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1 Introduction 

Pingree, Griffiths and Mardell (1983) have developed a two layer hydro-

static model to investigate observations of the internal tide which develops 

at the shelf break in the Celtic Sea. The work described here compares a 

similar model with data obtained from current meter moorings near La Chapelle 

Bank, and investigates some of the phenomena thought to be associated with 

the internal tide. 

A simple approximation to the topography in the vicinity of La Chapelle 

Bank is adopted, and then the various parameters of the numerical calculations 

are adjusted, firstly to observe their effect, and then to bring the model in 

line with the observations. Current measurements at La Chapelle Bank 

(Heathershaw, 1984) have indicated the presence of a velocity surge once each 

tidal cycle (Fig 1). This surge is on-shelf in the upper layer, and off-shelf 

in the lower layer, and occurs approximately one hour after maximum flood at 

this position, which is about 6 km on-shelf. The present model is used to 

predict these surges, and to investigate how they are affected by the depth of 

the upper layer and the density difference between the two layers. Their effect 

on sediment transport at the shelf break is also investigated. 

2 Methods 

2.1 Assumptions used for the model 

The assumption that the pressure is hydrostatic is used, and hence all 

vertical velocities are neglected relative to horizontal velocities and all 

waves are assumed to be long waves. The water column is considered to consist 

of two layers, the densities and velocities being considered uniform with depth 

in each layer. The model is fully non linear, and the barotropic tide is 

assumed throughout. 

2.2 Equations used for modelling the system 

Four hydrostatic equations, which incorporate the kinematic condition at 

the surface and interface, are obtained by considering the conservation of 

momentum and mass in each layer. 

Continuity in the upper layer gives: 

^ ((hi + ^ - ri)ui) + d (^ - in) - 0 (1) 
9x 9 t 



and similarly continuity in the lower layer gives; 

^ ((hg + rOUg) + 2]1 = 0 (2) 
3x 9t 

Here n is the upward displacement of the interface, ^ is the upward 

displacement of the surface, h^ are the equilibrium depths of the layers and 

u£ are the fluid velocities, with subscripts i for the upper layer and ^ for 

the lower layer. Fig 2 represents these variables on a diagram of the model. 

Similarly, conservation of momentum gives: 

9ui + lii 9ui - -g 3c 
9t 9x 9x (3) 

for the upper layer, and: 

9u, + Ug 9u2 = -g _Pi ^ -g £p 2]1 (4) 
9t 9x p2 9x pj 9x 

for the lower layer. 

Here are the constant densities of the two layers, and dp their 

difference p2 - pi (6p positive for stability). The on-shelf direction is 

taken as positive, with x being measured from an origin on the seaward side 

of the shelf slope. 

Now let h' be the depth of the displaced upper layer, and h'' the depth 

of the displaced lower layer, then we have: 

h' = hi + ? - n 

h''= h2 + n 

„ U = h'ui + h"u2 
Define 

H 

and u = ui - U2 

where H = h' + h'' 

Here U is the barotropic tide, and u is the shear between the layers 

or the baroclinic tide. 



Subtracting (4) from (3) gives the'\nomentum"equation 

9u + _3_ (Uu) + 1 _i. (h'- h'')•• = g ^ _8_ (n - %) 
3t 3x * &K ^ H ' P2 3x 

g2 

However, following Pingree et al (1983), a term of the form Kx 

could be included in the above equation to model attenuation by viscous, or 

possibly turbulent, diffusion. Varying the coefficient Ki provides a means 

of controlling the numerical stability of the calculations used to solve the 

equations. Also, a further term -Kg u could be included to represent the 

effects of internal friction. Finally, if we assume that the x and t 

derivatives of C are negligible compared with the corresponding derivatives 

of n, equation (5) becomes: 

3u + 3 (Uu) + 1 3 / U ^ (hz - hi + 2TI)\ — B 9ri + Ki 3^u — K2 u 
9t 9x 9x H 9x 3x2 

where B = , and H = hi + hz 
P2 

On subtracting the two continuity equations we obtain: 

9n = 9 ((hi - TI)U) + 9 /(hi - n) (hz + n) U., 

so that we have two equations ((6) and (7)) for the two unknowns u(x,t) and 

n(x,t) . 

(Pingree et al do not include the third term on the left hand side of 

equation (6), but this was found to have very little significance. See 

section 3.1). 

2.3 Radiation conditions 

It is necessary to allow waves reaching the horizontal extremities of 

the model to propogate out freely, and thus a radiation condition is applied 

at each end of the model. The radiation condition used is: 

hihz u = ± cn 



where = S_Ap. (hiha^ ^ ie c is the long wave phase speed, and the 
P2 " 

sign used is minus that of the direction of propogation of the waves at the 

boundary. The derivation of this radiation condition requires that the sea 

bed be horizontal at both boundaries, and the positive direction is on-shelf. 

2.4 Methods used for numerical solution 

Finite difference methods are used both spatially and temporally to 

solve the equations (6) and (7) with boundary conditions (8) and initial 

conditions as specified. The initial conditions used throughout the present 

work are: 

n(x,o) = u(x,o) = 0 (9) 

The model is forced by the semi-diurnal barotropic tide, 

ie U = Uo cos (Dt adjusted for each horizontal position using the continuity 

equation 

_9_ (HU) = 0 
3x 

which gives U(x) H(x) = Uo Ho 

where Uo is the value U at the on-shelf end of the model and Ho is the 

value of H at the same point. 

Equations (6) and (7) are two equations in the two unknowns n(x,t) and 

u(x,t). If, for the moment, the complete spatial solution is assumed to be 

known at some times t = t and t = t - At then central differences are used 
n n 

to advance the solution to the next timestep by a 'leapfrog' method. 

The spatial derivatives on the right hand sides of equations (6) and (7) 

are evaluated using the central difference formulae: 

9 f(Xo) = f ( x o + A x ) - f(Xo - A x ) + 0 ( A x ) ^ 

and 3^ fCx*) = f(xo + Ax) - 2f(xo) + f(xo - Ax) + 0(Ax)^ 

(Ax): 

(10) 

(11) 



while the left hand sides are evaluated using the central difference formulae: 

I n I = n ( t n + A t ) - n ( t n - A t ) + 0 ( A t ) 2 ( 1 2 ) 
St I t ^ 2 A t 

and ^ 2 
at 

= u ( t n + A t ) - u ( t n - A t ) + 0 ( A t ) ^ (13) 

t a 2 A t 

The spatial grid consists of 2n + 1 points, all spaced at an equal distance 

Ax apart and staggered such that n and u are known at alternate positions 

(see Fig 3). Equations (12) and (13) are then applied to the n and u positions 

respectively, in order to advance to the next time level t^ + At. Having 

obtained u and n at alternate grid points at this new time level a staight-

forward linear interpolation is used to evaluate each of the two variables 

at the intermediate points (these will be needed to step the solution forward 

to the next time level). Thus the grid is complete for the n + 1^^ time step. 

Simons (1980) suggests that computational stability will require 

At < 1 

/ZCmax 

and At < (Ax)^ 
2Kx 

where c^^^ is the maximum long wave speed occuring in the model. At has 

been chosen in accordance with this. 

2.5 Sediment transport calculations 

Analysis of sediment samples from La Chapelle Bank (Heathershaw and 

Codd, 1984) shows that they have an overall mean grain size of approximately 

500 jjm. Material as coarse as this will move principally as bedload (ie grains 

will roll or saltate along the seabed). Bedload transport rates may be esti-

mated using Hardisty's (1983) modified excess stress formulation of Bagnold's 

(1966) sediment transport equation, in which the quantity of sediment transported 

as bedload is given by: 

qg^ = k (uioo* - uioog^*). uioo (g cm ^s~^) (14) 

It should be noted that for convenience and for comparisons with other work, 

sediment transport calculations in this section have been carried out in c.g.s. 

units. 



In (14) k is a dimensional coefficient which depends on grain size, uioo is the 

current at 1 m above the seabed, and is the corresponding threshold 

velocity. There is some uncertainty in the exact form of k but a re-evaluation 

of the data in Hardisty's Figure 1 and Table 1 gives 

k = 1.773 X 10"G d'O'GsiG g cm (15) 

where d is the grain size in mm. 

The model only provides a value of depth mean flow for the lower layer. 

However, a logarithmic velocity profile for the lower layer is assumed: 

u = u* In (16) 
< Zo 

where u^ is the friction velocity, k is the Von Karman constant equal to .4, 

Zo is the roughness length and z is the height above the bed. By integrating 

(16) over the lower layer a relationship is obtained between uioo and u^, viz: 

Uioo = u. In (V' °) (17) 
h ° 

l n ( ^ ; 

Equation (16) enables calculation of uioo^n from a value of the critical 

friction velocity. Thus a value of u^^^ = 1.62 cm s ^, obtained from a curve 

giving the threshold of movement of sediment and corresponding to a grain size 

of 500 jum with Zq = 0.5 cm (Heathershaw, 1984), gives uioo^r, = 21.46 cm s ^. 

q^^ is then calculated. 

For the present work, q^^ is averaged over a complete tidal cycle, for 

any particular position, to give an indication of net sediment transport. 

3 Results 

3.1 Development of the model 

Firstly it is necessary to find a suitable way of modelling the topo-

graphy. Various profiles of the form H = A - B tanh (Cx - D) were tried, 

since these give qualitatively the correct behaviour. Here A, B, C and D 

are fitting parameters. However, it is difficult to produce a function 

which has a suitable slope gradient, reaches its level close enough to the 

slope area, and is level enough at the ends of the model not to invalidate 



the radiation conditions. In preference a constant slope was chosen, sloping 

from a uniform on-shelf depth of 165 m at x = 150 km down to a uniform off-

shelf depth of 4000 m at x = 100 km. This approximates to the available bathy-

metry for La Chapelle Bank. There is evidence from the results that the shape 

of the shelf-break has an effect on the steepness of the internal waves produced. 

For most of the work a barotropic tide of amplitude 0.45 m s ^ was used, this 

being an average value from current meter readings on La Chapelle Bank. 

Tests were carried out to determine the effects of the constants and 

Kg on the stability of the model. The model was initially tried with Ki and 

Kg both zero, and marked instabilities in the spatial profiles of the interface 

were observed on the same scale as the grid. Investigating Ki, keeping Kg = 0 , 

various values were tried and it was found that while values of the order of 

10 m^s ^ attenuated the instabilities somewhat without removing them, higher 

values of the order of 50 m^s ^ smoothed the instabilities completely, but 

were found to attenuate the genuine internal waves more than one might expect 

diffusion to do in nature. Thus a compromise was required to smooth the 

instabilities as effectively as possible without affecting the waves of interest. 

However, since the instabilities only appeared to be generated at the shelf-

break, a non-constant value of Ki was tried. The idea was to have a peak value 

of Ki just below the shelf break where smoothing was required, and have it 

tailing off to a much smaller value away from the shelf—break so as not to 

attenuate the propagating internal waves too rapidly. An exponential form 

for Ki was found to be most suitable, viz: 

Ki = 30 + 270 e'T'1 ^ ^ ~ 90,000)= m^s~^ (18) 

which has a peak value of 300 at x = 90 km, and tails away quickly to about 30. 

This provided very good stability. 

In a similar way the effect of K^ was investigated, but it was found that 

values large enough to smooth the instabilities even a little, for example 

Kg = 10 ^ s also smoothed out the internal waves. It was concluded that Kg 

was of little additional use in reducing instabilities, and so it was set to zero. 

The parameters Ax and At also appear to play an important part in the 

stability of the numerical solution. Some work on this (Simons, 1980) was 

noted in section 2.4. At the stage where an exponential form of Ki was being 

used the grid scales were Ax = 500 m and At = 300 s. However, in searching 

for velocity surges (see section 3.5) the expontential form of Ki, (18), was 



found to be suppressing the features required, and was reduced again to a 

constant value of 40 mfs ^. It was found that by halving the grid scales 

the instabilities virtually disappeared. Using a value of Ki = 40 gave a 

ratio for the magnitude of the diffusion term relative to the other terms of 

the wave eqn, of the order of 10"*. 

The numerical stability of the model, however, seems to be best achieved 

by making the grid scales small since this does not effect the genuine internal 

waves. Small values of Ki (< 50) may also be used to enhance stability. 

The radiation conditions used (equation (8)) were not overly successful 

in allowing waves to pass freely out through the ends of the model. At the 

righthand (on-shelf) end of the model the imposed condition worked for a 

certain time before becoming unstable, while at the lefthand (off-shelf) end 

the model became unstable almost as soon as waves reached it, causing the 

breakdown of the method. The only solution to this problem was found by 

extending the boundaries beyond the range of the waves in whatever time period 

was chosen for the model to run. This meant that in practical terms the 

model could not be run for more than 48 hours. However, this was not serious 

since the model always reached a steady state within this time (see section 3.2) 

As noted in section 2.2 Pingree et al have omitted from their momentum 

equation (equation (6)) the term: 

1 1 (u2 (h, - hi +2n)) 
2 9x ^ H ^ 

This term was included in the present model to investigate its importance. 

Removing it was found to make an observable but slight difference. Thus its 

inclusion appears to be unimportant. 

3.2 Wave motion predicted by the model 

Before examining the wave motion predicted by the model, it was necessary 

to find the most realistic values of hi and 6p. C.T.D. data from La Chapelle 

Bank provided average values of about 50 m for hi and about 6 x 10 ^ g cm ^ 

for 6 p . 

The basic pattern of wave motion resulting from a barotropic tidal flow 

over the continental shelf topography described is illustrated in Figs 4 and 5. 

Fig 4 illustrates the displacement of the boundary by six profiles equally 

spaced over one whole tidal cycle, while Fig 5 illustrates the displacement of 

the boundary by 12 profiles equally spaced over one tidal cycle, and each 



displayed separately. Exactly the same conditions apply in both. The motion 

can be seen to be centred around the shelf break, and could be suimnarised by 

saying that the interface at the shelf break oscillates up and down with the 

period of the barotropic tide, and from this oscillation progressive internal 

waves propagate in both the off-shelf and on-shelf directions. Note the 

asymmetries in both. The bunching seen on the on-shelf side in Fig 4 is due 

to the oscillating barotropic tide alternately speeding up and slowing down the 

propagating waves; on the off-shelf side the tidal flow is not sufficient to 

cause any noticeable effect. The waves decrease in amplitude as they propagate 

in both directions, this being due to attenuation by the diffusion term Kx. 

The model settles down to a steady state after three tidal cycles, and 

it is this steady state which is shown in Figs 4 and 5. However, when the 

model is started from rest the first wave which propagates in each direction is 

both larger in amplitude than the subsequent ones, and travels faster. This 

is presumably because the wave is propagating into a flat interface rather than 

following a train of waves. 

With a motion such as that described, tests were done on the speeds of the 

waves, comparing their positions as predicted by the model with the successive 

positions that would be predicted by long wave theory. This was done by cal-

culating the long wave phase speed, adding it to the appropriate barotropic 

tidal velocity and integrating with respect to time. Apart from the first wave 

in each direction when the model is started, which as already mentioned goes 

faster than the rest of the waves, all the others seem to tie in well with the 

long wave prediction within the bounds of measuring errors. Table 1 shows 

the results of one such calculation. 

Table 1 

Predicted and measured wave crest positions for a wave propagating on-shelf 

hi = 50 m 6p = 8 x 10 ^ g cm ^ 

Common starting position = 160.2 km 

Positions obtained from the Positions predicted by integration of 
numerical model (km) long wave and tidal velocities (km) 

160.2 160.2 

167.2 166.9 

171.6 171.2 

173.0 172.7 

174.1 173.7 

178.0 176.8 

184.0 182.9 

191.0 10 189.8 



Initially there seems to be a slight acceleration of the modelled wave 

relative to the long wave prediction, but in each case this settles down by 

the end of the third tidal cycle the model has been running. The grid scale 

of the model limits the accuracy with which crest positions can be located, : 

and within the limits of accuracy the waves seem to follow the predictions 

reasonably well. 

3.3 Explanation of the wave motion in terms of steady flows 

In an attempt to simplify some of the development stage, the model was 

run once or twice with steady flows rather than oscillating tidal flows. The 

results of these experiments provide a useful insight into the motion 

observed for a tidal flow. Figs 6 and 7 are two such results. Both of them 

show the position of the interface at 2 hour intervals after a steady current 

of 0.2 m s~^ is 'switched on'. In Fig 6 this is an off-shelf current, and in 

Fig 7 an on-shelf current. Fig 6 shows a relatively sharp depression occuring 

in the interface at the shelf break. From this depression of the interface a 

single 'surge' propagates in each direction with constant speed, leaving, as it 

propagates away, the interface at a lower level, the on-shelf (upstream) side 

being lower than the off-shelf (downstream) side. Fig 7 is very similar, only 

as one would expect the displacement is now upwards. The larger displacement 

is still on the upstream (now off-shelf) side of the shelf break. 

Very broadly, the sinusoidally varying barotropic tide may be thought of 

in terms of an off-shelf flow being 'switched on', then 6 hours later this 

flow being 'switched off' and an on-shelf flow being 'switched on' and so on. 

Clearly this is not exactly the situation, but alternating every half tidal 

cycle the situations seen in Figs 6 and 7 can be seen to add up to the kind of 

motion seen in Fig 4, not only in the way waves are generated at the shelf 

break and propagate outwards, but also in the way that the mean displacement 

of the envelope is higher on the off-shelf side than it is on the on-shelf 

side. 

More properly the sharp crest which forms during the off-shelf current is 

an internal wave with an on-shelf phase speed, and so propagates onto the shelf 

when the current relaxes. The opposite happens during the on-shelf current 

with the peak that forms in the interface. 

3.4 Influence of hi and 9p 

hi, the upper layer depth, and 3p, the density difference, are two physical 

factors which can vary considerably, and tests were done to find their effect on 

11 



the wave pattern described in 3.2 Data measured from La Chapelle Bank at 

various times of the year suggests that sensible ranges for these two para-

meters would be hi between 30 and 70 m, and 3p between 4 x 10 ** and 

12 X 10 ^g cm Fig 8 shows the spatial picture (as in Fig 4) for various 

combinations of hi and 3p in these ranges, only in this case the envelopes of 

the curves alone have been shown, simply for clarity. This table of graphs 

serves as a summary of the effects of both these parameters. The general 

trend is that as 9p increases so the amplitude of the central peak decreases*, 

but at the same time the amplitudes of the propagating waves increase**, and 

as would be expected the speed of propagation of the waves increases. As hi 

increases the amplitudes both of the central peak and of the propagating waves 

increase, and the speed of propagation increases, though not as noticeably as 

with 9p. hi seems to have the most marked effect on amplitude, and 3p the 

most marked effect on phase speed. 

Investigating the maximum wave height over the whole tidal cycle for 

various values of hi and 9p it was discovered that for values of 9p less than 

about 3 X 10 ^g cm ^ the model did not behave as expected. Clearly there can 

be no internal waves if there is no interface (9p =0), and as the model 

approaches 9p = 0 it might be expected to become invalid. 

3.5 Investigation of velocity surges 

To this end the motion in the system was examined with respect to time, 

rather than to horizontal displacement, and in particular the upper and lower 

layer velocities ui and ug. Fig 9 shows ui and ug plotted against time for 

various positions near the shelf-break; the broken line in each case represents 

the barotropic tide. Comparing this with Fig 1, where the depth of the upper 

layer is approximately 50 m, it can be seen that the model has successfully 

predicted the observed surges, these being positive (on-shelf) in the upper 

layer and simultaneously negative (off-shelf) in the lower layer. The plot 

for 6 km on-shelf in Fig 9 corresponds to the data in Fig 1, and shows the 

surge occurring about 1 hour before maximum flood, which is very similar to 

the surges in Fig 1. The largest surge is seen at the shelf-break, and in 

the lower layer this could have a very important effect on sediment transport 

(see section 3.7). 

As can be seen in Fig 9, as the wave propagates on-shelf, its effect is 

*The interface requires more energy to be displaced by a given amount for 
larger 9p 

++ 
Presumably because the waves, travelling faster, reach a given position sooner 
and so have had less time to "diffuse" according to K1 in eqn 6. 
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felt later at each successive position. At about 18 km onto shelf, however, 

each internal tide encounters a barotropic ebb current so that its passage 

time is greatly increased. The surge is thus drawn out and is much less 

noticeable. However, at about 25 km onto shelf the wave is advected with the 

ensuing flood tide and again appears as a characteristic surge. 

3.6 Influence of hi and 6p on velocity surges 

Having investigated the effects of these two parameters on the spatial 

picture produced by the model, it is also interesting to investigate their 

effect on the velocity surges described in the previous section. Running 

the model as for Fig 9, only with different hi and dp values, indicates that 

in general the amplitude of the surge is not significantly altered by 6p, 

although increasing 6p does increase its duration*. On the other hand surge 

amplitude increases markedly with hi, but with no significant change in its 

duration. This is because, as noted in section 3.4, the effect of hi on the 

waves was to increase their amplitude but to have less effect on their speed. 

Since the surges occur simultaneously in both layers, and are of opposite 

sign, the shear u, or baroclinic tide, will also show a marked surge at the 

same point. Thus taking the maximum absolute shear value over a whole tidal 

cycle gives a measure of the amplitude of these surges. This has been plotted 

as a function of horizontal position (for a region around the shelf break) in 

Fig 10, showing what happens as <Sp varies for fixed hi = 50 m in Fig 10a, and 

as hi varies for fixed 6p = 6 x 10 ^ g cm ^ in Fig 10b. 

Fig 10a shows that, away from the shelf-break, the larger the 6p the larger 

the surge amplitude. This is partly due to the fact that (as remarked earlier 

in connection with Fig 8) the larger the 6p, the larger the wave amplitudes away 

from the shelf-break. However, the dominant factor is probably that larger 6p 

values produce faster travelling waves, which (from grounds of mass conservation) 

must be associated with larger shear values (for equal wave amplitudes) . 

Fig 10b shows surge amplitude increasing everywhere with upper layer 

depth, but most noticeably so at the shelf-break. 

The general shape of each of the curves is also interesting to note, 

expecially the sudden increase in surge amplitude from 1 km off-shelf to the 

shelf-break. The diagram in Fig 11 illustrates what is happening as a wave 

generated just off-shelf propagates over the shelf-break. Water from the on-

shelf lower layer is forcibly 'squeezed' off the shelf, the more so if the 

^Probably because, as 6p increases, the wave, travelling faster, arrives (at 
say 156 km) earlier in the tidal cycle when the flood is less strong, and 
takes longer to advect past the fixed position 
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interface is near the bed. This would explain v4iy Fig 10 shows such a sudden 

peak at the shelf-break^, why this is more pronounced for larger hi, and why 

Fig 9 shows the largest surge at the shelf-break. 

3.7 Implications for sediment transport 

The last point about the accelerated flow at the shelf-break could have 

implications for sediment transport. It might be expected that such a surge 

of water over the shelf-break would be responsible for moving a considerable 

amount of sediment. The calculations to evaluate tidally averaged values of 

qiĝ , say, support this, although the quantity of sediment moved is perhaps 

not quite as much as might be expected. However, it must be borne in mind 

that the off-shelf surge in the lower layer at the shelf-break only lasts for 

less than half a tidal cycle. Fig 12 shows the values calculated using 

hi = 50 m and 6p = 6 x 10 ^ g cm ^ at various positions in the shelf-break 

region. For all hi and dp a sharp peak value of q^^ is seen at the shelf-

break itself. In Fig 12 this value is about .008 g cm ^ s ^. This peak value 

seems to be insensitive to 6p, but varies considerably with hi from virtually 

zero with hi = 30 m to something of the order of 0.04 g cm *s ^ for hi = 70 m. 

Examining the values of q^^ varying with position, as in Fig 12, an 

interesting pattern is observed. Although nowhere outside about 1 km of the 

shelf-break is q^^ more than .002 g cm ^s ^, at most positions it is observed 

to be on-shelf in direction, while every 10 km or so it becomes off-shelf for 

about 2 km. Clearly sediment transport on the off-shelf side due to the 

internal waves is negligible. 

As a further investigation, the total on-shelf depth was increased from 

165 m to 180 m, to model sediment transport in a neighbouring area of La Chapelle 

Bank. Keeping hi the same, it was found that the shelf-break values of q^^ 

were approximately halved. 

4 Conclusion 

The model supports the existence of velocity surges observed at La 

Chapelle Bank. Furthermore it predicts that these surges, most pronounced 

at the shelf-break, may be responsible for transporting significant quantities 

of sediment over the shelf-break into the deep ocean. 

^Because u = ui - Uz and ug is made more negative by the passage of the wave 

14 



Appendix : Symbols used in the text and in the computer program 

Symbol 
in text 

hi 

ha 

H 

n 

Ul 

U2 

U 

U 

X 

t 

Pi 

P2 

6p 

h' 

h " 

Ki 

K, 

( 
c ( 

( 

Ax 

At 

N 

Uo 

Ho 

% b 

% b 

k 

Variable name in 
computer program 

H 

(HH-H) 

HH 

Y 

Ul 

U2 

U 

UU 

X 

T 

RH02 

DRHO 

KI 

K2 

BETA 

CI 

CN1 

DX 

DT 

N 

UU0 

HH0 

YNEW 

YOLD 

UNEW 

UOLD 

QSB 

QSBAV 

A 

represents: 

upper layer depth 

lower layer depth 

total depth (= hi + h^ if C neglected in 

comparison to n) 

displacement of surface 

displacement of interface 

velocity of upper layer 

velocity of lower layer 

baroclinic or shear velocity = ui - Ug 

barotropic tide 

horizontal displacement 

time 

density of upper layer 

density of lower layer 

P2 - Pi 

depth of displaced upper layer 

depth of displaced lower layer 

arbitary diffusion constant 

arbitary friction constant 
= ggp 

P2 

. ( off-shelf end 
long wave phase speed ( 

( on-shelf end 

grid spacing for x 

grid spacing for t 

an even integer - number of Ax grid spacings 

U at on-shelf end of model 

H at on-shelf end of model 

values of n and u at previous and next 
timestep 

bedload transport 

tidally averaged 

dimensional coefficient 
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Symbol 
in text 

d 

UlOO 

UIOOCR 

K 

Zo 

Z 

"*CR 

B 

A ) 
) 
) 

C ) 

) 

Variable name in 
computer program 

D 

B 

C 

KAPPA 

Z0 

USTCR 

U2CR 

IMAX 

represents: 

grain diameter in mm 

velocity 1 m above bed 

critical value of uioo for sediment transport 

to occur 

Von Karman constant 

roughness length 

height above bed 

friction velocity 

critical friction velocity 

critical value of û  for sediment transport 

number of time intervals program runs for 

Fitting parameters for shelf-break profile 

D 

N.B. For convenience and for comparisons with other work, all sediment transport 

calculations are in c.g.s. units, while all other calculations are performed 

in m.k.s. units. 
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Figure 1 Current measurements from La Chapelle Bank showing velocity 
surges about 1 hour before maximum flood (labelled a, b, c, 
d, e). These measurements were taken about 6 km on-shelf. 
Taken from Heathershaw (1984). 
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Figure 2 Diagram of the topography used for the model, and also showing 
the variables used in the model. 
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Figure 3 Diagram showing how a space staggered solution is produced 
from the timestepping process. Intermediate values are then 
obtained by linear interpolation. 
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Figure 4 Displacement of the interface at six succesive intervals of approximately 
2 hours. Thus one whole cycle is represented here. 
(6p = 6 X 10 ** g cm ^, hi = 50 m) 
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Figure 5 Displacement of the interface at twelve successive intervals 
of approximately 1 hour. One whole tidal cycle is represented. 
(6p = 6 X 10 ^ g cm ^, hi = 50 m). Successive plots displaced 
by 100 m. 
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Figure 6 Steady flow of 0.2 m s~^ off-shelf, starting at time t = 0. 
Position of interface shown here at 2 hour intervals for the 
first 12 hours. (6p = 8 x 10 g cm ^, hi = 50 m) 
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Figure 7 Steady flow of 0.2 m s ^ on-shelf, starting at time t = 0. 
Position of interface shown here at 2_hour intervals for the 
first 12 hours. (5p = 8 x 10 ** g cm ^, hi = 50 m) 
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Figure 8 Envelopes of interface displacement curves for varying 6p 
and hi. 
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Figure 10a Maximum shear, a measure of surge amplitude, plotted against 
distance on-shelf for successive values of 6p. (hi = 50 m) 
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Figure 11 Diagram showing how a wave propagating on-shelf causes a large 
off-shelf surge in the velocity of the lower layer at the shelf 
break due to a 'squeezing' effect. 
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Figure 12 Tidally averaged bedload transport rates, qsb, for positions in 
the shelf break region. (5p = 6 x 10 "̂g cm hi = 50 m) 




