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4. A SUMMARY OF TIJE EFFECTS OF CADMIUM ON MAN A12-A21 

REFERENCES 



ACKNOWLEDGEMENTS 

Data on coa] and oil production were kindly provided by J. McDonnell 

of the National Coal Board and by Brenda Tong of British Petroleum. 

Thanks are also due to Barry Dawes of the Cadmium Association for 

access to the Association's library and literature abstracts, Pauline Simpson 

of the I.O.S. library for her assistance in compiling the literature collec-

tion and Janet Rothwell and Joan Young (I.O.S.) for typing the script. 

1 am particularly indebted to Dr Steve Calvert {I.O.S.) for his help-

ful criticism and editorial skill in producing this report. 



PREFACE 

The initial concern for the effects of elevated concentrations of 

cadmium in the environment arose out of an endemic disease noted in the 

people of the Jintsu Rivsr Basin, Japan, who lived in the vicinity of 

metal mines and smelters. The symptoms of what is now known as Itai-Itai 

(Ouch-Ouch) disease, so called because of the pain produced in the bone, 

vjere noted as early as 1935. Although the disease was thought to be 

related to the mining activities, no scientific evidence was forthcoming 

to substantiate its connection with cadmium until 1961, the proof being 

produced through the efforts of Hagino, Kobayashi and Yoshiaka (1). One 

hundred people died of Itai-Itai disease and 57 more were confirmed to 

have contracted the disease. There was a similar number of suspected 

cases and a further 280 were kept under observation. Other than this one 

epidemic, there has been only one other recorded incident of cadmium 

poisoning arising directly from the environment in which three people 

were affected (2) . Several cases have been reported from industry, 

involving workers in smelting and processing plants and the alkaline 

battery industry. 

Many reviews have been written on cadmium but they have tended to 

concentrate on the effects of cadmium on man, a concise summary of which 

is presented in Appendix 4. 

This report focuses attention on the marine environment and examines 

in detail the aquatic chemistry and transport of the metal, its global 

distribution in saline waters, the effects of marine disposal of cadmium-

containing wastes, the fluxes and cycles of cadmium to, in and from the 

oceans, the residence time of cadmium in the oceans, and the biochemical 

and physiological effects of cadmium on marine organisms. 

Many gaps in our knowledge which are fundamental to the understanding 

of the behaviour of cadmium i;i the marine environment have been identified 

and the research requirements arc summarised in the last chapter. 



CHAPTER 1 

BACKGROUND INFORMATION AND REPORT SUMMARY 

1.1 PHYSICAL PROPERTIES 

The metal cadmium is in Group 2B of the periodic table, the same Group 

as zinc and mercury. It has an atomic number of 48, atomic weight of 112.4, 

melting point of 320.9°C and a relatively low boiling point of 767°C. The 

main oxidation state is 2 and the divalent ion, resulting from the loss of 

2 

tlie outer 5 electrons (leaving a full 4d shell), has a radius of 0,097 nm. 

1.2 AQUATIC CHEMISTRY 

1.2.1 Dissolved speciation 
24 

In freshwater, cadmium is present predominantly as the Cd ion, 

the Cd(OII)° complex and organic complexes, depending on the pH and the con-

centration of soluble organic material. Cadmium may begin to precipitate as 

the carbonate at about pH 6. 

As salinity increases, the degree of complexation with chloride ions 

increases, until in 100% seawater cadmium exists almost entirely as CdCl^ 

and CdCl complexes. There is no evidence for the organic chelation of 

cadmium in seawater. 

In anoxic conditions, cadmium may be present as the soluble bisulphide 

complex. 

1.2.2 Particulate association 

The adsorption of cadmium onto particulate material increases 

with increasing pH but decreases with increasing ionic strength. The latter 

effect is the most influential, mainly because cadmium has the lowest selec-

tivity coefficient relative to other heavy and alkali metals. In seawater, 

therefore, cadmium uptake by particulates is negligible. The only inorganic 

components tc show appreciable adsorption of cadmium in freshwater, and 

particularly in ^eawater, are hydrous manganese oxides. 

In freshwater cadmium-organic particulate interactions, are dependent 

upon the concentration of organic matter. The most influential 



cadmium-particulate association in seawater is with faecal peJlets, by 

biological uptake and concentration rather than by adsorption (see below). 

1.2.3 Remobilization from sediments 

The observed desorption of cadmium from sediments by resuspension 

in seawater is greater than for any other heavy metals. 

The controlling factor in remobilization is redox potential, 

which regulates the solubility of manganese, which in turn regulates cadmium 

availability. Manganese, and hence cadmium, are mobilized under anoxic 

conditions, and ooprecipitated under oxic conditions. 

1.3 GEOCHEMICAL ABUNDANCE AND ENVIRONMENTAL DISTRIBUTION 

1.3.1 Crustal materials 

The abundance of cadmium in common rocks and minerals is given 

_3 
in Table 1. The mean continental abundance is given as O.lŜ ig g , that of 

- 1 - 1 
soil, 0.06p,g g and oceanic sediments, 0.5p.g g . High concentrations are 

- • 1 

found j.n phosphorites (10-500jj.g g ) and the principal economic ore is 

sphalerite (ZnS) with a cadmium content of 0.02 to 1.8% by weight. 

1.3.2 Saline waters 

The background concentration of cadmium in all waters (including 

- 1 

freshwater) is O.Oljag 1 . From the collected data, a gradient in the range 

of values quoted is apparent in the order: estuaries and enclosed bays > bays and 

coastal waters >seas and oceans (0.2 to O.Olpg 1 for max. to min. of normal 
4 

range). A similar pattern is observed for sediments, which show a 10 accumu-

lation factor compared to overlying waters. 
4 

Excessively elevated levels, i.e. up to 5 x 10 above background concen-

trations, are nearly always due to industrial activities; natural mineralization 

is rarely responsible. 

In deep ocean waters, the dissolved cadmium concentration increases from 
- 1 - j 

O.Olpg 1 at the surface to about 0.1|j,g 1 at 1000 to 2000 m and bears a 
direct relationship to the dissolved phosphate concentration (see 1.4,2 below). 

" 4 
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Table 1 Abundance of cadmium in common rocks and iminerals (pg g ) 
(compilaLion from (2, 3, 4) 

loneous:-

Gtanite 

Granodiorite 

Pitchstone and Obsidian 

Andesite 

Syenite 

Basalt _ 

Gabbro 

0.12 (0.2) 

0.07 

0.17 (0.25) 

0.017 

0 . 1 6 

0 . 2 2 

0 . 1 1 

Average 0 . 2 

Metamorphic; 

Eclogibe. 

Garnet schist 

Gneiss 

Sphalerite (ZnS) 
(major Cd ore) 

0 . 1 1 

1.0 
0.14 

0 . 0 2 - 1 . 8 % 

Sedimentary: -

Bituminous shale 

Bentonite 

Marlstone 

Shale and Claystone 

Limestone 

Phosphorites 

Super phosphate 

Coal 

Oil 

Peat 

Manqanose nodules 

0 . 8 

1.4 

2.6 

1.0-1.4 

0.035-0.1 

10-500 

7-170 

0.04-10.0 

0.07-16.0 

4.0 

3-21.2 



1.4 CADMIUM FLUXES AND OCEANIC RESIDENCE Tir4E 

1.4.1 General 

The contribution of atmospheric inputs to the dissolved cadmium 

content of seawater may be as important as the dissolved cadmium influx from 

9 9 
rivers (2.64 x lU g v 3.25 x 10g respectively). 

The only major inorganic input to sediments is thought to be by copreci-

pitation with hydrous manganese oxides but the estimated mass flux of about 

8 - 1 

5 X 10 g yr to sediments by this mechanism is an order of magnitude lower 

than that supplied by the vertical flux of faecal pellets. 

1.4.2 The importance of faecal pellet fluxes and the 
relationship to productivity 

The output of cadmium to sediments in faecal pellets is estimated 

9 -1 
to be at 6.5 X 10 g yr , which emphasises the importance of biological activity 

in the global transport of the metal. The maximum cadmiuia concentration in 

- 1 

oceanic sediments of 60jig g (<2 pm fraction) was recorded in an area of 

exceptionally high organic productivity. 

The depletion of cadmium (and phosphate) in surface waters with respect 

to deep water is explained by planktonic uptake. As the faecal pellets from 

grazing zooplankton settle through the water column, the encapsulating membrane 

dissolves, allowing cadmium and phosphate to be leached from the material, thus 

giving rise to the profiles mentioned above. On upwelling, the dissolved 

cadmium and phosphate return to the surface waters. Not all the cadmium is 

regenerated and thus some may accumulate in sediments. 

The close relationship of the cadmium and dissolved phosphate by total 
c; 5 

reservoir masses, fluxes and residence times (1.74 x 10" yr and 1.8 x 10 yr 

respectively) help to substantiate the postulated mechanism. 

1.4.3 The effect of man's activities 

Man's current contribution to the oceanic input of cadmium is 
9 -l 

estimated to be -50% of the total input of 7.6 x 10 g yr . Most of the 

seawatcr - leachable cadmium from the atmospheric input is thought to be 

6 -



derived from anthropogenic sources and is equivalent to a third of the 

total input. It is estimated that by the year 2000 man will have intro-

duced nearly 250,000 tonnes of cadmium to the oceans. 

The slow dissipation of cadmium from manufactured products is 

indicated as the major contributor to the cadmium influx. The industrial 

losses plus the accumulative dissipation figures at present equal the annual 

production figures; ~ 25% of the total losses find their way to the oceans. 

Because there is a time-lag between production and the disposal of the 

product, the peak of cadmium input into the oceans will not arise until two 

or three centuries hence, unless strict controls are imposed on incineration 

and smelting processes. 

1.5 MARINE DISPOSAL OP CADMIUM-COMTAINING WASTES 

There is circumstantial evidence for elevated dissolved cadmium levels 

in surface waters and the water column around dumpsites. An increased con-

centration may result from dissolved cadmium within the waste, e.g. acid 

wastes, or by leaching of cadmium from the solids, e.g. dredged wastes, both 

in water column and in the sediments. 

In choosing disposal sites careful consideration should be given to 

water circulation, the productivity of the area and the synergistic effects 

on biota of the many other toxicants supplied to the area. 

As a direct input of cadmium to the marine environment, surprisingly 

little is known of the mass cadmium input from this source (possibly many 

hundreds of tonnes each year) or of the leaching - retention properties of 

the wastes with respect to cadmium. 

1.6 PHYSIOLOGICAL AMD BIOCHEMICAL EFFECTS ON MARINE BIOTA 

Bacteria may bo important in both the precipitation of cadmium to 

sediments under anoxic conditions and the remobilization of cadmium from 

oxic sediments. Of direct importance to man is the possible selection of 

plasmid-mediated multi-drug multi-metal resiscant pathogens through the 

exposure of organisms to high metal concentrations. Resistant organisms 

- 7 -



tend to accumulate cadmium in the cell wall and cell membrane, either by 

active enzyme immobilization of the metal transport or by accommodation. 

This effect may be significant in the accumulation of cadmium in their 

predators. 

Phytoplankton are highly tolerant to cadmium. Uptake is primarily 

by adsorption onto the cell surface. The presence of inorganic phosphate 

was shown to somehow limit cadmium uptake; on phosphate depletion in the 

media cadmium uptake was rapid which suggests absorption into the cell by 

some form of anion transport mechanism. The only sublethal effect measured 

to date is the depression of photosynthesis by the uncoupling of the photo-

system II electron transport chain. 

Of the higher marine organisms, molluscs concentrate cadmium to the 

greatest extent and hence they may prove useful as pollution indicators. 

Most marine animals concentrate cadmium in the liver (or digestive 

glands), kidney and gills. Food chain amplification is not evident on the 

basis of whole animal analysis, but may be found if specific organs are 

taken as monitors. 

The internal complexation and concentration of cadmium in kidney and 

liver tissue is often due to the binding by metallothionein, a low molecular 

weight protein. 

The increase in oxygen consumption in the presence of cadmium is indi-

cative of increased enzyme activity and the decrease in oxygen consumption 

may be due to gill membrane inhibition of oxygen uptake or inhibition of 

enzyme systems. 

- 8 



CHAPTER 2 

THE CHEMISTRY OF TEE AQUATIC TRANSPORT OF CADMIUM 

This chapter is divided into three parts. The first examines dissolved 

speciation, the second adsorption onto particulates and the third reports 

the desorption and remobilization of cadmium from sediments. The transport 

of any metal through the aquatic ecosystem is a complex process as illus-

trated in part by Figure 1. It is controlled by, among other factors, the 

pPI, redox potential (Eh) , chlorinity, ionic strength, dissolved and parti-

culate organic material, iron and manganese hydrous oxides and the biota. 

2.1 DISSOLVED SPECIATION 

The problems regarding the speciation of metals in water have stimulated 

much research but as yet the experimental work is in its infancy. The use 

of models has therefore been extensively employed by chemists in order to 

gain insights into the inorganic and, to a lesser extent, organic speciation 

at varying pH, Eh, chloride concentration, anion/cation concentrations and 

with various organic ligands or groups of compounds. Bench studies with 

simple organic chelators e.g. nitritotriacetic acid (NTA) and ethylenediamine-

tetracetic acid (EDTA), have been carried out in an attempt to simulate 

naturally occurring chelating agents and examinatiors of humic and fulvic 

materials have also been instigated. 

2.1.1 Inorganic speciation (theoretical models) 

The stability diagrams devised from computer models are only 

as good as the data on which they are based and discrepancies in the findings 

of different workers do occur. A discussion of the theory of Eh-pH relation-

ships will not be entered into here, since Khalid et al. (5) have covered 

the subject well. Figure 2 shows the computed C-N-S-O-H diagram for a 

freshwater system (6) whilst Figure 3 illustrates the Eh-pH limits encountered 

in natural aquatic systems (7). By comparing these two diagrams with Figure 4, 

it may be deduced that in freshwaters the predominant form of inorganic cadmium 



FIGURE 1. Examples cf cadmium speciation and size 
distribution in natural waters 
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FIGURE 4. Eh-pH diagram for cadmium 
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2 + 

up to pH 8 will be the Cd ion, and thereafter cadmium wlli be precipitated 

as the carbonate (8). CdS would only be formed under highly anarchic con-

diticnSf as found in some sediments. In the study by Haha^ and K^oontje (9), 

carborake was not considered (Figure 5) whereas under oxidative-anaerobic 

conditions (Figure 2), Morel et al. (10) calculated that CdCCy precjpitation 

would occur below pH 6.2 (Figure 6) in a multianion solution. 

In moving from freshwater to seawater, the molar concentration of 

chloride ion increases from 0.0002 to 0.554 but the HCO^ concentration 
-2 

remains constant at 2 - 3 x 10 M, The major species of cadmium at pH 8.5 
o 

and in 25% seawater were found to be CdCl >> CdCl^; in 50% seawater 

CdCl > CdCl°; in 75% seawater CdCl* - CdCl^ and in 100% seawater CdCl° > CdCl* 

(Figure 7) (11) . The 100% seawater diagram compares favourably with that 

derived by Zirino and Yamamoto (12). Figure 8 presents speciation with 

respect to salinity (13) rather than pH and illustrates the rapid decrease 

2 + 

of Cd as the major species with increasing salinity and uhe replacement 

4- o 
of CdCl by CdClg as the most abundant form at 25% salinity. In brines, 

— -f-

CdClg displaces CdCl as the second most stable species (Figure 7f). 

There are difficulties in comparing theoretical and experimental results, 

as demonstrated by Bubic and Branica (14). Using anode stripping voltamatry 
2+ + 

(A.S.V.), they reported Cd and CdCl to be the stable species of cadmium 

in seawater but concluded that "The existence of the CdCl^ form is possible 

but it cannot be proved in the solution of ionic strength I = 0.7 which 

corresponds to seawater". 

' 2.1.2 Organic speciation (theoretical models and bench studies) 

The interaction cf cadmium witli organic chelating agents might 

be expected to occur in the environment. However, calculations have pre-

dicted that humates (13) (Figure 8) and amino and carboxylic acids (15) 

(Figure 9) play only a minor role in the binding of cadmium in both fresh 

and seawater. 

12 
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It was proposed that various organic compounds were important for the 

mobilization of cadmium and phosphate in soils (16,17). Cadmium formed a 

soluble three ligand system with phosphate and NTA up to pH 7 and a quaternary 

complex above pH 7. For freshwaters. Morel et al. (10), in tbeir 16 cation 

-5 

and 10 anion model system at pE 12 and pH 7, demonstrated that NTA at 10 M 

could prevent the formation of CdCO^ precipitate; in other words it would 

eliminate the buffering effect of carbonate. Such effects may be damaging 

in that NTA can be used as both a nitrogen and carbon source by organisms 

and therefore its metal complexes have particular significance in metal 

bioaccumulation (18). The stability of the Cd NTA (1:1) complex has been 

utilised for the polarographic determination of NTA in lake water at pH 9 

in the presence of tripolyphosphates and alkylbenzsulphonates which normally 

interfere with the analysis (19). However, in solutions containing chloride, 

the formation of Cd NTA complexes was diminished because of competition 
2+ 2 + 

between chloride for cadmium (20) and Mg and Ca for NTA. Similar effects 

were reported with ethylenediaminetetracetic acid (EDTA) complexes (21) where 

a greater than tenfold excess of EDTA was required to complex all the cadmium 
2^ — 6 —^ 

and to overcome the competition with Ca (25 x 10 M : 2 x 10 M) . With 
-2 3 

equimolar concentrations (2 x 10 M i.e. 10 x the 'normal' seawater concen-
- 2 2 + 

tration) in both seawater and 0.59M NaCl + 10 M Ca , 50% of the cadmium 

was bound, reaching equilibrium in 30 minutes. As mentioned above, other 

simple organic chelators like acetic, citric and phthalic acids and amino 

acids, including cysteine., have little influence on the speciation of 

cadmium in aquat:c systems even though they are thought to be typical residues 

that make up humic and fulvic acids, the carboxylj.c groups of phthalic acids 

and the HO COOH of salicylic acid acting as the metal chelators, e.g. see (22) . 

One possible reason for this is that (citrate) Cd (phosphate) and (cysteine) 

Cd (citrate) complexes are known to precipitate at pH 4.2 (17) (which may be 

true for some other XCdY complexes). 
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2.1.3 Organic speciation (Eumic and Pulvic acids) 

Humic matter is derived from the refractory organic matter 

in terrestrial soils or produced in the water, and consists mainly of 

random arrangements of breakdown products of ligmin, acids, phenols 

and phenolic metabolites of micro-organisms (equivalent to 60-80% of the 

dissolved organic matter (DOM)); polysaccharides contribute a further 10% (23) 

Fulvic acids are distinguished from humic acids by their solubility in mineral 

acids and are often considered to have lower molecular weights (m.w.<10,000), 

although this is not always the case (24). Their chemical composition can 

differ from environment to environment; for example, fulvic acids from one 

ri^er possessed high aromatic character whilst from another river had high 

aliphatic character (25). Marine humic materials, compared to river 

material, have lower metal binding constants, acidity, cation exchange 

capacity and phenolic OH but higher molecular weights (26) . In freshwaters, 

soil derived fulvic acids reach levels of 3-33 ppm in rivers, up to 29 ppm 

in ].akes and as high as 100 ppm in swamps. In seawater, levels of 0.5-5 ppm 

-6 -3 

DOM are common (23), i.e. in the concentration range of 3 x 10 to 10 M. 

This non-uniformity in structure and therefore inability to classify 

dissolved organic species must be borne in mind when comparing the experi-

mental work of different researchers. 

In both simulated freshwater experiments with added humic acids (22, 

27,28) and lake and river waters (29,30) there is evidence of organic 

chelation of cadmium. At low pH (<3.5) the complexation is negligible 

but as pH increases the degree of complexation increases (up to 80% at 

pH 7.5) (22). However, the extent of chelation is also controlled by tlie 

concentration of the organic component and is rarely found to be above 40%, 

even in sewage/river water mixtures (27), and is generally <10% (27) c.f. 

Figure 8). 

Stability constants of cadrnium-natuially occurring organic complexes 

for differing pH and ionic strengtns are presented in Table 2. This 
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Table 2 Stability Constants for Cd - Natural Organic Complexes 

Organic Form loa K pH Ionic Strength/Solution Ref. 

Soil h'jmate 6.9 
5.2 

0 
0.1 

Soil fulvate 3.04 
3.64 

4.9 
5.95 

0.1 
0 .1 

31 
31 

Lake humate 4.57-4.70 0 . 0 2 13 

CO 

I 

Loch humate 

Sea humate 

'River water' 

4.87-4.95 

4.69 

0 . 0 2 

0 . 0 2 

3.67 

13 

13 

30 

Fulvate 3.26 30 



demonstrates a marked variability in the behaviour of the oK^al with organic 

matter of different type and origin. The stability constants for cadmium-
are 

organic complexes/lower than most other heavy metals, namely Co, Zn, Ni, Pb, 

Cu and Hg, but greater than Ca and Mg (13). Th^ latter two metals, by virtue 

of their relatively high concentration in seawater, compete favourably with 

cadmium for humic/fulvic chelators. This competition, coupled with the large 

excess of CI ion (forming CdCl^ and CdCl^),reduces organic chelation to a 

negligible level, as noted in North Sea water (32). 

In sulphide-bearing marine waters (Eh-150 mV, pH 7, pS 10.5), Gardner (33) 

calculated that cadmium would be present as the soluble bisulphide with insig-

nificant complexation with simple organic compounds. 

The question remains of how reactive are the various species of cadmium 

in natural waters? In freshwaters, the precipitation of cadmium as the 

carbonate was suppressed by the presence of organics (10,27,30). O'Shea and 

Mcxncy (18) found that, in the presence of carbonate, the humic complexes 

formed were labile (fast dissociation rates with respect to the plating rate 

by A.S.V.) whereas the inorganic complexes were non-labile (slow dissociation 

rates). Similar effects with lake waters (34) and seawater (35) have been 

reported. In the latter instance 75% of the cadmium was present in a labile 
2+ 

form adsorbed onto colloidal organics and 11% was present as Cd and organic 

and inorganic complexes (total Cd = 0.28jj.g 1 ). 

2.1.4 Conclusions 

Gardiner (27) concluded from his experiments that "the ratio 

of complexed to uncomp]exed cadmium depends only on the stability constant 

and concentration of ligand and not on the total cadmium concentration, 

provided the ligand remains in excess". However the use of cadmium concen-
-1 

trations generally in the rng 1 range in these experiments cannot realis-

tically be extrapolated to the environment, where concentrations are generally 

>1 ^g 1 (see below). 
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From this section some broad conclusions can be dravm: 

2 k 

(i) In freshwaters, Cd will always be the major species; organic 

chelation will increase as the concentration of the chelating 

agents increase. 

(ii) The binding capacity of the organic chelator depends on its 

origin and the ionic strength of the solution. 

(iii) The stability constants of cadmium - fulvate/humate complexes 

are lower than those of other heavy metals. 

(iv) Chloride species (e.g. CdCl° and CdCl*) rapidly become the major 

species at increasing salinity in seawater. 

(v) Organic speciation is of little consequence in seawater, except 

in the colloidal/particulate form (see below). 

2.2 THE ROLE OF ADSORPTION 

2.2.1 Theory 

In reviewing the literature on the interaction between Cd and 

particulate and colloid material in aqueous systems, comparison of experi-

mental data was difficult because of 

(a) the wide range of cadmium concentrations employed; 

(b) the variation in the methods of reporting results; 

(c) differences in methodology; 

(d) the omission of pertinent experimental data; 

(e) the inconsistency in terminology (see Table 3) , 

Therefore, as a guide to the reader and the researcher, the elementary 

theory is discussed in Appendix 1. 

From Appendix 1, the main points are 

(i) the binding of metals by particulates is enhanced by a high surface 

area to weight ratio, 

(ii) adsorption is of two types, coulombic and specific, 

(iii) the cation exchange capacity (C.E.C.) of clay minerals is based on 

the external change and is larger if surfaces exist between layers, 
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Cd 
Conc'n 

1" ) 

Clay_ 
Type'' 

Table 3 Variation in Experimental Parameters for Adsorption Studies onto Cadmium 

Contact Clay Particle 
Conc'n Size 
(w/v%) (pm) 

pE 
Support 
Media 

Temp. 
("O 

Tine 
(hr) 

Means of Reporting Units 
Results Used 

Experimental 
Objective 

Ref. 

52.6 K, I O.OOIM CaCl, 
to M 0.2 <2 7-8 and 
1124 D.S.C. seawater 

25 240 Cs V 

moles g 
V 

moles 1 

Cd affinity 
-1 for clays 

36 

2.25 X 10 
to 

22.5 X 10 

K 
V 
M 

10 63-74 5-6 
0 . 0 1 

t°2+ 
O.lN (M ) 

164 
(mole Selectivity 
fractions) coefficients 

37 

0.1 
to 
100 

7.5 River water 25 Log C_ V Log C 
b JL ^9 9 

p.g ml 

2+ 
Cd affinity 
for clays 

38 

9400 
! to 
w 205,000 

K 
M 

4 
1 

<2 
1.9 
to 
6.95 

Deionized 
water and 
leachate 

25 24 Cs V 
mg g_^ Leaching from 
mg 1 waste tips 

39 

I 

19100 
K 
I 
M 

0.05 
0.025 
9.92 

<2 
3.5 
to 
12 

Deionized 
water 

25 
i) C V pH mM kg_^ 
ii) cd removed v pH mM kg 

Adsorption/desorp-
tion 
Effect of 
organic chelators 

40 

41 

22 

V 
I 
M 
M 

0.067 
to 
0.2 

<0.2 
5 
to 
7.7 

0.03M 
CaCl. 

26 
O . ^ 

meq g 
-1 C.E.C. of 

various clays 
42 

11240 
to 

112400 

K 
I 
M Cone'n 

<2 
<50 
<2 

4.8 
to 
6.5 

Deionized 
water Ca ' Cd 

Selectivity 
coefficients 

43 

M 
0.05 (various 1 

forms) 
<2 

O.OIM 
CaCNOgig 

48 Cs/Cl, 

("Kd"=Conc'n factor) 

Adsorption onto 
cationic forms, 
with and without 
humic acids 

44 

(a) K ^ kaolinite, T - illite, M = monbmorillonite, C = chlorite, V = vermiculite, D.S.C. = deep sea clay 
(b) fox rotation see text 



(iv) adsorption may be described in three ways, the first according to 

the Berthelot-Nernst distribution law, second by Freundlich iso-

thermal adsorption and third by Langmuir isothermal adsorption. 

2.2.2 Experimental results 

In the natural environment, adsorption onto organic and inorganic 

particles and metal hydrous oxides takes place. Studies in this area are 

complicated by the intimate admixture of particulate material, as illustrated, 

for example, by the coating of silicate mineral particles with hydrous iron 

oxides and by the flocculation of clays witli organic material. 

2.2.2.1 Adsorption onto inorganic particles 

To understand something of the processes involved, 

several experiments have been conducted on 'simple' systems (Table 3). 

Guy et al. (45) found that the sorption of Cd onto freshly precipitated 

MnOp at pH 5 followed Langmuir adsorption with a limiting value of 

0.124 gCd g ^MnO . 

Specific adsorption of the type: 

0 0 O H 

Mn Mn - — OH Mn ——- O 

I +282° ^ I 2+ I 
o o + Cd ;=±o ia + 2H+ 

Mn Mn OH^ Mn - r 
0 0 O H 

was thought to be involved and was therefore dependent on pH in that at low pH 

the reaction equilibrium will lie to the right. The amount of metal adsorbed 

was proportional to the surface area and hence MaO^, prepared in situ, adsorbed 

more cadmium than added ground MnO^. 

It is the high metal binding capacities of MnO^ and FeOOH that makes the 

possibility of recovery of ferromanganese nodules an attractive commercial 

proposition. One of the mineral forms encountered in nodules is birnessite 

(0,7 rim manganite, 14nO : MnO^ = 5:13) and in terrestrial deposits a common 
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mineral is nsutite (MnO : MnOg = 1:46). Botb were examined for cadmium 

adsorption at pE3.5 to 4 by Van der Weijden (46) . Nsutite has the more open 

and poorly crystalline structure and possibly this allows for the replacement 

of manganese by cadmium since they have similar divalent ionic radii (0.08 nm' 

and 0.097 nm respectively). 

-}- 2 H" 

Na competes with Cd' for surface sites, the preference dependent on ]pH 

and ionic strength of the medium (for example, partial desorption of cadmium 

occurs in seawater) . It was suggested that this accounted for the enrichment 

of zinc- over cadmium in nodules (46); the basis of this proposal was an 

estimate for the Zn/Cd ratio in nodules of 133 compared to 20 in seawater. 

On the other hand, Ahrens et al. (47) gave the mean Zn/Cd ratio of nodules 

as 77 which is approximately the mean of the ratio for seawater. (App. 4, Table A7) 
5 

The concentration factors for cadmium of 10 found in oceanic nodules 

(47) are comparable to those reported with g-MnO^ by Van der Weijden (36) 

(Table 4a) and g-MnO^ is a common poorly crystalline form of manganese 

encountered in nodules. By reworking Van der Weijden's results (Figure 10) 

as Freundlich isotherms (Figure 11), log k values can be determined (Table 4b) 
- 1 

(see Appendix 1) . For C = 1 ng ml in seawater the C value of the oxide 
5 -1 

is 2.1 X 10 ng g 

Manganese may also form coatings on other particles. At pH5 to 6, 

adsorption of manganese onto montmorillonite, vermiculite and kaolinite was 

preferred to cadmium, although the opposite was true for albite and labradorite 

(C.E.C. = 0.6 and 2.5 meq 100 g ^ respectively) (37), However, cadmium may 

then bind to the manganese film as recorded with sediments (e.g. (48) and (49)). 

- 1 
In a polluted streejn, 2 (ig g Cd were associated with the hydroxylammonium 

chloride-leachable fraction, i.e. that held in the MnO^/Fe^O^ phase, and only 

- 1 

1 jig g in the refractive silicate fraction. Fast flowing stream waters have 

high Eh (and pH) which allows for the deposition of iron (III) oxides on 

silicate or carbonate particles, the iron then acting as a substrate for 
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Table 4 Cadmium Adsorption onto Clays, d-MnO^ FeCOH 

(a) Concentration Factors at varying Ionic Strength (I) and 

2+ 
pH for experimental niax. and min. Cd concentrations. 

(b) K Value derived for Freundlich Isotherms at 25°C and 

2 + - 1 
log (Cd )goLUTION ^ ° ™1 (see Figure 11) and 

--1 3 

in brackets 0 = Ing ml (x 10 (see Figure 11)) 

(c) Zn/cd Ratios under similar physical conditions (taken 

and adapted from Van der Weijden (36)). 

Clay/Oxtde Original 
Cone'n 

(ug 1 ) (I 

pH7 
CaCl„ Seawater 
= 0.003) (I = 0.7) 

pH8 
CaClp Seawater 

(I = 0.003) (I = 0.7) 

(a) Montmorillonite 56.2 
1124 

314 
151 

13 
0 

2000 175 
465 20 

Kaolinite 56.2 
1124 

189 
69 

13 
0 

3086 205 
490 24 

Illite 56.2 
1124 

1600 
400 

11 
0 

7800 177 
810 15 

Deep Sea Clay 56.2 
1124 

1100 
270 

32 

16 
8800 176 
3200 62 

d-MnOg 56.2 
1124 

290,000 
117,000 

FeOOH 56.2 
1124 

32,900 
3,000 

(ng g S (P9 g"') (ng g ) 

(b) Montmorillonite (2510) 125 12 320 20 (1260) 

Kaolinite (670) 72 13 320 32 (25) 

Illite (4000) 320 6 560 33 (1680) 

Deep Sea Clay (2113) 450 25 1600 60 (840) 

6-MnO^ 3800 (211000) 

Fe(X)H 560 (7500) 

(c) Montmorillonite 3 10 7 25 

Kaolinite 4-5 11 8 30 

Illite 5 11 10 25 

Average 4 11 9 30 

* Isotherms not shewn in Figure 11. 
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F i G U R h i O . A d s o r p t i o n o f z i n c a n d c a d m i u m o n t o p a r t i c u l a t e s 

a n d I C r 3 m C a C l 2 s o l u t i o n s ( A f t e r V a n a c r h e i j & c n 

coo 

600 

400 

300 

X (i"'jios/y)>.IO' 

1 
/Zno»6-WnO;pH 7P510 0G 
/| / Zn on Fo OOH 70310.03 

200 

CdonC-MnOz 
. pH 7.0410.03 

Cnn (moICS/l )%I0̂  

Cd on FcOOHpH 7.891003 

. ) S o r p t i o n o f Z n a n d C d o n u - U n O - ^ a n d F e O O H a t " p H 8 " i n s e a v . a t e r , 

70| 

Go' 

J 

10 

30 

20 

10 

X (mcles/g) y.!0̂  

deep-seo cloy pH 7.20 ±0.05 

illile pH 7.05 + 0.05 
Ceqtnno!es/l)«10̂  

10 20 

-montmori!!orille pH 7051005 

t̂oolinite pH 700 ±0.06 
decp-oeo cloy pH 720±0,07 
iiiile _koolinilc, n-.oni mo -

30 40 50 CO , 70 80 90 100 riilonile. 

b ) S o r p t i o n o f C d o n c l a y s a t " p H 7 " i n l O " m C a C l g ( - - 0 a n d s e a w a t e r 

70 

CO 

50 

. to 

30 

20 

l(. 

X 110̂  

deep- SCO cloy 

y p'l 7.91 1 0 .04 

X 

l!Me pn 7.90 i0.10 

y rnof-tinof-'iooi'ir pH 7.G0 i C.07 

kuolinilc pH 0.02 1 O.lO 

W ^ ^ GU 90 WO 

drpp &fo cloy pH O.OI 

c ) S o r p t i o n o f C d o n c l a y s a t " p M 8 " i n l o ' ^ m C a C l g ( - - 0 a n d s e a w a t e r 
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FIGURE 11, Frcundlich isotherms of the data presented by Van der Weljden (36) 
(as log moles p-* x 10"* v log moles ml-* x ICT^and log ^g g"* 
V log ^g ml-1) 

-I ioaOî  f/ivofes niC'j; 10') 

o tog C[_' (u^ rni' ) 

X C-l.6> 
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manganese. In sediments of this nature, cadmium was found .to be concentrated 

in the <2 pm fraction and the manganese/iron coated coarse sands and gravels (48) 

The adsorption-desorption properties of clays have received much attention 

but, from the previous discussion, it was apparent that direct comparison of 

results was difficult (see Table 3 for experimental conditions) . The order 

of affinities for cadmium of the substances studied was (a) for simulated 

fresh water at pH 7, deep sea clay > illite > montmorillonite > kaolinite, 

- 1 
taking k values at solution equilibrium concentrations of both 1 jj,g ml 

and 1 ng ml and (b) for simulated seawater at pH 8, g-MnOg » Fe OOH >> deep 

- 1 
sea clay > illite - kaolinite > montmorillonite, taking k values at 1 |.ig ml 

- 1 

But at lower concentration in the equi] ibrium solution (k at 1 ng g ) the 

order in seawater changes: g-MnOg » Fe OOH >> illite > montmorillonite > deep 

sea clay >> kaolinite (see Table 4b and Figure 11). 

The general trend was that concentration factors (and k values) increase 

with pH but were greatly reduced by high ionic strength. From these results 

it may be proposed that adsorption onto particulates in freshwater is 

appreciable whilst in seawater g-MnOg is the major scavenger for cadmium. 

One possible reason for the increase in Zn/Cd ratio (Table 4c) in moving from 

fresh to seawater is probably the difference in divalent ion concentration. 
2 + 

In seawater 50% of the total dissolved zinc exists as Zn but only 3% of the 
2 + 

dissolved cadmium is present as Cd 

From the graphical data for river water (presented by McDuffie et al., 

-1 5 
38) , at 1 ng ml , the k values for chlorite and illito were 1.8 x 10 and 

4 -1 
1 X 10 ng g respectively at pH 7.5 with the value for suspended riverine 

4 -1 
solids falling between the two at 3.2 x 10 ng g . Total desorption was 

+ 

noted below pH 3 and in seawater, i.e. at high H or total cation concentration. 

Frost and Griffin (39) used isotherms as an aid in reporting their results on 

experiments with leachate from a landfill tip. Precipitation was observed at 
- 1 - 1 

pH 7 (C^ ---- 5 jLig ml ) and also at pH 6.5 (C - 4.0 p.g ml ) probably due to 

Cd COg formation which is consistent with solujjility product considerations. 
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An increase in adsorption onto montmorillonite was noted am increase 

in pH from 4 to 6. With pure nitrate salt solutions at pH 5, adsorption 

followed the Langmuir isotherm for both montmorillonite and kaolinite with 

- 1 - 1 - 1 
limiting values of = 32 mg g at - 50 |ig ml and X = 5.5 mg g at 

- 1 
400 jig ml . In comparison, leachate solutions with montmorillonite and 

illite at pH 5 followed Nernst-Berthelot adsorption and even at high C values 

~ 1 """1 ~~ 1 
of 770 fig ml and 325 |ig ml , the cox responding C values ware 7.5 mg g 

- 1 

and 0.7 |j,g g . The difference between pure and leachate solution could be 

accounted for by the high dissolved organic content (1362 mg 1 ), and the 

concentration of competing cations (in the order of grains per litre). 

Cd-organic complexes were shown to comprise <2.5% of the total dissolved 

cadmium and therefore the competing ion effect was thought to be the most 

important factor, implicating cadmium as a highly mobile metal at pH<6.5. 

Farrah and Pickering (40) examined the sorption of metals onto kaolinite, 

illite and montmorillonite. Again, C was seen to increase with pH. The 

order of binding was montmorillonite > illite > kaolinite with a maximum 
- 1 

value of 250 at pH 6.5 (montmorillonite) down to 7 mmole kg at pH 3.5 

(kaolinite) . Pb, Ca, Cu, Zn and Mg were all shown to be more readily 

adsorbed than cadmium (with the exception of Mg on illite) , but sulphate 

and phosphate had little effect on cadmium adsorption or desorption. In 
was 0.5M solutions as either NaCl or NaNO^, complete inhibition of uptake 

observed, i.e. dependent on Na rather than chloro-complex formation. 

Van Hook et al. (42) obtained similar results to other workers in that 

2+ 

adsorption increased with pH but with low Cel. concentration in solutions 

(22 ng ml ^ at pH 5 in 0.03M CaCl^)• The ranking of binding was 

vermiculite > illite > montmorillonite > kaolinite with C.E.C. values ranging 
- 1 - 1 

from a maximum of 100 meq g at pH 7,5 for vermiculite to 0.1 meg g at pH 5 

for kaolinite. Stuanes (37) determined the C.^.C. for vermiculite, montmorillonite 

and illite to be 2.4, 44 (mean of two clay types) and 50 meq lOOg ^ respectively 

2+ 
in 0.01 N Cd solutions. 
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Selectivity coefficients in binary solutions of the same clays were 

also measured by Stuanes (37). Mith a cadmium mole fraction of 0.25 and 

a total metal concentration of O.OlN, the order of selectivity was Zn>Mn> 

Cd>>Hg and the range of ^^was 1.25 - 4.39 (pH 5-6). Other 

researchers (43) found that in the pH range of 4.8-6.5, lead was preferen-

Cd 

tially adsorbed (K^^ = 0.31 to 0.58) whereas calcium K values were nearer 

Ca 

unity (K = 0.89, 1.01, 1.04). Kaolinite gave the lower figures and illite 

approximated to montmorillonite. At pH 5 on montmorillonite the selectivity 

order was put at Ca>Pb>Cu>Mg>Cd>Zn although no figures were guated (40). 

In a similar vein, different cationic forms of clays bound cadmium to 

varying extents. Montmorillonite, coated with A1(0H}^, FefOH)^ or in the 
2+ + 3+ 3+ 

Ca ' , Na , Fe and Al forms gave concentration factors of 614, 222, 104, 

59, 43 and 33 respectively at 0.05 ng ml ^ Cd^* and pFI 7 (44) . Al (OH) ̂  and 

Fe(OH)2 retained 40% to 20% respectively after five washes with 0.01m CaClg. 
3+ 3+ 

Humic acid adsorption onto these coatings followed the order Al - Fe > 
2+ + 2+ 

Ca > Al (OH) 2 - Fe (OH) ̂  > Na . Decreased Cd uptake was noted with the 
3+ 

hydroxides (25 to 50% down) with a corresponding enhancement on the Al 
3+ + 2+ 

and Fe forms but little change with Na and Ca 

The effect of specific organic chelators, namely tartrate, ethylene 

diamine, bipyridyl, glycine, NTA and cyanide, on adsorption to montmorillonite, 

kaolinite and illite was investigated by Farreh and Pickering (41) (for 

conditions see Table 3). In the absence of organic ligands, precipitation 

(as Cd (OH) g) was observed at about pH 7, but with glycine and bipyridyl, 

adsorption was taking place up to pH 9 because of the formation of cationic 

chelates. Tartrate had little effect on the system but masking of precipi-

tation and prevention of adsorption was apparent with ligands forming stable 

species, i.e. NTA and CN . 

In the case of naturally-occurring particulates and effluents, Gardiner 

(50) found that adsorption onto river muds and naturally-occurring solids was 
3 4 

rapid, producing concentration factors in the range 5 x 10 to 5 x 10 depending 
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on the state of subdivision, contact time, complexing ions, solids present 

2+ 
and cadmium concentration. The proportions of Cd adsorbed with time were 

- 1 2 + 
29.3 and 79.4% for two river muds after 2 min exposure tc 2.1 1 

and 49.6 and 94.7% after 24 hrs. In the latter case, C.F.'s ranging from 

3 4 
6 X 10 to 2.6 X 10 were recorded. As with the clay e:&periments, a decrease 

2+ 
in C.F. was observed with increasing Cd concentration for suspended solids 

(S.S.) = 34 fig 1 ^, Cd^^ =2.1 and 177 ji.g 1 ^ with C.F. = 2,5 x 10^ and 

3 2+ - 1 
1.2 X 10' respectively. At fixed (Cd ) (5.9 j.ig 1 ) and varying suspended 

solid loadings (7 to 210 mg 1 ) the C.F.'s were reasonably constant (7200 

to 3800 respectively). 

The effect of organic complexation or adsorption was simulated by the 

- 1 - 1 2 + 
addition of EDTA to solutions containing 88 mg 1 S.S. and 2.1 jig 1 Cd' . 

4 - 1 3 
At zero EDTA, the C.F. was 4.2 x 10 and at 300 jig 1 C.F. = 6.9 x 10. 

It was suggested that the high C.F. values for sediments cannot be explained 

by adsorption onto inorganic particulates alone since the 24 hr C.F. for 

silica was 10^ and for kaolin was 3.8 x 10^ at 7.3 jig 1 ^ Cd^*. On the 

- 1 2 + 
other hand, 2.1 - 4.3 jig 1 Cd solutions with humic acids gave a C.F. 

4 

of 1.8 X 10 . Although humus solids from sewage effluent initially followed 

the adsorption patterns of the humic acids, after 24 hours 50% desorption of 

the cadmium initially bound occurred and this was shown not to be due to 

microbial action or change in Eh. 

Gardiner (50) concluded that humic material appeared to be mainly 

responsible for cadmium adsorption even though there was some evidence for 

direct competition between the two and no allowance v/as made for the manganese 

content of the mud samples. 

Murray and Meinke (51) investigated the effect of soluble sewage materials 

on sediment adsorption-desorption of cadmium. The river sediment used was 

composed of 45% calcite, 35% quartz and 20% mica (>2000 jxm) and equilibration 

was for 96 hrs under oxic conditions. The findings may be summarised as 

follows: 
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(a) on mixing river water with sewage effluent (0-100%) at pH 8.1 

- 1 

and 1 g 1 sediment, >90% adsorption occurred in river VKiter alone and 

only 35% in sewage effluent alone, 

(b) 25% desorption was noted in river water alone an^ 62% in 50% sewage 

solutions, 

(c) 'adsorption' was zero at pH 6.5 but 100% at pH 7.9 in unpolluted 

river waters, 

(d) desorption of Cd in seawater from unpolluted freshwater sediment 

was only 25% in the absence of sewage, but nearer 60% at 25% sewage 

and greater, 

(e) at pH 8.1 in freshwater-sewage mixtures, adsorption was greatly 
- 1 

affected by the presence of phosphate (80% to 30% at 0 and 3.5 mg 1 

phosphate) , as was desorption in seawater (80% at 2 mg 1 ^ phosphate in 

tlie absence of sewage) . 

From the above, it is obvious that the soluble sewage fraction, particularly 

with a high phosphate concentration, alters the distribution of cadmium both 

in freshwater and at the freshwater-seawater interface. However, this effect 

is not necessarily due to the organic complexation of cadmium but may be 

explained by direct competition of organic compounds and other metals for 

surface binding sites. Similarly, 'adsorption' reported at pH 7.9 may well 

have been precipitation as CdCCy or Cd (OH) ̂  and the low desorption (only 25%) 

in seawater may have been caused by the presence of manganese or iron in the 

sediments provided the Eh was great enough. 

2.2.2.2 Cadmium transport within organic particulates 

Organic particles also prove to have a low affinity 
2 + 

for cadmium adsorption. For instance, the adsorption of Cd onto faecal 
2 3 

material produced by fish gave comparatively low C.F. values (10 -- 10 ) 

but concentrations within faecal material were higher an^ nmy of prime 

importance in cadmium transport. The difference is one of passive versus 

active uptake (52). 
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In a small lake used by migrating geese, cadmium concentrations in 

_1 2 
c^ose faeces were 0.53 g rw:t (C.F. = 5.9 x 10 compared to 

water), a figure only exceeded by the sediment (1.85 g ) t±dLs 

probably as a result of faecal sedimentation (53). Th^ concentration in 

- 1 

euphausiids from the Mediterranean was 0.74 ja.g g dry weight (54) , However, 

the faecal pellets from the same euphausiids contained 9.6 pg g Cd dry 

weight which helps to substantiate the proposal put forward by Boyle et al. 

(55) that faecal pellets are responsible for the vertical flux of cadmium 
— 1 

in the oceans. To maintain a concentration of 9.6 )J,g g Cd, the food 

(brine shrimps, Artemia) with a concentration of 2.1 jig g ^ needed to be 

consumed at a rate of 0.113 to 0.32 g per day per animal (Meganyctiphanes 

norvegica) (56). If 10% Cd was retained by the animal, 84% could be attri-

buted to the total flux of the faecal material, i.e. food:faeces = 1 : 5 , 

water: faeces = 1 : 10^. A more detailed discussion on faecal pellet 

transport and fluxes is to be found in Section 3.1.3 and Chapter 4. 

Zooplankton moult their exoskeletons many times during growth and, 
- 1 

since the moults contain cadmium at 2.1 |j.g g dry weight, their sedimen-

tation may play a small but significant role in cadmium deposition (54,56, 

57). However, Martin (59) showed that the cadmium concentration in mixed 

oceanic zooplankton (>0.366 mm) did not increase with depth, unlike other 

metals. This suggests that either desorption and/or no adsorption of 

cadmium occurs. 

Not all animals display the ability to concentrate the cadmium taken 

in with food. For example, the crab Pugettia producta, fed on brown algae 
- 1 - 1 

containing 3.4 fig g Cd ashed weight, produced faeces containing 3.2 pg g 

Cd (58). 

2.2.3 Conclusions 

The following is a summary of the general principles involved in 

cadmium adsorption onto particulates; and a resuiû  of experimental findings. 
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(i) The adsorption of cadmium onto particulates increases with 

increasing pH; 

(ii) The adsorption of cadmium decreases with increasing ionic 

strength, i.e. increasing cation concentration; 

(iii) Cadmium may be adsorbed onto clays and larger particles that 

are coated with manganese oxides in freshwaters; 

(iv) Manganese dioxide in oxic waters is the major scavenger for 

cadmium, particularly in seawater. C,F. values are in excess 

5 

of 10 ; 

(v) Total desorption from clays may occur in seawater;. 

(vi) The presence of dissolved organics decreases adsorption of cadmium 

onto inorganic particulates, probably by direct competition rather 

than chelation; 

(vii) The K values for cadmium show that cadmium is lowest in the order 

of preference for binding to clays relative to other heavy metals 

and the alkaline earth metals; 

(viii) In freshwater, the ability of inorganic particulates to bind cadmium, 

decreases in the order MnO^ >> FeOOH >> deepsea clay > illite > 

montmorillonite > kaolinite; 
-1 

(ix) In seawater, at a concentration of 1 p.g 1 the order of binding 

was MnO^ >> FeOOH >> illite > montmorillonite > deepsea clay 

kaolinite; 

(x) The biological concentration of cadmium in faecal pellets appears 

to be the major transport route of cadmium to sediments in the 

oceans, and hence, besides cadmium being concentrate^ manganese 

nodules, high sediment levels would be expected in areas of high 

productivity (see below). 

Illustrations of these points in an environmental context are to be 

found in the second part of this chapter. 
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2.3 CAUMIUM DESORPTION FROM SEDIMENTS 

2.3.1 Desorption in estuaries 

In order to explain cadmium-sediment interactions it is necessary 

to examine environmental data. The work carried out on metal transport in 

the Rhine and North Sea serves as a useful vehicle for such a discussion. 

Duinker and Notling (59) suggested that the Rhine estuary acts as a sink 

for 20-60% of the river-borne particulates and up to 50% of the suspended 

matter in the coastal area is accumulated in the Wadden Sea. The dependence 

on salinity of the amounts of suspended matter and dissolved Cd and Zn are 

shown in Figures 12(a) and (b). As the salinity increases, the relative 

amount of dissolved cadmium increases with respect to suspended matter 

concentration, i.e. possible desorption effect, although removal does take 

place (roughly 40%). A further indication of cadmium desorption was taken 

to be the decrease in the Cd/Zn ratio in surface sediments (Figure 12c -

experiment on the Back River (60)). 

In a small slow moving tributary of the Rhine (Altrhein River) , there 

was no evidence to suggest that there was any marked preference for binding 

according to grain size (<2 to 63 jim) nor was there a large positive 

correlation to organic content (r = +0.57 in both <2pm and 2-63 jjm fractions 

(61 ) . 

The research by de Groot and Allersma (25) on metal transport in the 

Rhine showed that the cadmium content of the sediments had doubled between 

- 1 

1960 and 1970 to 45 pg g in <16 pm fraction but the estimates of cadmium 

in water to cadmium in sediments ratio was 1 : 0.8. Again the decrease of 

cadmium concentration with increasing salinity in the sediments was taken 

as evidence for desorption (greater than the other eleven heavy metals 

monitored) although no allowance was made for precipitation or mixing. 

Solomons and Mook (62) attempted to resolve the processes involved, 

that iSf whether mobilization, mixing or precipitation was responsible for 

Lhe lower concentrations in the estuarine and sea sediments, and concluded 
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FIGURE 12. Illustration of cadmium-particulatc intcracticms vdith 
increasing salinity. 
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mixing of contaminated fluvial material with 'clean' marine solids was 

responsible for a dilution effect (supported by MUller and PGrstaer (63) 

from their work on the Elbe). However the drop in cadmium from 17 to 

- 1 

0.06 pig g in freshwater to marine sediments far exceeds that of the other 

metals measured, therefore desorption may still play a prominent role. This 

viewpoint is partly endorsed by desorption studies on suspended material from 

the Rhine (64) where the order of desorption found was Cd > Zn > Mn > Ni > 

Co > Cu > Cr > Fe = Pb. In the sediments of tiie lower Rhine about half of 

the cadmium present was associated with the reducible fraction, including 

that ccprecipitated with CaCO^, and the remaining half with the oxidizable 

organic anthropogenic fraction (65). About 98% of the cadmium present 

derives from anthropogenic inputs (65). 

2.3.2 Remobilization from sediments 

Since the highest levels of cadmium often appear in the top few 

centimetres, profiles of cadmium in marine and lacustrine sediments help to 

elucidate the pollution history of a body of water. Such interpretations 

have been applied particularly to lakes (e.g. 66 and 67) and marine bays 

(68,69) (see Figure 13a). However, such interpretations are complicated 

by metal migration in pore waters. For instance, the diagenesis of manganese 

is controlled by redox potential; soluble manganese is produced in the 

reduced part of the sediment and, because of the concentration gradient so 

produced and possibly by sediment compaction, manganese migrates upwards in 

pore water. On reaching the oxidizing surface precipitation takes place. 
-3 

Cadmium migration under such reducing conditions, e.g. ES = 10 M, moy be 

caused by the formation of the soluble bisulphide. From K considerations 

- 1 2 - 1 
alone, the concentration of CdS in solution is expected to be 5 x 10 ng ml 

- 1 

but in practice in anoxic seawater concentrations of 0.2 - 8 ng ml were 

found (69). The association of cadmium with manganese, organic matter 

and particle size in a 200 m lake sediment core shows a strong positive 

relationship (70) (Figure 13b) and similar observations have been made in 
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fIGURB 13. Examples of cadmium profiles in sediments 
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the Tennessee River sediments (63% Cd in the iron-manganese hydroxide fraction 

(71)). 

Further evidence that the mobilization is dependent cm t±^ redox potential 

comes from Khalid et al. (72) and Lu and Chen (73). A sediment sampled from 

Barataria Bay had a clay composition of 15% montmorillonite, 15% illite, 

10% kaolinite in 0.2 to 2 jam fraction and 40% montmorillonite, 5% illite and 

- 1 
5% kaolinite in the <0.2 jjm fraction (total C.E.C. = 19.2 meq 100 g ). The 

original Eh was ~60mV, pH 7,3, CI 9100 mg 1 , organic matter 5.15% and 

-1 
cadmium concentration of 4.1 jj.g g (72), The sediment was first reduced 

to -ISOmV (pH 7.5) and aliquots purged with O^/Ar at 21%, 2.1% and 0.11% O 

- 1 
at a flow rate of 20 ml min , resulting in Eh and pH changes to +600 and 

.7 in 1 day, +600 and 6.5 in 7 days and no change in 60 days for each 

experimental batch respectively. In each case there was an increase in 

- 1 - 1 

dissolved cadmium; 2jig 1 to 6.9 (21% O^) , - 6.0 (2.1% O^) and 4.0 |ig 1 

(0.11% Og). The release mechanisms were thought to vary in such a way that, 

at low Og, organic complexation or bisulphide formation was responsible, 
+ 2 + 

whilst at higher O levels, CdCl and Cd may have been formed after the 

oxidation of sulphide to sulphate or by the release from Fe or Mn hydrated 

oxides (correlation with Cd, r = 0.67 and 0.57 respectively). In the latter 

case a "mechanism which is not very clear", possibly hydrogen ion displacement, 

was thought to be responsible. 

In Lu and Chen's experiments (73), the dissolution and resettling of 

iron, manganese and cadmium were studied (Figure 14). The histograms show 
~1 

an increase in cadmium concentration from 0.03 to 0.5 jig 1 after 4 to 5 
- 1 

months at dissolved oxygen (D.O.) levels of 5-8 mg 1 (ZS = 0), with both 
- 1 

silty-clay and silty-sand samples. Under low conditions (D.O. = 0-1 mg 1 , 

_ 1 

ES < 0.05 mg 1 ) there was a slight increase above background but in an anoxic 

environment (D.O. = 0, Z8 = 15-30 ing 1 the cadmium concentration decreased 

(minimum at 60 days). In resettling experiments with the sandy-silt suspensions. 
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FIGURE 14. (after Lu and Chen (73)) 
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the cadmium pattern reflects manganese rather than iron distribution whereas 

the other two systems show immediate adsorption. 

2.3.3 Conclusions 

(i) The decrease in cadmium sediment concentration in moving down 

estuary is due to two processes:-

(a) the mixing of fluvial particulates with incoming 'clean' 

marine particulates resulting in a dilution effect and 

(b) the desorption of cadmium from suspended material on reaching 

highly saline water. 

(ii) Remobilization of cadmium from sediments may be brought about by 

the following mechanisms (73);-

(a) Oxidizing conditions: 

1. Diffusion from interstitial waters. 

2. Desorption from clays, etc. 

3. Chemical reactions, i.e. oxidation of organics and sulphides. 

4. Ion exchange. 

5. Dissolution. 

6. Complexa tion. 

7. Biological action. 

(b) Reducing conditions - deposition -> dissolution: 

1. Sulphide complex formation. 

2. Crganometallic complexation. 

3. Diffusion processes. 

4. Release of metals from the dissolution of Fe and Mn hydroxy 

oxides by the formation of dissolved Fell and Mnll ions. 
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CHAPTER 3 

THE GLOBAL DISTRIBUTION OP CADMIUM IN SALIIJE WATERS AND 
THE DISPOSAL OF CAfWIUM CONTAINING WASTES AT SEA 

The collected d&ta of cadmium levels in the sediments and waters of 

the world's estuaries, seas and oceans is presented in Table 5. In many 

cases dissolved and sediment samples were taken at the same stations, 

therefore the two phases are considered together so that direct comparisons 

can be made. A summary of the data is given in Table 6 and this general 

overview proves useful in the identification of abnormally high cadmium 

concentrations, particularly in association with dump sites. 

3.1 THE GLOBAL DISTRIBUTION OP CADMIUM IN SALINE WATERS 

There are severe limitations when comparing the work of different 

research groups because of variations in experimental methods. For example 

'filtered' water in Table 5 refers to samples passed through membranes of 

between 0.2 and 0.8 jam. Similarly, sediment values quoted range from 'soft' 

leachable cadmium {acetic acid) to total cadmium (strong oxidation) on either 

specific size fractions or total sediment. There is also a heavy bias in the 

work towards the industrialised northern hemisphere (between 20° and 60°N) 

and also to areas thought or known to be contaminated with cadmium. The former 

difficulties can only be overcome by standardisation of sampling and analytical 

procedures and the latter by more exhaustive baseline studies. 

The terms in Table 6 are defined as follows 

Background - the minimum recorded value. 

'Normal' range - based on values in uncontaminated systems, including 

areas where no mineralization is evident. The choice 

is subjective and open to debate. 

Suspected contamination - refers to values in excess of the upper 

figure of the 'normal' range. 

Top of range - maximum recorded value. 

3.1.1 Estuaries and enclosed bays 

Cadmium levels in sediments and water tend to be highest above 

the tidal limit and decrease towards the seaward end of an estuary, e.g. the 
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Table 5 Cadmium Distribution in Estuaries, Coastal Waters, Seas and Oceans of the World 
- 1 - 1 

Water values in |ig 1 , all values for sediments p,g g , E = Estuary, C = Coastal water, B = Bay, CB = Closed Bay/harbour, 
+ = water disposal site, F = Fjord, OS = Open Sea, 00 = Open Ocean. 

Sea or Ocean Place of Sampling Sample Description 
No. of 
Samples 

Mean Range 
Zype of 
Area Rej 

Mediterranean 

Baltic 

North Sea 

Gulf of Fos 

North-west Med. 

South-west Med. 

Tyrrenian Sea 

Ionian Sea 

Aegean/Cretan Seas 

Gulf of Bothnia 

Gulf of Finland 

Gotland Basin 

Bornholm Basin 

Western Baltic 

Sorfjord, W. Norway 

Rhine Delta: 

Hoek van Holland 

Rhine - Mouse 

Water - unfiltered 83 

Water - filtered 14 

Water - filtered 17 

Water - filtered 10 

Water - filtered 4 

Water - filtered 3 

Water - filtered 3 

37 

Water - unfiltered 10 

Sediment 6 

Water - unfiltered 11 

Sediment 3 

Sediment - 1 core subsampled 21 

Sediment - 1 core subsampled 20 

Water - filtered - 1 station, 126 
depth 

Water - unfiltered - 13 (surface 
stations -0-23 m) 
Sediments 14 

Water - filtered 

Water - filtered 

Sediment 

3 

5 

10 

<0.15 

0.19 

0.15 

0.15 

0 . 0 8 

0 . 0 8 

0.15 

2.39 

0 . 8 6 

0.72 

1.17 

0 . 1 2 

0.53 

0.05-11.5 

<0.03—0.8 

<0.1-0.7 

<0.05-0.51 

0.08-0.33 

0 . 0 6 - 0 . 1 2 

<0.05-0.12 

0.3-10.2 

0.17-1.37 

0 . 1 - 2 . 2 

0.47-1.88 

0 . 6 - 2 . 2 

0.25-2.0 

0.05-0.2 

0 . 0 2 - 0 . 2 
0.02-0.3 
16-850 

0.3-0.7 

0.45-0.7 

0 . 6 - 2 8 

B 

:/os 

OS 

OS 

OS 

OS 

OS 

c 

c 

c 

c 

OS 

OS 

OS 

OS 

F 

E 

E 

74 

75 

76 

77,78 

79 

79 

80 

81 

82 

64 

55,67 

62 



Sediment 

Sediment 

Water - filtered 

Water - filtered 

Water - filtered 

Water - filtered - surface 

Water - filtered - bottom 

Rhine and Southern Bight Water - filtered 

Ems Estuary 

River Blyth 

+East Coast U.K. 

Southern North Sea 

Western North Sea Water filtered 

4 

15 

41 

14 

19 

43 

0.5 

0.41 

0.3 

0 . 2 

0.5-3.0 

G.17-3.4 

0 . 1 - 6 . 2 

0.29-0.6 

0 . 1 - 0 . 6 

< 0 . 1 - 1 . 6 

0.1-0.5 

0.2-0.58 

<0.1—1.4 

E 

E 

C 

C 

OS 

OS 

OS 

os/c 

os/c 

62 

83 

84 

85 

32 

84 

84 

32 

English Channel Poole Harbour 

Coastal (England) 

West English Channel 

Water - filtered - highwater 15 

Water - filtered - low water 7 

Water - filtered - (oyster 30 

hatchery) 

Sediment (<20Cjjjn) 10 

Water - filtered 4 

Water - filtered (1954) July 6 

Oct. 6 

(1955) Feb. 6 

0.35 0.1-0.7 CB/E 

1.68 0.4-7.4 CB/E 

5.7 0.7-20.5 

4.2 <1- 10 

0.06 <0.01-0.38 C 

0.096 0.024-0.163 C 

0.081 0.057-0.146 

0.180 0.094-0.256 

87 

86 

88 

Bristol Channel Tawe Estuary Water - filtered 11 

Sediment - strong oxidation 7 

acetic acid 7 

Swansea Bay Rivers Water - filtered 16 

Sediment - strong oxidation 6 

acetic acid 6 

+£evern Estuary/Channel Water - filtered 8 

Sediment 7 

^Bristol Channel/Estuary Water - filtered 44 .13 

0.25-7.4 

3-70 

10-37 

0.5-3.5 

2 - 6 

1-4 

0.3-5.8 

1.6-4.7 

0.28-4.2 

E 

E 

E/C 

89 

89 

90 



Irish Sea. Cardigan Bay Water - filtered 

Sediment river 

beach 

seabed 

Irish Shoreline Water - filtered 

Irish Sea and Water - filtered 
Cardigan Bay 

North-east Irish Sea Water - filtered (1956) Apr. 

Nov. 

(1955) May 

+Liverpool Bay 

Irish Sea 

Water - filtered shoreline 

Water - filtered 

Sediment - organic mud 

20 

10 

15 

86 

9 

10 

5 

5 

6 

11 

27 

2 

1.11 0.48-2.41 

1.7 0.8-3,5 

1.0 0.4-1.9 

1.1 0.2-3.4 

0.41 0.03-1.43 

0.11 <0.01-0.52 

0.057 0.034-0.081 

0.101 0.08-0.159 

0.166 0.083-0.252 

0.46 0.15-1.14 

0.27 0.14-0.74 

0.39 0.363-0.417 

B/C 

E 

C 

OS 

C 

B/C 

C 

B 

91 

92 

85 

86 

88 

85 

91 

88 

4̂  Inner Seas -- W. 
I Coast of Scotland 

Water - filtered <0.01 < 0 . 0 1 - 0 . 1 8 86 

Atlantic North 

North-east 
Coastal 

U.K. 

- Near 
shore 

- Tropical shelf 

North-west - U.S. 
Coastal 

Sediment - Green mud 1 

Calcareous ooze 1 

Foram ooze 12 
(5 stations and subsainples) 

Deep sea 35 

Water - filtered (5 stations) 83 

Water - filtered 5 

Water - filtered 16 

Watei filtered (17 stations) 100 

0 .18 

0.225 

0.06 

0.04 

0 .08 

0 .11 

0 .268 

0.574 

0.13-0.21 

0.04-0.58 

0.02-0.15 

0.01-0.41 

0.04-0.16 

0.07-0.71 

00 

00 

00 

00 

00 

C 

C 

00/C 

88 

93 

94 

93 

85;86 

95 

96 

Gulf of Maine Water - filtered 10 0.23 0.078-0. 93 



Ui 

+Ne>' Bedford Harbour/ 
Buzzards' Bay 

Sediment - <2 jum clay 3 
cores 

1.4-52 CB/B 97 

Narragansett Bay Sediment 1 
core 

0.6-0.8 B 98 

+Long Island Sound Water - filtered B 99 

Before dumping 26 2.79 <0.1-10.3 

After dumping 32 1.66 <0.1-5.96 

Sediment - before dumping 8 6.9 3.8-14.5 100 

after dumping 11 10 4.3-17.5 

residual 0 

reduceable+ 5 0.6 101 

organic & sulphide 5 14.8 

Sediments from all over 
the Sound 

115 <1.0-4.2 102 

Foundry Cove Water - filtered 

- before dredging 12 <0.1-1.1 CB 103 

after dredging 0.7-45.7 

Sediments - before dredging 
(two areas) 

2500-18,400 
30-50 

103 

Raritan Bay Sediment 162 <1-15 B 104 

+New York Bight Water - unfiltered (Apr.) 

filtered (June) 

74 

81 

0.42 0.16-1.6 

(0.2-7.0 

B 105 

(July) 78 0.82 (0.2-7.0 

(Sept. -Oct.) 77 (0.2-6.1 

Back River Estuary Water - unfiltered 5 0.5-3.5 E 60 

Sediment (<62 pm) 11 1.8-5 60 

Southern U.S.A. Rivers Water - filtered 0.3-1.0 E 106 

Salt marsh Sediments 25 1.4 0.2-5.0 E 

Shelf waters 'North' Water - filtered 39 0.11 0.02-0.23 00/C 107 

'South' 18 0.06 0.02-0.12 



Card Sound, Florida 

Turkey Point 

Mangrove Lake, Bermuda 

Sargasso Sea 

Zuba Puerto Rico 

Sediments 82 

Sediments 33 

Sediments 32 

Water - unfiltered 

surface (<1 m) 19 

deep (1800-4000 m) 25 

Water -- unfiltered? 15 
5 stations 

0.07 

0 . 2 

0.7 

0.005 

0.025 0.016-0.055 
(corrected) 

0.57 0.13-1.2 

C 

C 

s 

00 

108 

109 

110 

Caribbean 

^ Gulf of Mexico 
I 

Western 

Eastern 

Florida: Barron River 
Canal 

Chokoloskee Bay 

Lostinan' s Bay 

Mobile Bay 

Mississippi (Lower) 

Mississippi Delta 
and Shelf 

Galveston Bay 

Houston Ship Canal 

San Antonio Bay 

Corpus Christ! Bay 

Water - unfiltered? 

(1-1000 m - 8 stations) 35 

(1-1000 m - 9 stations) 40 

Sediments 18 

Water - filtered 

water - filtered 

Water - filtered 

Sediment (residual) 3 

Water - filtered 90 

Sediment (residual phase) 3 

Sediment 72 

Sediment 44 

Sediment 24 

Sediment 51 

Sediment gg? 
Harbour 

Water - unfiltered? 156 

0.19 

0.25 

3.1 

2 . 8 

4.2 

1,4 

2.8 

<5 

2.8 

0.3 

<0.6 

<2.9 

0 . 2 

0.05-0.78 

0.09-0.69 

1.9-4.8 

OS 

0.02-0.7 

<0.02-4.9 

<0.01-10.7 

0.02-0.44 

0.1-1.9 
2-130 

3-78 

B 

B 

B 

E,.C 

B 

E 

3 

B 

CB 

111 

111 

112 

101 

113 

68 

68 

113 

114 



South: African Coast 

Walvis Bay 

Open waters 

W a t e r - f i l t e r e d 1 0 

S e d i m e n t s ( d i a t o m a c e o u s ) 4 7 
<2 |im 

W a t e r - f i l t e r e d 1 5 

S e d i m e n t s - r a d i o l a r i a n o o z e 2 

d i a t o m a c e o u s o o z e 5 

0.09 0.04-0.3 

16.7 <3.0-60 

0.07 0.04-0.17 

0.55 0.129-0.977 

0.39 0.174-0.857 

00 

00 

95 

115 

Pacific 

Monterey Bay 

West - San Francisco Bay Shoreline sediment 

Top 

Bottom 

Water - filtered 

Intense upwelling 

Lew upwelling 

Oceanic 

Mixed 

Monterey - Hawaii Transect Water - filtered 

Santa Barbara Basin 

+Los Angeles Harbour 

Marina del Rey 

Lono Beach Marina 

Santa Monica Bay 

Sediment 

Sediment (partitioned) 

Interstitial water 

Water - unfiltered 

Sediment 

Water - unfiltered 

Sediment 

Water - unfiltered 

Sediment 

Water - unfiltered 

Sediment 

68 

26 

4 

7 

1 4 

1 

4 

4 

1 

1 

1 

3 

1 

1 

1 

1 

1.22 

0.93 

0.15 

0.3 

0 .11 

0.03 

0.09 

0 . 0 2 

1.5 

0.06-4.69 

0.14-3.91 

0.02-0.51 

0.11-0.51 

0 . 0 6 - 0 . 1 6 

0.02-0.05 

0.04-0.2 

0 . 0 2 - 0 . 0 6 

1 - 2 

0 . 6 6 - 2 . 2 

0.1—0.5 

6 - 1 1 

2 - 1 6 

2.5-2.7 

1 - 8 

6.5-7.2 

2.5-5 

1 0 - 1 1 

3-7.5 

CB 

B 

B/00 

B/OO 

OO 

B 

00 

c 

CB 

CB 

CB 

CB 

CB 

CB 

CB 

CB 

116 

117 

118 

119 

120 

120 

120 

120 



North West Pacific 

Japan (coastal) 

North West Pacific 

Ariake Bay, Japan 

Tokyo Bay 

Water - filtered surface 

Water - filtered - 1000 la 

Water - filtered 

Water - filtered 

Dry mud 

Sediment 

46 

20 
28 

38 

47 

12 

0 . 0 6 

0 . 1 1 
0.05 

0.07 

0.064 

0 . 6 1 

<0.01-1 .61 

0 . 0 6 - 0 . 2 
<0.01-0.65 

<^ .01-1 .61 

0.01-0.37 

0-15 

0.15-2.07 

00 

OO 
00 

c 

00 

B 

B 

121 

122 

123 

124 

inland Sea, Japan 

South Japan 

Sea of Japan 

Hong Kong waters 

Java Sea 

Water - filtered 

Water - filtered 

Water - filtered 

Water - unfiltered? 

Water - filtered 

3 

1 

2 
14 

0 . 1 1 

0 . 1 1 
0 . 0 8 

50 

0 . 0 6 

0.07-0.14 

0.13 

0.09-0.12 
0 . 0 6 - 0 . 1 2 

1 0 - 1 0 0 

0.05-0.07 

c 

c 

c 

95 

125 

95 

Malacca Straits Water - filtered 0 . 1 0 . 0 8 - 0 . 1 1 

Australian Waters Corio Bay Water - 3 stations 

Sediments - 4 stations 

Water -.unfiltered 

Sediment - 20 cores 

top 

bottom 

Derwent Estuary, Tasmania Water - filtered 

Yarra River Estuary 

Port Phillip Bay 

19 

8 

12 

120 

20 

20 

19 

0.06-0.4 

1.8-7.4 

0.9-12.0 

0.4-12 

0.15-9.9 

0.04-1.7 

<0.5-15 

CB 

E 

CB 

126 

127 

129 

Indian Ocean West Australian Estuaries Water - filtered? 

Open Water Water - filtered 

56 

23 

0.01-0.44 

0.07 0.02-0.14 

E 

00 

130 

95 



Red Sea Atlantis II, Discovery and 
Chain Deeps 

Atlantis II, Discovery and 
Chain Deeps 

Interstitial waters (8 cores) 

Sediment 

119 

122 

<0.03-3. 
()j.g ml 

2 - 6 0 0 

OS 

OS 

131 

132 

vo 



Table 6 A Summary of Cadmium Distribution in Saline Waters 

DISSOLVED 
^ —1 

jig 1 

SEDIMENT 
— i 

g 

Background 
'Normal' 
Range 

Suspected 
Contamina tion 

Top of 
Range 

Background 
'Normal' 
Range 

Suspected 
Contamination 

Top of 
Range 

Estuaries 
and 0.01 0.05-0.2 >0.2 45.7 <1.0 0.1-2 >2.0 50,000 
Closed Bays 

Bays and 
Coastal 

<0.01 0.01-0.15 >0.15 
10.3 
(100) 

<1.0 0.1-1.5 >1.5 60 

Open 
Sea 

<0.01 0.01-0.1 >0.1 1.6 <1.0 0.1-1.0 >1.0 (600) 

Open 
Ocean 

<0.005 0.01-0.1 >0.1 
0.65 
(1.61) 

<1.0 0.1-1.0 >1.0 0.977 

in 
O 



Rhine, discussed in 2.3, the River Tawe Estuary (mean dissolved Cd above 

- 1 - 1 

the tidal limit of 125 jig 1 decreasing to 0.25 pg 1 at the estuary 

mou±h (89)) and the Severn Estuary (90). The maximum ca^buLim levels 

measured in such an environment were in Foundry Cove, U.S.A., where 
- 1 

sediment concentrations reached 50,000 jig g and dissolved concentrations 

- 1 

45.7 p,g 1 (103). Each of these estuaries illustrate the various major 

sources of pollution, i.e. the Rhine - industrialization and urbanization; 

the Tawe - cadmium plating at a steelworks; the Severn - effluent from zinc 

smelting operations; and Foundry Cove - spillage from a battery manufacturing 

plant. The effects of such contamination may be seen over the length of 

estuaries and may extend into coastal waters (see below) . 

High cadmium concentrations in harbours and closed bays are exemplified 

by the work of Chen et al. (120) .. although the water samples in this case 

were not filtered. Obviously concentration will vary with season (high v. low 

runoff) and tide (87) . 
- 1 - 1 

Levels above 0.2 jig 1 dissolved cadmium and 2.0 j.ig g dry weight in 

sediment suggest sources of contamination that require investigation. 

3.1.2 Coastal waters 

Elevated cadmium levels are again directly related to man's 

activities. Unfiltered samples taken from Hong Kong waters had cadmium 
-1 

concentrations in the range 10-100 jig 1 (125), samples being taken from 

the vicinity of drainage, domestic and industrial sewer outlets. Other high 

levels were associated with dredged waste disposal sites (long Island Sound 

(100)) or industrial and estuarine influence, e.g. Gulf of Mexico. The 

extent of such contamination was noted on the eastern seaboard of the U.S.A. 

where the mean value in the north was 0.11 jig 1 in comparison to 0.06 jig 1 

in the south (107). Dissolved concentration in excess of 0.15 jig 1 ^ and 
- 1 

sediment concentration greater than 1,5 j.iq g dry weight are considered to 

be abnormally high. 51 



3.1.3 Seas and Oceans 

The proposed 'normal' range of concentrations in seas and 

- 1 - 1 
oceans are the same, i.e. 0.01-0.1 1 dissolved Cd 0.1-1.0 pg g Cd 

dry weight in sediment. Generally, increased surface concentrations are 

encountered in land-locked and shallow seas, as â ce :6ound in the Mediterranean, 

Baltic and North Sea where circulation and turnover of the water masses are 

limited and/or estuarine/atmospheric inputs are large. 3%^ surface 

water values in the seas cited above are 2 to 4 times greater than those 

-1 

of the open oceans (= 0.05-0.07 jag 1 ) (93,95), 

However, no significant variation in tlie dissolved vertical water 

column distribution is evident in shallow seas and shelf waters, e.g. New 

York Bight (99), the Baltic (80,81) and Caribbean <1000 m (111), as there 

is in the open oceans (see Table 7). 

The cadmium concentration in the open ocean depth profiles was found 

to be positively correlated with the dissolved phosphate (x = 0.957 (134), 

r = 0.878 (55), r = 0.998 (133)). The plot of the latter result is shown 

in Figure 15a and the increase in concentration with depth for both ions 

is illustrated by Figure 15b.Since upwelling produces nutrient rich waters, 

plankton bloom and in so doing strip metals and nutrients from the surface 

waters, with subsequent transport to deep water in skeletons and zooplankton 

faecal pellets. Work carried out by Honjo and Roman (135) on copepod faecal 

pellet sedimentation showed that faecal pellet surface membranes were 

degraded in 3 hr at 20°C, but wem intact for up to 20 days at 5°C. If the 

surface membrane, shown to be rapidly colonized by bacteria, is rapidly 

degraded in the warm upper layers of the ocean then biodegradation and 

leaching of pellets can take place on vertical transport through the water 

column. Such an effect may give rise to profiles such as those shown in 

Figure 15b, on the proviso that Cd is concentrated in faecal material. 

Since the deep water returns to the surface on upwelling then enrich-

ment of cadmium would be expected in such areas and this effect has been 

— 52 — 



- 1 
Table 7 Variation of Cadmium Concentration with Depth (units 1 ) 

Surface 1000-2000 m 

Sargasso Sea 0.005 0.025 (109) 

N.W. Pacific 0.06 0.11 (121) 

N. Pacific & Bering Sea 0.01-0.05 -0.11 (55) 

Pacific (Hawaii) 0.02 0.06 (117) 

N.E. Pacific 0.02 0.115 (133) 
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FIGURE 15, Cadmium/phosphate relationship with depth in open ocean wate: 
(after Bruland et al. (133)) 

a) Depth profiles for Cd, PO and NO3. Cd. 
profile line represents average of PO4 
~ predicted Cd and NO3 - predicted Cd. 
Observed Cd values (by two methods) 
also are shown. 

b) Cd V. PO4 observed at central California 
stations (r / 0.99S; n ='21) 
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reported (117). However, the dissolved cadzium in surface waters will vary 

wd±h season depending upon upwel]ing intensity and plankton density 

(114,117). 

Some cadmium will not be regenerated and will accumulate in the sediment 

and therefore elevated levels of cadmium may be expected in sediments under-

lying areas of high productivity. There is support for this hypothesis from 

Bremner's work on shelf sediments (Walvis Bay) (115) where cadmium concen-

- 1 

trations of up to 60 \ig g in sediments were correlated to the distribution 

of the diatomaceous mud belt. Furthermore the degree of correlation with 

opal ratlier than organic carbon suggests uptake by tne diatom frustules. 

The maximum sediment cadmium concentration was recorded in a Red Sea 

deposit rich in sulphide (600 jig g Cd (132)) and is far in excess of the 
- 1 

normal sediment range of 0.1-1 jig g (88). 

There is little data available on sea and oceanic sediment levels; 

comparisons in sediment concentrations between shelf, upwelling and low pro-

ductivity areas are essential to the understanding of the geochemistry of 

this element. Similarly, there is little data of any value on the concen-

tration of cadmium in suspended material in the oceans, data necessary for 

the calculation of fluxes. 

Increased cadmium concentrations in sea and oceans may also be the 

result of the disposal of cadmium containing wastes at sea (see section 3.2 

below). 

3.1.4 Conclusions 

(i) Although some workers have not found any significant variations 

between coastal and offshore cadmium concentrations e.g. (75), such 

variations are indicated on examination of the collected data. The gradient 

follows the order rivers > estuaries and enclosed bays > open bays and 

coastal waters > seas > open oceans. The gradient becomes exaggerated when 

polluted waters and sediments are considered (Table 6). 

(ii) The ratio of dissolved to sediment cadmium in the 'normal' range 

in all four categories is 1 : 10^ by weight. 
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(iii) The cleanest (oceanic background) and the most polluted waters 

are separated by four orders of magnitude. 

(iv) The cleanest and most polluted sediments differ by about five 

orders of magnitude. 

(v) Where cadmium levels exceed the upper value of the 'normal' range 

(Table 6) the cause for the increased concentration should be investigated. 

(vi) The most common causes for grossly elevated cadmium levels near 

land masses are industrial activities, e.g. zinc and lead smelters, mine 

workings, steelworks and battery plants. 

(vii) Offshore 'high spots' of cadmium concentrations may be related 

to (a) areas of upwelling and hence productivity which may in turn correlate 

with increased cadmium concentration at depth and in sediments or (b) be 

a result of dumping cadmium-containing wastes at sea. 

3.2 THE DISPOSAL OF CADMIUM-CONTAINING WASTES AT SEA 

There is barely enough data available to conclusively determine 

cadmium retention or mobilization from the dumping of wastes at sea. 

Much of the following discussion is based on inference from coincidental 

maximum cadmium concentrations with disposal sites. U.K. coastal waters 

and the New York Bight (including Deep Water Dump Site 106) have been 

chosen to illustrate possible effects. 

3.2.1 U.K. coastal waters and the North Sea 

Table 8a shows that the U.K. contributes more than half of 

the total cadmium budget to the waters within the Oslo Commission area 

(Figure 16) and U.K. dumping activities are equivalent to 8% of the total 

input from land based sources (136) . In the areas of the dump sites 

(Table 8b and Figures 16 and 17), the cadmium content of waste 

is equal to that derived from land sources and nearly three times that of 

the river input (136). 

If Figure 17, showing dumpsite location, is compared with the cadmium 

distributions around the U.K. monitored in 1971 {Figures 18a and b) it is 
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Table Oa Inputs of Cadmium into the Oslo Commission Ar^a, 
U.K. Contribution to total inputs (tonnes yr ) (136) 

Total Rivers Domestic Industrial (Marine Dumping) 

U.K. 225.2 160 

Total 503.1 420.9 

+Incomplete data 

36.6 

42.6 

26.7 

37.7 

(40) 

(80+) 

Area 

E8 

E8 

Ell 

E20/25 

E22 

E26 

E27 

E28 

SC2 

Netherlands 

DK3 

Table 8b Marine Dumping compared to the Total River Inputs 
of Cadmium in the Oslo Commission Area (136) 

Cd Input (tonnes yr ^) 

Description 

River Wear to 
River Tyne 

number to Wash 

Colne Point to 
Haven Point 

St David's Head 
to Foreland Point 

Beachly Point 

Cardigan Bay 

Off Anglesey 

Mersey Estuary 

Ballantree to Sound 
of Mull 

Rliine Delta 

Limfjord 

Total 

3.6 

1.3 

3.2 

1.5 

1.5 

1.4 

5.6 

22.4 

40.5 

7.3 

109 

4.0 

River 

2.8 

0.2 

0.6 

1 .1 

1 . 1 

0.7 

4.9 

3.4 

14.8 

3.6 

109 

4.0 

Marine Dumping 

3 

1 

5 

1 

9 

2 

18 

40 

1 

39 

1.4 

- 1 
N.B. E9 to 18 (excluding E16) have domestic sewage input >1 tonne yr with 

max. at El2 (River Thames = 6 . 6 tonnes yr ). 
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FIGURE 15. Area divisions for Sweden, Denmark, Federal 
Republic of Germany, Netherlands, Belgium, 
England/Wales, Scotland, Northern Ireland, 
Ireland and Iceland, (after Preston (136)) 

FIGURE 17. Position of dumping grounds which 
have been monitored by MAFF surveys 
1970-1977. (after Norton and Rolfe (137)) 
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FIGURB 18. CadT.iun-. concentrations in England and Welsh 
coastal waters and the North Sea. 

a) West coast (after Abdullah et al. (91)) b) East Coaot and North Sea (after 

Button et al. (84)) 

FIGURE 19. Current flow in the North 

Sea and British Coastal 

waters (after Edwards 

(139)) 
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possible to separate the influences of rivers and industrial activity 

from effects of marine disposal. 

The quantities of cadmium in sewage sludge dumped at sea were esti-

- 1 -3 
mated as 8 tonnes yr for tlie Thames and 2.6 tonnes yr ' in Liverpool 

- 1 

Bay out of a total 13.4 tonnes yr for all the U.K. sludge sites (138). 

The cadmium concentrations in sludge range from 2 to 150 jig g dry 

weight (138). 

By geographical location, the following influences operate 

North Sea 

E2 Marine dumping < Total inputs 

High levels of dissolved cadmium were noted (0.4-1.2 )ig 1 . 

The dumping of wastes is not solely responsible, other influences 

include engineering, shipbuilding and chemical industries in the 

area. 

EB Marine dumping < Total inputs 
- 1 

Cadmium at 0.4-0.5 jig 1 was coincidental with sewage sludge 

and industrial waste disposal sites and direction of surface 

current flow (Figure 19). 

Ell Marine dumping > Total inputs 

Highest cadmium concentrations coincided with the Thames sludge 

disposal site and are consistent with current flow. The South 

Falls site, which receives industrial waste, had the highest 

dissolved cadmium level (1.4 ̂ g 1 ). 

Bristol Channel 

E22 Marine dumping >> Total inputs 
-1 

An estimated 9 tonnes yr of cadmium was dumped in this area 

and was concurrent with >2 )j.g 1 ^ dissolved Cd. However, the 

exceptionally high levels were more probably associated with 

zinc smelting operations at Avonmoutli. Similarly, the effects 

of dumping at the site in Swansea Bay are probably masked by 

rivers entering the bay, notably the Tawe. 
™ GO — 



West Wales 

E20f25,26f Marine Dumping << Total input 
and 27 

Although little dumping was carried out in this area, there 

are many old mines on the rivers and estuaries entering the 

coastal waters and these are possibly responsible for the 

observed high levels (140,141). A reassessment of the 

river inputs (E2G, Table 8b) is required. 

Liverpool Bay and the Mersey Estuary 

E27,28 Marine dumping >> Total input 

Tha highspots in cadmium concentration coincided with 

disposal sites of dredged, industrial and sludge waste. 

The influence of mining and industrialization cannot be 

discounted. 

From the above it would appear that dissolved Cd in, and leaching of surface 

adsorbed cadmium from, wastes is evident in seawater. The latter is in 

accordance with the chemistry of cadmium discussed in Chapter 2. Sediment 

data for these sites would greatly increase our knowledge of time effects 

and the extent of desorption. 

3.2.2 New York Bight 

The New York Bight receives between 80 (142) and 93% (143) of 

the total waste dumped at sea by the U.S.A. Table 9 gives rough estimates 

of the total cadmium input based on a variety of sources. The major contri-
- 1 

butor appears to be dredged wastes if the figure of 130 ^g g Cd is correct 

(146). The dump locations are shown in Figure 20, with deep water dumpsite no. 

106 (DWD 106) situated on the continental slope due S.E. of the grid. The 

designated acid waste site is a minimum distance of 20 km off the New Jersey 

coast but the Earth's Resources Technology Satellite produced pictures of 

dumping in operation at only 15 km off the coast (147). 

Segar and Cantillo (105) examined the total trace metal levels in 

April 1974 and dissolved metals from May to No>/ember 1974 in the Bight. In 
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Table 9 Rough Estimates of Inputs of Waste Materials into New York Big^± for 1974 

Type of Waste 
% U.S.A. 
Total 

(142) Volume ̂ 42) a'Solid(145) Estimated Total Cd 
Discharged Discharged Cd Concin Dumped 
(1 X 10") (jLig g ) (tonnes yr ) 

Sludges 85 3.7 0 .21 
b. 

50 10 

Industrial 65 2.7 50? 

Acid-iron 90 2.7 0.27 10/30/^^^) 27/8 

Dredged 5.0(1^*) 2.0 130**^^) 260 

a. Conversion factors from volume to weights taken from (145). 

b. Estimate from figures in (138). 

c. Middle of range. 

355 
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FIGURE 20. New York Bight Apex and existing dump sites, 
(after Dewling and Anderson (142)) 
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the first instance, high levels of total cadmium were associated with the 

• • 1 

acid waste site (0.4-1.6 j,ig 1 ). High dissolved cadmium levels were 

found in the proximity of the sludge mud and cellar dirt during June 

- 1 

(max. 1.5 )_ig 1 ) and in the water column at the sludge site during July 

- 1 

(max. 2.9 ^g 1 ). Also in July elevated levels were noted in the acid 
-1 

waste site (max. 3.9 1 ) . Cadmium concentrations were not strongly 

influenced by estuarine discharge, although in September and October high 

levels were recorded during a period of high runoff. It was concludcd (105) 

that in bottom waters elevated cadmium concentrations were associated with 

manganese tJiat originated from the dredged waste dump. From May to November 
- 1 

the overall mean was 0.82 p.g 1 dissolved cadmium. Dump site effects were 
- 1 

at their most evident in July and August in waters > 10 m (mean 2.2 ;ig 1 , 

- 1 

compared to offshore control figures of 1.b \ig 1 and shelf waters of 

<0.1 jag 1 ^) . 

Sediment cadmium data is not available for the area, but the dredge 

spoil at the site has shoaled to a depth of 15 m in recent years and there 

is evidence that fine sediments are spreading over the rubble strewn bottom 

(148). Where sludge is dumped, the sea floor is sandy but the Christiaensen 

Basin to the north may also be contaminated with this material (148) (see 

Figure 21). Other heavy metals are associated with this material as, for 

example, zinc (149) (Figure 22). Zinc concentrations in the sediment were 
— 1 

vastly increased over the background levels of 5-10 |ig g , particularly 
- 1 - 1 

in the dredge spoil site (mean, 264 jj,g g ; max. 1500 j,ig g ) and in the 

*" 1 1 
sludge area (mean, 254 jj,g g ; max, 415 jig g ) . 

D.W.D. 106 was estimated to have received 0.77 tonnes of cadmium in 

1975 and only 0.03 tonnes in 1974 (150). Elevated concentrations at both 

<100 m and >200 m during 1974 were noted (max. 0,6 )ig 1 ^, versus near-site 

values of 0.1 ;ag 1 )̂ (151). Samples taken at >2000 ra had a mean concentration 
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FIGURE 21. Superficial sediment distribution in the 
New York Bight Apex, based on macroscopic, 
ship-borne observation of samples. (From 
unpublished data by A. Cok and G. Freeland 
in Stubblefield et^ aly (148)) Depth in 
fathoms. 

FIGURE 22, Concentration of Zn in |jLg g dry weight 
in sediment. Isopleths at 50,100 and 200 

g' "1) (after Carnody et. al. (149)) 
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- 1 

of 0.39 pg 1 (151). Repeated experiments in 1976 show^^ elevated concen-

trations both outside and due southwest of the dump site (151) (Figure 23). 

One possible explanation for this may be the passing of isolated eddies 

of water (warm rings) that break off from the Gulf Stream and move due south 

west (counter to the stream) through the dumping area (152) (Figure 24). 
- 1 

Maximum levels in the warm ring (1.4 jag 1 ) are 20 times that of average 

open ocean surface waters. 

3.2.3 Conclusions 

(i) There is circumstantial evidence for elevated dissolved cadmium 

levels in the water column around dump sites in the sea. 

(ii) Dissolved cadmium may already be in solution when dumped, e.g. in 

acid wastes, or desorbed from solids on contact with sea water. 

(iii) There may be a slow release of cadmium from dredged spoils 

(associated with dissolution of manganese). 

(iv) Elevated levels were reported even at depths >2000 m (sediment 

release?). 

(v) When monitoring dump sites, allowance should be made for the 

movement of dissolved cadmium in the area by water currents and eddies. 

(vi) There is insufficient data available to comment on the proportion 

of cadmium released from sediments into the water or its rate of mobili-

zation within the sediments. 
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FIGURE 23. Cadmium and manganese concentrations off the east U.S.A. shelf 
(after Hausknecht (151)) 

HGURE 24. 
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CHAPTER 4 

ESTIMATES OF OCEANIC CADMIUM FLUXES AND RESIDENCE TIMES 

4.1 THEORY 

Estimates of oceanic residence times (T) based on fluxes are somewhat 

crude because of the sparcity of relevant data. In order to minimize the 

errors involved and obtain a range of values of T, various methods have been 

employed. These include estimates from dissolved inputs, sedimentation and 

a method which entails both input and output. The first two mathematically 

describe a rate of increase in a given reservoir according to: 

M 
T = — yr (1) 

Px 

where M = the mass of an element present in the oceans, 

p = dM/dt " the mass of an element supplied to or removed from 

a reservoir each year. 

At steady state the rate of increase of the mass flux under consideration 

(dM/dt) is zero, an anomaly which does not occur if input and output are 

taken together (154) (section 4.1.3). 

To avoid confusion, it has been necessary in some instances to alter 

the notation and units given in the original papers. 

4.1.1 Dissolved inputs 

Earth (155) described the residence time of an element as:-

T =••= yr at steady state. (2) 

where A = M in (1) 

and dA/dt = dM/dt = p = the total mass of the element supplied to, or 

removed from, the oceans each year. 

Goldberg and Arrhenius (156) used river input to calculate T. This method 

does not allow for atmospheric inputs which may be considerable as, for 

example, in the North Sea where cadmium atmospheric inputs have been esti-

mated as half or even equal to all other inputs (136,157). To make allowances 
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for this T may be rewritten as 

^ (4) 
* ^AS 

where F = the mass/volume of water supplied to the oceans by rivers per year 

- the mean element concentration in river water 

= the rain/particulate input to the oceans per unit area per year 

C = the dissolved/soluble concentration of the element in the 

atmospheric input 

A - the area of the oceans. 

Reasonable estimates of F^ and C can be made but estimates of F and C ^ 

R R A AS 

are few in number and highly variable. An estimate given by Hodge et al. 

_ 2 - 1 

(158) for cadmium of 10 jig ni yr was selected. 

From Chapter 2 it was noted that cadmium in seawater exists primarily 

as dissolved species (e.g. the particulate phase in deep Atlantic waters 

bound <5% of the total cadmium present (93)) and therefore this model should 

produce a useful first estimate. 

4.1.2 Fluxes to sediments 

Equations for residence times based on sedimentation processes 

may be described by the general form:-

X X O 

where V = the volume of the oceans 

= the concentration of an element in seawater 

F^ = the input to sediments of a particular phase per unit area per year 

C - the element concentration in that phase 

(C__ V = the mass of an element in the oceans, 
CM U 
V /A = the mean depth of the oceans, 400,000 cm). 
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4.1.2.1 Total sediment deposition 

Cherry et al. (159) described T by . -
where ML^ = the mass of seawater 

bW 

p - the specific gravity of seawater 

(hence = ^o) 

C_„_ = the concentration of an element in a non-fractionated sediment 

P p Q = the annual flux of particules to sediments per unit area. 

Equation 6 reduces to 
C 

T = (3.8 X 10^) yr (7) 

21 -1 -3 
when values of - 1.4 x 10 kg, p = 1.028 kg 1 and =1.1 x 10 

- 2 

g cm are substituted (159). 

4.1.2.2 Deposition to manganese nodules 

In the previous chapter it was shown that hydrous manganese 

oxides were the only inorganic phase to show any appreciable binding of 

cadmium in seawater. Hence the model described by Elderfield (160), using 

flux calculations by Krishnaswamy and Lai (161), is a useful means of 

calculating T. 

The rate of deposition of a metal to nodules is given by: 

E PN^N^N 

where = the specific gravity of nodules 

= the time averaged growth rate of nodules 

C, = the concentration of the element in nodules 
N 

K - geometric factor for nodules (increase of exposed hemispherical 

surface area of nodules compared to level sediment) = 2 

E = tlie fraction of time the nodule grows on average = 0.1. 
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If = 2.5 g cm ^ and = 3 % 10 ' cm yr * then the flux of matter to 

nodules is 

*N = F PN^N " I'S * 10"^9 cm"2yr-l 

which on substitution into equation 5 gives 

T = ̂ SN 4 X 10 ^ ^ SW 2̂ 67 % iglO) (g, 

1.5 X 10 ^ N 

The assumption in using this method is that metal accumulation in manganese 

nodules and deep sea sediments are related processes and that the "nodules 

represent a pure separated sample of the manganese oxide component" (160). 

4.1.2.3 Shale correction method 

By this method only the authigenic component, that produced 

•within the oceans, of the sediment is considered (160). To obtain C 

the residual metal concentration derived from terrestrial and crustal 

material is subtracted from the total sediment concentration:-

° ""^^TOTAL " 

According to Krishnaswamy and Lai (161) the authigenic deposition rate 

of a metal is given by 

where p = the specific gravity of surface sediments 

^SED ~ the time averaged growth rate of sediment strata 

C = the concentration of the element in the authigenic fraction. 

The flux of particles to sediments is given by 

^SED " PSED^SED 
-3 

which on substitution of p ^ - 0.5 g cm 

and = 3 x 10 ̂  cm yr ^ gives F = 1.5 x 10 ^g cm ^yr ^ (161). 

Therefore on substitution into equation 5 

T = * * (2.67 X 10^) yr (11) 
SEC, 1.5 X 10" ^SED 
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4.1.2.4 Zooplankton faecal pellet deposition 

Cherry et al. (159) have suggested that faecal pellets could be 

the major supply route of several metals to sediments (see previous chapter). 

Further support for this argument comes from data collected by Bishop et al. 

(162) where it was demonstrated that faecal pellets, though only equivalent 

to <5% of particulate matter in surface waters, were responsible for 99% of 

the vertical particulate flux, having a residence time in the water column 

of only 10-15 days. Faecal pellets also contain lithogenic inorganic material 

and may therefore constitute an important role in inorganic particulate trans-

port (153). If it is assumed that they are the only means of transport of 

material to sediments then 

K = W o - S V o 

where - the element concentration in faecal pellets 

and (the notation used in the original paper) = F^ = the mass (wet 

weight) of faecal pellets transported to sediment per annum. 

-4 -2 -1 
If a flux of 5.6 X 10 g cm yr (159) is assumed, then substitution into 

equation 5 gives 

4 X 10= X 10-9) 

Cf 6.6 X 10-4 Cp 

All pertinent physical parameters necessary for the above calculations 

are given in Table 10. 

4.1.3 T based on input and output rate 

Li (154), to eliminate the inaccuracy of the 'rate-of-increase 

methods', introduced an expression which includes both the input and output 

of an element where 

EE " G 

where Q = the input rate 

and R = the output rate. 

If the output rate is proportional to the total mass, M, then 

diM 
dt = Q - kM (15) 

- 72 -



Table 10 Physical parameters and flux estimates employed to 
calculate T. (+ indicates number computed from data therein) 

Description Symbol Magnitude Units Ref. 

Mean depth of oceans D 
O 

4 X 10" cm 

Volume of oceans V 
O 

1.36 X 10 
21 

Area of oceans A 
O 

3.3 X 10*G cmf 

Mbss of seawater 
SW 

1.4 X 10 
24 

g 159 

Density of seawater 
SW 

1.028 g cm 159 

Density of surface sediments 
(bulk) SED 

0.5 g cm 161 

Density of Mn nodules 
N 

2.5 g cm 161 

Growth rate of sediments 
SED 

3 10 
—4 

cm yr 161 

Growth rate of nodules G 
N 

3 10 cm yr 161 

Mass flux to sediments 
SED 

1.1 X 10 
4.5 X lO" 
1.5 X lO" 

—2 — 1 
g cm_2yr_, 
9 cm_2yr_i 
g cm yr 

159 
164 
161 

Mass flux to nodules 
N 

1.5 X 10 
—2 — 1 

g cm yr 161 

Mass flux of faecal pellets 
*~4 *~'2 *"* i _ 

6.6 X 10 g cm yr 159 

Mass flux of river water 
•R 

.19 -3 -1 A 

cm yr 165 

Mass flux of river particulates F 1.8 X 10 
16 

g y:i: 165 



where k = the removal rate constant. 

At steady state 

0 = Q - kM 

1 M 

or ^ = — = T (16) 

If Q is altered then so is M, therefore at t < t^, and at t^ < t < t, 

Q increases exponentially; 

Q =- B„ - t . ) ,17, 

and it can be shovm that solving for equation 15 
„ . H e-k't - t„) ^ _ k g, 

l o ^ i n + k m + k ' 

M^/M gives the ratio of the increase in mass of an element in the oceans 

at t, compared to the original mass of the element in the oceans at t . 

Therefore, rearranging equation 18 and dividing through by m + k;-

M 
1 . , , . -k(t - t ) m(t - t ) 

—- ( m + k ) = m e o + k e o 
M 
o 

then multiplying out the first term and dividing by m we get:-

- t^) + k - t^) 
M m M m 
o o 

-5 -7 -k(t - t ) 
Since k is expected to be small (10 - 10 ), e o approximates to 

1 - k(t - t ) 
o 

M m M o m 
o o 

M m(t - t ) M, 
- - » = k P - (t - t )] 

M *• m M m 
o o 

(M /M ) - ] 

" • v > 

o 

since m can be estimated graphically, if estimates of M^/M can be derived, 

and if (t - t ) is known, then this equation can be solved. The result can 

be checked by back substitution of the k value obtained into equation 18, 

solving for M./M , 
1 o 
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4.2 RESULTS 

4.2.1 By T = M/p 

The cadmium concentration required for the calculation of T 

described in the theory section parts (i) and (ii) are presented in Table 11. 

Most of the data has been taken from the summaries in Tables 6 and 7; 

the depletion of dissolved cadmium in surface waters was included to allow 

for comparisons with the phosphate cycle (below). The residual (lithogenic) 

-1 

cadmium concentration of 0.06 jj,g g was taken from reference 166 and the 

mean nodule concentration from Ahrens et al. (47). The concentration of 

cadmium in faecal pellets was estimated by the extrapolation of results 

obtained in the laboratory (56) to measured concentrations in the oceans 

(see Table 12), From the experiments of Benayoun (56) the wet weight : dry 

weight ratio in zooplankton was 4.7. In their single culture experiments 

the whole zooplankton concentration was one third of the microplankton food 
- 1 

concentration (0.7 and 2.1 p.g g dry weight respectively) but in oceanic 

samples zooplankton-microplankton concentrations appear to be similar or 

indistinguishable (Table 12). If, using the Benayoun et al. data, the faecal 

concentration is divided by the microplankton concentration (9.6/2.1), a 

concentration factor of 4.57 results. Multiplying this C.F. by the computed 
-1 

plankton wet weight concentration of 0.69 ^g g , the faecal pellet wet 
- 1 - 1 

weight concentration produced is 3.15 jig g . If 3 |ig g is taken as the 
9 -1 

working figure then the faecal pellet flux of cadmium equals 6.53 x 10 g yr 

for Fp = 6.6 X 10 "̂ g cm ^yr ^ (159) . 

The resulting values for T are given in Table 13. Differences in the 

first decimal place between M/P and 'constant' methods are due to rounding 

errors. 
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Table 11 Cadmium concentrations, masses and mass 
fluxes for the calculation of residence times. 

Reservoir/input/Output 
_ n . (a) 
Cadmium 

Concentration 
Mass (M) or 

Mass Flux (P ) 

Ocean (Dissolved) 4000 m 
Surface 300 m 
Depth 3700 m 

0.1 jag 1 
0.05 pg iT^ 
0.1 pg l' 

1.36 X loj^g 
5 X 10 g 

1.31 X 10 g 

River (Dissolved) 
Particulate (residual) 

0.1 pg 1 
0.06 ^g g 

- 1 

- 1 
3.25 X 10^ g yr ) 
1.08 X 10 g yr 

Atmosphere Leachable 
Residual 

- 2 - 1 
(flux = lOjigm yr 

80% soluble) 
2.64 X 10^ g yr ^ 
6.6 X 10 g yr 

Sedimentation Total 
Processes 

0.5 iig g 
- 1 

1 . 8 1 X 9 
2 .48 X g 
7 . 43 X 10 g 

" - 1 

(b) 
(c) 
(d) 

I'ln nodules 
Authigenic 
Faecal pellet 

1 0 j j , g g 

0.44 ^g 
3.0 jig g 

1 
4.95 X lO^ g yr * 
2.178 X in" g yr 
6.53 X 10 g yr 

(a) 
Cb) 
(c) 
(d) 
(e) 

References within text 
Sediment flux 
Sediment flux 
Sediment flux 

1.1 X 10 
-3 
-4 g cm_2 yr 

- 1 

1 
;•=" }^4 9 
4.5 X 10 g eg yr_2 

Faecal pellet flux = 6.6 x 10 g cm yr 

(153) 
(161) 
(16^) 

(153) 
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Table 12 Cadmium levels in plankton ()jg g 

Mean 

dry weight) (Dry/wet weight ratio = 4.7 (56)) 

< 1 

Phytoplankton 

Monterey Bay and Hawaii 
(organic fraction) 

+Off Baja California 

Mlcroplankton 

Monterey - Hawaii 

Kicroplankton/Zooplankton 

Mediterranean 
Monaco and Hyeres 

Mediterranean East to West 

Zooplankton 

Euphausia spp. 

i-Icgonyetiphanes norvegica 

North East Atlantic 
Euphausids 

North East Pacific 
Fupiiausids 

Nor 

Kon 

Sea 

2y Bay 
Euphausids 
Copepods 
Radiolarians 
Mixed 

Monterey Hawaii Transect 

Kicrozooplankton 

Clyde 

Ccpepoda Clyde 

Laige zooplankton Clyde 

Plankton 

Caribbean 

Gulf of Mexico 

New York Bight 

2.3 

13.2 
13.6 

1.63 

2.61 
2 . 0 

2.9 

0.6 

1.3 

0.35 

1.4 
4.5 

2:98 
4.27 
6.17 

2.44 

Nor West Africa 

5.9 

2.6 
3.2 
5.2 

Range 

0.4-6.5 

8.9-19.5 
4.2-20.9 

1 . 0 - 2 . 2 

1.6-5.1 

0.7-3.8 

2.0-4.6 

0.4-1.4 

0 . 8 - 2 . 0 

0.9-2.2 

1.6-7.8 

0.8-5.5 

1 .6-6 .0 
3.0-9.6 

6.0 & 6.4 

119-3.5 

0.92-1.0 

0.75-0.81 

0.37-0.67 

0.9-7.8 
1.4-8.8 

Sample No. 

28 

10 
32 

11 
22 

6 
6 
3 

5 

23 

9 
10 
6 
2 

14 

29 

34 
11 

Net Size 

(i-ira) 

64 

61 

132 

60 

132 

366 

250 

6-20 mesh 

Reference 

167,168 

168 
167,168 

169 

169 

169 

169 

170 

171 

172 

167,168 

173 

111 

174 

U.S.A. East 
U.S.A. Southeast 
Northwest Atlantic 
All in Ref. n^r 

3.1 
3.9 
1 . 8 
3.2 

0.4-24 
0 . 6 - 1 1 
0.6-3.7 
0.4-24 

23 
20 
22 

1 1 2 

tovorall mean (dry weight) = 3.24 

Computed wst weight •= 0.69 

tnot including the atypical values for Baja 

Overall sample = 298 



Table 13 Cadmium Oceanic Residence Times by 
14 

M/P^ yr (M = 1.36 x 10 g) 

INPUT 
M/P (Equation) 

RESIDENCE TIMS 

C (constant)/C (Equation) SW .. X 

Dissolved river 

Dissolved river 
and atmospheric 

4.2 X 10 (2) 

2.3 X 10 (4) 

OUTPUT 

Total sediment 
(a) 

7.5 X 10 

5.5 X 10-

1.8 X 10" 

7,6 X 10' (7) 

Mn nodules 

Authigenic 

Faecal pellet 

2.9 X 10-

6.2 X 10" 

2.1 X 10 

2.7 X icr 

6 .1 X lor 

2.0 X 10 

(9) 

(11) 

(13) 

(a) See Table 19 for P ^ data 
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4.2.2 The estimation of T by the Li method 

Cadmium has only been mobilized by man in any large quantities 

since the turn of the century and, compared to the total mass of cadmium 

in the oceans, the amount added to the oceans will be :relatively small. 

Hence M , the mass of cadmium in the oceans at t (1900) may be taken to 
o o 

equal M in the previous estimates of T. The estimate of , taken in this 

instance to be the total mass of cadmium in the oceans by the year 2000, 

relies on knowledge of cadmium mobilization, production, emission and dissi-

pation over the 100 year interval and some means of estimating the quantity 

of cadmium entering the oceans. 

4.2.2.1 The mobilization of cadmium by industrial activity 

The more informative publications in this area are the 

'Fulkerson' report (2), the Cadmium '77 report (175) and a technical and 

economic analysis published by the U.S. EPA (176). 

Since interest in cadmium as a pollutant is recent, there are few 

available records of the cadmium content of zinc ores, ore tailings, atmos-

pheric emissions or effluent discharges of the zinc producing industry, 

probably the major contributor to cadmium pollution. The total amount of 

cadmium mobilised can be estimated by assuming a Cd/Zn ratio in zinc ores 

to be 0.45% (166) (put at 0.5% by some authors (2,4)). Besides the smelting 

process, other major man-made sources are the weathering of zinc products 

(content = 10% of cadmium mobilised) (2), the disposal of products containing 

cadmium (= 20% of the annual production figure) (177), the burning of fossil 

fuels, the application of phosphate fertilizers in agriculture and the use 

of detergents. Table 14 presents data for cadmium production and mobilisation. 

The smelted Cd/Zn ratio of 0,3% suggests that industry is operating at 

66% efficiency, but allowing for 10% of the mobilised cadmium remaining in 

the smelted zinc i.e. 0.04% of the final product, the accounted for cadmium 

is about 77% of that mobilised, jn agreement with figures presented in the 
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Table 14 The Major Sources of Cadmium Mobilisation 

(Thousand tonnes) 

CO 
O 

1. 2. 3. 4. 5. 6. 7 8. 
Zinc Cadmium Cd/Zn Cadmium Cadmium Production (%) Accumulative Losses in Incidental 
Smelted Produced ( % ) Mobilised in Zn Losses Dissipation Manufactura Emissions 

1901-1910* 7322 0. 174 0. 002 32. 9 3. .3 29. 5 (89) 0. 7 
1910-1920 9636 1. 056 0. ,011 43. 4 4, .3 38. 0 (88) 1. 6 
1920-1930 12156 7. 922 0, ,065 54, ,7 5, .5 41. 3 (76) 4. 0 
1930-1940 14662 29. ,453 0, .16 66. ,0 6. .6 29. ,9 (45) 10. 4 (See Appendix 
1940-1950 18284 52. ,062 0, .28 82. .3 B. .2 2 2. ,0 (27) 20. 4 Coal Oil Phosphc 
1950-1960 29724 87. ,001 0. ,29 133, .8 13. .4 33, ,4 (25) 36. 4 Op to 1970 Up to 1970 
1960-1970^ 41061 136. ,900 0, ,33 184, .8 18. ,5 29, ,4 (16) 60. ,2 9. 4 33, .0 0.4 0. 5 
1970-1980 57221 169. .152 0. .30 253, .7 25, ,4 59. .2 (23) 87. ,0 5. 1 8. ,3 0.3 0. 4 

TOTAL 190059 483, .720 851. .6 85, ,2 282, .7 220, .7 14. 5 41, .3 0.7 0. 9 

1980-1990^ 71333 214 0, .30 321. .0 J2 .1 74, .9 (23) 118. .9 6. ,4 
1990-2000° 85667 257 0 .30 385. .5 38. .6 90, .0 (23) 154. . 2 7, ,7 

TOTAL 157000 471 0 .30 706 .5 70 .7 164, .9 273. .1. 14, .1 19. ,1 1.0 1. 4 

By 2000 347000 955 1560 156 448 494 29 60 1.7 2. ,3 

ESTIMATED 
by 1980 by 2000 

1968-2000* 217000 660 0 .30 (low) SUMMARY Cd mobilized 909 1650 
270000 1040 0 .39 (high) Cd in circulation 349 617 
224700 674 0 .30 Cd lost 561 1033 

The table was constructed as follows 

Columns 1 and 2, by notation 

(a) Figures for 1901-1960 and projections for 1968-2000 were taken from Fulkerson and Goeller (2). 

(b) Data for 1960-1977 was taken from the "World Metal Statistics" (178) and the range 1978-80 was based on these figures. 
(c) The period 1930-2000 was estimated by extrapolation (Figure 25). 
(d) was calculated from (c) and the true figures 1968-1977. Less than 3% of Cd is recycled. 

Column 3 was derived from Column 2/Column 1 x 100. Estimates for 1970-2000 were based on the 1970-1977 data. 

Column 4 was calculated on an original Cd/Zn ratio of 0.45% and calculated from the zinc figures (Column 1). 

Colunji 5 = 10% of Column 4. 

Column 6 = Column 4 - (Column 2 + Column 5). 

Column 7 was estimated on a dissipation rate of 20% of the cadmium in circulation (178) and hence was accumulative from 

decade to decade. 

Column 8: Losses in manufacturing processes were put at 3% of production (based on 1974-5 figure (176)). 

Column 9 was estimated by taking into account the other major sources of environmental cadmium contamination, namely the 
burning of fossil fuels (coal and oil, see Appendix 2) and the use of phosphate fertilizers. 



Pulkerson report of 75-77% (2) . The extrapolation of demand to 2000 gave 

1968-2000 production estimates in excellent agreement wiL^ those given by 

other authors (2) (Table 14). 

5 
Thus, from nan's activities alone, 9 x 10 tonnes of cadmium may have 

5 
been mobilised by 1980 of which only 3.5 x 10 tonnes remain in circulation 

5 5 

in products. By 2000 the respective figures may be 16.5 x 10 and 6.2 x 10 

tonnes respectively. 

4.2.2.2 Environmental distribution of industrially emitted cadmium 

The questions addressed here are the distribution of the metal 

losses between the atmosphere, land and water and the amount of cadmium of 

anthropogenic origin entering the oceans. 

Table 15 presents estimates of emission figures for 1968 (2) and 1974-5 

(176) for the U.S.A. Even though there are limitations in the 1968 numbers 

in terms of missing data and the combination of direct emissions to water 

and land, the effect of pollution control is obvious, particularly in the 

use of electrostatic precipitators and building of new plants to reduce 

atmospheric losses. Precipitator efficiency can be as high as 95% but poor 

operation can lower this figure to 80% (2). 

Table 16(a) shows the change in percentage losses with respect to the 

total in a given area and (b) relates these percentage figures to the 

quantities for a period given in Table 14. For ease of calculation and 

comparison, two broad assumptions have been made: 

(i) the recent figures apply after 1980. This can only be justified 

on the supposition that the U.S.A. has implemented stricter and enforceable 

controls before other industrialised countries: 

(ii) the U.S.A. figures can be applied to other nations. 

From Table 16 it can be seen that the atmospheric emissions may decline 

if strict anti-pollution controls are used, although the amount of cadmium 

destined for land waste disposal by 2000 will be nearly half as much again 

as that produced prior to 1980. Whereas by present day standards the atmospheric 
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Table 15 Estimated Emission of Cadmium, in the U.S.A. 1968 v 1974-75 (tonnes) 
(after Fulkerson & Goeller (2) and U.S. E.P.A. (176)) 

03 
K3 

Production 

Manufacture 

Consumption 
Disposal 

Minerals 

Rounded Totals 

(Extraction, Refining 1968 
( and Production 1974-5 

(Industrial Conversion 1958 
( 

(Iron and Steel 
(Industry 
( 
(Incineration ( 

( 
(Tyres, Galvanising 
(Non-Ferrous Metals 

(Phosphates 
( 
( 

|coal 

( 
(Oils/Petrol 

Sewage Sludge 

1974-5 

1968 
1974-5 

1968 
1975-5 

1968 
1974-5 

1968 
1974-5 

1968 
1974-5 

To Air 

953.2 

15.2 

<100 

86 

To Water 

(5.2) 

113-907 

1968 19.8-91.8 
1974-5 

1968 
1974-5 

1968 (1210-2160) 
1725 

1974-5 

102.2 

15 

10.5 

16 

7.4 

80 

51 

20 

300 

10.2* 

475 

(0 .2) 

(<900?) 

To Land 

250 

23-230 

22-57 

(1420-1660) 
1540 

102 

330 

70 

60 

100 

370 

25 

250 

1530 

1428.2 

15.4 

1000 

86 

Totals 

359.2 

125 

340.5 

(5.2) 

23-230 

113-907 

19.8-91.8 

22-57 

3265 

67.4 

110.2 

450 

51 

270 

1855 

rotals less 'Production' 1968 
1974-5 

772 
198 18 

1055 
1280 

1840 
1600 

*From phosphate detergents 



Table 16 Estimates of Direct Emissions of Cadmium to the Environment 

(a) By Percentage (b) By Weight (Thousand Tonnes) 

CO 
OJ 

Production/Smelting 
Losses 

Disposal/Dissipation 

Coal 

Oil 

Phosphates 

Manufacture 

(= 2-4% loss) 

pre 1980 

198U-2000 

pre 1980 

1980-2000 

pre 1980 

1980-2000 

pre 1980 

1980-2000 

pre 1980 

1980-2000 

pre 1980 

1980-2000 

Air 

66 

28 

30 

3 

67 

18 

100 

100 

0 

0 

(20 

12 

30 4 

70 2 

70 0 

97 0 

33 0 

82 0 

0 0 

0 0 

91 9 

91 9 

70 10) 

81 7 

Total 1980 

Air 

186.56 

46.14 

66 .21 

8.19 

27.62 

3.42 

0 .66 

1 .0 

2.90 

1.70 

283.95 

1980-2000 60.47 

2000 344.42 

Land 

84.80 

115.40 

154.48 

264.86 

13.60 

15.66 

0.76 

1.26 

10.16 

11.45 

263.7 

408.63 

672.43 

Water 

11.31 

3.30 

0 . 0 8 

0 .12 

1.45 

0.99 

12.84 = 561 

4.41 = 473 

17.25 = 1034 

(cf. Table 14) 



losses are approximately equal to waste disposal on lajid (270,000 tonnes) 

the ratio will be about 1 : 2 by the end of this century. Direct emissions 

to water are small in comparison, although the contribution from domestic 

sewage and dissipation may considerably increase this figure. 

The reason that the dissipation figure is so high may be seen from 

Table 17, which shows the annual consumption figures by industry for the 

U.K. between 1957-76. Much of the cadmium goes into ' throw-away' products, 

like plastics (colourings and stabilizers) and is non-recyclable. Losses 

in other industries, e.g. electroplating, will be unavoidable because of 

the nature of the processes. 

The chemical forms of cadmium emitted are obviously important to the 

transport of the element. In an electrostatic precipitation of a roasting 

plant it was found that 69% was soluble in water (CdSO^) , 8-6% dissolved in 

3% HgSO^ (free oxides), 14.5% was soluble in 10% (CdO.FegO^) and the 

remaining 6.7% was present in the residue as sulphide (4). The amount of 

water soluble cadmium was put at 0-70% with a mean of 15% (4). That 80% 

of the particulate atmospheric cadmium collected over the oceans was sca-

water leachable (158) is probably indicative of the small particle size 

fraction (<5pm - not efficiently retained by precipitators). The greater 

surface area of small particles allows for increased leaching and also 

there is the possibility of a predominance of simpler chemical forms, 

e.g. condensates. The enrichment of cadmium with respect to aluminium in 

the air above the oceans compared to air above land was noted by Duce et al. 

(179,180). The enrichment factor was 400-730 exceeded only by Pb, Se and Sb 

for the elements measured. The cadmium was thought to be of anthropogenic 

origin. There is evidence from Greenland glaciers to suggest that the 

atmospheric transport of cadmium has increased dramatically since 1900 (181). 

Even so, much of the cadmium emitted to the atmosphere has been shown to be 

precipitated within 10 km of the source (182,183). Cadmium deposited on soils 

84 



Table 17 U.K. Consumption of Cadmium (metric tons) 
(compiled from World Metal Statistics 1970-1978) 

CO 
Ln 

Year 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

Totals 

Plating 

Anodes 

489.89 

444.78 

402.81 

370.99 

314.03 

306.79 

292.28 

276.59 

263.62 

281.35 

3443.13 

plating 
Salts 

120.35 

134.57 

141.69 

119.47 

107.83 

171.83 

176.55 

180.42 

105.43 

182.31 

1440.45 

Cd/Cu 

28.04 

27.59 

27.89 

33.68 

35.38 

32.57 

26.99 

47.36 

35.31 

28.45 

323.26 

Alloys 

28.35 

24.38 

15.34 

15.25 

14.08 

14.91 

17.49 

13.31 

12.14 

14.32 

169.66 

Solders 

65.03 

90.07 

95.56 

84.08 

46.35 

37.94 

61.42 

34.83 

27.99 

30.39 

573.66 

Colours 

430.45 

526.01 

581.18 

502.50 

461.60 

566.09 

659.95 

623.05 

368.97 

640.04 

5359.84 

Others 
(+ Batteries) 

205.85 

191.98 

208.60 

186.93 

197.57 

223.71 

328.79 

264.94 

218.44 

236.74 

2263.55 

Total 

1367.96 

1439.38 

1473.07 

1312.90 

1176.84 

1353.84 

1563.47 

1440.50 

1031.90 

1413.60 

13573.46 



from the atmosphere, contained in mine tips (183) and landfill sites (184) 

or applied to soil in phosphate fertilizers (185) and sewage sludges (186) 

is potentially transportable to the oceans via leaching and runoff. 

4.2.2.3 Estimation of man-made oceanic inputs 

Bertine and Goldberg (187) estimated that weathering mobilized 

-j 
500 t.yr ' of cadmium in sedimentary material, i.e. < half the mass flux 

given in Table 11. If a similar ratio is assumed for dissolved species 

3 

then approximately 1.6 x 10 t.yr dissolved cadmium entering the oceans 

derives from man's activities. 
- 1 - 1 

The estimates of 230 t.yr (157) and 530 t.yr (136) for atmospheric 

input into the North Sea are equivalent to 1/8 and 1/4 of the total cadmium 

consumption by industry in Northern Europe annually. A similar figure can 

be obtained for the global cadmium input by an alternative method. If it 

is assumed that all of the seawater-leachable fraction in atmospheric particles 

derives from man-made sources (as is possible on the basis of Cd/Al enrich-
3 - 1 

ment factors (179,180) above)), the annual flux is 2.5 x 10 t.yr . This 

figure corresponds to approximately 1/6 of the current global cadmium 

production and is the mean of the North Sea estimate. 

Summing the dissolved river and atmospheric inputs and dividing by the 
3 3 

current annual global production figure, i.e. (2.6 + 1.6) x 10/16.9 x 10 t, 

the oceanic influx equals 25% of the cadmium produced annually. 

However, the cadmium that enters the oceans is not strictly related to 

production but to production losses and, more important, accumulative dissi-

pation figures. This data is summarised in Table 18 and it can be seen that, 

through time, the totals are approximately equal. 

4.2.2.4 Calculation of T 

Plots of the data are presented in Figure 25 and regression 

analysis was applied to the two extremes. 

Since Q, the oceanic input at time t, is given by 
0 = e*(t - t^) 

— 8 6 — 



Table 18 Production and Accumulative Dissipation (incltKling Production Loss) 
Data giving Estimates of Man-made Oceanic Iinputs (tonnes % 10 ) 

CADMIUM PRODUCTION LOSS+ CKEANIC 
PRODUCTION ACCUMULATIVE DISSIP2J?ICW INPUT 

1900-1910 0.174 30.2 7.6 

1910-1920 1.056 39.6 9.9 

1920-1930 7.922 45.3 11.3 

1930-1940 29.453 40.3 10.1 

1940-1950 52.062 42.4 10.6 

1950-1960 87.001 69.8 17.5 

1960-1970 136.900 89.6 22.4 

1970-1980 169.152 146.2 36.6 

1980-1990 214 193.8 48.5 

1990-2000 257 244.2 61.1 

Totals 955 941.4 235.6 

Oceanic input based on 25% of the total losses. The data was taken 
from Table 14; differences in totals are due to rounding errors. 
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FIGURE 25. Cad~ium mobilization, production, loss and oceanic input, 1900-2000. 
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then a value for m can be substituted in equation 20 as can values for M,/M 
i o 

(. l.j623S6 X 10"= , 1,00,73) 

1.36 X 10 

and (t - t ), (100 yr for the period 1900 to 2000) 

1 OL/M, ) - 1 
. . from equation 20, k = — = — r " 

o 

^ 0.00173 
10-38 _ 1.00173 _ 
0.0234 0.234 ^ 

T = 1.74 X 10^ yr. 

4.3 DISCUSSION AND CONCLUSIONS 

As mentioned at the beginning of this chapter, the estimates of inputs 

and outputs to the oceans are crude but, bearing in mind the limitations of 

their accuracy, some useful data on transport (Figure 26a) and association 

with reactive phosphate (Figure 26b and c) have transpired 

1. Fluxes 

(i) The input of cadmium to the oceans is estimated to be 25% of annual 

total losses, i.e. both dissipative and direct industrial losses. (At 

present the total losses approximately equal tne total annual production). 

(ii) The authigenic cadmium input corresponds to 50% of the total 

9 9 

current input to the oceans (3.66 x 10 g to 7.63 x 10 g respectively). 

(iii) Since this estimate is higher than expected on the basis of 

industrial losses alone Uie slow accumulative dissipation of cadmium from 

'throw-away' products and waste material should be considered as the most 

important contribution to the cadmium influx. Because of the delay between 

manufacture and destruction of a product and also the time dependence of 

the leaching of cadmium from waste materials, the peak of dissipative input 

may not arise until two or three centuries hence unless strict controls are 

imposed particularly on incineration and smelting processes (see iv) . 
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PlGlillE 26 AND MIACTIVE riK'Sl'llAfU FLUXES TO AM) PXOM Tllg OCE\NS 
(PLUXES, g yr-\- MASSES g) 

a) cadmium 
atmosphhrb 

S0].unu; I'ARTICUWTH 

RIVJ2R (DISS), 

6.53 >; 10 

,9(a) 2.0 X 10 

MA1UN13 BIOTA 

no;mv]!LLiNc 

;U1U-ACB WATER (300,r,) 

14 

b) PHOSPJIATB (Lerjjiaii, Kacirenzie and Carrels (188)) 

MARINE BIOTA 

SEDIMENTS 

DOh'NV/ELLlNG 

SURFACE l\[ATER (300m) 

17 

X 10 

c ) REACTIVE PO^/Cd RATIOS OF MASSES AND FLUXES 

(* aeoliaiT 
transport 

a ) Mean of sediment output values N.B. Mn nodule + autl.ogenlc as one value 

b) Recalculated to give phosphate for 3700 m (rather than 3000 m). 

<:) TpQ _3 from Wpdepohl (189). 

Ratio Phosphate ; Cd = 6 x 10 (Brewer (190) 

I„ productive .re&s = 3 x 10^ (Bruland, Knauer and Martin (133)) 

= 3 x 10 (Boyle, Sclat :r and J-rtmond (55)) 
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(iv) The atmospheric input of cadmium to the oceans may be a more 

important source of dissolved cadmium than river runoff. Most of the sea-

water leachable cadmium (80% of the total) of the atmospheric input is 

thought to result from man's activities. 

(v) The only major inorganic association of cadmium in the oceans 

is in manganese nodules (of. section 2.2.2.1). 

(vi) The output of cadmium to sediments may be controlled by the 

faecal pellet flux, emphasising the importance of biological activity 

in the global transport of the metal. 

2. Residence time 

(i) The range of values for T calculated by the input or output 

methods was 2 % 10^ to 5,2 x 10^ yr. Other estimates based on sedimentation 

flux were given as 1,4 x 10^ yr (46), 9,2 x 10^ yr (164) and 7.7 x 10^ (164) 

by stream flow. 

5 
(ii) T^^,calculated by the input and output method was 1.74 x 10 yr, 

5 

a value equivalent to that of phosphate (1.8 x 10 yr). 

3. Phosphate/Productivity associations 

(i) The PO^/Cd ratios for stream input, oceanic mass, both surface and 

deep water, and averaged sediment output show good agreement with the 
2 

literature PO^/Cd ratio of 6 x 10 . 

(ii) The faecal pellet PO^/Cd ratio of 6 x 10^ shows good agreement with 

the dissolved PO /Cd ratio in productive areas of 3 x 10^. 

(iii) The difference of an order of magnitude between (i) and (ii) may 

reflect the retention of cadmium within marine biota. 



CHAPTER 5 

THE PHYSIOLOGICAL AND BIOCHEMICAL EFFECTS OF CADMIUM ON KKUUim BICHA 

It is not intended to present an exhaustive coverage of all the literature 

on cadmium concentrations monitored in marine organisms since a recent review 

by Bernhardt and Zattera (191) summarised much of the data (see Appendix 3) . 

A useful source for updating the literature is an annotated bibliography 

collected by Corrill and Huff (192). Therefore this chapter will concentrate 

on the biochemical and physiological effects of cadmium on marine biota and, 

where necessary, will draw on data not specifically related to marine organisms. 

5.1 PROTECTION MECHANISMS 

There are four ways in which organisms protect themselves from toxins: 

(i) detoxification by the secretion of enzymes or metabolites, 

(ii) inhibition of transfer across the cell wall, 

(iii) inactivation of the toxicant intracellularly, 

(ivj the removal of toxic substances from inside to outside the cell, 

5.2 BACTERIA 

5.2.1 Secretion of metabolites 

A mixed population of bacteria isolated from the sediments of 

109 -1 

Corpus Christi Harbour, U.S.A., precipitated 90% of added Cd (O.Sp.Ci ml ) 

as the sulphide (193). Field experiments at the same location indicated H2S 

production in the water column was at its highest in the sunmer months, 

coinciding with the maximum rate of cadmium deposition to sediments (114). 

Under aerobic conditions it is possible for cadmium present as the sulphide 

to be remobilized by Thiobacillus thiooxidans which secretes sulphuric acid 
2+ 

(194). Thiobacillus sp. are tolerant to large concentrations of Cd e.g. 
-2 

T. ferroxidans was unaffected at 10 M Cd (195). 

The secretion of metabolites by one organism may increase the suscep-

tibility of a second organism to cadmium. Thi^ effect was demonstrated by 

the secretion of an antibiotic by Altermonas sp. which, in the presence of Cd 
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and Hg in seawater, reduced the resistance of Staphylococcus epidermidis 

4 - 1 - 1 
by 10 to the metals (<4 ^g 1 Cd and <0.1 ^g 1 Hg) and 8 fold the 

- 1 

antiobotic (to 1.3|ig ml ) (195). 

5.2.2 Plasmid mediated resistance 

The mechanism here may involve inhibition of transport across 

the cell wall or inactivation within the cell. 

Plasmids are extra-chromosomal elements transferred by transduction 

and replicated autonomously, i.e. independent of bacterial chromosomes, 

Plasmids may confer resistance upon an organism to many jpot&ntially harmful 

agents, e.g. antibiotics like penicillin or streptomycin. X-ray and U.V. 
3+ 2+ 2+ 2+ 2+ 2-

radiation, heavy metals including Bi , Sb , Hg , Pb , Zn , AsO^ and 
2+ 

Cd (see 197 and 198 for detailed discussion). In several cases, resistance 

is inducible, although it is phage-type and strain dependent, and the same 

plasmid may carry tolerance to a number of agents. Therefore, by exposure 

of an organism to a_metal or ^ drug, it is possible to induce multimetal-

multidrug resistant populations. Such bacterial populations are common in 

clinical isolates (e.g. 197-200) but the possibility of high metal levels 

in the environment producing multi-drug resistance in human and animal 

pathogens could have far reaching consequences (200-203). As yet, no such 

connection is proved; therefore, the following discussion on how plasmid-

produced enzymes protect bacteria against cadmium centres on stock cultured 

human pathogens and clinical isolates. 

The cadmium resistance of Staphylococcus aureus has been extensively 

studied (reviewed by Silver et al. (198)). There are two alternative hypo-

theses for the protection mechanism:-

(i) an active transport system which brings cadmium into the cell where 

it is inactivated, 

(ii) an alteration in the cell membrane which reduces adsorption and 

absorption by the cell. 

At present the second explanation is favoured for the following reasons:-
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(a) Cadmium was shown to inhibit manganese transpcw^ across the cell 

membrane in cadmium-sensitive cells but not in resistant cells (198). 

(b) After homogenization and low speed centrifugation, resistant 

organisms contained relatively more cadmium associated with cell debris 

compared to the supernatant than sensitive strains (198) . The overall 

uptake was a factor of three less in the resistant organisms and resistance 

was mediated by the cell membrane acting as a permeability barrier (204, 205) , 

*~6 2 "4' 
(c) Permeability was observed at 10 M Cd ' in sensitive strains but not 

-4 2+ 
in resistant strains, even at 10 M Cd (206), 

2 + 

(d) It was suggested that Cd was locked out of the cell by some 

protective enzyme (207) and that phospholipids rather than sulphydryl groups 

bind cadmium (208). 

(e) With other multidrug-multimetal resistant organisms, namely Aerobacter 
2+ 

aerogenes and Bacillus megaterium, transport by the Mg uptake pathway was 
2+ 2+ 2+ 

implicated in the intracellular accumulation of Ni , Co and Zn , but no 

2 + 

such effect was observed with Cd (209). 

(f) There is no evidence of cytoplasmic Cd-binding proteins in S. aureus 

(198). 

5.2.3 The removal of cadmium from inside the cell to the cell wall 

Escherichia coli strain B were found to enter a long lag phase 

"6 2 4" 

when cultured with 3 x 10 M Cd (210). Initially large intracellular 

vacuoles and an inability to form colonies were noted. With time the cells 

regained normal morphology and viahility, the process being one of accommodation 

rather than the selection of mutants. Accommodated cells had a Cd distribution 

of 56% on the cell wall, 13% in the cell membrane and 31% in the cytoplasm, 

compared to 2%, 75% and 23%, respectively, in unaccommodated cells. 

The process of accommodation is possibly controlled by high molecular 

weight proteins which transport cadmium to the cell wall. 
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5.2.4 Conclusions 

1. Due to the paucity of information on the effects of cadmium cn 

marine bacteria, extrapolation of laboratory observations clinical 

isolates have to serve as pointers for effects that may i# 

environment. 

2. Sulphide-producing bacteria may precipitate cadmium to sediments. 

3. Sulphur-utilizing (sulphuric acid producing) bacteria may remobi-

lize sulphide-precipitated cadmium. 

4. The secretion of metabolites by some organisms may increase the 

sensitivity of other species to heavy metals. 

5. Elevated cadmium levels in water and sediment may bring about the 

selection to multidrug-multimetal resistant populations of pathogenic 

bacteria. 

6. Plasmid-mediated resistance operates by reducing the permeability 

of the cell membrane to cadmium and/or cell wall which results in the 

concentration of cadmium at the cell exterior. This in turn may lead to 

elevated concentrations in their predators, e.g. in filter-feeders, such 

as mussels. 

7. Accommodation to elevated cadmium concentrations has also been 

observed. 

5.3 MARINE PHYTOPLANKTON 

5.3.1 Cadmium uptake and effect on photosynthesis 

A summary of the research on marine algae is presented in 

Table 19. From previous discussion the importance of phytoplankton in 

the cycling of the element in the marine environment was stressed and it 

may be important to the amplification of the element in the food chain. 

In an attempt to examine Cd effects in a realistic manner, i.e. not 

in the confines of a laboratory flask, Kremling et al. (220) carried out 

controlled ecosystem enclosure experiments in the Saanich Inlet, British 

Columbia. The bags used were C3 in volume and cadmium concentrations 



Table 19 Laboratory Experiments on Cadmium Uptake by and Distribution In Marine Phytoplankton 

Organism Cd Conc'n Observed Response Reference 

Prasinocladus 
subsala 

Chaetoceros sp. 
+ 

Phaoodactylua 

trlcornutuia 

Cd was accumulated to amounts proportlona^ to the concen-
tration of Cd in seawater (max. 400 ng g dry.wc. in 

J P. tricornutum + Chaetoceros sp. and 670 ng g ^ dry wt. in 

> 10-100 )ig 1 P. subsala) . Equilibrium with the solution was reached 

after 24 hys in tiie diatom mixture with saturation at about 
0.09 my 1 , but the green algae showed only a slight 
decrease in uptake at the maximum concentration. 

211 

10 (.ig 1 Major uptake by adsorption and gradual Resorption by external 
metabolites. 

212 

kO 

Dunaliella 
tertiolecta 

Carteria sp. 

Nltzschia 
closteriuai 

10 ̂ -lO'̂ M 

> 20-80 ng 1 
- 1 

No effect on Og evolution was noted at Che lower concentration 
although 25% suppression occurred at the higher concentration 
with both organisms, i.e. Cd was transported to the sites of 
light reactions of photosynthesis. No effect on K loss or 
uptake was recorded; therefore no membrane damage was evident. 

Rate of uptake increased wjth increasing Cd 
uptake being rapid in the first hour. 

24 concentration. 

24 hr average for D. tertiolecta an^ Carteria sp. at 80 ng 1 

was 2.5 X 10 ng (mg dry wt.)"^h^ but N. closteri'oxn ^ate 

of uptake was higher at 3.5 x 10 ng (mg dry wt.)"lhr , 

probably dne to its greater surface area. 

213 

214 

Coscinodiscus 
granii 

Rhizosolenia 

Dunaliella 
bioLulata 

1-1000 pg 1 

N. closterium was the dominant species after 5 days incubation 
of a mixed population. 1000 pg 1 Cd initially reduced carbon 
assimilation by 30% with respect to the control, although this 
increased with time. 

109 
Cd uptake gave a concentration factor of 300 after 15 days. 

215 

216 

Attheya 

dmcora 

Brachimonas 
subwarina 

Kbnochrysis 
luU.eri 

Skeletonema 
co.iuatua 

10"\ 

25-100 ng 1 
-1 

Cd was non-toxic to these organisms in that no inhibition 

of photosynthesis was observed. 

Cd initially increased cell division rate, followed by a 
marked decrease versus the control. Cells were reduced in 
volume but possessed the same C:N ratio. 

217 

218 

50-140 pg 1 '• llie uptake of Cd increased as the PO^-P available for growth 

decreased, reaching a maximum at zero PO^-P in the media 

(after 7 days) = 50% desorption of cd occurred over the 
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of 1.3 n.g 1 10 to 20 times the 'normal' surface seawater concentration, 

were added as spikes. Experiments were run for 2 to 4 weeks versus controls 

of Cd concentration of 0.075 1 . No marked differences dm phytoplankton 

composition (predominantly Chaetoceros spp.) or biomass were observed. Most 

of the particulate metal was loosely bound to outer cell membranes and <1% 

of the added Cd was associated with settling material. It vKis concluded 

that "under the conditions established in these studies, no significant 

biological effects can be attributed to cadmium concentrations raised an 

order of magnitude above the natural level." 

Lower cadmium-plankton concentrations were noted (during periods of high 

productivity (high phytoplankton biomass) in the oceans (117), an effect also 

observed in enclosure experiments (220). Similar results were obtained in 

laboratory experiments with P. tricornutum, when at the onset of the 

stationary phase the cadmium-plankton concentrations dropped from 1.98 to 

- 1 

1.02 ;ig g dry weight (212), and also with S. costatum (219). A fast, 

followed by a slow, release of cadmium on leaching cells was taken as evidence 

for surface versus protein bound cadmium (212,220), supported by the 

correlation of particulate Cd with particulate (protein) organic nitrogen 

(r = 0.5 and 0.69 for duplicate experiments)(220) . 

Besides a reduction in cell volume measured in S. costatum (218), the 

only sublethal effect of cadmium identified to date in imarine algae is the 

suppression of photosynthesis and only then at concentraticms at least two 

orders of magnitude above 'normal' concentrations (2)3,215). This may arise 

by interference in the electron transport in the photosystem II of chloro-

plasts (221) acting upon the manganoprotein (222) in the Mn-Cu-protein 

pigment complex (221):-

Cd^* hv 
+ ( P + 

2Mn' 4P680 

Y ( Y 
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The uncoupling of the reaction in such a way may explain t±ie formation of 

Cd granules proved to exist in the mitochondria of the freshwater algae 

Ankistrodesmus falcatus, Chlorella pyrenoidosa and Scendesmus quadricauda 

when exposed to cadmium (223). 

The cadmium-phosphate relationship noted by Motohashi and Tsuchida (219) 

is an interesting one which may have some bearing on oceanic Cd-PO^-P depth 

profiles discussed previously. Unfortunately, the subsequent release/ 

retention of phosphate was not monitored as was the cadmium release. It 

is possible from the above that cadmium is taken into the cell by an anion 

transport mechanism as CdCl^ • 

5,3.2 Conclusions 

1. Marine algae are highly tolerant to cadmium. 

2. Uptake is predominantly by surface adsorption, and is therefore 

dependent primarily on surface area. 

3. Phosphate in the water limits cadmium uptake; cadmium may be taken 

into the cell as CdCl^ when inorganic phosphate is removed from the water. 

4. Suppression of photosynthesis by the uncoupling of the photosystem II 

electron transport system is the only biochemical interference proved to date. 

5. The initial fast desorption rate of cadmium is due to the loss of 

surface bound metal and the second phase slow release is due to loss of 

intracellular cadmium. 

6. To quote Kremling et al. (220) "the taxonomy of the organisms only plays 

a minor role in the uptake mechanism for cadmium''. 

5.4 CADMIUM IN HIGHER MARINE ORGANISMS 

A summary of data of cadmium in marine organisms is presented in Table 20. 

The 'normal' concentrations given are rough estimates. 

It can be seen that molluscs have a remarkable ability to concentrate 

cadmium from polluted water, food and sediments. Other organisms tend to 

have lower overall cadmium levels but elevated levels in specific organs. 

These organs include the gills, kidney and liver or digestive glands. Gill 



Table 20 Cadmium Concentrations in Marine (Organisms 

- 1 
(fig g dry weight) 

(based on data in Appendix 3 (191)) 

Organisms Range of Means 'Normal' Cone ' n 
Maximum 
Values 

Plankton 0.35-13.6 <2 .0 20.9 

Molluscs: 
Gastropods 

Bivalves 

0 . 8 - ( 1 0 0 ? ) 

1.5 -249 

<1.5 

<1 .0 

1 ,120 

299 

Invertebrates 
(various) 

0.24—14.8 <1 .0 14.8 

Crustaceans 

Fishes 

Sharks 

0.15-2.4 

0 . 1 - 2 . 2 

0.1 -0.4 

<1.0 

<0.5 

2 . 8 

4.1 
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uptake may reflect water concentrations and the uptake In Internal organs 

may reflect concentrations in food, although it is diz&ficult to discriminate 

between the two sources. 

The following discussion will examine 

(a) the uptake of cadmium by molluscs; the differences between filter 

feeders and grazers and their use as pollution indicators; 

(b) the presence of cadmium-binding proteins in internal organs; 

(c) the uptake of cadmium by gills and the effect of cadmium on oxygen 

consumption. 

5.4.1 The accumulation of cadmium in molluscs 

In highly contaminated areas, grazers, e.g. Patella sp. and 

Littorina sp., and carnivores, e.g. Nucella sp., were found to have dry 

- 1 - 1 

weight Cd concentrations in excess of 500 |ig g (up to 1,120 p,g g ) (224, 

225) . In the case of the grazers, this may in part be due to the high 

cadmium concentrations in marcophytes (see Appendix 3). 

On the other hand, filter-feeding bivalves, such as mussels and oysters, 
- 1 

rarely have concentrations in excess of 10 ixg g dry weight. However, 

mussels and oysters have been put forward as useful pollution indicators 

(226-230) because of their 

(i) wide geographical distribution 

(ii) high accumulation factors which are linear to cadmium water 

concentrations. Other considerations are given by Major! and Petronio (225), 

and limitations Imposed due to environmental variables such as salinity and 

temperature are discussed by Jackim et al. (231) and Phillips (227). The two 

most promising organisms for such work are the mussels IMytllus galloprovincialiE 

and M. edulis. 

Studies on the acute effects of cadmium showed that these organisms 

are highly tolerant to cadmium with respect to other bivalves and marine 

organisms (Table 21) (the median tolerance of M. gallqprovincialis was 

0.36 ml"* Cd (234Xk 
- 1 0 0 -



Tabic 21 (a) Summary of Acute Toxicities of Cadmium to Marine Bivalves 

(mg 1 S (from Eisler (232) ) 

Mercenaria mercenaria : I,C-3 (20 weeks) 0.1 

LC-38 (20 weeks) 0.2 

Mya arenaria : LC-50 (168 hrs) 0.15 

LC-50 (96 hrs) 2.2 

Crassostrea virginica : LC-32 (20 weeks) 0.1 

LC-45 (20 weeks) 0.2 

(embryos) LC-50 (48 hrs) 3.8 

Mytilus edulis : LC-50 (96 hrs) 25.0 

(b) LC-50 (96 hrs) for a Cross-Section of Marine Animal (mg 1 
(from Eisler (233)) 

Hermit crab, Pagurus longicarpus 0.32 

Sand shrimp, Crangon septemspinosa 0.32 

Common starfish, Asterias forbesi 0.82 

Common soft-shell clam, Mya arenaria 2.20 

Green crab, Carcinus maenus 4.10 

Atlantic oyster drill, Urosalpinx cinerea 6.60 

Eastern mud snail, Nassarius obsoletus 10.5 

Sandworm, Nereis virens 11.0 

Striped killifish, Fundulus majalis 21.0 

Blue mussel, Mytilus edulis 25.0 

Sheepshead minnow, Cyprinodon variegatus 50.0 

Mummichog, Fuadulus heteroclitus 55.0 

1 0 1 -
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However, there are differences in the distribution of cadmium concen-

trations within the organisms;- M. galloprovincialis (235) shell >> muscle > 

viscera (+ kidney?) > mantle > gills; M. edulis (236) kidney >> viscera > 

gills >> mantle > muscle; which may arise from differences in experimental 

conditions, organism or food source. The latter is particularly important. 

For example the chelation of cadmium with EDTA, pectin, and humic or alginic 

acids doubled Cd uptake, i.e. assisted transport across the cell membrane 

(236). High concentrations of zinc (500 jj,g 1 ^) decrease cadmium uptake (231) 

and variation in food supply was put forward to explain differences in the cadmium 

half life in M. galloprovincialis calculated from laboratory experiments 

(1254 days) and in situ studies (307 days) (235). 

Apparently, the shell and the kidney are the sites of Cd-accumulation 

in Mytilus sp. Examination of the M. edulis shell revealed that the metal 

is laid down with nacreous (aragonitic) layer but chelated with organics (237). 

Some mechanism related to Ca^* is implied. The kidney controls the excretion 

of the metal in M. edulis (236) and the high metal concentration in this organ 

is related to the presence of the cadmium binding protein, metallothionein (238) . 

5.4.2 Metallothionein in marine organisms 

The metallthionein family of proteins were discovered in 1957 

by Margoshes and Vallee (239). The proteins are characterised by:-

(1) the presence of cadmium, zinc, copper and mercury (3-14 metal atoms 

per molecule), 

(ii) the binding of 30-60% of the tissue cadmium, 

(iii) an adsorption maxima in the U.V. at -250 nm due to metal-sulphur 

chromophores, 

(iv) the lack of aromatic amino acids (low adsorption at 280 nm), 

(v) a high cysteinyl residue content (^30% of all amino acids present), 

(vi) low molecular weights (6000-12000). 

Equine renal metallothionein ~ IB (240) and mouse liver metallothionein (241) 

were recently sequenced and it was confirmed that three cysteinyl residues 
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and possibly one serinyl residue bind each metal. 

Metallothioneins have been isolated from many organisms ranging from 

the most primitive blue-green algae (242) to man (243) an^ a%e found in 

marine organisms, but not all (Table 22) . The concentration effects have 

- 1 

been shown in the liver (or digestive glands) of squid (up to 1,106 p,g g dry 

weight (251)), lobster (252), scallop (253), tuna (254), sharks and sword-

fish (255) and the kidney of mussels (236), scallops (253) and sea lions 

(250). 

In molluscs, there are obvious variations in the intracellular binding 

of cadmium. Indeed, the oyster Crassostrea gigas was shown to have 50% of 
2+ 

the cadmium present as Cd (256). 

Fish from deep water dumpsite 106 were analysed for liver and muscle 

cadmium concentration (255, 257) and midwater fish were found to have lower 

levels of the metal in these tissues compared to coastal fish from the U.K. 

(257). However sharks and swordfish from the same area possessed liver 
- 1 

concentrations of 0.28 to 7.2 and 16.1 to 26.9 )i.g g respectively, indica-

tive of their position in the food chain. 

5.4.3 Cadmium in gill tissues of marine organisms 

Cadmium will accumulate in gill tissues either directly from 

the water or via transport in the blood stream. 

Oxygen consumption may be elevated or depressed which is a demonstration 

of stress in various tissues not just the gills (Table 23) . The elevation of 

oxygen consumpticn is indicative of an increase in energy demand produced by 

an increase in enzyme activity. Where a depression in oxygen consumption is 

observed presumably there is an inhibition of Og transport across the gill 

membrane and/or inhibition of enzyme activity. 

Cadmium is known to be concentrated in gill tissues, e.g. the lobster 

Homarus americanus (259,260), the musselsMytilus galloprovincialis and 

M. edulis (235,236), the fishes Pleuronectes platcssa and Raja clavata (261) 

and the crabs Uca pugilator (262) and Carcinus maenas (263). 
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Table 22 Complexation of Cadmium in Marine Organisms 

Organism Tissue Molecular References 
Weight 

Oysters: 

Scallop: 

Cockle: 

Periwinkle: 

Mussel: 

Limpets: 

Plaice: 

Copper Rock 
Fish: 

Ostrea edulxs 

Crassostrea gigas 

Chlamys opercularis 

Cardium edule 

Littorina-littorea 

Mytilus edulis 

Patella vulgata 

Patella intermedia 

Pleuronectes platessa 

Sebastodes caurinus 

Whole 
'animal 

244,245 

Grey Seal; Halichoerus grypus 
• Liver 

9,000 

Pacific Fur 
Seal: Callorhinus ursinus 10,000 

Californian Zalophus californianus Kidney 7100 250 

Homarine 
and/or 
taurine? 
<3000 

Metallothioneins; 

10,800 
& 2 2 , 0 0 0 
(dimer?) 

Not given 

11,000 

246 

238 

247 

248 

249 

Sea Lion: californianus 

1G4 



Table 23 Cadmium Effects on Marine Animals 
(after Calabrese, Th'Lirberg and Gonld (258)) 

(see original paper for references) 

(yginism 
Exposure Concen- Oxygon 
period (ration (ppb) cofisump:;on 

Osmorê;-
Enzyme activity Oihcf 

O 
Ln 

Afr.c,̂.h: ouster 

A';r,pf~cfnr y )a',s 
Bay ccni'Op 

t;wvch':«;s) 

oAsoJefu* 

Ca/C r U)! /fWf: fgg 
G ĉn c.ab 

Cjf.cf f ,ff2.'a;us 
ftr,cx zraa 

JOp.'' 
' YuJ CfoD 
Hcmgfuj 

Awfcan kiusw 

CvWXW 

Afo/ye rpx2p6s 
Sirpsd cass 

43 hr 

96 hr 940 Elevated (16) 

72 hr 500 Elovatcd (13) 

48 hr 500 Dep/esoed (25) 

48 hr 120 Depressed (25) 

96 hf 1.000 

20 days 250 Depressed (u) 

72 hr 4.0G0 Depressed (5) 

30 days 3-6 Elavatad (22) 

60 days 3-G Eieva'.od (22) 
06 hr 3.CO0- DoprossoO (24) 

48.000 

30days '50- Depressed (14) 
100 

GO days 50 DoprcsseJ (14) 

20c?ays .0.5 t.O Dopiessod {/) 

90 d:̂ys 5 

DiSiupUon (25) 

No oMoct (25) 

No effect (22) 

No c-Hocl (22) 

Oisfupiion (24) 

"NoeMect (i4) 

No cte (14) 

P&fuzfofk'cj/orgfc/eva.'ncrcjnua 60 days 
Wmof (louncor 

No significant 
tLK* (7) 

5-10 Duprossod (4) 

10 

I Cw X 3.8C4! ppb 12/ 

LC% " 1.480 ppD; signX̂ani 
Cd upiako (16) 
Distressed behavior (13) 

Chloride ia!t increased transaminase, 
r̂raie sa:; no cKnct (heart) (9) 
CNonde sail irwoased transaminase, 
niiraie son no oXuci (hean) (u) 

Enzyme indjctxj.̂  lôcr̂d Egand 
tidily (heart. arOjnnal glend) (22, u) 

DcpruKsed tfunsaminaso, IOY«%red kgand 
sonsiiivily (iiver) UO) 

Deprussod iransaminase. highof shun! 
acLviry (bver) (M) 

No eft̂t ikver. skGicial muscio) (7) 

No cKect (liver, ̂koloial rr.uscl')) (7) 

Enzyme irxiucnon. Kwerao liĝnd sonsi-
tiviiy ̂hcnn. Kidney, gô-uid. skyicial 
muscte) (3. u) 
IncfOLEod giycoî'S'S cr%) Lhur,: activiiy. 
lOAorod kgjnd sonsit'viiy Jkicney. wver) (u) 

Semm kig unchanged (9) 

Sfrum f/g unchanged (u)' 

LCw = 4.900 ppb: 
LC,00 " 11.000 pp5 (5) 

Significant Co uptaxa ui giOs (22) 
ScfTio htstopa!ho!ogicaI efJocls (17}; 
Pvcr uptake G.5 Lros qreaier man 
g;is(i2) 

SO jay Gkposurr anc SC'cay c ecr-
arcv. depftrSSM ;r:,nuirnir.L5e and 
shunt ac[:vi:y (Hvur) (7; 

No uGiucioblu Cd upiaice in Mood or 
gJis No rw)fra:-io-̂k:»: or ksio-
puirok̂CL! ci\irg35 (4) 

'̂:v«̂:Lor5 m p(.rv.i;nvi3s refer k) ciaticns in u&erz.:i;ra Citeo 
"u riea;;: LrpV.inrx̂'d. 



changes in the gill ultra-structure of the shrimp Penaeus duorum 

-I 

were examined by Couch (264) . After 15 days exposure to 763 )j.g 1 Cd, 

cell death had occurred in the distal gill filament tissue, followed by 

autolysis, necrosis and the deposition of electron-dense granules. The initial 

appearance of the granules was in the mitochondria of the cells, the site 

of many oxidative enzyme systems and ATP production. 

5.4.4 Conclusions 

1. Molluscs are able to concentrate cadmium to a high degree and 

maybe useful as pollution indicator species. 

2. In all higher marine organisms, cadmium concentrates in the liver 

or digestive glands, kidneys and gills. 

3. Sublethal cadmium effects include 

(i) increased consumption due to an increase in energy demand 

produced by an increase in enzyme activity, 

(ii) decreased consumption possibly due to inhibition of 

uptaJce or enzyme inhibition, 

(iii) increased liver (or digestive glands) and kidney concentrations 

because of binding to metallothionein or to low molecular weight 

complexes like homarine or taurine. 

4. There is no evidence of food chain amplification of cadmium on the 

basis of total body concentrations, but individual organs (e.g. kidney and 

liver) provide evidence of some bioaccumulation due to dietary habits. 
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CHAPTER 6 

RESEARCH REQUIREMENTS 

The report has highlighted many areas that require detailed investigation 

if the flux of cadmium in the oceans is to be understood. The work may be 

split into two parts. 

(a) Cadmium influx to the oceans, both atmospheric and fluvial. 

(b) Cadmium fluxes and cycles within the oceans. This will require a 

knowledge of the speciation, the distribution, the efflux of the metal to 

sediments and its recycling within sediments. 

6.1 MARINE INPUTS 

The work in this field lies essentially within the province of atmos-

phcric and freshwater-brackish water scientists. 

(i) Basic to the problem of cadmium cycling is the budget of cadmium 

tliroughput in the industries refining the metal and manufacturing goods 

from the metal. Some form of accounting by the industries concerned is 

urgently required. 

(ii) Of prime importance is an assessment of the aerial transport of 

cadmium and the measurement of particulate/dissolved deposition. This is 

an area fraught with difficulties, such as the long time-span required to 

collect reasonable samples at stationary sampling sites, the positioning 

of sites to give truly representative samples, contamination during sample 

collection on Hand and on board ship and the logistic and financial problems 

of collecting samples from aircraft. 

(iii) Data are required for the major freshwater inputs from South America 

and Asia. 

(iv) More work is required on the estuarine deposition/mobilization of 

the metal. However, an estimate of the total lithogenic contribution in 

particulate phases may be possible from samples taken within the oceans 

(see below). 
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6.2 FLUXES WITHIN THE OCEANS 

6.2.1 Some biological studies 

In the estimation of fluxes, organisms are treated as 'black 

boxes' with an input and output. However, certain areas are of importance 

both ecologically and in the definition of the magnitude and form of cadmium 

in the biological reservoir. Studies should include 

(i) An investigation into the selection of multi-drug, multi-metal 

resistant bacteria due to plasmid-mediated resistance in coastal waters 

contaminated with Cd and other heavy metals. 

(ii) The assessment of amplification of cadmium in selected food chains 

by comparison of bulk analysis with metal levels in particular organs. As 

a first step in the identification of tissues which concentrate metals, 

morphological examination by transmission electron microscopy in conjunction 

with electron-microprobe analysis may prove to be a powerful technique (265, 

2 6 6 ) . 

(iii) The isolation of organic complexation agents from tissue which 

lead to high metal concentration in particular organs, e.g. metallothionein. 

6.2.2 Analytical scheme to determine fluxes 

The analysis of the problem should take the following form: 

Total Cd 

Geographical Location 
(selection of sampling areas) 

Water Column v. Sediments 
(depth profiles) 

V 
Dissolved Metal v. Particulate Metal' 

(water mass and pore waters, and solid phase) 

Organic and 
Organic Speciation v. Inorganic Speciation Authigenic Associations v. Litiiogenic 

Material 
b^lationship to Nutrients and Metals) (i) Organic Meterial Clays 

(faecal pellets) (residual 
(PO^-P, Si, Cu, Mn, Pb, Ni, Zn) (ii) Inorganic Material material) 

(MnOg, Mn nodules) 
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6.2.3 Information to be gained from the analytical scheme 

(i) Cadmium levels in the waters and sediments of contrasting areas 

are essential to gain knowledge of: 

- background levels in waters and sediments 

- differences between shelf waters and open ocean waters 

- comparison of high productivity areas with low productivity areas 

- differences between the industrialised, northern hemisphere and 

underdeveloped, southern hemisphere. 

(ii) The relationship of dissolved cadmium in the v/ater column to depth, 

other metals and nutrients should be investigated. This will provide an 

insight into 

- the mechanism of transport and controlling factors 

- association with productivity 

- the bioavailability of the metal 

- possible remobilization from sediments. 

(iii) Work on suspended particulates will allow estimates to be made of 

- the phytoplankton uptake of metals in the surface layers 

- the flux of metals in association with faecal material 

- the flux in association with hydrous manganese oxides (authigenic) 

- the flux in association with lithogenic material. 

From such data the influence of productivity on metal distribution should 

become apparent; the major factors controlling sedimentation of metals and 

better estimates of residence times may be calculated. 

(iv) Sediment depth profiles and pore water studies may give information 

on input rates with time, diagenesis, correlations with other chemical 

species and hence an insight into the remobilization-retention of metals. 

6.2.4 A brief outline of methods 

(i) Dissolved metals - Total metals may be determined by solvent 

extraction followed by atomic adsorption spectroscopy (A.A.S. (267)). 
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Metal speciatiori may be examined by anodic stripping volatametry for 

which methods need to be developed. 

Pore water samples may be obtained either by squeezing sediments or 

high-speed centrigugation with dense inert solvents (268) . 

(ii) Suspended particulates and sediments - Vertical fluxes can be 

determined by the sediment trap collection of material at various depths. 

Long residence time particulates and colloids i.e. those subject to hori-

zontal current transport, can be collected by high voluine filtration methods 

(269). Sediment samples can be taken by conventional coring methods. 

Analysis of samples can be carried out by a number of methods 

- Microdistribution of the metal in individual sediment components 

by scanning electron microscopy. 

- Bulk analysis may be carried out by X-ray fluorescence spectrometry 

for tlie major and minor elements and wet oxidation followed by A.A.S. for 

trace elements. 

- Organic content can be determined by gasometric methods (i.e. measuring 

CO^ after combustion). 

- Residual metals can be analysed after selective leaching procedures. 
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APPENDIX 1 

THE THEORY OF METAL ADSORPTION ONTO PARTICULATES AND COLLOIDS 
AMD ION EXCHANGE WITH CLAYS 

1. METAL ADSORPTION 

There are two mechanisms involved: 

(a) the interaction of positively or negatively charged species with 

sites of the opposite charge, i.e. coloumbic attraction; 

(b) specific adsorption of ions from solution, i.e. chemical reaction 

at the surface. Ions displace matrix ions from the adsorbent; strictly 

speaking this is an adsorption effect and it occurs, for example, in nsutite 

where cadmium can displace manganese. 

2. ION EXCHANGE 

With clay minerals, charge results 

(a) at the surface from the isomorphous substitution of one atom by 

another within the lattice, e.g. Si by Al, and 

(b) at the edge of the clay via interaction which broken bonds may 

produce both positive and negative charge. 

The cation exchange capacity (C.E.C.) of a clay is the number of singly 

charged negative sites available for adsorption and it is usually expressed 

- 1 
in milliequivalents per 100 grams (meq 100 g ). The C.E.C. is often deter-

"4" "f* 

mined by the displacement of Na by NH^ . The C.E.C. for vermiculite, 

montmorillonite, illite and kaolinite are in the range 25-200, 70-100, 10-40, 

3-15 meq 100 g ^ respectively, depending on the origin of the clay and the 

number of lattice defects and replacements. 

3. METHODS OF REPORTING RESULTS 
A 

(i) A selectivity coefficient (K^ or ) provides a measure of the 

relative ability of an ion exchanger to hold one ion in preference to another 

(or others) 
A 

Kl = where X. and X. are the mole fractions of the ions 
X^ 

in the solid and liquid phase, respectively. 
Kg (K ) is not a constant but is dependent on the magnitude of effective 
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charge of the adsorbants given by:-

.. , Ionization potential 
Effective charge = i ; — ; — - - — = — — 

hyarated ionic radius 

and the total concentration, as well as the concentration ratio of existing 

ions. 

(ii) The partition coefficient (K ) is synonymous with the distribution 

constant, the concentration factor (C.F.), and accumulation factor (A.F.); 

its reciprocal is the instability partition coefficient (K^ . All are 

described by the Berthelot-Nernst distribution law:-
Q 

K = S where C_ = conc'n in solid at equilibrium 
P p r s 

L 

C = conc'n in liquid at equilibrium. 

The value of K may alter by many orders of magnitude under various 

physical conditions such as temperature, pressure, concentrations of adsor-

bent and adsorbant, ionic strength, pH, Eh and contact time. Thus the 

conditions under which the experiments are conducted must be stated. 

A useful distinction between a single observation and the gradient of 

the plot of a series of points for C v. C would be to call the former 
S L 

the C.F. or A.F. and the latter Kp. 

(iii) The distribution coefficient (IC or D) is given by the equation 

—TTT where V = volume of solution 
(1 - fg)M 

M = mass of adsorbent 

f = fraction of ions adsorbed 
2+ 

Meq % M „ 
or ^ S 

'?+ 

Meq % M 

This expression is analogous to K in that 

and, similarly, holds only under ideal conditions. 

(iv) Freundlich isothermal adsorption describes adsorption below the 

saturation of the clay or colloid surface and is given by 

1/n 
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The examples in Figure 11 show that the initial adsorption at low concentration 

is rapid but, as the surface becomes covered, adsorption decreases, taking 

the logarithms of both sides, the equation becomes: 

log C = log C + log k. 

which is a straight line with intercept log k. This may be used to gain some 

ranking in the order of binding capability of various clays. Figure 11 

describes the Freundlich isotherms derived from the data that gave the 

adsorption curves in Figure 10. The k values are presented in Table 4. 

However, caution must be exercised in quoting and comparing such values 

because log k depends on the units of log C and log C , and log C = 0 

is arbitrary. For the isotherms in Figure 11, the log k values obviously 

-1 7 -1 -1 
vary with units (moles g x 10 , p.g g , ng g ) but more importantly, the 

relative ranking of the affinity for clays varies with intercept (e.g. Table 4). 

As saturation is reached, the plot deviates from a straight line and then 

(v) the Langmuir adsorption isotherm should be used. 

Here the rates of adsorption and desorption are considered at equi-

librium and the following expression can be derived: 

X c 
X = L "L where X = the amount of metal adsorbed per unit 

' - V L volume of solute (original solution 

conc'n, C^) 

= the limiting value of X 

K = adsorption coefficient. 

Dividing through by C^: 

and taking the reciprocal: 

Thus a plot of C /X^ v, C gives a straight line with intercept l/X^ 

and therefore the adsorption coefficient, K , may be calculated from the 

gradient. 
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The adsorption coefficient is the ratio of adsorption desorption 

rate constants. 

4, SUMMARY 

To sirnimarise adsorption phenomena, the three simplest and most commonly 

encountered in heavy metal work are:-

(i) Berthelot-Nernst (ii) Freundlich (iii) Langmuir 

(i) K_ = _S 

rearranging (ii) and (iii) 

to produce linear plots 

given by (iv) and (v) 

respectively 

(ii) Cg = k 
1/n 

(iii) X = V l 

log C 
log k 

log C 

(iv) log C = 1/n log C + log k (v) C , 
3r = ® 1-

Kp approximates to single points on small ranges of v. C_ in the Freundlich 

or Langmuir curves; the early part of the Langmuir isotherm approximates to 

the Freuadlich isotherm, and the Langmuir isotherm gives th^ adsorption 

coefficient for a full range of concentrations up to and exceeding saturation. 

The selection of the method of presenting experimental results will be 

dependent on the conditions chosen for the experiment and, in particular, 

the metal to adsorbent ratio. 
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APPENDIX 2 

COAL, OIL AND PHOSPHATE PRODUCTION (1865-2000) 

The statistics for coal production were kindly supplied by J. McDonnell 

of the N.C.B. and those for oil by Brenda Tong of British Petroleum (Table Al) 

Coal and oil totals were calculated by estimating areas under the 

curves given in Figure Al . The projections to 2000 were made by linear 

extrapolation. 

The mean cadmium concentration in coal was taken to be 0.25 jug g ^ and 

oil 0.01 )ig g 

A rough estimate of phosphate production was derived frcm graphical/ 

numerical data presented by Stumm (270):-

pre 1970 - 15 x 10^ tonnes 

1970-1980 - 13 X 10^ tonnes 

1980-2000 = 46 x 10^ tonnes 

The concentration of cadmium in phosphate fertilizers was estimated to be 

- 1 

30^g g . 



Table A1 World Coal and Oil Production 1856-2000 

Units = tonnes x 10^ 

1865 

1870 

1075 

1880 

1885 

1890 

1895 

1900 

1905 

1910 

1915 

1920 

1925 

1930 

1935 

1940 

1945 

1950 

1955 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

Coal 

182 

218 

285 

340 

413 

513 

582 

766 

928 

1148 

1254(1913) 

1238(1924) 

1391(1929) 

1194 

1813 

2135 

2630 

2482 

2549 

2652 

2750 

2793 

2825 

2719 

2800 

2892 

3009 

2995 

3029 

3084 

3137 

3278 

3355 

Oil 

0.371 

0.796 

1.368 

4J^7 

5.072 

10.56 

14^^ 

20.54 

29^^ 

44.92 

59.39 

95.88 

148.6 

197.2 

230.7 

293.2 

365.8 

525.1 

805 

1096 

1168 

1267 

1362 

1470 

1574 

1697 

1823 

1990 

2144 

2351 

2476 

2612 

2844 

2861 

2714 

2936 

(a) 1865-1970 

1970-19B0 

TOTAL 

(b) 1980-2000 

total 

131,900 

33,000 

164,900 

76,400 

241,300 

35,630 

30,000 

65,630 

100,000 

165,600 
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FIGURE Al. COAL AND OIL PRODUCTION : 1865-2G00 
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APPENDIX 3 

CADMIUM IN MARINE ORGANISMS 

(after Bernhard, M. & Zattera, A. (191)) 

(For references, see original paper) 
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No. of 
lumpki FV. 

Mean Range 
DW. ̂ig/kg 

Memo ' Range CollecUng place 

MiKfoiWM 

CofnUina rjpcinoffj 
Fwfuj :rp. 1961 

1970 
fL jfffofwj 

Hafi'ifA: gn/riffj 
Lomwuna JfgJofu 
.UfhopAyHum *p. 
UlAofAnmminM sp. 
Afarrncfifi: pyh/fro 
fWi ffin foma/icwfafa 
PufpAj^n: sp. 
fcfgajjwM :p. 
SpOffUlO o/ffMl/TOM 

niofdjlim f*ffw<finKm 
LVcira /lati-Hiim 

INVERTHRRATES 
.Afrynniwm 

ruknf 

E:iiilc cup sponge 
EcA'Piu ffcokmfwj 
EwmiFia /ajfigrafo 
77u/if!wnf Aio punMrw 

Hmificio jongwinoffmfa 
IwiJia fJiofii 
Womfrima crfo/ofo 

Mrw^Jiina nrcnJrtte 
MeHila Ivia 
Opkii»cofn!nj nigro 
Pliable cup sponge 

pMHimfcAkw maiofij 
fpofangM pfffpiffpu* 

Wl&olc org. k&» gut 
Akhaif/fWa mjfo 
Crustaceans 
Bofanej fiofamoWw 

(g) 
(36) 

(40) 

(5) 

(21) 

(8) 

(8) 
(31) 

(5) 

(2) 

O) 
(9) 
(f) 

(Q 

(40) 

(1)0) 

340 
450 

(34-4j) 

2S0-X50 
180-790 

3900 
2400 

7M-4600 
2300-2700 

290 
350 

960 
«60 

2300 

340 
790 

310 
130 

360 
840 

(2250) 
500 

3100 
500 

2200 
690 

XlOO 
1660 

2100 
325 

4000 
1850 

1120 
14̂  

3400 
1460 

4200 
4300 

950 

3300 

440 

240 

6300 

150 

(1930-2530) 

50-970 
1300-5200 

1900-2600 
750-1700 

2900-4600 
4000-4700 

rmciAc Ocean * Malyupa. 1941 
Ihsl, Sea. olT r«wli Efin and MuUin and Riky. IV56 

Si . Maiy 

2000-3100 
50-21.000 

400-20f00 

15,000-220̂  

Mullin anJ.Riky 1956 
l^wniiin e( , 1966 
Pfcslon f1 c L 1972 

Ma))HE^ 1941 
MuHin and Riley, 1956 

off Porls [ l i n and Si Mary 
Negro Reef. P. Rico 
Bhi ish coasi: 

PaciAc Ocean 
Irish Sea. off Ports Erin 

and St. Mary 

Brislol CbanncL Severn 
Eiluary 

Indian Ocean 
li ish Sea. olT Port: Erin and 

St. Mary 
(Origin unknown) 
h i sh Sea. olT Purl Erin 
Piicific Grove, Calif. Booihe and Knauer. 1972 
Irish S e i . off Purl Erin, Si Mnry Mullin and Riley, 19)6 

British coasl i Pre&lon a7., 1972 
Canibcan Sea Fofsier ef af.. 1912 
N W Athnlic Winjo:n and Siniih, 1972 

Buiicrworlh «f u l , 1972 

Nicklcsi fi of.. 1972 
Mullin and Riley. 1956 

Negro Reef P. Rico 
Joyuda, P. Rico 

Irish Sea, o9̂  Porta Zfin. 
St. Mary 

PaciAc 
Irish S f a . off Ports Erin. 

St Mary 
Soulh coasi Mona h'and 
Irish Sea. off Ports Erin, 

St. Mary 
150 ft off Anasco River 
Irish Sea. oR Ports Erin, 

St Mar) 

150ft cfl Anasco River 
Irish Sea. ofl Ports Erin. 

0(T Anasco River, p. Rico 
Man!. Puerto Rico 
Irish Sea. olT Pofis Ehn. 

St. Mary 
150 ft off .\na»co River, 

P. RKO 
Irish Sea, off Ports Erin, 

SL Mary 

Irish Sea, oJT Ports Erin, 

Cof/Mfcfwj fopfdu: 
Coficfr pogonff 

07) (80) (4(^-120) 400 200-600 
St Mary 

N W Atlantic 

brown meat (5) 30-34%) 

153 Irish Sea. o f Ports Erin. 

CONfff pagNfuj 5000 
SL Mary 

Cofcine, oiofno* 
5000 

14.300-33,100 
Bristol-Severn. UK 

Copcpods, mixfd species 
fojjiiWjwnuf 

Enpli&h Channel 
Copcpods, mixfd species 

fojjiiWjwnuf 
(5) (360) (190-650) 1700 

149 
500-3100 N W Allantic 

Copcpods, mixfd species 
fojjiiWjwnuf 

1700 
149 Irish Sea. off Ports Erin, 

St. Mary 

CwpoguM,* :p. 1310 
fwpAou'io Puff/Zfa (whek) 
ffoniufwj ofTi/nfumm 

mnsck 

(2) 

(5) 510 
45-360 

5300 (AW) 
33U-2&00 Oregon W coast 

Rhode Island estuaries 

fwpAou'io Puff/Zfa (whek) 
ffoniufwj ofTi/nfumm 

mnsck :OAW(AW) 

Oregon W coast 
Rhode Island estuaries 

f xo^kfklon 590 4100(AW) 
giUs 490 l7,2nO(AW) 
viscera 1210 33.800 (AW) 

(4) (40) (< :« - !45) <200 <100-500 NW Ailanik 

H. ! tail (6) 80 20-120 
Scotlicb waters 

liver (6) 
(30) 

43B0 
t 3 0 

3W)-S750 
<30-220 

Ayjmafo 1700 
3150 

Mediterranean Sea f x n L c k l o n 7(0 
1700 
3150 

Mediterranean Sea 

vi:^f,3 910 2760 
musck 90 190 
ryes 420 !2fA 

1760 5460 

» l : f k ani .ill D) (160) 1(0-TOO) 490 1M-9A0 OH Oiegoo cdiHc part (1) fl.SO) (*5 : w ) u20 230-10X1 
OH Oiegoo 

(5) (lAO) (110-200) #10 540-1000 Ofrpin coatf 
rjru.'ifuj oryuf {!) &̂ (8 2400 NW Ailaniic PrflC,«kj Iffi/ffW* (6) (<70) ( < 3^-17.^) <200 <100-500 

Ixnvman n of., 1966 

f^ullin and Riley, 1956 

Mul)^ga. 1941 
MuUin and Riley. 1956 

lawman ff oi , 1966 
Mullin and Riky, 1956 

Lowman el o i , 1966 
Mullin and Riley. 1956 

Lo*man ff o/.. 1966 
Mullin and Riky. 1956 

Lowman ff oi, |9(6 
MuHin and Riley, 5956 

Lowman €f af.. 1966 

MuHin and Riky. 1956 

Mulfin and Riky, 1956 

Windom, 1972 

MuHin and Riky, i9^5 

Pcdfo ef o i ,1973 

Bryan, i973 

\Mndom, 1972 

MuHin and Riky, 1956 

Rnberlson rf of.. 1972 
Eiskr rf of.. 17)2 

Wmdom. 1972 
Topping, 1973b 

Fowkr and Bcnayoun. 1934 

Cui^haO *nd IWl m, 1972 

Roherlwn ff of., '972 

Windnm mnd Sipilk. IV7)b 

A9 



No. of 
w m r i c : FW, / ly/tg DW. ̂g/k* 

Range Collccling place Reference 

adducluf mu&rle 
remainder 

Cmnifvlumu 

Chf'i'M)/ o;«(rr!ffan: 
»ofi p:ul& incl. Auid 
kidney: 
digcslive glind: 
CfOiiaififu gffdf 
C. u/ffmira 

*ufl piM: 
Liffcrina fjifnmff; 

f,!i ) f fu w f : pan* 

L. fffWriMO 
Lol/g.fifufa firerfa 
A/frtffiuna mffcf/ioha 

MyfJuf fofi/omfnmuf 
Wyfifgjj fduHi 
lofl parU 

W. gunopfuEfnrlofU 
then 
mjnUe 
gi!l» 

Orlnpu* pu/fani 
OifffJ finwolo 

iiEh 

*[riatcd muick 
visceral ma:* 
kidney 
heart 

PoffHu pwfgafq 
mofi rgfl: 

(5) 

(5) 
(14) 

(>100) 

(B) 
(>!00) 

(12) 

04) 

( I ) 
(6) 

1150 
1410 
1050 

6.% 
9300 
7100 

330 
(360) 
3100 

200 

(160) 

(125) 

330 
2000 
370 

66 
1300 
ITRO 
420 
400 
4S0 
950 
120 

ffffM mOffKUf. 

P. nnruf Zffwidiof 
man lie 
gin: 

visceral ma:* 

gonad* 
::,cll 

Pf&fcm m&nmuf 
lo f i p&f%* Incl. Auid 

digc*live gknd* 
wfl pari 
Prrffn muiimwi. mu&cle 
PcHmrff ffwpfirufa 

vnf wi pwfifi* 
^hcil 

***fl liody 
inl<rn:i' orgnn* 
Topff 3r'nkff(W3iofo 
7?iHM fmufyrnnW 
Thqi) fripiffwi 
(« Nucflla) 

(17) 

(6) 

(6) 

m 
(2) 
(1) 
(2) 
(21 
(5) 

(10, 

4100 
1 5 ^ 
91.700 

370 
770 
(fO) 

(l.<0-1200) 
100-7800 

30-300 

M)00-7500 
(135-190) 
100-730 
(35-215) 
100-900 

MO-1200 
100-930 

350-10)0 
(25-75) 

i M i - i m 
110-220 
IR)-120 

43.(00 (A\V) 
49.W(AW) 
29^00 ( A \ \ l 

3050 

3300 
41.000 
27/)00 

9300 (AW) 
2400 

600 

700 

3100 
3000 

3210 
1300 
3940 
3410 
1260 
1210 
1440 
20SO 
300 

3 3 ^ 
207.000 

<20jXX) 
<20.000 

97/X)0 
6IXM0 

118.000 
1 3 4 ^ 

<20 

16.400 

10.300-1 ! 8 ^ 

249.000 
<20.000 
<20.000 
<20.000 
2.000,000 
<20.000 
<20.000 
<20.(100 
<20.000 
<20^100 

32.300 
79.000 

321.000 
13,000 

200 

13.500 

73 000 
37.%0 

13.000-210,000 

300-700 

200-1200 

200-4*0 

400-60,000 

10.000-43,000 

f *0-AI0 
730-1400 

1100-1400 

Rhode l&land eitu^i 

Xfish Sea. olT Port* Erin 
mnd Si. Mary 

Soulhampton 

US PaciAc coas: 
Rhode l&land e*iuarie* 
NW Allanlic 
US AUanlic coa i l 
Irish Sea, oR Port : Eiin 

and SL Mary 

Scollish waicr* 
Biisiol-Scvcrn 
Irish Sea 
NW AUanlic 
US coai l* 

NW AUanUc 
US coast* 
Off Monterey and Lo* 

Angelem, Cmlif. 
Irish Sea 
ScoKish water* 

Irish Scm 
O f Monterey and Lo* 

Angf i r * . Calif. 

Irish Sea. off Port* Erin 
mnd St. Mary 

Ligurimn Sem 
Mcdilenrancan 

NW Atlantic 
Taiman Bay New Zealand 

30X)00-530.000 

9000-300XXX) 
2800-33^)0 

62,000-423.000 

210.000-299XW0 

Irish Sem off Port* 
Erin. St. Mary 

Bh&tol-Scvem 

Irish Sea 
Irish Sea. PoM Erin 
Bristol-Severn 

Scottish water* 
Tasman Bay. N e * Zealand 

E i i k f ef oL 1972 

MuCin and Riley, !956 

, 147) 

Pi ingle f f at, 1968 
Fisler ef uL. 1972 
Windom and Smiih. 1972b 
Prinplr f ! ol . 1968 
MuUin and Riky, 1956 

Topping, :973b 
Bunerwwth, 1?72 
Nickkss ^ cL 1972 
Windom. 1972 
Pring^ ^ uL, 1968 
Windom, 1972 
Phnplf ef oL, 1968 
Graham. 1972 

Nickle** ff e i , 19̂ ,2 
Topping, 1973b 

Segaf ff of . 1971 
Gmhmm. 1972 

Mullin pnd Riky. 1956 

Marchi mnd Chimard. 1966 
Puwler and Ekna)^)^™. 1973 

l^lndom, 1972 
B'^ok* mnd Rumsby, 1963 

Mullio mnd Riky, 1956 

Butimvorth M of.. 1972 
Peden f f oL 1973 
N ickkw ef e l . 1972 
Pregton ef 1972 
Segar ef of.. 1971 
Buiterwonh ff of.. 1972 

Topping 1973b 
Brook: and Runisby, 1963 

English Channel. Soudiamplon Bryan, 1973 

Irivh Sem 
Scntlish water* 
NW Alkmlic 
I5nfi off Araseo 
Rive:. P. Kico 

Mnnicrey Bay Culirornim 
niîinl Severn 
lri\h Sea. Purl Erin 
liish Sea. P* Erin 

Segar ef ol. 
Topping, 1973b 
Wmdom an.i Smilh. I97?b 
Lowman, 1966 

Graham. 1972 

N k l k M e, wf . 1972 
S f f jT f f u f . 1971 
MuHin and Riky, 19/̂  
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No. of 

fn pAitni Mean 
F\V. 

Range DW. ;ig/kg 
C(̂pf ling place 

VKKTF,BRATnS 

Rnjd fiofij 
ocanfAzoj 

liver 
S. fLfkJgyf 

Fbhf* 
Xfirhon mfffW'H 
Cofoniuf tajonaJa 

giiis 
C l l f»cl 
vcnical col. 

EMffi)nrwi a/ffffffolw 

E. 

rAwnmuf off»orof/g 
nirdh 
niilRc head 

HixxkJ mcfgMnkcr 
muscic 
Rrd hicâlcd mciK*:iwr 

0) 

(5) 
(H 
(I) 

(2) 
( 2 ) 

(2) 

X70 
(115) 
(30) 
(40) 

(150) 

90 
90 

590 
760 

1900 

Co'cfuirfiMMJ fcmgimoMUf (4) 130 

Coffngroufl i eJfnfufwf (51) 360 

CWLVuffumbruj (23) 170 

C lu f fo Aaren^faj (62) <30 

E lk l (2) 30 
(7) 80 
0 ) 120 

Cremmiufff fokmfxu M 
Cunyff *p, (1) (75) 
E w f fwriui. m u x k (4) 

poHutcd 
FbrnJulw: f iefffofffrwi (6) 330 
Gcdw: morfiwo 

muscle and hvei (58) 120 

(3) 180 
(13) <50 

finet (77) <30 
Gfyj'r.TfrpAafHj zarfunj i (2) 

sp. (6) 310 
Hofoi enffUA rw/wf 0 ) 840 
Afoiofro mignconf (10) 240 

(11) 230 
Afffamngramno orgffj imi (60) 

gUct <30 
Affffanjgu mifrfoafff 90 
Af icwi fumuj p o f i ^ r u j 30 
Wufa ip . 
OpbfAoHMo ogfu.um (30) 200 

(10) 150 
fL fo f i i fifAy: fcf/iiMfignia (3) (325) 
Porof f i r } } t f fu /H j (2) 

(1) 75" 
Pfoficfiffiy: / I fWf 
PfrufomfcfM p fo t f fM (95) 70 

(12) 120 
(9) 50 

f'llct (59) <30 
(3) 30 

foffocfi inwi poffochinuj 460 
P j f f f i i f i / n } ! rnKfo/icificfw (2) 

cocuffa (5) 260 
musck (6) (100) 

(4) 300 
JL mo* h/u/wj. fiver (6) 
Ti i f f i iwrm f rpfwfw (4) 44 

(31) 50 

C!0-?0) 

IX»-750 
60-420 

2-3 
4-13 

69-97 
230-440 
3f'0-l600 
140-400 
100-400 

110-320 

120-170 

16-17 

620-1670 

18-30 
50-960 

50-960 

29-57 
<5-110 

(110-110) 
(< 2.̂-90) 
(<?0-M) 

400 
100 
130 

600 

3sm 
790 

2600 
1300 
2700 
710 

1300 
7d9 

5600 (AW) 

1080 
2200 
1000 
970 

140 
100 
770 

620 
1300 

490 
300 
600 
300 
190 
200 

200 
2600 

1000 
2000 

30-1300 

590-2600 
480.1000 

11-16 
18-62 

360-530 
780-1700 
980-4100 
390-1900 
420-1900 

420-1400 

390-760 

61-90 

95-150 
190-1400 

150-250 
<5-300 

300-4W 

< IM- 300 

<:(C-200 

Ckvcdon, B i ino l ChunncI 
K W Ailani ic 

0/T Oregon 

Mona Island, Puerto Rko 
PiB Capiian 

NW AtlanEic 

Pcden ff of. 1973 
%lnilom ff ul, 15r73b 

Culihall mnd Holloa, 1972 

Wmdom ff oL 1973b 

Lowman f f aL 1966 

Off Cangrejns a; 
100 falhcmk 

S of Boquula 

ScoMiili water* 

CkveJon DfiUol Channel 
NW Alkmtic 

Gulf of Finland 

Rhode Island e&tumne: 
Clevedcn Bf istr l Channel 
Coasts of England aixl 
Wak* 

North Sea 
Distant water* 
Scottish water: 
Orrgon-Wa^h. coast 
Puerto Rico. S of BoquiCa 
Mona Island Sardincra P. R k o 
0 ? Puerto Rico 
N of St. Thomas P. Rico 

Scottish waicfs 
Clevedon. Bristol Channel 
O f Oregon 
NW Atlantic 
200 yds og Matei Islmnd, 

P. Rico 
Pucrlo Rico, S of BoquiHe 
NW Atlantic 

Ofcpon. Wash, coast 
Clevedon, Brislol (Thanncl 
Coasis of Fngl. and 

Waks 
North Sea 
Distant voters ^ 
ScoTli&h water* / 

CIcvedon. Bristol Ch. 
Ofcrim. \\ ush coast 
OlT Puerto Rico. NW coast 
N\̂' AlUnlic 
Toiumjl ine Reef. P Rico 
NW Atljniic 
Ana^co Bay. P. Rico 
Puerio Rico. Ami^co Bay 

and River 

NW Atlantic 

Topping, 1973b 

Pcdeo f t oL 1973 
Windom €f o i , 1973b 

Jaakkola f f of., 1972 

Ei&ler ef W., 1972 
Pedrn f f aL 1973 
Portmann, 1972a 

Topping. 1973m 
Robertson ff of., 19^2 
Lowman ef of., 1965 
Lowman ef cL, 1966 
Ix>wman rf a).. 1967 
Lowman ff a i . 1966 

Topping. ISK?^ 
Pedcn et a l . 1973 
Cul&hmll and Helton. 1972 
Windom. 1972 
Lowm;in et al., 1966 

Lawman f t al., 1965 
Windom el al., 1973b 

Robertson e( of , 1972 
Pcden f t oL, 1973 
Portmann, 1972a 

Topping. 1973a 

Pedcn f* of. 1973 
RoheM\on ff of, 19̂2 
Lo*man w oi. IV67 
WinJom ef oY. 15 73b 
Logman ft of. 1966 
Windom of , 1973b 
I.owman of . 1966 
Lnwman if of. 1967 

Windom f f of., 1973b 

Lowmmn ef of , 1967 

X_o* man rf of.. 1967 

Windom. 1972 

Ŵ: wrh wci*;li(. cmiin'rulions in parens are olinuihons from pincf:*! \upp!icu hy Ihc authors. 
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APPENDIX 4 

A SlWmARY OF THE EFFECTS OF CADMIUM ON MAN 

The topic has been reviewed extensively elsewhere (1-4, 271-276); 

the report for the Commission of European Communities (271) is particularly 

notable for an informative treatment of the subject (560 references). A 

brief paper by Nordberg (272) was found to provide a good general background 

to the effects of cadmium on man. The reviews cited should be consulted for 

the original source material. 

ROUTES OF CADMIUM EXPOSURE 

The major sources of cadmium in day to day living are food, water, air 

and cigarette smoke. Table A2 presents typical values from these sources. 

Rice (in Japan), wheat (in the U.S.A.) and seafoods in general account 

for most of the cadmium dietary intake (271). The metal in drinking water 

is leached from galvanised pipes and silver soldered joints (271). Air 

concentrations are generally low in rural areas but liver and kidney cadmium 

concentrations have been reported as 2.5 to 3 times greater in smokers than 

non-smokers. Estimates of the daily absorption of cadmium for smokers and 

non-smokers living in different localities is given in Table A3. 

TOXIC EFFECTS 

The organs most affected by exposure to cadmium are the lungs, e.g. from 

cadmium oxide or cadmium fumes in the atmosphere during industrial processing, 

and the kidneys via inhalation or ingestion. 

-3 

Prolonged exposure to 0.1 mg m Cd in air has been shown to produce 

pronounced effects on the lung (chronic bronchitis, emphysema) and also 

proteinuria (the excretion of low molecular weight serum proteins in urine). 

Proteinuria is the first symptom of tissue damage from cadmium exposure, and 

is caused by the malfunction of kidney tubules. Other effects from cadmium 

absorption are anaemia, resulting from decreased iron absorption in the gut, 

and the formation of CagfPO^)^ stones. 
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Table A2 Cadmium Concentration in Food, Water, 
Absorbed from Cigarettes (after Lauwerys (271)) 

_1 
' Normal' dietary intake 50-150 jig day 

-1 
'Abnormal' dietary intake 600 jig day (Jintsu) 

Concentrations in food:-

- 1 
Shellfish <0.05-50 fig g 

-1 

Fish: Total 0.001-4.82 jjg g 

Muscle 0.00 -1.67 p,g g 

Meat <0.02-8.0 fig g ^ 
- 1 

Cereal, Eggs, Milk <0.01-0.3 f.ig g 

(Rice in Jintsu Valley 0.35-3.36 (x = 1.0) jig g ) 

- 1 
Water: rarely exceeds 5.0 jig 1 

-3 
Air: rural 0.001-0.01 jig m 

-3 
urban 0.002-0.7 fig m 
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rable A3 Estimates of Daily Cadmium Intake and Uptake 
(from Lauwerys (271)) (jag day" ) 

I 
> 
A. 
! 

I 
K 
T 
A 
K 
E 

U 
P 
T 
A 
K 
E 

From Air 

From Food 

From Water 

TOTAL 

^ . a 
From Air 

From Food 

From Water 

TOTAL 

RURAL AREA 

Non-Smoker 

0.005 -0.215 

6.005 -94.215 

0.00032-0.1376 

0.36 -5.78 

URBAN AREA 

Smoker^ Non-Smoker Smoker^ 

INDUSTRIAL AREA 

3.0005 -3.215 0.01 -3.5 3.01 -6.5 

Range 4 - 8 4 (median 43) 

Range 2 - 1 0 (median 3) 

6.0005 -97.215 6.01 -97.5 9.01 -100.5 

1.92032-2.0576 0.0064-2.24 1.9264-4.16 

Range 0.24 - 5.04 (median 2.58) 

Range <0.12 - <0.6 (median 0.18) 

2.28 -7.70 0.37 -7.88 2.29 -9.8 

(a) daily inhalation of 20 m , 25% deposition, 64% absorption 

(b) deposition of 3 ug from cigarettes, 64% absorption 

(c) 6% absorption 

Non-Smoker 

0.05 -25 

6.05 -119 

0.032-16 

0.39 -21.64 

Smoker' 

3.05 -28 

9.05 -122 

1.952-17.92 

2.31 -23.56 



There is^ as yet, little evidence that cadmium causes hypertension 

(the arguments for and against are discussed in (2)). 

Osteomalacia, normally associated with Vitamin D deficiency (272), 

was the most outstanding feature of Itai-Itai disease but this was observed 

predominantly in post-menstrual women on low calcium and protein diets who 

had borne many children. 

The total ' normal' body burden of Cd has been estimated as 30 mg, 

although other estimates vary between 10 to 55 mg (273) , depending on the 

country concerned. The liver and, predominantly, the kidneys, contain 

50-75% of all the cadmium present in the body. 

In the kidneys, the cortex/medulla ratio was put at 1.5-2 with 75-80% 

of all the cadmium present bound to a protein, metallothionein, of 6000-

7000 molecular weight which contained 6% cadmium by weight and one third 

of its amino acid residues as cysteine (243) . The purpose of this protein 

has been described as a detoxicant for cadmium or as an agent for the regu-

lation and transport of copper and zinc, supported by the fact that it is 

also found in many other organs (271). The protein is constantly broken 

down and reformed and it is this that may allow for the release of small 

- 1 
amounts of cadmium in urine (<2 )j,g 1 ) . It is the non-protein bound cadmium 

that is thought to cause renal damage and when the excretion rate exceeds 

6 )j,g 1 ^ Cd in uiine, the critical level of cadmium in the kidney cortex 

-1 
of 200 jig g is thought to have been reached, a value at which proteinuria 

- 1 

may occur. 'Normal' concentrations of cadmium in the kidney are 24-50 pg g 

at age 50, after which the concentration declines. 

SINGLE DOSE AND LONG TERM EXPOSURE EFFECTS 

Single dose effects are summarised in Table A4. 

The daily intake of cadmium required to produce kidney damage by the 

age of 50 in man has been calculated (272). Table A5 presents estimates 

based on dietary intake and inhalation of contaminated factory air. Such 

calculations require detailed knowledge of adsorption rates, biological half 
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Table A4 Single Exposure Effects (for a 70 kg man) 
(after Fulkerson et al. (2) and Lauwerys (271)) 

CADMIUM 
(mg) 

INGESTION 

RESPONSE 
Cd Oxide/Fume 
(mg for 8 hr) 

INHAI.ATION 

RESPONSE 

I 

m 
I 

3-90 

10-326 

350-3500 

1530-8900 

No effect level 

Emetic threshold (gastro-
intestinal cramps) (13-15 
mg 1 in drinks;reported 
effect) 

Severe toxic symptoms, but 
not fatal 

Estimated lethal dose 

Reported lethal dose 

0 . 0 1 - 0 . 1 

0.25 

1 

5 

No effect level (safety standard 
in U.S.A., U.S.S.R., U.K., Finland, 
Sweden, Germany) 

Reported mild intoxication 

Produces pulmonary disease 

Estimated lethal dose 



Table A5 Estimated Long Term Exposure to Cadmium to produce Proteinuria 
at age 50 in Man (after Nordberg (272)) 

I 

--J 
1 

Excretion of Cd ( 
Cadmium in 

=Biological 
Food) 

Cd Concentration in Factory Air ijug m ^) 
(8 hr day , 244 days yr at 10 m ventilation) 

(% Total 
h Time 
(yrs) 

Body Cd 
day ) 

h Time 
(yrs) 

(Ug day *) 
25% 

Pulmonary 
Absorption 

50% 

0 (0) 164 

12 

21.3 8.5 

A2 

4.3 

Exposure 10 
time (yrs) 

10.7 

25 

4.3 2.2 

0.002 (95) 196 22.1 9.3 5.1 11.1 4.7 2.6 

0.005 (38) 248 23.3 10.6 6.5 11.7 5.3 3.3 

0.01 (19) 352 25.4 13.0 9.3 12.7 6.5 4.7 

0.02 (9.5) 616 30.0 18.6 16.0 15.0 9.3 8.0 



time and excretion rates which vary appreciably:-

(i) retention on inhalation - 13-19% (271) 

10-40% (273) 

15-30% (274) 

More precisely, it is estimated that, of the inhaled particles, 50% of 

the <0.1 jum particles compared to 10% of the 5 pjn are retained in the lung 

(2, 271). 

(ii) absorption by ingestion - 4.7-7.0% (x = 6.0%) (271) 

3.0-60% (273, 274) 

(iii) excretion -- 0.004-0.015% of the total body burden is excreted 

daily (271, 273) 

(iv) half-time: kidney - 10-40 yr (272) 

17-33 yr (274) 

body - 13-37 yr (271,273) 

15-20 yr (275) 

BIOCHEMISTRY 

A detailed discussion is presented by Vallee and Ulmer (277). The toxic 

effects of cadmium are obviously a manifestation of interference in normal 

biochemical processes. Cadmium has a stronger affinity for sulphydryl groups 

than for nitrogen or oxygen containing ligands. However, it also shows a 

high affinity for phosphates, histidyl side chains of proteins, purines, 

pteridines and porphyrins, as well as cysteinyl residues. It may therefore 

inhibit enzyme activity, bind to functional groups to effect the conformation 

of nucleic acids and disrupt oxidative phosphorylation. The interaction of 

the metal with phospholipid monolayers could be the biochemical basis for 

the effect of cadmium on mitochondria, kidney tubules and nerve 

membranes. Information on the replacement of zinc by cadmium and a summary 

of the enhancement or inhibition of enzyme activity may be found in Tables A5 

(a) and (b)̂  
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Table A6 Enzymatic Activities (a) Enhanced and 
(b) Inhibited by Cadmium 

(after Valiee and Ulmer (277)) 

(a) Enz)'me Source 
( b ) 

Enzyme Source 

I 

AciJ ̂,liospt)m(r.sc 
Adcr.osuic irip'iosphatasc 
AL:r,yl icucirtc jipcpli'j:.se 
Alkr,li:ie phos'.iliatase 
g-Amino'cx ulii'.ic acid 
cebydratasc 

Amylase 
A.rr.inase 
CcibwXM-xrplidLSC A (sstercs:) 
Carboxypj;)Lidasc B (esterase) 
Oirr;nsir.aEe 
ChoIir.Liicraac 
Cytocrircme oxidase 

Glucose oxiciisc 
Gl'jcocc 6-phospkitc 

u:!iyjroginase 
Gluiarr.aie forrnimino 

tr(:nKrcKj(c 
Hisiiclir.t: c-inmonh lyase 
hiiilic (!chydro:rnr.:e 
Oxiilo/.cc'.'.te dcc&rbaxylMO 
ri". osp!', op) ruv:i ic carboxylase 
Ph ospt'i 0 :i)TUvaic hydra t::se 
P]'ios;itK)r)'bse 
Py r u V a to dchy drogcn a .̂e 

Pyruvate decarboxylase 
Prolidase 
Succinic dehydrogenase 

ra t liver 
fowl red blood cells 

bacterinl 
rabbit and rat liver; rat lung 

fowl liver 

nip.lt 
yeast 
bovine pancreas 
swine pancreas 
sv.'ine kidney 
rat brail), spleen, heart, kidney 
pigeon brain (Bi; deficient) 
bacterial 

mouse li\er and heart 

bacterial 

bacterial: rat and guinea pig liver 

mou c liver and heart 

bacteria! 

plant 

yKKt 
rat liver 

bacterial 

wht.a'. ;;erm: yeast 
swine kidney 

pigeon liver; heart and skeletal 

(B;; deficient) 

Acid poospiiatase 
Adenosine tr iphosphatase 
Aldol 

A Icol! ol de! i\'drogenase 
Alkaline phosphatase 

5-ALA synthetase 
Amylase 
Aryl suh'atasc 
Carbonic anhydrase 
Carbo.\ypep!i(tase A 

(peptidase) 
Ca ;b jxypept idase B 

(peplidasc) 
Caiplase 
Choiinesterase 
Cytochrome oxidase 
/3- Fr u c t o !'u r a n OS i dase 
( i luconate dehydiogenase 
Glucuse-6-["-dehydrogenase 
d n t a n i i c oxaloacetic 

transatniiiase 
GlyccfU phosphate 

dch}d.iogenasc 
Glycyl-glycine dipeptidase 
01)'cyl-scrine interconversion 
Isocitrale lyase 
Leuciiie an:inopeptidase 
Lipase 

Lipo iinide dehydrogenase 
Pep - iiise 
j'.ios pi. ori hon uelea^e 
Plasn.iin 
Proiidcse 
Pi oteinase 
Succinic dehydrogenase 

Tiipcpiidase 

Tryptophan oxygenase 
Ure.-'Se 

Xanthine cehydrcgent^e 

canine live-

rat liver: rabbit muscle 
rabbit muscle: rat liver 
equine li \er 

calf duodenum; E. coli; rat liver, 
kidney, and testis 

chicken liver 
bacterial 
ox liver 

human erythrocytes; plants; rat testes 
bovine pancreas 

swine pancreas 

chicken liver 
rat liver 

rat liver mitochondria 
yKis: 
swine kidney 
rat liver 
rat liver 

rabbit musck 

fish gut 
rabbit liver 
yeast 

swine W;--,; y; rat kidney 
swine ix;r,creas 
swine heart; ciiicken liver 
bo\ ine thyroid 
spinach leaves 
hurnar. serum 
swine kidney 
biicteriid 
rat iivcr, I t i dng , g M a d s 
calf thymus 

chicken hver 
soyl\ ..n 

clnck liver 



SUMMARY 

One obvious point arising out of the data presented is that absorption 

from the lungs is small compared to the dietary intake unless the individual 

smokes. The dietary estimates above may be on the conservative side si^ze 

the mean and the range of means for daily intake in ^g were quoted as 48 

(Germany), 38-64 (Rumania), 60 (Japan), 100 (U.S.A.), 92 (U.S.A. - Institutions), 

27-64 (U.S.A.), 80 (Canada)(2, 271). The U.K., France, Germany and Sweden were 

- - 1 

in the range 10-30 jj,g day (271). 'Normal' intakes exceeding 200 jig have 

been recorded (2). The 'normal' range of intake has been put as high as 

32 (rural, non-smoker) to 180 jig (urban, smoker) (2) . 

There are many discrepancies in estimates of half-time, pulmonary and 

gut absorption and excretion rates. Arising from such discrepancies, various 

critical long-term exposure levels will result, e.g. 132 jig Cd (87 jig for a 

smoker) in a daily diet over 50 years may produce kidney lesions at 0 elimina-

tion rate (2), whereas 200 jig per day is the 'safe' level quoted by others 

(271). 

The only sure conclusion to be deduced from such data therefore is that 

more research is needed in this very complex area. However, the figures do 

serve to show that the FAO/WHO recommended safe daily intake of cadmium of 

60-70 Jig of cadmium seems justified whereas the Japanese accepted level of 

- 1 

300 Jig Cd day is definitely not. 

The efficiency with which cadmium is amplified in the environment with 

respect to zinc, the element most closely related to cadmium chemically, 

is demonstrated by the decrease in Zn;Cd ratio on passing from the geological 

source, through the food chain (diet) finally to the lowest ratio in the 

human kidney (Table A7). 

That the diet, and in particular, seafood, contributes most to cadmium 

intake is of particular relevance to this report. More detailed knowledge of 

how cadmium is acquired by marine organisms, and the amount of cadmium yet 

to find its way into the environment, is of prime importance in assessing 
the future exposures of man to the metal. 
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Table A7 Example of Zinc-Cadmium Ratios (adapted from Yamagata, (1)) 

Range Mean 

LITEOSPHERE 350 -450 400 

SOIL (normal) 

SOIL (Jintsu) 

180 - 12 ,000 

142 - 363 

833 

279 

FRESHWATER 

SEAWATER 

100 - 330 

50 - 100 

200 

75 

MARINE ORGANISMS 54 - 3500 140 

HUMAN DIET 

HUWMBODY: TOT&L 

BLOOD 

LIVER 

KIDNEY 

(80 - 123) 

40 - 860 

1 5 - 8 0 

1.4 - 3.8 

60(100) 

80 

300 

35 

2 . 2 
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