

file

INTERNAL DOCUMENT

64

I.O.S.

ARRANGEMENT OF THE MAIN COMPUTATION NETWORK

FOR THE SEA AROUND THE BRITISH ISLES

A part of the electronic model
for tides and storm surges

S. Ishiguro
1980

[This document should not be cited in a published bibliography, and is supplied for the use of the recipient only].

INSTITUTE OF
OCEANOGRAPHIC
SCIENCES

NATURAL ENVIRONMENT
RESEARCH COUNCIL

INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,
Surrey, GU8 5UB.
(042-879-4141)

(Director: Dr. A. S. Laughton)

Bidston Observatory,
Birkenhead,
Merseyside, L43 7RA.
(051-652-2396)
(Assistant Director: Dr. D. E. Cartwright)

Crossway,
Taunton,
Somerset, TA1 2DW.
(0823-86211)
(Assistant Director: M.J. Tucker)

INSTITUTE OF OCEANOGRAPHIC SCIENCES

INTERNAL DOCUMENT 64

ARRANGEMENT OF THE MAIN COMPUTATION NETWORK

FOR THE SEA AROUND THE BRITISH ISLES

A part of the electronic model
for tides and storm surges

S. Ishiguro
1980

53 pages, 3 tables, 47 diagrams.

Institute of Oceanographic Sciences,
Wormley, Godalming,
Surrey GU8 5UB.

CONTENTS

Abstract	2
1. Introduction	2
2. Construction of the Main Computation Cabinet	3
2.1 Power supply	6
2.2 Inter-grid connections	9
2.3 Time-dependent variable input	10
2.4 Non-coastal boundary	12
2.5 Output circuits	15
2.6 Inter-drawer connections	15
3. Grid arrangement for the sea around the British Isles	18
3.1 Grid parameters	18
3.2 Arrangement of the grid cards	39
3.3 Arrangement of patch board <u>A</u>	44
4. Conclusion	50
Acknowledgements	50
References	50
Appendices	51-53

ABSTRACT

The construction of the 'Main Computation Cabinet' of the electronic model for tides and storm surges has been explained, which includes the grid-socket matrix boards, input-data patch boards, output-data multiplexers, and floating DC-power supply. Then, a model scheme for the sea around the British Isles has been described with the full data for its time-independent model parameters. The model has actually been assembled to this scheme.

1. INTRODUCTION

The outline of the electronic model for tides and storm surges has been described in a separate paper (Ref. 1). 'Grid cards' which are building blocks of the main computation network of the model have also been described in detail in the same paper. Peripheral instruments including the control cabinet of the model have been described in another paper (Ref. 5).

In the first half of this paper, the construction of the 'main computation cabinet', which contains the computation network and its directly related components, has been explained mainly for its user's aid. In the last half, an example of setting the network to the sea around the British Isles has been described with the full data, while the model can be set to any continental-shelf sea.

2. CONSTRUCTION OF THE MAIN COMPUTATION CABINET

Fig. 1 shows a general view of the computation cabinet. Fig. 2 shows the schematic diagram of the circuits contained in the cabinet, and Fig. 3 shows the locations of components in the cabinet.

The main computation cabinet ($169 \times 67 \times 64 \text{ cm}^3$) consists of four identical vertical drawers, a rear panel with a cover and the base of the cabinet ($67 \times 105 \text{ cm}^2$) with four rollers. The mechanical details of the cabinet have been described in a separate paper (Ref. 6).

Other than the grid cards, the cabinet contains:-

Grid-card matrix boards	One board per drawer, 240 cards per board
Floating DC-power supply units	240 units per drawer
Patch board <u>A</u> for time-dependent input	60 sections per drawer, 4 terminals per section
Output multiplexer with impedance converters	240 sets per drawer, 3 channels per set
Inter-drawer connectors with patch board <u>B</u>	150 channels per drawer
Common power transformer	One

The above-mentioned components are electrically linked with external circuits or instruments by:-

Connector CN P	240V AC power line (3 lines)
Connectors CN21 to CN26	Time-dependent input for normal grids, from the input memory (300 lines)
Connector CN100	Time-dependent input for non-coastal boundary, from the input memory (50 lines)
Connector CN15	Output data to the output memory (6 lines); and the multiplexer control signals (4 lines), from the control cabinet

Although the cabinet can contain up to 990 grid cards, only 330 cards are connected at the moment. See the footnote on page 18 for the reason.

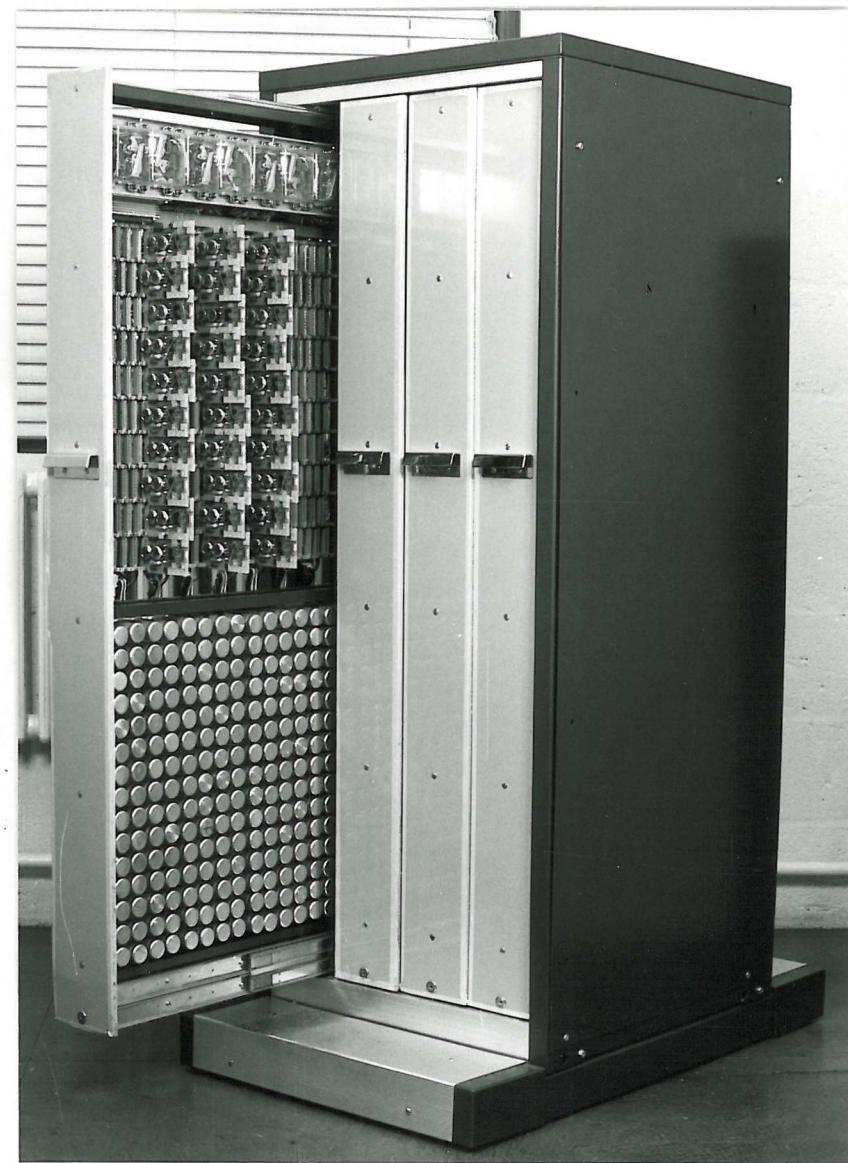
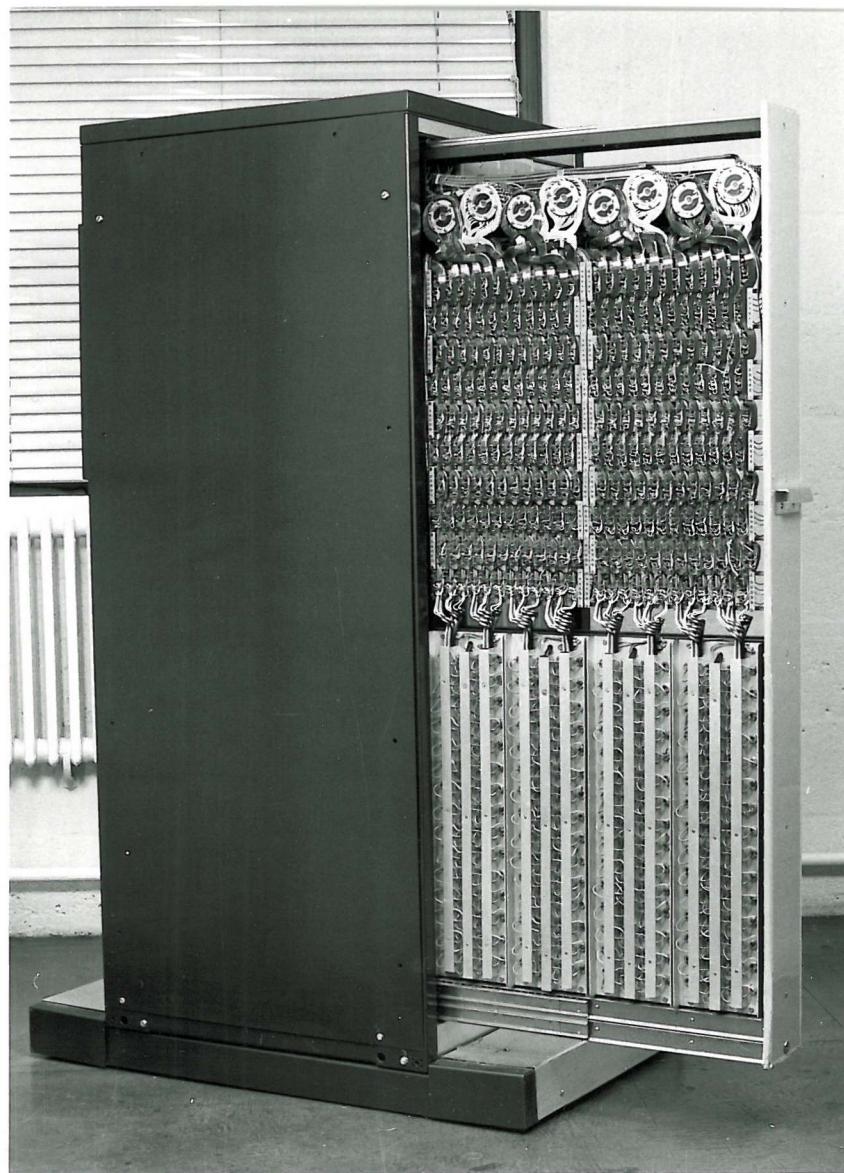



Fig. 1 Main computation cabinet.

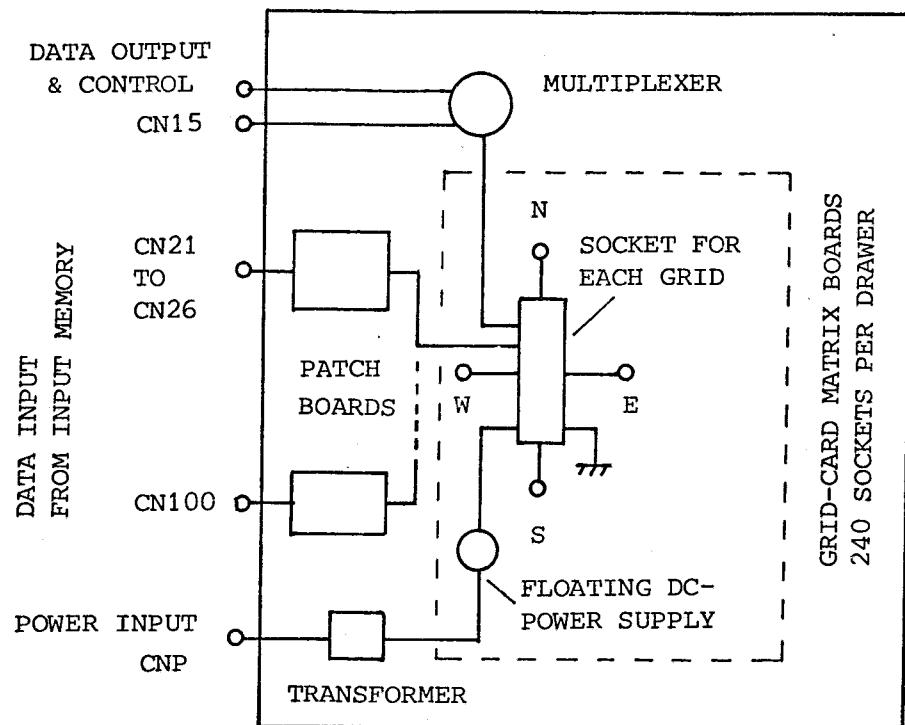


Fig. 2 Schematic diagram of the circuit in the main computation cabinet.

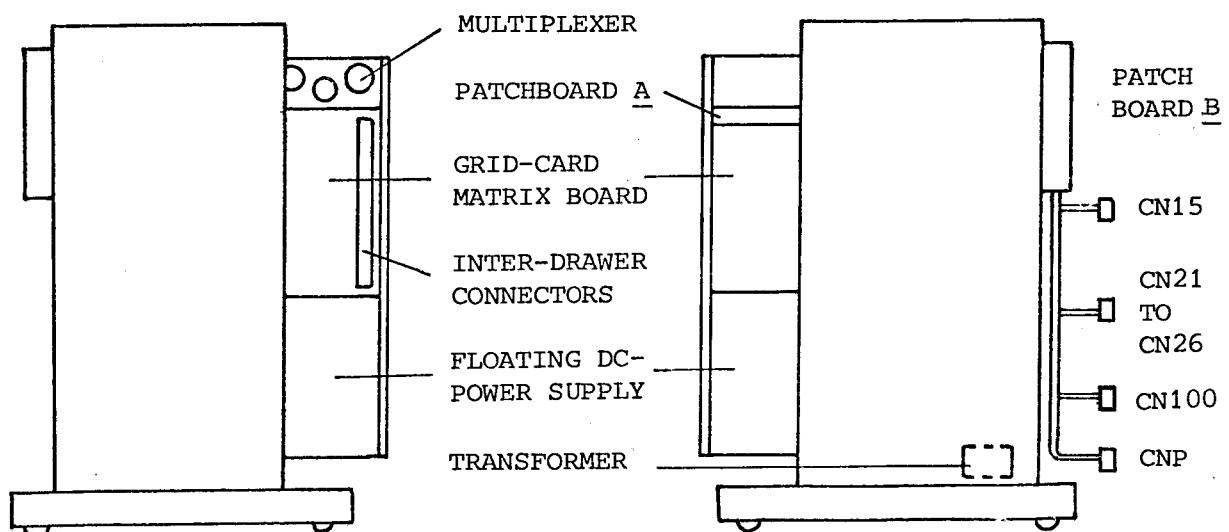
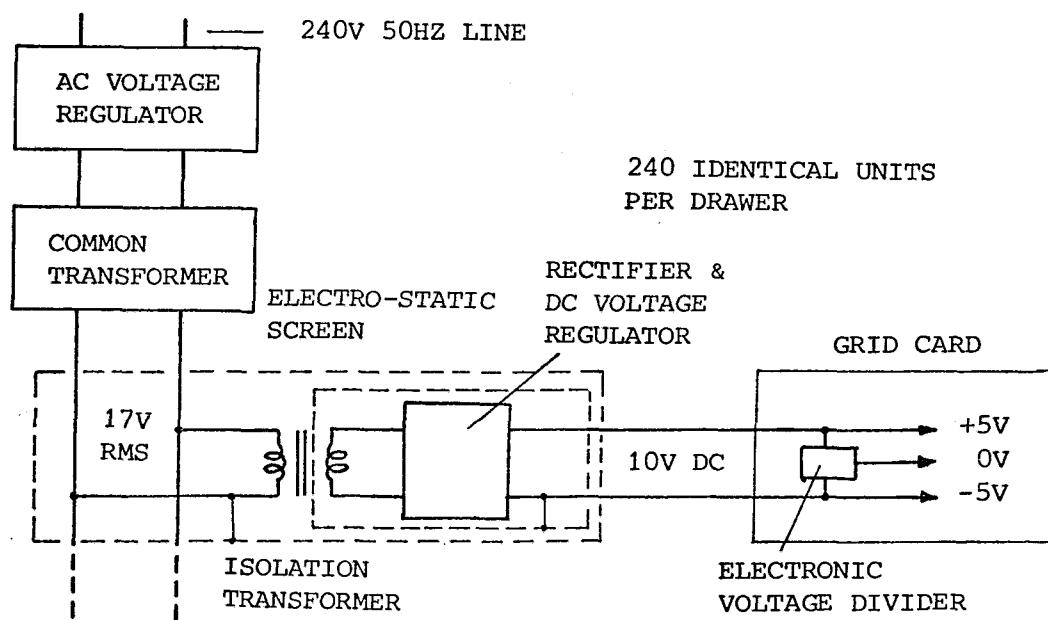



Fig. 3 Physical arrangement of components in the main computation cabinet.

2.1 Power supply

Fig. 4 shows the schematic diagram of the power supply system in the cabinet. The power supply unit for each grid card is operated from a 240V AC power line, but its DC output (10V) terminals are 'floating' from the common conductor (ground line) with a high degree of AC/DC isolation. The isolation is achieved by an isolation transformer specially designed for this purpose (Ref. 1). It is important that all the AC power-line conductors in the cabinet are electro-statically screened. For this reason, the power-supply unit rack is separated from the grid-card rack, as shown in Fig. 5. Fig. 6 shows the details of the screened wiring rack for the power supply units.

All the power supply units are electrically and physically identical, except for minor differences in their stray capacitances (see Appendix 2). Each power unit is physically fixed to the rack with a single screw, and electrically connected with 4 'micro' plugs: 2 to the AC power line sockets, and 2 others to the DC output line sockets. Each set of DC power-line sockets is permanently connected to a particular grid socket. They can be identified by a common number for a power supply unit and its grid socket (Fig. 5).

Fig. 4 Schematic diagram of the power supply system in the main computation cabinet.

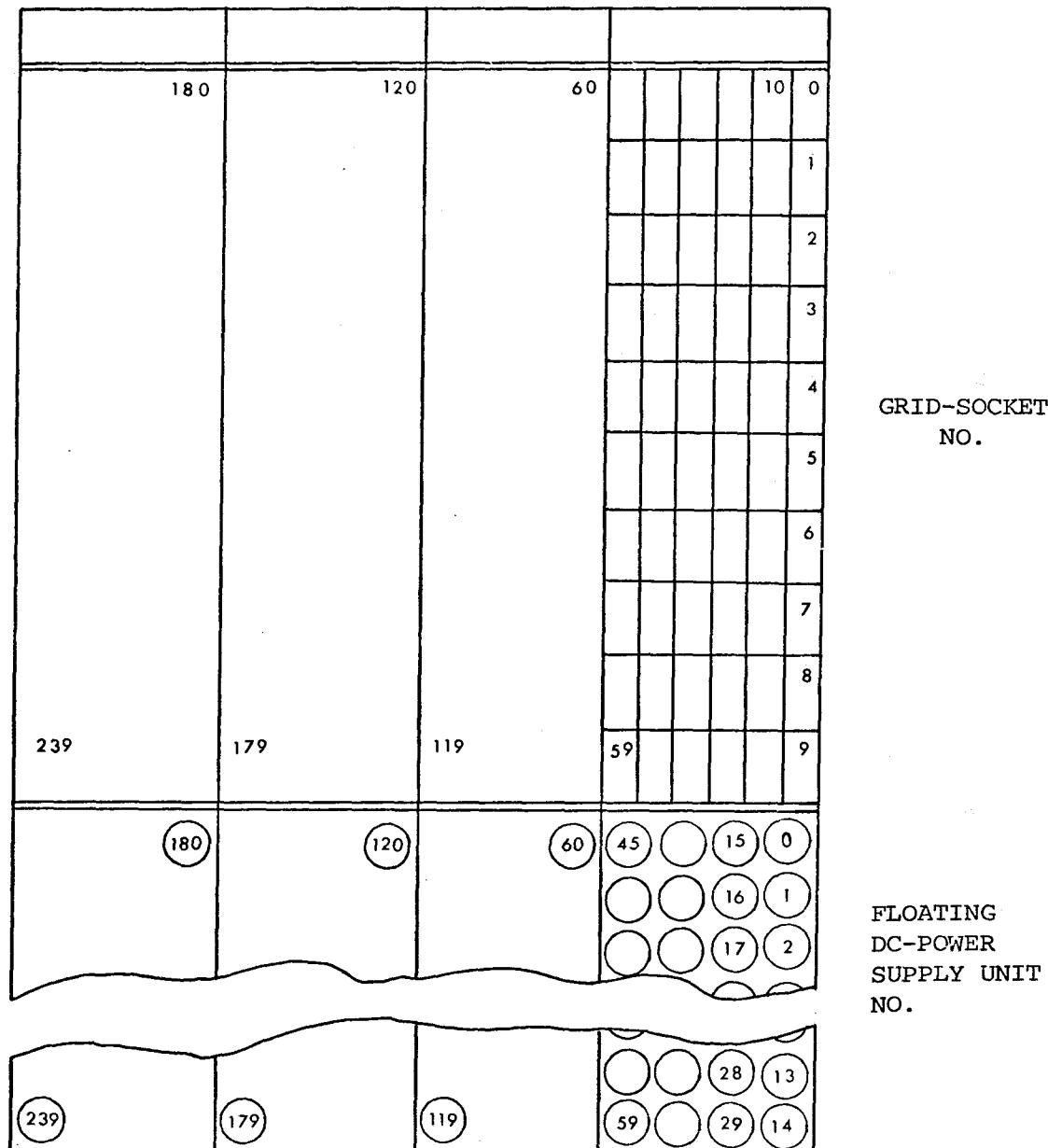


Fig. 5 Grid sockets and floating DC-power supply units in a drawer.
A grid-socket is internally connected to the power supply unit which has the same number.

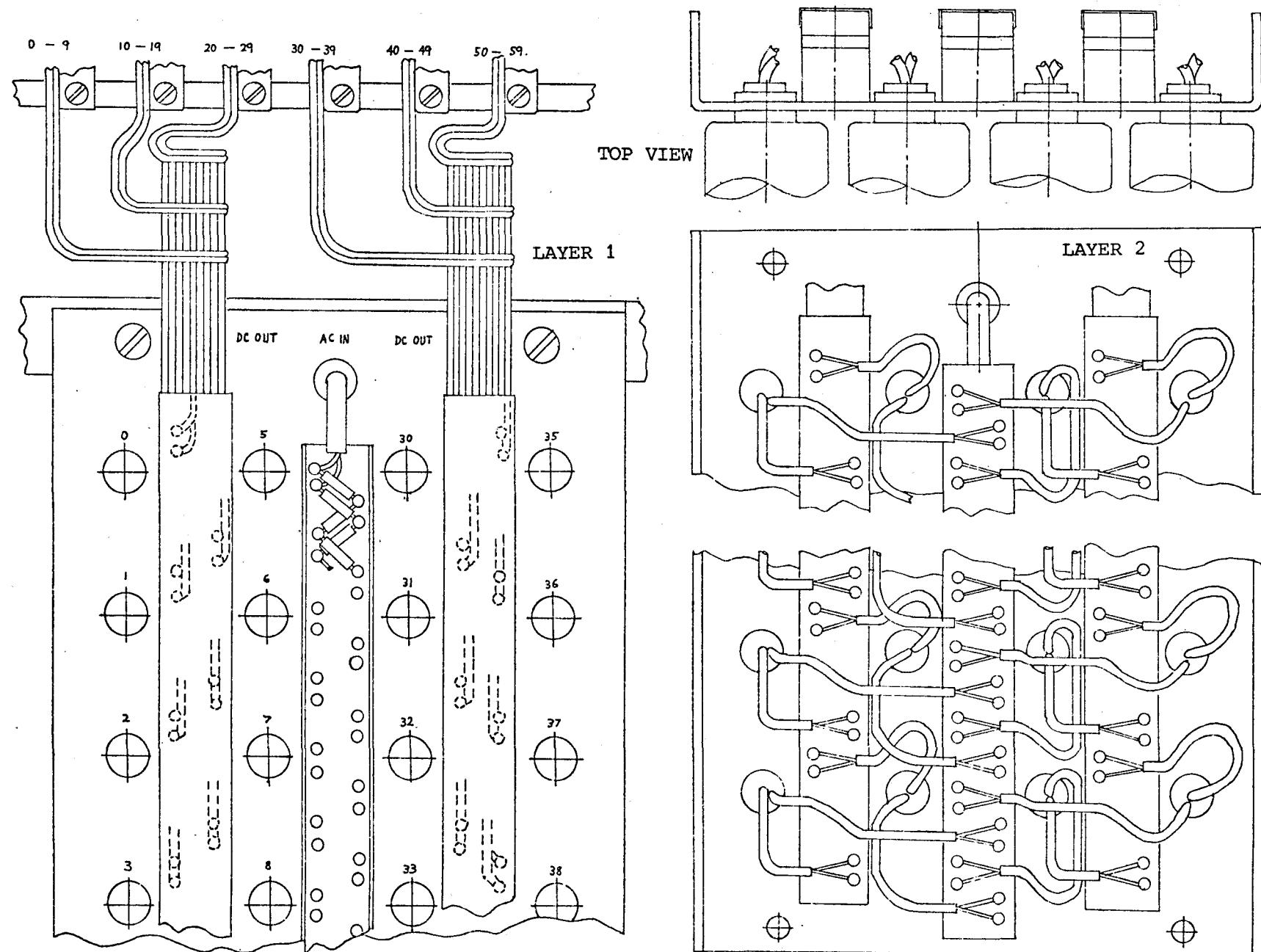


Fig. 6 Physical arrangement of the screened wiring-rack of the power supply within a drawer. 1/4 of the drawer is shown.

2.2 Inter-grid connections

'Grid sockets' are physically fixed in the top half of the rack in each drawer of the cabinet, forming a 10×24 matrix. Each grid socket is used for holding a grid card physically, and for connecting electric circuits with 16 terminals (including 2 unused terminals). 10 of these terminals used are permanently connected within the rack: 2 for the DC power supply lines; one for the ground line; 4 for the input-data line; and 3 for the output-data lines. The remaining 4 terminals, N, E, W, S, are left for programming the network.

The 4 terminals of each grid socket should be connected according to a model scheme, so that the whole grid forms a two-dimensional network, e.g. see Fig. 17. Fig. 7 shows the 4 terminals of a grid socket, and its typical connections to the adjacent sockets. This example shows a case where the 4 adjacent grid sockets are physically adjacent to the socket in question. Although such a case is easy to imagine, it is not always possible to actually arrange. A socket in a physically remote position in the drawer (or another drawer) can be used as an adjacent grid socket by using a long connection wire.

Standard wires with micro plugs for connecting the grid sockets vertically (N-S direction) or horizontally (E-W direction) are colour coded as shown in Fig. 7.

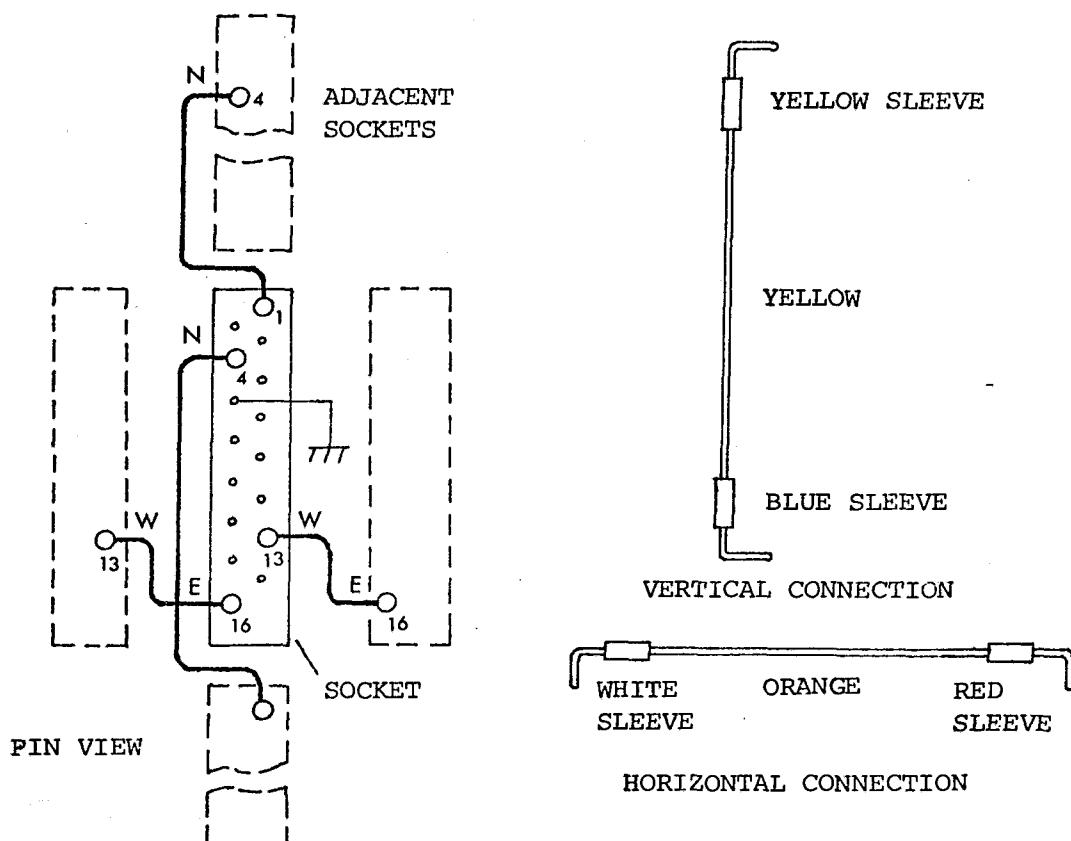


Fig. 7 Inter-grid connections and colour-coded wires.

2.3 Time-dependent variable input

Time-dependent variable input represents, for example, the atmospheric pressure or wind on the sea surface; while the time-independent variable input represents, for example, the water depth or latitude of a certain part of the sea. The former is fed into each grid card from the Input Memory (Ref. 2) through a pair of opto-electronic couplers (N and E components), while the latter is stored in the grid.

Generally the size of a 'sea grid' (a grid representing a quantized section of the hydrodynamic system of the sea) is smaller than that of a 'meteorological grid'. This is mainly due to the scales of the two systems limited by their boundaries, and the numbers of grids available for the systems. An example, described in chapter 3, employs 50 km square grids for the sea, and 100 km square grids for the meteorological system, i.e. 1-to-4 ratio in their area.

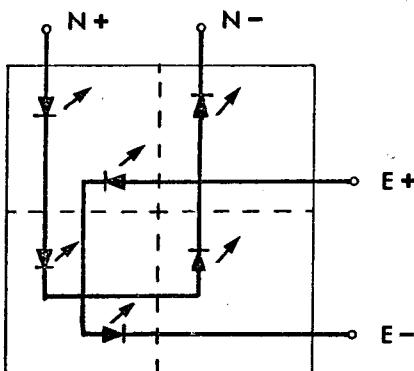


Fig. 8 Typical connections for driving LEDs in opto-electronic couplers. This example shows a group of four grids.

Fig. 8 shows the typical connections of LEDs in the opto-electronic circuits of 4 adjacent sea grids (or one meteorological grid). Note, the opto-electronic output from the LEDs is proportional to their currents (not voltages), and each set of LEDs should be connected in series.

The currents for each set of grid cards (typically 4 cards) are generated by the 2 channels of the input memory which has many independent channels. In order to obtain versatile combinations in the input memory channels and grid sockets, 'patch board A' has been prepared between the memory and sockets (the top part of each drawer; see Fig. 2).

Fig. 9 shows the details of patch board A and the grid socket matrix board in the same drawer. Each section of the patch board consists of 4 sockets, N-, N+, E-, E+, and each section has a serial number. These 4 sockets are permanently connected to the grid card which has the same number as the patch board section. When a grid card is connected to a grid card socket, the opto-electronic input terminals of the grid card are automatically connected to the 4 sockets of the patch board section, as shown in Fig. 10 (the left side diagram).

Each output channel of the input memory has a set of two plugs which ends near patch board A, as shown in Fig. 10 (top-left diagram), so that this is directly connected to appropriate terminals of the patch board, according to the programme of the model. Jump wires which have the same type of plugs as the former have also been prepared (bottom-left diagram in Fig. 10) for necessary connections as shown in Fig. 8.

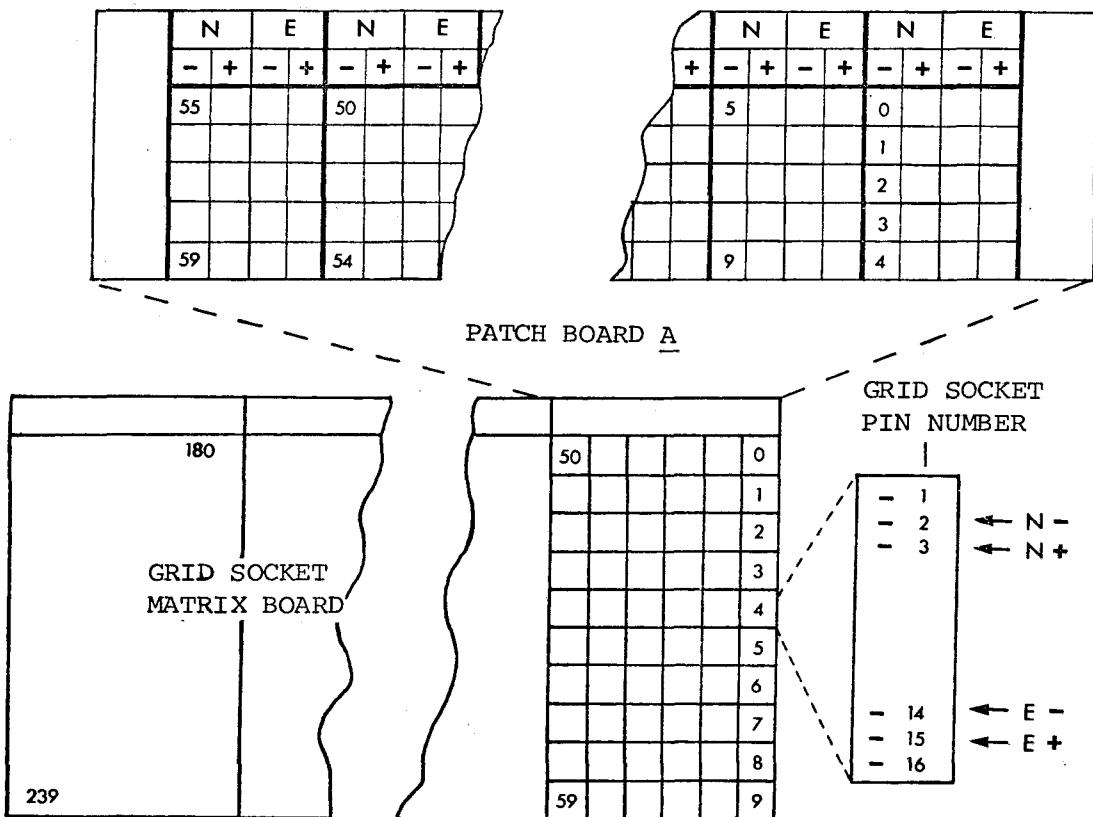


Fig. 9 Identifications of channel no. and polarities of a grid-card terminal, patch board sockets and wires.

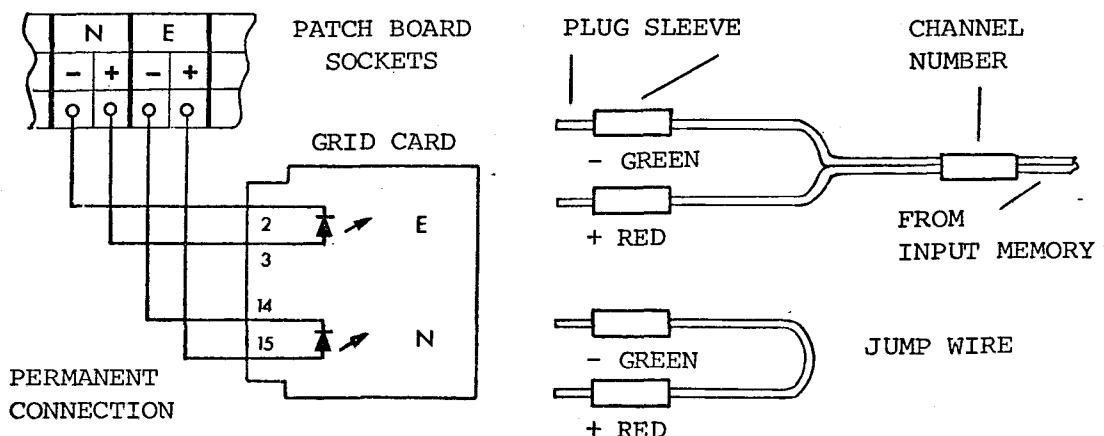


Fig. 10 Relationship between grid socket no. and terminal no. on patch board A.

2.4 Non-coastal boundary

A boundary of a model representing other than a coastal line of the sea should have the following characteristics:-

- a Waves which are going through the boundary are not reflected by it, and
- b waves which are coming through the boundary are artificially generated at the boundary. Ideally, waves reflected beyond the boundary should also be generated in the same way.

The model grids for the boundary have been designed to simulate these conditions, i.e.

- a' The model boundary is terminated with a grid whose dynamic impedance is equal to the dynamic impedance of the modelled area seen through the boundary, and
- b' simulated external waves are fed from the input memory through the model boundary.

The waves in b' are again simulated by the input memory. However, an interface circuit (a different type from the opto-electronic coupling used for general grids) is used between each channel of the input memory and a boundary grid. Fig. 11 shows a circuit, using such an interface, which satisfies the requirements in a' and b'. Fig. 12 shows the actual circuit board on which 24 channels of interface circuit are assembled.

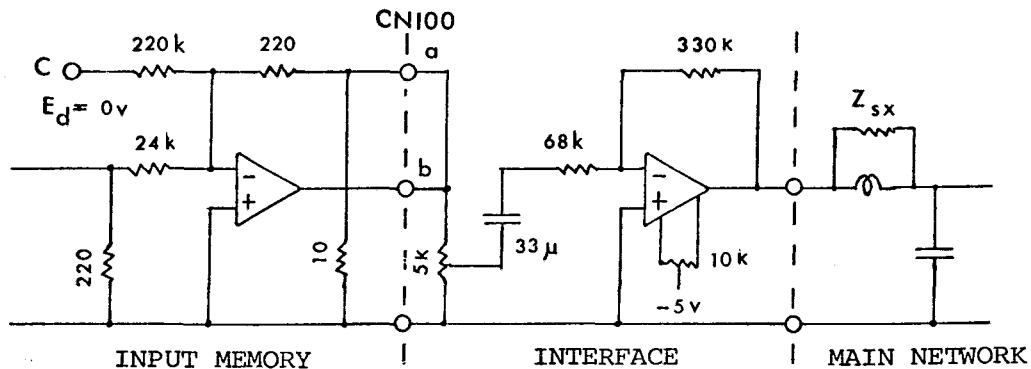


Fig. 11 Circuit diagram of a non-coastal boundary grid.

In order to adjust a terminating impedance (Z_{SC} in Fig. 11), 40 independent potentiometers ($10 \times 10 \times 5 \text{ mm}^3$ each) have been assembled on a single circuit board, 'board Z'. This can be used for a boundary with external waves or without external waves (the interface circuit is replaced simply by a short circuit).

Fig. 13 shows a typical arrangement of the circuits from the input memory to the 'inter-drawer connector' (see Section 2.5) in each drawer, for a non-coastal boundary.

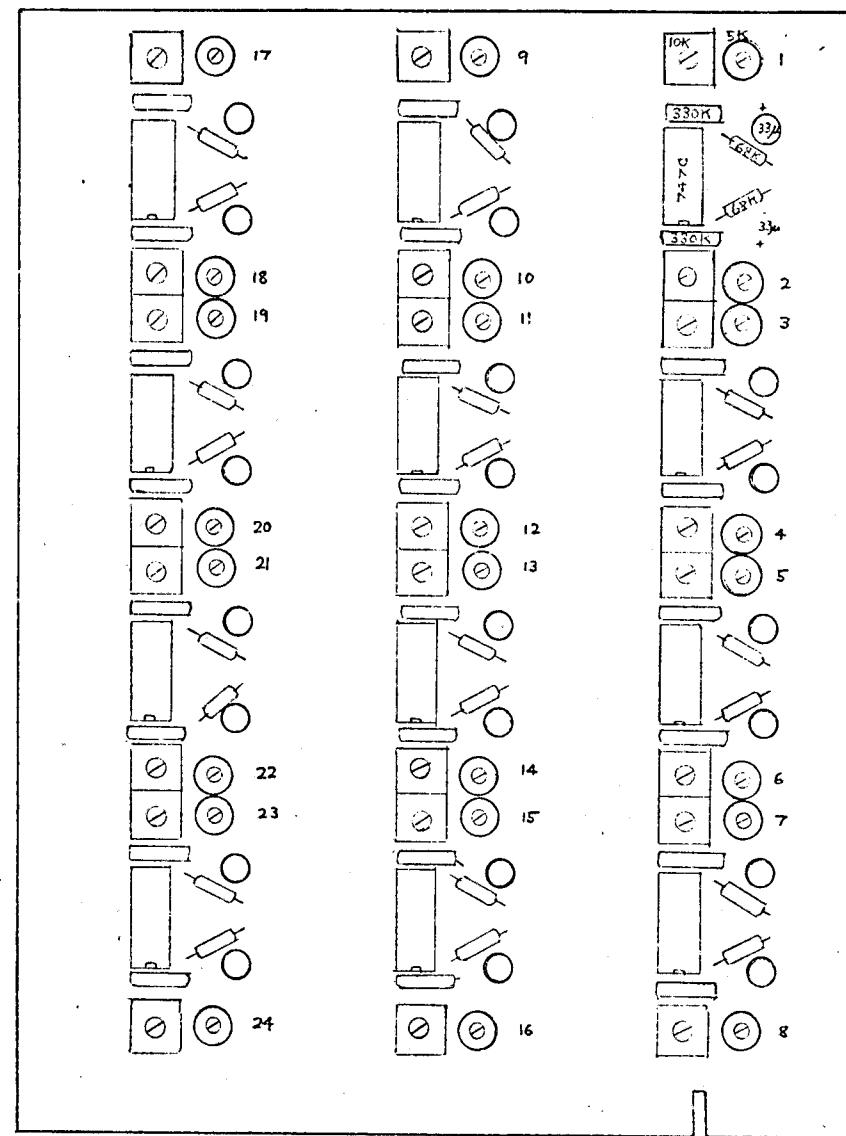
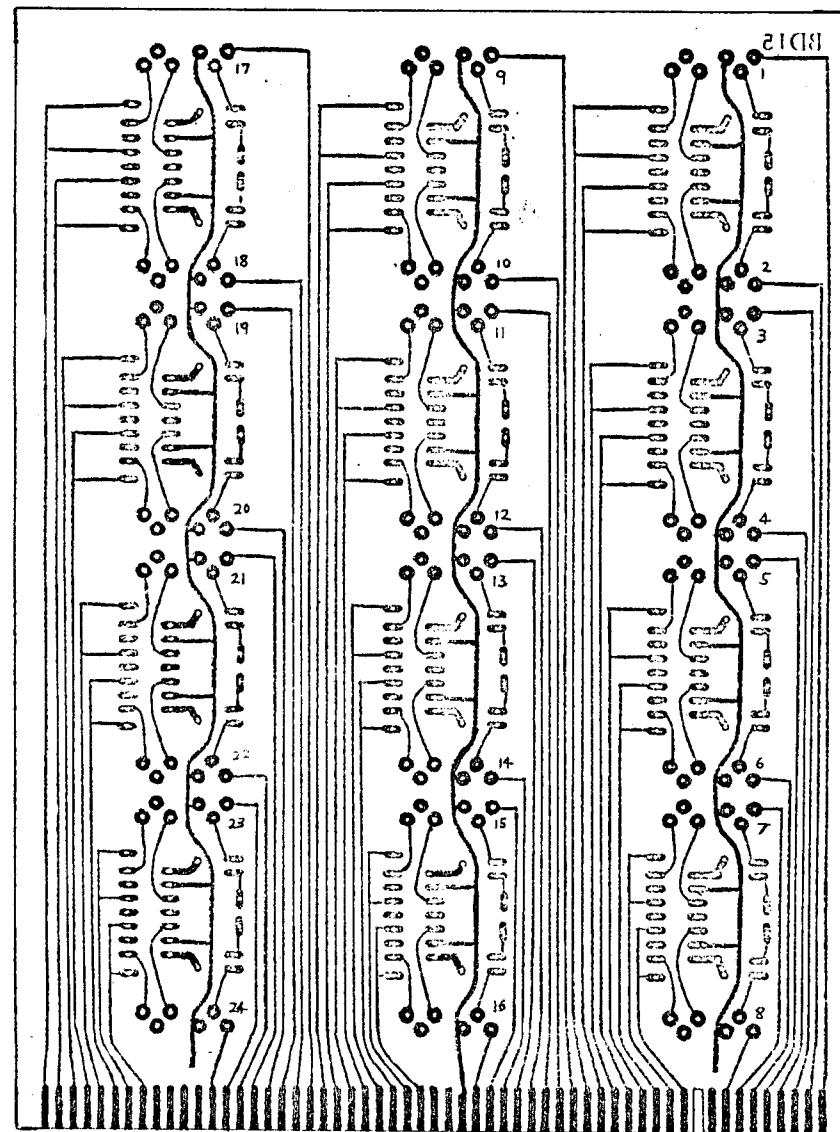



Fig. 12 Details of boundary grid circuit board, BD-AS.

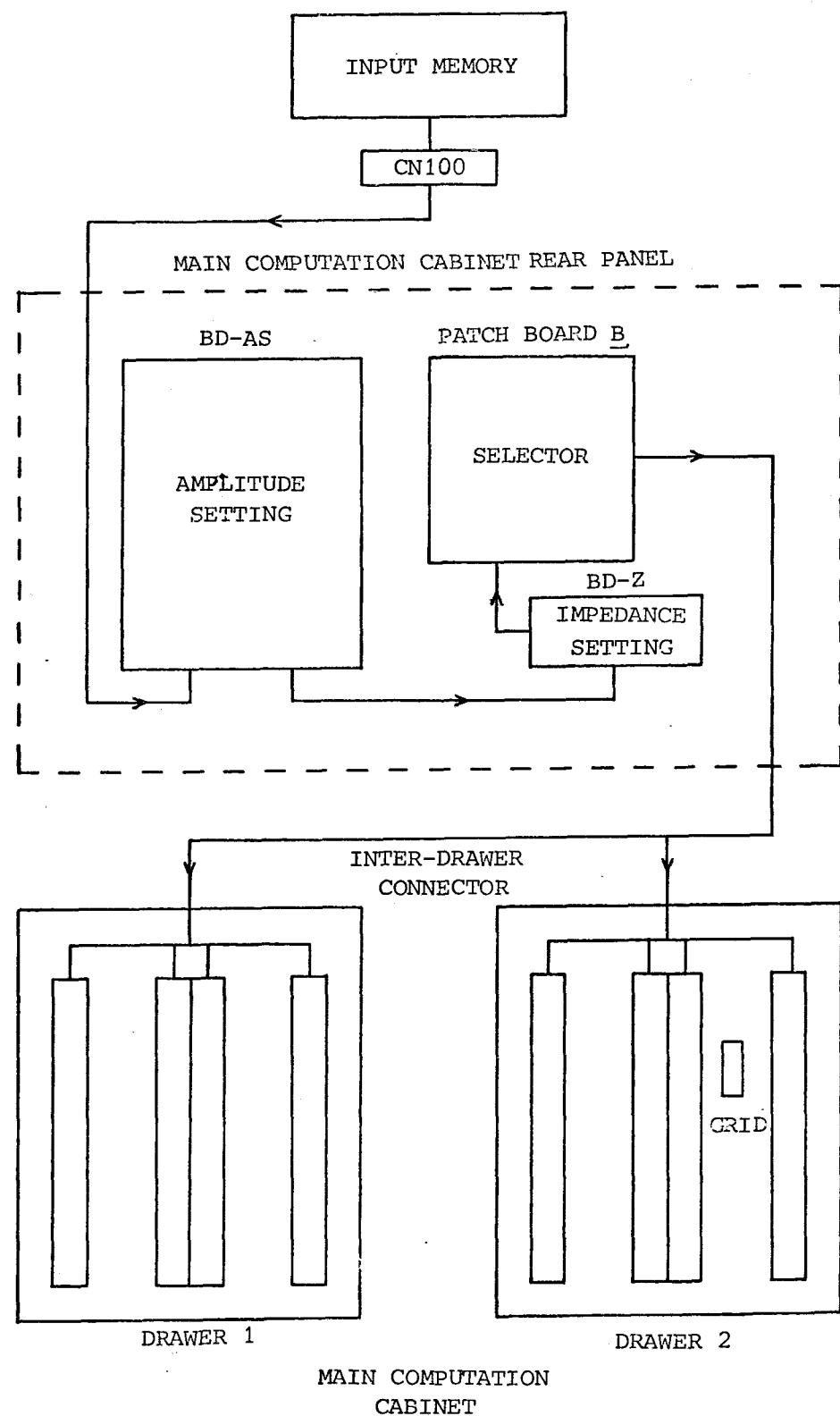


Fig. 13 Schematic diagram from the input memory to boundary grids.

2.5 Output circuits

Each grid card has three sets of output-data terminals:

X component (N-S component of water current)

Y component (E-W component of water current)

Z component (the water level)

The terminals for the first two sets of output are electrically 'floating' from the ground line, and their voltages are taken out through two differential amplifiers, so that the voltages can be referred to the ground line. One of the last set of terminals is grounded at the first place.

The output from all the grid cards are finally fed into the 'Output Memory' (Ref. 3) through a multiplexer.

Fig. 14 shows the scheme of the multiplexer* which includes above-mentioned differential amplifiers (which also work as impedance converters). 5 lines from each grid socket are connected to terminals X, X', Y, Y', Z of a 'grid selector' (No. 1 in the example shown in Fig. 14), which covers up to 30 grid sockets. The output of this selector (again 5 lines) is connected to one 'position' of the 'section selector', through impedance converters. The section selector has 30 positions (only 12 positions are used at the moment), i.e. all the selectors can cover up to 900 grid cards (or 2700 sets of output). The 5 lines of the final selector are connected to the output memory. Fig. 15 shows the details of the impedance converter board. The driving circuit for the multiplexer has been described in a separate paper (Ref. 4).

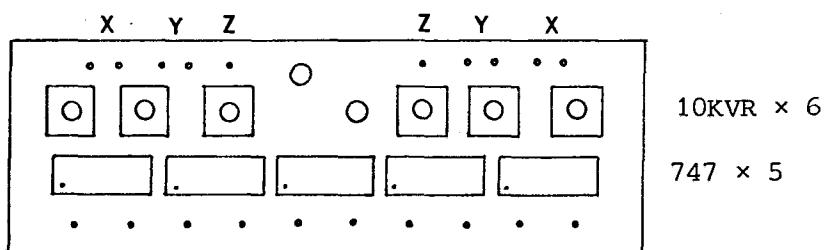


Fig. 15 Impedance-converter board.

2.6 Inter-drawer connections

In order to facilitate any connections between different drawers, 'inter-drawer connection terminals' have been prepared as shown in Fig. 16. Each wire of this connection has one terminal near the edge of a drawer, and the other terminal in patch board B, which is on the rear panel of the cabinet. Each drawer has 150 inter-drawer terminals.

*The design of this multiplexer was carried out in 1972. Although electronic analogue-multiplexers were available at that time, their price was more than ten times that for magneto-mechanical multiplexers. This was the main reason why the latter was employed for this scheme.

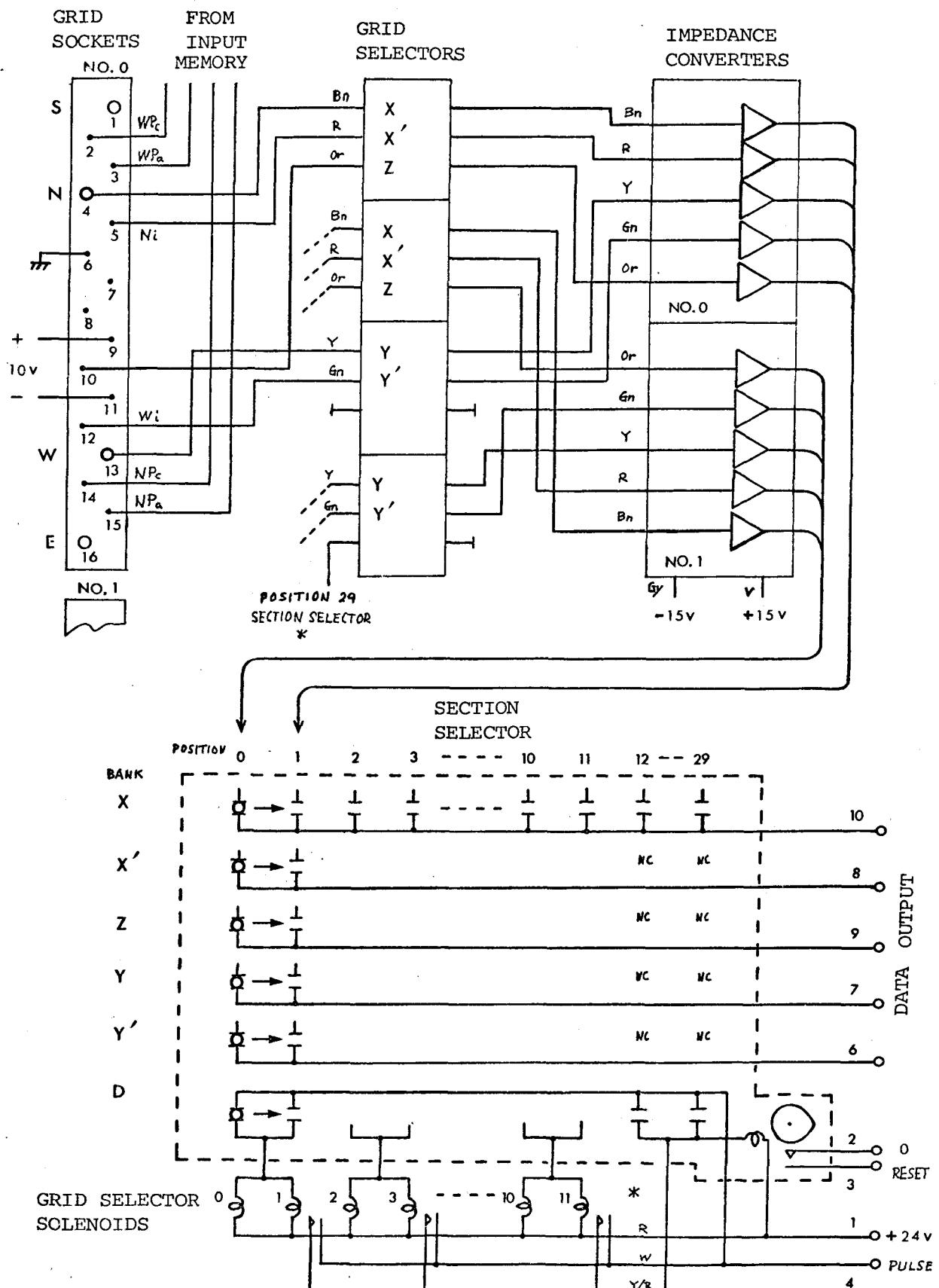


Fig. 14 Multiplexer, from each grid to connector CN5.

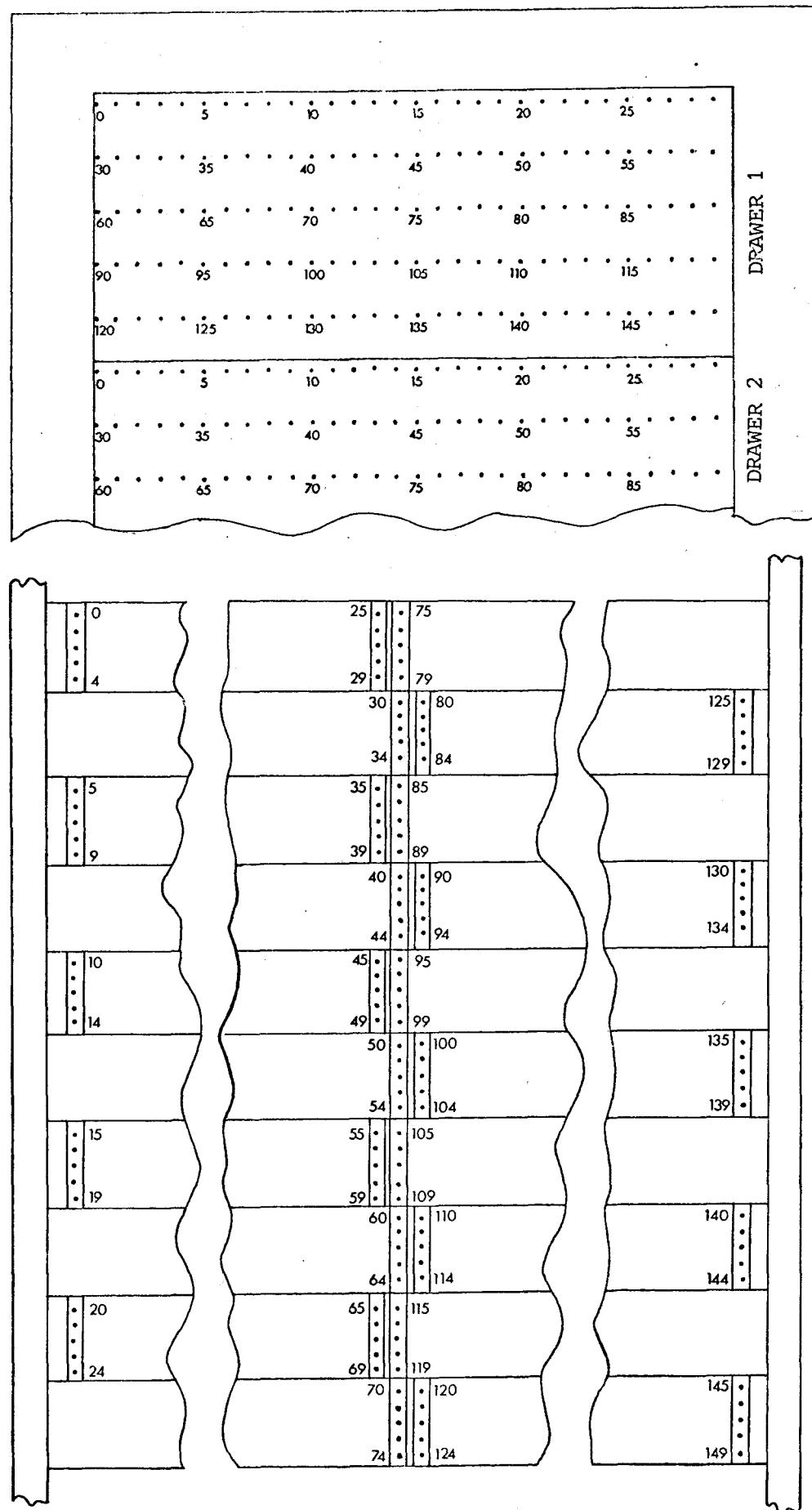


Fig. 16 Inter-drawer connection terminals in a drawer (bottom: scale 1/4 approx.), and patch board B (top: full scale).

3. GRID ARRANGEMENT FOR THE SEA AROUND THE BRITISH ISLES

An example of setting the model to the sea around the British Isles is described in this chapter, while the model can be set to any continental shelf sea.

Fig. 17 shows the grid scheme which requires 330 units* of 50 km \times 50 km square grids. This scheme has been designed to match the 100 km \times 100 km square grids of a meteorological model (a standard grid scheme designed by the Meteorological Office). Therefore, one meteorological grid corresponds to 4 sea grids in this scheme.

3.1 Grid parameters

The method of designing the grids, including the formula, has been described in a separate paper (Ref. 1). The model parameters are shown in Fig. 18 (18 diagrams on pages 20 to 37) by dividing the model into 6 areas. The following symbols and rules are used:-

$\equiv\equiv$	Boundary of model areas (electrically no boundary)
\equiv	Coastal boundary
$\sim\sim$	Boundary to an open sea (or non-coastal boundary)
Ω_e	In <u>ohms</u> , shown by the figure in the centre of each box.
R	In <u>ohms</u> , shown by the figure along the edge of each box. The value for $r = 0.24$ cm/s.
L	In <u>mH</u> , the value for a grid is shown by the figure in the centre of each box; and the average value for the grid and its adjacent grid is shown by the figure along the edge of each box.
F	In <u>mV</u> , the value for each grid is shown by the figure in the centre of each box; and the average value for the grid and its adjacent grid is shown by the figure along the edge of each box.

Table 1 (page 38) shows data for the non-coastal boundary termination.

Each grid card can be calibrated to the data given in this paper by using the grid-card calibrator (Ref. 3).

*This number is limited by an artificial reason: a particular committee who did not appreciate the details of the scheme in 1973 ordered the cessation of the manufacture of the grids, after 330 units had been made.

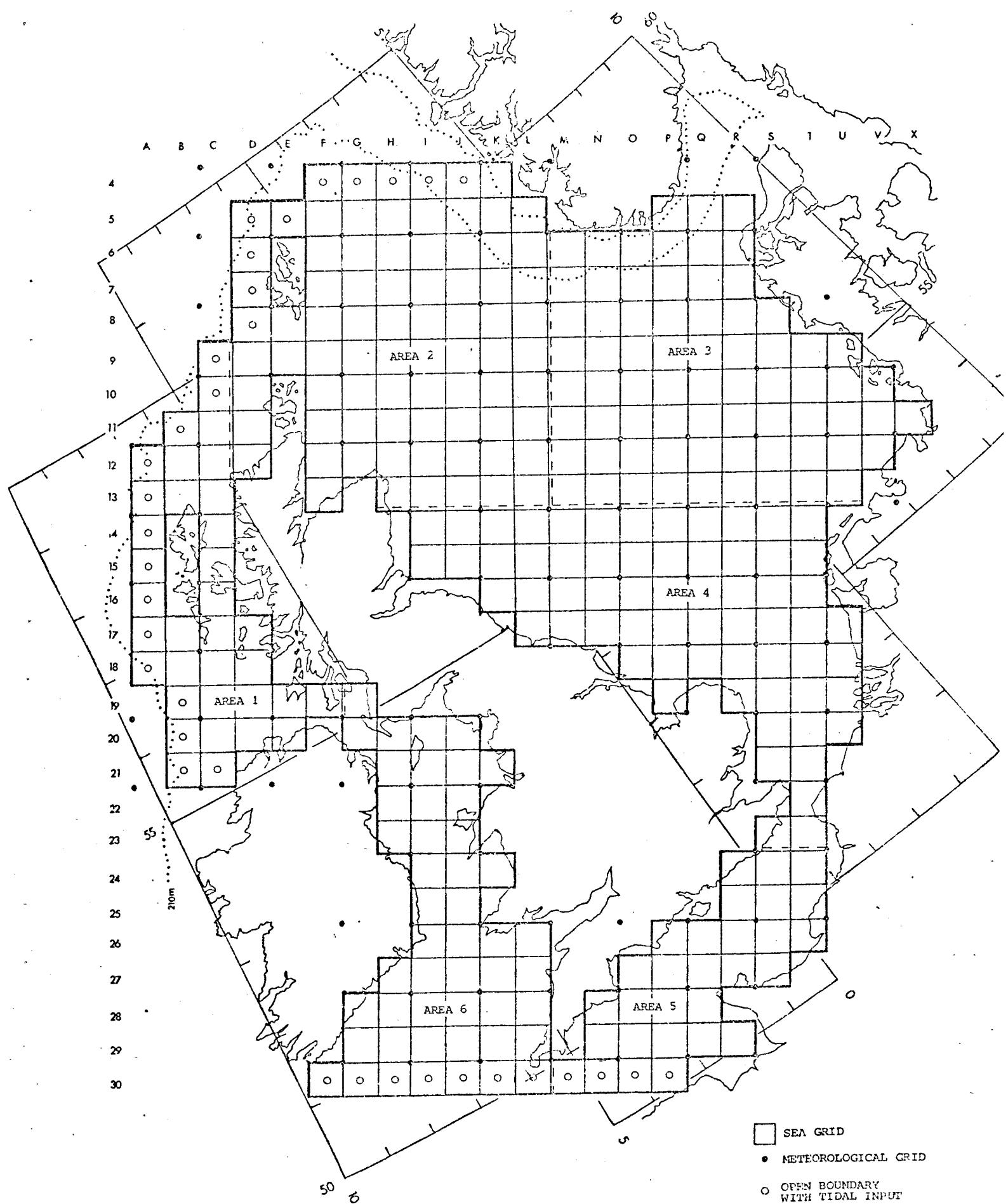


Fig. 17 Grid scheme of a model of the sea around the British Isles.

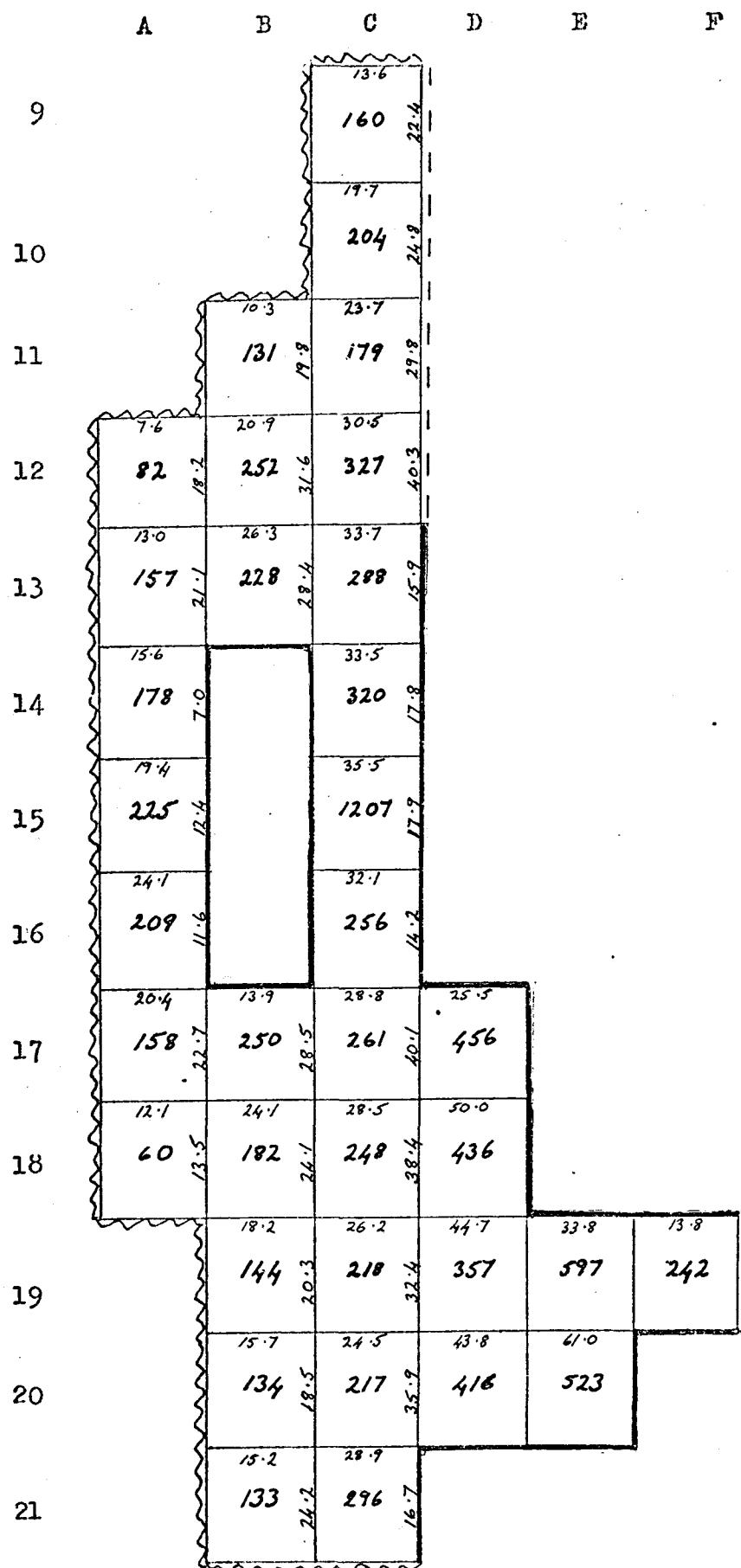


Fig. 18 (18 diagrams on pages 20 to 37). Model parameters.

AREA 1

R

106	328	416	416	157	32.0	32.0	121	32.2	32.2	121	21
643	325	643	643	365	365	365	365	84.7	84.7	84.7	20
367	367	367	367	426	426	426	426	84.7	84.7	84.7	19
111	111	111	111	109	109	109	109	58.2	58.2	58.2	18
24.7	24.7	24.7	24.7	224	224	224	224	109	109	109	17
353	353	353	353	339	339	339	339	6.26	6.26	6.26	16
114	114	114	114	83.6	83.6	83.6	83.6	284	284	284	15
43.1	43.1	43.1	43.1	367	367	367	367	67.5	67.5	67.5	14
117	117	117	117	117	117	117	117	61.0	61.0	61.0	13
114	114	114	114	114	114	114	114	79.9	79.9	79.9	12
117	117	117	117	117	117	117	117	83.1	83.1	83.1	11
180	180	180	180	180	180	180	180	8.98	8.98	8.98	10
178	178	178	178	178	178	178	178	70.1	70.1	70.1	9
175	175	175	175	175	175	175	175	53.8	53.8	53.8	8
111	111	111	111	111	111	111	111	41.3	41.3	41.3	7
111	111	111	111	111	111	111	111	88.1	88.1	88.1	6
111	111	111	111	111	111	111	111	97.1	97.1	97.1	5
111	111	111	111	111	111	111	111	26.2	26.2	26.2	4
111	111	111	111	111	111	111	111	67.2	67.2	67.2	3
90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	59.2	59.2	59.2	2
79.6	79.6	79.6	79.6	79.6	79.6	79.6	79.6	67.5	67.5	67.5	1
69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	55.5	55.5	55.5	
41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9				

A

B

C

D

E

F

6

11

12

13

14

15

16

17

18

19

20

21

21

AREA 1

四 五

THE ECONOMIC POSITION OF THE
INDIA INDEPENDENCE MOVEMENT

22

6

ET

52

91

87

61

21

22

	D	E	F	G	H	I	J	K
3			9.4 116	9.5 105	8.8 100	4.4 81	4.8 88	
4			14.3 152	14.8 171	15.1 199	9.9 103	9.4 85	5.3 87
5	11.4 102	13.9 158	16.7 161	17.9 173	21.6 202	15.2 178	10.7 112	10.3 93
6	14.3 166	9.9 9.2	17.4 163	18.3 167	21.2 191	20.1 194	14.5 155	10.5 100
7	19.0 189	10.2 10.3	18.6 183	18.4 172	20.1 180	20.9 190	18.8 189	15.3 182
8	21.2 205	26.5 26.3	15.5 286	20.6 197	18.9 174	19.0 170	22.4 220	24.8 270
9	24.8 254	29.3 29.3	30.0 268	22.3 213	20.0 185	19.0 179	22.7 148	30.4 280
10	27.5 253	33.8 33.8		21.3 204	19.9 185	17.9 161	21.4 194	29.4 251
11	30.9 314	37.2 37.2		25.5 326	21.3 230	19.9 218	20.2 206	28.1 257
12	37.3 368	40.6 40.6		30.5 324	27.3 275	27.2 285	24.9 292	28.8 256
13			50.0 472	32.4 308	33.7 321	30.5 283	28.8 260	33.3 28.3

AREA 2

F

 Ω_e

AREA 2

AREA 2

D E 印度 G H I J K

	D	E	F	G	H	I	J	K
3			25.1 25.1 50.2	22.9 48.0 45.7	18.0 40.3 35.9	17.8 35.7 35.5	19.4 37.2 38.8	
4			58.2 66.2 74.4	60.1 70.3 87.1	61.5 66.2 45.3	40.4 45.5 37.6	38.2 40.2 42.8	
5	22.3 44.5 68.9	34.5 36.7 68.9	67.6 75.5 74.9	74.9 88.6 87.9	87.9 78.4 61.9	43.4 49.2 59.1	42.1 41.3 42.9	
6	58.4 72.3		70.1 71.3 73.3	74.4 72.3 84.3	86.5 85.0 85.7	82.1 77.3 68.9	59.1 56.7 46.5	
7	77.6 82.9		76.1 80.9 76.1	74.7 78.3 76.9	90.6 80.6 84.3	85.0 84.0 84.3	76.6 82.6 80.9	
8	86.6 90.2 125.9		84.0 87.1 77.2	76.7 76.4 75.5	76.2 77.6 79.6	81.5 72.9 66.2	91.2 92.6 98.0	101 121.4
9	101 112.0 118.5	122	90.8 94.4 82.2	79.7 80.9 76.4	77.6 79.6 75.5	72.9 72.9 79.6	92.6 87.1 87.1	124 125.9
10	101 112.0		104 113.3 91.0	86.6 87.0 82.9	81.3 77.6 72.3	69.3 79.7 79.7	87.1 87.1 87.1	120 113.3
11	124 139.6		129 145.6 103.0	97.0 98.0 98.0	90.5 92.7 92.7	82.5 101 115.8		115 115.8
12	165 185.3	124 145.6 124.3	111 124.3 129.0	111 127 127	111 132.4 132.4	124 125 125		117 118.5
13	203 221.6			132 140 146	138 138 129	131 124 119		

AREA 2

L

AREA 3
F
 Ω_e

X A N S R Q P O N M T.

L	M	N	O	P	Q	R	S	T	U	V	X
5	16.8			4.22	9.71	15.2	612	1208			
6	15.6			11.2	78.1	18.1	1963				
7	14.4	13.1	11.7	11.7	12.9	14.0	16.1	18.2	79.6	141	1430
8	24.6	19.9	30.0	36.1	36.1	91.6	376	2011			
9	34.85	31.5	28.1	38.2	48.3	58.2	112	165	388	610	1303
10	95.9	94.6	114	114	114	234	610	957			
11	157	159	161	171	180	229	266	302	456	610	810
12	166	206	213	250	342	533	680	1170	1369	1527	
13	175	195	215	245	271	382	455	503	550	1208	34400
14	150	158	221	230	237	361	434	482	879	2324	717.0
15	125	191	215	209	202	339	416	469	513	610	12083
16	112	179	195	205	216	419	483	458	580	909	2324
17	99.7	133	166	175	202	229	499	525	550	597	1817
18	98.7	138	166	241	655	364	499	525	550	597	28709
19	97.6	102	109	157	205	253	810	550	503	455	2718
20	102	117	166	376	929	680	550	503	455	550	6809
21	119	150	223	273	1175	728	396	419	609	1461	2202

AREA 3

7

AREA 3

	L	M	N	O	P	Q	R	S	T	U	V	X
5	42.9	42.9	44.5	41.3	41.3	41.3	41.0	40.6	43.5	46.3	46.3	11.2
6	42.9	42.9	41.3	41.3	41.3	41.0	40.6	43.5	46.3	46.3	46.3	22.3
7	52.9	52.9	64.5	61.1	61.1	66.6	75.5	79.2	82.9	111	140	32.3
8	100	129	136	136	136	141	146	155	164	164	204	42.3
9	140	135	144	152	152	158	170	172	196	212	228	87.7
10	133	133	153	153	153	165	165	175	179	222	244	129
11	117	117	121	136	150	155	159	159	159	206	227	348
12	110	114	114	114	124	125	125	125	125	140	176	566
13	116	112	112	112	113	113	113	113	113	140	176	378

I	J	K	L	M	N	O	P	Q	R	S	T	U
40.6	32.5	29.5	29.0	32.5	39.6	63.9	91.2	73.1	52.9	61.0	78.1	
407 297 9.68	265 7.0	270 6.32	311 9.39	287 1.59	257 1.59	842 8.86	779 1.82	494 1.65	541 1.16	691 0.22		14
52.5	36.8	32.5	32.9	35.2	45.6	95.1	96.2	75.9	67.3	67.0	92.4	
530 347 8.73	312 3.52	311 2.35	310 2.35	414 7.56	911 8.86	808 9.22	543 2.49	570 9.89	610 1.18	825 0.71	57.5	15
345 37.2	37.2	35.2	35.2	44.8	93.3	79.7	67.0	66.7	93.8	109	72.1	
298 5.57	310 3.52	309 3.52	370 8.86	544 5.25	493 7.65	618 5.69	582 6.18	825 5.01	973 2.23			16
40.4	40.4	36.9	32.3	28.8	87.7	80.1	91.2	105	73.5			
298 5.57	396 5.85	410 0.71	541 9.71	696 7.26	896 9.83	794 5.68	737 2.18	818 1.09	1248 73.5			17
1078 9.41	1434 15.3	1190 22.1	1190 22.1	124	122	98.3	67.9	883 11.3	883 11.3	959 0.71		
292 3567 602	109	965 8.06	784 7.79	77.9	77.9	127	167 6.9.5	167 6.9.5	167 6.9.5	232 13.9		
14040	14040	80.1	876 100	95.1	100	57.0	209	57.0	57.0	232 13.9		
130 114	1398 0.41	130 114	950 33.8	1398 0.41	130 114	1398 0.41	130 114	1398 0.41	130 114	1398 0.41		

292 3567 602	109	965 8.06	784 7.79	77.9	77.9	127	167 6.9.5	167 6.9.5	167 6.9.5	232 13.9		
14040	14040	80.1	876 100	95.1	100	57.0	209	57.0	57.0	232 13.9		
130 114	1398 0.41	130 114	950 33.8	1398 0.41	130 114	1398 0.41	130 114	1398 0.41	130 114	1398 0.41		
70.8	561 33.8	80.1 8.63	716 4.68	716 4.68	716 4.68	716 4.68	716 4.68	716 4.68	716 4.68	716 4.68		22
431	431	431	431	431	431	431	431	431	431	431	431	23

AREA 4

F_{Ω_e}

U
T
S
R
Q
P
O
N
M
L
K
J
I

2202	3914	2718	2123	3316	14187	3058
2202	3914	2718	2123	3316	14187	3058
2202	3914	2718	2123	3316	14187	3058
2202	3914	2718	2123	3316	14187	3058
2202	3914	2718	2123	3316	14187	3058

20	10870	6345
1/208	1820	1/231
1/151	1820	2867
2561	1820	3944

22	643
23	1047

AREA 4

N O P Q R S T

AREA 5

F

$$\Omega_e$$

N O P Q R S T

AREA 5
R

7

AREA 5

30	150	121	146	134	113	133	156	142
29	183	147	133	129	114	137	114	12
28	222	193	157	164	144	164	111	111
27	111	198	159	198	207	259	222	222
26	126	198	188	169	203	193	193	193
25	111	106	106	212	222	222	222	222
24	472	408	396	352	378	308	304	472
23	566	410	304	246	246	304	412	566
22	992	472	304	255	255	308	378	992
21	352	176	176	112	412	412	412	352
20	120	420	420	370	276	276	463	120
19	420	327	327	228	179	179	179	420
18	111	106	106	212	222	222	222	111
17	111	106	106	212	222	222	222	111
16	472	408	396	352	378	308	304	472
15	566	410	304	246	246	304	412	566
14	992	472	304	255	255	308	378	992
13	352	176	176	112	412	412	412	352
12	120	420	420	370	276	276	463	120
11	111	106	106	212	222	222	222	111
10	111	106	106	212	222	222	222	111
9	472	408	396	352	378	308	304	472
8	566	410	304	246	246	304	412	566
7	992	472	304	255	255	308	378	992
6	352	176	176	112	412	412	412	352
5	120	420	420	370	276	276	463	120
4	111	106	106	212	222	222	222	111
3	111	106	106	212	222	222	222	111
2	472	408	396	352	378	308	304	472
1	566	410	304	246	246	304	412	566

N O P Q R S T

19	550												
20	324												
	98.9	145	191	700	1208	1256	1303						
			287		963		1057						
21	382	557			719	745	810	1506	2202				
			306		505		680						
22	229	260			291	420	550						
			947		247		488						
23	1665	934			202	3/4	425						
					258		314						
24	314	258					202	1202	2202				
			280				184						
25	245	205					165						
			237				153						
26	229	370					141	476	810	265	719		
			193				122		488		543		
27	314	236			157	210	102	134	165	266	367		
			223		135		109		145		353		
28	134	133			113	105	97.6	111	125	232	339		
			130		117		101		125		315		
29	125	114			102	96.0	89.9	89.9	125	208	291		
			100		97.8		87.3		117		264		
30	75.5	75.5			93.6	89.2	84.7	83.1	81.4	95.2	109	237	225
												138	126
	F	G	H	I	J	K	L	M				AREA 6	R

19		184 254.8							
20		179							
	103.0	1/26 149.9	2/64 377.5	3/25 392.1					
21		179	335	351					
	212.4	2/52 291.3	3/00 308.9	4/09 509.7					
22		188	238	282					
	164.4	1/75 185.3	2/20 254.8						
23		210	170	243					
	254.8	2/05 154.5	1/84 231.7						
24		179	193						
	192.3	1/74 154.5	3/33 509.7						
25		181	148						
	169.9	1/53 139.6							
26		167	135						
	164.4	1/47 129	2/19 309	3/00 291					
27		192	150	120					
		1/64 136	1/23 110	1/24 138	2/52 208				
28		126	158	126					
		1/23 124	1/20 116	1/12 107	1/14 121	1/61 200			
29		124	117	110					
	121	1/16 110	1/07 103	1/03 105	1/12 121	1/53 193			
				1/03 103	1/12 121	1/33 185			
30		108	108	102	101	117	175		
	94.4	99.7	105	103	99.9	98.0	106	113	
	94.4						139	164	146 127

Table 1. Non-coastal boundary termination.

Channel No of Input Memory *	No. on BD-Z	Z_s ($K\Omega$)	Drawer No.	Inter- drawer Con. No.	Socket No.	Grid No.	Wire colour
0	1	1.39	1	19	409	J4	Bn
1	2	1.53	1	20	309	I4	B
2	3	2.13	1	21	209	H4	Or
3	4	1.97	1	22	109	G4	Y
4	5	1.85	1	23	009	F4	Gn
5	6	1.86	1	24	609	E5	Be
6	7	1.89	1	80	232	D5	Bn
7	8	1.52	1	81	231	D6	R
8	9	1.93	1	82	230	D7	Or
9	10	2.07	1	83	171	D8	Y
10	11	2.17	1	84	160	C9	Gn
11	12	1.92	1	85	193	C10	Be
12	13	2.17	1	86	182	B11	V
13	14	1.73	1	87	181	A12	Gy
14	15	1.37	1	88	180	A13	W
15	16	1.90	1	100	165	A14	Bn
16	17	2.04	1	101	164	A15	R
17	18	2.28	2	20	249	A16	Gy
18	19	2.21	2	21	248	A17	Gy
19	20	1.92	2	22	247	A18	Gy
20	21	1.19	2	23	256	B19	Gy
21	22	1.19	2	10	255	B20	Gy
22	23	1.78	2	11	254	B21	Gy
23	24	2.64	2	12	264	C21	Gy
N.Ch.	25	2.41	2	15	296	F19	Gy
Skag.	20	4.43	1	70	128	R5	Or
"	27	1.48	1	71	118	Q5	Y
"	28	1.08	1	72	108	P5	Gn
E.Ch.	29	4.43	1	75	220	T23	Bn
"	30	4.27	1	76	210	S23	R

$$Z_s = \left(\frac{K_i}{K_e} \right) \frac{1}{4L\sqrt{gh}} \sqrt{\frac{r}{h}} \frac{r_e}{j^2 \pi K_t} + 1 \quad \approx \quad \frac{K_i}{K_e} \frac{1}{4L\sqrt{gh}}$$

$$Z_s = 2.30 \times 10^5 \times 1/\sqrt{h} \quad \text{for} \quad Z_s = 3.60 \times 10^{13} \text{ cm}^2 \text{s}^{-1} \text{AV}$$

h in cm

* Boundary mode.

3.2 Arrangement of the grid cards

The diagram shown in Fig. 19a is the grid-card matrix board in Drawer 1 seen from the card side. Each socket is represented by a small square. Fig. 19b is the same as Fig. 19a except for Drawer 2 which is not fully used.

Each socket has a serial 'grid-socket number' as shown in Fig. 5. This number can be obtained in Fig. 19 by adding a number in its column to a number in its line.

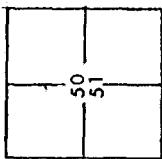
Each grid card has a 'grid-card number', F13 for example, which indicates the location of the grid in a geographical map (or a grid scheme) shown in Fig. 17.

The scheme of connecting a certain grid card to a certain grid socket is indicated in Fig. 19 by putting the grid-card number in the small square which corresponds to the grid socket. For example, Fig. 19a shows that grid card F13 should be connected to grid socket 000 (top-right corner of this diagram).

The following symbols and rules are also used for Fig. 19:-

A normal grid which is connected to the 4 adjacent grids two-dimensionally.

A grid one of the edges of which (shown by a dotted line) is electrically connected to another grid (T13 in this example) in a remote position in a drawer.


A grid on a coastal line of the sea. One of the edges facing the coast is indicated by a thick line.

A grid on a boundary to an open sea (or a non-coastal boundary). One of the edges of the grid facing the open sea is indicated by a zig-zag line. This grid is terminated by a 'non-coastal boundary terminal' (page 38), and normally connected to the input memory in its 'boundary mode'. The channel numbers of the terminal and input memory are the same, and the number is indicated in small letters.

The same as above, but without the input memory. Often for an experimental termination.

The set of two numbers in the centre of a meteorological grid (or 4 sea grids) indicates the two channel numbers of the input memory which are connected to these sea grids.

Unused grid-socket.

Fig. 20 shows the arrangement of the inter-drawer connections for the grid scheme shown in Fig. 19.

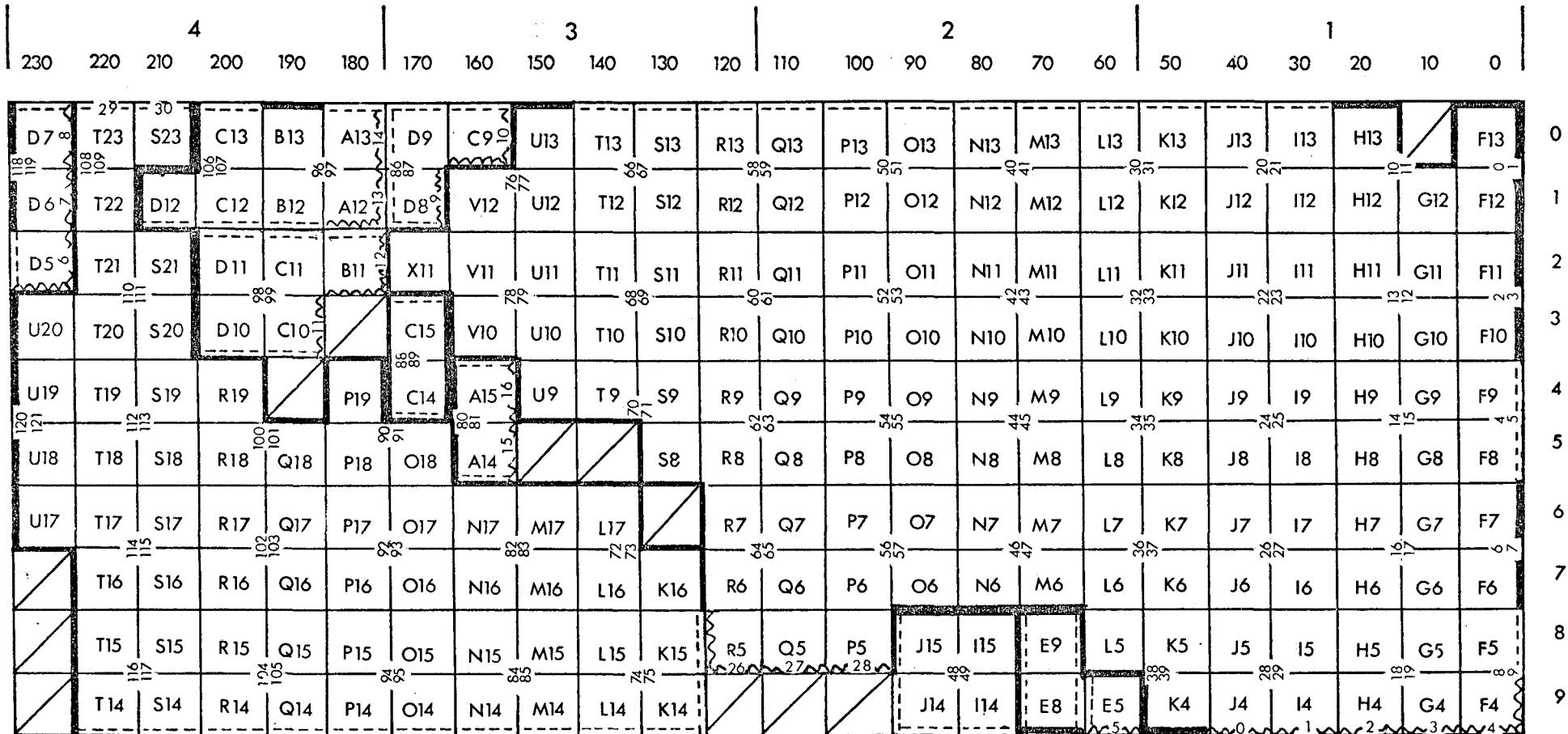


Fig. 19 Arrangement of grids on the socket matrix board for the scheme shown in Fig. 17 (continued to the next page).

314	313	312	311	310	300	6	290	280	270	260	250	240	5
L30	K30	J30	I30	H30	G30	F30		P30	O30	N30	M30		0
L29	K29	J29	I29	H29	G29	R29	Q29	P29	O29	N29			1
L28	K28	J28	I28	H28	G28		Q28	P28	O28	N28			2
L27	K27	J27	I27	H27	S27	R27	Q27	P27	O27				3
L26	K26	J26	I26	T26	S26	R26	Q26	P26	23	22	B21		4
			J25	I25	T25	S25	R25	E20	D20	128	C20	122	5
	K24	J24	I24	T24	S24	125	F19	E19	D19	130	C19	123	6
			J23	I23	H23		R24		D18	131	C18	124	7
		J22	I22	H22			G19		D17	132	C17	125	8
	K21	J21	I21	H21	J20	I20	H20	G20	133	C16	B17	126	9
											A16	127	

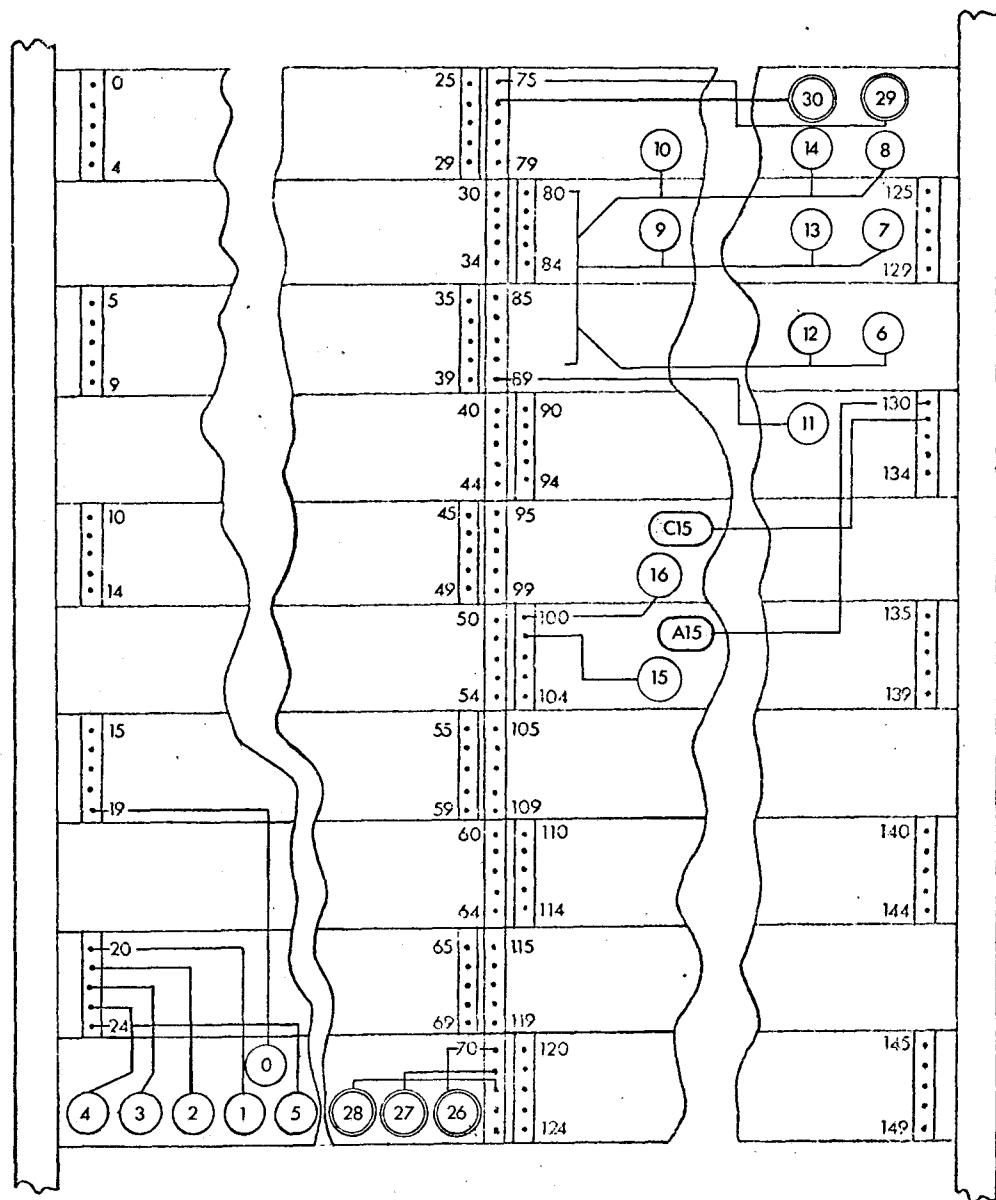


Fig. 20a Arrangement of the inter-drawer connection for the grid scheme shown in Fig. 17 (Drawer 1).

This diagram shows Drawer 1 seen from its grid-card pin side. Terminals 0 to 149 (vertically arranged in 4 lines along the edges of the drawer) are permanently connected to the patch board shown in Fig. 16.

- ④ indicates, for example, channel 4 of the input memory.
- ② indicates, for example, channel 28 of the impedance setting board (Fig. 13).

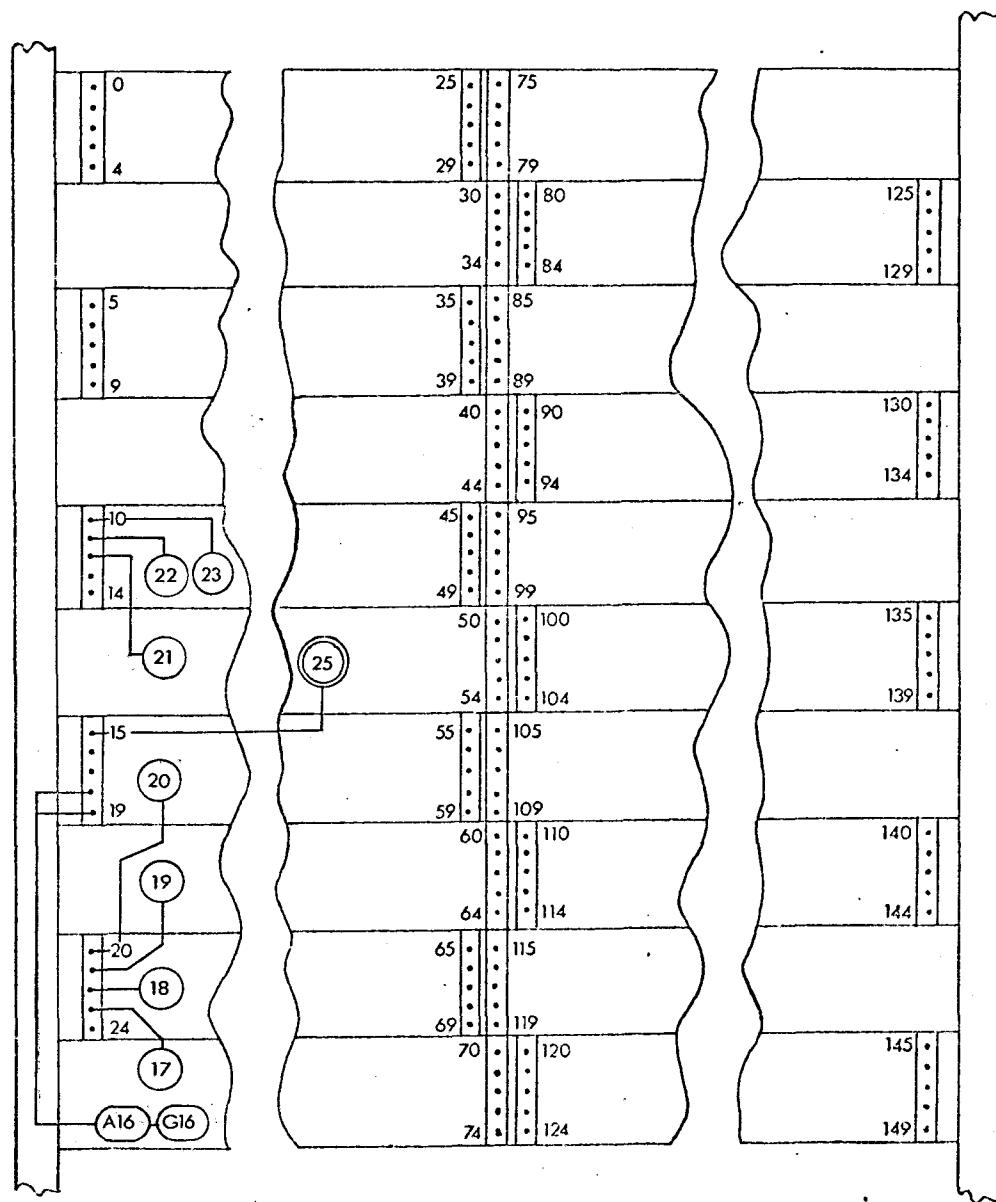


Fig. 20b Arrangement of the inter-drawer connection for the grid scheme shown in Fig. 17 (Drawer 2).

See the explanation on the previous page.

3.3 Arrangement of Patch Board A

Fig. 21 shows the physical arrangement of Patch Board A (see Fig. 9) for the scheme shown in Fig. 19. The following rules are applied:-

Each section of the patch board consists of four terminals representing N-, N+, E-, E+ (see Fig. 9). Each section has a serial number. This is the same as the grid socket number to which the patch board terminals are permanently connected.

A section number of the patch board is given in Fig. 21 by adding its Column Number (vertically written on the right side of the diagram) to Line Number (horizontally written on the top of the diagram).

Each terminal in a section can be identified by Fig. 9. Note, Fig. 21 has been made in the same way as Fig. 9.

A terminal to which the output of the input memory should be connected is indicated in Fig. 21 by the channel number of the input memory.

Two terminals, in the patch board, which should be connected directly are indicated in Fig. 21 by — generally. If two terminals, which should be connected, are not physically near in the diagrams, they are indicated, for example, by

► 79E+

► 4E+

An unused terminal is marked by X, if it has to be emphasised.

See Figs. 9 and 10 for other rules.

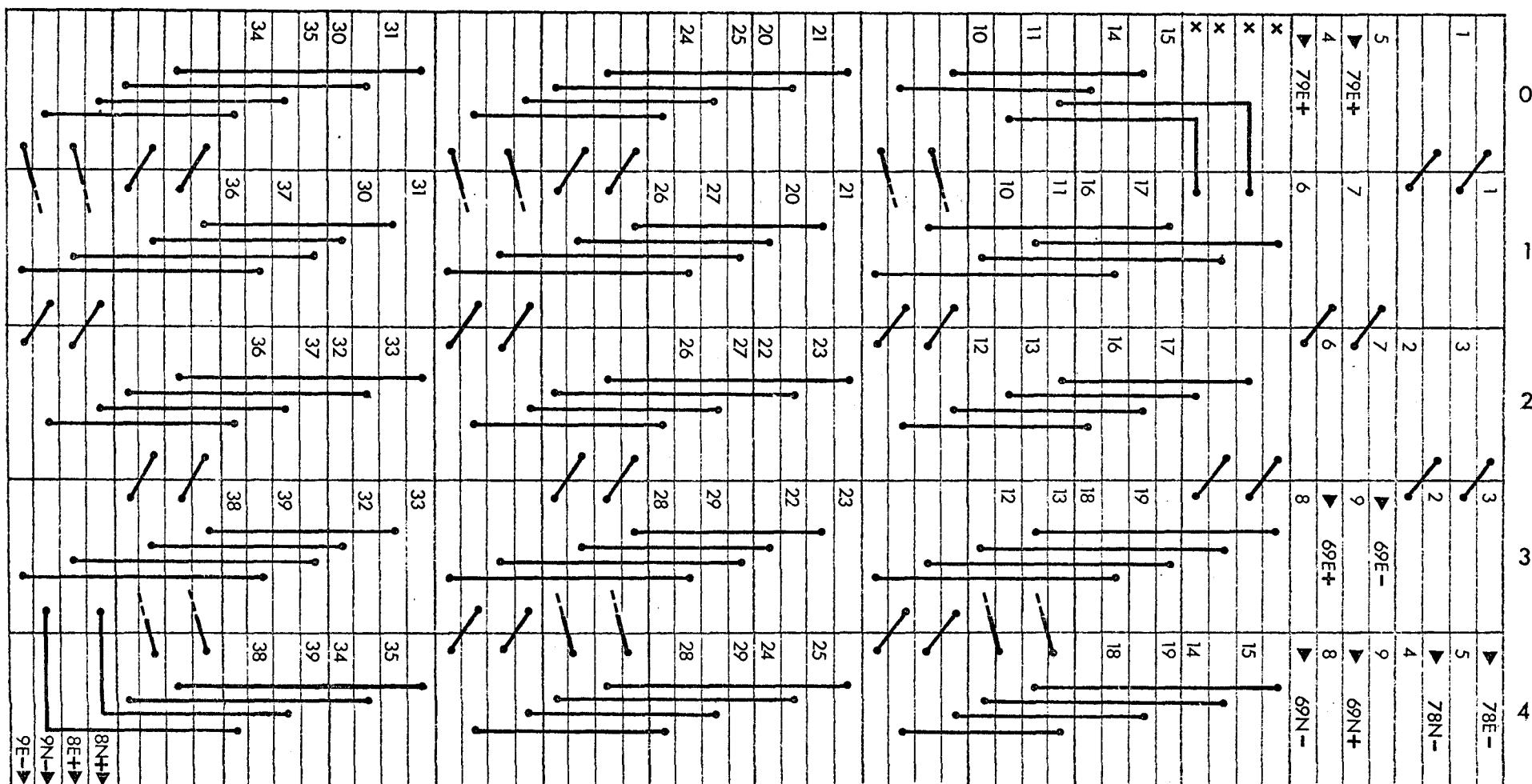
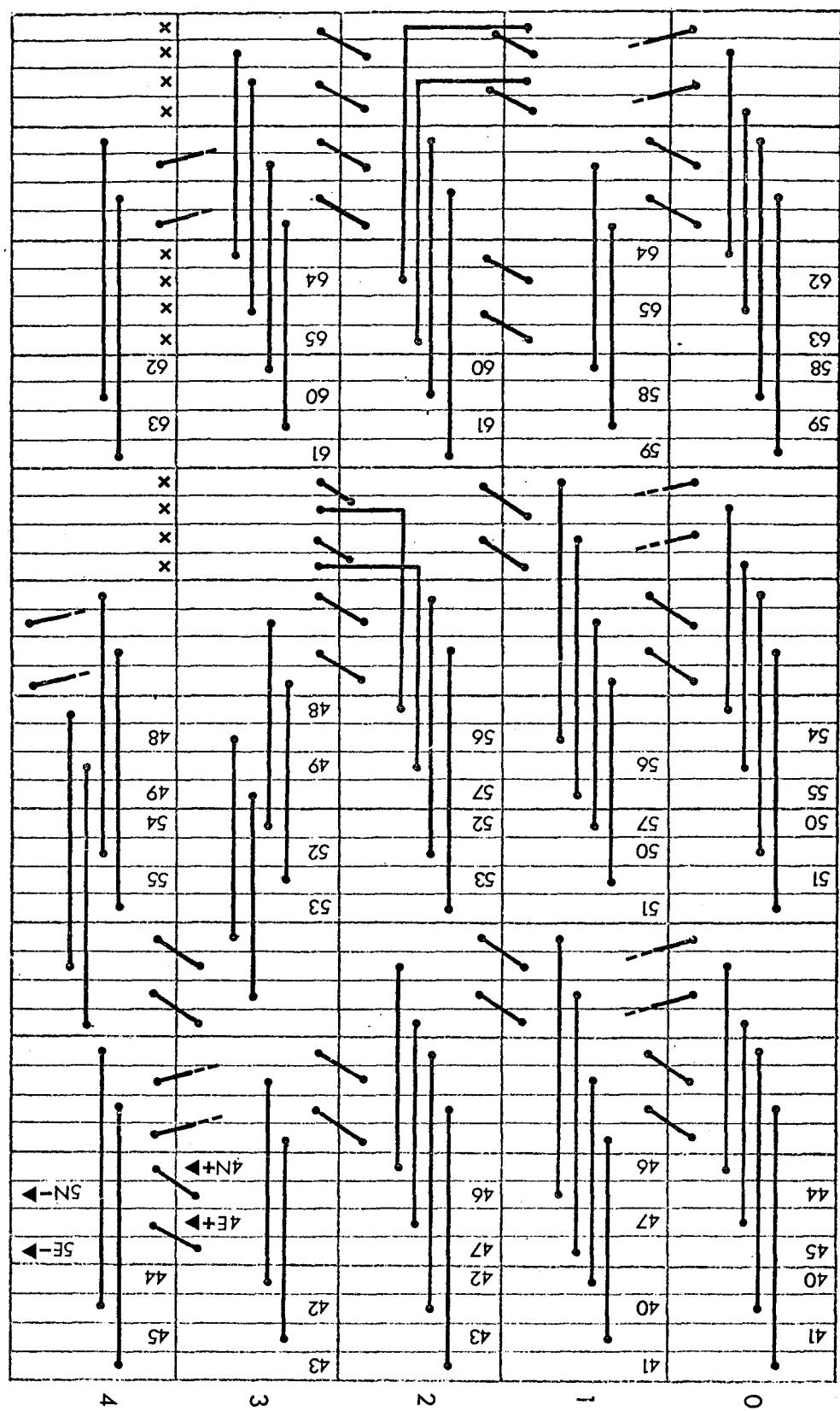
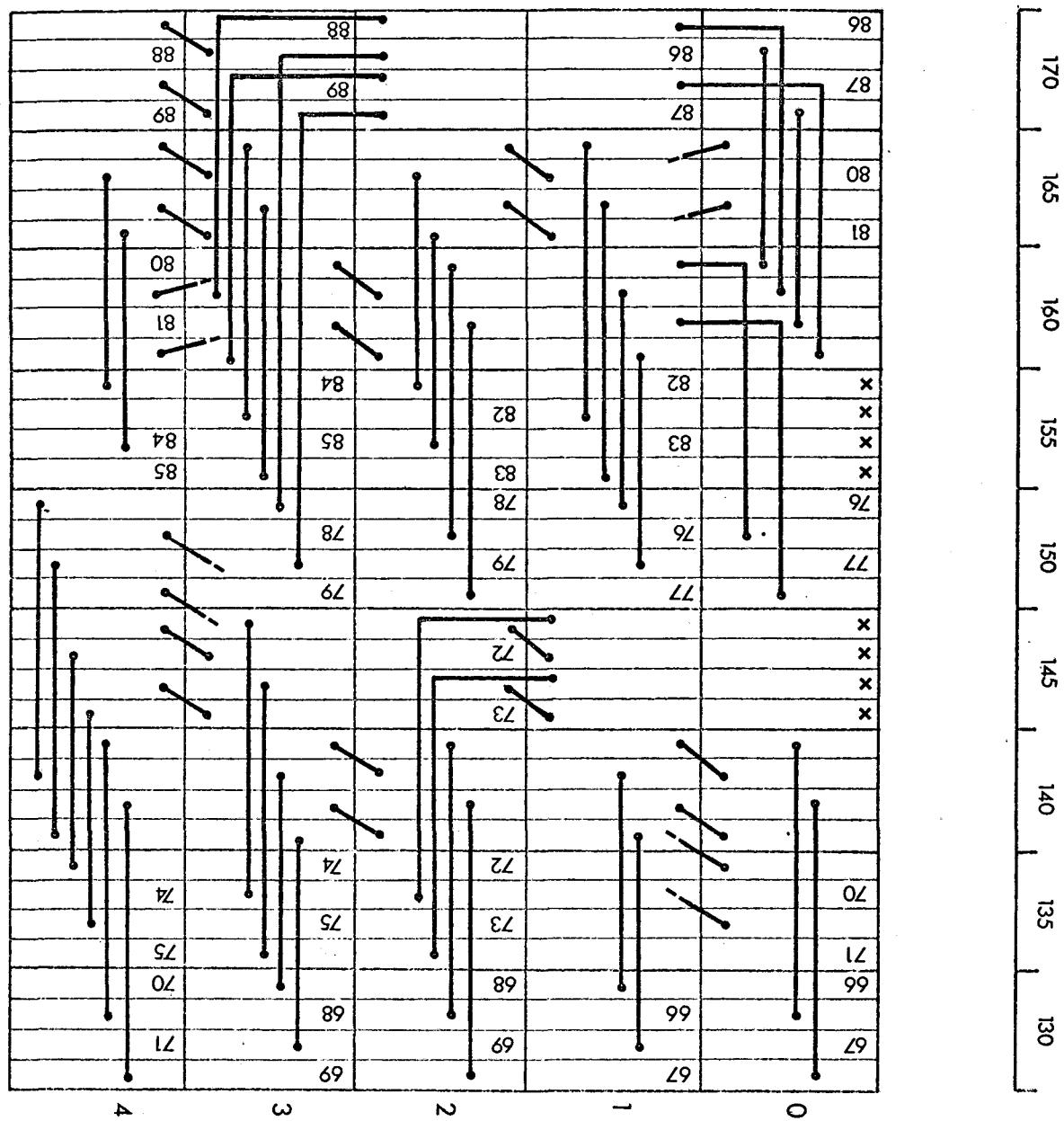
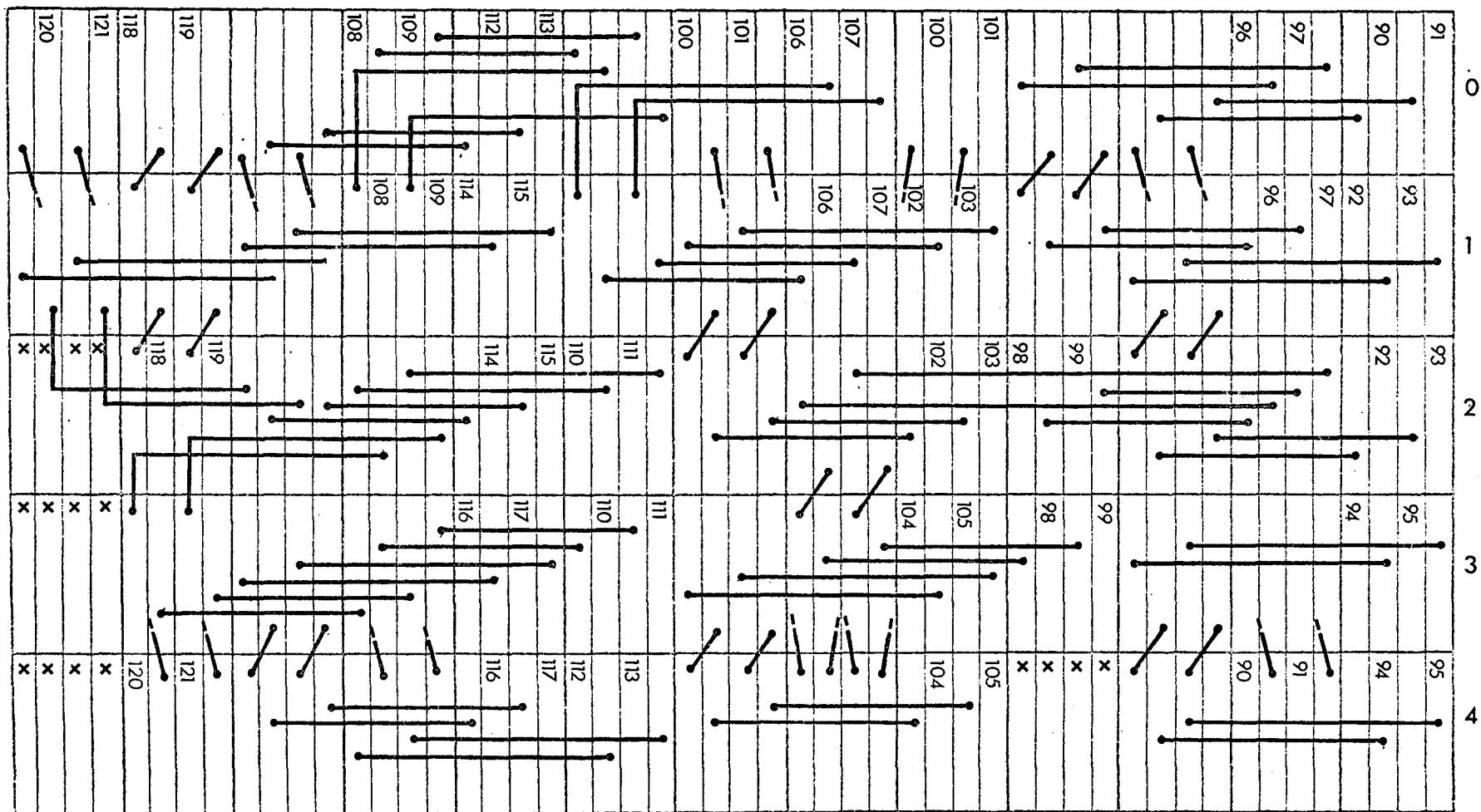
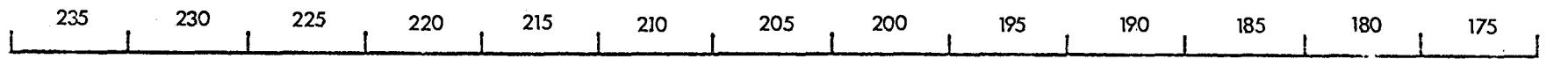
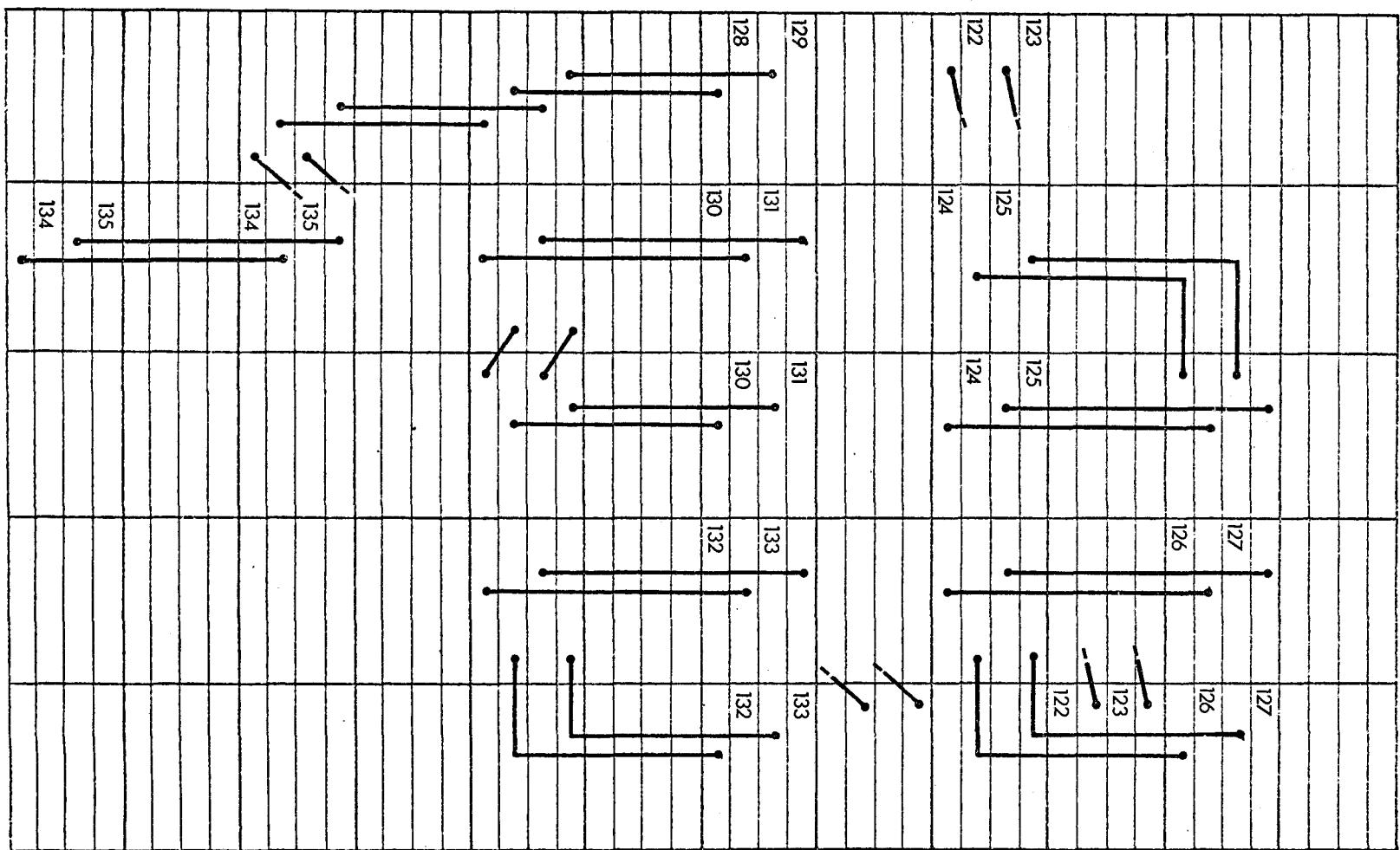






Fig. 21 (5 diagrams on pages 45 to 49). Physical arrangement of patch board B for the grid scheme shown in Fig. 17.


125 120 115 110 105 100 95 90 85 80 75 70

295 290 285 280 275 270 265 260 255 250 245 240

0 1 2 3 4

4. CONCLUSION

After the construction of the main computation network has been explained mainly for the user's aid, the scheme of a particular tide/surge model for the sea around the British Isles has been described with full data for its time-independent parameters.

ACKNOWLEDGEMENTS

This is a part of the project commissioned by the Ministry of Industry and Department of Energy. The author wishes to thank Miss Kathleen Reeves-Wilkin for her assistance in completing the patch board wiring, and drawing some diagrams in this paper.

REFERENCES

- (1) S. Ishiguro (1973): Main Computation Network.
IOS Internal Document 89, 46 pp.
- (2) S. Ishiguro (1979): New Input Memory.
IOS Internal Document 61, 74 pp.
- (3) S. Ishiguro (1980): Grid-card Calibrator.
IOS Internal Document 67, 20 pp.
- (4) S. Ishiguro (1980): Output Memory.
IOS Internal Document 85, 21 pp.
- (5) S. Ishiguro (1980): Control Cabinet.
IOS Internal Document 86, 56 pp.
- (6) S. Ishiguro (1980): Mechanical designs of the Computation Cabinet.
IOS Internal Document 92, 25 pp.

Fig. A1 shows the connections of a channel from the input memory to a grid card, through connectors CN21 etc and the patch boards within the main computation cabinet.

When the connections for each section (corresponding to one connector, e.g. CN21) of the patch board has been completed, it is recommended that the circuit connections are checked as follows:-

- (1) Connect all the grid cards involved to their sockets in the main computation cabinet.
- (2) Disconnect connectors CN21 etc from the input memory.
- (3) Measure the resistance between a pair of pins (No. n and No. n+1) by a resistance meter, with a constant polarity relationship (pin No. n for -, and pin No. n+1 for +), as shown in Fig. A2.
 - (a) If the resistance meter indicates approximately $50\text{ k}\Omega$, the connection in the channel is correct.
 - (b) If the meter indicates zero ohm, there is a short circuit.
 - (c) If the meter indicates infinite resistance, reverse the polarity of the meter leads. Then, if the meter indicates approximately $50\text{ k}\Omega$, there is a reversed connection.
 - (d) If the meter indicates an infinite resistance in the normal and reversed polarities, there is an open circuit.

An accidental open circuit can be traced on a resistance meter which is connected as shown in Fig. A3. Touch the circuit in question with the probe starting from one of the patch board pins, and continue through all the components. When a grid card is checked, Pin No. 2-3 (for N) or Pin No. 14-15 (for E) of each edge connector is touched by the probe.

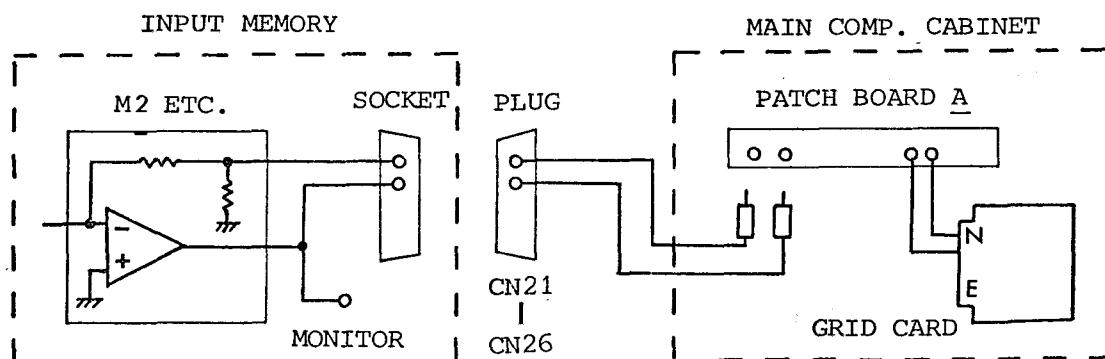


Fig. A1

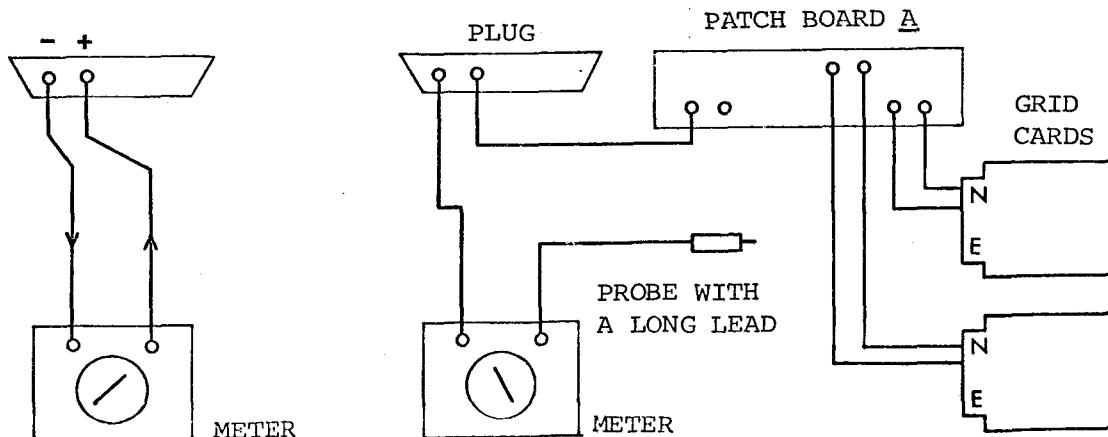


Fig. A2

Fig. A3

APPENDIX 2 STRAY CAPACITANCE

The main computation network has been designed so that the errors due to its stray capacitance do not exceed $\pm 1.5\%$ of the full scale of the final output.

Actual stray capacitances within the 'floating part' of the network can be neglected compared with those of fixed components.

The stray capacitance between the floating part of the network and earth is relatively large. The main components involved in this capacitance are the floating DC-power supply units, selectors of the multiplexer, grid sockets and wires.

Table A1 shows the values of the fixed capacitors, stray capacitance of one grid, and their deviations.

Table 1 Values of the fixed capacitors and stray capacitance of one grid, and their deviations.

	Nominal (PF)	Deviation (PF)	Temperature effect (%)			
			0°C	12°C	20°C	30°C
Fixed capacitors on grid card, C	15000	± 150	+0.2	0.0	-0.2	-0.3
	3300	± 33				
	680	± 20				
Stray capacitance between grid centre and earth, C_s *	280	± 58				
Total	19260	± 261				

$$19260 \pm 261 \text{ (PF)} = 19290 \frac{+231}{-291} \text{ (PF)} = 19290 \text{ (PF)} \frac{+1.2}{-1.5} \text{ (%)}$$

*The grid card is excluded. The multiplexer is included, but its wiper is not engaged with the grid. If it is engaged, the following value should be added:

Stray capacitance
of the wiper alone $C_w = 150 \text{ (PF)}$ max. = 0.78 (%) of 19290 (PF)

In order to avoid the increase of the stray capacitance other than that of the wiper, an impedance converter (see Fig. 15) is inserted between each wiper and its external circuit. Consequently, the increase of the stray capacitance due to the external circuits remains within 1 PF, independent from them.

Table A2 shows the values of C_s against grid-socket numbers.

Table A2 Values of C_s against each grid number.

	<u>0</u>	<u>10</u>	<u>20</u>	<u>30</u>	<u>40</u>	<u>50</u>	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>
0	228	255	272	223	253	268	227	254	255	236
1	264	278	292	258	294	322	270	274	299	282
2	274	287	308	270	307	323	267	284	311	284
3	275	289	321	266	306	330	277	317	313	285
4	269	299	323	287	305	337	286	306	317	281
5	281	292	302	252	288	317	259	286	316	250
6	253	291	328	266	280	319	272	291	316	247
7	252	311	308	271	272	326	280	302	298	266
8	266	302	313	276	299	326	293	302	310	260
9	243	271	291	254	259	286	245	267	292	249
	<u>100</u>	<u>110</u>	<u>120</u>	<u>130</u>	<u>140</u>	<u>150</u>	<u>160</u>	<u>170</u>	<u>180</u>	<u>190</u>
0	222	291	222	243	256	224	248	261	223	250
1	288	307	264	290	298	258	282	335	278	284
2	300	314	262	296	314	267	288	322	269	302
3	310	320	278	317	317	280	297	307	282	311
4	300	362	272	311	312	280	307	327	272	305
5	298	303	257	293	312	257	283	319	291	283
6	298	312	262	301	319	249	298	323	270	304
7	293	316	367	294	312	277	307	334	281	302
8	301	329	265	302	308	271	296	318	272	330
9	270	312	215	278	291	252	272	302	242	277
	<u>200</u>	<u>210</u>	<u>220</u>	<u>230</u>	<u>240</u>	<u>250</u>	<u>260</u>	<u>270</u>	<u>280</u>	<u>290</u>
0	270	224	245	270	226	255	234	220	260	279
1	320	253	306	320	254	288	302	241	284	311
2	317	265	304	336	271	294	235	270	299	326
3	322	271	317	342	280	310	320	273	318	330
4	308	282	319	340	274	298	314	273	309	333
5	308	272	291	308	241	376	298	272	287	318
6	292	268	318	323	271	275	318	264	288	327
7	309	259	313	338	273	318	324	276	281	333
8	326	259	305	336	282	302	321	251	305	310
9	286	252	259	304	255	275	297	248	263	264
	<u>300</u>	<u>310</u>	<u>320</u>							
0	226	245	266							
1	259	299	304							
2	270	282	319							
3	284	311	301							
4	266	299	293							
5	300	262	308							
6	278	302	315							
7	264	287	338							
8	258	303	338							
9	249	274	301							

Grid Nos. 0 to 329

Capacitance in PF

Max 338

Min 222

Or 280 \pm 58

