Fiee

NN\ Institute of
% Oceanographic Sciences
= Deacon Laboratory

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 300

DBDBS data set of global gridded
bathymetry

N P Plummer

1991

Wormley

Godalming

Surrey GU8 5UB

Tel 0428 684141

Telex 858833 OCEANS G
Telefax 0428 683066

CONTENTS Page

INTRODUCTION 4
AIM 4
PROBLEMS 5
PROGRAMS 5
TAPFILE FORTRAN 5
025DEG FORTRAN 6
025LAND FORTRAN 6
025COLOUR FORTRAN 7
RESULTS 7
CONCLUSIONS 7
ACKNOWLEDGEMENTS 8
FIGURES 1-11 9
APPENDICES 18
Appendix 1: Listing of TAPFILE FORTRAN 18
Appendix 2: Listing of 028DEG FORTRAN 16
Appendix 3: Lisitng of 025LAND FORTRAN 20

Appendix 4: Listing of 025COLOUR FORTRAN 26

INTRODUCTION

The DBDBS data set contains digital bathymetric data for the world oceans interpolated on to
a Smin by Smuin grid. The data set was compiled in the United States by the Naval Ocean Research
and Development Activity INORDA) and the Naval Oceanographic Office (USNOO) with support
from the Ofice of Naval Research.

Each depth value is expressed in uncorrected whole metres and was derived from echo
soundings assuming a sound speed of 15800m/s . Crid points on land are indicated by a depth
value of -10.

The data set is contained on two magnetic tapes; one for the Southern Hemisphere and one
for the Northern Hemisphere respectively. The tapes are registered as F339 (Southem Hemisphere)
and F340 (Northern Hemisphere) with each one divided into 16 individual files of 45° by 45°. Each
separate file is then broken down into 81 blocks each of 5° by 5°. Each block contains 3721 data
points. Figures 1,2 and 3 show a diagramatic representation of this. Each 8° square is preceded by
a header which denotes the longitude and latitude and a flag indicates whether the block is entirely
land or not. If the flag is dencted by 1 then the 5° square is entirely land ,otherwise it contains one

Or more sea points.

AIM

The principal aim of the investigation was to obtain median depth values for an area of 1/4°
square and thus produce a representation of the ocean topography at this resolution. As a first
exercise the data set was broken down to produce median data values for an area of 1° square. This
imvolved taking successive blocks of 165 elements from each block of the 5° squares and deriving
the median value of each set of 169 elements. This process was repeated until the entire globe had
been covered. In this particular case the true mathematical median could be obtained , i.e. the
85th element of the 169 sorted integers. It was then decided to produce the median data values for
a finer resolution of 1/4° square. The programs written to produce the 1° resolution were slightly
modified to do this. This involved taking successive blocks of 16 data points from the data set and
repeating until a 5° square area had been covered. This process was then repeated until the entire
globe had been covered. Refer to fig. 3 for organisation of data points within a 5° square.

The true mathematical median value could not be used during this investigation; i.e. the
mean of the 8 and 9N elements of the sorted 16 values. As previously mentioned the depth

values are given in uncorrected whole metres. It was therefore considered appropriate to give the

-5

mathematical median as an integer value. In this investigation this was achieved by selecting the
8t glement of the 16 sorted infegers as an estimate 1o the true median. This means that the median

data values are an 'under estimate' of the true depth but only by a relatively small error margin.

PROBLEMS

The main problem encountered was concerned with accessibility to the data as it is stored
on several tapes and also in a character format foreign to the IBM. Another preblem was unveiled as
a shortage of disk-space meant that only one tape could be stored at any one instant. A program
was developed to read in one tape at a time, translate the ASCII character format of the tapes and

store the data on to a temporary disk. A series of further Fortran programs was then written to;

) Obtain median data depth values and store in new files.

(i) Convert the new files into ASCII character enceded format so that they may be used in
existing graphics programs.

(iii) Combme the data from the two hemispheres and output to a final file again in a form

suitable for the graphics programs .

All programs were written on the IBM mainframe computer and the final output transferred
to the SUN workstations for viewing .

The file containing the information about the DBDBS5 data set explains how the 61 grid points
on each of the four boundaries of the 5° square are repeated on the boundaries of adjacent 5°
squares. This was thought to be a problem at first as data would be read in twice during each
calculation of the median but it was later decided that this would have a neqilible effect on the final

median depth results.

PROGRAMS
Program 1: TAPFILE FORTRAN

This program transfers the data from the tapes on to a temporary disk on the IBM
mainframe. The physical tape characteristics are; 9 track , 1600 bpi , ASCII , unlabelled , record
length of 80 bytes and block size of 3120 bytes.

The prograrm is designed to read in all 16 files of each tape and store on a disk. As already
mentioned the tape is in ASCII character form. When transfering data to an IBM a change of format

is necessary. The character set for the IBM differs from the standard ASCII format and is called

_6-

EBCDIC. The data is transferred into a readable form through calling the routine call ASCEBC.
(Most other computer systems do not require this conversion process as the tape can be read
directly.) The output file to the disk is in character A80 format as this is the format specified in the
DBDBS file.

The variables (st=st+80 and ed=st+80 ; refer to appendix 1 for program listing) ensure that
all of the 81 blocks of each file are read intc a larger file which contains the information from the 16

files on each tape.
Program 2 : 025DEG FORTRAN

This program was developed primarily to exiract the median depth values from the data set.
The program accesses the file created by the previous program. The initial idea was to read in a
maximum of 4 files at a time and thus increase the speed of processing the data but as previously
mentioned the disk space was not readily available.

Once the file required has been read in from the original large file , the information is sent
to a new file. This is a check to ensure that the correct file has been obtained. At this point the data
is in character A80 format. This part of the program may be ommitted in future use as it was only a
check during the development of the program. After this, a new file is opened and the data is
rewritten with a record length of 305 (ie 6115) format. This is so that the data may be represented as
shown In fig. 3; ie as a two dimensional array of size (61,61) .This is done so that the required data
points can be calculated more easily.

The 16 values required are located within the (61,61) grid and they are sorted by calling the
call RSORT command. The eighth element of the set is extracted and passed to a new file for future

reference. Refer to appendix 2 for program listing.
Program 3: 025LAND FORTRAN

The output file from the previous program contains 400 median depth values for each 5°
square. These values are then stored in an array of size (20,20). 025land Fortran is concerned with
putting the files into the correct order for output , (le starting with file 1 in the bottom left-hand
corner of a large array and terminating with file 16 in the top right-hand comer of the array (refer
to fig . 1 for representation of how the files are stored on each tape) and converting the median
depth values into ASCII encoded character format through several subroutines. The ASCII encoded
character format is the same as that required by the graphics programs M-PLOT and G-PLOT used by
the FRAM group to display the model data (see Hateley, 1991). Subroutines ASCIIN and ASCOUT
are used to read in or write out data in this format. The array of size (1440,360) contains the total

median values at a 1/4° resolution for each individual hemisphere.

-7 -

Sections of the program are involved with defining the depth values of -10 as land and
assigning everything else as depths of the ocean topography. Refer to appendix 3 for program
listing.

Program 4: 025COLOUR FORTRAN

This program was written so that the information from the two hemispheres could be
combined on to a single file so that it could be implemented into the graphics programs. This
requirement was necessary as when the two individual files where joined together directly, a narrow
line was visible at the equator due to scaling differences between the two hemispheres. This
program removes that line to produce an uninterrupted image for viewing.

The array of size (1440,720) contains the information from both the Northern and Southern
Hemispheres at a resolution of 1/4° by 1/4° The ASCII characters which make up the final cutput
file are then passed to the graphics programs G-PLOT and M-PLOT where the median depth values
may be viewed graphically. Refer to appendix 4 for a program listing.of 025colour Fortran

RESULTS

Refer to igures 4-11.

CONCLUSION

In conclusion it may be observed that the 1/4° resolution obtained from the DBDBS data does
provide a good representation of the world ocean topography. Although this is a very fine
resolution, the programs developed to do this may be further modified to produce an even finer
resolution of 8min by Smin; ie the original bathymetric gridded data readings preduced by the
DBDBS data set. This is very simple to do in principle although a major problem would be the
immense size of the output files and also the time needed to produce them.

The new topography may be employed in future models which simulate ocean circulation.
One factor which will be important in future models is the simulation of the Agulhas Current off
South Africa. One of the shortcomings of FRAM (Fine Resolution Antarctic Model) is its poor
representation of some of the features of this current. Present conclusions suggest that this occurs
due to smoothing of the topography which occured when the model was set-up. At present eddy
formation and retroflection of the current occur too far up-stream, ie at a longitude east of where it
occurs in reality. It would be interesting to see if the new topography is employed in future models

and to see whether the Agulhas Current can be simulated more accurately using this topography.

ACKNOWLEDGEMENTS

Valuable assistance in developing the programs was provided by the FRAM Core Team
including Andrew Coward ,Tim Hateley and Simon Thompson. Support was also received with

much gratitude from Des Bulpett and Gwyneth Jones.

DBDBS DATA TAPE STRUCTURE

3%z 30°¢ 180¥e 270°z 360°¢

30%4
Tile File File Flle File File Tile File
10 11 12 13 14 15 1

Tape 2 45%y
file File File File File File File File
1 2 3 4 5 & 7 8

Zgquator

rile File File File File File File File
3 10 11 12 13 14 15 16

Tape 1 | . i5%3
Tile File File File File File file File
Y 2 3 4 5 & 7 8

| 90°s

Figure 1. File sequernce on tape.

T

N®W ‘NE

84) 85 | 68 (14 ég | 69 70 7T |72

33 8 87 l 58 58 | 60 61 63 | @2

48 47 48 49 e 81 83 33 84

45 37 i k1§ 40 41 43 43 44 43
22 23 30 a1 33 33 34 a3 38
19 20 21 22 a3 24 28 28 27
10 i1 12 13 1é i3 pt:] 17 18
1 2 3 4 s -] T 8 k]
A
SK SE

Figure 2. 5° square sequence within file. Figure 3. Grid point sequence within 5° square.

-10 -

MEDIAN DEPTH MODEL ¢ E:

Figure 4. Northern Hemisphere 1/4° resolution.

Figure 5. Southern Hemisphere 1/4° resolution

Z11 -

026degr

Figure 7. Pacific Ocean 1/4° resolution.

VARIAELE :
MEDIAN DEPTH

MODEL :

8000.0C
T000.00
6000 .0C

5000.

MELSIRIE))

4000.0C
3000.00

2000.0

.cards

Figure 8. Atlantic Ocean 1/4° resolution.

Southern African coastline 1/4° resolution.

([O

ABOVE 8000.00
7000.00 -~ 8000.00
6000.00 - 7000.00
5000.00 = 6000.00
4000.00 - 5000.00
300000 — 401.0.00
200000 - 3000,
1500.00 — I10(:10
1000.00 — 1500.00

500.00 — 100130

...8'[_.

Figure 10. WOCE Projection 1° resolution.

e

AB0VE 3000.00
800000 - 800+ O
7000.00 — 8000400
HOCDLY —- 70000
5500.00 - 6000.0D
SO00.00 - L
4500.07% — 5000.00
400000 = 450000
350000 - 400000
3000.02 - 350040
200000 ~ 300000

100000 - 2000.G0

V'[.

Figure 11. WOCE Projection 1/4° resolution.

15 -
APPENDIX 1

PROGRAM TAPFILE
C *PROGRAM TO READ AN ASCII TAPE WITH MULTIPLE FILES

CHARACTER *20 FNAME
CHARACTER * 1 ANS
INTEGER ENDREC, ST, ED
PARAMETER (LREC=3120)
CHARACTER BLOCK * 3120
FNAME='NICE DATA C'
CALL NDOPEN (3,FNAME, 1,2, UNKNOWN',80,0,ISTAT)
IF (ISTAT .NE. 0) THEN
WRITE (6,*) 'ERROR IN OPENING FILE FILE ONE A’
WRITE (6,%) 'ISTAT = ', ISTAT
STOP
ENDIF
C SET UP TAPDEF TO ATTACH TAPE TO STREAM 4

WRITE (6,*%) 'DO YOU WISH TO MOVE PAST ANY FILES 7 (Y/N)'
READ(5,110)ANS
110 FORMAT (A1)

WRITE (6,'(A1l)") ANS

IF (ANS.EQ.'Y') THEN
WRITE (6,%*)'ENTER NUMBER OF FILES YOU WISH TO MOVE PASS'
READ (5,*)MOVE
CALL FILFSP(4,MOVE)

EVDIF

*START READI\U FROM TAPE A BLOCK AT A TIME *
#READ IN ALL 16 FILES *

DO 70,K=1, 16

CALL TAPDEF (4,K,'TAP1','BLP',1600,'FB',3120,3120)
C *READ IN 81 BLOCKS*
11 READ (4,200,END=99)BLOCK

CONVERT TAPE FROM ASCII TO EBCDIC SO THE IBM UNDERSTANDS IT

CALL ASCEBC (BLOCK,BLOCK)

aann

(@]

*WRITE OUT BLOCK TG OUTPUT FILE *
“IE THE 81 BLOCKS OF EACH FILE *

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

QO

ST = 1
ED = 80
DO 30,I=1,39
WRITE (3,'(A80)') BLOCK(ST:ED)
ST = ST + 80
ED = ST + 80
30 CONTINUE
GOTO 11
99 CONTINUE
70 CONTINUE
200 FORMAT(A3120)
STOP
END

-16-

APPENDIX 2

@]

aQaoaaan

PROGRAM DEGnEFSQUARES

vvvvvvvvvvvvvv
ridriy

*FIRST SECTION OF THE PROGRAM IS CONCERNED WITH SELECTING TTE *
*FILES YOU WISH TO WORK WITH.EACH FILE CONTAINS DEPTH VALU
*FROM THE NORTHER\/SOUTHERV HEMISPHERES

vvv
,,

CHARACTER * 80 RECORD,HEADER

CHARACTER * 20 FNAME, FILENAME

INTEGER FILE1l,FILE2,FILE3,FILE4 ,NREC,NFILES,POSITION
INTEGER A(4000),B(61,61),MEDIAN,N,LOOP,F,Z,MED(400),IDEG(16)
NREC=18954

FNAME="NICE DATA C'
CALL NDOPEN(3,FNAME,2,1,'0OLD',80,303264,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*) 'ERROR IN OPENING FILE ', FNAME
WRITE(6,*)'ISTAT= ', ISTAT
STOP
ENDIF
FILENAME='STORDAT DATA C'
CALL NDOPEN(2,FILENAME, 1,3, 'UNKNOWN',680,18954,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*)"ERROR IN OPENING FILE ', FILENAME
WRITE(6,*) ' ISTAT= ',ISTAT
STOP
ENDIF

WRITE (6,%) 'HOW MANY FILES DO YOU REQUIRE?'

WRITE (6,%) "MAXIMUM OF 4 FILES'

READ (5,%*) NFILES

IF (NFILES .GT. 4) THEN
WRITE (6,%) 'PLEASE TRY AGAIN,MAX NUMBER OF FILES IS &'
GOTO 1

ENDIF

IF (NFILES .EQ. 1) THEN
WRITE(6,*) 'PLEASE ENTER THE FILE YOU REQUIRE'
READ(5,*) FILE1

ELSEIF (NFILES .EQ. 2) THEN
WRITE(6,%*) 'PLEASE ENTER WHICH TWO FILES YOU REQUIRE'
READ(5,*) FILE1l, FILE2

ELSEIF (NFILES .EQ. 3) THEN
WRITE(6,%*) 'PLEASE ENTER WHICH THREE FILES YOU REQUIRE'
READ(5,*) FILEl, FILE2, FILE3

ELSE
WRITE(6,*) 'PLEASE ENTER WHICH FOUR FILES YOU REQUIRE'
READ(5,*) FILEl, FILE2, FILE3, FILE4

ENDIF

IF (FILE1l .EQ. 1) THEN
POSITION=1

ELSE

POSITION=(18954%(FILE1-1)+1)
ENDIF

adaan

S ES NG Ne!

@]

-17 -

DO I=1,NFILES
DO J=1,NREC
READ (3, '(A80)',REC=POSITION)RECORD
WRITE (2,'(A80)')RECORD
POSITION=POSITION+1

ENDDO
IF (I .EQ. 1) THEN
IF (FILE2 .NE. (FILE1l + 1)) THEN
POSITION=(18954 ¥ FILE1l) + (18954 * ((FILE2 - FILE1) - 1)+1)
ENDIF
ELSEIF (I .EQ. 2) THEN =
IF (FILE3 .NE. (FILE2 + "1)) THEN
POSITION=(18954*FILE2) + (18954 * ((FILE3 - FILE2) - 1)+1)
ENDIF
ELSE
IF (FILE4 .NE. (FILE3 + 1)) THEN
POSITION=(18954 * FILE3) + (18954 * ((FILE4 - FILE3) - 1)+1)
ENDIF
ENDIF
WRITE (6,*) 'POSITION BEFORE THE END IS ', POSITION
ENDDO

OUTPUT 4 FILES IN DIFF FORMAT TO O/P FILE

CALL NDOPEN(15,'STORDAT DATA C',1,1,'0OLD',80,18954,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*) 'ERROR IN OPENING FILE',STORDAT DATA C
WRITE(6,*) 'ISTAT = ',ISTAT
ENDIF
CALL NDOPEN(16,'TEST DATA D',1,3, UNKNOWN',3005,0,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*) 'ERROR IN OPENING FILE',TEST DATA A
WRITE(6,*)'ISTAT = ',ISTAT
ENDIF

*LOOP 81 TIMES FOR ALL BLOCKS IN A FILE
*SORT DATA INTO 6115 FORMAT AND OUTPUT TO 'TEST DATA' FILE®

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
»»»»»»»»»»»»

vvvvvvvvvvvvvvvvvvvvv

DO K=1,81
READ (15,'(A80)") HEADER
WRITE(16,'(A80)') HEADER
WRITE(16,%)

DO I=1,3728,16
READ (15,'(16I5)') (A(I+J-1),J=1,16)
ENDDO
WRITE (6,*) 'BEFORE DO I=1,3668"
DO I=1,3668,61
WRITE (16,'(61I5)') (A(I+J-1),J=1,61)
ENDDO
ENDDO

CLOSE 'TEST DATA' FILE

CALL NCLOSE(16,ISTAT)
WRITE (6,*) 'AFTER DO I=1,3668'

[O EG I

[OH®]

O Oa

aQaOaaan

aaaa

vvvvvvvvvvvvvvv

*READ INFORMATION FROM A 5 DEGREE SQUARE;BREAKDOWN THAT W
*INFORMATION INTO 1/4 DEGREE SQUARES AND OBTAIN MEDIAN PTS. *
”THEN STORE RESULTS GATHERED 1VTO VARIODS FILE *

FILENAME="TEST DATA D'
CALL NDOPEN (16,FILENAME,1,1,'0OLD',3005,0,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*) 'ERROR IN OPENING-FILE',6FNAME
WRITE(6,*)"ISTAT = ',ISTAT
ENDIF
FILENAME='MEDIAN DATA D'
CALL NDOPEN (4,FILENAME,1,3, 'UNKNOWN',110,0,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,%) 'ERROR IN OPENING FILE',FNAME
WRITE(6,%) "ISTAT = ', ISTAT
ENDIF

WRITE(6,*)'GIVE US A CHANCE'
READ ALL NUMBERS IN FILE INTO THE B ARRAY

DO 7=1,81
READ(1£,'/
READ(16 ,%)
TCOUNTER=0
WRITE(4,%)
WRITE(4,*)HEADER

Aon

> ' YHEADER

£3Ow g

8
B

Yoo stenlenede Yo vese e sl vedle sl v Yook Jedledtest
FOITITITICATICNIVENCTCICN

*THE 3721 DATA POIVTS ARE A?RANGED IN A (61,61) ARRAY =
THE CALCULATIONS BELOW LOCATE THE DATA POINTS REQUIRED
“RESULTING IN 400 1/4 DEGREE SQUARES FROM THE ORIGINAL *
*5 DEGREE SQUARE
LOOP 0
DO L=1,20
DO K=1,20
DO I=((L-1)%3)+1, ((L-1)*3)+4
DO J=((K-1)%*3)+1, ((K~1)*3)+4
ICOUNTER=ICOUNTER+1
IDEG(ICOUNTER)=B(J,I)
ENDDO
ENDDO
N=ICOUNTER
CALL RSORT(IDEG,16,ISTAT)

SRR DS SO TR ST SCIUE JUE SR JOR SR S SUE SULTUE SR DO TR SR SO SO SUC TR S S SR SRR SO SUK DU S SO SO S SOE SR SO JUK SR JOR SR S SO IO, SO% SO DL SR SO SR S 00
SR NN Wi A i i i o e ard e el Sr i it i i e ariie i o Dt e e e A e i S i S A AR A S i Sy

*THE NUMBERS WITHIN THE 16 ARRAY ARE NOW SORTED AND THE *
MEDIAN VALUE IS CALCULATED *

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Jedededeke oo oo e dede e oo e e Yo de e e de e Fode e de dede e de e e e e e e e e e e e e CUTITY

LOOP = LOOP + 1
CALL AMEDIAN (IDEG,N,MEDIAN,LOOP,MED)
ICOUNTER=0
ENDDO
ENDDO

]

C

WRITE

]

-18-

QUTPUT MED ARRAY TO MEDIAN DATA A (STREAM &4)

00 I=1,400, 20
WRITE (4&4,'(2015)") (MED(I+J-1),J=1,20)

ENDDO

ENDDO

CLOSE ALL STREAMS

CALL NCLOSE(16,ISTAT)
F (ISTAT.NE. 0) THEN
WRITE (6,*)'ERROR IV CLOSING ILE' ,FILENAME
WRITE (6,%)'ISTAT =',ISTAT

ENDIF

CALL NCLOSE(4,ISTAT)

IF (ISTAT.NE.O) THEN

(6,%)'ERROR IN CLOSING FILE',FILENAME
WRITE (6,%)"ISTAT =',6ISTAT

ENDIF

CALL NCLOSE(7,ISTAT)

IF (ISTAT.NE.O) THEN
WRITE (6,%)'ERROR IN CLOSING FILE',FILENAME
WRITE (6,%)'ISTAT =',ISTAT

ENDIF

STOP

END

vvvvvvvvvvvvvvvvvvvvvvvvvvvv
\\\\\\\

SUBROUTINE AMEDIAN (IDEG,N,MEDIAN,LOOP,MED)
REAL IDEG(16), MED(400)
TF (MOD(N,2).EQ.0) THEN
MED(LOOP) =IDEG(8)
ENDIF
RETURN
END

- 20 -

APPENDIX 3

200
100
300

PROGRAM LAN

vvvvvvvvvvv
R R AT ar e e il driy

CHARACTER * 20 FILENAME
CHARACTER * 80 HEADER,DUMMY
INTEGER OARRAY(20,20)

REAL NARRAY(1440,360),VMASK(4)
DATA VMASK/-10.0,-10.,-10.,-10./

FILENAME='NORTH DATA A'
CALL NDOPEN (15,FILENAME,1,1,'OLD',110,0,ISTAT)
IF (ISTAT.NE.O) THEN
WRITE(6,*) 'ERRCR IN OPENING FILE ',FILENAME
WRITE(6,%*) 'ISTAT = ', ISTAT
STOP
ENDIF
KUP=0
DO 300 XKF=1,16
KR=KF
IF(KF.GE.9) THEN
KUP=180
KR=KF-8
ENDIF
WRITE(6,*) 'READING FILE ',KF
DO 100 Y=1,9
DO 100 X=1,9
READ(15, '(A80) ")DUMMY
READ(15, '(A80) ' YHEADER
READ{ 15, '(A8C) ')DUMMY
DO 200 J=1,20
READ(15,'(2015)') (OARRAY(II,J),II=1,20)
DO 200 I=1,20
IF (OARRAY(I,J).EQ.-10) THEN

NARRAY((X-1)*20+I+(KR-1)*180,(Y-1)*20+J+KUP) = -10.0

ELSE

NARRAY((X-1)*20+1+(KR-1)*180,(Y-1)#*20+J+KUP) = 1.0%0ARRAY(T,J)

ENDIF
CONTINUE
CONTINUE
CONTINUE
WRITE(6,%) NARRAY(1,1),NARRAY(180,1),NARRAY(360,1)
WRITE(6,*) NARRAY(1,45),NARRAY(180,45) ,NARRAY(360,45)
WRITE(6,%) NARRAY(1,90),NARRAY(180,90),NARRAY(360,90)

FILENAME='NORTH CARDS D'
CALL NDOPEN (57,FILENAME, 1,3, 'UNKNOWN',80,0,ISTAT)

CALL NICHEAD(S7,'MEDIAN DEPTH','STREAM','CD','NICK''S DEPTHS')

CALL ASCOUT(NARRAY,1440,1440,360,VMASK,2,57)
CALL NCLOSE(15,ISTAT)
CALL NCLOSE(57,ISTAT)
IF (ISTAT.NE.Q) THEN
WRITE(6,%) ERROR IN CLOSING FILE ',FILENAME
WRITE(6,%*) 'ISTAT = ',ISTAT
ENDIF
STOP
END

221 -

SUBROUTINE NICHEAD(OP, TRAC, DEPVAR, OPFORM, NRUN)

C
C ROUTINE TO WRITE HEADERS ON THE FILES
e
CHARACTER TRAC¥*(*), OPFORM*(%*), NRUN*(*)
CHARACTER*9 DEPVAR, FROM(3), INCR(3), TO(3), QUAN(3)
COMMON /TSTEP/ NDFIR, NDLAS, NDINC
COMMON /TIME/ TTSEC
INTEGER OP, NOP(3)
C
C ESTABLISH DETAILS FOR HEADING
C .
C
NDFIR=0.0
NDLAS=0.0
NDINC=0.0
QUAN(1) = 'LONGITUDE'
QUAN(2) = ' LATITUDE'
FROM(1) = ' 0. '
FROM(2) = ' -89.500'
INCR(1) = ' 1.0 '
INCR(2) = ' 1.0 '
TO(1) ="' 359.5 '
TO(2) ="' -0.50 "'
NOP(1) = 360
NOP(2) = 90
QUAN(3)=' TIMESTEP'
NOP(3)=1
WRITE(FROM(3),'(I9)')NDFIR
WRITE(INCR(3),'(I9)')NDINC
WRITE(TO(3),'(I9)"')NDLAS
C
WRITE(OP,S5101)TRAC,OPFORM
C
WRITE(OP,5102)NRUN
WRITE(OP,5103)(I,I=1,3)
WRITE(OP,5104)(QUAN(I),I=1,3)
WRITE(OP,5105)(FROM(I),I=1,3)
WRITE(OP,5106)(INCR(I),I=1,3)
WRITE(OP,5107)(T0(I),I=1,3)
WRITE(OP,5108)(NOP(I),I=1,3)
5100 FORMAT('VARIABLE :',A15,2X,A9,T41, 'FORMAT :',A2)
5101 FORMAT('VARIABLE :',A15,T41, FORMAT :',A2)
5102 FORMAT('MODEL : FAF COMMENTS :',AS50)
5103 FORMAT('INDEX ',9%,':',3(' ',I1,' "))
5104 FORMAT('QUANTITY ',6X,':',A9,':',A9,':',A9,":")
5105 FORMAT('FROM veX,':',A9, A9, A9,)
5106 FORMAT('INCREMENT',6X,':',A9,':',A9,':",A9,":")
5107 FORMAT('TO ',6X,':',A9,':',A9:':',A9,':')

5108 FORMAT('NO.QF POINTS ',2X,':',I9,':',I9,"':',19,':")
WRITE(57,%)

WRITE(57,%)

RETURN

END

>NeNoNeNeoNoNeNeoNoRoNeoNoRoNoNeoNeoNoNoNeoNeoNoNoNeoNoNoNoNoNORORC RO NS

(@]

a

aaaaQq

*

'

(A

o
1

SUBROUTINE ASCOUT (ARRAY,IDIM,ID,JD,VMASK,NCHAR,NOUT)

VERSION WITH SINGLE PRECISION REAL ARGUMENTS FOR 64-BIT MACHINE
SUBROUTINE TO ENCODE A SECTION OF AN ARRAY AS SETS OF 'NCHAR'
PRINTABLE CHARACTERS, AND WRITE AS A FORMATTED CARD-IMAGE DUMP.
(USES ASCII CHARACTERS 0-9 , A-Z , LOWER CASE A-Z AND BRACKETS)

ARRAY - 2-D ARRAY OF VALUES TO BE CONVERTED

IDIM - DECLARED I-DIMENSION OF ARRAY IN CALLING PROGRAM

ID,JD - SPECIFY SECTION OF ARRAY TO BE CONVERTED

VMASK - 4-ELEMENT ARRAY WHOSE VALUES INDICATE 'MASKED' POINTS.
SUCH POINTS ARE DENOTED BY ONE OF THE FOUR POSSIBLE
COMBINATIONS OF FULL STOP AND COMMA, PADDED OUT TO NCHAR
CHARACTERS BY REPETITION OF THE LAST CHARACTER OF THE PA
THESE VALUES ARE IGNORED IN FINDING MAX AND MINS FOR SCA
THE VMASK VALUES ARE NORMALLY MUCH LARGER THAN OTHER VAL

NCHAR - NUMBER OF CHARACTERS TO BE USED TO REPRESENT AN ARRAY VA

NOUT - FORTRAN CHANNEL NUMBER OF OQUTPUT DATASET.

M. A. ROWE SEPT. 1987 (REWRITTEN J. R. BLUNDELL 07/07/1988)
THIS VERSION (INTERNALLY DECLARED CHARACTER ARRAY) 14/12/1988
MODIFIED TO ALLOW FOR FQUR TYPES OF MASKED POINT 07/02/1989
N.B. INTERNAL ARITHMETIC ALWAYS DONE IN 64-BIT MODE

INTERNAL PARAMETERS:

LRECL - MAX. LENGTH OF DATA RECORD TO BE OUTPUT

NASCC - NUMBER OF DIFFERENT ASCII CHARACTERS USED IN
REPRESENTATION OF NUMBERS (AT UNMASKED POINTS)

NCHAX - MAX. NUMBER OF CHARACTERS WHICH CAN BE USED
TO REPRESENT AN ARRAY ELEMENT

INTEGER LRECL,NASCC,NCMAX
PARAMETER (LRECL=80, NASCC=64, NCMAX=5)
LOCAL VARIABLES

INTEGER ICODE(NCMAX),IDIM,ID,JD,NCHAR,NQUT,
I,J,NNUM, IC, INTEG,NCBUFF,LINLEN ,MTYPE

REAL ARRAY(IDIM,JD),VMASK(4)

REAL FMIN,FMAX,RANGE,ARANG,SCALE

CHARACTER*1 ASCARR(LRECL),LKUP(NASCC),CMASK(2),MASK(NCMAX,4)

CHARACTER*(NASCC) CHAREP

EQUIVALENCE (CHAREP(1:1),LKUP(1))

SPECIFY THE NASCC CHARACTERS TO BE USED IN THE NUMBER
REPRESENTATION, AND THE CHARACTERS DENOTING MASKED POINTS

'0123456789"'
' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
"abcdefghijklmnopgrstuvwxyz'
t t

O

CHAREP(1:10)
CHAREP(11:36)
CHAREP(37:62)
CHAREP(63:64)
CMASK(1)="'.'
CMASK(2)=","

w o non

aaaoan

aQa

aaaan

aa

aQaaa

- 23 -

WRITE QUT CODING INFO IN FIRST DAT% RECORD
(WRITE WARNING TO UNIT 6 IF IT WON'T FIT)

IF (NASCC.GT.72) WRITE(6,50) NASCC

50 FORMAT(/,2X, '**ASCOUT WARNING: OVERLENGTH CODING RECORD, ',

* ' NASC

WRITE(NOUT, '(I4,1X,2A1,1X,72A1)") NASCC,CMASK, (LKUP(I),I=1,NASCC

CHECK INPUT VALUE OF NCHAR

C =",I3)

IF (NCHAR.LT.2 .OR. NCHAR-.GT.NCMAX) THEN

WRITE(6,100

) NCHAR

100 FORMAT(/,2X, '**¥ASCOUT WARNING: ROUTINE CALLED',
* ' WITH INCORRECT NCHAR =',I4)

RETURN
END IF

CHECK INPUT VALUES OF VMASK ARE ALL DIFFERENT,
OTHERWISE MASKING WILL BE AMBIGUOUS

DO 110 J=1,3
DO 110 I=J+

1,4

IF (VMASK(I).EQ.VMASK(J)) WRITE(6,120) I,J

110 CONTINUE

120 FORMAT(/,2X,'**ASCOUT WARNING: VMASK(',I1,') = VMASK(',I11,")'",

* /,2X,'**MASKING PRODUCED WILL BE AMBIGUOUS')

CREATE THE 4 TYPES OF MASK,

DO 130 IC=1,N
MASK(IC,1)
MASK(IC,2)
MASK(IC,3)
MASK(IC,4)

130 CONTINUE

MASK(2,2)

MASK(2,3)

C
c

i u

CHAR

CMASK(1)
CMASK(1)
CHMASK(2)
CHASK(2)

MASK(2)
MASK(1)

INCLUDING PADDING CHARACTERS

ESTABLISH RANGE OF DATA AND SCALING FOR CONVERSION
(TYPICAL SIZE OF VALUES ASSUMED O(10%*5))

FMAX = -99999
FMIN 99999
DO 150 I=1,ID
DO 150 J=1,
DO 140 MT

il

1}

99.9
99.9

JD
YPE=1,4

IF (ARRAY(I,J).EQ.VMASK(MIYPE)) GOTO 145

140 CONTINUE

FMIN = MIN(FMIN,ARRAY(I,J))
FMAX = MAX(FMAX,ARRAY(I,J))

145 CONTINUE
150 CONTINUE

]

]

-4 -

IF (FMAX.LT.-9999%99.9 .0OR. FMIN.GT.99999.9)
WRITE(6,200) FMIN,FMAX

ZOO FORVAT(/ 2X, "“ASbOUT WAR\I\G LARGE +VE MINIMUM OR LARGE'

" -VE MAXIMUM VALUE',/,2X,'FMAX, FMIN = ',1P,2E16.5)
NNUM = ID*JD
WRITE(NOUT, '(1P,2E20.12,4110)') FMIN,FMAX,ID,JD,NNUM,NCHAR
ARANG = REAL(NASCC**NCHAR - 1)
RANGE = FMAX - FMIN
SCALE = ARANG/RANGE
IF (INT(SCALE).LT.1) WRITE(6,220) SCALE
220 FORMAT(/,2X, '**ASCOUT WARNING: SCALE = ',1P,E14.5)
IF ((RANGE*1.0E10).LT.1.0E0) THEN

WRITE(NOUT,250)

250 FORMAT('#*ASCOUT WARNING: FIELD APPROX. CONSTANT,'

300

350

400
450

" NOT CHARACTER CODED')

ELSE

SCALE ARRAY AND ENCODE AS NCHAR PRINTABLE CHARACTERS

NCBUFF = 0
IF (NCHAR.EQ.3) LINLEN=78
IF { NCHAR.NE.3) LINLEN=80
DO 500 J=1,JD

DO 500 1I=1,ID

DO 350 MTYPE = 1,4
IF (ARRAY(I,J).EQ.VMASK(MTYPE)) THEN
TYPE MTYPE MASKED POINT; COPY FROM MASK(NCMAX,MTYPE)
DO 300 IC = 1,NCHAR
ASCARR(NCBUFF+IC) = MASK(IC,MTYPE)
CONTINUE
GOTO 450
END IF
CONTINUE
NORMAL POINT; ENCODE AS NCHAR CHARACTERS
INTEG = NINT((ARRAY(I,J)-FMIN)*SCALE)
DO 400 IC=NCHAR,1,-1
ICODE(IC) = 1 + MOD(INTEG, NASCC)
ASCARR(NCBUFF+IC) = LKUP(ICODE(IC))
INTEG = INTEG/NASCC
CONTINUE
CONTINUE
NCBUFF = NCBUFF + NCHAR

IF (NCBUFF.EQ.LINLEN) THEN
BUFFER ASCARR FULL; WRITE TO
CHANNEL NOUT (CARD-IMAGE FORMAT)
IF (NCHAR.NE.3) THEN
WRITE(NOUT, '(80A1)') (ASCARR(IC),IC=1,NCBUFF)
ELSE
WRITE(NOUT, '(1X,78A1,1X)') (ASCARR(IC),IC=1,NCBUFF)
END IF
NCBUFF =
END IF

<

(@]

-25-

500 CONTINUE
FLUSH CHARACTER BUFFER IF NOT EMPTY

IF (NCBUFF.NE.O) THEN
IF (NCHAR.NE.3) THEN
WRITE(NOUT, '(80A1)') (ASCARR(IC),IC=1,NCBUFF)
ELSE
WRITE(NOUT, '(1X,78A1,1X)") (ASCARR(IC),IC=1,NCBUFF)
END IF B
NCBUFF = 0 .
END IF

END IF

RETURN
END

-26-

APPENDIX 4

@]

QG

PROGRAM MAXMIN

vvvvvvvvvvvvvv
ERE RIS i it dr e e o i iy

CHARACTER * 20 FILENAME,FLINE*80
REAL FILE1(1440,360), FILE2(1440,360)
REAL CARRAY(1440,720),VMASK(4)

DATA VMASK/-10.0,-10.,-10.,-10./

OPEN IP FILE 1

FILENAME="NORTH CARDS D'
OPEN (15,FILENAME)

OPEN IP FILE 2

FILENAME='NICKOS CARDS D'
OPEN (16,FILENAME)

C OPEN OP FILE 1

FILENAME='025DEGR CARDS D'
OPEN (17,FILENAME,)

C READ ALL DATA FROM IP FILE 1

407

409

408

401

C

C

NCOUNT=0
READ(15,'(A)',END=409,ERR=409) FLINE
NCOUNT=NCOUNT+1
IF(FLINE(1:6).EQ." 64 .') GOTO 408
GOTO 407
WRITE(6,*) 'TARGET LINE NOT FOUND IN FILE1l'
STOP

REWIND 15
DO 401 I=1,NCOUNT-1

READ(15,%)
CONTINUE

CALL ASCIIN(FILE1l,FDMIN,FDMAX,1440,1440,360,15,NUMIN,VMASK, IFLAG)

C READ ALL DATA FROM IP FILE 2

G

507

509

508

501

NCOUNT=0
READ(16,'(A)' ,END=509,ERR=509) FLINE
NCOUNT=NCOUNT+1

IF(FLINE(1:6).EQ." 64 .') GOTO 508

GOTO 507

WRITE(6,*) 'TARGET LINE NOT FOUND IN FILE2'
STOP

REWIND 16

DO 501 I=1,NCOUNT-1

READ(16,%)

CONTINUE

- 27 -

CALL ASCIIN(FILE2,FDMIN,FDMAX,1440,1440,360,16 ,NUMIN, VHASK, IFLAG)

C :
C PUT FILE1 AND FILE2Z INTO THE CARRAY
C
NG 98 I=1,1440
DO 99 J=1,360
CARRAY(I,J) = FILE1(I,J)
CARRAY(I1,3560+J) = FILE2(I.,J)
99 CONTINUE
98 CONTINUE
C o
C QUTPUT ALL DATA TO OUTPUT FILE
C

CALL NICHEAD(17, 'MEDIAN DEPTH', STREAM','CD', 'NICK''S DEPTHS')
CALL ASCOUT(CARRAY,1440,1440,720,VMASK,2,17)

[

CLOSE ALL FILES

(]

CTOSE(15,ISTAT)

CLOSE(16,ISTAT)

CLOSE(17, ISTAT)

STOP

END

SUBROUTINE ASCIIN (ARRAY,ARMIN,ARMAX,IDIM,¥,NROW,
% NIN,NUMIN,VMASK, IFLAG)

—
vl

* VERSION WITH DOUBLE PRECISION REAL ARGUMENTS FOR 32-BIT MACHINE

* SUBROUTINE TO READ DATA WRITTEN AS SETS OF PRINTABLE
¥ CHARACTERS AND CONVERT BACK TO FLOATING POINT FORM.

* INPUT ARGUYENTS:

w IDIM - FIRST DIMENSION OF ARRAY AS DECLARED

* M - NUMBER OF I-VALUES TO BE FILLED

W NROW - NUMBER OF ROWS OF DATA

* NIN - FORTRAN CHANNEL NUMBER FROM WHICH DATA IS READ
* YMASK - 4-ELEMENT ARRAY OF VALUES TO

* BE ASSIGNED TO MASKED ELEMENTS
& IFLAG AS USED IN NAG ROUTINES:
* SET TO 0 ON ENTRY TO STOP IF AN ERROR

"

1

* SET TO 1 ON ENTRY TO CONTINUE

W CUTPUT ARGUMENTS:

W ARRAY - ARRAY OF DATA VALUES RECONSTRUCTED

* FROM THE CHARACTER DATA READ IN

* ARMIN - MINIMUM DATA VALUE AT UNMASKED POINT
* ARMAX - MAXIMUM DATA VALUE AT UNMASKED POINT
* NUMIN - NUMBER OF DATA VALUES READ IN

¥ IFLAG - USED AS IN NAG TO INDICATE ERRORS:

* SET TO 0 INDICATES NO ERRORS

* SET TO 1 IF VALUE OF NCHAR INCOMPATIBLE
* SET TO 2 IF M*NROW > NO. OF PTS IN DATA
* SET TO 3 IF M*NROW < NO. OF PTS IN DATA
* SET TO 4 IF UNACCEPTABLE DATA READ IN

e
iy

e
Ny

e

Fesedeseye e e e

-28 -

M. A. ROWE SEPT. 1987 (rewritten J. R. BLUNDELL 07/07/1988)
This version (internally declared character array) 15/12/1988
Modified to allow for four types of masked point 07/02/1989
N.B. All internal arithmetic done in 64-bit mode

INTERNAL PARAMETERS:

LRECL - Max. length of data records to be processed
NCMAX - Max. number of characters usable to represent each numbe
NPMAX - Max. number of printable characters usable in decoding

IMSK1,2 - Entry in lookup table to signify masking character
IDUFF Entry in lookup table to signify invalid character
N.B. must choose each of IMSK1,2 and IDUFF > (NPMAX-1)*(NCMAX+1)

INTEGER LRECL,NCMAX,NPMAX,IMSK1,IMSK2,IDUFF
PARAMETER (LRECL=80, NCMAX=5, NPMAX=72,
IMSK1=777, IMSK2=888, IDUFF=999)
Local variables
INTEGER ICVAL(0:255),NASCC,NCHAR,IDIM,M,NROW,NIN,NUMIN,I,J,
* ICODE(NCMAX),N,ICSUM,ICRIT,IC,INTEG,MSKVAL{4) ,NCREC,
* IFLAG,ID,JD,NGET, LFRET,NCTCEO,”LIVE,JCuOVE NCLETT,MTYPE

REAL FMIN FMAX RAVGE ARANG,SCALE
FHARAFTFR“l ASCARR(LRECL),CHAREP(NPMAX),CMASK(Z)

Change argument precision here Fedededed

DOUBLE PRECISION ARRAY(IDIM,NROW),ARMIN,ARMAX,VMASK(4)
REAL ARRAY(IDIM,NROW) ,ARMIN,ARMAX,VMASK(4)

Check input values of VMASK are ail different,
otherwise masking information will be lost

DO 20 J=1,3
DO 20 I=J+1,4
IF (VMASK(I).EQ.VMASK(J)) WRITE(6,30) I,J
20 CONTINUE
30 FORMAT(/,2X, "**ASCIIN WARNING: VMASK(',I1,') = VMASK(',Il,')’,
¥ /2%, '**MASKING INFORMATION WILL BE LOST")

Read in NASCC, the number of different characters used to
encode valid numbers, followed by the characters denoting
masked points, then the list of NASCC encoding characters.
Check validity of NASCC, and for repeated code characters.

READ(NIN, '(I4,1X,2A1,1X,72A1)") NASCC,CMASK, (CHAREP(I),I=1,NASCC)
IF (NASCC.GT.72 .OR. NASCC.GT.NPMAX) THEN
WRITE(6,50) NASCC
END IF
50 FORMAT(/,2X, '**ASCIIN WARNING: READS IN EXCESSIVE NASCC =',614)
IF (CMASK(1).EQ.CMASK(2)) WRITE(6,150)

30 100 IC=1,NASCC
IT (CHAREP(IC).EQ.CMASK(1)) WRITE(6,150)
IF (CHAREP(IC).EQ.CMASK(2).)
DO 100 I=1,IC-1

IF (CHAREP(IC).EQ.GHAREP(I)) WRITE(6,150)

4
i
5

-29-

WRITE(6,150)

0 CONTINUE
F RMAT(/,2X, "**ASCIIN WARNING: FINDS REPEATED',
" CHARACTER IN CODING LIST',
* /,2X,"**DATA PROBABLY CORRUPTED DURING TRANSFER'
* /,2X, ' **RECONSTRUCTED FIELDS WILL BE INCORRECT')

150

R
iy

et
A

e
Ay

[

Read the next data record

READ(NIN,200) FMIN,FMAX,ID,JD,NUMIN,NCHAR

PRINT *,'F

MIN='

,FMIN,' FMAX='

260 FORMAT(1P,2E20.12,4110)

Check value of NCHAR is wvalid

,FMAX,"

NUMIN='

,NUMIN

IF { NCHAR.LT.2 .OR. NCHAR.GT.NCMAX) THEN
WRITE(6,250) NCHAR

25GC FORMAT(/,2X, "**ASCIIN WARNING: READS INVALID NCHAR =',14)
IF (IFLAG.EQ.C) THEN
STOP 1
ELSE
IFRET = 1
END IT
END IF

* Check value of NUMIN equals that expected in program

IF (NUMIN.GT.(M*NROW)) THEN
iF (IFLAG.EQ.0) THEN
STOP 3

IN.LT.(M*NRCW)) THEN
5Q.0) THEN

END IF

* N.B. Data are stored as sets of NCHAR printable characters.
* ASCII codes in the range 32 to 122 are used (this
W includes upper and lower case letters, the digits

0 to 9 and parentheses) but not control characters.

W Set initial lookup table entries to invalid character value
DO 300 I=0,255
ICVAL(I) = IDUFF

300 CONTINUE

w2

Fetaie
raertriy

la
s

W1
<

- 30 -

Jpdate lookup table entries indexed by the position in

the collating sequence of the printable characters used

Set MSKVAL, the numbers indicating NCHAR masking characters
Set ICRIT, the maximum valid value of ICSUM

"0 350 I=1,NASCC
ICVAL(ICHAR(CEAREP(I))) =1 - 1
GONTINUE

ICVAL(TCHAR{CMASK(1l;;) = IMSKI
ICVAL(ICHAR(CMASK(2))) = IMSK2

MSKVAL(1) = NCHAR*IMSK1 + IMSK1
MSKVAL(2) = NCHAR*IMSKi + IMSK2
MSKVAL(3) = NCHAR*IMSK2Z + IMSK1
MSKVAL{4) = NCHAR*IMSKZ + IMSK2

TCRIT = (NASCC-1)#*(NCHAR+1)
YRITE(6, ' (4X,I13,4X,I3)"') (I,ICVAL(I),I=0,255)

Read in the rest of the data, in character form, and
convert character form to realis, unless field is nearly
uniform, in which case set all array elements to FMAX.

RANGE = FMAX - FMIN
ARANG = DBLE(NASCC**NCHAR - 1)
SCALE = RANGE/ARANG

IF ((RANGE*®1.0D10) .LT. 1.0D0) THEN

ARMIN = FMAX
ARMAX = FMAX
DO 400 J=1,NROW
DO 400 I=1,M
ARRAY(I,J) = FMAX
CONTINUE
READ(NIN, "(A1)') ASCARR(1)

i

ELSE

ARMIN = FMIN
ARMAX = FMAX
N=20

NLINE = 2
NCLEYX¥T = ¢

NCTODO = NCHAR*NUMIN
IF (NCHAR.EQ.3) NCREC=78
IF (NCHAR.NE.3) NCREC=80

DO 600 J=1,NROW
DO 600 I=1,M
N =N+ 1
IF (N.GT.NUMIN) GOTO 600

450

480

e
rAy

KA
W

600

et nTen
WY

-31 -

IF (NCLEFT.ZQ.0) THEN
Buffer ASCARR empty; read another line
NGET = MIN(NCTODO,NCREC)
I¥ (NCHAR.NE.3) THEN
READ(NIN, "(80A1)"',FEND=700) (ASCARR(IC),IC=1,NGET)

ELSE
READ{NIN, '(1X,78A1,1X)',END=700) (ASCARR(IC),IC=1,NGET)
END IF
NCLEFT = NGET
NCDONE = 0
NLINE = NLINE + 1
END IF

Convert set of NCHAR characters to integer
Compute ICSUM for checking if at masked point
ICSUM = 0
INTEG = 0
DO 450 IC=1,NCHAR
ICODE(IC) = ICVAL(ICHAR(ASCARR(NCDONE+IC)))
ICSUM = ICSUM + ICODE(IC)
INTEG = INTEG*NASCC + ICODE(IC)
CONTINUE
ICSUl = ICSUM + ICODE(NCHAR)

Interpret characters according to ICSUM
DO 480 MTYPE=1,4
IF (ICSUM.EQ.MSKVAL(MTYPE)) THEN
Type MTYPE masked point; set ARRAY = VMASK({MTYPE)
ARRAY(I,J) = VMASK(MTYPE)
GOTO 550
END IF
CONTINUE
IF (ICSUM.GT.ICRIT) THEN
Found a character not in coding iist;
print warning & either quit or set ARRAY = VMASK(1)

WRITE(6,500) NLINE,N,(ICODE(IC),IC=1,NCHAR)

FORMAT(/,' +*ASCIIN ERROR: INVALID CHARACTER IN DATA',
/,' **0CCURS IN LINE',I6,' OF CHARACTER DUMP',
/,' **FOR N =',I18,' THE CODES ARE:',5I&)
IF (IFLAG.EQ.0) THEN
STOP &4
ELSE
IFRET = 4
ARRAY(I,J) = VMASK(1)
END IF
ELSE

Reconstruct real value
ARRAY(I,J) = DBLE(INTEG)*SCALE + FMIN
END IF

CONTINUE

NCDONE = NCDONE + NCHAR
NCLEFT = NCLEFT - NCHAR
NCTODO = NCTODO - NCHAR

i

il

CONTINUE

END IF

[IR

PEYEONS!

- 32 -

IFLAG = IFRET
RETURN

700 CONTINUE
WRITE(6,750) NIN,NLINE

FORMAT(/,2X, "#**ASCIIN WARNING: DATA FILE READ IN',
- /2%, ""*0ON UNIT',13,' HAS BEEN',
% /,2X, "**TRUNCATED; ONLY HAS',I8,' LINES')
IFLAG = TFRET

RETURN

750

:
Y

END

SUBROUTINE NICHEAD(OP, TRAC, DEPVAR, OPFORM, NRUN)
ROUTINE TO WRITE HEADERS ON THE FILES

CHARACTER TRAC™*(*), OPFORM¥*(*), NRUN*(*)

CHARACTER*9 DEPVAR, FROM(3), INCR(3), TO(3), QUAN(3)
COMMON /TSTEP/ NDFIR, NDLAS, NDING

COMMON /TIME/ TTSEC

INTEGER OP, NOP(3)

ESTABLISH DETAILS FOR HEADING

NDFIR=0.0
NDLAS=0.0
NDINC=0.0
QUAN(1) = 'LONGITUDE'
QUAN(2) = ' LATITUDE'
FROM(1) = ' 0. '
FROM(2) = ' -89.500'
INCR(1) = ' 1.0 '
INCR(2) ="' 1.0 '
TO(1) ="' 359.5 '
TO(2) = ! 89.50 '
NOP(1) = 360
NOP(2) = 180
QUAN(3)=' TIMESTEP'
NOP(3)=1

WRITE(FROM(3),'(I9)')NDFIR
WRITE(INCR(3),'(I9)')NDINC
WRITE(TO(3),'(I1I9)")NDLAS

WRITE(OP,5101)TRAGC,OPFORM

5100
5161
5102
5103
5104
5105
5106
5107
5108

O 00

OOOC‘]OOOC’]OOOOOQOOOOOOOOOOOOCJOOOOC)

%RITE(OP,5102)NRUN
WRITE(OP,5103)(1,1=1,3)
WRITE(OP,5104) (QUAN(I),I=1,3)
“RITE(OP,5105) (FROM(I),1=1,3)
WRITE(OP,5106)(INCR(I),I=1,3)
FRITE(OP,5107)(TO(I),I=1,3)
WRITE(OP,5108)(NOP(I),1=1,3)

FORMAT('VARIABLE :',A15,2X,A9,T41, 'FORMAT L A2)
. ORMAT('VARIABLE :',A15,T41, 'FORMAT :',A2)
TORMAT('MODEL : FAF COMMENTS :',A50)
FORMAT('INDEX ',9%,':',3(" .',I11,' ')
FORMAT('QUANTITY ',6X,':',A9,':',A9,":" A9, ":")
FORMAT('FROM "X, T A9, T A9, T A9,)
FORMAT("INCREMENT',8X,"':',A9,":",A9,'":" A9, ")
FORMAT('T "X, 'L A9, T A9, T A9,)
TORMAT('NO.OF POINTS ',2X,':',19,':',19,':"'",19,':")

WRITE(S57,%)

WRITE(57,%)

SUBROUTINE ASCOUT (ARRAY,IDIM,ID,JD,VMASK,NCHAR,NOUT)

VERSION WTTH SINGLE PRECISION REAL ARGUMENTS FOR 64-BIT MACHINE

SUBROUTINE TO ENCODE A SECTION OF AN ARRAY AS SETS OF 'NCHAR'
PRINTABLE CHARACTERS, AND WRITE AS A FORMATTED CARD-IMAGE DUMP.

(USES

ARRAY

DM

NCHAR
NOUT

M. A.

ASCII CHARACTERS 0-9 , A-Z , LOWER CASE A-Z AND BRACKETS)

- 2-D ARRAY OF VALUES TO BE CONVERTED

- DECLARED I-DIMENSION OF ARRAY IN CALLING PROGRAM

- SPECIFY SECTION OF ARRAY TO BE CONVERTED

- 4-ELEMENT ARRAY WHOSE VALUES INDICATE 'MASKED' POINTS.
SUCH POINTS ARE DENOTED BY ONE OF THE FOUR POSSIBLE
COMBINATIONS OF FULL STOP AND COMMA, PADDED OUT TO NCHAR
CHARACTERS BY REPETITION OF THE LAST CHARACTER OF THE PAIR
THESE VALUES ARE IGNORED IN FINDING MAX AND MINS FOR SCALI
THE VMASK VALUES ARE NORMALLY MUCH LARGER THAN OTHER VALUE

- NUMBER OF CHARACTERS TO BE USED TO REPRESENT AN ARRAY VALU

FORTRAN CHANNEL NUMBER OF OUTPUT DATASET.

ROWE SEPT. 1987 (REWRITTEN J. R. BLUNDELL 07/07/1988)

THIS VERSION (INTERNALLY DECLARED CHARACTER ARRAY) 14/12/1988
MODIFIED TO ALLOW FOR FOUR TYPES OF MASKED POINT 07/02/1989

N.B.

INTERNAL ARITHMETIC ALWAYS DONE IN 64-BIT MODE

INTERNAL PARAMETERS:

LRECL
NASCC

NCMAX

- MAX. LENGTH OF DATA RECORD TO BE OUTPUT

- NUMBER OF DIFFERENT ASCII CHARACTERS USED IN
REPRESENTATION OF NUMBERS (AT UNMASKED POINTS)

- MAX. NUMBER OF CHARACTERS WHICH CAN BE USED
TO REPRESENT AN ARRAY ELEMENT

[P NN

9]

aaaa (@] aaaa OO

[]

- 34 -

INTEGER LRECL,NASCC,NCMAX
PARAMETER (LRECL=80, NASCC=64, NCMAX=5)
LOCAL VARIABLES

INTEGER ICODE(NCMAX),IDIM,ID,JD,NCHAR,NOUT,
% I,J,NNUM,IC, INTEG,NCBUFF,LINLEN,MTYPE

REAL ARRAY(IDIM,JD),VMASK(4)

REAL FMIN,FMAX,RANGE,ARANG,SCALE

CHARACTER*1 ASCARR(LRECL),LKUP(NASCC),CMASK(2),MASK(NCMAX,4)
CHARACTER*(NASCC) CHAREP

EQUIVALENCE (CHAREP(1:1),LKUP(1))

SPECIFY THE NASCC CHARACTERS TO BE USED IN THE NUMBER
REPRESENTATION, AND THE CHARACTERS DENOTING MASKED POINTS

1l

'0123456789"
" ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'abcdefghijklmnopqrstuvwxyz'

!()l

CHAREP(1:10)
CHAREP(11:36)
CHAREP(37:62)
CHAREP(63:64)
CMASK(1)="."
CMASK(2)=","

i

il

WRITE OUT CODING INFO IN FIRST DATA RECORD
(WRITE WARNING TO UNIT 6 IF IT WON'T FIT)

IF (NASCC.GT.72) WRITE(6,50) NASCC
50 FORMAT(/,2X,'**ASCOUT WARNING: OVERLENGTH CODING RECORD,',
¥ " NASCC =',1I3)
WRITE(NOUT, '(I4,1X,2A1,1X,72A1)") NASCC,CMASK,(LKUP(I),I=1,NASCC)

CHECK INPUT VALUF OF NCHAR

IF (NCHAR.LT.2 .OR. NCHAR.GT.NCMAX) THEN
WRITE(6,100) NCHAR
100 TORMAT(/,2X,'**ASCOUT WARNING: ROUTINE CALLED',
* " WITH INCORRECT NCHAR =',I4)
RETURN
END IF

CHECK INPUT VALUES OF VMASK ARE ALL DIFFERENT,
OTHERWISE MASKING WILL BE AMBIGUOQOUS

DO 110 J=1,3
DO 110 I=J+1,4
IF (VMASK(I).EQ.VMASK(J)) WRITE(6,120) I,J
110 CONTINUE
120 FORMAT(/,2X,'**ASCOUT WARNING: VMASK(',I1,') = VMASK(',I1l,")',
% /,2X, ' **MASKING PRODUCED WILL BE AMBIGUQUS')

CREATE THE 4 TYPES OF MASK, INCLUDING PADDING CHARACTERS

a0

]

QO

-35-

DO 130 IC=1,NCHAR

MASK(IC,1) = CMASK(1)
MASK(IC,2) = GMASK(1)
MASK(IC,3) = CMASK(2)
MASK(IC.4) = CMASK(2)
130 CONTINUE
MASK(2,2) = CMASK(2)
MASK(2,3) = CMASK(1)

140

145

ESTABLISH RANGE OF DATA AND SCALING FOR CONVERSION
(TYPICAL SIZE OF VALUES ASSUMED 0(10%%5))

FMAX = -9999999.9
FMIN = 9999999.9
DO 150 I=1,1ID
DO 150 J=1,JD
DO 140 MTYPE=1,4
IF (ARRAY(I,J).EQ.VMASK(MTYPE)) GOTO 145
CONTINUE
FMIN = MIN(FMIN,ARRAY(I,J))
FMAX = MAX(FMAX,ARRAY(I,J))
CONTINUE

I

150 CONTINUE

pa

IF (FMAX.LT.-99999.9 .OR. FMIN.GT.99999.9)
WRITE(6,200) FMIN,FMAX

200 FORMAT(/,2X, '**ASCOUT WARNING: LARGE +VE MTNIMUM OR LARGE',

e
W

' -VE MAXIMUM VALUE',/,2X,'FMAX, FMIN = ',1P,2E16.5)
NNUM = ID*JD

WRITE(NOUT, '(1P,2E20.12,4110)"') FMIN,FMAX,ID,JD,NNUM,NCHAR
ARANG = REAL(NASCC**NCHAR - 1)

RANGE = FMAX - FMIN

SCALE = ARANG/RANGE

IF (INT(SCALE).LT.1) WRITE(6,220) SCALE

]

i

220 FORMAT(/,2X, '**ASCOUT WARNING: SCALE = ',1P,E14.5)

IF ((RANGE*1.0E10).LT.1.0E0) THEN

WRITE(NOUT,250)

250 FORMAT('**ASCOUT WARNING: FIELD APPROX. CONSTANT,',

300

A
v

' NOT CHARACTER CODED')
ELSE
SCALE ARRAY AND ENCODE AS NCHAR PRINTABLE CHARACTERS

NCBUFF = 0
IF (NCHAR.EQ.3) LINLEN=78
IF (NCHAR.NE.3) LINLEN=80
DO 500 J=1,JD

DO 500 I=1,ID

DO 350 MTYPE = 1,4

IF (ARRAY(I,J).EQ.VMASK(MTYPE)) THEN
TYPE MTYPE MASKED POINT; COPY FROM MASK(NCMAX,MTYPE)
DO 300 IC = 1,NCHAR

ASCARR(NCBUFF+IC) = MASK(IC,MTYPE)

CONTINUE
GOTO 450

END IF

[

C

C
C

[5]
w1
<D

400
450

500

- 36 -

CONTINUE

NORMAL POINT; ENCCDE AS NCHAR CHARACTERS

INTEG = NINT((ARRAY(I,J)-FMIN)*SCALE)

DO 400 IC=NCHAR,1,-1
ICODE(IG) = 1 + MOD(INTEG, NASCC)
ASCARR(NCBUFF+IC) = LKUP(ICODE(IC))
INTEG = INTEG/NASCC

CONTINUE

CONTINUE

NCBUFF = NCBUFF + NCHAR

IF (NCBUFF.EQ.LINLEN) THEN
BUFFER ASCARR FULL; WRITE TO
CHANNEL NOUT (CARD-IMAGE TORMAT)
IF (NCHAR.NE.3) THEN
WRITE(NOUT, ' (80A1)') (ASCARR(IC),IC=1,NCBUFF)
ELSE
WRITE(NOUT, '(1X,78A1,1X) ") (ASCARR(IC),IC=1,NCBUFF)
END IF
NCBUFF = 0
END IF

CONTINUE
FLUSH CHARACTER BUFFER IF NOT EMPTY

IF (NCBUFF.NE.O) THEN

IF (NCHAR.NE.3) THEN

WRITE(NOUT, '(80A1) ') (ASCARR(IC),IC=1,NCBUFF)
ELSE
WRITE(NOUT, '(1X,78A1,1X)") (ASCARR(IC),IC=1,NCBUFF)

END IF

NCBUFF = 0
END IF

END IF

RETURN
END

Natural
Environment
Research
Council

