Bl

N\ Institute of
> ::,\: Oceanographic Sciences
—— Deacon Laboratory

INTERNAL DOCUMENT No. 328

Constructing a 2° x 1° resolution model of
the Southern Ocean using the GFDL
Modular Ocean Model (MOM)

A C Coward
1994

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 328

Constructing a 2° x 1° resolution model of
the Southern Ocean using the GFDL
Modular Ocean Model (MOM)

A C Coward
1994

Wormley

Godalming

Surrey GU8 5UB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
COWARD, AC DATE 1994
TITLE
Constructing a 2° x 1° resolution model of the Southern Ocean using the GFDL Modular Ocean Model
(MOM).
REFERENCE
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 328, 84pp.
(Unpublished manuscript)
ABSTRACT
The GFDL Modular Ocean Model (Pacanowski et al, 1990) has rapidly become established as both a
teaching and a research tool. This document details the work carried out to construct and operate a
physical model of the Southern Ocean using the published GFDL code. The work is intended as the
first stage of the development of a combined, physical and biological model of the Southern Ocean
but is also a useful illustration of the techniques and methods that modellers are advised to adopt
when using the GFDL MOM code.
KEYWORDS
NUMERICAL MODELLING
PROJECT - FRAM
ISSUING ORGANISATION
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 5UB. UK. Telephone Wormley (0428) 684141
Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Copies of this report are available from: The Library, PRICE £0.00

CONTENTS

1 INTRODUCTION
2 RECONFIGURING THE MODEL DOMAIN
3 CONSTRUCTING THE MODEL TOPOGRAPHY
4 THE OPEN BOUNDARY CONDITION
5 APPLYING ANNUAL MEAN WINDS (HELLERMAN)
6 ACQUIRING LEVITUS DATA ON THE MODEL GRID
7 PRELIMINARY RUNS AND RESULTS
REFERENCES
APPENDICES
Bppendix A Managing the MOM code in the UNIX environment

Appendix B

Appendix C

Appendix D

D@

D (i)

D (iif)

Killworth, Smith & Gill. Ocean Modelling 56, April 1984

Source code control system (SCCS) and file development
history

Summary of new options
Program listings

db2med.f Program to derive bottom topography
based on median values of dbdb5 data
(IBM application)

med2cram.F Program to convert output from db2med.f
to a single 2-D field

makekm.F Program to read topography field and
produce a model topography field

(kmt array)

Page

11

13

14

16

20

22-84

22

30

38

40

40

46

48

D (iv)

D (v)

live2mom.F

getslice.F

Program to read in Levitus data in the 54
original format and interpolate onto the

model grid (will also convert in-situ

temeprature to potential temperature)

Program to extract standard direction 69
slices of model variables from the MOM

restart datasets.

1. INTRODUCTION

This document details the work carried out to construct and operate a physical model of
the Southern Ocean based on the GFDL Modular Ocean Model (MOM). This work is intended as a
precursor to the development of a biological model of the Southern Ocean but is also useful for
illustrating the use of the MOM code and describing some of the techniques that modellers will
need to become familiar with in order to make effective use of the code.

The actual model described here has a 2° longitude by 1° latitude resolution with 25
vertical levels. The domain coincides with that modelled by both the coarse- and fine-resolution
Antarctic models developed by the FRAM team (de Cuevas, 1992; de Cuevas 1993). However,

ince most of the biological processes occur exclusively in the upper ocean, the vertical resolution
is biased more towards the surface than was the case with the Fine Resolution Antarctic Model.
The vertical distribution is the same as that used by Sarmiento (1986).

Model updates for the biological model have been obtained from the United States. These

updates represent the code run successfully in the North Atlantic model of Fasham et al (1993). To

prepare a physical model capable of hosting the biological model the following developments

were necessary:

e Setting the model dimensions and grid distribution.

e Constructing the model topography: Bottom topography over the model domain can be

obtained from the dbdb5 dataset. However care must be taken to filter any possible

sources of topographic instabilities.
e Including open boundary conditions (Stevens, 1991)
e Applying annual mean winds read in firom external data files.

e Acquiring Levitus temperature and salinity data (annual means) on the model grid. These
are required for surface forcing, possible initial conditions and to allow for the possibility

of running in a robust diagnostic mode

Separate sections of this report are devoted to each of these developments.

2. RECONFIGURING THE MODEL DOMAIN

The MOM code is supplied pre-configured as a 4° x 3° global model. Input fields such as
topography, surface forcing fields and surface restoring fields are calculated from a limited
number of data points held in the relevant routines. For example, the routine: beest.F linearly
interpolates global, zonal averages of sea-surface temperature, salinity and the wind-stress
components onto the current MOM grid. The internally held data consists of 40 values for each
variable giving a latitudinal resolution of 4.5 degrees. Similarly, the routine: topog.F will produce
an idealised world topography which will map into any domain.

Hence, in order to produce a model of any region of the globe it is only necessary to set
certain 'grid parameters' and then compile. The exact content of the model is determined by the
choice of preprocessor directives which are set at compile-time (see MOM READ ME file).
Obviously, the resulting descriptions of bottom topography and the surface boundary conditions
are too crude for most modelling efforts. However they do fulfil a useful role in the initial
development of the model. ‘

Temporarily accepting these 'internal' descriptions of topography, surface conditions and
initial conditions (again zonal averages at 4.5° resolution) a model of the Southern Ocean was set

up by making the following minimal changes:

Variable Description Old value New value
Location

imt no. of grid pts longitudinally 92 182 param.h
jmt no. of grid pts latitudinally 60 56 param.h
km no. of vertical levels 15 28 param.h
Iseg max no. of longitudinal stream-fn. segments 5 6 param.h
nisle number of islands , 2 1 param.h
stlat starting latitude (degrees) -90. -79.0 blkdta.F
stlon starting longitude (degrees) -4, 0.0 blkdta.F
xmax max grid box width (degrees) 4, 2.0 blkdta.F
Xmin min grid box width (degrees) 4. 2.0 blkdta.F
xwid longitudinal width (degrees) g 368. 364.0 blkdta.F
ymax max grid box ht. (degrees) 3. 1.0 blkdta.F
yImin min grid box ht. (degrees) 3. 1.0 blkdta.F
ywid latitudinal height (degrees) 180. 56.0 blkdta.F
rests surf. restore time scale (day) 50. 360.0 blkdta.F

Changing the vertical resolution of the model (km) introduces an extra complication.

Namely the need to re-calculate the nine coefficients of the third order approximation to the

equation of state for each level. Fortunately, one of the modules supplied with the MOM code is a
stand-alone program designed to perform the required calculation and create the include file,

dncoef.h, which holds the resulting data statements. The process is as follows:

1. Set the new level thicknesses in the include file: thick.h

2. Edit the module: denscoefF, comment out the subroutine declaration and reinstate the
program statement.

3. Compile and run denscoef.F

4. A new version of dncoefh will be created and will overwrite the existing version. By
default denscoef.F (actually named eqgstat by the program statement) uses the UNESCO
equation of state. Older equations of state can be selected by using the appropriate

preprocessor directives.

Finally, run control parameters can be set in the control file: ocean.in (the name of which is actually

set in ocean.F). These parameters include:

Variable Description
init Logical flag set true if run should start from initial conditions
days Number of days for integration (can include fractions of days)
dgnstc Number of days between diagnostic dumps
tsi Number of days between output of standard run information

(i.e. total k.e., dtemp, dsalt etc.)
nmix Number of timesteps between mixing steps
eb Logical flag, true if Euler backwards step is used for mixing
restrt Logical flag, true if a restart dataset is produced at the end of run.

The eddy, tsteps and params namelist entries in the control file conform to the standard
Cox setup. The namelist entry, &iland, contains co-ordinate information about the islands. This has
changed from the original Cox setup in as much as it is no longer necessary to describe a
surrounding box for each island. The MOM module iperim.F calculates island perimeters from a
'seed’ point. It is, therefore, only necessary to supply a single co-ordinate pair (latlon) which

points to an arbitrary point within each island (nisle in total).

3. CONSTRUCTING THE MODEL TOPOGRAPHY

Having set the model domain, one of the first tasks in improving the model is to apply a

more realistic bottom topography. The best description of ocean topography currently available to

us is the digital bathymetric § minute by 5 minute data (dbdb5) supplied by the Naval Ocean
Research and Development Office (NORDA) and the US Naval Oceanographic Office (USNOQO). A
fair representation of bottom topography can be obtained at coarser resolutions by calculating the
median of the dbdbb data in each grid cell. The dbdb5 data is supplied on two 9-track tapes.
Each tape covers one hemisphere and each hemisphere is itself divided into sixteen 45° x 45°
areas.

The areas are contained within a separate file and each file is subdivided into eighty-one
5° x 5° blocks. Each block has its own header and contains 61 x 61 values. The extra row and
column (i.e. 61 instead of the expected 60) is an overlap with the blocks' eastern and northern
neighbours.

Reading the dbdb5 data and obtaining median data on a 1/4° x1/4° grid was the subject of
an internal IOS report and computer program produced by Nick Plummer (1991). Obtaining data
f o r a
2° x 1° grid required a major reworking of the original program because every fifth 2° x 1° grid
cell straddles two of the original dbdb5 files — an occurrence not allowed for in the original
program. The solution is presented in appendix D (db2med.f). This program was constructed
specifically to obtain data for the current application. It may, however, serve as a guide for anyone
else intending to make use of the dbdb?5 data.

Db2med.f will create a file of median data covering the entire hemisphere. It was
discovered that the easiest method of working was to run db2med on the IBM (where there is easy
access to the tape drives and large temporary disks) and then to transfer the output file (median

data a) to a workstation for post-processing. Post-processing consists of:

1. Reading the 'median data' file, selecting the area covered by the intended model and
writing out the data as a single two-dimensional field.
2. Taking the two-dimensional topography field and constructing the model topography

array (i.e. 'snapping' the topography to the nearest model level).

The first of these steps is performed by the program medZ2cram.f (Appendix D (ii)). This program

produces the 'real' topography array in two forms:

(1) A full accuracy unformatted dump (rawcram.dbdb5) which is used for stage 2.
(i) An ascout cards file (topog.dbdb8) which can be viewed using the FRAM graphics

programs.

(Note: Preprocessor directives are used to include the ascout0 and header subroutines.

Therefore, med2cram.f (in common with all subsequent programs) will need to be preprocessed.

The commands:

cc -P med2cram.F
mv med2cram.i med2cram. f
£f77 -o med2cram med2cram.f

should work in all UNIX environments).

The second stage is performed by the program makekm.F (Appendix D(iii)). This code
reads the 'raw' median data and optionally applies zero, one or two smoothing passes before
converting the depths to the nearest model level.

Isolated bays which will be unaffected by advection are then removed and there is also the
option of removing any isolated land points. The model depths are calculated from the level
thicknesses held in thick.h, so a change in the vertical distribution will be automatically picked up
by makekm.F at compilation (n.b. makekm.F requires preprocessing as above). The three main
model parameters, imt,jmt and km, are set in a parameter statement at the top of makekm.F. A
change in these parameters could also be accounted for automatically by using the include file
param.h. However, in one respect the current program is specific to the model domain and
resolution of the Southern Ocean model. Namely the north and south islands of New Zealand are
joined by a section of fixed code. The inclusion of the fixed parameters is intended as a reminder
of this fact.

Output is again to two files: one unformatted file (sardepths21) and one ascout cards file for
viewing (topsar2l.cards). The MOM code contains checks for possible causes of Killworth-type
topographic instabilities and any such occurrences will be flagged at runtime (Killworth, 1987).
Therefore the run journal should be checked for any warnings after changing the topography.

Having created a new model topography it is relatively easy to adapt the MOM code to
use it. The simplest method is to exchange the call to topog in ocnlst.F with code to read in the
kmt field from the depths file. ocnlstF is the routine which is called if the logical flag, init, is true
(i.e. the routine which sets up all initial values). topog.F is the routine which will set up an idealised
topography and is therefore no longer required. Makekm.F automatically applies cyclic boundary
conditions on the kmt field. Code will have to be included to override this if it is not part of the
intended configuration. The code changes necessary to read in the kmt field created by makekm.F
have been incorporated into ocnlst.F (SCCS version number 1.2) and can be activated by
preprocessing the routine with the -Dmytopog commandline option (see appendix A).

The topography used for the Southern Ocean model was produced using makekm with
one smoothing pass and retaining isolated land points. The effect of makekm can be seen by
comparing figures 1 and 2. Figure 1 is the 'raw' median data as produced by med2cram.F. Figure
2 is the model topography created by makekm.F

-10-

CEETH

Figure 1 : The raw' median data as produced by medZcram.F.

Figure 2: The model topography created by makekm.F.

11 -

4. THE OPEN BOUNDARY CONDITION

One of the major features of the FRAM model (not available in the released version of the MOM
code) are the open boundary conditions on the northern boundary of the FRAM region. Stevens
(1990, 1991) gives details of the theory behind the open boundary condition. In practise it was
possible to lift the relevant code from the Cox-based FRAM code and adapt it to the MOM code.
Most changes are reasonably apparent. For example, the arrays T,TA, TB,TP,TM etc. are absorbed
into the elements of the 5-D array t(ik,jptr,time_ptr,n_tracer). Some care is required, however,
because there are some subtle re-definitions of familiar variables. For example, the reciprocal of

twice the vertical separation between centres of levels is defined in the Cox code as:
DZZ2R(K) = 1.0/ (DZ(XK-1) + DZ(K))
whereas in the MOM code what, at first, appears to be the same variable is defined as:

dzw2r (k) = 1.0/ (dzt(k) + dzt(k+1l))

So, unless extreme care is exercised, the task of converting Cox updates for use in the MOM code
can introduce some well-hidden bugs.

The changes carried out to include the open boundary condition in the MOM code are a
good illustration of how such enhancements should be implemented. All the additional code is
placed within #ifdef openbc and #endif delimiters, and any changes to existing code do not
overwrite but are added as #ifdef openbc new _code #else old _code #endif
constructions.

For example, the reference array for the tracers on the northern boundary (which is used
when the direction of flow is into the domain) is stored in the kontrl file. The kontrl file, therefore,

has to be increased in size if the open boundary condition is in use. The following code changes in

ocean.F achieve this:

call ostart (kontrl, 2, 2, 1)

becomes:

#ifdef openbc
nkntrl=2+imt*km*nt
call ostart (kontrl, nkntrl, nkntrl, 1)

#else

call ostart (kontrl, 2, 2, 1)
#endif

-12-

Using this methodology, the open boundary condition was inserted into the MOM code. The
original model, with a closed northern boundary, can still be created at any time by preprocessing
the code without the -Dopenbc flag (see appendix A).

There are several points to make about the open boundary code as currently
implemented. Firstly, the code works only with the rigidlid' model formulation and is currently
coded only into the 'hypergrid’ external mode solver. This solver is the same checker-board
relaxation method that was used successfully for the FRAM model. Adding the open boundary
code to the conjugate-gradient techniques (congrSpt.F or congr9pt.F) should be possible but this
has not yet been investigated. Secondly, the relaxation timescale used to restore values towards
Levitus values on the boundary, when flow is into the domain (rtscale), is set within step.F.
Currently it is set to the order of 10 model days. The final (and most unsatisfactory) point concerns
the imposing of a western boundary current in each basin. In the FRAM model a 'ball-park’ width
of 230km was assumed for each western boundary current. Unfortunately, this width is less than 2
grid points wide with a resolution of 2° x 1°. The present code will therefore allow a minimum of 5
grid points in which to 'ramp-down' the stream function values at each western boundary. This fix
works well numerically, but obviously imposes an unrealistically wide western boundary current at
the northern extent of each basin.

Code changes and additicns required to implement the open boundary condition can be

found in the following modules:

File SCCS version number
emode.h 1.2
param.h 1.5
temp.h 1.2
blkdta.F 1.3
checks.F 1.3
clinic.F 1.2
hyper.F 1.2
ocean.F 1.7
ocnlstF 1.3
odam.F 1.2
setvbc.F 1.2
step.F 1.2
windwt.F 1.3

and all subsequent versions of these modules. As previously stated, in order to activate the open

boundary condition use the -Dopenbc preprocessor commandline option.

-13-

5. APPLYING ANNUAL MEAN WINDS

Boundary conditions at the surface and bottom of the ocean are calculated by the routine
setvbc.F. In the basic model this routine calls the interpolation routine, bcest (see section 2). The
zonal average values produced by this routine are applied across the entire latitude band. The
resulting descriptions of SST, surface salinity and wind stress are clearly inadequate.

One of the first tasks to improve the model is to apply a more realistic wind stress. There
are several choices of climatological wind datasets. The set employed by FRAM and hence the
most readily available is that compiled by Hellerman and Rosenstein (1983). This dataset gives
annual mean values for the horizontal wind stress components over the world ocean at a resolution
of 2° x 2°. Data are also available for monthly averages at the same resolution. Allowing seasonal
variation in the wind stress will be a necessary enhancement for the biological model. However, as
a first step, the code changes required to read and apply an annual mean wind have been
implemented.

Because the resolution of the Hellerman data nearly matches the current model resolution,
interpolation is only required in the meridional direction. For this, standard linear interpolation has
been used. A simple-minded approach has been applied at this stage and no generality to
different model resolutions or domains should be assumed. The data is read from two files
(data/windx and data/windy) which each hold the appropriate wind stress component data over
the model region (i.e. 180 x 28 valués). These values are read in by the routine anlwind.F and
stored in a common block defined in anlwind.h. Code changes to setvbc.F ensure that these values
are interpolated (if necessary) and assigned fo the surface momentum ﬂux array (smf).

Code changes and additions required to implement the anmual mean winds can be found

in the following modules:

File SCCS version number
anlwind.h 1.1
hyper.F 1.3
ocean.F 1.8
setvbce.F 1.3
step.F 1.3
windwt.F 14

and all subsequent versions of these modules. In order to activate the annual mean winds use the
-Dannwind preprocessor commandline option. It will also be necessary to ensure that the routine

anlwind.F is included with the main modules.

- 14 -

6. ACQUIRING LEVITUS DATA ON THE MODEL GRID

Levitus climatological data are available from the National Oceanographic Data Centre,
Washington D.C.. The data represent the result of objective analyses performed on a one-degree
latitude-longitude grid at a number of surfaces of constant depth within the world ocean. As there
is a lack of synoptic data, the mean values are based on a composite of all available data
regardless of year of observation. Data available include: annual summaries of temperature;
salinity; dissolved oxygen; percent oxygen saturation and seasonal summaries of temperature and
salinity. The 38 analysis levels, 1° latitude-longitude grid and data format are common to all
datasets.

These data are commonly used for surface forcing, reference fields for robust diagnostic
relaxation and initial conditions. The task of interpolating the data onto the model grid has to be
approached with some care. Problems can arise, for example, where a model sea-point overlies a
Levitus land-point (values in the Levitus datasets are not interpolated over land). A Fortran77
program, levizmom.F, has been developed which will produce datasets of potential temperature
and salinity on the current MOM-grid from the original Levitus datasets. The program uses the
MOM modules to define the model grid, so a change in model grid or domain will be automatically

adjusted by recompiling levizmom.F with the same preprocessor directives that are used for the

main model.
The procedure followed by the program is as follows:

(1) Define model grid using setgrid.F. Read in kmt field from file produced by makekm.F

(2) Open original Levitus temperature and salinity files (or previously created potential
temperature file).

(3) Set all array values in the 'Levitus' arrays to the land mask value (this is necessary because
land points are excluded from the dataset).

(4) Read through datasets and perform steps (5) to (7) for each station.

(5) Unpack data, convert temperature to potential temperature if necessary.

(6) Vertically interpolate from the 33 NODC levels onto the model levels. Note: if the lower
point is a Levitus land-point then the value at the model level is left undefined.

(T) Store values at as many model levels as memory limitations permit for each Levitus station.

That is, the storage requirement is at least 360 x 180 Levitus stations x 'kin' model levels x

2 tracers.

(8) Perform horizontal interpolation. The steps taken to assign values to each model point are

as follows:

(a) Find the four stations which surround the model point

-15-

(b) If all four are Levitus sea-points then perform standard 4-pt interpolat!ion.
(c¢) Else if only three are Levitus sea-points then take the average of the three values.
(d) Else leave point undefined.
(e) When as many points as possible on the model grid have been filled in using steps
8(a)
to 8(d), the remaining undefined model sea-points are set iteratively:
(i) Working on the model grid attempt to set each undefined sea-point as an
average of the nine surrounding values.
(ii) If any model sea-points remain unset after a full pass (i.e. those points which
were previously completely surrounded by undefined points) then perform a
second pass.~
(i) Repeat step 8(e) as many times as necessary until all model sea-points have

been set.

(9) Store model level as ascout slices and in unformatted 'j-slabs' suitable for use in the main
model.
(10) Perform steps 8 and 9 for each model level in store.

(I1) If all model levels have been set then close files and exit. Else rewind Levitus datasets and

return to step 3

There are two options for converting temperature to potential temperature coded into the
current version of levizmom.F. By default, the routine ptmp83a is used. This routine uses a
4th-order Runge Kutta integration of the Bryden (1973) equation for adiabatic lapse rate. The
alternative is to use pottem routine developed by Webb (1992). This routine accurately solves the
adiabatic lapse rate equation by direct integration with a pressure increment. This method is the
most accurate to date but is computationally very expensive. The pottem routine can be used in
preference to ptmp83a by preprocessing levizmom.F with the -Dpottem commandline option.

The current version of levizmom.F (SCCS version number 1.4) assumes a uniform model
grid spacing but alternative distributions could be allowed for by re-defining the functional forms of
the variables 'xsm' and 'ysm'.

The two unformatted, direct-access files created by levizmom.F (dalevs2] and dalevi21)

are used by the main model if either of two new optiohs are active:

Levitus (note the capital letter) : This option causes the model temperature and salinity fields
to be initialised from the Levitus data (if init is .true.) and, if restorst is also active, will use
the Levitus values when calculating the surface restoring force.

robustd : This option will run the model in robust diagnostic mode with values relaxed

towards Levitus at all depths with a timescale of 'rests’ (set in blkdta.F)

-16-

On reflection, there is an option missing here. Namely the ability to start from a cold, saline
ocean (or even the zonal values) and relax towards Levitus in a similar manner to the first six years
of the FRAM integration. With the FRAM integration this approach was necessary because the
system was unstable when started from Levitus. It is obviously advantageous to start from Levitus
data (or its equivalent) whenever possible, but should it be necessary to initialise with other values

then other options can be easily incorporated into ocnlst.F.

Code changes and additions required to implement the Levitus and robustd options are located in

the following modules:

Option File SCCS version

number

Levitus oceanF 1.8
ocnlstF 14
setvbce.F 1.4

robustd ocean.F 1.8
setvbe.F 1.4
step.F 1.4
tracer.F 14

and all subsequent versions of these modules.

7. PRELIMINARY RUNS AND RESULTS

The model described in this report has been successfully integrated for periods up to 200
days. The Levitus values produced from levizmom.F were used as initial conditions for
temperature and salinity. Despite the obvious inertial shock resulting from using an initially
incompatible velocity field (i.e. stationary) the solution process remained stable. The initial stages
were carried out with a range of timesteps due to concern for the stability. This concern seems to
have been unnecessary although tests with timesteps of 2 hours or more were unstable.

A run of 260 days was accomplished using the following timesteps:

days0 to 14 timestep = 20 minutes
days 14t0 28 timestep = 1 hour
days 2810 260 timestep = 1.5 hours

The stream-function field was stored at regular intervals and an animation sequence

suitable for viewing with imagetool has been produced. The sequence shows the first 28 days of

-17 -

the model integration with one frame every 4 model hours. Total kinetic energy and global rate of
change of temperature and salinity can be seen in Figure 3.

The model was run on a Sun Sparcstation IPC with 24 Mbytes of memory. There was
sufficient memory to run the model in-core (-D diskless) and in this mode the model progressed at
an average rate of 150 seconds per timestep. (Note this is single precision arithmetic only.)

As an experiment the model was restarted from Levitus but this time with the velocity field
from the end of the first run. The graph in Figure 4 shows fewer inertial oscillations and a marked
decrease in the initial rate of warming. A program, reset2levi.F has been supplied to take a restart
dataset and replace the temperature and salinity fields with Levitus values.

Plots of stream function and surface velocity field have also been included (Figures 5

and 6).

-18-

dtemp, dsaltx1.0E4

5.0
: n -7
45_ - 1.4%10
4.0-?% 124107
35]
—1.0%10”
3.0 -
: ~ Ke (0~100) -8
e dt —8.0x10
¥ 2.5 Q;?) i
20 —6.0+10™
1.5 | —8
—4.0%10
1014 i
M\m\\ e N N -8
0.5 e S [2.0«10
0.0 I T T T T T T 0.0%10°
0 5 0 1B 20 25 30 35 40

Model days

Figure 3: The total kinetic energy and global rate of chage of temperature and
salinity. Run 1 : Start from Levitus climatology, with stationary state.

7 —1.4%107

—— Ke (0-14)
i Ke (14—28)
] —— ke4
- dtemp —1.2%10”
e dtermp2
dtemp3
Dsait
Dsalt2 —1.0%1077
—— Dsdlt3
8,010 &
\\\\ “6.0*10—8 g_
—4.0%107°
~2.0x10
0 T T T T 0.0*100
0 50 100 190 200

Model days

Figure 4. The total kinetic energy and global rate of change of temperature and
salinity. Run 2 : Reset initial tracers to Levitus climatology, retaining
developed velocity field.

-19-

Figure 5: Stream-function field after approximately 9 months of model integration.

Figure 6 : Surface velocity field after approximately 9 months of model integration.

-20 -

REFERENCES

Bryden, H. 1973
Deep-Sea Research, 20, 401-408.

Cox, M.D. 1984 A primitive equation, 3-dimensional model of the ocean.
GFDL Ocean Group Technical Report No. 1, Geophysical Fluid Dynamics
Laboratory/NOAA, Princeton University, Princeton, N.J. 08542, U.S.A.

de Cuevas, B. 1992 The main runs and datasets of the Fine Resolution Antarctic Model Project

(FRAM). Part 1: The coarse resolution runs.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 315,

de Cuevas, B. 1993 The main runs and datasets of the Fine Resolution Antarctic Model Project

(FRAM). Part II: The fine resolution runs.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 318.

Hellerman, S & Rosenstein, M 1983 Normal monthly wind stress over the world ocean with error

estimates.
Journal of Physical Oceanography, 13, 1093-1104.

Killworth, P.D. 1987 Topographic Instabilities in Level Model OGCMs.
'‘Ocean Modelling', Issue 75, November 1987.

Levitus, S. 1982 Climatological Atlas of the World Ocean.
NOAA Professional Paper 13, US Government Printing Office, Washington D.C.

Pacanowski, R.C., Dixon, K & Rosati, A. 1990 The GFDL Modular Ocean Model 1.0.
Geophysical fluid Dynamics Laboratory / NOAA, Princeton University, Princeton, N.J. U.S.A.
(Unpublished manuscript)

Sarmiento, J.L. & Toggweiler, J.R. 1986 A preliminary model of the role of upper-ocean chemical
dynamics in determining oceanic oxygen and atmospheric carbon dioxide levels.
Dynamic processes in the chemistry of the upper ocean. (Ed.]J.D. Burton et al.)

New York, Plenum Press, 246 pp.

Fasham, M.J.R., Sarmiento,].L., Slater, RD., Ducklow, HW. & Williams, R. 1993 Ecosystem
behaviour at Bermuda Station 'S' and Ocean Weather Station 'India": a general circulation
model and observational analysis.

Global Biogeochemical Cycles, 7(2), 379-415.

-21-

Plummer, N.P. 1991 DBDBS data set of global gridded bathymetry.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 300.

Stevens, D.P 1990 On open boundary conditions for three dimensional primitive equation ocean
general circulation models. ‘
Geophysical and Astrophysical Fluid Dynamics, 51, pp 103-133.

Stevens, D.P. 1991 The open boundary condition in the United Kingdom Fine Resolution Antarctic

Model.
Journal of Physical Oceanography, 21(9), pp 1494-99.

Webb, DJ. 1992 The equation of state algorithms used by the FRAM model.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 313.

- 22 -

APPENDIX A: MANAGING THE MOM CODE IN A UNIX ENVIRONMENT

This appendix outlines the method of working with the GFDL Modular Ocean Model in a
UNIX environment, which has evolved in the light of the experience gained in developing the 2° x
1° resolution model. Obviously every modeller has a preferred method of working with and
developing code, but the MOM code presents a few challenges through sheer size and distribution
(87 files for the base code alone). The techniques required to efficiently handle the model are no
more than the standard software development practises which are commonly used in the

commercial sector. Fundamental rules are:

(1) Allfiles should have a development history and previoué versions should be recoverable
at any time. i

(2) Only one version of each file should be available for editing at any one time. (This
prevents different and possibly incompatible changes being made simultaneously to

different copies of the current version).

The Source Code Control System (SCCS) available on the Sun workstations provides
precisely the required control system. SCCS or software offering similar functionality is available
in most UNIX environments. The current Southern Ocean model has been developed under SCCS
control and is being distributed to interested parties in this form. That is to say, the current model
is being supplied together with its development history. Recipients will be able to retrieve the
source code in its most up-to-date form, in its original form or in any of the intermediate states.
Appendix B contains details of the development history of all the files that constitute the current
model. The information presented in Appendix B is that given by the command:

sccs prt *.h *.F

With the benefit of hindsight, it should be pointed that the way in which the current model has been
developed is not ideal. The problem lies in the fact that some modules required changes at
several development stages while others were altered at fewer stages (if at all). As a result the
current model uses, for example, version 1.9 of oceanF but version 1.4 of step.F. Thisis less of a
problem than might be expected because the current model uses the latest versions of all routines

and, by default, the command:

sccs get *

retrieves the latest version of all files. One way around this apparent inconsistency is to ‘check out'

all mom-files prior to a development stage and to create change ‘deltas’ for all files once the stage

-23-

has been completed (regardless of whether any changes have been made or not). The

procedural sequence:

sccs edit SCCs

..... make changes....

..... debug and verify changes....
sccs delta SCCS

should achieve this and will only prompt for a single comment which it will apply to all files. If
individual files require a more specific comment their delta commentary can be changed using the
sces fix command. This command retrieves a version for editing but when checked back in the

version number is retained. Thus to change a delta commentary use the following procedure:

sces fix -rvid filename
sccs delta filename
. new comments in response to prompt....

where vidis the latest version number. The f£ix subcommand is also useful for correcting minor
bugs discovered after a delta has been made but which do not justify the creation of a new delta.
For colleagues wishing to develop their own models from the mom base code, I have
supplied a script: get_debugged_mom, which will retrieve the mom base code plus the bug fixes
suggested in MOM_NEWS1.0. Colleagues constructing models from this corrected base code
would be advised to copy the retrieved files to a fresh directory and create another sccs base

version set using the command:
sccs create *

Changes to this set could then be progressed in a consistent manner, as suggested above. Note

the sces create command will do the following for all files matched by the wildcard:
(1) Create afile called s. filename inthe SCCS subdirectory
(2) Rename filename by placing a comma in front of the name
(3) Retrieve a read-only version of each file using the sccs get command.

Once you are satisfied that the retrieved versions are identical to the renamed files it is best to
delete all the ,filename files.

Of course, keeping track of your edits is only one of the problems associated with having
the code separated into a large number of files. Equally important is understanding the full impact
of the changes that are being implemented. Simple facts like knowing if a particular variable is

defined in a subroutine can involve a considerable amount of tracing. The UNIX grep command

-4 -

can be extremely useful in this context. First of all, the common block in which a variable is held

can be located by searching the .h include files. For example, searching for the grid spacing

array, dxt:

grep dxt *.h

would yield:
fdiftc.h: UTx(i,k) = (auxl(i,k) - auxl(i+l,k))*dxtdr(i)
fdift .h: Txx(i,k) = bbt(j)*dxtdr(i)*
fdift.h: Txx(i,k) = bbtj(i,k)*dxtdr(i)*
fdift.h: Txx(i,k) = bbt(j)*dxtdr(i)*
fdift.h: Tisox(i,k) = (e(i,k,1) - e(i-1,k,1))*dxtr(k)*cstr(j)
grdvar.h:c dxt = longitudinal width of "t" grid box (in cm)
grdvar.h:c dxtr = reciprocal of "dxt"
grdvar.h:c dxt2r = reciprocal of "2*dxt"
grdvar.h:c dxtir = reciprocal of "4*dxt"
grdvar.h: common /grdvar/ dxt(imt), dxtr(imt), dxt2r(imt),
dxu (imt) ’
grdvar.h: S, dxur{imt), dxulr(imt), dxudr(imt),
dxtdr (imt)

Note also that this is an efficient way of finding out the definition of a variable because all the

include files are extremely well commented.

The subroutines can then be checked to discover which of these include grdvar.h, i.e.:

grep grdvar.h *.F

Since initially compiling the model , two new features have been introduced. Firstly, a script:
setarg which simply sets a shell variable, arglist, to the complete set of preprocessor

commandline options that are used for the current model. These are:

~-Drestrtl10d -Dascdump -DLevitus -Dannwind -Dopenbc -Dcyclic
~Ddiskless -Drestorst -Dconstvmix -Dconsthmix -Drigidlid
~-Dhypergrid -Dislands -Dnohilats

(Appendix C contains a complete list of the new options that have been introduced to the base
code.) Secondly, I have defined an ‘ordered list' of the files that constitute the model. This list is
held in the file catmom. The list is used at compilation to construct the complete source code prior
to preprocessing. I have found it convenient to order the list into some semblance of the original
Cox code and to exclude files that are not used by the current set of options. I have included a
script: 1ist_missing, which will compare the contents of catmomto the complete list of .F and .f
files in the current directory and list those currently omitted from catmom. The complete list of

original MOM files is kept for reference in the file momfiles.

-25-

The script: makeup, uses setarg and catmom to preprocess and compile the model. The
complete source code after preprocessing is held in the file: momver2. £. Listings of all the scripts
are included at the end of this appendix. The script 'makeup' is also listed here so that its

structure can be referenced in the proceding paragraphs:

Version 1 of the makeup script. The code is preprocessed
and compiled as suggested in the "initial report on the
GFDL Modular ocean code". The file catmom holds an ordered
list of the component files. Using this method both the
unprocessed code (momverl.f) and the preprocessed code
(momver2.f) contain modules in the order determined by the

catmom file.

EEEEE S O)

set oceanobj = ocean2
rm momverl.f
rm momver2.f
cat ‘cat catmom' >momverl.f
source setarg
set echo
cc -P Sarglist momverl.f
mv momverl.i momver2.f
£77 -o Soceanobj momver2.f
rm *.o
unset echo
echo "executable file:" S$Soceanobj "has been created

exit

The file momver2. f can be useful when it comes to debugging. This file contains all the
code in-line and it is, therefore, possible to see the results of the particular set of options chosen at
compilation. At this stage, however, the thorough commenting of the include files is detrimental.
Producing a source listing at this stage would be extremely wasteful due to the number of times
each set of comments are included. There are two ways around this problem and each solution

has its own merits. The first method is to simply remove all the comments lines. The editing

sequence:

ed momver2.f
g/~c/d
w

g

will achieve this result. This reduces the code from over 20,000 lines to under 8,000. However,
unless you are extremely familiar with the code the listing is difficult to follow. The main benefit of

-26-

this form is for use in an interactive debugging tool (such as dbxtool) where problem lines can be
quickly identified without having to wade through pages of comments. A second 'makeup' script
(makeup2) has been supplied which will perform these edits on the momver2. f file and compile
with the debug flag set (l.e. {77 -g..).

The second method of producing a reduced listing is to comment out the #include
statements before preprocessing. The resulting momver2. f file will not compile but is useful for
checking the effect of preprocessing on the conditional constructions. This, together with an up-to-
date listing of the include files, provides the most useful reference listings. A script,
makeup_listing, has been supplied which will create two files: code_listing and
include_listing. Together these files have less than 10,000 lines.

A final requirement for efficient working is the ability to view the results of a model run
quickly and easily. For this, a utility similar fo the FRAM extract program has been developed. The
utility, getslice.F, canbe used to extract standard direction slices (i.e. constant depth, constant
latitude or constant longitude) from a MOM restart dataset. Again the MOM modules have been
used extensively, which should mean that a change in model setup will be automatically accounted
for by recompiling getslice.F with the same preprocessor commandline options used for the

main model. This is where the script setarg can save some typing, e.g.:

source setarg

cc ~-P Sarglist getslice.F
mv getslice.i getslice.f
£77 -o getslice getslice.f

The program will prompt for an input filename, choice of variable etc. Qutput is in the form
of single-slice ascout 'cards' files. The names of the files are seven-character configurations (plus a
.cards extension), formulated as follows:
m (for MOM)

one of {t,s,u,v,p or d} (i.e. temperature, salinity, u-velocity,
v-velocity, stream-fn or depth)

one of {h,n,e} (i.e. horizontal, north-south or east-west)

a four-digit daynumber

These files have correct headers and can viewed using the FRAM graphics programs.

-27 -

SCRIPT LISTINGS:

makeup:
#
Version 1 of the makeup script. The file catmom holds an ordered
list of the component files. Using this method both the
unprocessed code {(momverl.f) and the preprocessed code (momver2.f)
contain modules in the order determined by the catmom file.
#

set oceanobj = ocean2
rm momverl.f
~rm momver?2.f

cat “cat catmom® >momverl.f
source setarg

set echo

cc -P Sarglist momverl.f

mv momverl.i momver2.f
£77 -o Soceanobj momver?2.f
rm *.o

unset echo

echo "executable file:* $oceanobj "has been created

exit

makeup?2:

.
Version 2 of the makeup script. This version compiles the code
with

the debug (-g) option set on f77. The script also edits the pre-
processed file, momver2.f, and removes all comment lines. The
resulting file is more compact and easier to manipulate using the

source code browser in dbxtool.

B -

set oceanobj = ocean2

rm momverl.f

rm momver2.f

cat ‘“cat catmom’ >momverl.f
source setarg

set echo

cc -P Sarglist momverl.f
mv momverl.i momver2.f
ed - momver2.f << EOF
g/~c/d

4

-28 -

d
EOF
£f77 -g -o Soceanobj momver?2.f
rm *.o
unset echo
echo "executable file: " Soceanobj " has been created"
exit

makeup_listing:

#
Script to makeup listings of the current model code. The resulting

files code_listing and include_listing are not compilable but are
useful for reference.

#

rm momverl.f

rm code_listing

rm include_listing

cat “cat catmom® >momverl.f

cat *.h >inclusions_tmp.f

#

ed - momverl.f << EOFA
1,\$s/\#include/C_INCLUDE/

w

a

EOFA

#

ed - inclusions_tmp.f << EOFB
1,\$s/\#include/C_INCLUDE/

w

g

EOFB

#

source setarg

set echo

cc -P Sarglist momverl.f

cc -P Sarglist inclusions_tmp.f
mv momverl.i code_listing

mv inclusions_tmp.i include_listing
unset echo

rm inclusions_tmp.f

exit

-29-

setarg:

#

set arglist = " -Drestrtl0d -Dascdump -DLevitus -Dannwind -Dopenbc
-Dcyclic -Ddiskless -Drestorst -Dconstvmix -Dconsthmix -Drigidlid
-Dhypergrid -Dislands -Dnohilats®

echo arglist set to Sarglist

list_missing:

#

set vars = “cat catmom’
set vars2 = ‘ls * F * f°
#

echo "The following source files are located in the current
directory"

echo "but are NOT included in the catmom file:"

echo "—-»--mnun

foreach var (Svars2)

set yes = no
foreach varr (Svars)
if ($varr == $var) set yes = yes
end
if ($yes == 'no') echo $var
end
exit

get_debugged mom:

#

Script to retrieve a debugged version of the MOM base code.
(i.e. a version with all fixes suggested in MOM_NEWS1.0
implemented.) '

#

sccs get *.h *.F *.f

sccs get -rl.2 slabs.h

sccs get -rl1.2 checks.F

sccs get -rl.2 denscoef.F

sccs get -rl.2 docmnt.F

sccs get -rl.5 ocean.F

sccs get -rl.2 reglst.F

sccs get -rl.2 restio.F

sccs get -rl.2 tracer.F

exit

-30 -

APPENDIX B

SCCS development history of the .h include files

(Files which have been unaltered since creation will have a SCCS version number of 1.1)

accel.h
anlwind.h

cbihar.h
ccfl.h
cdiag.h
chmix.h
cisop.h
cnlmix.h
coord.h
cpolar.h
cppmix.h
cprnts.h
cregin.h
crelax.h
cshrbf.h
ctask.h
ctcmix.h
ctmngr.h
cvbec.h
cvmix.h

dncoef.h
D 1.3 91/11/19 11:33:51 acc 32 00113/00159/00072

density coefficients for 25 vertical levels (Sarmiento)

D 1.2 91/06/19 09:22:17 acc 21 00184/00072/00047
Reworked coefficients (using denscoef.F (egstat)) for Cram
thicknesses

D 1.1 91/05/08 09:33:01 acc 10 00119/00000/00000
date and time created 91/05/08 09:33:01 by acc

D 1.2 92/01/17 14:28:32 acc 21 00003/00000/00045
First working version with open boundary

D 1.1 91/05/08 09:33:03 acc 10 00045/00000/00000
date and time created 91/05/08 09:33:03 by acc

-3]-

fdifm.h
fdift.h

grdvar.h

index.h
iounit.h

levind.h

ndcon.h

D 1.5 92/01/17 14:27:50 acc 5 4 00001/00001 /00086
First working wversion with open boundary

D 1.4 91/06/28 15:18:29 acc 4 3 00001/00001/00086
Set number of islands=4 for new 2x1 topography

D 1.3 91/06/20 17:24:35 acc 32 00001/00001/00086
Corrected number of islands (nisle) for Fram 2 by 1

D 1.2 91/06/18 17:02:34 acc 21 00001/00001 /00086
Changed resolution to Fram 2 by 1.

D 1.1 91/05/08 09:33:10 acc 10 00087/00000,/00000
date and time created 91/05/08 09:33:10 by acc

D 1.2 91/05/08 09:36:03 acc 21 00001/00001 /001273
Fixed bug reported in MOM_NEWS no.l (improper dimensions)

D 1.1 91/05/08 09:33:13 acc 10 00174/00000/00000
date and time created 91/05/08 09:33:13 by acc

switch.h

D 1.2 92/02/19 12:07:58 acc 21 .00006/00000/00076

Added a new flag: tl0day used by the restrtl0d option to detect
the end of a 10-day period.

D 1.1 91/05/08 09:33:14 acc 10 00076/00000/00000
date and time created 91/05/08 09:33:14 by acc

-32-

temp.h
D 1.2 92/01/17 14:29:06 acc 2 1 00004/00000/00013

First working version with open boundary

D 1.1 91/05/08 09:33:16 acc 10 00013/00000/00000
date and time created 91/05/08 09:33:16 by acc

D 1.3 91/12/16 14:02:11 acc 3 2 00005/00006/00013
Changed to the Sarmiento model thicknesses (25 levels)

D 1.2 91/06/19 09:04:47 acc 21 00006/00004/00013
Changed thickness to the CRAM dimensions (32 levels).

D 1.1 91/05/08 09:33:17 acc 10 00017/00000/00000
date and time created 91/05/08 09:33:17 by acc

versno.h

SCCS development history of .F files

anlwind.F
D 1.2 92/01/27 16:54:11 acc 21 00050/00050/00007

Working version with annual Hellerman winds

D 1.1 92/01/17 17:10:58 acc 10 00057/00000/00000
date and time created 92/01/17 17:10:58 by acc

annwind.F
becest.F

blkdta.F
D 1.3 92/01/17 14:28:53 acc 32 00002/00002/00247

First working version with open boundary

D 1.2 91/06/18 17:15:47 acc 21 00008/00008/00241
Changed grid parameters to Fram 2 by 1 resolution.

D 1.1 91/05/08 09:20:00 acc 1 0 00249/00000/00000
date and time created 91/05/08 09:20:00 by acc

checks.F
D 1.3 92/01/17 14:26:15 acc 32 00021/00000/00505

»First working version with open boundary

-33-

D 1.2 91/05/08 09:32:10 acc 21 00002/00002/00503
Fixed bug reported in MOM-NEWS no.l (missing commas)

D 1.1 91/05/08 09:20:02 acc 10 00505/00000/00000
date and time created 91/05/08 09:20:02 by acc

c¢linic.F
D 1.2 92/01/17 14:23:05 acc 21 00085/00000/00984
First working version with open boundary

D 1.1 91/05/08 09:20:03 acc 10 00984/00000/00000
date and time created 91/05/08 09:20:03 by acc

cnvmix.F
congr5.F
congrS.F

denscoef.F
D 1.3 91/06/20 18:26:50 acc 32 00002/00002/01226

changed program to Fram 2 by 1 set-up

D 1.2 91/05/08 09:28:36 acc 21 00004/00004/01224
Fixed bugs reported in MOM_NEWS no.l (incorrect variable types)

D 1.1 91/05/08 09:20:08 acc 10 01228/00000/00000
date and time created 91/05/08 09:20:08 by acc

diag.F

diag2.F

_____________ >

docmnt.F

D 1.2 91/05/08 10:18:50 acc 21 00001/00001/00473

Fixed bug reported in MOM_NEWS no.l (incorrect logical variable)

D 1.1 91/05/08 09:20:12 acc 10 00474/00000/00000
date and time created 91/05/08 09:20:12 by acc

filfir.F
filt.F
filtr.F
filuv.F
filz.F
findex.F

-34 -

getslice.F
D 1.2 92/02/11 14:39:56 acc 31 00071/00988/00746

Revision of first working version to improve modularity and
documentation

D 1.1 92/02/06 17:20:38 acc 10 01734/00000/00000
date and time created 92/02/06 17:20:38 by acc

& o " o

header.F

————————————— >

hyper.F

D 1.3 92/02/19 11:31:35 acc 32 00003/00000/00469

Included common blocks for annual wind data if annwind option is
selected.

D 1.2 92/01/17 14:23:43 acc 21 00099/00001/00370
First working version with open boundary

D 1.1 91/05/08 09:20:18 acc 10 00371/00000/00000
date and time created 91/05/08 09:20:18 by acc

implg.F

invtri.F
iperim.F
isopyc.F

matrix.F

D 1.9 92/02/19 12:02:08 acc 10 9 00039/00008/01238

Inserted several options: units 85 and 86 are connected to the
Levitus data files created by leviZmom.F in either Levitus or robustd
options are active. restrtl0d will dump a full restart dataset every
10 days (filename=Mrxxxx.data where xxxx is the day number). ascdump
will dump a cards image of the stream-function to data/image
/mpzzzz.cards every 16 timesteps (here zzzz is the timestep).

D 1.8 92/01/27 16:53:52 acc g9 8 00008/00000/01238
Working version with annual Hellerman winds

D 1.7 92/01/17 14:28:01 acc 8 7. 00029/00000/01209
First working version with open boundary

D 1.6 91/06/20 18:26:02 acc 76 00020/00000/01189
inserted ascdump option to dump sf field at end of run.

D 1.5 91/05/09 16:55:48 acc 6 5 00000/00000/01189
Excluded delta 1.2 (discovered that the -Dtiming option only applies
to the CRAY)

- 35 -

D 1.4 91/05/08 10:08:10 acc 5 4 00010700001 /01184
Fixed bugs reported in MOM_NEWS no.l (div zero & term balances)

D 1.3 91/05/08 09:48:42 acc 4 3 00001/00001 /01184
Fixed bug reported in MOM_NEWS no.l (vertical region masks)

D 1.2 91/05/03 12:44:12 acc 31 00009/00004/01176
Commented out references to second() and timef () which don't appear
to exist on the SUN.

D 1.1 91/05/03 12:32:25 acc 10 01180/00000/00000
date and time created 91/05/03 12:32:25 by acc

ocnlst.F

ocnlst.F:

D 1.4 92/02/20 12:48:28 acc 4 3 00031/00000/00202

Added option: Levitus. Temperature and salinity (including the tn
array 1f openbc defined) are now initialised from datasets created by
levi2mom.F

D 1.3 92/02/20 12:46:25 acc 32 00033/00000/00169
Added option:openbc. All arrays are now initialised correctly for
open boundary calculations.

D 1.2 92/02/20 12:44:59 acc 21 00018/00000/00151
Added option: mytopog to read kmt field from file created by makekm.F

D 1.1 92/02/20 12:08:32 acc 10 00151/00000/00000
date and time created 92/02/20 12:08:32 by acc

D 1.2 92/01/17 14:24:22 acc 21 00004/00000/00227
First working version with open boundary

D 1.1 91/05/08 09:20:25 acc 10 00227/00000/00000
date and time created 91/05/08 09:20:25 by acc

ppmix.F

————————————— >

reglst.F

D 1.2 91/05/08 11:49:01 acc 31 00022/00000/00156
Fixed bug reported in MOM_NEWS no.l (vertical region masks)
D 1.1 91/05/08 09:20:27 acc 10 00156/00000/00000

date and time created 91/05/08 09:20:27 by acc

region.F
relax.F
regset2levi.F

-36 -

restio.F
D 1.2 91/05/08 10:15:42 acc 21 00004/00000/00126

Fixed bug reported in MOM_NEWS no. 1 (disk restart io error)

D 1.1 91/05/08 09:20:29 acc 10 00126/00000/00000
date and time created 91/05/08 09:20:29 by acc

e o e e

_____________ >

setgrid.F

D 1.2 92/02/07 15:00:42 acc 4 1 00010/00000/00367

Incorporated simple "noreport” option to suppress printing of arrays
on stdout

D 1.1 91/05/08 09:20:30 acc 10 00367/00000/00000
date and time created 91/05/08 09:20:30 by acc
e

setkmp.F

————————————— >

setvbe.F

D 1.4 92/02/19 11:48:08 acc 4 3 00018/00000/00117

Inserted option: Levitus to read in and restore surface values to
Levitus values (requires data files as created by levi2mom.F)

D 1.3 92/01/27 16:53:10 acc 32 00032/00000/00085
Working version with annual Hellerman winds

D 1.2 92/01/17 14:27:36 acc 21 00004/00000/00081
First working version with open boundary

D 1.1 91/05/08 09:20:32 acc 10 00081/00000/00000
date and time created 91/05/08 09:20:32 by acc
e

————————————— >

size.F

D 1.2 91/06/18 16:51:00 acc 21 00004/00004/00545

Changed resolution to Fram 2 by 1 {made main prog)

D 1.1 91/05/08 09:20:33 acc 10 00549/00000/00000
date and time created 91/05/08 09:20:33 by acc
e

state.F

_____________ >

step.F

D 1.4 92/02/19 11:52:12 acc 4 3 00018/00002/00842

Inserted option: robustd to restore t and s to Levitus values
throughout (i.e. robust diagnostic mode). Requires data files as
created by levi2mom.F. Also reset the open boundary relaxation
timescale to a consistent value (rtscale).

D 1.3 92/01/27 16:53:35 acc 32 00003/00000/00841
Working version with annual Hellerman winds

_37 -

D 1.2 92/01/17 14:25:12 acc 21 00433/00000,/00408
First working version with open boundary

D 1.1 91/05/08 09:20:35 acc 10 00408/00000/00000
date and time created 91/05/08 09:20:35 by acc

D 1.2 92/02/19 11:55:20 acc 2 1 00008/00000/00528
Inserted switch (tl0day) used by the option:restrtl0d which will dump
a restart dataset every 10 model days

D 1.1 91/05/08 09:20:38 acc 10 00528/00000/00000
date and time created 91/05/08 09:20:38 by acc

tracer.F

D 1.4 92/02/19 12:12:37 acc 4 3 00001/00001 /00641

Added the robustd option which in the case of tracer.F means simply
stopping the restorst option from duplicating the setup of the sourct
array already performed in step.F

D 1.3 92/01/17 14:25:28 acc 32 00005700001 /00637
First working version with open boundary

D 1.2 91/05/08 10:10:27 acc 21 00001/00001,00637
Fixed bug reprted in MOM_NEWS no.l (incorrect term balances)

D1.1 91/05/08 09:20:40 acc 10 00638/00000/00000
date and time created 91/05/08 09:20:40 by acc

vort.F

_____________ >

windwt.F

D 1.4 92/01/27 16:54:28 acc 4 3 00007/00004/00016
Working version with annual Hellerman winds

D 1.3 92/01/17 14:29:20 acc 32 00000/00006/00020
First working version with open boundary

D 1.2 91/12/09 14:38:59 acc 21 00014/00008/00012
First version

D 1.1 91/11/14 12:21:20 acc 10 00020/00000,/00000

date and time created 91/11/14 12:21:20 by acc

_38-

APPENDIX C : SUMMARY OF NEW OPTIONS

This appendix contains a summary of the new options which have been introduced during

the construction of the 2° x 1° resolution model. Most of these options have been described in

sections 1 to 5.

Option description

my topog Causes the kmt field to be read in from an unformatted
file on fortran unit 53. This option is only
effective at initialisation (i.e. init = .true.). The

unformatted kmt data can be created using makekm.F.

openbc Causes the model to be constructed with an open
northern boundary. At present the reference array
{tn) holding values of the tracers along the northern
boundary is set to the initial values at the jmt row.
This is correct when starting the model from Levitus
data.

annwind Causes the wind stress components to be read from the
files containing Hellerman and Rosenstein mean annual
wind data. This option is quite specific to the 2° x
1° Southern ocean model but could be generalised with
moderate effort.

Levitus (Note the capital letter.) This option causes the
model temperature and salinity fields to be
initialised from the Levitus data (if init is .true.)
and, if restorst is also active, it will use the
Levitus values when calculating the surface restoring
force.

robustd This option will run the model in robust diagnostic
mode with values relaxed towards Levitus at all depths
with a timescale of "rests" (set in blkdta.F)

noreport A simple option added to setgrid.F to suppress the
printing of the grid-spacing arrays at start-up.

ascdump An option which will cause an ascout dump of the
stream-function at a preset interval (currently set to
16 timesteps). This is specific to routine
requirements, but could be adapted easily. All
related code is in ocean.F. The output is intended
for animation via imagetool (after post-processing)
and is placed in data/image/mpxxxx.cards, where xxxx
is the timestep.

restrtl0d Causes a full restart dataset to be written every 10
model days. Output is written to a file: Mrxxxx.data
where xxxX is the daynumber.

-39-

In addition to these options for the main model, some of the utility programs have their own

options:
option

nomodel
header

files.
and
MOM
The
MOM

vtsteps

variation
timesteps

pottem
to

file

header.F

getslice.F

leviZmom.F

description
header.F is a re-working of the old FRAM
routine for creating headers for ascout

This version uses some of the MOM modules to
determine starting latitudes and longitudes
grid spacings. For applications outside of
these values can be set within the routine.
nomodel option suppresses inclusion of the
"hard-wired" values.

vtsteps activates code to calculate the day
number from itt according to a preset

in the timestep. Such variations in

are common in the early stages of a run.

Causes the potential temperature calculation
be performed by direct integration of the
adiabatic lapse rate equation. This is the
most accurate method but is computationally
expensive. By default the eguation is solved
using a Runge Kutta numerical integration.

- 40 -

APPENDIX D (i)

program db2med

EE SR I S A I U

This program is a re-working of Nick plummer's program to retrieve
dbdb5 data on a 1/4 degree resolution grid using the median value
of all the 5 min data within each grid cell (Plummer, 1991). This
version uses the same approach to extract data on a 2° x 1° grid.
This causes additional difficulties because each file in the
orignal datasets holds a 5 degree square of data. Every third

2° x 1° grid cell therefore straddles two files. Hence this
extensive re-working of N. Plummer's original program.

This version is designed to be run on the IBM (using temporary
disks). The output files can be transferred to the SUN work-
stations and used by the utility 'makekm' to construct the
topography array for a MOM code application.

PR E R XS E R TS SRR RS SR SRS EES SRS SRR TS SRS S SRR SRS RS R R R 3 I

* first section of the program is concerned with selecting the *

* files you wish to work with. Each file contains depth values *

* from the northern/southern hemispheres. *
R R R R R R TR E R F R SRR EEE R R LR R SRR R RS

00000000000 0000000

character * 80 record,header

character * 20 fname, filename(2), testdata(2)

integer filel,file2,file3,filed,nrec,nfiles,position

integer a(4000),b(122,61),median,n, loop,f,z, med(25),ideg(288)
data filename /'storl data t', ‘'stor2 data t'/

data testdata /'testl data t', 'test2 data t'/

nrec=18954

c Open the original dbdb5 data file. Direct access file already
copied to on-line storage

9]

fname='dbdb5 data a'

IBM ndopen routine: call ndopen(unit,file,direct-access,read-only,
status, recl,nrec, return-status)

Qa0

call ndopen(3, fname, 3,1, '0old',80,303264, istat)
if (istat.ne.0) then

write(6,*) 'error in opening file ', fname
write(6,*) 'istat= ', istat
stop
endif
c
fname='median data a'
c
¢ IBM ndopen routine: call ndopen(unit,file,sequential,read/write
c status, recl,nrec, return-status)
c

call ndopen (4, fname,1,3, ‘unknown',110,0,istat)

000 00ana

0000

IBM

-41 -

if (istat.ne.0) then
write(6,*) 'error in opening file', fname
write(6,*) 'istat = ',istat

endif

do 999 filel=1,15,2

file2=filel

nblock=0

continue

write(6,*) ‘working on file ', file2
position=(18954* (file2-1)+1)
file2=filel+1

nblock=nblock+1

Open one of the pair of temporary files to receive data

ndopen routine: call ndopen{unit,file,sequential,read/write
status, recl,nrec, return-status)

call ndopen{(15, filename{nblock), 1,3, 'unknown', 80,18954,istat)
if (istat.ne.0) then
write(6,*) 'error in opening file', filename (nblock)
write (6, *) 'istat = ',istat
endif

do j=1,nrec
read (3, '(a80)',rec=position)record
write (15, ' (a80)')record
position=position+1
enddo

Open “"test data" files to receive temporary re-formatted data

call nclose(l5,istat)
call ndopen{l1l6,testdata(nblock),1,3, 'unknown',305,0,istat)
if (istat.ne.0) then
write(6,*)'error in opening file', testdata (nblock)
write(6,*) 'istat = ',istat
endif

reopen file as read-only

call ndopen (15, filename (nblock),1,1, 'unknown', 80,18954,istat)
if (istat.ne.0) then)
write(6,*) 'error in opening file', filename (nblock)
write(6, *)'istat = ', istat
endif

LA SR SRR S SRS RS S S SR LTRSS LRSS S SR RS SRS EESEREESE R EREESESEEEEEER SRS SR N

* loop 81 times for all blocks in a file
* sort data into 61i5 format and output to ‘testdata' file

*

*

AR RS S LS SRR S S S S SRS R RS R R E RS RS R SRR R TSR RS SR SRR R R EEEESEEEEESEEE SR X

o000

a0

0

9]

O Q0 aQa0n0an

000 0a0an

- 42 -

Each file contains data covering a 45° x 45° area. The data are
arranged in 81, 5x5 degree blocks each with its own header. Each
block has an additional eastern column and northern row which
overlaps the neighbouring square.

do k=1,81
read (15, '(a80)') header
write(1l6, ' (a80)') header

Rearrange the 61x61 (i.e.{(5*12+1)**2) values originally written
as 80 character records into a 61x61i5 array

do 1=1,3728,16

read (15,'(16i5)') (a(i+j-1),3j=1,16)
enddo
do i=1,3668,61
write (16,'(611i5})') (a(i+j-1),3=1,61)
enddo
enddo

close 'test data' file

call nclose(1l5,istat)

call nclose(1l6,istat)

if (nblock.eg.1l) goto 1

write (6,*) 'after do 1=1,3668"

LR RS S EREEEESEEEEREREEESEEEEEEEEEE LSRR EEEEEEEEREEE R ER R ER R R R R R R

* read information from a 5° square; breakdown that information *

* into 2° x 1° squares and obtain median pts. Then store *

* results gathered into various files. *
khhkhkhkdhkhkhhdhhkhhkdhkhhkhhdrhhdhhkdbdhhdhhhhhhhrohdhhhhhddhhbhdhdhhrdrhrhhoddrhik

call ndopen (16,testdata(l),1,1,'old',305,0,istat)
if (istat.ne.0) then
write(6,*) 'error in opening file',testdata(l)
write(6,*) 'istat = ',istat
endif
call ndopen (17,testdata(2),1,1,'old',305,0,istat)
if (istat.ne.0) then
write(6,*) '‘error in opening file',6 testdata(2)
write(6,*) 'istat = ',istat
endif

read all numbers in file into the b array
Note there are three cases to consider depending upon whether the
2° x 1° area lies wholly in the first file, straddles both files

or lies wholly in the second file.

nbound=0

do 666 z=1,81
nbound=nbound+1
if (nbound.eqg.10) nbound=1

-43 -

¢ nbound < 4 implies area lies wholly in the first file
c
if (nbound.le.4) then
nb=1
read (16, ' (a80) ')header
do j=1,61
read {16, ' (61i5) ') (b(i,3j),i=1+(nb-1)*61,61+(nb~1)*61)
enddo
nb=2
read (16, ' (a80) ')header
do j=1,61
read (16, ' (611i5)"') (b(i,J),i=1+(nb-1)*61,61+(nb-1)*61)
enddo
c
¢ nbound = 5 implies area straddles the two files
o
elseif (nbound.eq.5) then
nb=1
read (16, ' (a80) ') header
do j=1,61
read (16, ' (6115)"') (b(i,j),i=1+{nb-1)%*61,61+(nb-1)*61)
enddo
nb=2
read (17, ' (a80) ')header
do j=1,61
read (17, ' (61i5) ') (b{(i,j),i=1+(nb-1)*61,61+(nb-1)*61)
enddo
c
c nbound > 5 implies area lies wholly in the second file
c
else
nb=1
read (17, ' (a80) ')header
do j=1,61
read(17,'(61i5)"') (b(i,j),i=1+(nb-1)*61,61+(nb~1)*61)
enddo
nb=2
read (17, ' (a80) ')header
do j=1,61
read (17, ' (61i5) ') (b(i,j),i=1+(nb-1)*61,61+(nb-1)*61)
enddo
endif
icounter=0
c
¢ write header to median data file
write (4, *)
write (4, *)header

* the 7442 data points are arranged in a (122,61) array.

* division of the original 10° sqguare.

Q000000

The

* calculations below locate the data points required by taking
* the median of the 288 values in each 2° x 1° square sub-

LR EE R R RS R R R R S R R S S SRR RS SRR SRR R R R R EREEEE R RS

*

*

*

*

LR R RS RS R IR R S R RS R RS R R SRS E R R E R RS E SR SRR R SRR R EEREREEEEEE SRS

a0

Q00 n0a0n

C

C

Use IBM library routine to sort the 288 values into ascending order

666

loop=0
do 1=1,5
do k=1,5

do i=((1-1)*12)+1,
do j=((k-1)*24)+1, ((k-1)*24)+24

icounter=icounter+1
ideg(icounter)=b(3j, i}

enddo
enddo
n=icounter

-44 -

call rsort(ideg,288,istat)

((1-1)*12)+12

IR SRR EE RS S EERES SRS R R RS EEER SRR ESEEE RS R R R R

* the numbers within the 288 array are now sorted and the median *

* value 1s retrieved

.

(The 144th value is selected rather than
* the true median which could introduce half metres.)

*

*

khkdAkdhkhkhkdkdhddhhhkhhkhhkdhdrddhddhrdhhhhdrxdddhdrdhhkdhhrdhhdhhhhhhkhddrrdkhhk

loop = loop + 1

med (loop)=ideg (144)

icounter=0
enddo
enddo

output med array to median data a (stream 4)

do i=1,5
write (4,'(51i5)")
enddo

continue

(med ((i-1)*5 + §),3=1,5)

c median data a should be transferred to Workstation for post-processing
(see program med2cram.f)

C

a0

995

close all streams

call nclose(l6,istat
if (istat.ne.0) then

write (6,*)'error in closing file', testdata

write (6,*)'istat
endif
call nclose(l7,istat
if (istat.ne.0) then

write (6,*)'error in closing file',6 testdata

write (6,%*)'istat
endif
continue

call nclose(4,istat)

)

)

',istat

*,istat

- 45 -

if (istat.ne.0) then
write (6,*)‘'error in closing file', fname
write (6,%*)'istat =',istat

endif

stop

end

-46 -

APPENDIX D (ii)

program med2cram
kkhkhkkhkhkkhhkhhkhkkhkkhkhkhkkkk*k

c Program to convert 'raw' median data produced on the IBM by
c db2med.f to a topography file for a MOM CRAM run. This topography
c will need to be smoothed and checked by the program makekm.f
(version 1.2 or higher).
C
c The data file produced by db2med.f gives median depths every two
c degrees longitudinally and every degree latitudinally, starting
c at 1.0E, -89.58.
c
c The MOM CRAM run requires data at the same resolution starting at
c 1.0E, -78.5S with imt=180,jmt=56.
C .
parameter (imt=180, jmt=56)
real depths(180,90),vmask(4),cramd(imt, jmt)
integer median(5,5)
character*80 line
data vmask/-10.,3*0.0/
o
¢ Set the southernmost t-latitude
c
crams=-78.5
c
c Open the following units:
¢ 53 - input median data, formatted file produced by db2med.f
c 54 - output file to receive an ascout cards file for viewing
¢ 55 -~ output file to receive a full precision unformatted form of the
c topography array.
c
open{unit=53,file="'smedian.data"')
open(unit=54,file="topog.dbdb5")
open(unit=55, file="rawcram.dbdb5"', form='unformatted"')
c

¢ Create header for cards file:
call header (54, ‘depth', 'stream',1,imt,1,jmt, 1,0, 'CD', 'FAA"')

¢ Read in median values and re-arrange into a continuous 2-D array:
do 2 nhalf=1l,2
do 5 nfile=1,4
do 10 nb2=1,8
do 20 nb=1,9
read (53, *)
read(53,'(a)') line
do 30 j=1,5
read (53, ' (5i5) ') (median(i,j),1i=1,5)
30 continue

id={nfile-1)*45+{(nb-1)*5
jd=(nhalf-1)*45+(nb2-1) *5

- 47 -

do 40 i=1,5
do 50 j=1,5
depths (id+i, jd+j)=median(i, j)

50 continue
40 continue
c

20 continue

10 continue
5 continue
2 continue

¢ Now select the reduced area (latitude reduction only) :
do 100 j=1,90
degs=(3-1)*1.-89.5
if (degs.eqg.crams) then
do 110 i=1,imt
do 120 jj=3j,j+jmt-1
cramd (i, jj-j+1)=depths(i,jj)

120 continue
110 continue
goto 89
endif
100 continue
write(6,*) ‘crams not found, crams= ', crams
c

¢ Output array and stop:
99 call ascout0(cramd, imt, imt, jmt, vmask, 2, 54)
write(55%) cramd
stop
end
#include "../ascout(.f"
¢ include a version of header which doesn't take its parameters from
¢ the MOM common blocks:
#define nomodel
#include "../header.F"

- 48 -

APPENDIX D (iii)

OO0 00anan Q

000000 0a0an

C

program makekm
AAIX A A A A KA KA A XK

Program to read in a cards file of median depths produced from
DBDB5 data and apply smoothing operations and interpolations to
produce a full depths file for MOM

parameter (imtold=180, jmtold=56, imt=182, jmt=56, km=25,
+ stlondb=1.0,stlatdb=~78.5,dxdb=2.0,dydb=1.0,
+ stlon =1.0,stlat =-78.5,dxdeg=2.0,dydeg=1.0)
parameters:
imtold = horiziontal size of DBDB5 cards file data
jmtold latitudinal size of DBDB5 cards file data
imt horiziontal size of MOM t-grid (including cyclic overlap)
Jjmt latitudinal size of MOM t-grid (inc. northern boundary)
km = No. of vertical levels in MOM grid

Il

1

The remaining parameters are not used but are included for
reference:

stlondb= starting longitude of first DBDB5 value

stlatdb= starting latitude of first DBDB5 value

dxdb longitudinal resolution (degrees) of DBDB5 cards data
dydb latitudinal resolution {(degrees) of DBDB5 cards data
stlon starting longitude of first MOM t-point

stlat = starting latitude of first MOM t-point

dxdeg = longitudinal resolution (degrees) of MOM grid

dydeg = latitudinal resolution (degrees) of MOM grid

It

i

parameter {imtom2=imtold-2, jmtom2=jmtold-2,
+ imtm2=imt-2,
+ jmtm2=3jmt~2)
real fkmold(imtold, jmtold) ,fkmnew(imtm2, jmtm?2)
real tmp(imtold, jmtold)
real fkmt (imt, jmt),dzt (km),zt(0:km)
integer kmt (imt,jmt),kmu(imt, jmt)
real vmask(4)
character*80 line,ans*1

#include "../thick.h"

C

data vmask/0.,3*0.0/

rmax=-1.e7

rmin=1.e7

isea=0

iland=0 _

write(6,*) 'Enter number of smoothing passes (0,1 or 2)‘
read (5, *) npass

write(6,*) 'Remove isolated land points? (y/n)'

read(5, '(a)') ans

c Calculate depths of t-points in MOM grid

C

0.0
dzt(1)*0.5*1.E-2

zt (0)
zt (1)

I

]

700

e} o0

O 000N

9]

100

+

Read in

- 49 -

do 700 k=1,km-1

zt (k+1) = zt (k) + 0.5*1.E-2*(dzt(k)+dzt(k+1))
write(6,*) 'Model depth of t-point for k= ',k,' = ',zt(k)
continue

open(unit=20,file="'rawcram.dbdb5"', form='unformatted')
open{unit=21,file="'topsar2l.cards"')

Create header for cards file:

call header (21, 'depth', 'stream',1,imt,1,jmt, 1,0, ‘CD', 'FAA"')

"raw" topography as created by med2cram.f
read{20) fkmold

Smooth topography by one or two passes of this filter:

+H++++1+2+1+++++
ottt +2+4 424+ ++
ottt 1+ 2+ L+

if (npass.ge.l) then

First pass:

do 110 i=1,imtold
ilg=1-1
irt=i+1
if(ilt.eq.0) ilt=imtold
if(irt.eqg.imtold+1) irt=1
do 100 j=2,jmtold-1
1f (fkmold(i,j).le.0.0) then
tmp (i, j)=fkmold (i, j)
else
tmp(i,j)=(1./16.)*(
fkmold(ilt,j+1)+2.*fkmold(i,j+1)+fkmold(irt,j+1)
+ 2.* (fkmold (ilt,j) +2.*fkmold(i,3j) +fkmold{irt,j))

+ fkmold(ilt,j-1)+2.*fkmold(i,j-1)+fkmold(irt,j-1))
endif
continue
if(fkmold(i,1).ge.1l.e-5) then
write(6,*) 'Bottom boundary set to land at i= ',i,

' value was: ', fkmold({i,1)
endif

¢ Apply N and S boundary conditions:

110
c

800

tmp(i,1)=0.0
tmp (i, jmtold)=tmp (i, jmtold-1)
continue

if (npass.eqg.l) then

do 800 i=1,imtold

do 800 j=1,jmtold
fkmold (i, j)=tmp(i,)

continue

else

- B0 -

¢ Second pass:
do 210 i=1,imtold
ilt=1-1
irt=i+1
if(ilt.eqg.0) i1lt=imtold
if(irt.eq.imtold+1l) irt=1
do 200 j=2,jmtold-1
if(tmp(i,j).1le.0.0) then
fkmold(i,j)=tmp(i, J)

else
fkmold (i, j)=(1./16.)*(
+ tmp (ilt,j+1)+2.*tmp (i, j+1)+tmp(irt, j+1)
+ + 2.%(tmp(ilt,3) +2.%tmp(i,]j) +tmp(irt,j)
+ + tmp (1lt,3-1)+2.*tmp (i, j-1)+tmp (irt, §-1))
endif
200 continue

c Apply N and S boundary conditions:
fkmold(i,1)=0.0
fkmold (i, jmtold)=fkmold (i, jmtold-1)

210 continue
endif
c
endif
c
c
¢ Adjust depths to nearest MOM vertical level
c

do 20 dj=1,jmtold
do 30 i=1,imtold
if (abs (fkmold{(i,j)).ge.l.e-4) then
isea=isea+1l
do 35 k=1,km
if(zt(k).gt.fkmold(i,j)) then
kup=k-1
deltazl=zt (k)-fkmold (i, j)
deltaz2=fkmold (i, j) -zt (kup)

if(deltazl.lt.deltaz2) then
fkmnew (i, j)=k
else
fkmnew (i, j)=kup
endif
goto 31
endif

35 continue
fkmnew(i,])=km

else
iland=iland+1
fkmnew (i, j)=fkmold (i, j)
endif
31 if (fkmnew({1,J) .ge.rmax) rmax=fkmnew(i,j)
if (fkmnew(i, j).le.rmin) rmin=fkmnew(i,j)
30 continue

-51 -

20 continue

write(6,*) isea,' sea points ',iland,' land points

do 40 j=1,jmt-1
do 50 i=1,imtm2
kmt (1,3)= fkmnew(i,3j)

50 continue
40 continue
c
¢ Apply cyclic conditions
c
do 60 j=1,jmt-1
kmt (imt-1,7)=kmt (1, 3)
kmt (imt,j) =kmt(2,3)
60 continue
c
c Apply open northern boundary condition
c (The MOM code will automatically override this if the northern
¢ boundary is closed within the model)
c
do 70 i=1,imt
kmt (i,1)=0
kmt (i, jmt)=kmt (i, jmt-1)
70 continue
c
if(ans.eq.'y'.or.ans.eq.'Y') then
o

do 250 j=2,jmt-1
do 260 1=2,imt-1

if (kmt (1,

j) .eq.0) then

if(kmt(i-1,7).ne.0

e S R

.and.
.and.
.and.
.and.
.and.
.and.
.and.

kmt (i-1,3-1) .ne.0

kmt (i-1,7) .ne.0

kmt (i+1,3-1) .ne.0

kmt (i+1,3) .ne.0

kmt (i+1,3+1) .ne.0

kmt (i,3-1) .ne.0

kmt (i,3+1) .ne.0) then

kmt (i,3) = min(kmt(i-1,j-1),

+

kmt (1-1,3) , kmt (i-1,3) , kme(i+1,3-1),kmt(i+l,),

+ kmt (1+1,3+1) ,kmt (1i,3-1),kmt (1i,3+1))

write(6,*) 'Isolated land point removed at: ',i,',',3

endif
endif
260 continue
250 continue
endif
c
¢ Calculate kmu
c

field

do 310 j=1,jmt

kmu (imt,

310 continue

j) =0

- 52 -

c
c
do 340 j=1,3jmt-1
do 330 i=1,imt-1
kmu(i,3) = min (kmt(i,3), kmt(i+1l,3), kmt(i,3+1), kmt(i+l,j+1))
330 continue
340 continue
do 350 j=1,jmt
kmu (imt,3) = kmu(2,3)
kmu {(imt-1,7)=kmu (1, 3)
350 continue
do 320 i=1,imt
kmu(i,jmt) = kmu (i, jmt-1)
320 continue
c
C ———
c search for isolated bays... "t" grid boxes at the surface which
c cannot be influenced by advection
(ot i e T T —
c
do 400 3=2,9mt-1
do 390 i=2,imt-1
if (kmt(i,j) .ne. 0) then
if (kmu(i,3j) .eg. 0 .and. kmu(i-1,3) .eqg. 0 .and.
S kmu(i,j-1) .eqg. 0 .and. kmu(i-1,3j-1) .eg. 0) then
write (6, '(10x,a42,14,al,14,a9,1i3,a20) ")
$ *==> Warning: isolated "kmt" at (i,3) = (',i,',',]
S, 'Y, kmt = ', kmt(di,3j),* is being reset to 0
kmt(1,3) = 0
endif
endif
390 continue
400 continue
c .
¢ Do likewise for all depths:
c
do 900 j=2,jmt-1
do 990 i=2,imt-1
if (kmt(i,3j) .ne. 0) then
m=kmt (1, 3J)
if (kmu(i,j) .lt. m .and. kmu({i-1,3) .lt. m .and.
S kmu(i,j-1) .1t. m .and. kmu{i-1,3-1) .lt. m) then
write (6,'(10x,a42,14,al,i4,a9,1i3,a20) ")
S ‘= Warning: isolated "kmt" at (i,3) = (',i,',"',]
s, '}, kmt = ', kmt(i,3j),' is being reset to max. kmu'
kmt (i, j)=max(kmu(i,j), kmu(i-1,3),kmua(i,j-1),kma(i-1,j~1))
endif
endif
990 continue
900 continue
c

do 500 i=1,imt
do 510 j=1,7jmt
fkmt (i, J)=kmt (i, 3)

53 -

510 continue
500 continue
c

Join N and S islands of New Zealand at 176.E 40.5S

QO 00

inz=(176. -stlon)/dxdeg +1
jnz={(-40.5 -stlat)/dydeg +1
fkmt (inz,dnz)=0.0
write(6,*)
+ 'Warning ==> N and S islands of New Zealand have been joined’

write(6,*) by fixed code. Check for validity'
write(6,*) 'Point set was 176.E,40.5S, array coords: ', inz, jnz
c
write(6,*) 'data min= ',rmin, 'data max= ', rmax
call ascoutO(fkmt,imt,imt-2, jmt,vmask,2,21)
c
open (unit=24, file="'"sardepths2l', form='unformatted’')
write(24) fkmt
close (unit=24)
end
#include "../ascout0.f"
#include *../asciin.f®

#define nomodel 1
#include "../header.F"

-54 -

APPENDIX D (iv)

program leviZ2mom
EE O T R R R R S S

c
c Program to read in levitus temp & salinity data from formatted packed
¢ files and extract a subset of the data. The data are stored in integer
c format of length 5 with a 10000 offset & multiplied by 1000.
¢ This format is identical to the original format supplied by GFDL.
c Data represent values at the centre of 1 degree squares.
c
#include "../param.h"
#include "../scalar.h"
#include "../coord.h"
#include *../grdvar.h"
#include "../levind.h"
c
parameter (mxl=25,npsla=4*imt*km)
c
¢ mxl is the maximum number of ‘'levitus levels' that can be retained in
c memory. Ideally mxl should equal km but if less than (360%180*km*2)
c values can be accommodated then several passes can be made through
c the Levitus datasets in order to achieve the same result.
c e.g mxl=km or (km/2 + mod{(km,2)) or ... etc.
¢ npsla is the record length for each direct-access j-slab in the final
c output file
c
character *165 trecrd
character *165 srecrd
character*1 ans
real rtcol(33),rscol(33),rpcol
real vmask(4),levtemp, levsali
real rkmt (imt, jmt) , dmom (km)
real thic(km),fracl(km), frac2 (km)
real*8 z2pb,pottem,ptmp83a
~common/tracr/ levtemp(360,180,mx1),levsali(360,180,mx1),
+ tmom (imt, jmt) , smom(imt, jmt), tsla (imt, km),
+ ssla (imt, km)
integer tcol(33),scol(33),kmL(360,180,mx1),imoml2 (imt, jmt)
integer levdepth(33),lup(km),llo(km),imoml (imt, jmt),
+ imoml3 (imt, jmt)
logical ioerror,reiter,around,potential,create
data potential,create/.false.,.false./
data vmask/1.e7,2.e7,3.e7,4.e7/
c

dataset:
data levdepth/0,10,20,30,50,75,100,125,150,200,250,
+ 300,400,500,600,700,800,900,1000,1100,1200,1300,
+ 1400,1500,1750,2000,2500,3000,3500,4000,4500,5000,5500/

c~Theseare-the depths-—(m)—of-the-standard 33 levels-from-the-original

-85 -

c
pi = cd4*atan(cl)
radian = c360/(c2*pi)
slonLev=0.5
slatlLev=-89.5
dxLev=1.0
dyLev=1.0
c
write(6,*) 'Program for interpolating'
write(6,*) 'Levitus temperature and salinity onto!
write(6,*) 'the current MOM grid from the original’
write(6,*) 'lxl grid at the following standard levels:'
write(6,*) 'index----depth (m) index--~--depth(m) "'
do 111 1k=1,16
write(6, ' (i5,4x,15,9x%x,15,4x,15) ') 1k,levdepth (1k),
+ 1k+16, levdepth(1k+16)

111 continue
write(6,'(23x,15,4x,15)"') 33,levdepth(33)

C

o)
c set offset and mult. factor for unpacking of data
c

roff=10000.0

factor=1le-3
¢ Define the current MOM grid

call grids
slonmom=xt (1)
slatmom=yt (1)
dxmom=xmin (1)
dymom=ymin (1)
¢ Define depths of mom~t-points in metres:

C
dmom (1) =p5*dzt (1) *1.E-2
do 17 k=2,km
dmom (k) =dmom (k-1) +p5* (dzt (k-1) +dzt (k)) *1.E-2
17 continue
c

¢ Read in the current depths array (kmt)
¢ (as produced by the program makekm.f)

c
inguire(file='sardepths2l', exist=around)
if (around) then
open (unit=53, file="'sardepths2l', status='0ld’', form="'UNFORMATTED")
else
write(6,*) 'MOM depths file: sardepths2l, not found:’
write(6,*) '...stopping' :
stop
endif
c

read(53) rkmt

close{(unit=53)
do 13 j=1,jmt
do 13 i=1,imt

-56 -

#ifndef openbc
if(j.eqg.jmt) rkmt(i,j)=0.0
if(i.eqg.l.and.j.eqg.jmt) write(stdout, *)

+ '‘Northern boundary closed’
#else
if(j.eqg.jmt} rkmt{i,j)=rkmt(i,j-1)
#endif
kmt (i,J)=rkmt(i,3)+0.5
1 continue
c
¢ open original (or potential temperature) levitus files
c
inquire(file='potemp.levi',exist=potential)
if(.not.potential) then
c
open{unit=8,file='temp.levi',status='0ld',iostat=1istat)
if (istat.ne.0) then
write (6,14) ‘'Levitus temperature', istat
stop
endif
c
write(6,*) 'Working from original Levitus temperature file'
write(6,*)
+ 'Do you wish to create a potential temperature version? (y/n)'
read(5, '(a)') ans
if(ans.eqg.'y'.or.ans.eq.'Y') create=.true.
c
else
c
open (unit=8, file="'potemp.levi', status='0ld', iostat=istat)
if (istat.ne.0) then
write (6,14) 'Levitus potential temperature', istat
stop
endif
c
endif
c
open{unit=9,file=‘'salin.levi', status="'0ld', iostat=istat)
if (istat.ne.0) then ‘
write (6,14) 'Levitus salinity',istat
stop
endif
c
c open new levitus files
¢ first the files for ascout slices:
open(unit=10,file="11temp"')
open(unit=11,file="11salin"')
call header (10, 'temperature', 'depth',1,imtm2,1, jmt,1,
+ levk, 'CD', 'FA Levitus temperature annual mean')
call header (11, 'salinity’', 'depth',1,imtm2,1,jmt, 1,
+ levk, 'CD', 'FA Levitus salinity annual mean')
c

And then direct access files for 'j-slab' output

(9]

- 57 -

c
open(unit=12,file="dalevt2l',access="'direct',recl=npsla)
open(unit=13,file='dalevs2l',access="'direct',recl=npsla)
if (create) open{unit=14,file='potemp.levi')

c

14 format (1lx,A," file open error number ',bi5)

c

¢ For each mom level decide which two Levitus levels bracket the level
¢ and calculate vertical interpolation factors
do 555 levk=1,km
do 665 kLev=1,33
if (levdepth(kLev).le.dmom{levk) .and.
+ levdepth(kLev+1l) .ge.dmom{levk)) then
lup(levk) =kLev
llo(levk)=kLev+1l
thic(levk)=levdepth(llo(levk))-levdepth(lup(levk))
fracl{levk)={dmom({levk)-levdepth(lup(levk)))/thic(levk)
frac2(levk)={levdepth(llo(levk))-dmom(levk))/thic(levk)

goto 555
endif
665 continue
555 continue

c
¢ Decide on the number of passes through the Levitus data; dependent
Cc upon memory restrictions 1t may be necessary to carry out the
¢ interpolation process in several passes through the Levitus dataset.
if{mod(km,mx1) .eq.0) then
nsub=zkm/mx1
else
nsub=km/mx1 + 1
endif

do 669 nmem=1,nsub

19 iocerror=.false.
rewind 8
rewind 9

Initialise data on current horizontal slab (since land points are
excluded from the Levitus data sets then set all points initially to
the land mask value). Use the kmlL array to hold a land/sea indicator.

Qa0 n0a0a0na0an

do 4 m=1,mx1l

do 4 j=1,180

do 4 1i=1,360
levtemp (i, j,m)=vmask (1)
levsali(i,j,m)=vmask (1)
kmL(i,j,m)=0

continue

read in text lines

a0 a0

- 58 -

do 5 1i=1,3
read (8,%*)
read (9,%*)
5 continue

if (create) then

write (14, *)

+ "ANNUAL MEAN POTENTIAL TEMPERATURE ANALYSES FROM LEVITUS'

write (14, *)

+'UNITS OF TEMPERATURE ARE DEGREES CENTIGRADE AFTER UNPACKING.'
write(14,%*)

+'10.1000. Temperatures converted using routines z2pb and ptmp83a‘’

endif
c
c
¢ read through all longitudes, latitudes
c
c
¢ read in first line of next set of records from original temp file
c
333 read (8,15,err=10,end=10) trecrd(1l:55),n,lon,lat
read (9,15,err=10,end=10) srecrd(1l:55),nl,lonl, latl
c

¢ first check to see if final row of 9's has been reached
if(n.eqg.99999%.and.nl.eqg.99999) goto 10

c
¢ else check validity and common location of data
c
if{(n.ne.l.or.nl.ne.l) then
write(6,*) 'Input data misplaced '
ioerror=.true.
endif
if(lon.ne.lonl) then
write(6,*) 'Temperature and salinity data mismatched,
iocerror=.true.
endif
if(lat.ne.latl) then
write(6,*) 'Temperature and salinity data mismatched,
ioerror=.true.
endif
if (icerror) then
write(6,*) 'Current temperature station: ',n,lon, lat
write(6,*) 'Current salinity station: ',nl,lonl, latl
stop
endif
c
c
¢ read in remaining temp/salinity data for this lon, lat
c

read (8,15,err=10,end=10) trecrd(56:110),n,lon, lat
read (8,15,err=10,end=10) trecrd(111:165),n,lon, lat
read (9,15,err=10,end=10) srecrd(56:110),n,1lon, lat
read (9,15,err=10,end=10) srecrd(111:165),n,1lon, lat

_Bg.-

¢ Unpack data and scale back to true figures

C
read(trecrd, ' (3315) ') (tcol{kcol), kcol=1,33)
read(srecrd, ' (3315) ') (scol(kcol),b kcol=1,33)
do 6 kcol=1,33

c

if (scol{kcol).eq.0) then

rscol (kcol)=vmask(2)

else

rscol (kcol)={(scol(kcol)-roff)*factor
endif

e

if (tcol (kecol).eq.0) then

rtcol (kcol)=vmask(2)

else

rtcol (kcol)=(tcol (kcol)-roff)*factor
c

if (.not.potential) then
Convert Levitus depths (m) to pressure (dB)

c
c

xlat=1lat-90

rpcol=real (z2pb(dble({levdepth(kcol)) ,dble({xlat)))
c

c Convert "in-situ" temperatures to potential temperatures:
¢ (by whichever method was selected at compilation)
#ifdef pottem

rtcol(kcol)=real (pottem(dble(rtcol (kcol)),

+ dble(rscol (kcol)),dble{rpcol), 0d40,1d40))
#else
rtcol (kcol)=real (ptmp83a (dble(rpcol) ,dble(rtcol (kcol)),
+ dble(rscol(kcol}),0d0))
#endif
c
if (create) tcol({kcol)=rtcol (kcol)/factor + roff
endif
endif
6 continue
c

if(create) then

write(trecrd, ' (33i5) ') (tcol(kcol), kcol=1,33)
write (14,15) trecrd(1:55),1,1lon,lat

write (14,15) trecrd(56:110),2,1lon, lat

write (14,15) trecrd(l111:165),3,1lon, lat

endif
c
do 222 m=1,mx1
levk=(nmem-1)*mxl + m
if(levk.gt.km) goto 222
c

¢ Perform vertical interpolation and store required slab (first check if
c lower point is Levitus land ; if it is then leave point undefined)

if (abs(rtcol{llo{levk))-vmask(2)).le.l.e-4) then

kmL (lon, lat,m) =0

-60 -

else
levtemp (lon, lat,m)=rtcol (lup(levk))*frac2 (levk)
+ + rtcol(llo(levk))*fracl(levk)
levsali(lon,lat,m)=rscol(lup(levk))*frac2(levk)
+ + rscol(llo(levk))*fracl(levk)
kmL{lon, lat,m)=1
endif

if (abs(rtcol (lup(levk))-vmask(2)).le.l.e-4) kmL(lon, lat,m)=0
if(abs(rtcol(lup(levk))-vmask(l)).le.l.e-4) kmL(lon, lat,m)=0

c
222 continue
goto 333
10 continue
c
¢ Perform horizontal interpolation
c
israd=5
do 223 m=1,mx1
levk= (nmem-1)*mx1 + m
if (levk.gt.km) goto 223
Write(6,*) '—mm e '
write(6,*) 'Level: ',levk
write(6,*) 'mmmmm e e '
c
c Intialise mom grid land mask for this depth:
nland=0
do 866 i=1,imt
do 866 j=1,jmt
imoml (i, j)=1
imoml2{i,j)=1
if(kmt(i,j).1lt.levk) then
imoml (i,3J)=0
imoml2 (i, 3j)=0
nland=nland+1
endif
866 continue
c
do 900 im=1,imtm2
xsm=s lonmom+ (im-1) *dxmom
c
¢ Find surrounding Levitus points
c

do 910 il=1,359
xsl=slonLev+ (il1-1) *dxLev
xsr=xsl+dxLev
if (xsl.le.xsm.and.xsr.ge.xsm) goto 800

910 continue
write(6,*) 'Bracketing Levitus column not found'

write(6,*) ‘'im= ',im
stop

800 do 900 jm=1,jmt

C

-B] -

1f land at this mom-pt then look no further
if (kmt (im, jm) .1lt.levk) then
tmom (im, jm)=0.0
smom (im, jm)=0.0
goto 899
endif

c
ysm=slatmom+ (jm-1) *dymom
c
¢ Find surrounding Levitus points
c
do 920 j1=1,179
ysl=glatLev+(jl-1)*dyLev
yvsr=ysl+dyLev '
if({ysl.le.ysm.and.ysr.ge.ysm) goto 810
920 continue
write(6,*) 'Bracketing Levitus row not found'
write(6,*) ‘'jm= ',Jjm
stop
c
810 continue
c
¢ check if land at any of the corner nodes
c
ilp=il+1
Jjlp=31+1
nsea=knL(il,jlp,m)+kmL(ilp, jlp,m)+kmL(il,31,m)+kmL(ilp,jl,m)
c
c If two or fewer corner nodes are land then leave equal to the previous
¢ layer but set land flag in order to attempt horizontal interpolation
c later.

00 a0aaon

0

if(nsea.le.2) then
imoml2 (im, jm)=0

else if all 4 corner nodes are sea perform standard linear
interpolation

elseif (nsea.eq.4) then

a=(xsm-xsl) /dxLev

b={(ysm-ysl) /dyLev

tmom{im, jm)=(1.-a)*{1l.-b) *levtemp(il,jl,m)+

+ a*(l.-b)*levtemp(ilp,jl,m)+
+ a*b*levtenp(ilp,jlp,m)+
+ (1.-a)*b*levtemp(il, jlp,m).

smom (im, jm)={(1.-a)*(1.-b)*levsali(il,jl,m)+

+ a*(l.-b)*levsali(ilp,jl,m)+
+ a*b*levsali(ilp,jlp,m)+
+ (1.-a)*b*levsali(il, jlp,m)

else if 3 corner nodes are sea take an average value

-62 -

elseif (nsea.eqg.3) then

tmom(im, jm) = (kmL{il,jl,m)*levtemp(il,jl,m)
+ + kmL{(ilp,jl,m) *levtemp(ilp,31,m)+
+ kmL(1l,jlp,m)*levtemp(il, jlp, m) +
+ kmL(ilp, jlp,m) *levtemp (ilp, jlp,m)) /nsea
c
smom(im, jm) = (kmL{il,jl,m)*levsali(il,jl,m)
+ + kmL(ilp,jl,m)*levsali(ilp,jl,m)+
+ kmL(il,jlp,m)*levsali(il,jlp,m)+
+ kmL(ilp, jlp,m) *levsali(ilp, jlp,m)) /nsea
endif
899 if (kmt (im, jm) .eqg.0) then
tmom(im, jm)=vmask (1)
smom (im, jm) =vmask (1)
elseif (kmt(im,jm) .1lt.levk) then
tmom{im, jm) =vmask (2)
smom (im, jm) =vmask (2)
endif
c
900 continue
c

#ifdef cyclic
do 905 j=1,jmt

tmom (imtml, j) = tmom(1l, J)
smom{imtml, j) = smom(l,3j)
imoml2 {(imtml, j)=imoml2 (1, j)
c
tmom(imt,j) = tmom(2,3j)
smom{imt,j) = smom(2,3)
imoml2 (imt, j) =imoml2 (2, 3J)
905 continue
#endif
c
¢ Now iterate to fill in any sea points which fell in Levitus land areas
c
niter=1
reiter=.false.
nland2=0
nland3=-~1
c

746 do 747 j=1,jmt
do 747 i=1,imt
if(niter.eq.1l) imoml3 (i, j)=imoml2{(i,])
if(imoml2(i,j).eq.0) nland2=nland2+1
747 continue
if (nland2.ne.nland) then

do 748 =1, jmt
do 748 i=2,imtml
if(imoml2(i,j).eq.0.and.imoml(i,j).ne.0) then

B3 -

¢ Take average of all surrounding sea-points

ipl:i+l

iml=1i-1
Jpl=min(j+1,jmt)
jml=max{j-1,1)

c
nsurr=imoml2 (iml, jml)+imoml2 (i, jml)+imoml2 (ipl, jml)
+ +imoml2 (iml, J) +imoml2 {(ipl, 3)
+ +imoml2 (iml, jpl) +imoml2 (i, jpl) +imoml2 (ipl, jpl)
c
if (nsurr.gt.0) then
tmom (i, j)=(imoml2 (iml, jml) *tmom(iml, jml)
+ + imoml2 (i, jml) *tmom(i, jml)
+ + imoml2 (ipl, jml) *tmom (ipl, jml)
+ + imoml2 (iml,) *tmom(iml,)
+ + imoml2 (ipl, j) *tmom(ipl, J)
+ + imoml2 (iml,jpl) *tmom{(iml, jpl)
+ + imoml2 (i, jpl) *tmom{i, jpl)
+ + imoml2 {ipl, jpl) *tmom(ipl, jpl)) /nsurr
c
gmom{i,j)=(imoml2 (iml, jml) *smom(iml, jml)
+ + imoml2 (i, jml) *smom(i, jml)
+ + dmoml2 (ipl, jml) *smom(ipl, jml)
+ + imoml2 (iml, j) *smom({iml, j)
+ + imoml2 (ipl, j) *smom(ipl, J)
+ + imoml2 (iml, jpl) *smom{iml, jpl)
+ 4+ imoml2 (i, ipl) *smom(i, jpl)
+ + imoml2 (ipl, jpl) *smom{ipl, jpl)) /nsurr
imoml3{(i,3)=1
else
reiter=.true.
endif
c
endif
748 continue

#ifdef cyclic
do 750 j=1,7jmt

tmom(1l,3j) = tmom(imtml, j)
tmom (imt,j) = tmom(2,3)
smom(1l,j) = smom(imtml, j)
smom(imt,j) = smom(2,3)
imoml3(1,j) = imoml3 (imtml, j)
imoml3 (imt,)= imoml3(2,3)

750 continue

#endif

c
endif

c

if (reiter) then

niter=niter+1

nland3=0

reiter=.false.

write(6,*) 'Iteration number= ',niter

- B4 -

do 749 §=1,jmt

do 749 i=1,imt
imoml2 (i, j)=imoml3 (i, 3)
if (imoml2 (i, j).eq.0) nland3=nland3+1

749 continue

if(nland3.ne.nland2) then

nland2=0

if(niter.lt.50) goto 746

else

write(6,*) 'Filling in isolated basins'
endif
endif

call ascoutO(tmom, imt, imtm2, jmt,vmask,2,10)
call ascout0 (smom, imt, imtm2, jmt,vmask, 2,11)

Write out slab in such a way that MOM type latitude slabs can be

retrieved later.
Note Salinity is scaled ready for use in the MOM model

QO 0000

do 123 j=1,jmt
if(levk.ne.l) then
read(1l2,rec=3j) tsla
read(13,rec=j) ssla
endif

do 124 i=1,imt
tsla(i, levk)=tmom(i,3j)
ssla(i,levk)=(smom(i,j)~35.)*1.e-3

124 continue

write(1l2,rec=j) tsla
write(13,rec=j) ssla

123 continue
223 continue
669 continue
15 format (a55, 315)

close (8)

close (9)

close (10)

close (11)

close (12)

close (13)

if (create) close (14)

stop
end
#ifdef pottem
S o
G = o
real*8 function pottem(tt,ss,p0,pl,dpp)
= e
o
c

¢ Subroutine to calculate the final temperature of water moved

a0 o0a00000000000a0a0

aano0o0a000an

- 65 -

adiabatically from an initial temperature
p0, to a final pressure pl.
The integral eguation is solved by direct
increment dpp - using the bryden eguation
(subroutine atg).

t = surface (potential) temperature
s = salinity in nsu

p0 = initial pressure in decibars

pl = final pressure in decibars

dpp = pressure step to use

pottem = result in degrees centigrade

tt, salinity ss and pressure

integration with a pressure
for the adiabatic lapse rate

in degrees centigrade

tests with dpp values ranging from 1 to 128 decibars showed the most
accurate results were obtained with dpp equal to 1.

implicit real*8 (a-h,o-z)

if(p0.1t.0d0.0r.p0.gt.20000.0

& .or.pl.1lt.0d0.o0r.pl.gt.20000.0)then

print *,' subroutine pottem stopping - pressures out of range'
print *,' pressures p0 and pl = ',p0,pl
print *,' allowed range has min of 0.0, max of 20,000"

stop
endif
dp = sign(dpp.pl-p0)
p = p0
Lt = tt
tbh = t - atg(p0,t,ss)*dp

10 ta = tb + 2d0*atg(p,t,ss)*dp
p =p + dp
th = t
t = ta
test=(p-pl)* (p-dp-pl)
if(test.gt.0d0)goto 10
pottem = ((pl-p+dp)*t + (p-pl)*tb)/dp
return
end

adiabatic temperature gradient deg c¢ per decibar
ref: bryden,h.,1973,deep-sea res.,20,401-408

units:
pressure
temperature
salinity

decibars

n g

(pss-78)

deg celcius

(ipts-68)

adiabatic atg degrees celcius per decibar

-~ 66 -

¢ check value: atg=3.255976e-4 deg c/dbar
for s=40 (pss-78), t=40 deg c, p=10000 decibars

c
c
implicit real*8(a-h,o-2)
c
ds=s5-35d0
atg=(((-2.1687d-16*t+1.8676d-14)*t-4.62064-13) *p
&+{((2.7759d-12*t-1.1351d-10) *ds+((-5.4481d-14*¢t
&+8.733d-12)*t-6.7795d-10)*t+1.8741d-8)) *p
&+(-4.2393d-8*t£+1.8932d-6) *ds
&+((6.62284-10*t-6.836d-8) *t+8.5258d-6) *£+3.5803d-5
return
end
#endif
O e e ——— e
e e e ————— e
function dpth80 (pin,xlat)
O e
O e e
implicit double precision{a-h,o-2)
z khkkhkkhkhkrhkhkhdhhhrkhkdhddhhkhorhhrhddhkhdhhdhihk
Cuovuennn *** d g collins ios{w) 7-may-81 ***
[o EE R R R R I I I o I R e I O S
Cuovienn.
c depth in meters from pressure in decibars using Saunder's and
c Fofonoff's method. Deep Sea Res., 1976,23,109-111.
c formula refitted for eos80
c check value: 9712.654 m for pin=10000 decibars, latitude = 30 deg.
c
Cuevionn convert pressure to bars
p=pin*0.1
x=sin{(xlat/57.29578d0)
X=X*x
gr=9.780318d0*(1.0+(5.2788d-3+2.36d-5*x) *x)+1.092d4-5*p
dpth80=(((-1.82d-11*p+2.279d~-7) *p-2.2512d-3) *p+97.2659) *p
dpth80=dpth80/gr
return
end
[e i e e e
(= o o e i o e it e T T i i i i e e e it o o o
real*8 function z2pb(z,xlat)
L e e e R i i e e e ——
C ———
implicit real*8(a-h,o-2z)
c
¢ Function to calculate pressure in decibars from depth in metres using
¢ an'exact' iterative inverse of saunders and fofonoff's algorithm
¢ {routine dpth80). Iterates until convergence or 30 iterations reach
¢ convergence criteria are zero error or a two point limit cycle.
¢ Error exit if final error > eps.
c

data eps/1d-6/

Q

-87 -

p=z
zz=-999.0
z1=~999.0
do 20 i=1,30
z2=2z1
zl=zz
zz=dpth80 (p,xlat)
if(z.eqg.zz.or. (abs(z~zz).lt.eps.and.zz.eqg.z2))goto 50
D =p+z2-2zZ
20 continue
if(abs(z-zz).lt.eps)goto 50

c

print *,'subroutine z2pb. iteration has not converged after',

& ' 30 iterations'

print *,‘'object depth =',z,' last three estimates are:’

print *, 'iteration depth depth error'

print *,28,2z2,z-z2

print *,29,z1,z-z1

print *,30,zz,z-zz

stop
o)

50 z2pb=p

return

end
#ifndef pottem
e e e e e e e
o o e e e e e e e e e e e e

double precision function ptmp83a(p0,t0,s,pr)
S e e e
e e e

implicit double precision (a-h,o-z)
c
Cuovnnn. to compute local potential temperature at pr. Using Bryden 1973
Cevienn. polynomial for adiabatic lapse rate and Runge-Kutta 4-th order
[integration algorithm. Ref: Bryden,H.,1973, Deep-Sea Res., 20,
Couvenn 401-408. Fofonoff,N.,1977, Deep-Sea Res., 24, 489-491.
Chuvnnns Check value: ptmp83 =36.89072 for s=40 nsu,t=40 deg ¢, po
Cevennn (measured pressure) = 10000 decibars, pr = 0 bars.

c
¢ This has been modified so that the constants are calculated on first
c entry to full precision. D.J.Webb, Jan 1992.
c

data in/0/

if(in.eqg.0)then
cl=0.5d0
c2=dsqgrt (0.5d0)
c3=dsqgrt (240)
c4=140-c2
c5=1d0+c2
c6=1d0/640
c7=240-c3
c8=2d0+c3
c9 =-2d0+3d0*c2
c10=-2d0-3d0*c2

-68 -

in=1
endif
save cl,c4,c5,¢6,¢c7,c8,¢9,cl10,1in
p=p0
t=t0
h=pr-p
xk=h*atgr83 (p,t,s)
t=t+cl*xk
g=xk
p=p+cl*h
xk=h*atgr83(p,t,s)
t=t+cd* (xk-q)
g=c7*xk+c9*qg
xk=h*atgr83 (p,t,s)
t=t+ch5* (xk-q)
g=c8*xk+cl0*qg
p=p+cl*h
xk=h*atgr83(p,t,s)
ptmp83a=t+ (xk-2d0*q) *cé6
return
end
real*8 function atgr83(pin,t,s)
implicit real*8(a-h,o-z)

Covnenn
c
[Adiabatic temperature gradient deg c/bar
Coonnenn Ref: Bryden,H.,1973, Deep-Sea Res., 20, 401-408
Chovennn Check value: atgr80=3.255976e-3 for s=40 nsu, t=40 deg c,
Chuvennn pin=10000 decibars
c
Cuovenn convert pressure to bars

p=pin*0.1

ds=5-35d0

atgr83=(((-2.1687d-13*t+1.8676d-11)*t-4.62064-10) *p

&+((2.7759d-10%t-1.1351d-8) *ds+((-5.44814-12*t

&+8.733d-10)*t-6.7795d-8) *t+1.87414-6)) *p

&+ (-4.2393d-7*t+1.8932d-5) *ds

&+((6.6228d-9*t-6.836d-7) *t+8.5258d-5) *t+3.5803d-4
c
Cuvnnnn as from 19 july 1983, gradient is per decibar, not per bar

atgr83=atgr83*0.1

return

end

¥endif
#define noreport 1
#include "../setgrid.F*
#include "../header.F"

#include "../blkdta.F"
#include "../ascout0.f"

-89 -

APPENDIX D (v)

o000 nNO0n0Q00n000a0a0an

C

program getslice
hk kK hkhkhkhkokkhkhkhkkhkkkik

Program to retrieve standard direction slices from MOM restart data-
sets. Output is in the form of ascout cards files suitable for
viewing via the FRAM plotting programs. Many of the modules used in
the construction of this program are taken directly from the MOM
source code. This should mean that any reconfiguring of the ocean
model will be automatically accounted for by simply re-compiling this
extraction program with the same preprocessor directives.

e.g.: cc -P -Dopenbc -Ddiskless etc. getslice.F
mv getslice.i getslice.f
£77 -0 getslice getslice.f

will produce a code capable of correctly extracting slices from a
restart dataset produced by running the model in core with an open
northern boundary.

Additional preprocessor directives uniqgue to this program are:

vtsteps : used to calculate the model day from the timestep
according to a set variation in the length of the timestep
(e.g. if the timestep has been changed part-way through a
run) .

#include "param.h"
#include "ctmngr.h"
#include "emode.h"
#include "iounit.h"
#include "levind.h"
#include "grdvar.h"
#include "coord.h"
#include "scalar.h"
#ifdef multitasking
#include "cshrbf.h*
#else

#include "slabs.h"
#endif

real islice(jmt,km),jslice(imt,km),kslice(imt, jmt)
real vmask(4)

integer tpts

logical around

character*50 namrun,rstrtfn

character*9 vars(6),dims(4)

character*2 fnames(6),opform

character*1l orien(3),dayno*4, fname*7, ans

external blkdta

- 70 -

c set up character strings for the header subroutine
data vars/'temperature', '‘salinity', ‘uvelocity’, 'vvelocity"',
+ "stream', 'depths'/dims/'latitude', 'longitude’, 'depth',
+ 'stream'/
data fnames/‘mt','ms’','mu', 'mv‘', 'mp', 'md'/orien/‘e','n','h'/
c

Q

9]

C

Load the values used for masking in ascout

data vmask/1l.e7,2.e7,3.e7,4.e7/

Load some strings used by the header routine

data namrun/'Fasham model 2x1 resolution‘’/opform/'CD'/

pi = cd*atan(cl)
radian = ¢360/(c2*pi)
omega = pi/43082.0
itry=1

tpts=1

#ifdef vtsteps)
¢ if variable length timesteps have been used the flag the present

c settings:

#else
c Set

#endif

5

write(6,*) 'Extraction program assuming varying timesteps’
write(6,*) 'Current settings are: '

write(6,*) 'days 0 to 14 : 20 minutes®

write(6,*) 'days 14+ to 28: 60 minutes'

write(6,*) ‘days 28+ : 90 minutes'

the number of time steps per day

tperday=24
write(6,*) 'Extraction program assuming 24 timesteps per day'

Write (6, %) = m '
write(6,*) ‘'Enter filename of restart dataset:

read (5, '(A)') rstrtfn

inquire(file=rstrtin, exist=around)
if {.not.around) then
itry=itry+1
write{6,*) ‘File not found, Please try again or enter quit'
if(rstrtfn(l:4).eq.'quit’') then
write(6,*) ‘'User requested exit’
stop
endif
if(itry.gt.5) then)
write(6,*) 'Repeated filename failure...program halted’
stop
endif
goto 5
endif
write(6,*) 'Enter choice of variable: °
write(6,*) '{(1) Temperature ‘'
write(6,*) '(2) Salinity

- 71 -

write(6,*) '(3) U-velocity"
write(6,*) *(4) V-velocity"
write(6,*) '(5) Stream-function’
write(6,*) '(6) Topography '
c
ilim=6
#ifdef openbc
write(6,*) '(7) Reference temperature along open boundary'
write(6,*) '(8) Reference salinity along open boundary'
1ilim=8
#endif
o
read (5, *) itype
if(itype.lt.l.or.itype.gt.1lim) then
write(6,*) 'Illegal variable choice ...defaulting to type 1'
itype=1
endif
if (itype.eqg.3.or.itype.eqg.4) tpts=0
c
IF (itype.lt.5) then
write(6,*) 'Enter choice of slice direction:
write(6,*) '(1) E-W slice’

'(2) N-S slice®
write(6,*) '(3) Horizontal slice’
read(5,*) ichoice
if(ichoice.lt.l.or.ichoice.gt.3) then
write(6,*) 'Illegal direction choice
ichoice=3
endif
if(ichoice.eqg.1) then
write(6,*) 'Enter jrow of slice:
read(5,*) Jjrow
if(jrow.lt.l.or.jrow.gt.jmt) then
write(6,*) 'Illegal row choice

write(6,%*)

...defaulting to choice 3°'

...defaulting to jmt/2*

Jjrow=3jmt/2
endif
elseif(ichoice.eqg.2) then
write(6,*) 'Enter irow of slice: '

read(5,*) irow

if(irow.lt.l.or.irow.gt.imt) then
write(6,*) 'Illegal column choice
irow=imt /2

...defaulting to imt/2°'

endif

Jjrow=3jmt
else

write(6,*) 'Bnter k-level: '
read(5,*) klevel

if(klevel.lt.l.or.klevel.gt.km) then
write(6,*) ‘'Illegal level choice ...defaulting to k=1'
klevel=1
endif
jrow=jmt
endif

- 72 -

ELSEIF (itype.eqg.5.0r.itype.eqg.6) then

c
ichoice=3
klevel=1
c
ELSE
ichoice=1
jrow=jmt
c
ENDIF
c
c Call the MOM routine grids to set up the grid. The version actually
¢ included with this program is identical to the original grids routine
c¢ (MOM_1.0) but does not detail the grid arrays on stdout.
¢ If setgrid.F has been altered since MOM_1.0 then update the version
¢ included below.
call grids
c

#ifdef openbc
nkntrl=2+imt*km*nt
call ostart (kontrl, nkntrl, nkntrl, 1)

#else
call ostart (kontrl, 2, 2, 1)

#endif
call ostart (kflds, nkflds*nwds, nwds, 1)
call ostart (labs(l), jmt*nslab, nslab, nbuf)
call ostart (labs(2), jmt*nslab, nslab, nbuf)
call ostart (labs(3), jmt*nslab, nslab, nbuf)

c
open{iorest, file=rstrtfn,access='SEQUENTIAL', form="'UNFORMATTED"')
c
¢ Read the restart dataset using rdrest from the standard MOM module:
restio.F
call rdrest
call oget(kontrl,2,1,itt)
c
S e e
c compute permuting disc indicators and read in 2 levels of
c stream function.
o e e __
c

#ifdef diskless
ifdef multitasking
ndiskb = mod(itt+2,ntlev) + 1

ndisk = mod(itt ,ntlev) + 1
ndiska = mod(itt+1l,ntlev) + 1
else
ndiskb = mod{itt+1,ntlev) + 1
ndisk = mod(itt ,ntlev) + 1
ndiska = ndiskb
endif
#else

ndiskb = mod(itt+2,ntlev) + 1
ndisk = mod{itt ,ntlev) + 1

13-

ndiska = mod{itt+l,ntlev) + 1
#endif
c
c
c Retrieve stream-fn and topography arrays
call oget (kflds, nwds, (ndisk-1)*nwds+1l, p(1l,1,2))
call oget (kflds, nwds, (ndiska-1)*nwds+1, p(1,1,1))

c
call oget (kflds,nwds,5*nwds+1, kmt)
c
o o o e
c compute number of vertical levels on the "u" grid
o e e e
c
do 800 j=1,jmt
kmu (imt,3j) = 0
800 continue
e
do 900 i=1,imt
kmu (i, jmt) = 0
900 continue
c

do 1000 j=1,3jmtml
do 990 i=1,imtml
kmu(i,j) = min (kmt(i,j), kmt(i+1,3), kmt(i,j+1), kmt(i+l,j+1))
9940 continue
1000 continue
#ifdef openbc
c
c set open boundary topographic conditions
c
do 737 i=1,imtml
kmu (i, jmt) =kmu (i, jmtml)
737 continue

#endif
#ifdef cyclic
c
c set cyclic conditions
c
do 1100 j=1,jmt
kmu (imt, j) = kmu(2,3)
1100 continue
#endif
#ifdef symmetry
c
C set symmetry conditions
c
do 1200 i=1,imt
knu (4, dmt) = kmu (i, jmtm2)
1200 continue

#endif
e

- 74 -

O
c compute depths and reciprocal depths
O =
e
do 1400 j=1,jmt
do 1390 i=1,imt
hr(i,j) = c0
h{i,j) = c0
if (kmu(i,j) .ne. 0) then
hr(i,j) = cl/zw(kmu(i,j))
h (i,3) = zw(kmu(i,j))
endif
1390 continue

1400 continue

c
c
¢ Makeup filename:
#ifdef vtsteps
if(itt.le.1008) then
NSLA=itt/72
elseif(itt.gt.1008.and.itt.1le.1334) then
NSLA=14 + (itt - 1008)/24

else
NSLA=28 + {(itt - 1334)/16
endif
#else
NSLA=itt/tperday
#endif
write{6,*) 'Data extracted from timestep: ', itt, ' day: ',NSLA

write(dayno, '(i4.4) ') NSLA
#ifdef openbc
if(itype.eqg.7.0or.itype.eq.8) then
itrace=itype-6
fname=fnames (itrace)//orien (ichoice) //dayno
else
#endif
fname=fnames (itype)//orien(ichoice) //dayno
#ifdef openbc
endif
#endif
c
nc=mod{itt,ntau)+1
nm=mod (itt-1,ntau)+1
je=mod (jrow,nslabs)+1
c
¢ Check wvalidity of output filename and request permission to
c overwrite if necessary:
inquire(file=fname//'.cards', exist=around)
if (around) then
write(6,*) 'Output file: '//fname//'.cards already exists'
write(6,*) 'Ok to overwrite? (y/n)’
read(5,'(A)') ans

- 75 -

if(ans.eq.'y'.or.ans.eq.'Y"') then
open{unit=35, file=fname//'.cards')
c
else
c

Search for an unused filename by appending single characters to the
existing filename:
write(6,*) 'Searching for alternative name...’
do 333 ich=ichar(‘a'),ichar('z")
inquire{file=fname//char(ich)//'.cards',exist=around)
1if(.not.around) goto 444
write(6,*) fname//char(ich)//'.cards exists'

0 n

333 continue
write(6,*) 'Alternative name not found...stopping'
stop
444 write(6,*) 'Using file: '//fname//char(ich)//' .cards'
open{unit=35,file=fname//char(ich)//'.cards")
endif
else
open(unit=35,file=fname//'.cards"')
endif
c
c
o o e e e e e e e m e E e m e e m— e m—m e
¢ If Stream-function then mask,scale and output here:
c

if(itype.eq.5) then
do 100 j=1,jmt
do 90 i=1,imt
kslice(i,j)=p(i,3J,1)*1.E-12
if (kmt(i,3j) .le. 1) then
kslice(i,3) = vmask(1l)
endif
90 continue
100 continue
call header (35,vars(itype),dims(4),1,imtm2,1, jmt, tpts,

+ 0,opform, namrun)

call ascoutO(kslice,imt, imtm2, jmt,vmask,2,35)
stop

endif

¢ If Topography then mask,scale and output here:
C
if(itype.eqg.6) then
do 155 j=1,jmt
do 955 i=1,imt
kslice(i,j)=kmt (i, 3)
if (kmt(i,3j) .le. 1) then
kslice(i,j) = vmask(l)
endif
955 continue
155 continue

C

- 76 -

call header(35,vars(itype),dims (4),1,imtm2,1, jmt, tpts,

+ 0,opform, namrun)

call ascoutO(kslice,imt, imtm2, jmt,vmask,2,35)
stop

endif

¢ If tracer on open northern boundary then mask and output here:

C

C

#endif

555

call oget (kontrl,imt*km*nt,3,tn(1,1,1))

if(itype.eg.7.o0r.itype.eqg.8) then
do 555 k=1,km

do 555 i=1,imt
jslice(i,k)=tn(i,k,itrace)

if (kmt(i,jrow).le.l) then
jslice(i,k)=vmask({l)

elseif (kmt(i,jrow).lt.k) then
jslice (i, k)=vmask(2)

endif

continue

call header (35,vars(itrace),dims (ichoice),1,imtm2,1,km, tpts,

jrow, opform, namrun)

call ascout0(jslice, imt, imtm2, km, vmask, 2, 35)

stop
endif

¢ For Horizontal and N-S slices loop through whole dataset:

S>>0 >>>35>5>>5>3>>>>

C

¢ Retrieve slab information using routine getrow.

C

C

C

if (ichoice.ge.2) then
do 221 j=1,jrow
je=mod(j,nslabs)+1

This routine is

similar to the MOM module getvar {(included as part of step.F) but
¢ includes additions to mask the topography ready for ascout.

121

call getrow (j,Jjc,itype, vmask)

if (ichoice.eqg.3) then
do 121 i=1,imt
if (itype.le.nt) then

kslice(i,j)=t(i,klevel,jc,nc,itype)

elseif (itype.eg.nt+1l) then
kslice (i, j)=u(i,klevel, jc,nc)
elseif (itype.eqg.nt+2) then
kslice(i,j)=v(i, klevel, jc,nc)
endif

continue

- 77 -

elseif (ichoice.eqg.2) then
do 321 k=1,km
if (itype.le.nt) then
islice(j,k)=t(irow,k,jc,nc,itype)
elseif (itype.eg.nt+1) then
islice(j,k)=u(irow,k, jc,nc)
elseif (itype.eg.nt+2) then
islice(j,k)=v{irow, k, jc,nc)

endif
321 continue
endif
e
221 continue
c
if(ichoice.eq.3) then
call header (35,vars(itype),dims{ichoice),1,imtm2,1, jmt, tpts,
+ klevel, opform, namrun)
call ascout0(kslice, imt, imtm2, jmt, vimask, 2, 35)
elseif (ichoice.eqg.2) then
call header(35,vars(itype) ,dims(ichoice),1,jmt,1,km,tpts,
+ irow, opform, namrun)
call ascoutO(islice, jmt, jmt, km, vmask,2,35)
endif
c
o e e

LLLLLLLLL L L L L L L L L L L L L L L L L L L L
c Else select only the required E-W slice:

SE>SSSSES5555>O5>D5>>>555>>>>
elseif (ichoice.eg.1l) then
call getrow (jrow,jc,itype, vmask)

c
do 222 k=1,km
do 222 i=1,imt
if(itype.le.nt) then
jslice(i,k)=t(i,k,jc,nc,itype)
elseif (itype.eqg.nt+1l) then
jslice(i,k)=u(i,k,jc,nc)
elseif (itype.eqg.nt+2) then
jslice(i,k)=v(i,k,jc,nc)
endif
222 continue
c
call header(35,vars{itype),dims (ichoice),1,imtm2,1,km, tpts,
+ jrow, opform, namrun)
call ascout0(jslice, imt, imtm2, km, vmask,2,35)
endif
o e

LKL L LKL LLLLLLLL L L L L L L L L L L
close (unit=35)

end
subroutine getrow (jrowt, jptr ,itype, vmask)

-8 -

#ifdef multitasking
cfpp$ noconcur r
#endif

c
e Read prognostic variables from row "jrowt" on disk
c slab window at position "jptr". Set the masks for *
o a copy of the internal modes before constructing the
c

#include ‘“param.h”
#include "ctask.h"
#include "emode.h"
#include "grdvar.h"
#include “"coord.h"
#include "scalar.h”
#include "iounit.h"
#include "levind.h”
#include "slabs.h"
#include "switch.h*

into the memory
jrowt" and save
full velocity.

c
dimension ubar (imt), vbar (imt)
real vmask(4)
c
c limit size of jrow
c
jrow = min{jrowt, jmt)
c
o
c read slabs from row "jrow" on disk into the memory slab window at
c row "jptr"
G =
c
if (jrow .le. jmt) then
if (mixts) then
call oget (labs(ndisk), nslab, {(jrow-1)*nslab+1l, bufsl)
else
call oget (labs(ndiskb), nslab, {jrow-1)*nslab+l, bufsl)
endif
call xfer {(bufsl, t(l,1,jptr,nm,1})
call oget (labs(ndisk), nslab, (jrow-1l)*nslab+l, bufsl)
call xfer (bufsl, t(1,1,jptr,nc,1))
endif
c
O e e
c set masks for row "jrow"
e e e
c

do 100 k=1,km
do 90 i=1,imt

- 79 -

c If Salinity then rescale

c
if (itype.eqg.2)
+ t(i,k,jptr,nc,itype)=(t(i,k,jptr,nc,itype) +0.035)*1000.
c
if (itype.le.2) then
fm(i,k,jptr)=1.0
if (kmt(i,jrow) .le. 1) then
fm(i,k,dptr)=0.0
t(i,k,jptr,nc,itype) = vmask(l)
elseif (kmt({i,jrow).lt.k) then
fm(i, k, jptr)=0.0
t{i,k,jptr,nc,itype) = vmask(2)
endif '
else
gm(i,k,jptr)=1.0
if (kmu(i,jrow) .le. 1) then
gm(i,k,jptr)=0.0
u(i,k,jptr,nc) = vmask(1l)
v(i,k,jptr,nc) = vmask(1l)
elseif (kmu(i,jrow).lt.k) then
gm(i,k,iptr)=0.0
u{i,k,jptr,nc) = vmask(2)
v(i,k,jptr,nc) = vmask(2)
endif
endif
90 continue
100 continue
c
o e
o set pointers {(indices) to cycle internal modes
c (also used to cycle del**2 quantities for biharmonic option)
o o e e
c

jptl = mod (jrowt+1l,numipt) + 1
ipt2 = mod (jrowt+2,numjpt) + 1
jpt = jpt2

#ifdef biharmonic
jpt3 = mod (jrowt+3,numjpt) + 1

jpt = Jjpt3
#endif
c
if(itype.lt.3) return
c
o o e e
le save a copy of the internal mode velocity from row "jrow"
c (row "jrow + 1" if the biharmonic option is enabled) for use in
c constructing 'fvsu' in clinic and diagnostic caluclations
o
c

do 200 k=1,km
do 190 i=1,imt
uclin(i, k,jpt)
velin (i, k,jpt)

u{i,k,jptr,nc)
v{i,k,jptr,nc)

- 80 -

190 continue

200 continue

c

C ———
e add external mode velocity to internal mode velocity for row

c row 'jsrow' (tau & tau-1)

C ———
c

if (jrow .le. jmtml) then
do 300 m=1,2
if (m .eqg. 1) then

n = nc
else
n = nm
endif
do 270 i=1,imtml
diagl = p(i+l,jrow+1l,m) - p(i ,jrow,m)
diag0 = p(i ,jrow+l,m) - p(i+l,jrow,m)
ubar (i) = -(diagl+diag0) *dyu2r{(jrow)*hr (i, jrow)
vbar (i) = (diagl-diag0)*dxu2r(i)*hr(i,jrow) *csur(jrow)
270 continue
#ifdef cyclic
c
c set cyclic boundary conditions
c
ubar (imt) = ubar(2)
vbar (imt) = vbar(2)
#endif

do 290 k=1,km
do 280 i=1,imu
u(i,k,jptr,n) = u(i,k,jptr,n) + ubar(i)*gm(i,k, jptr)
v(i,k,jptr,n) = v{i,k,jptr,n) + vbar(i)*gm(i,k, jptr)
280 continue

290 continue
300 continue
endif
c
return
end
subroutine header (op, trac,depvar, ibasel, itopl, ibase2, itop2, tpts,
+ intlv,opform, namrun)
c
¢ Subroutine to produce a header for ascout files.
c
¢ In the current version the following assumptions are made:
¢ 1. The grid spacing is uniform in lat/long directions
¢ 2. The first longitudinal "t-point" is on the Greenwich meridian
c 3. stlat is the latitude of the southern-mest "u-point™®
c
¢ Input arguments are:
c
¢ name type description

0
(¢}
ko]
P
o
t
D
Q
0]
o]
o}
&
()
Lo}
e
(g3
th
o]
=
o
Ial
o
=}
-
=
I‘l-
-

-81 -

c trac character Variable type of output field

c (e.g. Temperature)

c depvar character dimension held constant for this slice. Options

c are : latitude, longitude, depth or stream

c ibasel integer start column of output field

c itopl integer end column of output field

c ibase?2 integer start row of output field

c itop2 integer end row of output field

Cc tpts integer flag to indicate whether output field is on

c t-points (1) or u-points (0)

c intlv integer Row, column or depth indicator (used for
annotation)

c opform character output form no longer used but included for

c backward compatibility

C namrun character text for inclusion in the header's comments

c field

c

#ifndef nomodel

#include "param.h"

#include "grdvar.h®

#include "scalar.h"

#include "coord.h"

#endif
character trac*(*),depvar*9,opform* (*),namrun* (*)
character*9 quan(3), from(3),incr(3),to(3)
integer nop(3),op,tpts
common /tstep/ ndfir,ndlas,ndinc

#ifdef nomodel

¢ If using header outside a MOM-code application it may be necessary
¢ to £ill in the following definitions:

real dxt(1),dyt(1l)

dtts=3600.

ttsec=0000.

itt=288

Xincr =2.0

yvincr =1.0

stlat=-79.

xincr=dxt (1) *radian/radius
vincr=dyt (1) *radian/radius
#endif
c convert input strings to upper-case
call conv2up(trac)
call conv2up (depvar)
call conv2up (opform)
. call conv2up (namrun)
rintlv=float (intlv)

if(depvar(l:6).eq. 'STREAM') then
quan (1) ' LONGITUDE'
quan(2) * LATITUDE'

~ 82 -

write(from(l),'(£9.3) ') (ibasel-1l)*xincr +(l-tpts)*0.5*xincr
write(from(2),'(£9.3)")

(ibase2-1)*yincr + tpts*0.5*yincr +stlat
write(incr (1),'(f9 3) ') xincr
write{incr(2) (f9 3) ') yincer

write(to(1l (itopl-1)*xincr + (l-tpts)*0.5*xincr

), " (£9.3) ")
write(to(2), ' (f 9 3)')
(itop2-1) *yincr +tpts*0.5*yincr +stlat

nop(l) = itopl-ibasel+1l

nop(2) = itop2-ibase2+1

elseif(depvar(l:3).eqg. 'DEP') then
quan (1) 'LONGITUDE'
quan(2) ' LATITUDE'
write(from(1l),'(£9.3)")
(ibasel-1) *xincr + (l-tpts)*0.5*xincr
write(from(2),'(£9.3)")
(ibase2-1)*yincr + tpts*0.5*yincr +stlat

i

write(incr (1), ' (£9.3)") xincr
write(incr(2),'(£9.3) ") yvincr
write(to(1l), ' (£9.3)")

(itopl-1)*xincr + (l-tpts)*0.5*xincr
write(to(2),'(£9.3)")

(itop2-1)*yincr + tpts*0.5*yincr +stlat
nop(l) = itopl-ibasel+1l
nop(2) itop2-ibase2+1

elseif (depvar(1:3).eq.'LAT') then

quan(l) = 'LONGITUDE®
quan(2) = ' DEPTH'
write(from(1l),'(£9.3)")

(ibasel-1)*xincr + (1l-tpts)*0.5*xincr
write(from(2), ' (£9.3)") float (ibase2)

write{incr (1), '(£9.3)") xincr
write{incr(2), {(£9.3)") 1.0
write(to(l), ' (£9.3)")

(itopl-1)*xincr + (l-tpts)*0.5*xincr
write(to(2),'(£9.3)") float (itop2)
nop(l) = itopl-ibasel+1l
nop (2) itop2-ibase2+1
rintlv {(intlv-1) *yincr + tpts*0.5*yincr +stlat

H

elseif(depvar(l:3).eq. 'LON') then

cuan(l) = ' LATITUDE'
gquan(2) = ' DEPTH'
write(from(l),'(£9.3)")

(ibasel-1)*yincr + tpts*(0.5*yincr +stlat

write(from(2),'(£f9.3)") float (ibase2)

)
write(incr (1), ' (£9.3)") yviner
write(incr(2),'(£9.3)") 1.0
write(to(1l), '{(£9.3)")

(itopl-1)*yincr + tpts*0.5*yincr +stlat
write(to(2),'(£9.3)") float (itop2)

- 83 -

nop(l) = itopl-ibasel+l
nop{2) = itop2-ibase2+1
rintlv = (intlv-1)*xincr + (l-tpts)*0.5*xincr
endif
guan(3)=' TIMESTEP'
ndinc=0

ndfirl = itt
ndlas = itt

write(from(3)," "yndfirl
write(incr(3),'(19 “Yndinc
write(to(3),'(i9) ')ndlas

nop(3) = 1

if (depvar(1:3) .eg. 'STR'}) then
write{op,5101)trac,opform
else
write{op,5100) trac,depvar,opform
endif

namrun(1:2),namrun
(1,1=1,3)

write{op, 5102
write(op,5103
write(op,5104) (guan{i),i=1,3)
write(op,5105) (from(i),i=1,3)
write(op,5106) (incr(i),i=1,3)
write(op,5107) (to{i),i=1,3)
write({op,5108) (nop(i),i=1,3)
if (depvar(l:6) .eg. 'STREAM') then
write(op,5109) *

)
)
)
)

else
write(op,5110) rintlv

endif

write(op,5111) ttsec ,dtts
5100 format ('VARIABLE :',al5,2x,a9,t4l, 'FORMAT :t,az2)
5101 format ('VARIABLE :',al5,t41, 'FORMAT :',a2)
5102 format ('MODEL : ',a2,'’' COMMENTS: ',ab5)
5103 format ('INDEX ',9x,':',3(' i1, :'))
5104 format ('QUANTITY ',6x,':',a9,':',a9,':',a9,"':")
5105 format ('FROM t,6x,':',a9,':',a9,':",a9,':")
5106 format('INCREMENT',6x,':',a9,':"',a9,':"',a9,':")
5107 format ('TO v,6x,':',a9,':",a9,"':",a9,':")
5108 format ('NO.OF POINTS ',2x,':',19,':',19,':',i9,':")

5108 format (a50)
5110 format (£7.3)
5111 format ('FIRST TTSEC ',f12.0,' DTTS ',£5.0)
return
end
subroutine conv2up(mixcase)
character mixcase* (*)
integer upa

nchar=1nblnk (mixcase)

-84 -

lowa=ichar('a"')
lowz=ichar('z")
upa =ichar ('A')

do 10 n=1,nchar
nce=ichar (mixcase(n:n))
if(nc.ge.lowa.and.nc.le.lowz) then
nc=upa+ (nc-lowa)
mixcase(n:n) = char{nc)
endif

10 continue

¢ Include a version of setgrid.F which differs only in the exclusion of
c some report output to stdout:

#define noreport 1

#include "setgrid.F"

#include "odam.F*

#include "restio.F"
#include "blkdta.F"
#include "ascout0.f*

Brook Road, Wormley, Godalming
Surrey, GU8 5UB,

United Kingdom

Telephone +44 (0) 428-684141
Facsimile +44 (0) 428-683066
Telex 858833 OCEANS G

Natural
Environment
Research
Council

