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SYMBOLS 

Note: the S.I. system of units is used. 

—i •-.'f 
cr = conductivity of sea water Cohm metre" ) 

—2 
i = Electric current density (amp metre ) 

I = total electric current within a radius r (amp) 

I = electric current in the conductor 
w 

B = magnetic flux density (weber metre ) 

r = radial distance from the centre of the conductor 

R = radius of the cable 

(i = permeability of sea water taken as p = 4^ x 10 

-1 -1 
weber amp metre 

0) = Zirf = angular frequency of I 

- - 1 
k = (|i cr £j)̂  is a parameter with dimensions of L 

r = 1/k is the characteristic length defining the scale 
o 

of the phenomenon 

X = r/r^ = kr is a non-dimensional normalised radius 

X = R/r = IcR 
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Conduction signalling in the sea 

Some notes on the electric field produced in the sea by a 
single-core conductor with an earth return. 

Introduction 

Various snippets of news have appeared in the last few years 
concerned with the use of conduction fields in the sea for 
communication and other purposes (for example, Anon, 1968, Braincon 
Corp., 1969 and Schultz, 1971). One name used for such devices is 
SJEDAR (Submerged Electrode Detection And Ranging), but the 
communication uses seem to be the ones of most likely practical 
application so that I prefer the term Conduction Signalling. 

Such systems operate by injecting electric current into the sea 
from a pair of electrodes, and detecting the resulting field at a distance 
by means of another pair of electrodes. A quick evaluation shows that 
one cannot neglect inductive effects even at frequencies of a few Herz, 
and so it has to be regarded as an electro-magnetic propagation problem. 
However, an order-of-magnitude calculation shows that electric displace-
ment currents can be neglected over the frequency range of interest. 

In 1921 Carson and Gilbert worked out the impedance of an electric 
cable in the sea with an earth return. They were concerned with the 
case of a cable with an earthed sheath and/or an earthed cage of 
armouring wires. This is a more complicated problem than the case 
of present interest, and though the results we require may be extracted 
from their paper, it may be of interest to give the derivation of the 
results used in our simpler problem, partly because it illustrates some 
important conclusions which may get lost in the more complicated 
mathematics of the other. This derivation is contained in an appendix. 

The distribution of the electric current in the sea. 

The problem initially treated is that of a long, straight insulated 
cylindrical conductor in the sea with an earth return. It is somewhat 
similar to the well-known theory of the skin-effect in a cylindrical 
conductor, but turned inside out. There is, however, one important 
difference resulting from the fact that the currents in the sea are 
induced by a concentrated axial current in the conductor: no potential 
differences are produced in the water. At every point, the resistive 
back-e.m.f. is exactly balanced by the electromagnetically-induced e.m.f. 
The energy dissipated by the current flowing in the resistive sea water 
is supplied by a back-e.m.f. induced in the conductor by the changing 
magnetic field surrounding it. Thus, apart from end effects, there is 
no potential difference in the water between the electrodes at the two 
ends of the cable. One can easily see that this must be so. The 
results below show that as the radial distance from the conductor is 
increased, the current and magnetic fields fall to zero in a rapidly 
convergent manner. There are therefor no potential gradients in the 
water a long way from the wire. There are no sources of e.m.f. 
available to support radial potential gradients. Therefore there are 
no potential gradients close to the wire where the strongest currents 
are flowing. A pair of electrodes connected by a wire parallel to the 
primary conductor will, however, apparently pick up a voltage equal to 
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the resistive potential drop of the current flowing at that radius. 
The voltage is actually produced by the magnetic field cutting the 
wire, and a consequence of this which could be important in some 
cases is that it will depend on the routing of the wire and not only 
on the position of the electrodes. However, for the rest of this 
paper we shall assume for convenience that the voltage developed by 
the receiver is equal to the resistive component. 

The phenomena are governed by a characteristic length r = (|l1 o" oi) 
"t "t ^ 

Putting in a typical value of cr for sea water of 4Q~ m" gives r^ = 178/Vf 

metres (figure 2). If the overall radius R of the cable is less than 

0.02 r . which will be true in all cases of interest here, then to an 
° 3 

accuracy of better than 1 part in 10 the current density i in the water 
at a radial distance of r from the centre of the conductor is given by 

i 1 
I 2 
w «arr 

o 

(kei X - j leer x) (1) 

where x = r/r and kei x and ker x are Kelvin Functions which are 
o 

tabulated (for example, by Oliver, 1964). 

This function is plotted in figure 3, which shows the distribution 
of in-phase and quadrature current near the cable in parametric form. 

For underwater signalling we are concerned with longer distances. 
When X » 1, equation (1) becomes 

i 1 -(x//2) 
— = ~2 G 
w r 

~ ! 
) + j cos( _ .̂ 2 - 2 ) j 

. X TT . X IT 
8in ( - jTr - - ) 

(L) 

We are also not concerned with the phase of the signal, so that 

i . - J e - ( W 2 ) (3) 

w r 
o 

This equation is correct to better than 1% for values of x>3.6 

We can now put in some figures to get a feel for the problem 

(assuming t = 40 m ) 

At 300 Hz, r = 10.3m 
0 

Voltage gradient = [ij /cr cs i/4 Volts/metre 

2.24 xlCT^ ,,-1 
I I T e Via I w I 7 r 
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At a range of 100m, the voltage gradient is therefore 

11^1 X 2.2 X 10"? 

Beyond this the gradient falls off by slightly more than 1/e for 
every 1 4.5m. 

One must remember that the impedance and bandwidths are very low, 

so that an value of 100A is probably attainable, and 10"^ V can 

probably be detected. Even so, this formula would lead to the 
conclusion that the maximum range at 300 Hz is unlikely to exceed 
200m. 

Even at 30Hz, the voltage gradients at 500m range are approximately 
—"10 —1 

2.5 X 10 I V m , which must be near the limit of detectability. 

The effects of short source wires and of boundaries 

We have assumed so far that the primary wire is infinitely long. 
Equation 2 shows that we are dealing with propagating electromagnetic 
waves with a wavelength of 2 -f 2 tt v^ = 8.88 r^. This is, as one 

would expect,the wavelength calculated for plane e.m. waves (see, for 
example, Horvat, 1969). However, the attenuation length is only k/2rr 
and so the beam-forming process will not work in the normal way. It 
might be possible to calculate the patterns, but for the present discussion 
we need only make two elementary points concerning the effect of shorter 
wires. 

(1) The field strengths will never be significantly above those 
calculated for an infinite source wire and will usually be less. 

(2) They will generally be greatest in a plane perpendicular to 
the wire and passing through its centre. 

We have also assumed an infinite sea in all 3 dimensions. The 
effect of a near-by surface is very problematical. Various authors 
quote measured ranges far in excess of those calculated by the above 
methods (for example, Anon. 1963. Horvat, 1969 quotes references to 
similar results with submerged dipoles, which is a closely related 
system). The explanation usually given for such results is that the 
radio waves "escape" into the air, travel as a surface wave, and re-
enter the water to reach the receiver. This is likely to be an 
effective mechanism only when the depth of the source plus the depth 
of the receiver is considerably less than the limiting range calculated 
for the all-sea path. 

Summary of conclusions 

(1) If, as seems likely, 30Hz is the lowest practicable 
frequency at which to work such a system, the range of a deep system 
is limited to about 500 metres. At 300Hz the maximum expected range is 
about 200m. At voice frequencies even lower ranges are expected and 
frequency equalisation ought to be difficult, though Schultz (1971) did 
not find this a problem. 

(2) The effect of short transmitter wires is to reduce the above 
ranges, but this reduction may not be great for wires of practical 
length (say 100m.). 



(3) The effect of shallow transmitters and receivers is problem-
atical but experiments indicate that much longer ranges can be obtained, 
the radio waves probably travelling most of the distance as surface waves 
on the air-water interface. 
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APPENDIX I: the theory of the return current distribution 

Consider an insulated long straight conductor of overall radius R 
surrounded by an infinite volume of sea water. The following 
assumptions will be made: 

(&) Axial symmetry 

(b) The displacement current term in the electromagnetic 
equations may be neglected. In plane wave propagation in the sea this 

7 
is valid for frequencies below about 10 Hz (Horvat, 1969). It is 
equivalent to saying that the scale of the phenomenon with which we are 
dealing is small compared to the wavelength in a medium with the same 
permeability and dielectric constant but no conductivity. The results 
show this to be the case. 

Note that i and I have been taken as positive in opposite 
directions. Though not perhaps formally correct, this avoids the 
currents in the water appearing with a negative sign. 

Refer to figure 1 and consider e.m.f.'s round the loop marked with 
arrows. That due to the change in current density with radius is 
given by 

(1/oO i + 8r (6i/6r) I - i/^ = (i/o05r 9i/9r 

That due to the changing magnetic field is 

6(B6r)/3t = Sr(9B/9t) 

These must balance, so that 

? H - i f = ° 
If the total electric current within the radius r (including the 

current in the conductor) is I, then B = ixl/2Trr. Inserting this 
in equation (1) gives 

9i 91 m 
r 37 - S; 8t - ° . (2) 

Since 81/9r = Zwri, one can differentiate equation (2) w.r.to r, 
substitute this equality, and with some reduction obtain 

+ IF eF - it = 0 (3) 
or 
which is the basic differential equation of the phenomenon 

The temporal term is eliminated in the usual way by considering 
a sinusoidal current with angular frequency cu* , so that 

f(r) exp ( jwt) (4) 
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Substituting in equation (3) gives 

2 
- jicr . j £J f = O 

6r^ ' 

2 
Putting (icroJ = k and x = kr gives 

^ ^ * X # - j K^f : 0 (5) 

The solution of this is a Bessel function expressed in Kelvin 
functions (see, for example, Olver 1964, equations 9.9.3) and is 

f = C(ber X + j bei x) + D(ker x + j kei x) 
O G O O 

Now ber x and bei x are functions increasing rapidly with x, 
whereas from physical reasoning we know that f decreases as x 
therefore C = O and (following the usual convention and omitting 
the subscript o) 

f = D(ker x + j kci x ) (6) 

ker X and kei x are tabulated (for example, by Olver 1964) 

The value of the constant D must now be determined, the criterion 
being that 

2 -TT r i dr = I 

R 2 * 
or k I /2fr = j x i dx where X = kR 

^ X 
X i dx - / X i dx (7) 

'o 

Using equations (4) and (6) 

rz fX 
X i dx = exp(j w t) D / (x ker x + j x kei x) dx 

o V 0 . . . 

= exp(j ci} t) D (x kei' x - j x ker' x) ..... (8) 

(Olver 1964 equations 9.9.21) 

kei' X and kp*-' bcth —^ O as so equation (7) becomes: 
.2 

I /2r = _ expCj w t) DXCkei' X - j ker' X) 
w 

2 

or D = - k I /ar X (kei' X - j ker' X) exp j # t 

Using equations (4) and (6) gives 

i 1 
I — ~ "27rX ' — • (kef x + j kei x) (9) 
w kei' X - j ker' X 



In practice one is concerned with values of X less than 0.1, which 
represents the value for a cable 5cm in diameter carrying 500kHz in water 
with a salinity of 35^ at 15 C. By considering the polynomial expansions 

of kei' X and ker' x, and neglecting terms less than IcT^ of the modulus, 
one finds that 

1 _ kei' X + j ker' x 
_ 2 2 

kei' X - ker' x (kei' x) + (ker' x) 

= - 0.5 6n (X/2) - jX CIO) 

1 - 0.393 

When X = 0.1 the real term here is less than 2% of the imaginary term 

and 0.393 is less than 4 x 10 so for approximate purposes this 
3 

reduces to - j X. This is valid to better than 1 part in 10 when 
X <0.02. Using this approximation 

i = (kei x - j ker x) (11 ) 
I 2ir 
w 

It is interesting to note that one can partially check this result 
very easily as follows. The total in-phase return current as a fraction 
of I is 

w 

= I real part of (i/I ) . 2ir x d i 

JE * 

2 
-k I r kei x dr 

R 

X kei X dx 

X 

X kei X dx 

which is correct. 

Similarly, ] imaginary part of (i/I^) . 27r r d r 

X ker X ax 
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APPENDIX II: The cable impedance 

First consider the cable to consist of a thin tube of perfectly 
conducting material of radius R separated from the water by a negligible 
thickness of insulation. The e.m.f. induced in this tube is then 
identical to that induced in the water immediately surrounding it. Since, 
as explained in the main part of the paper, in the water this is exactly 
balanced by the resistive voltage drop, it equals -i /c per unit length, 

where iĵ  is the current at r = R. 

i and I have been taken as positive in opposite directions, so a 

further minus sign is required, and using equation (11) then gives the 
impedance per unit length as 

..2 
(kei X - j ket X) 

U 
Ztt 

y (kei X - j ker X) (12) 

On the same assumptions as before, that is, that X < 0.025, low value 
approximations for ker X and kei X can be used giving 

(p/2r) w 0.785 - j (0.5772 + X/2) i (13) 

Inserting p, = 47r x 10 ^ and using Zn X instead of 6n(X/2) gives 

Z = 10"? w 1 .570 + j (.2318 - 2 6n x) | O/m (14) 

The impedance of a real single-conductor cable can now be calculated in 
two stages. Firstly, one adds a hypothetical coaxial sheath of perfectly 
conducting material at the overall radius R and passes the return current 
through this. The impedance of this hypothetical coaxial cable can be 
calculated by well-established methods. The impedance added by taking away 
the hypothetical sheath and substituting the water path is then that calculated 
above. 

The fact that the resistive component is independent of cable diameter 
is easily explained by reference to figure 4 which shows that the power 
dissipation in the immediate vicinity of the cable is negligible. The fact 
that it is also independent of conductivity was unexpected. It arises because 
the linear scale ( = r^) of the current distribution is oc 1//(r, so that the 

current i per unit area close to the wire is cc d" and therefore the potential 
drop per unit length and hence the total power dissipation is independent of cr. 
It is in one respect a disappointing result. One of the reasons why the author 
worked through this theory was that he realised from physical reasoning that the 
resistive component would be largely independent of cable diameter, and therefore 
hoped that measuring it would provide a means of determining conductivity in a 
manner insensitive to fouling. 

Turning now to the reactive component, the first fact to note is that 
over the range of X for which equation (14) is valid, ,̂n X is negative and 
large enough for the whole reactive term to be positive (that is, inductive) A/ 
as one would expect. Calling the equivalent inductance per unit length L, 
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1 
putting X = R(n o" w) , putting in the numerical value for 
and converting to logarithms to the base 10 gives 

r ' ' ' ' n _7 
L = 14.82 - 4.605 log^^R - 2.303 log^^o" - 2.303 log w i x 10 

Henries/metre (15) 

which is probably the most convenient form for practical use. 

It is enteresting to compare these results with thos reported 
by Jones et al (1961). They laid 4 different types of cable in the 
sea with earth returns. The cables all had steel armouring, were 
laid from the shore, had lengths varying from 2.96 nM to 9.36 nM 
and the far ends were in depths varying from about 20m to 45m. The 
impedances were measured over the audio-frequency range and the 
components due to the return path calculated. Below 200Hz the 
return path was effectively in the sea water only (that is, only a 
negligible proportion in the armouring), so the impedance might be 
expected to agree with the above calculations. They found that the 
resistive component was proportional to frequency and independent of 
cable diameter, which is in qualitative agreement, but at 200Hz it 
was approximately 1.950 per nautical mile, whereas equation (14) 

would predict 0.365 Q/nM. 

I must admit that this discrepancy is larger than I am happy 
with, but one might expect a factor of between 2 and 3 because the 
cable was on the sea-bed, whish is an insulator compared with sea 
water, and a proportion of the cable (near-shore) was in water 
shallow compared with r ( =12.7 m at 200Hz). Thus, the return 
current was concentrated by a factor of greater than 2 compared 
with an infinite sea surrounding the cable. 

Comprehensive tests from which full results were calculated 
were only made on cables 1 and 4, respectively 4.52 and 3.41 nf4 
long ending in water approximately 25 and 20m deep. Cable 3 was 
9.36 nM long ending in water approximately 45m deep, and it may 
be significant that from the restricted tests made on this cable, 
the resistive component of the return path appears to be considerably 
lower. 

The inductive component per nautical mile at low frequencies 
was found to vary by approximately -0.85 mH per octave increase in 
frequency compared with -0.12 mH per octave predicted from equation 
(15), but at 100Hz the absolute value of approximately 2,45 mH/nM 
for cable 4 was fairly close to the value of 2.81 mH/nM predicted 
from equation (15). 

It is also interesting to note in passing that though the 
inductive component is dependent on the conductive, it is only 
a weak dependence and could not be used as a useful measure of it. 
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