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1 Introduction

Pingree, Griffiths and Mardell (1983) have developed a two layer hydro-
static model to investigate observations of the internal tide which develops
at the shelf break in the Celtic Sea. The work described here compares a
similar model with data obtained from current meter moorings near La Chapelle
Bank, and investigates some of the phenomena thought to be associated with
the internal tide.

A simple approximation to the topography in the vicinity of La Chapelle
Bank is adopted, and then the various parameters of the numerical calculations
are adjusted, firstly to observe their effect, and then to bring the model in
line with the observations. Current measurements at La Chapelle Bank
(Heathershaw, 1984) have indicated the presence of a velocity surge once each
tidal cycle (Fig 1). This surge is on-shelf in the upper layer, and off-shelf
in the lower layer, and occurs approximately one hour after maximum flood at
this position, which is about 6 km on-shelf. The present model is used to
predict these surges, and to investigate how they are affected by the depth of
the upper layer and the density difference between the two layers. Their effect

on sediment transport at the shelf break is also investigated.

2 Methods

2.1 Assumptions used for the model

The assumption that the pressure is hydrostatic is used, and hence all
vertical velocities are neglected relative to horizontal velocities and all
waves are assumed to be long waves. The water column is considered to consist
of two layers, the densities and velocities being considered uniform with depth
in each layer. The model is fully non linear, and the barotropic M, tide is

assumed throughout.

2.2 Equations used for modelling the system

Four hydrostatic equations, which incorporate the kinematic condition at
the surface and interface, are obtained by considering the conservation of
momentum and mass in each layer.

Continuity in the upper layer gives:

3 ((hy + g = nux) +3 (z -n) =0 Q)]

9x ot



and similarly continuity in the lower layer gives:

3 ((h, + n)u,) + 3n =0 (2)

X at

Here n is the upward displacement of the interface, ¢ is the upward
displacement of the surface, h; are the equilibrium depths of the layers and
u; are the fluid velocities, with subscripts ; for the upper layer and , for
the lower layer. Fig 2 represents these variableson a diagram of the model.

Similarly, conservation of momentum gives:

dup + uy duy = -g 3L
ot X 9x (3

for the upper layer, and:

34, +u, u, = -gp1 9 -g p 3n (&)
ot 9% p, OX p, 9x

for the lower layer.

Here p; are the constant densities of the two layers, and &§p their
difference pp - p1 (8p positive for stability). The on-shelf direction is
taken as positive, with x being measured from an origin on the seaward side
of the shelf slope.

Now let h' be the depth of the displaced upper layer, and h'' the depth

of the displaced lower layer, then we have:

h' =hy +¢ -1

h'”= hs + n

. = ht* + h'!

Define u Y1 uz
H

and u = u; - uz

where H=h"+nhn""

Here U is the barotropic tide, and u is the shear between the layers

or the baroclinic -tide.



Subtracting (4) from (3) gives the'momentum'equation

Bu+ @ (Uw) +, 3 w® (W-h'")y =g 3 (n-¢g) 59
3t dx ? 9x H p2 9%

3%y

However, following Pingree et al (1983), a term of the form K; Fyy
could be included in the above equation to model attenuation by viscous, or
possibly turbulent, diffusion. Varying the coefficient Ki provides a means
of controlling the numerical stability of the calculations used to solve the
equations. Also, a further term -K, u could be included to represent the
effects of internal friction. Finally, if we assume that the x and t
derivatives of ¢ are negligible compared with the corresponding derivatives

of n, equation (5) becomes:

d3u + 3 (Uu) + 4 ji_(uz (h2 = hy + Zn)) =8 0n + Kz 3¥u -k u (6)
ot 39X 9x H ax dx2
where B = gg%—, and H = h; + hy

On subtracting the two continuity equations we obtain:

an =38 ((h1 - mMU) + 3 ,(hy = n) (h2 + n) u,,
ot oX X ( " ) @)

so that we have two equations ((6) and (7)) for the two unknowns u(x,t) and

n(x,t).
(Pingree et al do not include the third term on the left hand side of

equation (6), but this was found to have very little significance. See

section 3.1).

2.3 Radiation conditions

It is necessary to allow waves reaching the horizontal extremities of
the model to propogate out freely, and thus a radiation condition is applied

at each end of the model. The radiation condition used is:




S

2 = 54@3—(E1239 , 1ie c is the long wave phase speed, and the

where ¢
D2 H

sign- used is minus that of the direction of propogation of the waves at the
boundary. The derivation of this radiation condition requires that the sea

bed be horizontal at both boundaries, and the positive direction is on-shelf.

2.4 Methods used for numerical solution

Finite difference methods are used both spatially and temporally to
solve the equations (6) and (7) with boundary conditions (8) and initial
conditions as specified. The initial conditions used throughout the present

work are:
n(x,0) = u(x,0) =0 (9)

The model is forced by the semi-diurnal barotropic tide,
ie U = U, cos wt adjusted for each horizontal position using the continuity

equation

9 (HU) =0
9x

which gives U(x) H(x) = U, H,

where U, is the value U at. the on-shelf end of the model and H, is the
value of H at the same point.

Equations (6) and (7) are two equations in the two unknowns n(x,t) and
u(x,t). If, for the moment, the complete spatial solution is assumed to be
known at some times t = t- and t = t - At then central differences are used
to advance the solution to the next timestep by a 'leapfrog' method.

The spatial derivatives on the right hand sides of equations (6) and (7)

are evaluated using the central difference formulae:

3 f(x,) = f(xo + 8x) - f(x, — Ax) + 0(Ax)? (10)
ox
2A%
and 32 f(xg) = £(X, + AX) ~ 2f(x,) + f(x, — AX) + 0(ax)?
s “an
(rx)?



while the left hand sides are evaluated using the central difference formulae:

an i = n(ty + At) = n(ty = At)  + 0(at)? (12)
ot | t, 28t

and  Bu = u(ty + At) - u(ty - At)  + 0(at)? (13)
3t | ty 24t

The spatial grid consists of 2n + 1 points, all spacedat an equal distance
Ax apart and staggered such that n and u are known at alternate positions
(see Fig 3). Equations (12) and (13) are then applied to the n and u positions
respectively, in order to advance to the next time level ty + At. Having
obtained u and n at alternate grid points at this new time level a staight-
forward linear interpolation is used to evaluate each of the two variables
at the intermediate points (these will be needed to step the solution forward
to the next time level). Thus the grid is complete for the n + 1th time step.

Simons (1980) suggests that computational stability will require

b <
Ax 72(:maX

and At < (Ax)?
2K,

where cp . is the maximum long wave speed occuring in the model. At has

been chosen in accordance with this.

2.5 Sediment transport calculations

Analysis of sediment samples from La Chapelle Bank (Heathershaw and
Codd, 1984) shows that they have an overall mean grain size of approximately
500 pm. Material as coarse as this will move principally as bedload (ie grains
will roll or saltate along the seabed). Bedload transport rates may be esti-
mated using Hardisty's (1983) modified excess stress formulation of Bagnold's
(1966) sediment transport equation, in which the quantity of sediment transported

as bedload is given by:

9, = k (ui002 - UlooCRz)- U190 (g em s %) (14)

It should be noted that for convenience and for comparisons with other work,

sediment transport calculations in this section have been carried out in c.g.s.

units.



In (14) k is a dimensional coefficient which depends on grain size, Ujg9 1s the
current at 1 m above the seabed, and U100.p is the corresponding threshold
velocity. There is some uncertainty in the exact form of k but a re-evaluation

of the data in Hardisty's Figure 1 and Table 1 gives
k = 1.773 x 1078 g 076936 o5 op TH4g2 (15)

where d is the grain size in mm.
The model only provides a value of depth mean flow for the lower layer.

However, a logarithmic velocity profile for the lower layer is assumed:
(16)

where u, is the friction velocity, k is the Von Karman constant equal to .4,
Z, 1s the roughness length and z is the height above the bed. By integrating

(16) over the lower layer a relationship is obtained between uig¢ and u,, viz:

Uyg0 = u, 1n @%&Q) 17)

h
2
1n(ezc,)

Equation (16) enables calculation of Ui00np from a value of the critical

friction velocity. Thus a value of Uper = 1.62 cm s ', obtained from a curve

giving the threshold of movement of sediment and corresponding to a grain size
of 500 um with z, = 0.5 cm (Heathershaw, 1984), gives U1004p = 21.46 cm s 1.

qSb is then calculated.

For the present work, dgp is averaged over a complete tidal cycle, for

any particular position, to give an indication of net sediment transport.

3 Results

3.1 Development of the model

Firstly it is necessary to find a suitable way of modelling the topo-
graphy. Various profiles of the form H = A - B tanh (Cx - D) were tried,
since these give qualitatively the correct behaviour. Here A, B, C and D
are fitting parameters. However, it is difficult to produce a function
which has a suitable slope gradient, reaches its level close enough to the

slope area, and is level enough at the ends of the model not to invalidate



the radiation conditions. In preference a constant slope was chosen, sloping
from a uniform on-shelf depth of 165 m at x = 150 km down to a uniform off-
shelf depth of 4000 m at x = 100 km. This approximates to the available bathy-
metry for La Chapelle Bank. There is evidence from the results that the shape

of the shelf-break has an effect on the steepness of the internal waves produced.

! was used, this

For most of the work a barotropic tide of amplitude 0.45 m s
being an average value from current meter readings on La Chapelle Bank.

Tests were carried out to determine the effects of the constants K; and
K, on the stability of the model. The model was initially tried with K; and
K, both zero, and marked instabilities in the spatial profiles of the interface
were observed on the same scale as the grid. Investigating K, keeping K, = 0,
various values were tried and it was found that while values of the order of
10 m?s ! attenuated the instabilities somewhat without removing them, higher
values of the order of 50 m?s ! smoothed the instabilities completely, but
were found to attenuate the genuine internal waves more than one might expect
diffusion to do in nature. Thus a compromise was required to smooth the
instabilities as effectively as possible without affecting the waves of interest.
However, since the instabilities only appeared to be generated at the shelf-
break, a non-constant value of K; was tried. The idea was to have a peak value
of Ky just below the shelf break where smoothing was required, and have it
tailing off to a much smaller value away from the shelf-break so as not to
attenuate the propagating internal waves too rapidly. An exponential form
for Ki was found to be most suitable, viz:

-— -9 —-— -
K, = 30+ 270 e '+1 % 10 "(x - 90,000)? m?s”1 (18)

which has a peak value of 300 at x = 90 km, and tails away quickly to about 30.
This provided very good stability.
In a similar way the effect of K, was investigated, but it was found that
values large enough to smooth the instabilities even a little, for example
K, = 10 ° s !, also smoothed out the internal waves. It was concluded that K,
was of little additional use in reducing instabilities, and so it was set to zero.
The parameters Ax and At also appear to play an important part in the
stability of the numerical solution. Some work on this (Simons, 1980) was
noted in section 2.4. At the stage where an exponential form of K; was being
used the grid scales were Ax = 500 m and At = 300 s. However, in searching

for velocity surges (see section 3.5) the expontential form of Ki, (18), was



found to be suppressing the features required, and was reduced again to a
constant value of 40 m?s . It was found that by halving the grid scales
the instabilities virtually disappeared. Using a value of Ki = 40 gave a
ratio for the magnitude of the diffusion term relative to the other terms of
the wave eqn, of the order of 1073.

The numerical stability of the model, however, seems to be best achieved
by making the grid scales small since this does not effect the genuine internal
waves. Small values of K; (< 50) may also be used to enhance stability.

The radiation conditions used (equation (8)) were not overly successful
in allowing waves to pass freely out through the ends of the model. At the
righthand (on-shelf) end of the model the imposed condition worked for a
certain time before becoming unstable, while at the lefthand (off-shelf) end
the model became unstable almost as soon as waves reached it, causing the
breakdown of the method. The only solution to this problem was found by
extending the boundaries beyond the range of the waves in whatever time period
was chosen for the model to run. This meant that in practical terms the
model could not be run for more than 48 hours. However, this was not serious
since the model always reached a steady state within this time (see section 3.2).

As noted in section 2.2 Pingree et al have omitted from their momentum

equation (equation (6)) the term:

1 3 2 (hz - hy +2n)
2 5x% (u H )

This term was included in the present model to investigate its importance.
Removing it was found to make an observable but slight difference. Thus its

inclusion appears to be unimportant.

3.2 VWave motion predicted by the model

Before examining the wave motion predicted by the model, it was necessary
to find the most realistic values of h; and §p. C.T.D. data from La Chapelle
Bank provided average values of about 50 m for hi and about 6 x 10 * g cm °
for $p.

The basic pattern of wave motion resulting from a barotropic tidal flow
over the continental shelf topography described is illustrated in Figs 4 and 5.
Fig 4 illustrates the displacement of the boundary by six profiles equally
spaced over one whole tidal cycle, while Fig 5 illustrates the displacement of

the boundary by 12 profiles equally spaced over one tidal cycle, and each
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displayed separately. Exactly the same conditions apply in both. The motion
can be seen to be centred around the shelf break, and could be summarised by
saying that the interface at the shelf break oscillates up and down with the
period of the barotropic tide, and from this oscillation progressive internal
waves propagate in both the off~shelf and on-shelf directions. Note the
asymmetries in both. The bunching seen on the on-shelf side in Fig 4 is due

to the oscillating barotropic tide alternately speeding up and slowing down the
propagating waves; on the off-shelf side the tidal flow is not sufficient to
cause any noticeable effect. The waves decrease in amplitude as they propagate
in both directions, this being due to attenuation by the diffusion term K;.

The model settles down to a steady state after three tidal cycles, and
it is this steady state which i1s shown in Figs 4 and 5. However, when the
model is started from rest the first wave which propagates in each direction is
both larger in amplitude than the subsequent ones, and travels faster. This
is presumably because the wave is propagating into a flat interface rather than
following a train of waves.

With a motion such as that described, tests were done on the speeds of the
waves, comparing their positions as predicted by the model with the successive
positions that would be predicted by long wave theory. This was done by cal-
culating the long wave phase speed, adding it to the appropriate barotropic
tidal velocity and integrating with respect to time. Apart from the first wave
in each direction when the model is started, which as already mentioned goes
faster than the rest of the waves, all the others seem to tie in well with the
long wave prediction within the bounds of measuring errors. Table 1 shows

the results of one such calculation.

Table 1
Predicted and measured wave crest positions for a wave propagating on-shelf
hi1 = 50m Sp = 8x 10 % g cm 3
Common starting position = 160.2 km
Positions obtained from the Positions predicted by integration of
numerical model (km) long wave and tidal velocities (km)
160.2 160.2
167.2 166.9
171.6 171.2
173.0 172.7
174 .1 173.7
178.0 176.8
184.0 182.9

191.0 10 189.8
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Initially there seems to be a slight acceleration of the modelled wave
relative to the long wave prediction, but in each case this settles down by
the end of the third tidal cycle the model has been running. The grid scale
of the model limits the accuracy with which crest positions can be located,

and within the limits of accuracy the waves seem to follow the predictions

reasonably well.

3.3 Explanation of the wave motion in terms of steady flows

In an attempt to simplify some of the development stage, the model was
run once or twice with steady flows rather than oscillating tidal flows. The
results of these experiments provide a useful insight into the motion
observed for a tidal flow. Figs 6 and 7 are two such results. Both of them
show the position of the interface at 2 hour intervals after a steady current
of 0.2m s ' is 'switched on'. In Fig 6 this is an off-shelf current, and in
Fig 7 an on-shelf current. Fig 6 shows a relatively sharp depression occuring
in the interface at the shelf break. From this depression of the interface a
single 'surge' propagates in each direction with constant speed, leaving, as it
propagates away, the interface at a lower level, the on-shelf (upstream) side
being lower than the off-shelf (downstream) side. Fig 7 is very similar, only
as one would expect the displacement is now upwards. The larger displacement
is still on the upstream (now off-shelf) side of the shelf break.

Very broadly, the sinusoidally varying barotropic tide may be thought of
in terms of an off-shelf flow being 'switched on', then 6 hours later this
flow being 'switched off' and an on-shelf flow being 'switched on' and so on.
Clearly this is not exactly the situation, but alternating every half tidal
cycle the situations seen in Figs 6 and 7 can‘be seen to add up to the kind of
motion seen in Fig 4, not only in the way waves are generated at the shelf
break and propagate outwards, but also in the way that the mean displacement
of the envelope is higher on the off-shelf side than it is on the on-shelf
side,

More properly the sharp crest which forms during the off-shelf current is
an internal wave with an on-shelf phase speed, and so propagates onto the shelf

when the current relaxes. The opposite happens during the on-shelf current

with the peak that forms in the interface.

3.4 Influence of hy; and 3p

h;, the upper layer depth, and 3p, the density difference, are two physical

factors which can vary considerably, and tests were done to find their effect on

11
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the wave pattern described in 3.2 Data measured from La Chapelle Bank at
various times of the year suggests that sensible ranges for these two para-
meters would be h; between 30 and 70 m, and 3p between 4 x 10 * and

12kx 10" "g cm 3. Fig 8 shows the spatial picture (as in Fig 4) for various
combinations of h; and 3p in these ranges, only in this case the envelopes of
the curves alone have been shown, simply for clarity. This table of graphs
serves as a summary of the effects of both these parameters. The gemeral
trend is that as 3p increases so the amplitude of the central peak decreases+,
but at the same time the amplitudes of the propagating waves increase++, and
as would be expected the speed of propagation of the waves increases. As h;
increases the amplitudes both of the central peak and of the propagating waves
increase, and the speed of propagation increases, though not as noticeably as
with 93p. h; seems to have the most marked effect on amplitude, and 93p the
most marked effect on phase speed.

Investigating the maximum wave height over the whole tidal cycle for
various values of h; and 9p it was discovered that for values of 9 less than
about 3 x 10-“g cm ° the model did not behave as expected. Clearly there can
be no internal waves if there is no interface (9p = 0), and as the model

approaches 38p = 0 it might be expected to become invalid.

3.5 Investigation of velocity surges

To this end the motion in the system was examined with respect to time,
rather than to horizontal displacement, and in particular the upper and lower
layer velocities u; and ujp. Fig 9 shows u; and u; plotted against time for
various positions near the shelf-break; the broken line in each case represents
the barotropic tide. Comparing this with Fig 1, where the depth of the upper
layer is approximately 50 m, it can be seen that the model has successfully
predicted the observed surges, these being positive (on-shelf) in the upper
layer and simultaneously negative (off-shelf) in the lower layer. The plot
for 6 km on-shelf in Fig 9 corresponds to the data in Fig 1, and shows the
surge occurring about 1 hour before maximum flood, which is very similar to
the surges in Fig 1. The largest surge is seen at the shelf-break, and in
the lower layer this could have a very important effect on sediment transport
(see section 3.7).

As can be seen in Fig 9, as the wave propagates on-shelf, its effect is

+ . . . .
The interface requires more energy to be displaced by a given amount for
larger op

b+ . . -
Presumably because the waves, travelling faster, reach a given position sooner
and so have had less time to '"diffuse' according to K1 in eqn 6.

12



e

felt later at each successive position. At about 18 km onto shelf, however,
each internal tide encounters a barotropic ebb current so that its passage
time is greatly increased. The surge is thus drawn out and is much less
noticeable. However, at about 25 km onto shelf the wave is advected with the

ensuing flood tide and again appears as a characteristic surge.

3.6 Influence of h; and &p on velocity surges

Having investigated the effects of these two parameters on the spatial
picture produced by the model, it is also interesting to investigate their
effect on the velocity surges described in the previous section. Running
the model as for Fig 9, only with different h; and 6p values, indicates that
in general the amplitude of the surge is not significantly altered by &p,
although increasing &p does increase its duration’. On the other hand surge
amplitude increases markedly with h;, but with no significant change in its
duration. This is because, as noted in section 3.4, the effect of h; on the
waves was to increase their amplitude but to have less effect on their speed.

Since the surges occur simultaneously in both layers, and are of opposite
sign, the shear u, or baroclinic tide, will also show a marked surge at the
same point. Thus taking the maximum absolute shear value over a whole tidal
cycle gives a measure of the amplitude of these surges. This has been plotted
as a function of horizontal position (for a region around the shelf break) in
Fig 10, showing what happens as 8p varies for fixed h; = 50 m in Fig 10a, and
as h; varies for fixed ép = 6 x 10" g cm ° in Fig 10b.

Fig 10a shows that, away from the shelf-break, the larger the §p the larger
the surge amplitude. This is partly due to the fact that (as remarked earlier
in connection with Fig 8) the larger the 8§p, the larger the wave amplitudes away
from the shelf-break. However, the dominant factor is probably that larger §p
values produce faster travelling waves, which (from grounds of mass conservation)
must be associated with larger shear values (for equal wave amplitudes).

Fig 10b shows surge amplitude increasing everywhere with upper layer
depth, but most noticeably so at the shelf-break.

The general shape of each of the curves is also interesting to note,
expecially the sudden increase in surge amplitude from 1 km off-shelf to the
shelf-break. The diagram in Fig 11 illustrates what is happening as a wave
generated just off-shelf propagates over the shelf-break. Water from the on-

shelf lower layer is forcibly 'squeezed' off the shelf, the more so if the

+ . . .
Probably because, as §p increases, the wave, travelling faster, arrives (at
say 156 km) earlier in the tidal cycle when the flood is less strong, and
takes longer to advect past the fixed position

13



interface is near the bed. This would explain why Fig 10 shows such a sudden
+ .
peak at the shelf-break , why this is more pronounced for larger h;, and why

Fig 9 shows the largest surge at the shelf-break.

3.7 Implications for sediment transport

The last point about the accelerated flow at the shelf-break could have
implications for sediment transport. It might be expected that such a surge
of water over the shelf-break would be responsible for moving a considerable

amount of sediment., The calculations to evaluate tidally averaged values of

95b° Ispb
not quite as much as might be expected. However, it must be borme in mind

say, support this, although the quantity of sediment moved is perhaps

that the off-shelf surge in the lower layer at the shelf-break only lasts for

less than half a tidal cycle. Fig 12 shows the values calculated using

3

hy = 50 m and Sp = 6 x 10°% g cm ° at various positions in the shelf-break

region. For all h; and 8p a sharp peak value of E;; is seen at the shelf-
break itself. In Fig 12 this value is about .008 g cm * s '. This peak value
seems to be insensitive to 8p, but varies considerably with h; from virtually
zero with h; = 30 m to something of the order of 0.04 g cm ‘s ! for h; = 70 m.
Examining the values of H;;'varying with position, as in Fig 12, an
interesting pattern is observed. Although nowhere outside about 1 km of the
shelf-break is a;;.more than .002 g cmfls-l, at most positions it is observed
to be on-shelf in direction, while every 10 km or so it becomes off-shelf for
about 2 km. Clearly sediment transport on the off-shelf side due to the
internal waves is negligible.
As a further investigation, the total on-shelf depth was increased from
165 m to 180 m, to model sediment transport in a neighbouring area of La Chapelle

Bank. Keeping hi the same, it was found that the shelf-break values of g,

were approximately halved.

4 Conclusion

The model supports the existence of velocity surges observed at La
Chapelle Bank. Furthermore it predicts that these surges, most pronounced
at the shelf-break, may be responsible for transporting significant quantities

of sediment over the shelf-break into the deep ocean.

+ . .
Because u = u; - uz and uy is made more negative by the passage of the wave

14



Appendix : Symbols used in the text and in the computer program

Symbol Variable name in represents:
in text computer program
hi H upper layer depth
h, (HH-H) lower layer depth
H HH total depth (= hi; + hy if ¢ neglected in
comparison to n)
z displacement of surface
n Y displacement of interface
u; Ui velocity of upper layer
uz U2 velocity of lower layer
u U baroclinic or shear velocity = uj; - up
U uu barotropic tide
X X horizontal displacement
t T time
p1 density of upper layer
o2 RHO2 density of lower layer
Sp DRHO P2 — P1
h' depth of displaced upper layer
h'! depth of displaced lower layer
K K1 arbitary diffusion constant
K, K2 arbitary friction constant
B BETA = gsp
P2
( c1 : ( off-shelf end
e ( long wave phase speed (
( CN1 ( on-shelf end
Ax DX grid spacing for x
At DT ' grid spacing for t
N N an even integer — number of Ax grid spacings
Us uug U at on~shelf end of model
H, HHJ H at on-shelf end of model
YNEW )
YOLD ; v?lues pf n and u_at previous and next
UNEW ) timestep
UOLD )
9%sh QSB bedload transport
9t QSBAV tidally averaged Ly
k A dimensional coefficient

15
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Symbol
in text

d
Ujg0

u100CR

Variable name in
computer program

KAPPA
A1)

USTCR
U2CR
1MAX

represents:

grain diameter in mm

velocity 1 m above bed

critical value of ujgo for sediment transport
to occur

Von Karman constant

roughness length

" height above bed

friction velocity
critical friction velocity
critical value of u, for sediment transport

number of time intervals program runs for

Fitting parameters for shelf-break profile

N.B. For convenience and for comparisons with other work, all sediment transport

calculations are in c.g.s. units, while all other calculations are performed

in m.k.s. units.
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These measurements were taken about 6 km on-shelf.
Taken from Heathershaw (1984).
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Figure 2 Diagram of the topography used for the model, and also showing
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Figure 3 Diagram showing how a space staggered solution is produced
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obtained by linear interpolation.
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Figure 11 Diagram showing how a wave propagating on-shelf causes a large
off~shelf surge in the velocity of the lower layer at the shelf
break due to a 'squeezing' effect.
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Figure 12 Tidally averaged bedload transport rates, gqsb, for positions in
the shelf break region. (8p = 6 x 10 *g cm * hy = 50 m)






