
1 F I L E

Institute of
1 Oceanographic Sciences
I Deacon Laboratory

1

INTERNAL DOCUMENT No. 328

Constructing a 2° x 1° resolution model of
the Southern Ocean using the GFDL

Modular Ocean Model (MOM)

A C Coward

1994

n
i

n

D

0 Natural Environment Research Council

INSTITUTE OF OCEJLNOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 328

Constructing a 2° x 1° resolution model of
the Southern Ocean using the GFDL

Modular Ocean Model (MOM)

A C Coward

1994

Woniiley
Godalming
Surrey GU8 SUB UK
Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

D O C U M E N T D A T A S H E E T

CXDWARD, A C
PUBZ,/GA7TON
DATE 1994

TITLE

Constructing a 2° x 1° resolution model of the Southern Ocean using the GFDL Modular Ocean Model
(MONQ.

jKFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 328, 84pp.
(Unpublished manuscript)

The GFDL Modular Ocean Model {Pacanowski et al, 1990) has rapidly become established as both a
teaching and a research tool. This document details the work carried out to construct and operate a
physical model of the Southern Ocean using the published GFDL code. The work is intended as the
first stage of the development of a combined, physical and biological model of the Southern Ocean
but is also a useful illustration of the techniques and methods that modellers are advised to adopt
when using the GFDL MOM code.

NUMERICAL MODELLING
PROJECT-FRAM

Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 5UB.uk

Director Colin Summerhayes DSc

Telephone Wormley (0428) 684141
TWar 858833 OCEANS G.

(0428) 683066

Copies of this report are available from: The Library, m o o

CONTENTS

INTRODUCTION

Page

5

ItEC^CXNITtZURINt] TBCE]W[CHDI3jI)OMAIRr

CONSTRUCTING THE MODEL TOPOGRAPHY

THE OPEN BOUNDARY CONDITION

AfFMmWGANNUALMEANVnNDSpa&LmOAM^I

jRX3C)UiBUifGiJ?VTT%iS]0Jvr;L()rfT]3Erac)Di:L<3itn)

6

7

II

13

14

PRELIMINARY RUNS AND RESULTS 16

REFERENCES 20

APPENDICES 22 - 84

Appendix A Managing the MOM code in the UNIX environment 22

Killworth, Smith & GiU. Ocean Modelling 56, April 1984

Appendix B Source code control system (SCCS) and file development 30
history

Appendix C Summary of new options 38

Appendix D Program listings 40

D (i) db2med.f Program to derive bottom topography 40

based on median values of dbdbS data
(IBM application)

D (ii) med2cram.F Program to convert output from db2med.f 46
to a single 2-D field

D (iii) makekm.F Program to read topography field and 48
produce a model topography field
(kmt array)

D (iv) live2mom.F Program to read in Levitus data in the 54

original format and interpolate onto the

model grid (will also convert in-situ

temeprature to potential temperature)

D (v) getslice.F Program to extract standard direction 69

slices of model variables from the MOM

restart datasets.

1. INTRODUCTION

This document details the work carried out to construct and operate a physical model of

the Southern Ocean based on the GFDL Modular Ocean Model (MOM), This work is intended as a

precursor to the development of a biological model of the Southern Ocean but is also liiseful for

illustrating the use of the MOM code and describing some of the techniques that modellers wiH

need to become familiar with in order to make effective use of the code.

The actual model described here has a 2° longitude by 1° latitude resolution with 25

vertical levels. The domain coincides with that modelled by both the coarse- and fine-resolution

Antarctic models developed by the FRAM team (de Cuevas, 1992; de Cuevas 1993). However,

since most of the biological processes occur exclusively in the upper ocean, the vertical resolution

is biased more towards the surface than was the case with the Fine Resolution Antarctic Model.

The vertical distribution is the same as that used by Sarmiento (1986).

Model updates for the biological model have been obtained from the United States. These

updates represent the code run successfully in the North Atlantic model of Fasham aY (1993). To

prepare a physical model capable of hosting the biological model the following developments

were necessary:

* Setting the model dimensions and grid distribution.

® Constructing the model topography: Bottom topography over the model domain can be

obtained from the dbdbS dataset. However care must be taken to Glter any possible

sources of topographic instabilities.

• Including open boundary conditions (Stevens, 1991)

Applying annual mean winds read in Grom external data Gles.

Acquiring Levitus temperature and salinity data (annual means) on the model grid. These

are required for surface forcing, possible initial conditions and to allow for the possibility

of running in a robust diagnostic mode

Separate sections of this report are devoted to each of these developments.

6 -

2. ItE(]C)Nn(]URINT3 THE]M[0]]E:LI)C)MAIN

The MOM code is supplied pre-conSgured as a 4° x 3° global model. Input Eelds such as

topography, surface forcing Gelds and surface restoring Gelda are calculated G-oin a limited

number of data points held in the relevant routines. For example, the routine: bcest.F linearly

interpolates global, zonal averages of sea-surface temperature, salinity and the wind-stress

components onto the current MOM grid. The internally held data consists of 40 values for each

variable giving a latitudinal resolution of 4.5 degrees. Similarly, the routine: topog.F will produce

an idealised world topography which will map into any domain.

Hence, in order to produce a model of any region of the globe it is only necessary to set

certain 'grid parameters' and then compile. The exact content of the model is determined by the

choice of preprocessor directives which are set at compile-time (see MOM READ ME 61e).

Obviously, the resulting descriptions of bottom topography and the surface boundary conditions

are too crude for most modelling eSorts. However they do fuMl a useful role in the initial

development of the model.

Temporarily accepting these 'internal' descriptions of topography, surface conditions and

initial conditions (again zonal averages at 4.5° resolution) a model of the Southern Ocean was set

up by making the following minimal changes:

Variable Description
Location

Old value New value

imt no. of grid pts longitudinally 92 182 param.h

jmt no. of grid pts latitudinally 60 56 param.h

km no. of vertical levels 15 25 param.h

Iseg max no. of longitudinal stream-fn. segments 5 6 param.h

nisle number of islands 2 1 param.h

stlat starting latitude (degrees) -90. -79.0 blkdta.F

stlon starting longitude (degrees) -4. 0.0 blkdta.F

xmax max grid box width (degrees) 4. 2.0 blkdta.F

xmin min grid box width (degrees) 4. 2.0 blMta.F

xwid longitudinal width (degrees) 368. 364.0 blkdta.F

ymax max grid box ht. (degrees) 3. 1.0 blkdta.F

ymin min grid box ht. (degrees) 3. 1.0 blkdta.F

ywid latitudinal height (degrees) 180. 56,0 blkdta.F

rests surf, restore time scale (day) 50. 360.0 blkdta.F

Changing the vertical resolution of the model (km) introduces an extra complication.

Namely the need to re-calculate the nine coeScients of the third order approximation to the

equation of state for each level. Fortunately, one of the modules supplied with the MOM code is a

stand-alone program designed to perform the required calculation and create the include 61e,

dncoef.h, which holds the resulting data statements. The process is as follows:

1. Set the new level thicknesses in the include 61e: thickh

2. Edit the module: denscoef.F, comment out the subroutine declaration and reinstate the

program statement.

3. Compile and run denscoef.F

4. A new version of dncoef.h will be created and will overwrite the existing version. By

default denscoef.F (actually named eqstat by the program statement) uses the UNESCO

equation of state. Older equations of state can be selected by using the appropriate

preprocessor directives.

Finally, run control parameters can be set in the control 61e: ocean.in (the name of which is actually

setinocean.F). These parameters include:

Variable Description

init Logical flag set true if run should start B-om initial conditions

days Number of days for integration (can include fractions of days)

dgnstc Number of days between diagnostic dumps

tsi Nimiber of days between output of standard run information

(i.e. total k.e., dtemp, dsalt etc.)

nmix Number of timesteps between mixing steps

eb Logical flag, true if Euler backwards step is used for mixing

restrt Logical flag, true if a restart dataset is produced at the end of run.

The eddy, tsteps and params namelist entries in the control Gle conform to the standard

Cox setup. The namelist entry, &iland, contains co-ordinate inkrmation about the islands. This has

changed from the original Cox setup in as much as it is no longer necessary to describe a

surrounding box for each island. The MOM module iperim.F calculates island perimeters from a

'seed' point. It is, therefore, only necessary to supply a single co-ordinate pair (lat.lon) which

points to an arbitrary point within each island (nisle in total).

3 . CONSTRUCTING THE MODEL TOPOGRAPHY

Having set the model domain, one of the first tasks in improving the model is to apply a

more realistic bottom topography. The best description of ocean topography currently available to

us is the digital bathymetric 5 minute by 5 minute data (dbdbS) supplied by the Naval Ocean

Research and Development OfBce (NORDA) and the US Naval Oceanographic OBce (USNOO). A

fair representation of bottom topography can be obtained at coarser resolutions by calculating the

median of the dbdbS data in each grid ceU. The dbdbS data is supplied on two 9-track tapes.

Each tape covers one hemisphere and each hemisphere is itself divided into sixteen 4S° x 45°

areas.

The areas are contained within a separate Gle and each Gle is subdivided into eighty-one

5° X 5° blocks. Each block has its own header and contains 61x61 values. The extra row and

colmnn (i.e. 61 instead of the expected 60) is an overlap with the blocks' eastern and northern

neighbours.

Reading the dbdbS data and obtaining median data on a 1/4° xl/4° grid was the subject of

an internal lOS report and computer program produced by Nick Plummer (1991). Obtaining data

f o r a

2° X 1° grid required a major reworking of the oiriginal program because every Gfth 2° x 1° grid

ceU straddles two of the original dbdbS Gles — an occurrence not allowed for in the original

program. The solution is presented in appendix D (dbSmed.f). This program was constructed

specifically to obtain data for the current application. It may, however, serve as a guide for anyone

else intending to make use of the dbdbS data.

Db2med.f will create a file of median data covering the entire hemisphere. It was

discovered that the easiest method of working was to run db2med on the IBM (where there is easy

access to the tape drives and large temporary disks) and then to transfer the output file (median

data a) to a workstation for post-processing. Post-processing consists of:

1. Reading the 'median data' file, selecting the area covered by the intended model and

writing out the data as a single two-dimensional field.

2. Taking the two-dimensional topography field and constructing the model topography

array (i.e. 'snapping' the topography to the nearest model level).

The first of these steps is performed by the program med2cram.f (Appendix D (ii)). This program

produces the 'real' topography array in two forms:

(i) A full accuracy unformatted dump (rawcram.dbdbS) which is used for stage 2.

(ii) An ascout cards file (topog.dbdbS) which can be viewed using the FRAM graphics

programs.

(Note: Preprocessor directives are used to include the ascoutO and header subroutines.

Therefore, med2cram.f (in common with aU subsequent programs) will need to be preprocessed.

9 -

The commands:

CO -P ined2cram.F
mv med2cram.i med2cram.f

f77 -o med2cram med2cram.f

should work in aH UNIX environments).

The second stage is performed by the program makekm.F (Appendix D^iii)). This code

reads the 'raw' median data and optionally applies zero, one or two smoothing passes before

converting the depths to the nearest model level.

Isolated bays which will be unaffected by advection are then removed and there is also the

option of removing any isolated land points. The model depths are calculated from the level

thicknesses held in thick.h, so a change in the vertical distribution will b e automatically picked up

by makekm.F at compilation (n.b. makekm.F requires preprocessing as above). The three main

model parameters, imt,jmt and km, are set in a parameter statement at the top of makekm.F. A

change in these parameters could also be accounted for automatically b y using the include Gle

param.h. However, in one respect the current program is speciGc to the model domain and

resolution of the Southern Ocean model. Namely the north and south islands of New Zealand are

joined by a section of fixed code. The inclusion of the fixed parameters is intended as a reminder

of this fact.

Output is again to two Bles: one unformatted Gle (sardepths21) and one ascout cards 61e k r

viewing (topsar21.cards). The MOM code contains checks for possible causes of Killworth-type

topographic instabilities and any such occurrences wiH be flagged at runtime (KDlworth, 1987).

Therefore the run journal should be checked for any warnings after changing the topography.

Having created a new model topography it is relatively easy to adapt the MOM code to

use it. The simplest method is to exchange the call to topog in ocnlst.F with code to read in the

kmt field from the depths file. ocnlst.F is the routine which is called if the logical flag, init, is true

(i.e. the routine which sets up all initial values). topog.F is the routine which will set up an idealised

topography and is therefore no longer required. Makekm.F automatically applies cyclic boundary

conditions on the kmt field. Code will have to be included to override this if it is not part of the

intended configuration. The code changes necessary to read in the kmt field created by makekm.F

have been incorporated into ocnlst.F (SCCS version number 1.2) and can b e activated by

preprocessing the routine with the -Dmytopog commandline option (see appendix A).

The topography used for the Southern Ocean model was produced using makekm with

one smoothing pass and retaining isolated land points. The effect of makekm can be seen by

comparing figures 1 and 2. Figure 1 is the 'raw' median data as produced by med2cram.F. Figure

2 is the model topography created by makekm.F

1 0 -

Figure 1 : The 'raw' median data as produced by med2cram.F.

VARIAE-LE MODEL :

Long = 162.00 Ljx = 56.50 S va lue = 24.000

IJ'

• } • • " I I

^ ^ 0 20 .00

Figure 2 : The model topography created by makekm.F.

11

4 . THECWENBOUNDAKTCONDnKMV

One of the major features of the FRAM model (not available in the released version of the MOM

code) are the open boundary conditions on the northern boundary of the FRAM region. Stevens

(1990, 1991) gives details of the theory behind the open boundary condition. In practise it was

possible to lift the relevant code from the Cox-based FRAM code and adapt it to the MOM code.

Most changes are reasonably apparent. For example, the arrays T,TA.TB,TP,TM etc. are absorbed

into the elements of the 5-D array t(i,k,jptr,time_ptr,n_tracer). Some care is required, however,

because there are some subtle re-definitions of familiar variables. For example, the reciprocal of

twice the vertical separation between centres of levels is deGned in the Cox code as:

DZZ2R(K) = 1.0/ (DZ(K-l) + DZ(K))

whereas in the MOM code what, at Grst, appears to be the same variable is deGned as:

dzw2r(k) = 1.0/ (dzt:(k) + dzt(k+l))

So, unless extreme care is exercised, the task of converting Cox updates for use in the MOM code

can introduce some well-hidden bugs.

The changes carried out to include the open boundary condition in the MOM code are a

good illustration of how such enhancements should be implemented. All the additional code is

placed within # i f d e f openbc and # e n d i f delimiters, and any changes to existing code do not

overwrite but are added as # iEdef openbc new_code # e l s e o] d _ c o d e #endiE

constructions.

For example, the reference array for the tracers on the northern boundary (which is used

when the direction of flow is into the domain) is stored in the kontrl file. The kontrl file, therefore,

has to b e increased in size if the open boundary condition is in use. The following code changes in

ocean.F achieve this:

call ostart (kontrl, 2, 2, 1)

becomes:

#ifdef openbc

nkntrl=2 + imt*kin*nt

call ostart (kontrl, nkntrl, nkntrl, 1)

#else

call ostart (kontrl, 2, 2, 1)

#endif

12

Using this methodology, the open boundary condition was inserted into the MOM code. The

original model, with a closed northern boundary, can still be created at any time by preprocessing

the code without the -Dopenbc flag (see appendix A).

There are several points to make about the open boundary code as currently

implemented. Firstly, the code works only with the 'hgidhd' model formtHation and is currently

coded only into the 'hypergrid' external mode solver. This solver is the same checker-board

relaxation method that was used successfully for the FRAM model. Adding the open boundary

code to the conjugate-gradient techniques (congrSpt.F or congrOpt.F) should be possible but this

has not yet been investigated. Secondly, the relaxation timescale used to restore values towards

Levitus values on the boundary, when flow is into the domain (rtscale), is set within step.F.

Currently it is set to the order of 10 model days. The final (and most unsatisfactory) point concerns

the imposing of a western boundary current in each basin. In the FRAM model a 'ball-park" width

of 230km was asstmied for each western boundary current. Unfortunately, this width is less than 2

grid points wide with a resolution of 2° x 1°. The present code will therefore allow a minimum of 5

grid points in which to 'ramp-down' the stream function values at each western boundary. This 6x

works weU numerically, but obviously imposes an unreaHstically wide western boundary current at

the northern extent of each basin.

Code changes and additions required to implement the open boundary condition can b e

foimd in the following modules:

File s e e s version number

emode.h 1.2
param.h 1.5
temp.h 1.2

blbdta.F 1.3
checks.F 1.3
clinic.F 1.2
hyper.F 1.2
ocean.F 1.7
ocnlst.F 1.3
odam.F 1.2
setvbc.F 1.2
step.F 1.2
windwt.F 1.3

and all subsequent versions of these modules. As previously stated, in order to activate the open

boundary condition use the -Dopenbc preprocessor commandline option.

- 13

Boundary conditions at the surface and bottom of the ocean are calculated by the routine

setvbc.F. In the basic model this routine calls the interpolation routine, bcest (see section 2). The

zonal average values produced by this routine are applied across the entire latitude band. The

resulting descriptions of SST, surface salinity and wind stress are clearly inadequate.

One of the first tasks to improve the model is to apply a more realistic wind stress. There

are several choices of climatological wind datasets. The set employed by FRAM and hence the

most readily available is that compiled by Hellerman and Rosens!ein (1983). This dataset gives

annual mean values for the horizontal wind stress components over the world ocean at a resolution

of 2° X 2°. Data are also available for monthly averages at the same resolution. Allowing seasonal

variation in the wind stress will be a necessary enhancement for the biological model. However, as

a first step, the code changes required to read and apply an annual mean wind have been

implemented.

Because the resolution of the Hellerman data nearly matches the current model resolution,

interpolation is only required in the meridional direction. For this, standard linear interpolation has

been used. A simple-minded approach has been applied at this stage and no generality to

different model resolutions or domains should be assumed. The data is read from two files

(data/windx and data/windy) which each bold the appropriate wind stress component data over

the model region (i.e. 180 x 28 values). These values are read in by the routine anlwind.F and

stored in a common block deGned in anlwind.h. Code changes to setvbc.F ensure that these values

are interpolated (if necessary) and assigned to the surface momentum flux array (smf).

Code changes and additions required to implement the annual mean winds can be found

in the following modules:

File s e e s version number

anlwind.h 1.1

hyper.F 1.3
ocean.F 1.8
setvbc.F 1.3
step.F 1.3
windwt.F 1.4

and all subsequent versions of these modules. In order to activate the annual mean winds use the

-Dannwind preprocessor commandline option. It will also be necessary to ensure that the routine

anlwind.F is included with the main modules.

14-

6. jRX:cyUIB]3TGIJrVTIirS]0WVrjl()BrTn3EAfC)rHEL GIltCD

Levitus climatological data are available from the National Oceanographic Data Centre,

Washington D.C.. The data represent the result of objective analyses performed on a one-degree

latitude-longitude grid at a number of surfaces of constant depth within the world ocean. As there

is a lack of synoptic data, the mean values are based on a composite of all available data

regardless of year of observation. Data available include: annual summaries of temperature;

salinity: dissolved oxygen; percent oxygen saturation and seasonal summaries of temperature and

salinity. The 33 analysis levels, 1° latitude-longitude grid and data format are common to aU

datasets.

These data are commonly used for surface forcing, reference Gelds for robust diagnostic

relaxation and initial conditions. The task of interpolating the data onto the model grid has to be

approached with some care. Problems can arise, for example, where a model sea-point overlies a

Levitus land-point (values in the Levitus datasets are not interpolated over land). A Fortran?7

program, levi2mom.F, has been developed which wiU produce datasets of potential temperature

and salinity on the current MOM-grid from the original Levitus datasets. The program uses the

MOM modules to define the model grid, so a change in model grid or domain will be automatically

adjusted by recompiling levi2mom.F with the same preprocessor directives that are used for the

main model.

The procedure followed by the program is as follows:

(1) DeGne model grid using setgrid.F. Read in kmt Geld Grom Gle produced by makekm.F

(2) Open original Levitus temperature and salinity files (or previously created potential

temperature Gle).

(3) Set all array values in the 'Levitus' arrays to the land mask value (this is necessary because

land points are excluded from the dataset).

(4) Read through datasets and perform steps (5) to (7) k r each station.

(5) Unpack data, convert temperature to potential temperature if necessary.

(6) Vertically interpolate from the 33 NODC levels onto the model levels. Note: if the lower

point is a Levitus land-point then the value at the model level is left undefined.

(7) Store values at as many model levels as memory limitations permit for each Levitus station.

That is, the storage requirement is at least 360 x 180 Levitus stations x 'km' model levels x

2 tracers.

(8) Perform horizontal interpolation. The steps taken to assign values to each model point are

as follows:

(a) Find the four stations which surround the model point

-15

(b) If all four are Levitus sea-points then perform standard 4-pt interpolation.

(c) Else if only three are Levitus sea-points then take the average of the three values.

(d) Else leave point undeSned.

(e) When as many points as possible on the model grid have been Slled in i;ising steps

8(a)

to 8(d), the remaining undeGned model sea-points are set iteratively:

(i) Working on the model grid attempt to set each undefined sea-point as an

average of the nine surrounding values.

(ii) If any model sea-points remain unset after a full pass (i.e. those points which

were previously completely surrounded by undeGned points) then perform a

second pass.

(iii) Repeat step 8(e) as many times as necessary until all model sea-points have

been set.

(9) Store model level as ascout slices and in unformatted 'j-slabs' suitable for use in the main

model.

(10) Perform steps 8 and 9 for each model level in store.

(11) If all model levels have been set then close files and exit. Else rewind Levitus datasets and

return to step 3

There are two options for converting temperature to potential temperature coded into the

current version of levi2mom.F. By default, the routine ptmp83a is used. This routine uses a

4th-order Runge Kutta integration of the Bryden (1973) equation for adiabatic lapse rate. The

alternative is to use pottem routine developed by Webb (1992). This routine accurately solves the

adiabatic lapse rate equation by direct integration with a pressure increment. This method is the

most accurate to date but is computationally very expensive. The pottem routine can be used in

preference to ptmp83a by preprocessing levi2mom.F with the -Dpottem commandline option.

The current version of levi2mom.F (SCCS version number 1.4) assumes a uniform model

grid spacing but alternative distribi;itions cotM be allowed for by re-de6ning the functional forms of

the variables 'xsm' and 'ysm'.

The two unformatted, direct-access files created by levi2mom.F (dalevs21 and dalevt21)

are used by the main model if either of two new options are active:

Levitus (note the capital letter) : This option causes the model temperature and salinity fields

to be initialised firom the Levitus data (if init is .true.) and, if restorst is also active, will use

the Levitus values when calculating the surface restoring force.

robustd : This option will run the model in robust diagnostic mode with values relaxed

towards Levitus at all depths with a timescale of 'rests' (set in bIkdta.F)

- 1 6

On reflection, there is an option missing here. Namely the ability to start Brom a cold, saline

ocean (or even the zonal values) and relax towards Levitus in a similar manner to the Grst six years

of the FRAM integration. With the FRAM integration this approach was necessary because the

system was unstable when started from Levitus. It is obviously advantageous to start firom Levitus

data (or its equivalent) whenever possible, but should it be necessary to initialise with other values

then other options can be easily incorporated into ocnlst.F.

Code changes and additions required to implement the Levitus and robustd options are located in

the following modules:

Option File SCCS version
number

Levitus

robustd

ocean.F 1.8
ocnlst.F 1.4
setvbc.F 1.4

ocean.F 1.8
setvbc.F 1.4
step.F 1.4
tracer.F 1.4

and all subsequent versions of these modules.

7. PRELIMINARY RUNS AND RESULTS

The model described in this report has been successfully integrated for periods up to 200

days. The Levitus values produced from leviBmom.F were used as initial conditions for

temperature and salinity. Despite the obvious inertia! shock resulting from using an initially

incompatible velocity field (i.e. stationary) the solution process remained stable. The initial stages

were carried out with a range of timesteps due to concern for the stability. This concern seems to

have been unnecessary although tests with timesteps of 2 hours or more were unstable.

A run of 260 days was accomplished using the following timesteps:

days 0 to 14

days 14 to 28

days 28 to 260

timestep = 20 minutes

timestep = 1 hour

timestep = 1.5 hours

The stream-function field was stored at regular intervals and an animation sequence

suitable for viewing with imagetool has been produced. The sequence shows the first 28 days of

17 -

the model integration with one Brame every 4 model hours. Total kinetic energy and global rate of

change of temperature and salinity can be seen in Figure 3.

The model was run on a Sun Sparcstation IPC with 24 Mbytes of memory. There was

suScient memory to run the model in-core (-D diskless) and in this mode the model progressed at

an average rate of 150 seconds per timestep. (Note this is single precision arithmetic only.)

As an experiment the model was restarted G-om Levitus but this time with the velocity Beld

from the end of the Srst run. The graph in Hgure 4 shows fewer inertial oscillations and a marked

decrease in the initial rate of warming. A program, reset21evi.F has been supplied to take a restart

dataset and replace the temperature and salinity Belds with Levitus values.

Plots of stream function and surface velocity field have also been included (Figures 5

and 6).

- 18

5.0-

4.5-

4.0-

3.5-

3.0-

2.0

1.5-1

1.0

0.5

0.0
0

— K* (0-100)
— dtemp
— Dadt

10 15 20 25
Model days

1.4*10"'

1.2*10""

1.0*10"'

i
8.0*10"^ S

•8

d

6.0*10"^ #

1-4.0*10"=

20*10"=

0.0*10° 30 35 40

Figure 3 : The total kinetic energy and global rate of chage of temperature and
salinity. Run 1 : Start from Levitus climatology, with stationary state.

• Ke (0-14)
Ke (M-ZB)

' ke4
dtemp
dtemp2
dtempS
Dsoit

• DsdtZ
- Dsdt3

50 100 150
Wodd days

200

-1.4*10'"

-1.2*10""

-1.0*10'"

-8.0*10'= 2

I

-6.0*10'" #

-4 .0*10^

-2.0*10-=

0.0*10°

Figure 4: The total kinetic energy and global rate of change of temperature and
salinity. Run 2 : Reset initial tracers to Levitus climatology, retaining
developed velocity &eld.

- 19 •

• m A t f

t - !=i(. ;• • t I t i

- 4 0 . 0 0 0.00 40.00
1 ~

80.00 i:0.u0 160.00

rripli0260. cards

Figure 5 : Stream-function field after approximately 9 months of model integration.

Figure 6 : Surface velocity field after approximately 9 months of model integration.

- 2 0

REFERENCES

Bryden.H. 1973
Deep-Sea Research, 20, 401-408.

Cox, M.D. 1984 A primitive equation, 3-dimensional model of the ocean.
GFDL Ocean Group Technical Report No. 1, Geophysical Fluid Dynamics
Laboratory/NOAA, Princeton University, Princeton, N.J. 08542, U.8 A..

de Cuevas, B. 1992 The main runs and datasets of the Hne Resolution Antarctic Model Project
(FRAM). Part 1: The coarse resolution runs.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 315.

de Cuevas, B. 1993 The main runs and datasets of the Fine Resolution Antarctic Model Project
(FRAM). Part H: The Ene resolution runs.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 318.

Hellerman, S & Rosenstein, M 1983 Normal monthly wind stress over the world ocean with error
estimates.
Journal of Physical Oceanography, 13, 1093-1104.

Killworth, P.D. 1987 Topographic Instabilities in Level Model OGCMs.
'Ocean Modelling', Issue 75, November 1987.

Levitus, S. 1982 Climatological Atlas of the World Ocean.
NOAA Professional Paper 13, US Government Printing 0@ce, Washington D.C.

Pacanowski, R.C., Dixon, K & Rosati, A 1990 The GFDL Modular Ocean Model 1.0.
Geophysical fluid Dynamics Laboratory / NOAA, Princeton University, Princeton, N.J. U.S.A.
(Unpublished manuscript)

Sarmiento, J.L. & Toggweiler, J.R, 1986 A preliminary model of the role of upper-ocean chemical
dynamics in determining oceanic oxygen and atmospheric carbon dioxide levels.
Dynamic processes in the chemistry of the i^per ocean. (Ed. J.D. Burton et al)
New York, Plenum Press, 246 pp.

Fasham, M.J.R., Sarmiento, J.L., Slater, R.D., Ducklow, H.W. & Williams, R. 1993 Ecosystem
behaviour at Bermuda Station'S' and Ocean Weather Station 'India': a general circulation
model and observational analysis.
Global Biogeochemical Cycles, 7(2), 379-415.

- 2 1 -

Plummer, N.P. 1991 DBDB5 data set of global gridded bathymetry.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 300.

Stevens, D.P 1990 On open boundary conditions for three dimensional primitive equation ocean
general circulation models.
Geophysical and Astrophysical Fluid Dynamics, 51, pp 103-133.

Stevens, D.P. 1991 The open boundary condition in the United Kingdom Fine Resolution Antarctic
Model.
Journal of Physical Oceanography, 21(9), pp 1494-99.

Webb, D.J. 1992 The equation of state algorithms used by the FE(AM model.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 313.

2 2 -

JSiqPEKnCWDCJl: IVLAJSUKZENBG miClVBCHVICZCDIDEINJl UlVIXIIIKn/II&CWNOVDENT

This appendix outlines the method of working with the GFDL Modular Ocean Model in a

UNIX environment, which has evolved in the light of the experience gained in developing the 2° x

1° resolution model. Obviously every modeller has a preferred method of working with and

developing code, but the MOM code presents a few challenges through sheer size and distribution

(87 Gles for the base code alone). The techniques required to eSciently handle the model are no

more than the standard software development practises which are commonly used in the

commercial sector. Fundamental rules are:

(1) All Gles should have a development history and previous versions should be recoverable

at anytime.

(2) Only one version of each Sle should b e available for editing at any one time. (This

prevents diEerent and possibly incompatible changes be ing made simultaneously to

different copies of the current version).

The Source Code Control System (SCCS) available on the Sun workstations provides

precisely the required control system. SCCS or software offering similar functionality is available

in most UNIX environments. The current Southern Ocean model has been developed under SCCS

control and is being distributed to interested parties in this form. That is to say, the current model

is be ing supplied together with its development history. Recipients will b e able to retrieve the

source code in its most up-to-date form, in its original form or in any of the intermediate states.

Appendix B contains details of the development history of aU the files that constitute the current

model. The information presented in Appendix B is that given by the command:

sees prt *.h *.F

With the benefit of hindsight, it should be pointed that the way in which the current model has been

developed is not ideal. The problem lies in the fact that some modules required changes at

several development stages while others were altered at fewer stages (if at all). As a result the

current model uses, for example, version 1.9 of ocean.? but version 1.4 of step.F. This is less of a

problem than might be expected because the current model uses the latest versions of all routines

and, by default, the command:

s e e s g e t *

retrieves the latest version of all files. One way around this apparent inconsistency is to 'check out'

aU mom-files prior to a development stage and to create change 'deltas' for all files once the stage

23-

has b e e n completed (regardless of whether any changes have b e e n made or not). The

procedural sequence:

sees edit SCCS

make changes....

debug and verify changes....

sees delt:a SCCS

should achieve this and will only prompt for a single comment which it will apply to all Gles. If

individual Gles require a more speciGc comment their delta commentary can be changed using the

s e e s f i x command. This command retrieves a version for editing but when checked back in the

version number is retained. Thus to change a delta commentary use the following procedure:

sees fix -rvid filename

sees delta filename

.... new comments in response to prompt....

where vidis the latest version number. The f i x subcommand is also uaefui for correcting minor

bugs discovered after a delta has been made but which do not justify the creation of a new delta.

For colleagues wishing to develop their own models firom the mom base code, I have

supplied a script: get_debugged_mom, which will retrieve the mom b a s e code plus the bug fixes

suggested in MOM_NEWS1.0. Colleagues constructing models from this corrected base code

would b e advised to copy the retrieved files to a fresh directory and create another sees base

version set using the command:

sees create *

Changes to this set could then be progressed in a consistent manner, a s suggested above. Note

the s e e s c r e a t e command will do the following for all files matched by the wildcard:

(1) Create a file called s . f i 1 ename in the SCCS subdirectory

(2) Rename f i i ename by placing a comma in front of the name

(3) Retrieve a read-only version of each file using the s e e s g e t command.

Once you are satisfied that the retrieved versions are identical to the renamed files it is best to

delete all the ,filename files.

Of course, keeping track of your edits is only one of the problems associated with having

the code separated into a large number of files. Equally important is understanding the full impact

of the changes that are being implemented. Simple facts like knowing if a particular variable is

defined in a subroutine can involve a considerable amount of tracing. The UNIX g r e p command

24

can b e extremely useful in this context. First of all, the common block in which a variable is held

can b e located by searching the .h include 61es. For example, searching for the grid spacing

array, dxt::

grep dxt *.h

would yield:

fdift.h: UTx(i,k) = (auxl{i,k) - auxl{i + 1, k)) *dxt4r(i)

fdiftz.h: Txx(i,k) = bbt:(i)*dxt:4r(i)*

fdifti.h: Txx(i,k) = bbt:j(i,k)*dxl:4r(i)*

fdift.h: Txx{i,k) = bbt(j)*dxt4r(i)*

fdift.h: Tisox(i,k) = {e(i,k,l) - e{i-1, k, 1))*dxtr(k)*cstr(j)

grdvar.hic dxb = longitiudinal widtzh of "b" grid box (in cm)

grdvar.h:c dxt:r = reciprocal of "dxt"

grdvar.hic dxt:2r = reciprocal of ''2*dxt:"

grdvar.hic dxt:4r = reciprocal of "4*dxt:''

grdvar.h: common /grdvar/ dxt:(imt:), dxt:r(imt), dxt:2r(imt:),

dxu(imt)

grdvar.h: $, dxur(imt:), dxu2r(imt:), dxu4r(imt:),

dx4:4r (imt)

Note also that this is an efficient way of finding out the definition of a variable because all the

include files are extremely well commented.

The subroutines can then be checked to discover which of these include grdvar.h, i.e.:

grep grdvar.h *.F

Since initially compiling the model , two new features have been introduced. Firstly, a script:

setarg which simply sets a shell variable, a r g l i s t , to the complete set of preprocessor

commandline options that are used for the current model. These are:

-DrestrtlOd -Dascdump -DLevitus -Dannwind -Dopenbc -Dcyclic

-Ddiskless -Drestorst -Dconstvmix -Dconsthmix -Drigidlid

-Dhypergrid -Dislands -Dnohilats

(Appendix C contains a complete list of the new options that have been introduced to the base

code.) Secondly, I have defined an 'ordered list' of the files that constitute the model. This list is

held in the file catmom. The list is used at compilation to construct the complete source code prior

to preprocessing. I have found it convenient to order the list into some semblance of the original

Cox code and to exclude Gles that are not used by the current set of options. I have included a

script: lis t_mi ssing, which will compare the contents of ca tmom to the complete list of .F and .f

files in the current directory and list those currently omitted firom ca tmom. The complete list of

original MOM files is kept for reference in the file momfi 1 es.

25

The script: maAreufi, uses s e t a r g and catmom to preprocess and compile the model. The

complete source code after preprocessing is held in the Gle: . f . Listings of aH the scripts

are included at the end of this appendix. The script ' ma^^eup' is alao listed here so that its

structure can b e referenced in the preceding paragraphs:

Version 1 of t:he makeup script. The code is preprocessed

and compiled as suggestied in the "initial report on the

GFDL Modular ocean code". The file catmom holds an ordered

list of the component files. Using this method both the

unprocessed code (momverl.f) and the preprocessed code

{momver2.f) contain modules in the order determined by the

catmom file.

set oceanob] = ocean2

rm momverl.f

rm momver2.f

cat ^cat catmom" >momverl.f

source setarg

set echo

cc -P $arglist momverl.f

mv momverl.i momver2.f

f77 -o $oceanobj momver2.f

rm *. o

unset echo

echo "executable file:" $oceanobi "has been created

exit

The file momver2. f can be useful when it comes to debugging. This file contains all the

code in-line and it is, therefore, possible to see the results of the particular set of options chosen at

compilation. At this stage, however, the thorough commenting of the include files is detrimental.

Producing a source listing at this stage would be extremely wasteful d u e to the number of times

each set of comments are included. There are two ways around this problem and each solution

has its own merits. The first method is to simply remove all the comments lines. The editing

sequence:

ed momver2.f

g/"c/d

w

g

will achieve this result. This reduces the code from over 20,000 lines to under 8,000. However,

unless you are extremely familiar with the code the listing is difBcuh to follow. The main beneSt of

2 6 -

this form is for use in an interactive debugging tool (such as dbxtool) whe re problem lines can be

quickly identiGed without having to wade through pages of comments. A second 'maireup' script

(maA:eup2) has been supplied which wiU perform these edits on the mojnver2. f 61e and compile

with the debug flag set (i.e. f7 7 - g . . .

The second method of producing a reduced listing is to comment out the # i n c l u d e

statements before preprocessing. The resulting inomver2. f file will not compile but is useful for

checldng the effect of preprocessing on the conditional constructions. This, together with an up-to-

date listing of the include Bles, provides the most useful r e fe rence listings. A script,

m a A : e u p _] i s (: i n g , has been supplied which will create two 61es: and

2nciLide__Zis(:ingr. Together these Gles have less than 10,000 lines.

A Gnal requirement for eScient working is the ability to view the results of a model run

quickly and easily. For this, a utility similar to the FRAM extract program has been developed. The

utility, g e t i s l i c e . F, can be used to extract standard direction slices (i.e. constant depth, constant

latitude or constant longitude) from a MOM restart dataset. Again the MOM modules have been

used extensively, which should mean that a change in model setiq: will b e automatically accounted

for by recompiling g e t s l i c e . F with the same preprocessor commandHne options used for the

main model. This is where the script s e C a r g can save some typing, e.g.:

source setarg

CO -P $arglist getslice.F

mv g e t z s l i c e . i g e t s l i c e . f
f 7 7 - o getslice getslice.f

The program will prompt for an input Glename, choice of variable etc. Output is in the form

of single-slice ascout 'cards' files. The names of the files are seven-character configurations (plus a

.cards extension), formulated as follows:

m (for MOM)
one of { t : , 8 , u , v , p o r d} (i . e . t zempera ture , s a l l n i t i y , u - v e l o c i t y ,

v - v e l o c i t : y , s t r e a m - f n o r d e p t h)
one of { h , n , e } (i . e . h o r i z o n t a l , n o r t h - s o u t h o r e a s t - w e s t)

a f o u r - d i g i t daynumber

These files have correct headers and can viewed using the PRAM graphics programs.

27

SCRIPT LISTINGS:

makeup;

Version 1 of the makeup script. The file catmom holds an ordered

list of the component files. Using this method hx3th the

unprocessed code (momverl.f) and the preprocessed code (momver2.f)

contain modules in the order determined by the catmom file.

set oceanob] = ocean2

rm momverl.f

rm momver2.f

cat *cat catmom~ >momverl.f

source setarg

set echo

cc -P $arglist momverl.f

mv momverl.i momver2 . f

f77 -o $oceanobj momver2 . f

rm * . o

unset echo

echo "executable file:" $oceanobj "has been created

exit

makeup2:

Version 2 of the makeup script. This version compiles the code

with

the debug (-g) option set on til. The script also edits the pre-

processed file, momver2.f, and removes all comment lines. The

resulting file is more compact and easier to manipulate using the

source code browser in dbxtool.

set oceanob] = ocean2

rm momverl.f

rm momver2.f

cat "cat catmom" >momverl.f

source setarg

set echo

cc -P .$arglist momverl.f

mv momverl.i momver2 . f

ed - momver2.f « EOF

g/*c/d

w

28

q
EOF

f77 -g -o $oceanob] momver2.f

rm * . o

unset echo

echo "executable file: " $oceanob] " has been created"

exit

makeupl i s t ing :

Script to makeup listings of the current model code. The resulting

files code_listing and include_listing are not compilable but are

useful for reference.

rm momverl.f

rm code_listing

rm include_listing

cat ^cat catmom^ >momverl.f

cat *.h >inclusions_tmp.f

ed - momverl.f « EOFA

l,\$s/\#include/C_INCLUDE/

w
q

EOFA

ed - inclusions_tmp.f « EOFB

l,\$s/\#include/C_INCLUDE/

w
q
EOFB

source setarg

set echo

cc -P $arglist momverl.f

cc -P $arglist inclusions_tmp.f

mv momverl.i code_listing

mv inclusions_tmp.i include_listing

unset echo

rm inclusions_tmp.f

exit

29

setarg:

set arglisb = " -DrestrtlOd -Dascdump -DLevitus -Dannwind -Dopenbc

-Dcyclic -Ddiskless -Drestorst -Dconstvmix -Dconsbhmix -Drigidlid

-Dhypergrid -Dislands -Dnohilats"

echo arglisk set to $arglist

listmissiag:

set vars = 'cat catmom'

set vars2 = ^Is *.F

echo "The following source files are located in the current

directory"

echo "but are NOT included in the catmom file:"

echo " "

foreach var ($vars2)

set yes = no

foreach varr ($vars)

if ($varr == $var) set yes = yes

end

if ($yes == 'no') echo $var

end

exit

g e t d e b u g g e d m o m :

Script to retrieve a debugged version of the IMOM base code.

(i.e. a version with all fixes suggested in IMOMJWEWSl.O

implemented.)

sees get *.h *.F *.f

sees get -rl.2 slabs.h

sees get -rl.2 checks.F

sees get -rl.2 denscoef.F

sees get -rl.2 docmnt.F

sees get -rl.5 ocean.F

sees get -rl.2 reglst.F

sees get -rl.2 restio.F

sees get -rl.2 tracer.F

exit

30

APPENDIX B

SCCS development history of the .h include files

(Files which have been unaltered since creation will have a SCCS version number of 1.1)

accel.h
an1wind.h

cbihar.h
ccfl.h
cdiag.h
chmix.h
cisop.h
cnlmix.h
coord.h
cpolar.h
cppmix.h
cprnts.h
cregin.h
crelax.h
cshrbf.h
ctask.h
ctcmix.h
ctmngr.h
cvbc.h
cvmix. h

>

dncoef.h
D 91/11/19 11:33:51 acc 3 2 00113/00159/00072
density coefficients for 25 vertical levels (Sarmiento)

D 1.2 91/06/19 09:22:17 acc 2 1 00184/00072/00047
Reworked coefficients (using denscoef.F (eqstat)) for Cram
thicknesses

D 1 ^ 91/05/08 09:33:01 acc 1 0 00119/00000/00000
da(:e and (:ime creatied 91/05/08 09:33:01 by acc
<

docnam.h
>

emode. h
D 1 ^ 92/01/17 14:28:32 acc 2 1 00003/00000/00045
First working version with open boundary

D 1 ^ 91/05/08 09:33:03 acc 1 0 00045/00000/00000
date and time created 91/05/08 09:33:03 by acc
<

31

fdifm.h
fdift.h

grdvar.h

Index.h
iounit.h

levind.h

ndcon.h

>
param.h
D 1.5 92/01/17 14:27:50 acc 5 4 00001/00001/00086
First working version with open boundary

D 1.4 91/06/28 15:18:29 acc 4 3 00001/00001/00086
Set number of islands=4 for new 2x1 topography

D 1.3 91/06/20 17:24:35 acc 3 2 00001/00001/00086
Corrected number of islands (nisle) for Fram 2 by 1

D 1.2 91/06/18 17:02:34 acc 2 1 00001/00001/00086
Changed resolution to Fram 2 by 1.

D 1.1 91/05/08 09:33:10 acc 1 0 00087/00000/00000
(late and time created 91/05/08 09:33 :10 by acc
<

pconst.h
pfil.h

scalar.h >

slabs.h
D 1.2 91/05/08 09:36:03 acc 2 1 00001/00001/00173
Fixed bug reported in MOMJNEWS no.l (improper dimensions)

D 1.1 91/05/08 09:33:13 acc 1 0 00174/00000/00000
date and time created 91/05/08 09:33:13 by acc
<

>
switch.h
D 1.2 92/02/19 12:07:58 acc 2 1 00006/00000/00076
Added a new flag: tlOday used by the restrtlOd option to detect
the end of a 10-day period.

D 1.1 91/05/08 09:33:14 acc 1 0 00076/00000/00000
date and time created 91/05/08 09:33:14 by acc
<

tcslab.h
>

- 3 2 -

temp.h
D 1.2 92/01/17 14:29:06 acc 2 1 00004/00000/00013
First working version with open boundary

D 1.1 91/05/08 09:33:16 acc 1 0 00013/00000/00000
date and time created 91/05/08 09:33:16 by acc
<

>
thick.h
D 1.3 91/12/16 14:02:11 acc 3 2 00005/00006/00013
Changed to the Sarmiento model thicknesses (25 levels)

D]U2 91/06/19 09:04:47 acc 2 1 00006/00004/00013
Changed thickness to the CR&M dimensions (32 levels).

D 1.1 91/05/08 09:33:17 acc 1 0 00017/00000/00000
date and time created 91/05/08 09:33:17 by acc
<

timelv.h

versno.h

s e e s development history of .F files
>

anlwind.F
D 1.2 92/01/27 16:54:11 acc 2 1 00050/00050/00007
Working version with annual Hellerman winds

D 1.1 92/01/17 17:10:58 acc 1 0 00057/00000/00000
date and time created 92/01/17 17:10:58 by acc
<

annwind.F

bcest.F >

blkdta.F
D 1.3 92/01/17 14:28:53 acc 3 2 00002/00002/00247
First working version with open boundary

D 1.2 91/06/18 17:15:47 acc 2 1 00008/00008/00241
Changed grid parameters to Fram 2 by 1 resolution.

D 1.1 91/05/08 09:20:00 acc 1 0 00249/00000/00000
(date and time created 91/05/08 09:20:00 by acc
<

c f l . F
>

checks.F
D 1.3 92/01/17 14:26:15 acc 3 2 00021/00000/00505
First working version with open boundary

-33

D 1.2 91/05/08 09:32:10 acc 2 1 00002/00002/00503
Fixed bug reported in MOM-NEWS no.l (missing commas)

D 1.1 91/05/08 09:20:02 acc 1 0 00505/00000/00000
date and time created 91/05/08 09:20:02 by acc
<

>
clinic.F
D 1.2 92/01/17 14:23:05 acc 2 1 00085/00000/00984
First working version with open boundary

D 1.1 91/05/08 09:20:03 acc 1 0 00984/00000/00000
date and time created 91/05/08 09:20:03 by acc
<

cnvmix.F
congrS.F
congr9.F

delsq.F
>

denscoef.F
D 1.3 91/06/20 18:26:50 acc 3 2 00002/00002/01226
changed program to Fram 2 by 1 set-up

D 1.2 91/05/08 09:28:36 acc 2 1 00004/00004/01224
Fixed bugs reported in MOMLNEWS no.l (incorrect variable types)

D 1.1 91/05/08 09:20:08 acc 1 0 01228/00000/00000
date and time created 91/05/08 09:20:08 by acc
<

diag.F
diag2.F >

docmnt.F
D 1.2 91/05/08 10:18:50 acc 2 1 00001/00001/00473
Fixed bug reported in MOM_NEWS no.l (incorrect logical variable)

D 1.1 91/05/08 09:20:12 acc 1 0 00474/00000/00000
date and time created 91/05/08 09:20:12 by acc
<

filfir.F
filt.F
filtr.F
filuv.F
filz.F
findex.F

-34

getslice.F
D]_2 92/02/11 14:39:56 acc 3 1 00071/00988/00746
Revision of first working version to improve inoilularity and
documentation

D]_1 92/02/06 17:20:38 acc 1 0 01734/00000/00000
db±e an^ tim^ created 92/02/06 17:20:38 by acc

header.F

hyper.F
D]_3 92/02/19 11:31:35 acc 3 2 00003/00000/00469
Included common blocks for annual wind data if aimwind option is
selected.

D 1.2 92/01/17 14:23:43 acc 2 1 00099/00001/00370
First working version with open boundary

D 1.1 91/05/08 09:20:18 acc 1 0 00371/00000/00000
date and time created 91/05/08 09:20:18 by acc

implq.F
invtri.F
iperim.F
isopyc.F

matrix.F

nlmix.F

ocean.F
D 1.9 92/02/19 12:02:08 acc 10 9 00039/00008/01238
Inserted several options: units 85 and 86 are connected to the
Levitus data files created by levi2mom.F in either Levitus or robustd
options are active. restrtlOd will dump a full restart dataset every
10 days (filename=Mrxxxx.data where xxxx is the day number), ascdump
will dump a cards image of the stream-function to data/image
/mpzzzz.cards every 16 timesteps (here zzzz is the timestep).

D 1.8 92/01/27 16:53:52 acc 9 8 00008/00000/01238
Working version with annual Hellerman winds

D 1.7 92/01/17 14:28:01 acc 8 7 00029/00000/01209
First working version with open boundary

D 1.6 91/06/20 18:26:02 acc 7 6 00020/00000/01189
inserted ascdump option to dump sf field at end of run,

D 1.5 91/05/09 16:55:48 acc 6 5 00000/00000/01189
Excluded delta 1.2 (discovered that the -Dtiming option only applies
to the CRAY)

-35

D 1.4 91/05/08 10:08:10 acc 5 4 00010/00001/01184
Fixed bugs reported in MOM_NEWS no.l (div zero & Lerm balances)

D 1.3 91/05/08 09:48:42 acc 4 3 00001/00001/01184
Fixed bug reported in MOM_NEWS no.l (vertical region masks)

D 1.2 91/05/03 12:44:12 acc 3 1 00009/00004/01176
Commented out references to second() and timef() tdbich don't appear
to exist on the SUN.

D 1.1 91/05/03 12:32:25 acc 1 0 01180/00000/00000
(date and time created 91/05/03 12:32:25 by acc

>
ocnlst. F
ocnlst.F:
D 1.4 92/02/20 12:48:28 acc 4 3 00031/00000/00202
Added option: Levitus. Temperature and salinity (including the tn
array if openbc defined) are now initialised from (latasets created by
leviZmom.F

D]U3 92/02/20 12:46:25 acc 3 2 00033/00000/00169
Added option:openbc. All arrays are now initialised correctly for
^pen boundary calculations.

D 1.2 92/02/20 12:44:59 acc 2 1 00018/00000/00151
Added option: mytopog to read kmt field from file created by makekm.F

D 1.1 92/02/20 12:08:32 acc 1 0 00151/00000/00000
(late and time created 92/02/20 12:08:32 by acc

>

odam.F
D 1.2 92/01/17 14:24:22 acc 2 1 00004/00000/00227
First working version with open boundary

D 1.1 91/05/08 09:20:25 acc 1 0 00227/00000/00000
(date and time created 91/05/08 09:20:25 by acc <

ppmix.F
>

reglst.F
D 1.2 91/05/08 11:49:01 acc 3 1 00022/00000/00156
Fixed bug reported in MOM_NEWS no.l (vertical region masks)

D 1.1 91/05/08 09:20:27 acc 1 0 00156/00000/00000
date and time created 91/05/08 09:20:27 by acc
<

region.F
relax.F
reset21evi.F

36

restio.F
D 1.2 91/05/08 10:15:42 acc 2 1 00004/00000/00126
Fixed bug reported in MOM_NEWS no. 1 (disk restart io error)

D 1.1 91/05/08 09:20:29 acc 1 0 00126/00000/00000
date and time created 91/05/08 09:20:29 by acc

setgrid.F
D 1.2 92/02/07 15:00:42 acc 4 1 00010/00000/00367
Incorporated simple "noreport" option to suppress printing of arrays
on stdout

D 1.1 91/05/08 09:20:30 acc 1 0 00367/00000/00000
date and time created 91/05/08 09:20:30 by acc

setkmp.P

setvbc.F
D 1.4 92/02/19 11:48:08 acc 4 3 00018/00000/00117
Inserted option: Levitus to read in and restore surface values to
Levitus values (requires data files as created by levi2mom.F)

D 1.3 92/01/27 16:53:10 acc 3 2 00032/00000/00085
Working version with annual Hellerman winds

D 1.2 92/01/17 14:27:36 acc 2 1 00004/00000/00081
First working version wi&h open boundary

D 1.1 91/05/08 09:20:32 acc 1 0 00081/00000/00000
date and time created 91/05/08 09:20:32 by acc

size.F
D 1.2 91/06/18 16:51:00 acc 2 1 00004/00004/00545
Changed resolution to Fnam 2 1 (made main prog)

D 1.1 91/05/08 09:20:33 acc 1 0 00549/00000/00000
date and time created 91/05/08 09:20:33 by acc

state.F

step.F
D 1.4 92/02/19 11:52:12 acc 4 3 00018/00002/00842
Inserted option: robustd to restore t and s to Levitus values
throughout (i.e. robust diagnostic mode). Requires data files as
created by levi2mom.F. Also reset the open boundary relaxation
timescale to a consistent value (rtscale).

D 1.3 92/01/27 16:53:35 acc 3 2 00003/00000/00841
Working version with annual Hellerman winds

- 3 7

D 1.2 92/01/17 14:25:12 acc 2 1 00433/00000/00408
First working version with open boundary

D 1.1 91/05/08 09:20:35 acc 1 0 00408/00000/00000
date and time created 91/05/08 09:20:35 by acc

tcmix.F >

tmngr.F
D 1.2 92/02/19 11:55:20 acc 2 1 00008/00000/00528
Inserted switch (tlOday) used by the option:restrtlOdwtiich will dump
a restart dataset every 10 model days

D 1.1 91/05/08 09:20:38 acc 1 0 00528/00000/00000
date and time created 91/05/08 09:20:38 by acc
<

topog.F >

tracer.F
D 1.4 92/02/19 12:12:37 acc 4 3 00001/00001/00641
Added the robustd option which in the case of tracer.? means simply
stopping the restorst option from duplicating the setup of the sourct
array already performed in step.F

D 1.3 92/01/17 14:25:28 acc 3 2 00005/00001/00637
First working version with open boundary

D 1.2 91/05/08 10:10:27 acc 2 1 00001/00001/00637
Fixed bug reprted in MOM_NEWS no.l (incorrect term balances)

D 1.1 91/05/08 09:20:40 acc 1 0 00638/00000/00000
date and time created 91/05/08 09:20:40 by acc

vort.F
>

windwt.F
D 1.4 92/01/27 16:54:28 acc 4 3 00007/00004/00016
Working version with annual Hellerman winds
D 1.3 92/01/17 14:29:20 acc 3 2 00000/00006/00020
First working version with open boundary
D 1.2 91/12/09 14:38:59 acc 2 1 00014/00008/00012
First version
D 1.1 91/11/14 12:21:20 acc 1 0 00020/00000/00000
date and time created 91/11/14 12:21:20 by acc

-38

TUsqamorKC: E%nwNuurycxFNt%v(}prK%NS

This appendix contains a summary of ± e new options which have been introduced during

the construction of the 2° x 1° resolution model. Most of these options have been described in

sections 1 to S.

Option

mytopog

openbc

description

Causes the kmt field to be read in from an unformatted
file on fortran unit 53. This option is only
effective at initialisation (i.e. init = .true.). The
unformatted kmt data can be created using makekm.F.

Causes the model to be constructed with an open
northern boundary. At present the reference array
(tn) holding values of the tracers along the northern
boundary is set to the initial values at the jmt row.
This is correct when starting the model from Levitus
data.

annwind Causes the wind stress components to be read from the
files containing Hellerman and Rosenstein mean annual
wind data. This option is quite specific to the 2° x
1° Southern ocean model but could be generalised with
moderate effort.

Levitus (Note the capital letter.) This option causes the
model temperature and salinity fields to be
initialised from the Levitus data (if init is .true.)
and, if restorst is also active, it will use the
Levitus values when calculating the surface restoring
force.

robustd

noreport

ascdump

restrtlOd

This option will run the model in robust diagnostic
mode with values relaxed towards Levitus at all depths
with a timescale of "rests" (set in blkdta.F)

A simple option added to setgrid.F to suppress the
printing of the grid-spacing arrays at start-up.

An option which will cause an ascout dump of the
stream-function at a preset interval (currently set to
16 timesteps). This is specific to routine
requirements, but could be adapted easily. All
related code is in ocean.F. The output is intended
for animation via imagetool (after post-processing)
and is placed in data/image/mpxxxx.cards, where xxxx
is the timestep.

Causes a full restart dataset to be written every 10
model days. Output is written to a file: Mrxxxx.data
where xxxx is the daynumber.

39-

In addition to these options for the main model, some of the utility programs have their own

options:

option

nomodel
header

files.

and
MOM
The
MOM

vtsteps

variation
timesteps

pottern
to

file description

header.? header.? is a re-working of the old FRAM

routine for creating headers for ascout

This version uses some of tzhe MOM modules to

determine starting latitudes and longitudes
grid spacings. For applications outside of
these values can be set within the routine,
nomodel option suppresses inclusion of the
"hard-wired" values.

getslice.F vtsteps activates code to calculate the day
number from itt according t:o a preset
in the timestep. Such variations in
are common in the early stages of a run.

levi2mom.F Causes the potential temperature calculation
be performed by direct integration of the
adiabatic lapse rate equation. This is the
most accurate method but is computationally
expensive. By default the equation is solved
using a Runge Kutta numerical integration.

40

APPENDIX D(i)

program db2med
^ * * * * * * * * * * * * * * * *

c This program is a re-working of Nick plummer's program to retrieve
c dbdbS data on a 1/4 degree resolution grid using the median value
c of all the 5 min data within each grid cell (Plummer, 1991). This
c version uses the same approach to extract data on a 2° x 1° grid,
c This causes additional difficulties because each file in the
c orignal datasets holds a 5 degree square of data. Every third
c 2° X 1° grid cell therefore straddles two files. Hence this
c extensive re-working of N. Plummer's original program.
c
c This version is designed to be run on the IBM (using temporary
c disks). The output files can be transferred to the SUN work-
c stations and used by the utility 'makekm' to construct the
c topography array for a MOM code application.
^ *

c * first section of the program is concerned with selecting the *
c * files you wish to work with. Each file contains depth values *
c * from the northern/southern hemispheres. *
^ *

character * 80 record,header
character * 20 fname, filename(2), testdata{2)
integer filel,file2,file],file4,nrec,nfiles,position
integer a(4000),b(122,61),median,n,loop,f,z,med(25),ideg(288)
data filename /'storl data t', 'stor2 data t'/
data testdata /'testl data t', 'test2 data t'/
nrec=18954

c
c Open the original dbdbS liata file. Direct access file already

copied to on-line storage
c

fname='dbdbS data a'
c
c IBM ndopen routine: call ndopen{unit,file,direct-access,read-only,
c status,reel,nrec, return-status)
c

call ndopen{3,fname,3,1,'old',80,303264,istat)
if (istat.ne.O) then

TMrite(6,*)'error in opening file fname
write(6,*)'istat- ',istat
stop

endif
c

fname='median data a'
c
c IBM ndopen routine: call ndopen(unit,file,sequential,read/write
c status,reel,nrec,return-status)
c

call ndopen (4,fname,1,3, 'unknown',110,0,istat)

•41

if (istat.ne.O) then
write(6,*)'error in opening file',fname
write(6,*) ' istat = ' ,istat

endif
c
c

do 999 filel=l,15,2
file2=filel
nblock=0

1 continue
write(6,*) 'working on file ',file2
position=(18954*(file2-l)+l)
file2=filel+1
nblock=nblock+l

c
c
c Open one of the pair of temporary files to receive d^±^
c
c IBM ndopen routine: call ndopenfunit, file, sequential, read/write
c status, reel, nrec, return-status)
c

call ndopen(15,filename(nblock),1,3,'unknown',80,18954,istat)
if (istat.ne.O) then

write(6,*) 'error in opening file',filename (r^ilock)
write(6,*)'istat = ',istat

endif

do j=l,nrec
read (3,'(a80)',rec=position)record
write (15,'(a80)')record
position=position+l

enddo
c
c
c
c Open "test data" files to receive temporary re-formatted data

call nclose(15,istat)
call ndopen(16,testdata(nblock),1,3, 'unknown ',305,0,istat)
if (istat.ne.O) then

write(6,*}'error in opening filetestdata(nblock)
write(6,*)'istat = ',istat

endif
c
c reopen file as read-on^y

call ndopen (15, filename (nblock) ,1,1,.' unknown ',80,18954, istat)
if (istat.ne.O) then

write(6,*)'error in opening file',filename(r±)lock)
write(6,*)'istat = istat

endif

^ *

c * loop 81 times for all blocks in a file *
c * sort data into 61i5 format and output to 'testdata' file *
f - , *

42-

c I&ach file contains data covering a 45° x 45° area. The data are
c arranged in 81, 5x5 degree blocks each ivith its own header. Each
c block has an additional eastern column and northern row which
c overlaps the neighbouring square.

do k=l,81
read (15,'(a80)') header
write(16,'(a80)') header

c Rearrange the 61x61 (i.e.(5*12+1)**2) values originally written
c as 80 character records into a 61x61i5 array
c

do i=l,3728,16
read {15, ' (16i5) ') (a(i +j-1),j=1,16)

enddo
do i=l,3668,61

write (16,'(61i5)') (a(i+]-l),i=l,61)
enddo

enddo
c
c close 'test data' file
c

call nclose(15,istat)
call nclose(16,istat)
if(nblock.eg.l) goto 1

c write (6,*) 'after do i=l,3668'

Q *

c * read information from a 5° square; breakdown that information *
c * into 2° X 1° squares and obtain median pts. Then store *
c * results gathered into various files. *
^ *

c
call ndopen (16,testdata(1),1,1,'old305, 0, istat)
if (istat.ne.O) then

write(6,*)'error in opening filetestdata(1)
write(6,*)'istat = istat

endif
call ndopen (17,testdata(2),1,1,'old',305,0,istat)
if (istat.ne.O) then

Tvrite(6,*)'error in opening file',testdata(2)
Tvrite(6,*) 'istat = ',istat

endif
c
c *read all numbers in file into the b array*
c Note there are three cases to consider depending upon whether the
c 2° X 1° area lies wholly in the first file, straddles both files
c or lies wholly in the second file.
c

nbound=0
do 666 z=l,81

nbound=nbound+1
if(nbound.eq.ID) nbound=l

43-

c nbound < 4 implies area lies wholly in the first file
c

if(nbound.le.4) then
nb=l

read(16,'(a80)')header
do]=1,61
read(16,'(61i5)') (b(i,j),i = l+(nb-l)*61,61+(]%b-l)*61)
enddo

nb=2
read(16,'(a80)')header
do]=1,61
read(16, '(61i5)') (b(i,j),i = l+(nb-1)*61, 61+ (nb-1)*61)
enddo

c
c nbound = 5 implies area straddles the two files
c

elseif(nbound.eq.5) then
nb=l

read(16,'(a80)')header
do]=1,61
read(16,'(61i5)') (b(i,]),i=l+(nb-1)*61,61+(nb-1)*61)
enddo

nb-2
read(17,'(a80)')header
do j=l,61
read(17,'(61i5)') (b(i,j),i=l+(nb-l)*61,61+(iib-l)*61)
enddo

c
c hbound > 5 implies area lies wholly in the second file
c

else
nb=l

read(17,'(a80)')header
do j=l,61
read(17,'(61i5)') (b(i,i),i=l+(nb-1)*61,61+(nb-1)*61)
enddo

nb=2
read(17,'(a80)')header
do j=l,61
read(17,'(61i5)') (b(i,i),i=l+(nb-l)*61,61+(hb-l)*61)
enddo

endif
icounter=0

c
c write header to median data file

WTite(4,*)

write(4,*)header
c
Q *

c * the 7442 data points are arranged in a (122,61) array. The *
c * calculations below locate the data points required by taking *
c * the median of the 288 values in each 2° x 1° square sub- *
c * division of the original 10° square. *
^ *

•44-

loop=0
do 1=1,5

do k=l,5
do i=((l-l)*12)+l,((l-l)*12)+12

do j=((k-l)*24)+l,((k-l)*24)+24
icounter=icounter+l
ideg(icounker)=b(],i)

enddo
enddo
n=icounter

c
c Use IBM library routine to sort the 288 values into ascending order
c

call rsort(ideg,288,istat)

Q *

c * the numbers within the 288 array are now sorted and the median *
c * value is retrieved. (The 144th value is selected rather than *
c * the true median which could introduce half metres.) *
Q *

loop = loop + 1
med(loop)=ideg(144)
icounter=0

enddo
enddo

c
c *output med array to median data a (stream 4)*

do i=l,5
write (4,'(5i5)') (med((i-l)*5 +]),j=l,5)

enddo
c
666 continue

c
c median data a should be transferred to Workstation for post-processing
c (see program med2cram.f)
c
c *close all streams*
c

call nclose(16,istat)
if (istat.ne.O) then

write (6,*)'error in closing file',testdata
write (6,*)'istat =',istat

endif
call nclose(17,istat)
if (istat.ne.O) then

write (6,*)'error in closing file',testdata
write (6,*) 'istat =',istat

endif
continue

call nclose(4,istat)

- 45 •

if (istat.ne.O) then
write (6,*)'error in closing file',fname
write (6,*)'istat =',istat

endif
stop
end

46

APPENDIX D(ii)

program med2cram *******************

c Program to convert 'raw' median data produced on the IBM by
c db2med.f to a topography file for a MOM CRAM run. This topography
c will need to be smoothed and checked by the program makekm.f

(version 1.2 or higher).
C
c The data file produced by db2med.f gives median depths every two
c degrees longitudinally degree latitudinally, starting
c at 1.OE, -89.5S.
c
c The MOM CRAM run requires data at the same resolution starting at
c l.OE, -78.5S with imt=lBO,jmt=56.
c

parameter(imt=180,]mt=56)
real depths(180,90),vmask(4),cramd(imt,imt)
integer median(5,5)
character*80 line
data vmask/-10.,3*0.0/

c
c Set the southernmost t-latitude
c

crams=-78.5

c Open the following units:
c 53 - input median data, formatted file produced by db2med.f
c 54 - output file to receive an ascout cards file for viewing
c 55 - output file to receive a full precision unformatted form of the
c topography array.
c

open(unit=53,file='smedian.data')
open{unit=54,file='topog.dbdbS')
open(unit=55,file='rawcram.dbdbS',form='unformatted')

c
c Create header for cards file:

call header(54,'depth','stream',1,imt,1,jmt,1,0,'CD','FAA')
c
c Read in median values and re-arrange into a continuous 2-D array:

do 2 nhalf=l,2
do 5 nfile=l,4
do 10 nb2=l,9
do 20 nb=l,9
read(53,*)
read(53,'(a)') line
do 30 j=l,5
read(53,'(515)') (median(i,j),i=l,5)

30 continue
c

id=(nEile-l)*45+(nb-l)*5
]d=(nhalf-l)*45+(nb2-l)*5

47

do 40 i=l,5
do 50 i=l,5

depths(id+i,jd+j)=median(i,])
50 continue
40 continue

c
20 continue
10 continue
5 continue
2 continue

c
c Now select the reduced area (latitude reduction only):

do 100]=1,90
degs=(j-lS *l.-89.5
if(degs.eq.crams) then
do 110 i=l,imt
do 120]j=],]+imt-l
cramd(i,]]-]+l)=depths(i,]])

120 continue
110 continue

goto 99
endif

100 continue
write(6,*) 'crams not found, crams= crams

c
c Output array and stop:

99 call ascoutO(cramd,imt,imt,jmt,vmask, 2, 54)
write(55) cramd
stop
end

#include /ascoutO.f"
c include a version of header which doesn't take its parameters from
c the MOM common blocks:
#define nomodel
#include "../header.F"

APPENDIX D (iii)

program makekm ****************

c Program bo read in a cards file of median depths produced from
c DBDB5 data and apply smoothing operations and interpolations to
C produce a full depths file for IMOM

parameter (imtold=180,]mtold=56,imt=182,i]mt = 56,km^25,
+ stlondb=l. 0, stlatdb=-78 .5, dxdb=2 . 0 , dydb=l. 0,
+ stlon =1.0,stlat =-78.5,dxdeg=2.0,dydeg=1.0)

c parameters:
c imtold = horiziontal size of DBDB5 cards file data
c jmtold = latitudinal size of DBDB5 cards file data
c imt = horiziontal size of IW%4 t-grid (including cyclic overlap)
c jmt = latitudinal size of MOM t-grid (inc. northern boundary)
c km = No. of vertical levels in MOM grid
c
c The remaining parameters are not used but are included for

reference:
C stlondb= starting longitude of first DBDB5 value
c stlatdb= starting latitude of first DBDB5 value
c (±xdb = longitudinal resolution (degrees) of DBDB5 cards data
c i±/db = latitudinal resolution (degrees) of DBDB5 cards data
c stlon = starting longitude of first MOM t-point
c stlat = starting latitude of first MOM t-point
c dxdeg = longitudinal resolution (degrees) of MOM grid
c dydeg = latitudinal resolution (degrees) of MOM grid
c

parameter (imtom2 = irntold-2, jmtom2=jmtold-2 ,
+ imtm2=imt-2,
+ jmtm2=jmt-2)

real fkmold(imtold,jmtold) ,fkmnew{imtm2,jmtm2)
real tmp(imtold,jmtold)
real fkmt(imt,jmt),dzt(km),zt(0:km)
integer kmt(imt,jmt),kmu(imt,jmt)
real vmask(4)
character*80 line,ans*l

c
#include /thick.h"

data vmask/O.f3*0.0/
rmax=-l.el
rmin=l.e7
isea=0
iland=0
write(6,*) 'Enter number of smoothing passes (0,1 or 2)'
read(5,*) npass
write(6,*) 'Remove isolated land points? (y/n)'
read(5,'(a)') ans

c
c Calculate depths of t-points in MOM grid
c

zt(0) = 0.0
zt(l) = ck^(l)*0.5*l.E-2

49

do 700 k=l,km-l
zt(k+l) = zb(k) + 0.5*l.E-2*(dzb(k)+dzk(k+l))
write(6,*) 'Model depth of t-point for k= ',k, ' = ',zt(k)

700 continue

open (unit=20, file= ' rawcram.dbdbS ' , form= 'unformatted')
open(unit=21,file='topsar21.cards')

c
c
c Create header for cards file:

call header(21,'depth','stream',l,imt,l,]int,1,0,'CD','FAA')
c
c Read in "raw" topography as created by med2cram.f

read(20) fkmold
c
c Smooth topography by one or two passes of this filter:
c +++++1+2+1+++++
c +++++2+4+2+++++
c +++++1+2+1+++++

c
if(npass.ge.l) then

c First pass:
do 110 i=l,imtold
ilt=i-l
irt=i+l
if(ilt.eq.O) ilt=imtold
if(irt.eq.imtold+l) irt=l
do 100 j=2,imtold-l
if(fkmold(i,j).le.O.O) then
tmp(i,i)=fkmold(i,i)
else
tmp(i,i)=(l./16.)*(

+ fkmold(ilt,]+l)+2.*fkmold(i,]+l)+fkmold(irt,]+l)
+ + 2.*(fkmold(ilt,i) +2.*fkmold(i,j) +fkmold(irt,j))
+ + fkmold(ilt,j-1)+2.*fkmold(i, j-1)+fkmold{irt,j-1))

endif
100 continue

if(fkmold{i,1).ge.1.e-5) then
write(6,*) 'Bottom boundary set to land at i= ',i,

+ ' value was: ',fkmold(i,l)
endif

c Apply N and S boundary conditions:
tmp(i,l)=0.0
tmp(i,imtold)=tmp(i,imtold-l)

110 continue
c

if(npass.eq.l) then
do 800 i=l,imtold
do 800 j=l,jmtold
fkmold(i,i)=tmp(i,j)

800 continue
else

50

c Second pass:
210 i=l,imkold

ilt=i-l
irt=i+l
if(lit.eg.0) ilt=imtold
if(irt.eq.imtold+1) irt=l
do 200]=2,]mkold-l
if(tmp(i,j).le.O.O) then
fkmold(i,i)=tmp(i,j)

else
fkmold(i,j)=(l./16.)*(

+ tmp(ilt,i+l)+2.*tmp(i,]+l)+tmp(irt,]+l)
+ + 2.*(tmp(ilt,i) +2.*tmp(i,j) +tmp(irt,i))
+ + tmp(ilt,j-l)+2.*tmp(i,]-l)+tmp(irt,j-l))

endif
200 continue
c Apply N and S boundary conditions:

fkmold(i,l)=0.0
fkmold(i,jmtold)=fkmold(i,]mtold-l)

210 continue
endif

c
endif

c
c
c Adjust depths to nearest MOM vertical level
c

do 20 j=l,jmtold
do 3 0 i=l,imtold
if(abs{fkmold{i,j)).ge.1.e-4) then
isea=isea+l
do 35 k=l,km
if(zt(k).gt.fkmold(i,j)) then
kup=k-l
deltazl=zt(k)-fkmold(i,j)
deltaz2=fkmold(i,j)-zt(kup)

c
if{deltazl.It.deltaz2) then
fkmnew(i,j)=k

else
fkmnew(i,j)=kup

endif
goto 31
endif

c
3 5 continue

fkmne#(i*j)=km
else
iland=iland+l
fkmnew(i,j)=fkmold(i,j)

endif
31 if(fkmnew(i,j).ge.rmax) rmax=fkmnew(i,j)

if(fkmnew(i,j).le.rmin) rmin=fkmnew(i,j)
30 continue

-51

20 continue
write (6,*) isea,' sea points ',iland, ' laand points '
do 40]=l,jmt-l
do 50 i=l,imtm2
kmt(i,j)= fkmnew(i,j)

50 continue
40 continue

c
c Apply cyclic conditions
c

do 60]=l,]mt-l
kmt(imt-l,j)=kmt(l,])
kmt(imt,j) =kmt(2,])

60 continue
c
c i^pply open northern boundary condition
c (The MOM code will automatically override this if the northern
c boundary is closed within the model)
c

do 70 i=l,imt
kmt(i,l)=0
kmt(i,jmt)=kmt(i,]mt-l)

70 continue
c

i f{ans.eq.'y' .or.ans.eq.'Y') then
c
c remove isolated island points
c

do 250 j=2,jmt-l
do 260 i=2,imt-l
if(kmt(i,j).eg.O) then
if(kmt(i-l,]).ne.O

+ .and.kmt(i-l,j-l).ne.O
+ .and.kmt(i-l,]).ne.O
+ .and.kmt(i+l,i-l).ne.O
+ .and.kmt(i+l,j).ne.0
+ .and.kmt(i+l,i+l).ne.O
+ .and.kmt(i,j-l).ne.O
+ .and.kmt(i,i+l).ne.O) then

kmt(i,j) = min(kmt(i-l,]-l),
+ kmt(i-l,i),kmt(i-l,i),kmt(i+l,i-l),kmt(i+l,j),
+ kmt(i+l,j+1),kmt(i,j-1),kmt(i,j+1))

write(6,*) 'Isolated land point removed at: ',i,',',i
endif

endif
260 continue
250 continue

endif
c
c Calculate kmu field

do 310]=l,]mt
kmu(imt,j) = 0

310 continue

52 -

do 340
do 330
kmu(i,i) = min (kmt(i,i), kmt(i+l,]), kmk(i,]+l), kmt(i+l,]+l))

330 continue
340 continue

do 350 j=l,]mt
kmu(imt,j) = kmu{2,j)
kmu (imt -1, j) =kinu {1, j)

350 continue
do 320 i=l,imt

kmu(i,jmt) = kmu(i,jmt-l)
320 continue
c
c
c search for isolated bays... "t" grid boxes at the surface ivhich
c cannot be influenced by advection

do 400]=2,jmt-l
do 390 i=2,imt-l

if (kmt(i,j) .ne. 0) then
if {kmu (i,j) .eq. 0 .and. kmu(i-1,]) .eq. 0 .and.

$ kmu(i,]-l) .eq. 0 .and. kmu(i-l,j-l) .eg. 0) then
write (6, ' {10x,a42,i4,al,i4,a9,i3,a2 0) ')

$ '==> Warning: isolated "kmt" at (i,]) = (',i,',',j
$, '), kmt - kmt(i,]),' is being reset to 0'

kmt(i,j) = 0
endif

endif
390 continue
400 continue
c
c Do likewise for all depths:
c

do 900 j=2,jmt-l
do 990 i=2,imt-l

if (kmt(i,j) .ne. 0) then
m-kmt{i,j)
if (kmu(i,]) .It. m .and. kmu(i-l,]) .It. m .and.

$ kmu{i,j-l) .It. m .and. kmu(i-l,j-l) .It. m) then
write (6,'(10x,a42,i4,al,i4,a9,i3,a20)')

$ '==> Warning: isolated "kmt" at (i,j) = (',i,',',j
$, '), kmt = kmt(i,j),' is being reset to max. kmu'

kmt (i,])=max(kmu(i,j), kmu(i-1,]),kmu(i,]-l),kmu(i-l,i-l)
endif

endif
990 continue
900 continue
c

do 500 i=l,imt
do 510 i=l,imt
fkmt(i,j)=kmt(i,])

-53-

510 continue
500 continue
c
c
c Join N aind S islands of New Zealand at 176.E 40.5S
c

inz=(176. -stlon)/dxdeg +1
inz=(-40.5 -stlat)/dydeg +1
fkmt(inz,]nz)=0.0

write(6,*)
+ 'Warning ==> N and S islands of New Zealand ha\^ been joined'
write(6,*) ' by fixed code. Check Ec^ validity'
write (6,*) 'Point set was 176.E,40.5S, array coords: ', inz, jnz

c
write(6,*) 'data min= ',rmin, 'data max= ',rmax
call ascoutO(fkmt,imt,imt-2,jmt,vmask,2,21)

c
open(unit=24,file='sardepths21',form=^^ifo:rmatted')
write(24) fkmt
close(unit=24)
end

#include "../ascoutO.f"
#include "../asciin.f"
#define nomodel 1
#include /header.F"

54

APPENDIX D(iv)

program levi2mom *******************

c
c Program to read in levitus temp & salinity data from formatted packed
c files and extract a subset of the data. The data are stored in integer
c format of length 5 with a 10000 offset & multiplied by 1000.
c This format is identical to the original format supplied by GFDL.
c Data represent values at the centre of 1 degree squares.
c
#include "../param.h"
#include /scalar.h"
#include /coord.h"
#include "../grdvar.h"
#include "../levind.h"
c

parameter(mxl=25,npsla=4*imt*km)
c
c mxl is the maximum number of 'levitus levels' that can be retained in
c memory. Ideally mxl should equal km but if less than (360*180*km*2)
c values can be accommodated then several passes can be made through
c the Levitus datasets in order to achieve the same result,
c e.g mxl=km or {km/2 + mod(km,2)) or ... etc.
c npsla is the record length for each direct-access j-slab in the final
c output file
c

character *165 trecrd
character *165 srecrd
character*l ans
real rtcol(33),rscol(33),rpcol
real vmask(4),levtemp,levsali
real rkmt{imt,jmt),dmom(km)
real thic(km),fracl(km),frac2(km)
real*8 z2pb,pottem,ptmp83a
common/tracr/ levtemp(360,180,mxl),levsali(360,180,ma^),
+ tmom{imt,jmt),smom{imt,jmt) , tsla{imt,km) ,
+ ssla(imt,km)
integer tcol{33),scol(33),kmL{360,180,mxl),imoml2{imt,jmt)
integer levdepth(33),lup(km),llo(km) ,imoml(imt,jmt),
+ imoml3(imt,jmt)
logical ioerror,reiter,around,potential,create
data potential,create/.false.,.false./
data vmask/1.e7,2.e7,3.e7,4.e7/

c
c These are the depths (m) of the standcord 33 levels from the original
dataset:

data levdepth/0,10,20,30,50,75,100,125,150,200,250,
+ 300,400,500,600,700,800,900,1000,1100,1200,1300,
+ 1400,1500,1750,2000,2500,3000,3500,4000,4500,5000,5500/

- ss

pi = c4*a±an(cl)
radian = c360/(c2*pi)
slonLev=0.5
slakLev=-89.5
dxLev=1.0
dyLev=1.0

c
write(6,*) 'Program for interpolating'
write(6,*) 'Levitus temperature and salinity onto'
write (6,*) 'the current MOM grid from the original'
write(6,*) '1x1 grid at the following standard levels:'
write (6,*) 'index depth (m) index depth^^'
do 111 lk=l,16

write(6,'(i5,4x,i5,9x,i5,4x,i5)') lk,levdepth(lk),
+ lk+16,levdepth(lk+16)

111 continue
write(6,'(23x,i5,4x,i5)') 33,levdepth(33)

c
c set offset and mult, factor for unpacking of data
c

roff=10000.0
factor=le-3

c
c Define the current MOM grid

call grids
slonmom-xt(1)
slatmom=yt(1)
dxmam=xmin(l)
dymom=ymin(1)

c Define depths of mom-t-points in metres:
c

dmom(1)=p5*dzt(1)*1.E-2
do 17 k=2,km
dmom(k)=dmom(k-l)+p5*(dzt(k-l)+dzt(k)}*l.E-2

17 continue
c

c Read in the current depths array (kmt)
c (as produced by the program makekm.f)
c

inguire(file='sardepths21',exist=around)
if(around) then
open (unit = 53 , f ile= ' sardepths21' , status= ' old' , f orm= ' UNFORMATTED ')

else
write(6,*) 'MOM depths file: sardepths21, not found*
write(6,*) '...stopping'
stop

end if
c

read(53) rkmt
close(unit=53)

do 13 j=l,jmt
do 13 i=l,imt

S6

#ifndef openbc
iE(].eq.]mb) rkmt(i,])=0.0
iE(i.eq.l.and.].eq.jmk) write(stdout,*)

+ 'Northern boundary closed'

iffj.eq.jmt) rkmt(i,])=rkmt(i,]-l)
#else

#endif

kmt(i,])=rkmt(i,j)+0.5
1 continue

c
c open original (or potential temperature) levitus files
c

inquire(file='potemp.levi',exist=potential)
if(.not.potential) then

c
open(unit=8,file='temp.levi',status='old',iostat=istat)
if (istat.ne.O) then
write (6,14) 'Levitus temperature',i8tat
stop

endif
c

write(6,*) 'Working from original Levitus temperature file'
write(6,*)

+ 'E# y^^ vd.sh to create a potential temperature version? (y/n)
read(5,'(a)') ans
if(ans.eq.'y'.or.ans.eq.'Y') create=.true.

c
else

c
open(unit=8,file='potemp.levi',status='old', iostat = istat)
if (istat.ne.O) tĵ sn
vnrite (6,14) 'Levitus potential temperature',istat
stop

endif
c

endif
c

open(unit=9,file='salin.levi',status='old',iostat=istat)
if (istat.ne.O) then
write (6,14) 'Levitus salinity',istat
stop

endif
c
c open new levitus files
c first the files for ascout slices:

open(unit=10,file='lltemp')
open(unit=ll,file='llsalin')
call header(10,'temperature' , 'depth',1,imtm2,1,jmt,1,
+ levk,'CD','FA Levitus temperature annual mean')
call header(11,'salinity','depth',1,imtm2,1,jmt,1,
+ levk,'CD','FA Levitus salinity annual mean')

c
c And then direct access files for 'j-slab' output

57

open(unit=12,file='dalevt21',access='direct \/recl=npsla)
open(unit=13,file='dalevs21',access='direct',recl=npsla)
if(create) open(unit=14,file='potemp.levi')

c
14 format(Ix,A,' file open error number ',i5)
c
c eadh imom level decide which two Levitus levels Ibracket the level
c and calculate vertical interpolation factors

do 555 levk=l,km
do 665 kLev=l,3 3
if(levdepth(kLev).le.dmom(levk).and.

+ levdepth(kLev+l).ge.dmom(levk)) then
lup(levk)=kLev
llo(levk)=kLev+l
thic(levk)=levdepth(llo(levk))-levdepth(lup(lev*0)
fracl (levk) = (dmom(levk) -levdepth (lup (levk))) /thic (levk)
frac2 (levk) = (levdepth (llo (levk)) -dmom(levk)) /thic (levk)
goto 555
endif

665 continue
555 continue
c
c Decide on the number of passes through the Levitus data; dependent
c upon memory restrictions it may be necessary to carry out the
c interpolation process in several passes through the Levitus dataset.

if(mod(km,mxl).eq.0) then
nsub=km/mxl
else
nsub=km/mxl + 1
endif

c
do 669 nmem=l,nsub

c
19 ioerror=.false.

rewind 8
rewind 9

c
c
c
c Initialise data on current horizontal sl<̂ 3 (since land points are
c excluded from the Levitus data sets then set all points initially to
c the land mask value) . Use the kmL array to hold a land/sea indicator,
c

do 4 m=l,mxl
do 4 j=l,180
do 4 i=l,360
levtemp(i,],m)=vmask(l)
levsali(i,],m)=vmask(l)
kmL(i,j,m)=0

4 continue
c
c read in text lines
c

-58

do 5 1=1,3
read (8,*)
read (9,*)

5 continue
c

if(create) then
write(14,*)
+'ANNUAL MEAN POTENTIAL TEMPERATURE ANALYSES FROM LEVITUS'
write(14,*)
+'UNITS OF TEMPERATURE ARE DEGREES CENTIGRADE AFTER UNPACKING.'
write(14,*)
+'10.1000. Temperatures converted using routines z2pt and ptmp83a'
endif

c
c
c read through all longitudes, latitudes
c
c
c read in first line of next set of records from original temp file
c
333 read (8,15,err=10,end=10) trecrd(l:55),n,lon,lat

read (9,15,err=10,end=10) srecrd(l:55),nl,lonl,latl
c
c first check to see if final row of 9's has been reached

if(n.eq.99999.and.nl.eq.99999) goto 10
c
c else check validity and common location of data
c

if(n.ne.l.or.nl.ne.l) then
write(6,*) 'Input data misplaced '
ioerror=.true.

endif
if(lon.ne.lonl) then
write(6,*) 'Temperature and salinity data mismatched, '
ioerror=.true.

endif
if(lat.ne.latl) then
write(6,*) 'Temperature and salinity data mismatched, '
ioerror=.true.

endif
if(ioerror) then
write(6,*) 'Current temperature station: ',n,Ion,lat
write(6,*) 'Current salinity station: ',nl,lonl,latl
stop

endif
c
c
c read in remaining temp/salinity data for this Ion,lat
c

read (8,15,err=10,end=10) trecrd(56:110),n,Ion,lat
read (8,15,err=10,end=10) trecrd(111:165),n,Ion,lat
read {9,15,err=10,end=10) srecrd(56:110) , n,Ion,lat
read (9,15,err=10,end=10) srecrd(lll:165),n,lon,lat

c

- 59

c Unpack data and scale back bo true figures
c

read(trecrd,'(33i5)') (tcol(kcol),kcol=l,33)
readfsrecrd,'(33i5)') (scol(kcol),kcol=l,33)
do 6 kcol=l,33

c
if(scol(kcol).eq.0) then
rscol(kcol)=vmask(2)

else
rscol(kcol)=(scol(kcol)-roff)*factor

endif
c

if(tcol(kcol).eq.O) then
rtcol(kcol)=vmask(2)

else
rtcol(kcol)=(tcol(kcol)-roff)*factor

c
if(.not.potential) then

c Convert Levitus depths (m) to pressure (dB)
c

xlat=lat-90
rpcol=real(z2pb(dble(levdepth(kcol)),dble(xlcLt)))

c
c Convert "in-situ" temperatures to potential temperatures:
c (]by whichever method was selected at compilation)
#ifdef pottem

rtcol(kcol)=real(pottem(dble(rtcol(kcol)),
+ dble(rscol(kcol)),dble(rpcol),OdO,ldO))

#else
rtcol(kcol)=real(ptmp83a(dble(rpcol) , dble (rtcol(kcol)),

+ dble(rscol(kcol)),OdO))
#endif
c

if(create) tcol(kcol)=rtcol(kcol)/factor + roff
endif
endif

6 continue
c

if(create) then
'Mrite(trecrd,'(33i5)') (tcol(kcol),kcol=l,33)
write (14,15) trecrd(l:55),l,lon,lat
write (14,15) trecrd(56:110),2,Ion,lat
write (14,15) trecrd(111:165),3,Ion,lat
endif

c
do 222 m=l,mxl
levk=(nmem-1)*mxl + m
if(levk.gt.km) goto 222

c
c Perform vertical interpolation and store required slab (first check if
c lower point is Levitus land ; if it is then leave point undefined)

if (abs (rtcol (llo(levk)) -vmask(2)) .le.l.e-4) then
kmL(Ion,lat,m)=0

- 6 0

else
levtemp(lon,lat,m)=rtcol(lup(levk))*frac2(levk)

+ + rkcol(llo(levk))*fracl(levk)
levsali(lon,lat,m)=rscol(lup(levk))*frac2(levk)

+ + rscol(llo(levk))*fracl(levk)
kmL{lon,lat,m)=1

endif
if(abs(rtcol(lup(levk))-vmask(2)).le.l.e-4) kmL(lon,laL,m)=0
if(abs(rtcol(lup(levk))-vmask(l)).le.l.e-4) kmL(lon,lat,m)=0

c
222 continue

goto 333
10 continue
c
c Perform horizontal interpolation
c

israd=5
do 223 m=l,mxl
levk=(nmem-l)*mxl + m
if(levk.gt.km) goto 223
write(6,*) ' '
write(6,*) 'Level: ',levk
write {6,*) ' '

c
c Intialise mom grid land mask for this depth:

nland=0
do 866 i=l,imt
do 866 j=l,]mt
imoml(i,j)=1
imoml2(i,j)=1
if(kmt{i,j).It.levk) then
imoml(i,])=0
imoml2(i, j) =0
nland=nland+l
endif

866 continue
c

do 900 im=l,imtm2
xsm=slonmom+(im-1)*dxmom

c
c Find surrounding Levitus points
c

do 910 il=l,359
xsl=slonLev+(il-l)*dxLev
xsr=xsl+dxLev
if(xsl.le-xsm.and.xsr.ge.xsm) goto 800

910 continue
write(6,*) 'Bracketing Levitus column not found'
write(6,*) 'im= ',im
stop

c
800 do 900]m=l,jmt
c

61

c If land aL this mom-pt then look no further
if(kmt(im,]m).lt.levk) then
tmom(im,jm)=0.0
smom(im,jm)=0.0
goto 899
endif

c
ysm=slatmom+(jm-l)*dymam

c
c Find surrounding Levitus points
c

do 920]1=1,179
ysl=slatLev+(]l-l)*dyLev
ysr=ysl+dyLev
if(ysl.le.ysm.and.ysr.ge.ysm) goto 810

920 continue
write(6,*) 'Bracketing Levitus row not found'
write(6,*) 'jm= '.jm
stop

c
810 continue
c
c check if land at any of the corner nodes
c

ilp=il+l
]lp=]l+l
nsea=kmL(il, jlp.m) +kinL (ilp, jlp,m) +kinL(il,]l,in) +kinL(ilp, jl,m)

c
c If two or fewer corner nodes are land then leave equal to the previous
c layer but set land flag in order to attempt horizontal interpolation
c later.

if(nsea.le.2) then
imoml2(im,jm)=0

c
c
c else if all 4 corner nodes are sea perform standard linear
c interpolation
c

elseif(nsea.eq.4) then
a=(xsm-xsl)/dxLev
b=(ysm-ysl)/dyLev
tmoin(im, jm) = (1. -a) * (1. -b) *levtemp (il, jl.m) +

+ a*{1.-b)*levtemp(ilp,j1,m)+
+ a*b*levtemp(ilp,ilp,m)+
+ (l.-a)*b*levtemp(il,jlp,m)

c
smom(im,jm)=(l.-a)*(l.-b)*levsali(il,il,m)+

+ a*(l.-b)*levsali(ilp,jl,m)+
+ a*b*levsali{ilp,jlp,m)+
+ (1.-a)*b*levsali(il,jlp,m)

c
c else if 3 corner nodes are sea take an average value
c

6 2 -

elseif(nsea.eq.3) then
kmom(im,]m) = (kmL(il,jl,m)*levtemp(il,jl,m)

+ + kmL(ilp,j1,m)*levtemp(ilp,j1, m) +
+ kmL(il,]lp,m)*levtemp(il,]lp,m)+
+ kmL(ilp,]lp,m)*levtemp(ilp,]lp,m))/nsea

c
= (kmL(il,]l,m)*levsali(il,il,m)

+ + kmL(ilp,]l,m)*levsali(ilp,]l,m)+
+ kmL(il,jlp,m)*levsali(il,ilp,m)+
+ kmL(ilp,]lp,m)*levsali(ilp,]lp,m))/nsea

endif
899 jm).eq.O) then

tmom{im,jm)=vmask(l)
smom(im,im)=vmask(l)

elseif(kmt(im,]m).lt.levk) then
tmom(im,jm)=vmask(2)
smom(im,jm)=vmask(2)

endif
c
900 continue
c
#ifdef cyclic

do 905]=l,jmt
tmom{imtml,j) = tmom{1,j)
smom(imtml,j) = smom(1,j)
imoml2(imtml,j)=imoml2(1,j)

c
tmom(imt,]) = tmom(2,])
smomfimt,]) = smom(2,i)
imoml2(imt,i)=imoml2(2,])

905 continue
#endif
c
c Now iterate to fill in any sea points which fell in Levitus land areas
c

niter=l
reiter=.false.
nland2=0
nland3=~l

c
746 do 747 j=l,]mt

do 747 i=l,imt
if(niter.eq.1) imoml3(i,j)=imoml2(i,j)
if(imoml2(i,]).eq.O) nland2=nland2+l

747 continue
if(nland2.ne.nland) then

c
do 748 j=l,]mt
do 748 i=2,imtml
i f(imoml2(i,j) .eq.0.and.imoml(i,j) .ne.0) then

63-

c Take average of all surrounding sea-points
c

ipl=i+l
iml=i-l
]pl=min(]+l,imt)
]ml=max(]-l,l)

c
nsurr=imoml2(iml,]ml)+imoml2(i,jml)+imoml2(ipl,]naj

+ +imoml2(iml,]) +imoml2(ipl,j)
+ +imoml2(iml,]pl)+imoml2(i,]pl)+lmoml2(ipl,]pl)

c
if(nsurr.gt.0) then
tmom(i,j)={imoml2(iml,jml)*tmom(iml,jml)

+ + imoml2(i,]ml)*tmom(i,iml)
+ + imoml2(ipl,]ml)*tmom(ipl,]ml)
+ + imoml2{iml,j)*tmom(iml, j)
+ + imoml2(ipl,j)*tmom(ipl,])
+ + imoml2(iml,]pl)*tmom(iml,]pl)
+ + imoml2(i,]pl)*tmom(i,]pl)
+ + imoml2(ipl,jpl)*tmom(ipl,jpl))/nsurr

c
smom (i, i) = (imoinl2 (iml, jml) * smom (iml, jml)

+ + imoml2(i,jml)*smom(i,jml)
+ + imoml2(ipl,jml)*smom(ipl,jml)
+ + imoml2{iml,j)*smom(iml, j)
+ + imoml2(ipl,j)*smom(ipl,j)
+ + imoml2(iml,jpl)*smom(iml,jpl)
+ + imoml2(i,jpl)*smom(i,jpl)
+ + imoml2(ipl,jpl)*smom(ipl,jpl))/nsurr

imoml3{i,j)=1
else
reiter=.true.

endif
c

endif
748 continue
#ifdef cyclic

do 750]=l,jmt
tmom(l,j) = tmom(imtml,j)
tmom(imt,j) = tmom(2,j)
smom(l,j) = smom(imtml,j)
smom(imt,j) = smom(2,j)
imoml3(l,j) = imomlB(imtml,j)
lmoml3(imt,j)= imoml3(2,j)

750 continue
#endif
c

endif
c

if(reiter) then
niter=niter+l
nland3=0
reiter=.false.
write(6,*) 'Iteration number= ',niter

64-

do 749
do 749
imoml2(i,])=imoml3(i,j)
if(imoml2(i,]).eq.O) nland3=nland3+l

749 continue
if(nland3.ne.nland2) then
nland2=0
if(niter.It.50) goto 746
else

write(6,*)
endif
endif

'Filling in isolated basins'

call ascout0(tmom,imt,imtm2,]mt,vmask,2,10)
call ascoutO(smom, imt,imtm2,]mt,vmask,2,ll)

c Write out slab in such a way that MOM type latitude slabs can be
c retrieved later.
c l̂ ote Salinity is scaled ready for use in the MOM mod^^

124

123

do 123 i=l,]mt
if(levk.ne.l) then
read(12,rec=]) tsla
read(13,rec=j) ssla

endif
do 124 i=l,imt
tsla{i,levk)=tmom(i, j)
ssla(i,levk)=(smom(i,])-35.)*l.e-3

continue
write(12,rec=j) tsla
write(13,rec=j) ssla
continue

223 continue
669 continue

15 format(a55,3i5)
close (8)
close (9)
close (10)
close (11)
close (12)
close (13)
if(create) close (14)
stop
end

#ifdef pottem
c
c

real*8 function pottem(tt,ss,pO,pl,dpp)
c
c
c
c Subroutine to calculate the final temperature of water moved

65

c adiabakically from an initial temperature tt, salinity ss and pressure
c pO, to a final pressure pi.
c
c The integral equation is solved by direct integration with a pressure
c increment dpp - using the bryden equation for the adiabatic lapse rate
c (subroutine atg).
c
c t = surface (potential) temperature in degrees centigrade
c s = salinity in nsu
c pO = initial pressure in decibars
c pi = final pressure in decibars
c dpp = pressure step to use
c pottem = result in degrees centigrade
c
c tests with dpp values ranging from 1 to 128 decibars showed the imost
c accurate results were obtained with dpp equal to 1.
c

implicit real*8 (a-h,o-z)
c

if(pO.It.OdO.or.pO.gt.20000.0
& .or.pi.It.OdO.or.pi.gt.20000.0)then

print subroutine pottem stopping - pressures cmt of range'
print pressures pO and pi = ',pO,pl
print *, ' allowed range has min of 0.0, max of 20,000'
stop

endif
c

dp = sign(dpp,pl-pO)
P = po
t = tt
tb = t - atg(pO,t,ss)*dp

c
10 ta = tb + 2dO*atg(p,t,ss)*dp

p = p + dp
tb = t
t = ta
test=(p-pl)*(p-dp-pl)
if(test.gt.OdO)goto 10
pottem = ((pl-p+dp)*t + (p-pl)*tb)/dp
return
end

c
c

double precision function atg(p,t,s)
c
c ^
c
c adiabatic temperature gradient deg c per decibar
c ref: bryden,h.,1973,deep-sea res20,401-408
c units:
c pressure p decibars
c temperature t deg celcius (ipts-68)
c salinity s (pss-78)
c adiabatic atg degrees celcius per decibar

6 6 -

c check value: akg=3.255976e-4 deg c/dbar
c for s=40 (pss-78), L=40 deg c, p=10000 decibars
c

implicit real*8(a-h,o-z)
c

ds = s-3 5d0
atg=(((-2.1687d-16*k+1.8676d-14)*b-4.6206d-13)*p
&+((2.7759d-12*k-1.1351d-10)*ds+((-5.4481d-14*t
&+8.733d-12)*t-6.7795d-10)*t+1.8741d-8))*p
&+(-4.2393d-8*t+1.8932d-6)*ds
&+((6.6228d-10*t-6.836d-8)*t+8.5258d-6)*t+3.5803d-5
return
end

#endif

function dpthSO (pin,xlat)

implicit double precision(a-h,o-z)
c
^ *

c *** d s C o l l i n s ios(w) 7-may-81 ***
^ *

c
c depth in meters from pressure in decibars using Saunder's and
c Fofonoff's method. Deep Sea Res., 1976,23,109-111.
c formula refitted for eosBO
c check value: 9712.654 m for pin=10000 decibars,latitude = 30 deg.
c
c convert pressure to bars

p=pin*0.1
x=sin(xlat/57.29578dO)
x=x*x
gr=9.780318d0*(1.0+(5.2788d-3+2.36d-5*x)*x)+1.092d-5*p
dpth80=(((-1.82d-ll*p+2.279d-7)*p-2.2512d-3)*p+97.2659)*p
dpth80=dpth80/gr
return
end

real*8 function z2pb(z,xlat)

c
implicit real*8(a-h,o-z)

c
c Function to calculate pressure in decibars from depth in metres using
c an'exact' iterative inverse of saunders and fofonoff's algorithm
c (routine dpthSO). Iterates until convergence or 3 0 iterations reach
c convergence criteria are error or a two point limit cycle,
c Error exit if final error > eps.
c

data eps/ld-6/
c

- 6 7 -

p=z
zz=-999.0
zl=-999.0
do 20 i=l,30
z2 = zl
zl=zz
zz=dpth80(p,xlat)
if(z.eq.zz.or.(abs(z-zz).lt.eps.and.zz.eg.z2))goto 50
p =p+z-zz

20 continue
if(abs(z-zz).lt.eps)goto 50

c
print subroutine z2pb. iteration has not converged after',
& ' 30 iterations'
print *,'object depth =',z,' last three estimates are:'
print iteration depth (depth error'
print *,28,z2,z-z2
print *,29,zl,z-zl
print *,30,zz,z-zz
stop

c
50 z2pb=p

return
end

#ifndef pottem
c
c

double precision function ptmp83a(pO,tO,s,pr)
c
c

implicit double precision (a-h,o-z)
c
c to compute local potential temperature at pr. Using Bryden 1973
c polynomial for adiabatic lapse rate and Runge-Kutta 4-th order
c integration algorithm. Ref: Bryden,H.,1973, Deep-Sea Res., 20,
c 401-408. Fofonoff,N.,1977, Deep-Sea Res., 24, 489-491.
c Check value: ptmp83 =36.89072 for s=40 nsu,t=40 deg c, pO
c (measured pressure) = 10000 decibars, pr = 0 bars.
c
c This has been modified so that the constants are calculated on first
c entry to full precision. D.J.Webb, Jan 1992.
c

data in/0/
if(in.eq.0)then
cl=0.5d0
c2=dsqrt(0.5d0)
c3=dsqrt(2d0)
c4=ld0-c2
c5=ld0+c2
c6=ldO/6dO
c7=2dO-c3
c8=2d0+c3
c9 =-2dO+3dO*c2
clO=-2dO-3dO*c2

in=l
endif
save cl,c4,c5,c6,c7,c8,c9,clO,in
p=pO
t:=:bO
h=pr-p
xk=h*atgr83(p,t,s)
t=t+cl*xk
g=xk
p=p+cl*h
xk=h*atgr83(p,t,s)
t=t+c4*(xk-q)
q=c7*xk+c9*q
xk=h*akgr83(p,t,s)
t=b+c5*(xk-q)
q=c8*xk+clO*q
p=p+cl*h
xk=h*akgr83(p,b,s)
ptmp83a=t+(xk-2dO*q)*c6
return
end
real*8 function atgr83(pin,t,s)
implicit real*8(a-h,o-z)

c
c
c Adiabatic temperature gradient deg c/bar
c Ref: Bryden,H.,1973, Deep-Sea Res., 20, 401-408
c Check value: atgr80=3.255976e-3 for s=40 nsu,t=40 c,
c pin=10000 decibars
c
c convert pressure to bars

p=pin*0.1
ds = s-3 5d0
atgr83=(((-2.1687d-13*t+1.8676d-ll)*t-4.6206d-10)*p

&+((2.7759d-10*t-1.1351d-8)*ds+((-5.4481d-12*t
&+8.733d-10)*t-6.7795d-8)*t+1.8741d-6))*p
&+(-4.2393d-7*t+1.8932d-5)*ds
&+((6.6228d-9*t-6.836d-7)*t+8.5258d-5)*t+3.5803d-4

c
c as from 19 July 1983, gradient is per decibar, not per bar

atgr83=atgr83*0.1
return
end

#endif
#define noreport 1
#include "../setgrid.F"
#include /header.F"
#include "../blkdta.F"
#include "../ascoutO.f"

69-

APPENDIXD(v)

program getslice *******************

c
c Program to retrieve standard direction slices from MOM restart data-
c sets. Output is in the form of ascout cards files suitable for
c viewing via the FRAM plotting programs. Many of the modules used in
c the construction of this program are taken directly from the MOM
c source code. This should mean that any reconfiguring of the ocean
c model will be automatically accounted for by simply re-compiling this
c extraction program with the same preprocessor directives.
c
c e.g.: cc -P -Dopenbc -Ddiskless etc. getslice.F
c mv getslice.i getslice.f
c f77 -o getslice getslice.f
c
c will produce a code capable of correctly extracting slices from a
c restart dataset produced by running the model in core with an open
c northern boundary.
c
c Additional preprocessor directives unique to this program are:
c vtsteps : used to calculate the model day from the timestep
c according to a set variation in the length of the timestep
c (e.g. if the timestep has been changed part-way through a
c run).
c
#include "param.h"
#include "ctmngr.h"
#include "emode.h"
#include "iounit.h"
#include "levind.h"
#include "grdvar.h"
#include "coord.h"
#include "scalar.h"
#ifdef multitasking
#include "cshrbf.h"
#else
#include "slabs.h"
#endif

real islice(jmt,km),jslice(imt,km),kslice(imt,jmt)
real vmask(4)
integer tpts
logical around
character*50 namrun,rstrtfn
character*9 v^^^^6),dims(4)
character*2 fnames(6),opform
character*1 orien(3),dayno*4,fname*7,ans
external blkdta

70

c set up character strings for the header subroutine
data vars/'temperature','salinity','uvelocity','w^ilocity',
+ 'stream','depths'/dims/'latitude','longitude','depth'
+ 'stream'/
data fnames/'mt','ms','mu','mv','mp','md'/orien/'e','n','h'/

c
c Load the values used for masking in ascout

data vmask/1.e7,2.e7,3.e7 , 4.e7/
c
c Load some strings used by the header routine

data namrun/'Fasham model 2x1 resolution'/opform/'CD'/
c

pi = c4*atan(cl)
radian = c360/(c2*pi)
omega = pi/43082.0

c
itry=l
tpts=l

c
#ifdef vtsteps
c if variable length timesteps have been used the flag the present
c settings:

write(6,*) 'Extraction program assuming varying timesteps'
write(6,*) 'Current settings are: '

20 minutes'
60 minutes'
90 minutes'

write(6,*) 'days 0 to 14
write(6,*) 'days 14+ to 28
write(6,*) 'cbys 28+

#else
c Set the number of time steps per day

tperday=24
write(6,*) 'Extraction program assuming 24 timesteps per day'

#endif
write(6,*) ' '

5 write(6,*) 'Enter filename of restart dataset: '
read(5,'(A)') rstrtfn

c
inquire(file=rstrtfn,exist=around)
if(.not.around) then
itry=itry+l
write(6,*) 'File not found. Please try again or enter quit'
if(rstrtfn(l:4).eq.'quit') then
write(6,*) 'User requested exit'
stop

endif
if(itry.gt.5) then
write {6,*} 'Repeated filename failure...program halted'
stop

endif
goto 5
endif

c
write(6,*) 'Enter choice of variable: '
write(6,*) '(1) Temperature '
write(6,*) '(2) Salinity '

71

write(6,*) '(3) U-velocity'
write(6,*) '(4) V-velocity'
write(6,*) '($) Stream-function'
write(6,*) '(6) Topography '

c
ilim=6

#ifdef openbc
write(6,*) '(7) Reference temperature along open boundary'
write(6,*) '(8) Reference salinity along open boundary'
ilim=8

#endif
c

read(5,*) itype
if(itype.lt.l.or.itype.gt.ilim) then
write(6,*) 'Illegal variable choice ...defaultir^ to type 1'
itype=l

endif
if(itype.eq.3.or.itype.eq.4) tpts=0

c
IF (itype.It.5) then
write(6,*) 'Enter choice of slice direction: '
write(6,*) '(1) E-W slice'
write(6,*) '(2) N-S slice'
write(6,*) '(3) Horizontal slice'
read(5,*) ichoice
if(ichoice.It.1.or.ichoice.gt.3) then
write(6,*) 'Illegal direction choice ...defaulting to choice 3
ichoice=3

endif
if(ichoice.eg.1) then
write(6,*) 'Enter jrow of slice: '
read(5,*) jrow
if(jrow.it.1.or.jrow.gt.jmt) then
write(6,*) 'Illegal row choice ...defaulting to jn±/2'
jrow=jmt/2

endif
elseif(ichoice.eq.2) then
write(5,*) 'Enter irow of slice; '
read(5,*) irow
if(irow.It.1.or.irow.gt.imt) then
wTite(6,*) 'Illegal column choice ...defaulting to imt/2'
irow=imt/2

endif
jrow=jmt

else
writefG,*) 'Enter k-level: '
read(5,*) klevel
if{klevel.It.1.or.klevel.gt.km) then
wTite(6,*) 'Illegal level choice ...defaulting to k=l'
klevel=l

endif
jrow=jmt

endif

72 -

ELSEIF(itype.eq.5.or.ikype.eq.6) then
c

ichoice=3
klevel=l

c
ELSE
ichoice=l
jrow=]mt

c
END IF

c
c Call the MOM routine grids to set up the grid. The version actually
c included with this program is identical to the original grids routine
c {MOM_1.0) but does not detail the grid arrays on stdout.
c If setgrid.F has been altered since MOM_1.0 then update the version
c included below.

call grids
c
#ifdef openbc

nkntrl=2+imt*km*nt
call ostart (kontrl, nkntrl, nkntrl, 1)

#else
call ostart (kontrl, 2, 2, 1)

#endif
call ostart (kflds, nkflds*nwds, nwds, 1)
call ostart {labs(l), jmt*nslab, nslab, nbuf)
call ostart (labs(2), jmt*nslab, nslab, nbuf)
call ostart (labs(3),]mt*nslab, nslab, nbuf)

c
open(iorest,file=rstrtfn,access='SEQUENTIAL',form='UNFORMATTED')

c
c Read the restart dataset using rdrest from the standard MOM module:
restio.F

call rdrest
call oget(kontrl,2,1,itt)

c
c
c compute permuting disc indicators and read in 2 levels of
c stream function.

c
#ifdef diskless
ifdef multitasking

ndiskb = mod(itt+2,ntlev) + 1
ndisk = mod(itt ,ntlev) + 1
ndiska = mod(itt+1,ntlev) + 1

else
ndiskb = mod(itt+l,ntlev) + 1
ndisk = mod(itt ,ntlev) + 1
ndiska = ndiskb

endif
#else

ndiskb = mod(itt+2,ntlev) + 1
ndisk = mod(itt ,ntlev) + 1

- 73

ndiska = mod(itt+l,nblev) + 1
#endif
c
c
c Retrieve stream-fn and topography arrays

call oget (kflds, nwds, (ndisk-l)*nwds+l, p(l,l,2))
call oget (kflds, nwds, (ndiska-l)*nwds+l, p(l,l,l))

c
call oget(kflds,nwds,5*nwds+l,kmt)

c
c
c compute number of vertical levels on the "u" grid
c

do 800]=l,]mt
kmu(imt,]) = 0

800 continue
c

do 900 i=l,imt
kmu(i,]mt) = 0

900 continue
c

do 1000]=l,]mtml
do 990 i=l,imtml
kmu(i,]) = imln (kmt(i,j), kmt(i+l,]), kmt(i,j+l), knt(i+l,]+l)

99-0 continue
1000 continue
#ifdef openbc
c
c set open boundary topographic conditions
c

do 737 i=l,imtml
kmu(i,jmt)=kmu(i,jmtml)

737 continue
#endif
#ifdef cyclic
c
c set cyclic conditions
c

do 1100 j=l,jmt
kmufimt,]) = kmu(2,j)

1100 continue
#endif
#ifdef symmetry
c
c set symmetry conditions
c

do 1200 i=l,imt
kmu(i,imt) = kmu(i,]mtm2)

1200 continue
#endif
c

-74

c
c compute depths and reciprocal depths

do 1400]=l,jmt
do 1390 1=1,imt

hr(i,j) = cO
h(i,j) = cO
if (kmu(i,j) .ne. 0) then
hr(ifj) = cl/zw(kmu(i,i))
h (i,j) = zw(kmu(i,]))

endif
1390 continue
1400 continue

c
c
c Makeup filename:
#ifdef vtsteps

if:(itt.le.l008) then
NSLA=itt/72
elseif(itt.gt.1008.and.itt.le.1334) then
NSLA=14 + (itt - 1008)/24
else
NSLA=28 + (itt - 1334)/16
endif

#else
NSLA=itt/tperday

#endif
write(6,*) 'Data extracted from timestep: itt, ' ',NSLA
write(dayno,'(i4.4)') NSLA

#ifdef openbc
if(itype.eq.7.or.itype.eq.8) then
itrace=itype-6
fname=fnames(itrace)//orien(ichoice)//dayno
else

#endif
fname=fnames(itype)//orien(ichoice)//dayno

#ifdef openbc
endif

#endif
c

nc=mod(itt,ntau)+1
nm=mod(itt-1,ntau)+1
jc=mod(jrow,nslabs)+1

c
c Check validity of output filename and request permission to
c overwrite if necessary:

inquire(file=fname//'.cards',exist=around)
if(around) then
write(6,*) 'Output file: '//fname//'.cards already exists'
write(6,*) 'Ok to overwrite? (y/n)'
read(5,'(A)') ans

75

iE(ans.eq.'y'.or.ans.eq.'Y') then
open(unit=35,file=fname//'.cards')

c
else

c
c Search for an unused filename by appending single characters to the
c existing filename:

write(6,*) 'Searching for alternative name...'
do 333 ich=ichar('a'),ichar('z')
inquire (file=fname//char(ich)//'.cards',exist=around)
if(.not.around) goto 444
write(6,*) fname//char(ich)//'.cards exists'

333 continue
write(6,*) 'Alternative name not found...stoppir^M
stop

444 write(6,*) 'Using file: '//fname//char(ich)//'.cards'
open(unit=35,file=fname//char(ich)//'.cards')
endif

else
open(unit=35rfile=fname//'.cards')

endif
c
c
C - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = ~ = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = -

c If stream-function then mask,scale and output here:
c

if(itype.eq.5) then
do 100 j=l,]mt

do 90 i=l,imt
kslice(i,j)=p(i,j,1)*1.E-12
if (kmt{i,j) .le. 1) then
kslice(i,i) = vmask(l)

endif
90 continue
100 continue

call header(35,vars(itype),dims(4),l,imtm2,l,]mt,tpts,
+ 0,op form,namrun)
call ascoutO(kslice,imt,imtm2,jmt,vmask,2,35)
stop
endif

c-=--
c-=-
c If Topography then mask,scale and output here:
c

if(itype.eq.6) then
do 155 j=l,jmt

do 955 i-l,imt
kslice(i,j)=kmt(i,])
if (kmt(i,j) .le. 1) then
kslice(i,j) = vmask(l)

endif
955 continue
155 continue

-76

call header(35,vars(ibype),dims(4),l,imkm2,l,jmt,kpks,
+ 0,opEorm,namrun)
call ascoutO(kslice,imt,imtm2,]mL,vmask,2,35)
stop
endif

C - = : - = - = -

#ifdef openbc
c==-==
c If tracer on open northern boundary then mask and output here:
c

call oget(kontrl,imt*km*nt,3,tn(l,l,l))
if(itype.eq.7.or.itype.eq.8) then
do 555 k=l,km
d# 555 1=1,imt
j8lice(i,k)=tn(i,k,itrace)

if (kmt(i,]row).le.l) then
jslice(i,k)=vmask(l)

elseif (kmt(i,jrow).lt.k) then
]slice(i,k)=vmask(2)

endif
555 continue

call header(35,vars(itrace),dims(ichoice),l,imtm2,l,km,tpts,
+]row,opform,namrun)
call ascoutO(jslice,imt,imtm2,km,vmask,2,35)
stop
endif

c==- = = -==-==- = = -==-==-==- = = - -
c
#endif

c For Horizontal and N-S slices loop through whole dataset:

if(ichoice.ge.2) then
do 221]=l,]row
]C=mod(j,nslabs)+l

c
c Retrieve slab information using routine getrow. This routine is
c similar to the MOM module getvar (included as part of step.F) but
c includes additions to mask the topography ready for ascout.
c

call getrow (],ic,itype, vmask)
c

if(ichoice.eq.3) then
do 121 i=l,imt

if (itype.le.nt) then
kslice(i,i)=t(i,klevel,]c,nc,itype)
elseif(itype.eq.nt+1) then
kslice(i,i)=u(i,klevel,jc,nc)

elseif(itype.eq.nt+2) then
kslice(i,j)=v(i,klevel,]c,nc)
endif

121 continue
c

- 7 7 -

elseif (ichoice.eq.2) then
do 321 k=l,km
if (itype.le.nt) then
islice(],k)=t(irow,k,]c,nc,itype)
elseif(itype.eq.nt+l) then
islice(],k)=u(irow,k,]c,nc)

elseiE(itype.eq.nt+2) then
islice(],k)=v(irow,k,]c,nc)

endif
321 continue

endif
c
221 continue

c
if(ichoice.eq.3) then
call header(35,vars(itype),dims(ichoice),l,imtnk^l,imt,tpts,

klevel,opform,namrun)
call ascoutO(kslice,imt,imtm2,]mt,vmask,2,35)

elseif(ichoice.eq.2) then
call header(35,vars(itype),dims(ichoice),l,]mt,l,km,tpts,

irow,opform,namrun)
call ascoutO(islice,]mt,jmt,km,vmask,2,35)

endif

c
c-

c Else select only the required E-W slice:

elseif(ichoice.eq.1) then
call getrow (jrow,jc,itype,vmask)

do 222 k=l,km
do 222 i = 1,imt
if(itype.le.nt) then
]slice(i,k)=t(i,k,jc,nc,itype)

elseif (itype.eq.nt+1) then
jslice(i,k)=u(i,k,jc,nc)

elseif (itype.eq.nt+2) then
islice(i,k)=v(i,k,]c,nc)

endif
222 continue

c
call header(35,vars(itype),dims(ichoice),l,lmtm2,l,km, tpts,

f jrow,opform,namrun)
call ascoutO(jslice,imt,imtm2,km,vmask,2,35)

endif

c
close (unit=35)

end
subroutine getrow (jrowt, jptr ,itype, vmask)

78 -

#ifdeE multitasking
cfpp$ noconcur r
#endif
c

c
c Read prognostic variables from row "jrowt" on disk
c slab window at position "jptr". Set the masks for "
c a copy of the internal modes before constructing the
c

into the memory
jrowt" and save
full velocity.

c
#include "param.h"
#include "ctask.h"
#include "emode.h"
#include "grdvar.h"
#include "coord.h"
#include "scalar.h"
#include "iounit.h"
#include "levind.h"
#include "slabs.h"
#include "switch.h"

dimension ubar(imt), vbar(imt)
real vmask{4)

c
c limit size of jrow
c

jrow = min(jrowt,jmt)
c
c
c read slabs from row "jrow" on disk into the memory slab window at
c row "jptr"
c
c

if (jrow .le. jmt) then
if (mixts) then

call oget (labs(ndisk), nslab, (jrow-l)*nslab+l, bufsl)
else

call oget (labs(ndiskb), nslab, (jrow-l)*nslab+l, bufsl)
endif
call xfer (bufsl, t(1,1,jptr,nm,l))
call oget (labs(ndisk), nslab, {jrow-1)*nslab+l, bufsl)
call xfer (bufsl, t(1,1,jptr,nc,l))

endif
c
c
c set masks for row "jrow"
c
c

do 100 k=l,km
do 90 i=l,imt

c

- 79

c IE Salinity then rescale
c

if(itype.eq.2)
+ t: (i, k, jpkr.nc, ikype) = (t: (i, k,]pt:r,nc, itiype) 4-0.035)*1000.

c
if(itype.le.2) then

fm(i,k,jptr)=1.0
if (kmt(i,]row) .le. 1) then

fm(i,k,jptr)=0.0
t(i,k,jptr,nc,itype) = vmask(l)

elseif (kmt(l,irow).lt.k) then
fm(i,k,jptr)=0.0
t(i,k,jptr,nc,itype) = vmask(2)

endif
else

gm(i,k,jptr)=1.0
if (kmu(i,jrow) .le. 1) then
gm(i,k,jptr)=0.0
u(i,k,jptr,nc) = vmask(l)
v(i,k,jptr,nc) = vmask(l)

elseif (kmu(i,jrow).lt.k) then
gm(i,k,jptr)=0.0
u(i,k,jptr,nc) = vmask(2)
v(i,k,jptr,nc) = vmask(2)

endif
endif

90 continue
100 continue
c
c
c set pointers (indices) to cycle internal modes
c (also used to cycle del**2 quantities for biharmonic option)
c
c

jptl = mod (jrowt+l,numjpt) + 1
jpt2 = mod (jrowt+2,numjpt) + 1
jpt = jpt2

#ifdef biharmonic
jpt3 = mod (jrowt+3,numjpt) + 1
jpt = jpt3

#endif
c

if(itype.It.3) return
c
c
c save a copy of the internal mode velocity from row "jrow"
c (row "jrow + 1" if the biharmonic option is enabled) for use in
c constructing 'fvsu' in clinic and diagnostic caluclations
c
c

do 200 k=l,km
do 190 i = 1,imt

uclin(i,k,jpt) = u(i,k,jptr,nc)
vclin(i,k,jpt) = v(i,k,jptr,nc)

80

190 continue
200 continue
c
c
c add external mode velocity to internal mode velocity for row
c row 'jsrow' (tau & tau-1)
c

if (jrow .le. jmtml) then
do 300 m=l,2

if (m .eg. 1) then
n = nc

else
n = nm

endif
do 270 i=l,imtml

diagl = p(i+l,]row+l,m) - p(i ,]row,m)
diagO = p(i ,]row+l,m) - p(i+l,]row,m)
ubar(i) = -(diagl+diagO)*dyu2r(jrow)*hr(i,jrcw)
vbar(i) = (diagl-diagO)*dxu2r(i)*hr(i,jrow)*csur(jrow)

270 continue
#ifdef cyclic
c
c set cyclic boundary conditions
c

ubar(imt) = ubar{2)
vbar(imt) = vbar{2)

#endif
do 290 k=l,km

do 280 i = 1,imu
u(i,k,jptr,n) = u(i,k,jptr,n) + ubar(i)*gm(i,k,jptr)
v(i,k,jptr,n) = v(i,k,jptr,n) + vbar(i)*gm(i,k,jptr)

280 continue
290 continue
300 continue

endif
c

return
end
subroutine header(op,trac,depvar,ibasel,itopl,ibase2,itop2,tpts,
+ intlv,opform,namrun)

c
c Subroutine to produce a header for ascout files.
c
c In the current version the following assumptions are made:
c 1. The grid spacing is uniform in lat/long directions
c 2. The first longitudinal "t-point" is on the Greenwich meridian
c 3. stlat is th^ latitude of the southern-most "u-point"
c
c Input arguments are:
c
c name type description
c
c op integer Output fortran unit

81

c brae
c
c depvar

ibasel
itopl
lbase2
itop2
kpts

intlv

character

character

integer
integer
integer
integer
integer

integer

character

character

c opEorm
c
c namrun
c
c
#ifndef nomodel
#include "param.h"
#include "grdvar.h"
ttinclude "scalar.h"
#include "coord.h"
#endif

character trac*(*)
character*9 quan(3
integer nop(3),op,
common /tstep/ ndf

#ifdef nomodel

Variable of output field
(e.g. Temperature)

dimension held constant for this slice. Options
are : latitude, longituck^ depth or stream

start column of output field
end column of output field
start row of output field
end row of output field
flag to indicate whether output field is on

t-points (1) or u-points (0)
Row, column or depth indicator (used for

annotation)
output form no longer used but included for

backward compatibility
text for inclusion in the heackir's comments

field

,depvar*9,opform*(*),namrun*(
),from(3),incr(3),to(3)
tpts
ir,ndlas,ndinc

c If using header outside a MOM-code application it may be necessary
c to fill in the following definitions:

real dxt(l),dyt(l)
dtts=3600.
ttsec=0000 .
itt=288
xincr =2.0
yincr =1.0
stlat=-79.

#else
c

xincr=dxt(l)*radian/radius
yincr=dyt(l)*radian/radiu8

#endif
c convert input strings to upper-case

call conv2up(trac)
call conv2up(depvar)
call conv2up(opform)

, call conv2up{namrun)
rintlv=float(intlv)

if{depvar(1:6).eg.'STREAM'
quan(l) = 'LONGITUDE'
quan(2) = ' LATITUDE'

then

c
c

82 -

write(from(l),'(E9.3)') (ibasel-l)*xincr +(l-tpts)*0.5*xincr
write(from(2),'(£9.3)')

(ibase2-l)*yincr + tpts*0.5*yincr +stlat
write(incr(l),'(f9.3)') xincr
write(incr(2),'(f9.3)') yincr
write(to(l),'(f9.3)') (itopl-l)*xincr + (l-tpts)*0.5*xincr
write(to(2),'(f9.3)')

(itop2-l)*yincr +tpts*0.5*yincr +stlat
nop(l) = itopl-ibasel+1
nop(2) = itop2-ibase2+l

elseif(depvar(l:3).eq.'DEP') then
quan(l) = 'LONGITUDE'
quan(2) = ' LATITUDE'
write(from(l),'(f9.3)')

(iba8el-l)*xincr + (l-tpts)*0.5*xincr
write(from(2),'(f9.3)')

(ibase2-l)*yincr + tpts*0.5*yincr +stlat
write(incr(l),'(f9.3)') xincr
write(incr(2),'(f9.3)') yincr
write(to(l),'(f9.3)')

(itopl-l)*xincr + (l-tpts)*0.5*xincr
write(to(2),'(f9.3)')

(itop2-l)*yincr + tpts*0.5*yincr +stlat
nop(l) = itopl-ibasel+1
nop(2) = itop2-ibase2+l

elseif(depvar(1:3).eq.'LAT') then
quan(l) = 'LONGITUDE'
quan(2) = ' DEPTH'
write(Erom(l),'(f9.3)')

(ibasel-l)*xincr + (l-tpts)*0.5*xincr
write(from(2),'(f9.3)') float(ibase2)
write(incr(l),'(E9.3)') xincr
write(incr(2),'(f9.3)') 1.0
write(to(l),'(f9.3)')

(itopl-l)*xincr + (l-tpts)*0.5*xincr
write(to(2),'(f9.3)') float(itop2)
nop(l) = itopl-ibasel+1
nop(2) = itop2-ibase2+l
rintlv = (intlv-l)*yincr + tpts*0.5*yincr +stlat

elseif(depvar(1:3).eq.'LON') then
quan(l) = ' LATITUDE'
quan(2) = ' DEPTH'
write(from(l),'(f9.3)')

(ibasel-l)*yincr + tpts*0.5*yincr +stlat
write(from(2),'(f9.3)') float(ibase2)
write(incr(l),'(f9.3)') yincr
write(incr(2),'(f9.3)') 1.0
write(to(l),'(f9.3)')

(itopl-l)*yincr + tpts*0.5*yincr +stlat
write(to(2),'(f9.3)') float(itop2)

83

nop(l)
nop(2)
rintlv

endif

itopl-ibasel+1
ikop2-ibase2+l
(intlv-l)*xincr + (l-tpts)*0.5*xincr

quan{3)
ndinc=0
ndfirl = itt
ndlas = itk
write(from(3)
write(incr(3)
write(to(3),'
nop(3) = 1

TIMESTEP'

'(i9)')ndfirl
'(i9)')ndinc
[i9)')ndlas

if (depvar(l:3) .eq. 'STR') then
write(op,5101)trac,opform
else
write(op,5100) trac,depvar,opform

endif

5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111

write(op,5102) namrun(l:2),namrun
write(op,5103) (i,i=l,3)

(guan(i),i=l,3)
(from(i),i=l,3)
(incr(i),i=l,3)
(to(i),i=l,3)
(nop(i),i=l,3)
.eg. 'STREAM') then

write(op,5104)
write(op,5105)
write(op,5106)
write(op,5107)
write(op,5108)
if (depvar(l:6)
write(op,5109) ' '

else
write(op,5110) rintlv

endif
write(op,5111) ttsec ,dtts
format('VARIABLE :',al5,2x,a9,t41,'FORMAT
format('VARIABLE :',al5,t41,'FORMAT

, a2)

format('MODEL : ' ,a2, '
format('INDEX ',9x,':',3(
format('QUANTITY ',6x,
format('FROM ',6x,
format('INCREMENT',6x,
format('TO ',6x,
format('NO.OF POINTS ',2x,':
format(a50)
format(f7.3)
format('FIRST TTSEC ',fl2.0,
return
end
subroutine conv2up(mixcase)
character mixcase*{*)
integer upa

COMMENTS:
(' ,il,' : ')
',a9. :',a9,' ',a9.
',a9. :',a9,' ',a9,
',a9, :',a9,' ',a9,
' , a9, :',a9,' ' ,a9.

',a2)
a55)

i9, i9. i9.

DTTS ',f5.0)

nchar=lnblnk(mixcase)

84-

lowa=ichar('a')
lowz=ichar('z')
upa =ichar('A')

c
do 10 n=l,nchar
nc=ichar(mixcase(n:n))
if(nc.ge.lowa.and.nc.le.lowz) then
nc=upa+(nc-lowa)
mixcase(n:n) = char(nc)
endif

10 continue
c

end
c
c Include a version of setgrid.F which differs only in the exclusion of
c some report output to stdout:
c
#define noreport 1
#include "setgrid.F"
c
c End of adapted setgrid.F
c
c
#include "odam.F"
#include "restio.F"
•include "blkdta.F"
•include "ascoutO.f"

> "̂ r̂.

W K m

U . . '. -, -

- p -

" * '

ykw4*gb

%
2@BB52a

8 d m a ™
& # " '

W*.-...»'':A szwit̂ ««*%A'A ̂ •aT^v^'lYKi'i Jp?-̂ 'jk»t'i.;

i":' "|J^4

K ^ \

E%K@2C "' * . 4f4' ' *A *

p:I7

^ V ' ^ >] W ' : ; ' .

7 f Ik « '» .»* . A 'A-fr̂ .-i-rw r;«3iJ(tefrwDlAiV'jjfc '""L'/x: \ - ^ R., . ,;••*•

fjt'' ^-1- .V ̂ V '- ;.

'sriSEr'. ?;' "
V "iV' ' !

• •

"̂v: * %

Nat^.alr'^7?
Enyizonment'c
^Rese'arch.. ', 428-W3P66 '-̂.i

a g u ' ' *k \ t.
K b A m y «-V̂fr f ̂ ̂

