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POP-UP PORE PRESSURE INSTRUMENT 

PUPPI II DEVELOPMENT 

PENETRATION CALCULATIONS & HYDRODYNAMICS 

INTRODUCTION 

The configuration of the system was for the most part defined by the 

specification to measure pore water pressures at 3 m depth in.the sediment 

and that it should be a free-fall derivative of the ill-fated Puppi I. This 

demanded that the instrument be composed of a 3 m disposable probe and ballast 

weights, release gear, instrumentation, logger, command pinger and buoyancy, 

all capable of withstanding 5000 m water pressure. These were to be suitably 

arranged to ensure a clear window to the surface for the command pinger, a 

strong righting moment to correct any perturbations to the fall angle on descent, 

a clean separation on release and a reasonable free-fall velocity. Hence the 

instrument quickly evolved to the form shown in fig. 1. 

PENETRATION 

The free-fall momentum had to be sufficient to push the probe into the 

sediment. The weight plate should then brake the fall and prevent the instrument 

from being buried in the mud. The main question to be answered was what ballast 

weight and terminal velocity would be necessary to accomplish this in deep ocean 

sediments. To examine instrument penetration the mathematical model reviewed 

by Ove Arup Partners (1982), with certain corrections discussed in Appendix A, 

was employed. The resistance to partial embedment for three stage entry can 

be written in the form 

cone entry F, = A . N , . C (Z) .(ZV ,...Z<H 
1 cd u y 

shaft entry F = A. (N C (Z) + p .g.Z) + IT.D.Z.x, . C (̂ ) ... .H < Z < L+H 
^ OO. U S Q. U ^ 

plate entry F = A. (N . C (Z) + p .g.Z) + tt.D.L.X C (Z - ̂ ) 
J ccivi S-: ClU 2 

+ A, (N ,.C (Z') + p .g.Z') + TT.D, .Z',x,.C (Z*) Z > L + H 
1 cd u ^s 1 d u ^2^ 

where A = irD̂  , A, = tt (D.̂  - ) , p = sediment density 
T 1 4 1 s 

C^(Z) = a + b.Z = sediment shear stress profile 

Z " = Z - H , Z ' = Z - H - L 

(1) 
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= dynamic shaft adhesion factor, assumed constant 

= dynamic end-bearing capacity factor, assumed constant, 

see fig. 2 for other dimensions. 

The equation for free-fall impact at the sea-floor is then 

m Z = W - kZ* - F(Z) (2) 
e nett 

Here m^ is the effective mass of the instrument, including added mass, 

is its nett weight in water, kZ^ is the instrument drag in water (k = hp 

and F(Z) takes the form of F from (1) dependent on the value of Z. The 
^ t ^ J ^ 

values of the various coefficients in (1) have been obtained empirically for 

several different sediment types and are given in the report by Ove Arup 

Partners (1982) . The values of and N , are functions of Z but it was 
d ca 

found that in this problem the variation was small so averaged values were 

taken such that = 14 and x^ = 1.2. The sediment density p^ was taken to 

be 1600 kg/m^ . A range of values of a and b were investigated to simulate 

various shear strength profiles. It is realised that the equations (1) do 

not represent a particularly good or realistic model of soil failure and 

resistance to penetration but for the engineering purposes in hand this 

crude empirical approach is probably justifiable. 

Prior to the trials values of m , k and W . ̂  could only be estimated. 
e nett W , . and k were later found to be within 5% but m was 30% too low. This 

nett e 

is discussed in the following section. The instrument drag was estimated 

from known drag coefficients for a cylinder on end and for the Benthos spheres 

in ribbed hard hats which together gave k - 300 kg/m. The effective mass was 

based on known component weights in air with ad hoc estimates of entrained 

water mass from some theoretical calculations, e.g. see Newman (1977),. this 

gave m^ = 320 + (kg) uncorrected, where 
=.weight of lead ballast in air. 

The nett weight in water was estimated at = (22 + 0.91 B^) . g(N) where 

g = 9.81 m/s^ . This gave free-fall terminal velocities in the range 1.5 to 

2,5 m/s for a suitable range of values of B^. 

The geometric values used in (1) were D = 5 cm, H = 10 cm, L = 3.05 m and 

= 30 cm, see fig. 2. Knowing all this (2) could be numerically integrated, 

using standard NAG, Runge-Kutta integration routines, for different values of 

a, b and B^, to give the velocity decay and final penetration. Fig. 3 shows 

velocity penetration curves for various ballast weights in a medium strength 

sediment C^(Z) = 3 + 1.2Z kN/m^ . Fig. 4 indicates how the sediment strength 

influences penetration of a heavily loaded instrument. The weak sediment has 

shear strength given by = 1,5Z kN/m? and the stronger one C^= 5 + 1.2Z kN/w^ . 



Plotting the deceleration curves corresponding to the velocity curves of 

Fig. 3 indicated that the fitting of a vertically mounted Ig accelerometer would 

show some useful information and may be capable of measuring the penetration. 

The calculations clearly indicated that the accelerometer would show when the 

weight plate entered the mud and it could also give the rest angle of the 

instrument if this angle were not small. Fig. 5 shows typical calculated 

deceleration curves for different sediment types and the same instrument weight. 

The weakness of the mathematical model is demonstrated by the fact that the 

deceleration does not return to zero when the instrument comes to rest. See 

Appendix A for a further discussion of this. 

It is clear that with a judicious choice of ballast weight the instrument in 

its chosen configuration could be made to penetrate to a depth of 3 m in all 

but the strongest deep sea sediments. On the satisfactory basis of these 

early calculations the instrument then went forvrard to detail design and 

manufacture. 

F̂ -om detail engineering drawings the instrument nett weight in water was 

calculated more accurately to be 

W = 36 + N X 19 kg (3) 

nett 

where N is the number of lead ballast weights weighing - 21 kg in air. The 

values of N shown in fig. 3 correspond to that given by (3) for the same nett 

weight. 

The distance required to reach 99% of terminal velocity when dropped from 

rest is given by 

Sgg = 1.95 mg (4) 
_ 

This result is obtained by direct integration of the free-fall equation of motion 

and indicates that even the heaviest ballasted instrument will be very close to 

terminal velocity after having fallen only 4 m. 

INSTRUMENT TRIALS 

The instrument was dropped in - 20 m of water into a sediment that was thought 

to be similar to that in the deep sea sites of interest. Previous cores had 

shown this to be the case (see Schultheiss P.J. et. al. (1983)). It was decided 

for prudence that the first drop would be made with 6 weights. Divers were in 

attendance to make observations and assist with the instrument recovery. A 

summary table of the trials data is shown in Table 1. The pore pressure results 

are discussed in Schultheiss P.J. et. al. (1983) . Unfortunately the accelerometer 

electronics did not work on every drop but 5 records were obtained. The divers 

made what observations they could during descent and ascent but accurate fall 



and rise times were difficult to make because of poor visibility. 

The acceleration record was held in EPROM's and dumped to a jet pen recorder 

for analysis. Typical accelerometer traces are shown in fig. 6. The instrument 

electronics saturated at the instant of the drop so the peak acceleration is 

not shown. Theoretically the acceleration curve has the form 

S = Wnett SGch' 

m 

("nett k) 

m 

(5) 

Integrating the measured free-fall acceleration curve gives the terminal 

velocity as does integrating the penetration deceleration curve. Double 

integrating this latter curve should give the penetration. The results of 

these integrations, generally obtained by using Simpson's rule, are also 

given in Table 1 along with the steady tilt angle where measurable. The 

double integration of the penetration curves, integrating bit by bit to get 

the velocity curve and integrating this to give final penetration, yields 

penetrations greatly in excess of those measured. This is probably due to 

the uncertainty of the start of the penetration event. A small error of 

0.25 sec when the instrument is travelling at 2 m/s or more results in a 

large error in the final penetration. 

The one incident clearly defined on the penetration curve is the penetration 

of the weight plate. The area under the weight plate penetration curve may 

be integrated and converted to a constant deceleration over a time interval 

defined by the mid-point of the rise and fall slopes of the curve, see sketch. 

The penetration of the weight 

plate can then be determined with 

improved accuracy from 

= It At - h f (At): (6) 

where u = area under curve 
P 

(shaded) and f = u^/At. This 

simple approximate method over-

comes the errors involved in a 

double integration and gave 

penetration to within an inch or 

so. Such accuracy is rather poor 

when the total plate penetration 

may only be 2 - 3 in, but it gave 

better results than the double integration method which again over estimated 

the penetration by a considerable amount, even over this limited range. 
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From the tabulated results, integrations giving penetration were not very-

good unless the weight plate entered the sediment. Integrations giving velocity 

also varied according to whether the drop was integrated or the penetration. 

Penetration integration gave lower terminal, velocities than the drop in the 

two cases where this comparison was made. It was the case that where the 

final rest angle was appreciable, the integrated accelerometer trace gave 

terminal velocities lower than expected. Since the accelerometer was not 

gimballed or fixed to a stabilized platform, it could not give the true 

deceleration record when the instrument was tilted. The drop curve can be 

integrated with greater confidence since generally the instrument was observed 

to descend at only small angles but unfortunately the peak acceleration was 

missing because of the amplifier saturation problems. It is possible to fit 

the tails of these curves using (5) and predict the peak value. Increasing k 

steepens the curve and changing m^, knowing changes the peak value. 

After some trial it was found that k 300 kg/m and given by 

= 520 + 21N (kg) (7) 

gave good fits to the curves for 4 and 8 weights. This value of m^ is - 200 kg 

more than that previously estimated whereas k is as predicted. Much more water 

was apparently carried with the instrument, presumably around the ribbed hard 

hats of the spheres and in their wake, than simple theoretical calculation had 

predicted. This important result influences the calculated velocity - penetration 

curves of fig. 3. The corrected curves with given by (7) and W^ett by 

(3) are shown dashed on fig 3. The penetrations are increased by 0 (20 cm) in 

most cases, and the deceleration is ~ 10% lower initially. This partially 

explains why the initial penetration event was not easily detected by the 

accelerometer. 

The most important observation from the trials was that on 5 of the 10 drops 

penetration angles in excess of 10° were .reported by the divers. The limited 

measuring accuracy from the jet pen recorder trace of the accelerometer record 

generally gave angles several degrees smaller than measured. This may have 

been due to the insensitivity of. the instrument at small tilt angles which 

has a cosine response such that 

(j) = cos ^ (1 - ̂ ) (8) 

9 

where Ag is the measured residual acceleration and g is the acceleration due 

to gravity. Measurement accuracy from the recorder trace was ±.07 m/s^ which 

is equivalent to ± 7° at small angles.improving to ± 1° at 20°. 

It was thought that since the instrument came to rest at an angle it must 

have had some initial angle before entering the sediment. The increased drag 



on the nose of the probe entering at an angle would induce a turning moment 

on the instrument tending to increase the pitch angle. Hence any quite small 

angle of pitch that the instrument assumed in the water would be magnified 

upon penetration. The hydro-dynamic stability of the instrument appears to 

be crucial in this respect, and from operational and instrument survivability 

considerations the device must be made to free-fall stably at zero pitch angle. 

PUPPI STABILITY IN FREE-FALL 

To model the free-fall pitch stability it was necessary to assume a mass 

distribution in order to find the pitch axis of the instrument. The assumed 

distribution of added mass was somewhat arbitrary. Most was lumped around 

the spheres and smaller amounts of entrained water mass distributed at the 

major mass centres as shown in fig. 7 for the 8 weight configuration. The mass 

distribution was balanced by taking moments giving x, the distance of the centre 

of pitch from the horizontal centre line of the two spheres. The moment of 

intertia in pitch was estimated assuming.the masses to be point masses. The 

static pitch righting moment due to the weights in water of the ballast and 

probe and the buoyancy of the spheres is given approximately for small pitch 

angles by 

= (W^ (2.6 - x) + (1 - x) + Bx) ^ Nm (9) 

where = probe weight in water = 255 N 

W, = ballast weight in water 
b 

B = nett buoyancy of spheres = 324 N (making some allowance for the 
weights of the electronics tubes etc.) 

and <j) = pitch angle (radians) 

The relevant quantities for the various parameters listed above necessary for 

the stability calculation are given in the table on fig. 7 for a range of ballast 

weights. 

A tail fin is the obvious method by which the free-fall stability may be 

improved. The stability of the instrument was therefore investigated with and 

without a tail in an attempt to optimise the instrument response assuming at 

some time t = 0 that it was at some initial angle 

Assume the instrument to be free-falling at its terminal velocity U^. 

Observed from a reference frame moving at this velocity the instrument is free 

to move in pitch and lateral displacement, ignoring spin or any motion out of 

the plane in which the observations are made. Consider the forces acting on 

the instrument sketched below. The only de-stabilizing force comes from any 
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lift force L that may be generated on 

the probe. For cj) positive and any 

li,ft generated at the fin, L^, act as 

shown. The force D is the lateral 
y 

drag force which will always act in 

the direction opposing the lateral 

velocity y. For this system the 

equations of motion become 
M y 
e 

I(j> 

- L, L - D 
p y 

M d) + 2L 
o P 

The fin lift is given by 

= % Sf * 

(10) 

( 1 1 ) 

(12) 

where q = ^p Sj- = fin area, a is 
f f 

the fin lift curve slope - it for low aspect ratio flat plate fins and a is the 

relative free-stream angle of incidence of the flow on the moving fin. Assuming 

small angles and that linearizations can be made 

a - (j) + (y + f(j)) (13) 

For the probe lift it is assumed that the lift on the pitched cylinder may be 

linearized to a similar form 

L = q S a a' 
P P P 

(14) 

where a' = ^ + _J_ (y - 2<j)) 
u„ 

S - 3 X . 05 m̂  and a - 1. 
P P 

Heorner (1958) suggests that has the non-linear form 

Ip = s Sp' 1.1 sin^ a' cos a 

but for the purposes of our rather crude model eqn. (14) will be used. 

The lateral drag is simpler and may be written 

Dy = tp (sCo)y y|y| (15) 

where (SĈ )̂̂  is the sum of products of lateral drag coefficients and projected 

areas of the instrument components which comes to (80^)^ 1.44 + 1 .2 S (m=). 

The equations of motion (10) and (11) can be solved numerically with the 

appropriate substitutions from (13), (14) and (15), once more using standard 

Runge-Kutta integration routines. Fig. 8 shows the pitch angle response curves 

for the vehicle with no fins and 3 loading conditions, for large fins on a 2.1 m 
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tail arm and small fins mounted on the spheres. The curves show that without 

fins the instrument is underdamped. Large fins on a tail arm extending above 

the spheres over-damp the system and the time to reach near steady-state is 

not much improved. To obtain near critical damping small fins could be 

attached outboard of the spheres and electronics tubes. There are a number 

of advantages associated with this latter solution. 

i) The time to get back to steady state following a perturbation is 

minimized. 

ii) The fins are in an exposed position and therefore may be expected 

to function well hydrodynamically i.e. they are not shielded or in 

the turbulent wake of upstream instrument components-

iii) The fins may be located so as to induce no unstable turning moments. 

when the instrumentation and buoyancy separates from the probe and 

ascends to the surface. 

iv) There is negligible additional weight penalty in this solution. 

This is a consideration since there is only an estimated 17.7 kg 

excess buoyancy to bring the recoverable parts back to the surface. 

An additional way of increasing the righting moment would be to fill the 

hollow probe with lead. Approximately 42 kg of lead ballast could be used in 

this way reducing the number of weights carried on the weight plate by two. 

This moves the pitch centre lower and increases the pitch inertia considerably. 

The static righting moment is increased by - 27%. The details are given in 

the table on fig. 7. Using these figures in the stability analysis assuming 

the instrument is fitted with small fins mounted on the spheres gives the 

pitch response shown dotted on the lower figure in fig. 8. The faster response 

causes the instrument to overshoot further but after 5 sec the response is 

almost completely damped. Increasing the fin size slightly will reduce this 

overshoot and further improve the response. Calculations indicate that to 

reduce the overshoot to 10% of 6 i.e. = 1.2° the fin area S^ should be 
^o f 

increased to 0.2 m^. The lateral excursion the instrument makes during these 

oscillations is only about 25 cm from its position at t = 0. Sketches of the 

fin sizes and their attachment to the spheres are shown in fig. 9. Fins of 

the dimensions indicated by the shaded area should be fitted at the same height 

on the two electronics tubes to form a cruciform. 
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CONCLUDING REMARKS 

The instrument trials proved that probe penetration was not a difficulty 

and that the weight plate does provide adequate breaking to prevent over-

penetration. The accelerometer did provide some useful information. In 

particular it allowed the added mass, of the instrument to be more accurately 

estimated. Penetration however could not be accurately calculated by 

integrating the accelerometer trace. This may be improved when the vehicle 

stability is improved so.that the probe does not enter the mud at an angle 

which results in unknown acceleration offsets during penetration. As a tilt 

angle indicator the accelerometer as presently mounted has poor accuracy at 

small angles. However the accelerometer trace does clearly indicate whether 

the weight plate enters the sediment and crude integration of this stronger 

deceleration does give some measure of the weight plate penetration. 

As a result of the tests the instrument stability was brought into question 

since quite large tilt angles were measured after penetration. Subsequent 

analysis has. shown that the instrument is stable but, as tested, under-damped. 

It seems that had the drop been much deeper, say 100 m, the instrument may 

have come to a stable vertical flight-path before entering the sediment. The 

instrument can be made critically damped by the addition of 4 small fins in a 

cruciform at the level of the spheres and electronics tubes. If located as 

shown in fig. 9 the fins should not have any adverse effect on the instrument 

ascent. 

The probe may be lead filled to increase the righting moment if the instrument 

is perturbed from its vertical path but this would require the fitting of slightly 

larger fins to regain critical damping. The instrument appears to have sufficient 

stability so as not to necessitate that it be made to spin in order to maintain 

a vertical track. 
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NOTE The penetration equations (1) and (2) are numerically integrated in the 

program contained in file ARP/PENETROM. The instrument stability 

equations (10) and (11) are similarly integrated in ARP/ACCLN on the 

NERC Honeywell computer. 
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o 
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•H 
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% 

cu 
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0 
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Ot 

Q) 
u .Tl 
-p 

c 
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Tilt 
Angle 
(deg) 

Penetr'tn 
(in) from 

plate 

Descent 
time 
(sec) 

Tilt 
Angle 
(deg) 

Penetration 
(in) from plate 

Z' 

Terminal velocity 
(m/s) 

Velocity 
@ plate entry 

(m/s) 

Z ' 4) Double 
int'gn 

Int'gn 
of plate 
penetr'tn 

Int'gn 
of drop 
curve 

Int'gn of 
penetr'tn 

curve 

Theoretical 

1 6 s y 5 — 0 8 2 - 1.86 2 . 2 0 .79 

2 6 S 0 21-2 - - - - - - - -

3 5 S 10 2ii 9 - - - - - - -

4 4 L 15 -Ih - - - - - - - -

5 7 L 14 2 - - - - - - - -

5 6 L y 0 2h 8 . 5 0 45 3 - 2.19 2 . 2 1 .03 

7 4 S y 25 -12 - 17+18 18 - 2 1.33 2 . 0 -

8 7 S 6 3̂5 - - - - - - - -

9 8 s y 18 3% - 16 - 3% 
2 

2.4 ext 
1 .13 2.5 1.13 

lio 7 s y 19 1% - 17 16 2̂ 2 - 1.75 2 . 3 0 .73 

S = short conical probe 

L = long slender probe 

ext = extrapolated 



Appendix A 

A criticism of the partial embedment mechanics contained in.the Ova Arup report: 
Ocean Disposal of Radioactive Waste, March 1982. DOE Report No. JX)E/RH/82.055 

The criticism starts with the mathematics on page 20 of the above report. 
Certain errors on this page came to light when the equations were used to model 
PUPPI partial embedment. 

The most serious error is contained in the first line. It is wrong to 
neglect drag forces. These forces are not small, in fact at the moment of 
impact they are equal to the term w', the buoyant weight, which is included 
in equation (6.10). Ignoring drag means the penetrometer accelerates into the 
sediment as if it were falling in air. This results in an over prediction of 
the final penetration depth. To be fair to the author, this point is commented 
on in a later report: "Ocean Disposal of High Level Radio-active Waste" August 
82, DOE Report DOE/RW/82.102, section 4.4. Had the equations of motion been 
integrated numerically, the neglected drag term could have been included quite 
easily. 

The next error occurs in the following equation (6.11a) which describes 
the reaction to the cone penetration. To start with this approximation is 
dimensionally incorrect i.e. the term A^Z does not have the units of force. 
Since the cone sectional area increases as a better model would be 

F(Z) = A^ ^ 0 < Z < H 

H / 

this is still an approximation as it ignores terms 0(2®) and hence is only 
appropriate if H and thus Z are small compared with say L, the length of the . 
penetrometer. 

In equation (6.11a) Z seems to be measured from the tip of the cone to 
the sediment interface. In (6.11b) it appears Z is measured from the base of 
the cone to the sediment interface. This may be a reasonable approximation if 
H << L but the notation remains inconsistent^^ A corrected version of this 
equation not making the assumption that Z - Z would be 

F(Z) = + TijD̂  bnj + 2=, O < z" < (L-H) 

These errors mean that the integrated equation (6,12) , at the bottom of the 
page, is also in error. For consistent notation Aj, in (6.12) should be replaced 
by the terms in square brackets in the equation above. There are several more 
errors in the expression for (U^)' . In the second term on the RES the author 
appears to have assumed that the penetrometer weight in water is equal to its 
weight in air and the last term is incorrept even using the erroneous expression 
for F(Z) in (6,11a) as quoted. The corrected equation for Ug including the 
correction to (6.11a) should read 

(Ug)* = (U ): +.2W'H - 2AjH 

These errors follow over to equation (6.13). 

It is unlikely that any of those errors will have a very large effect on 
the final calculatcd penetration depth of the penetrometers H << L. Neglecting 
drag only influences the partial embedment problem i.e. while Z < L. Since 
final penetration is several times L this large initial error may only give a 
small reduction in final penetration. These conclusions of course do not apply 
to devices like corers or instruments that are only partially embedded. Great 
care should therefore bo exercised when trying to interpret these results with 
other penetrometer instruments in mind where the errors could be quite 



considerable. Note that these errors have not been corrected in the more 
recent report DOE/RW/82.102. 

General Comments 

The OvG Arup model, based on that of Dayal et al. (1980) uses constant 
values of and throughout the penetration event = dynamic end-bearing 
capacity factor, = dynamic shaft adhesion factor) . Figs 6.2 and 6.3 of the 
report show that both vary with penetration velocity. By allowing these para-
meters to vary using empirical equations to fit the experimental results, a 
more realistic model could be obtained. It is clear from initial calculations 
that holding and constant tends to give an underestimate of the penetra-
tion depth. ̂  ' 

By neglecting fluid drag and variation with velocity, the Ove Arup 
equation of motion can be described more generally by 

MZ = f(Z,ZM 

This has the same form as that describing a non-linear spring with no damping. 
The equation therefore suggests that as the penetrometer penetrates it puts 
compression energy into the sediment which is not dissipated and hence after 
reaching maximum penetration the projectile is accelerated back up the hole 
and out into the water once more. This hopefully is an unrealistic situation, 
but it does serve to suggest how poor our understanding is of dynamic soil 
mechanics. It is clear that only large scale trials will give credance to 
any of these predictions. 
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Fig. 3 Velocity penetration curves for a range 
of ballast loadings for penetration into a 
medium strength sediment Cu=3-H 2 Z . KN/m! 
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Fig. 4 Velocity-- penetration curves for strong and 
weak sediment types and for an equivelent 
ballast weight of N = 8 7 
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ballast equivalent to 8 7 weights. (Note these curves for the 

uncorrected added mass term) 
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Fig.6 Acceferometer traces from trials with 3 loading configurations 
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Assumed added mass distribution for configuration with 8 weights F i g . 7 

Mass 
(kg^ 

80 

20 

Ltcln 

200 

30 

Totals: 330 

Added 
mass 
(kg) 

230 

80 

30 

20 

360 

Total 
(kg) 

310 

100 

230 

50 

690 

Instrument parameters for various loading configurations 

# Weights 8 6 4 6 + lead 
filled 
probe 

V t t (kC 

(m/s) 

188 

2.5 

150 

2 . 2 

112 

1.9 

188 

2.5 

m (kg) 
e 

690 645 600 690 

1 (kg.m^ ) 344 333 315 486 

M (Nm) 
o 

1430 X <}> 1260 X (j) 1077 X (p 1814 X (|) 

X (m) 0.61 0.57 0.53 0 . 6 9 5 



Fig.8. Instruments response characteristics to an 

initial pertubation of 11-5'' (0 2 rad) 

without fin; 
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