

and 'SfS/3 ,M' is the reprocessed Young data. 
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Figure 3.1: Processing route for the Cumulus slow sampled data from the 

Multimet Logger. 
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rigure 3.2: Processing route for Ship Borne Wave Recorder data. 
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V. 

\ 

Figure 3.3: Histograms of relative wind direction from cruises carrying 

the Solent Sonic anemometer. Fig a) shows data from Cruise 

70, b) shows Cruise 71 data, c) shows Cruise 72 data, d) 

shows Cruise 76 data and e) shows data form Cruise 77. The 

bin width is 10°. 
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a; 
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b) 

d) 

20 25 30 

Figure 3.4: Histograms of one-minute observations taken at each wind 

speed when the ship was drifting. Fig a) shows data from all 

S cruises, Figs b) to f) show data from cruises 70, 71, 72, 76 

and 77 respectively. The bin width is 1 m/s, 
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Figure 3.5: As Fig 3.4 but for times when the ship was hove to. 
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Figure 3.6: Percentage of time the ship spends drifting and hove to as a 

function of wind speed. 
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Figure 3.7: Standard deviation of the mean difference between speed 

calculated from raw position data and that calculated from 

filtered position data against the number of weights used in 

the filter. 
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Figure 3.8: A comparison of speed calculated from raw position data and 

speed calculated from the same data after the optimum Slter 

has been applied. 

Figure 3.9 (over page): Processing route used for Cumulus data in 

examining the relationship between the ship's s p e e d and the 

wind speed. The names of the Pstar programs a r e shown in 

italics. 
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Figure 3.10: Ship's speed against wind speed. Fig a) shows the ship's 

motion sideways (towards starboard being positive), Fig b) 

shows the ship's motion forwards. The dashed line shows the 

upper limit above which there is very little data. 
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Figure 3.11: Ship's speed against wind speed. Fig a) shows the ship's 

motion forwards, Fig b) shows the ship's motion towards 

starboard. The dashed lines show the range outside of which 

there is very little data. 
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Figure 3.12: Histogram of ship's direction of travel in wind speeds less 

than 2 m/s. The bin width is 45°. 
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Figure 3.13: Ship's speed sideways (towards starboard positive) against 

wind speed for winds between 7 and 17 m/s and on the port 

beam. The ecaiation of the line of best 6t is S = 0.0540 U. 
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b) 

d) 

Figure 3.14: Histograms of the difference between the ship's heading (the 

direction the ship is pointed) and its direction of travel while 

drifting. Fig a) shows data from all 5 cruises, b) to f) show 

data from cruises 70, 71, 72, 76 and 77 respectively. The bin 

width is 10°. 
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Figure 3.15: As Fig 3.14 except for times when the ship is hove to. 
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Figure 3.16: The ship's motion when hove to as described by data from 
Cruise 70. 
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Figure 3.17: Ship's speed forwards against wind speed for winds between 
12 and 30 m/s and on the bow. The equation of the line of 
best at is S = 2.06 - 0.0792 U. 
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DATA DE 

Prefil: 
Data Name : *Young ruER* Postfl: 

Even samp: 

Archive flag: Platform Depth of Depth of 
Kaw data flag: P **Type** Name**** *Number* instrument water 
Instrument: various Ship Cumulus Cum46 O.OOM O.OOM 

Fields (Vars): 21 Data cycles: 2681 (2/3D: NROWS 0 NPLAiqE: 0) 

Start time: 0/ 0/000000 Position: 0.0000 0.0000( 0 O.OON 0 O.OOE) 

Field * Units * Lower Limit * Upper Limit * Absent 
^********** 
data val * 

* 1 . jday *days * 150 .470 * 183 .077 * -999.000 * 

* 2 . Freq *Hz * 0 .823 * 0 823 * -999.000 * 

* 3 .loglOPSD* * -6 .463 * -2 473 * -999.000 * 
» 4 . W y n g .M*m/s * 0 .150 * 24 250 * -999.000 * 

' 5 . W y n g .S*m/s * 0 .000 * 3 282 * -999.000 * 

» 6 DDyng .M*degrees * 19 .191 * 336 774 * -999.000 * 

* 7 DDyng .S*degrees * 0 .000 * 141 797 * -999.000 * 

8 PRESS . M*mb * 987 137 * 1026 009 * -999.000 * 

, 9 PRESS . S*mb * 0 .000 * 0 421 -999.000 * 

' 10 TMport .M*degc * 5 190 * 11 703 -999.000 * 

" 11 TWport .S*degc * 0 000 * 0 411 -999.000 * 

« 12 TDport .M*degc * 6 693 * 13 662 -999.000 * 

' 13 TDport S*degc * 0 000 0 779 -999.000 * 

, 14 W s t b d M*degc * -18 393 * 13 760 -999.000 * 

' 15 TWstbd .S*degc * 0 000 * 5 949 -999.000 * 

* 16 TDstbd M*degc * 6 210 * 14 067 -999.000 * 

* 17 TDstbd 5*degc * 0 000 * 0 844 -999.000 * 

« 18 Sf5/3 « 
* 0 001 * 1 551 -999.000 * 

19 truewind*m/s * 0 463 * 24 107 -999.000 * 

* 20 seatemp *degc * 10 008 * 13 000 -999.000 * 

' 21. modus 'operandi * 1 000 * 3 000 -999.000 * 

Figure 3.18: Pstar header for the 61e '46aypsd', where 'Sf5/3' is PSD*F^^^, 

and 'truewind' and 'modus' are the outputs from the program 
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DATA DESCRIPTION **************** 

Zven samp: 

Archive flag: 
Raw daCa flag: P 
Instrument:: various 

Data Name: *Young 

Platform 
**Type** ****Name**** 

Ship Cumulus 

ruCM* 

^Number* 
CumSl 

P r e f i l : 
P o s t f l : 

Depth, of Depth of 

instrument water 

O.OOM O.OOM 

Fields (Vars): 

Start time: 0/ 
20 Data cycles: 2492 (2/3D: NROWS: 0 NPLANE: 01 

0/000000 Position: 0.0000 0.0000( 0 O.OON 0 O.OOE) 

Field * Units * Lower Limit * Upper Limit Absent data val * 

1 . jday *days * 331 .550 * 362 .096 -999 000 * 

2 .Freg *Hz * 0 .823 * 0 .823 -999 000 * 

3 .loglOPSD* * -6 .749 * -2 .030 -999 000 * 

4 . W y n g M*m/s * 1 639 * 30 .160 -999 000 * 

5 .DDyng 14* degrees * 10 733 * 325 810 -999 000 * 

6 .DDyng 3*degrees * 0 387 * 138 178 -999 000 * 

7 .PRESS M*mb * 953 564 * 1036 .517 -999 000 * 

8 .PRESS S*mb * 0 000 * 6 088 -999 000 * 

9 TWport M*degc * -0 515 * 10 535 -999 000 * 

10 TMport S*degc * 0 002 * 0 904 -999 000 * 

11 TDport M*degc * 0 199 * 11 318 -999 000 

12 TDport S*degc * 0 000 * 1 020 -999 000 * 

13 TWstbd. M*degc * -1 106 * 10 434 -999 000 * 

14 Tl-Zstbd. S*degc " 0 002 * 0 647 -999 000 

15 TDstbd. M*degc * -0 092 * 11 109 -999 000 

IS TDstbd. S*degc * 0 003 * 0 962 -999 000 

17 Sf5/3 * * 0 002 * 0 767 -999 000 

18 truewind*m/s * 2 282 * 29 872 -999 000 

19 seacemp *degc * 9 110 * 10 600 -999 000 

20 modus *operandi* 1 000 * 3 000 -999 000 

Comr.ent: 

1 : ziodus operandi : 

2:1 = Bow winds > 12 m/s 

3:2 = Port winds < 17 m/s 

4:3 = Other 

::.-b3ent = Steaming ffound from ship's log) 

Figure 3.19: As Fig 3.18 but for the 61e 'Slavpsd' 
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DATA DESCRIPTION 
* * * * * * * * * * * * * * * * Prefil: 

Data Name: *MultiMet ruZB* Postf1: 
* * * * * * * * * * * * * * * * 

Even samp: 
Archive flag: Platform Depth of Depth of 
Raw data flag: P **Type** **** Name**** *Number* instrument water 
Inscrumenc 0 OOM O.OOM 

Fields (Vars): 36 Data cycles: 2055 (2/3D: NROWS 0 NPLANE: 0) 
Start time 1/870000/000000 Position: 0.0000 0.0000( 0 O.OON 0 O.OOE) 

* Field * Units Lower Limit * Upper Limit * Absent data val * 

* 1.]day *days 277.708 * 305 .198 * -999.000 * 
* 2.SERIALno* 38.000 * 38 .000 * -999.000 * 
* 3 . * 96.000 * 96 .000 * -999.000 * 
* 4.min freq*Hertz 2 .000 * 2 .000 * -999.000 * 
* 5.max freg*Hertz 4.000 * 4 .000 * -999.000 * 
* 6.Mode * 1.000 * 1 .000 * -999.000 * 
« 7.MEAN SPD*M/S 1.240 * 24 .650 * -999.000 * 
* 8.MEANNSPD*M/S -22.010 * 13 .180 * -999.000 * 
* 9.MEANESPD*M/S -4.810 * 23 .000 * -999.000 * 
* 10.MEANVSPD*M/S -0.210 * 3 .870 * -999.000 * 
* 11.SP S0UND*M/S 336.620 * 367 600 » -999.000 * 
* 12.unlogPSD* 0.000 * 0 .669 * -999.000 * 
* 13.Coeff A * 0.001 * 0 695 * -999.000 * 
* 14.C0EFF B *10**-8 -1971070.000 * 1733600 000 * -999.000 * 
* IS.psd/cfA * 0.700 * 1 300 * -999.000 * 

16. wspeed *m/s 1.048 * 23 609 * -999.000 * 
* 17.wdir *deg 0.091 * 359 683 * -999.000 * 
* IS.jday .M*days 277.712 * 305 201 * -999.000 * 
* 19.]day .S*days 0.002 * 0 002 * -999.000 * 
* 2 0.PRESS .M*mb 988.832 * 1034 096 * -999.000 * 
* 21.PRESS . S*mb 0.000 » 0 779 -999.000 * 
* 22.TDport .M*degc 4.016 * 12 157 * -999.000 * 
* 23.TDport .S*degc 0.002 * 1 068 * -999.000 * 
* 2 4.TWpcrt .I'I'degc 2 .298 * 11 772 * -999.000 * 

* 2 5.TWport .S*degc 0.002 * 0 527 -999.000 * 
* 2 6.TDstbd .M*degc 4.326 * 12 501 * -999.000 * 
* 27.TDstbd .S*degc 0.002 * 1 041 * -999.000 * 
* 2 8.TWstbd .M*degc 1.883 * 11 994 * -999.000 * 
« 2 9.TWscbd .S*degc 0 .002 * 0 457 * -999.000 * 
' 3 0.t]ruewind*m/s 1.700 » 22 . 909 * -999.000 * 
* 31.modus *operandi 1.000 « 3 . 000 * -999.000 * 
* 32.sst *deg 10.400 * 11. 900 * -999.000 * 

33.vspd *m/s 1.051 • 23 . 673 * -999.000 * 
* 34.tilt *deg 72.574 92 . 631 * -999.000 * 
* 3 5.vtri:e *m/s 1.729 * 23 . 102 * -999.000 * 

Figure 3.20: Pstar header for the Sle 'cleanvtme' where 'unlogPSD' is 

PSD*F^/^, 'wspeed' is the relative wind speed calculated from 

East and North components, 'vspd' is the relative wind speed 

calculated from the East, North and Vertical components, 

'truewind' and 'modus' are from the program windcors using 

the E/N relative wind, and 'vtrue' is the true wind calculated 

from the E/NAA relative wind. 
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Figure 3.21: Neutral Drag CoefBcient against 10 metre wind speed for 

Cruise 46 data. The solid hue is the Smith (1980) 

relationship. 
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Figure 3.22: As Fig 3.21 except for Cruise 51 data. 
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Figure 3.23: As Fig 3.21 except for Cruise 70 data. 
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Figure 3.24: SigniGcant wave height against 10 metre wind speed for 

Cruise 46 data. The crosses show data from when the ship was 

drifting, the circles show hove to data. 
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Figure 3.25: Significant wave height against 10 metre wind speed for 

Cruise 51 data. The squares show data from when the ship 

was driving, the crosses show hove to data. 
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Figure 3,26: SigniGcant wave height against 10 metre wind speed for 

Cruise 70 data. The crosses show data from when the ship 

was drifting, the circles show hove to data. 
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Figure 4.2: The processing route used for the SWINDEX data. 
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DATA OESCRIPTIOH 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Prefil: 

Daca Name : *mm201tru ruOG* Postf1: 
**************** 

Even samp:30 Seconds 

Archive flag: N Platform Depth of Depth of 
Raw daca flag: P **Typ e** * * * *Name * * * * ̂Number* instrument water 
Inscmment: O.OOM O.OOM 

Fields (Vars): 3 9 Data cycles: 1388 (2/3D: NROWS: 0 NPLANE: 0) 
scare l:ime:19/930101/000000 Position: 0.0000 0.0000( 0 O.OON 0 O.OOE) 

* Field * Units * Lower Limit * Upper Limit Absent data val * 

* l.JDAY *DAYOFYR * 82 .698 * 120.729 -999.000 * 

* 2.Mode * 1 .000 * 4 .000 -999.000 * 
* 3.MEAN SPD*M/S * 0 .780 * 28.280 -999.000 * 
* 4.MEANNSPD*M/S * 0 .590 * 24.120 -999.000 * 
« 5.MEANESPD*M/S * -18 .720 « 15.120 -999.000 * 
* 6.MEAi:VSPD*M/S * 0 .030 * 3 .100 -999.000 * 

* 7.PSD * * 0 .000 * 0.647 -999.000 * 

* S.COfA * * 0 .000 *' 0.697 -999.000 * 
* g.jday .M*dayofyr * 82 .701 * 120.733 -999.000 * 
* lO.jday .S*dayofyr * 0 .002 * 0 .002 -999.000 * 
* ll.windsp.M*m/s * 0 .697 * 26.788 -999.000 * 

* 12.windsp.S*m/s * 0 056 * 3 .446 -999.000 * 

* 13.winddi.M*bow=180 * 120 562 * 239.830 -999.000 * 
* 14.winddi.S*bov/=180 * 0 392 * 19.996 -999.000 * 

* 15.swecte.M*degc * -0 610 * 19.984 -999.000 * 

* 16.swetce.S*degc * 0 002 * 0.714 -999.000 * 

* 17.sdryte.M*degc * 1 574 * 27.235 -999.000 * 
* 18.sdryce.S*degc * 0 002 * 1.091 -999.000 * 

* 19.seatein.M*degc * 2 499 * 25.338 -999.000 « 

* 20,seatem.S*degc * 0 000 « 1.564 -999.000 * 

* 21.baro .M*mb * 980 590 * 1029.630 -999.000 * 

' 22.baro .S*mb * 0 000 * 0.336 -999.000 * 

23.truews.M*m/s * 0 410 * 26.532 -999.000 * 

* 2 4.truews.S*in/s ^ 0 035 * 2.443 -999.000 * 

" 2 5.pfa .M*m/s * -0. 373 ' 7.072 -999.000 * 

' 26.pfa .S*in/s * 0 000 * 2.307 -999.000 * 

* 27.pps .M*m/s ^0 . 535 * 1.082 -999.000 ' 

* ZS.pps .S*m/s * 0 000 * 0 .324 -999.000 * 

^ 2 9. v̂ /t rue . M* em * 0 742 * 25.849 -999.000 * 

* 3 0.wcrue.S*ein * 0 064 * 3 .447 -999.000 * 

* 31.pgyro .M*degrees * 2 488 * 359.303 -999.000 * 

2 2.pgyro .S*degrees * 0 . 027 * 172.018 -999.000 * 

* 33.SSrel *m/s * 0 . 633 * 28.125 -999.000 * 

* 3 4.SSddrel *bov;=18 0 * 121. 059 * 245.230 -999.000 * 

* 3 5.SSn-pfa *m/s * -5 . 664 * 23.189 -999.000 * 

'* 3 6.SS2-pps *m/s * -19 . 802 « 15.058 -999.000 * 

' 37.SStru em*m/s * 0 . 604 * 27.171 -999.000 ' 

* 3 8.SStrudd ^degrees * 0 . 779 * 359.985 -999.000 * 

* 39.PSD/cofA* 0 . 703 « 1.299 -999.000 * 

Figure 4.3: Pstar header of the file 'mws.met.cki', where 'SStni em' is the 

true wind as calculated from the relative wind and em log 

data, 'PSD' is PSD*?^/'^ and 'PSD/cofA.' is the ratio of 

PSD*F^/^ to the intercept of the spectrum. 
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Figure 4.4: Neutral Drag CoefEcient against 10 metre wind speed for 

Discovery cruise 200 data. The dashed line shows the Smith 

(1980) relationship, the solid line show a least squares 6t to 

the data. 
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FigiJire 4.5: Rate of change 15-minute mean wind speed with time against 
U* anomaly. Fig a) shows the data as a scatter plot, Fig b) 
shows the data binned on dU/dt. 
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Figure 4,6: SigniEcant wave height against true wind speed for SWINDEX 

data. The equation of the line of best St is Hs = 3.32 - 0.136 

U + 0.0181 U2. 
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4.9: Correlation coefBcient of quadratic St to data against width 

filter used on wind speed data. 
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and filtered using 3-point width top hat Slter. 
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Figure 4.11: Wind wave height anomaly against U* anomaly. Fig b) shows 

the data binned on U* anomaly. 
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