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DESIGN PARAMETERS AND MODEL TESTING FOR BENCAT II 

1. INTRODUCTION 

Bencat is a freefall device to operate on the deep ocean floor and record 

three components of velocity in the benthic boundary layer. Bencat II is to 

be a less ambitious design than Bencat I in that it will only record velocities 

at one level above the sea-bed. It has the additional requirement that the 

current sensing electro-magnetic (e-m) heads should as much as possible be 

protected from handling and deployment/recovery damage without impairing 

their function. The primary aim of Bencat II will be to test the sensors 

in the deep ocean environment, hence only 2 e-m heads will initially be fitted 

together with an Aanderaa rotor and vane to give mean flow comparisons and 

instrument drift correction. Having been deployed and performed its function 

on the sea-floor, the instrument should on command release ballast, separate 

from the sea-bed and make its way to the surface for recovery. 

The purpose of this study is to determine an acceptable design for the 

structure and for the location of instruments, buoyancy and ballast. Also 

to estimate ballasting and buoyancy requirements to give reasonable descent 

and ascent velocities and sufficient stability when in position on the sea-

floor. The specified design maximum near bottom current that the device 

should withstand is 0.8 m/s. Acceptable rise speeds are approximately 1 m/s 

and on descent perhaps slightly less, say 0.7 - 0.9 m/s, to avoid damage on 

impact with the sea-floor. Also the device should not have any strong 

tendancy to kite or spin in transit from the surface to the sea-bed and vice-

versa. Consideration should also be given to safety in handling, protection 

of the release in the critical deployment phase and ease of recovery from the 

sea-surface. 

2. DESIGN OF THE FRAME AND ELECTRONICS HOUSING LOCATION 

It has already-been proposed that the frame containing the instrumentation 

should be constructed using aluminium alloy HV30-WP standard tubing 48.4 mm. tji, 

4.47 mm wall thickness (7 SWG) . This has a weight in water of 1.09 kg/m 

(1.72 kg/m. in air) and is favoured because of its lightness and corrosion 

resistance. It is also proposed that a disposable tripod base be used as on 

Bencat I and Bathysnap. The advantages that this offers are, known release 

technology, existing designs available for fabrication and the disposable base 

concept eliminates pull out problems should the feet become covered in sediment. 

It also means that a clean parting of the frame and ballast is more easily 

achievable without danger of entanglement. For ease of recovery and to keep 

the sensor package out of the wave action zone when the device arrives at 
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the surface it has been proposed that the buoyancy be tethered to the frame 

with a strop perhaps 10 m.long. This has the added advantage of separating 

the rather bulky buoyancy from the measurement systems which should be 

uninfluenced by surrounding structure as far as is practical. The favoured 

buoyancy is Benthos 17 in. <j) glass spheres which have a good reliability record 

to date. Some redundancy in the number of spheres required is desirable in 

case of failure but the cost of spheres is high so designs requiring large 

numbers of them are to be avoided. The remaining problems are to configure 

the frame, electronics, instruments and buoyancy so that the stability of 

the equipment during descent, ascent and its period on the bottom be maximised 

bearing in mind the considerations listed in the introduction, plus those of , 

cost and ease of fabrication. 

It is essential that the sensors be protected from damage during deployment 

and recovery, this however conflicts with the operational requirement that the 

sensors be unobstructed. The stated primary objective of this device is to 

test the sensors and associated electronics in the deep ocean environment. 

Operational requirements can be relaxed provided the sensors are unobstructed 

for some of the time while the instrument is in position. The problem comes 

in keeping the sensors within a framework and yet uninfluenced by flow 

distortion round it. This can be achieved by careful positioning of sensors 

but only for mean flows from restricted angles relative to the frame. The 

basic frame proposed by Steve Thorpe is sketched below. 

t.2m. 0 

O.Brn. 

The instruments are to be optimally positioned within this frame and the 

electronics tubes placed above or below as seems best. Provision has to be 

made for the release and the attachment of the base and buoyancy. 

The e-m current meter electronics, logging equipment and batteries will be 

stored in two 20 cm.^ by 66 cm. long tubes weighing 15.9 kg. each in water 

(36.7 kg in air). These together with the acoustic release, 15 cm. ̂  by 41 cm. 

long weighing 8.2 kg. in water (15.9 kg. in air) , are to be mounted on the frame-

work. Given that the acoustic release tube must be located at the top of the 

frame "looking" upward, there still remains three possible configurations for 
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the electronics tubes 

1 

0) liii) 

In (i) and (iii) the sensors will be 0.5 m off the seabed whereas in (ii) 

they will have to be at least 1 m off the bed in order to be reasonably well 

clear of the electronics tubes. The most critical condition that must be met 

is the resistance to overturning forces due to a horizontal stream, while the 

instrument is in location. The shaded areas shown in the configurations above 

represent the maximum projected drag area for the tubes subjected to a horizontal 

current. Note that cylinders in tandem can give less drag than a single 

cylinder provided the spacing between centres is less than three diameters 

(see Horner (1958)), hence only one cylinder is shown in (ii) and (iii) as 

"worst cases". 

It is clear that (i) is worse than (ii) or (iii) as far as drag forces are 

concerned due to the greater projected area .and the overturning moment due to 

the drag of the tubes is less in (ii) than in (iii). However, the increased 

height of the frame and most importantly of the buoyancy tether point means 

that overall the overturning moments are higher in (ii) than in configuration 

(iii) which keeps the tether point low. Tether line forces will typically be 

an order of magnitude greater than the drag forces on the electronics tubes 

so consideration of the height of the tether point (together with the drag 

of the buoyancy) becomes more important. Hence configuration (iii) becomes 

the one adopted for further study. To accommodate this arrangement, a frame 

of design shown in fig. 1 is proposed. It is estimated that such a construction 

if fabricated entirely in aluminium alloy might weigh 40 kg. in water, 58 kg. in 

air. It is made up from 17.5 m. of tube and 3.5 m, of 10 cm. x 5 cm. channel 

section. 

The disposable base also shown in fig. 1 is fabricated in steel and weighs 

55 kg,.in water, 64 kg. in air, without any additional ballast. The electronics 

tubes, acoustic release, current meters and release mechanism total another 

55 kg. in water or 105 kg. in air. This gives an all up weight without any 

additional ballast of 150 kg. in water, 227 kg, in air. 

To estimate the overturning moments assume that the base, in its worst 



configuration, tends to pivot about its rearmost feet as in the sketch below 

W+Wfc, 

by taking moments about (A) it is found that... 

Ta + D h + Cuhr = (W + W^) 1 
e e f f J 

(1) 

where.., 

T = (B ̂  + D 

a = 1 + (h - 1 ) C O S 0 
o 

2sin0 2tan0 

and... 
- 1 

0 = tan / B 

= nett buoyancy of float assembly 

= drag of float assembly 

W = weight in water of instrument package + expendable base = 150 kg. (1st estimate) 

= weight in water of additional ballast (if required) 

h^ = height off the bed of the tether point ^ 

... other variables are as defined in the sketch above. In this anslysis the 

lateral drag of the base and that of the tether wire have been ignored being 

judged not to significantly contribute to the overturning moment. 

Assuming the framework to be constructed entirely of circular cylinders of 
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5 cm. and 2.5 cm.diameters, with total projected area 0.72 n? , and drag 

coefficient 1.2 at typical Reynolds number of order 3 x 10*, the drag 

can be estimated assuming a velocity squared law giving 

- 45 kg 

For the electronics tubes in configuration (iii) ,the sum ZSC^h^ for the tubes, 

assuming a similar drag coefficient acting on one electronics tube and the 

acoustic release gives 

D h = 14 kg.m 
e e 

Balancing the distribution of the structure of the frame the centre of area 

is at approximj 

into (1) gives 

is at approximately h^ = 0.7 m from the sea-bed. Substituting this information 

Ta + 45.5 = % (W + W^) (kg.m) (2) 

and a = 1 + (1.3 - 1 ) cos0 (m) (3) 
2sin6 2tan0 

since 1 = 1 m for the standard base and h^ = 1.3 m in configuration (iii) . 

3, BUOYANCY REQUIREMENTS AND CONFIGURATION 

Since the weight in water of the structure to be recovered is approximately 

95 kg, a minimum of six spheres is required. Each 17 in. sphere gives a nett 

buoyancy of 25.4 kg, therefore six spheres gives a nett buoyancy in ascent of 

approximately 50 kg, if all are intact. This figure depends on the weight of 

the structure holding the buoyancy together. Experience in using such free 

fall structures as the VACM camera tripod and Bathysnap suggests that 50 kg 

excess buoyancy is a reasonable figure, The recoverable structure on Bencat 

II is substantially larger than on previous devices however, so more buoyancy 

may be necessary to give the device an acceptable rise time. For the moment 

it is assumed that six spheres will be adequate. It is obviously desirable 

to minimise lateral drag whilst maintaining symmetry about the vertical axis 

for stability during the descent. There are a variety of possible configurations; 

one that has low lateral drag area has the spheres arranged in a ring of six. 

This presents a projected area of three spheres to the current stream but 

offers high drag to vertical motion. This may be desirable in the descent 

phase to reduce the fall velocity but it will also reduce the rise speed. 

Configurations having the spheres in a single horizontal row may possibly be 

oriented to give a projected area of only one sphere but this is difficult to 

arrange since free hanging devices tend to take on maximum drag attitudes in 

which they are often more stable. This would be very undesirable in this case. 
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The lateral drag coefficient of a single 17" Benthos sphere in a hard-hat 

is - 1.0 for flow parallel to the flange where is based on the projected 

plan area S = .255 , These figures are as supplied by Benthos for trials 

at speeds in the range 20 - 50 cm/s. It will be assumed that the drag 

coefficient is similar at V = 80 cm/s. Because of the circular arrangement 

of the six spheres three will be shadowed and in tandem (3, 4 and 5 in the 

diagram below) so their drag is ignored. Also interference effects will tend 

to reduce the drag of spheres 2 and 6 since they are set just behind 1 and 

therefore in a turbulent stream which induces early flow separation. 

6 

Suppose this effect reduces the drag on 2 and 6 by 10% then the drag of the 

buoyancy becomes 

D = 32V^ kg. 

o ^ 

The buoyancy has to support its own supporting structure which will transfer 

the upthrust given by each sphere to a central tether point. The structure 

should also protect the spheres from mishandling and provide suitable lifting 

points. Supposing this structure to be fabricated from aluminium to provide 

the necessary strength for lifting and load transfer to the tether wire then 

the structure could weigh - 20 kg thus reducing the effectiveness of the 

buoyancy. With six spheres the nett buoyancy of this arrangement B -

130 kg. 

In a current stream of V = 0.8 m/s from (1) and (3) the tether angle 0 is 

81.4° giving a = 0,69 m.and T = 131 kg. So from (2) the necessary additional 

ballast weight to just balance the overturning forces at V = 0.8 m/s is 

= 88 kg. With the 6 sphere buoyancy arrangement discussed above, this 

gives nett weights in water of 

on descent... 106 kg. 

on ascent .. . —37 kg. 

It will of course be possible to add more ballast provided the resulting « 

terminal velocity is not excessive, but it will not be possible to add 

buoyancy without adding an equal weight in water of ballast. Otherwise the 

overturning criterion is likely to be violated. 
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4. CALCULATED FREE FALL AND ASCENT VELOCITIES 

4.1 DRAG OF BUOYANCY 

The drag coefficient for a 17" Benthos sphere' in a "hard-hat" type 204 

SRO-17 with flow perpendicular to the flange is C^ = 1.75 based on the 

projected area of 0.255 as quoted by the Benthos company. If the 

spheres are arranged in a ring of six then the vertical drag due to the 

buoyancy will be not greater than'that due to six individual spheres. 

This'gives SC^ = 2.68 . 

4.2 DRAG OF FRAME AND ELECTRONICS 

Assuming the frame to be made up of circular cylinders and channel section 

and using standard drag coefficients as given by Hoerner (1958) the total 

SC^ value can be estimated. 

Projected area S(m^) C^ SC^ 

tubing 0.19 1.2 0.23 

channel 0.23 2.0 0.46 

electronics tubes 0.26 1.2 0.32 

ESC = 1 . 0 1 

4.3 DRAG OF BASE 

Similarly the base is made up of circular plates and "T" section beams 

which have known drag coefficients 

Projected area S(m^) C^ SC^ 

3 "T" section beams 0.105 —I 1.65 0.17 

1 disc 40 cm $ 0.126 1.2 0.15 

3 discs 25 cm ^ 0.147 1.2 0.18 

ZSC^ = 0.50 

4.4 THE ASSEMBLED STRUCTURE 

It is assumed that the drag coefficients for the frame and buoyancy are 

similar on ascent and descent so that the totals for the entire assembly 

are 



(SC^) descent = 4.19 

(SC^) ascent = 3.69 

Using the final weight estimates given in the previous section this gives 

terminal velocities for the package with six buoyancy spheres 

V descent = x = 0.70 m/s 
D ^ 

V ascent = ^ 0.44 m/s 

(4) 

If it is possible to increase the number of spheres by one without 

significantly influencing the drag then for 7 spheres 

V ascent = 0.57 m/s 

and for 8 spheres with no additional drag penalty 

V ascent = 0.67 m/s 

For these latter cases only the ascent velocity is shown because from 

the overturning calculation it has been shown that a minimum nett weight 

of about 106 kg is required to maintain stability in a current stream of 

80 cm/s. This is the value obtained with the 6 sphere configuration with 

88 kg additional ballast on the base. If more spheres are added then an 

equal amount of ballast is also required to maintain the minimum nett 

weight of 106 kg in sea water, so the descent velocity remains unchanged 

provided the drag is not significantly increased. 

OPTIMAL POSITIONING OF THE SENSORS WITHIN THE FRAMEWORK 

The problem is to position the three sensors so that wake interference from 

the surrounding and supporting structure is minimized. While keeping the heads 

inside the structure this will only be possible in a limited azimuth window 

within which all three sensors will be clear at the same time. Ideally the 

sensors should be close together so that they sample over a small volume -

but then mutual flow interference between sensors and their supports becomes 

a problem. To investigate this a simple wake model due to Schlicting (1955) 

was used which gives the wake spreading behind a circular cylinder 

% = 
d \ d / 

where y is the wake boundary measured from the centre-line, x is the downstream 

distance along the centre-line of the wake, d is the diameter of the cylinder 

and C its drag coefficient. 



Three possible locations for the e-m heads were selected and using the 

above model the wake boundary lines were drawn from vertical frame members 

and sensor supports. Flow directions for which the boundaries interfered 

with each of the sensors in the various locations were then drawn onto a 

scale diagram. So for each instrument sectors in which some flow interfer-

ence could be expected were constructed. These interference sectors and the 

selected instrument locations are shown in fig. 2. For the two e-m heads to 

be open to the flow then the combined open window angle ip is twice the 

smallest angle to the horizontal shown on the diagram. Thus for the various 

locations 

e-m head location 

1 140 

2 70 

3 68 

Location 1 is obviously best for the e-m heads. With the heads in this position 

the mechanical current meter can be moved from location 4 to 5 which does not 

restrict the window open to the e-m heads but increases the open window of 

the mechanical c.m. to 134°. Thus with e-m heads in locations 1 and mechanical 

c.m. at 5 the overall unobstructed azimuth window is 134°. The device there-

fore has a preferred operational direction. For flows from this direction, 

right to left on fig. 2, the instrumentation tubes offer minimum drag and 

the tripod base is aligned to give maximum resistance to any overturning 

moment. Thus the frame has its greatest stability in this orientation. If 

in general flow is omni-directional then the instrument may only be expected 

to sample unobstructed flow for approximately y of the time of its deployment. 

This cannot be avoided unless more sensors are fitted. 

6. MODEL SCALING 

Apart from the obvious model scaling criterion of geometric similarity the 

other major requirement is that drag to weight ratios for the model and full 

scale device be similar. This is in order that observed attitudes in free 

fall or in a current stream may be preserved under the scaling. Due to the 

limited available facilities it was decided that ths model scale experiments 

will be carried out in fresh water so apart from small differences the fluid 

density and viscosity will be similar. The drag force may be described 

generally by 

D = p V' Gd^Cg (5) 
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where p = fluid density, V = fluid/body velocity, G = geometric similarity 

parameter, d = representative dimension of the body and is the drag 

coefficient. If (5) represents the drag of the full-scale device then at 

model scale 

D' = L^V'^Gs^d'C ' (6) 

where d' = sd, s being the scale factor, p = p ' by similar fluids and G = G •' 

by geometric similarity where dashes indicate model scale variables. Thus 

for similar drag to weight ratios from (5) and (5) it is found that 

If the weights are scaled geometrically, which significantly eases the problems 

of model manufacture, such that 

then (7) becomes = (^31 ) ^1) 

It would be convenient if it could be arranged that since this would 

simplify (8). Unfortunately this requires Reynolds number similarity which 

conflicts with (8) since by Reynolds number similarity 

Y.' = 1 
V s 

if the fluids are similar. However, drag coefficients for simple shapes like 

cylinders, circular plates and spheres exhibit a range of Reynolds numbers 

over which the drag coefficient remains sensibly constant. The range of 

Reynolds numbers is 

10̂  < Re < 3 X 10' 

i.e. within the turbulent flow regime but before the flow becomes super-

critical, see Hoerner (1958). Provided then that Re and Re' lie within this 

range the drag coefficients will be similar and (8) reduces to 

V h 
V ^ 

Since the framework and base are relatively open structures, the relavant 

Reynolds number will be that based on the size of individual components 

i.e. tube diameter, diameter of plates or of the buoyancy spheres, thus 

typical Reynolds numbers at the design speed of 0.8 m/s are 2.7 x 10^. It 

is apparent tliat at this speed quite a wide range of scale factors are 

acceptable for it is easily shown that 
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y 
Re ' = s ^ Re 

Quite small values of s are possible that maintain Re' > 10^. For the typical 

full scale Reynolds number of 2.7 x 10̂  the smallest scale factor is 1/40. But 

at lower full scale velocities, say 5 cm/s, the minimum value for s increases 

to It was therefore decided that s should take the value of %. This is 

a convenient figure since it gives V = V/2 and W = W/64, but it also enabled 

quite a wide range of flow conditions to be investigated with more confidence; 

DESCRIPTION OF THE MODEL AND EXPERIMENTS 

The model is % full scale and was designed to weigh approximately 1/64 of 

the full scale weight. Photographs of the model frame and assembled components 

are shown in fig. 3, Details of the weights of the components full scale, at 

model scale and as measured at model scale are given in Table 1. The buoyancy 

was made up of 5h" diameter rigid plastic nett floats with a PVC collar 

machined to simulate the flange of the Benthos hard-hats. The floats give 

considerably more buoyancy than required by the scaling so an additional 

amount of ballast v;as necessary. The assembled buoyancy structure and ballast 

are shown in fig. 4. Note that the mechanical current meter on the model is -

not in its optimum position suggested in section 5 but is placed in a central 

location for convenience in model manufacture. Because of the limited 

combination of brass weights available for ballasting, the trimming weights 

for individual components are in some error. These errors largely cancel 

when the structure is fully assembled so that the final assembly is over 

ballasted by 76 gm in its descent configuration and 221 gm (14 kg full scale) 

when the base is removed for the ascent. Errors of this sort can be tolerated 

since it is the drag coefficient of the structure that the tests will give 

which can be used to predict the full scale behaviour at the corrected weights, 

provided they are not very much different. 

Two series of tests were carried out. The first was a free fall/ascent test 

to determine the model stability and velocity on descent and ascent. The 

second was a series of overturning tests to determine the stability of the 

device on the sea-floor to lateral flows and the limiting current that the 

instrument could withstand. 

7.1 FREE FALL TESTS 

The drop tests were carried out at H.M.S. Dolphin, submarine escape 

training tank, Gosport, The tank is - 30 m deep and 5 m in diameter 
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and is filled with chlorinated fresh water kept at - 20 C. A team of 

free swimming divers was employed to drop, time and retrieve the model 

on each trial. The model was assembled with the buoyancy separated 

from the frame on 2.5 m of nylon chord. With the frame suspended 

underneath the buoyancy was held at the surface and released. Divers 

positioned at depths of 5 m and 15 m signalled to the surface when the ' - > 

, b#se passed the depth mark which was painted on the side of the tank.: 

. Observers at the surface were able to record the travel time over the 

10 m interval over which it was assumed that the velocity was constant.^ 

A picture of the model on a trial descent is shown in fig. 5. For the 

ascent the model with base removed was released from a diving bell at 

about 20 m depth and the same method was then used to time the ascent. ,. 

Each test was repeated once, or twice if results were not found to agree, 

and two independant observers with separate stop watches were used to 

record the time between signals. To quickly change the weight of the 

model in water the buoyancy arrangement was designed, so that a 7th pse-

ballasted sphere could be rapidly screwed onto the buoyancy array. This 

sphere was mounted in the middle of the array and did not have a flange 

glued onto it so that the drag would not be. much influenced. The wefLghts 

in fresh water for the model in its various configurations are given on 

Table 1. The results of the tests are given below. 

model scale "1 r full scale -

Weight W' Velocity V'̂  (S'C^) Weight W Velocity V^ (SĈ )̂ 
D 

(gm) (cm/s) (m") (kg) (cm/s) (m*) 

6 floats descent 1700 45 0.165 1 0 9 90 2 . 6 4 

ascent 22 0 . 1 6 1 -25.5 44 2.58 

7 floats descent 1 2 9 0 39 0 . 1 6 5 8 2 . 6 7 8 2 . 6 4 

ascent -816 2 9 0.193 -52 .2 58 3 . 0 9 

where the full scale values are given by (see section 6) 

W = 64W!; V 2 V ' ; 
T 

SC^ = 16S'C^ 

At the estimated full-scale weights derived by calculation for the full 

scale device the terminal velocities as given by (4) using SC^ values 

derived from the experiments are 

• W(kg) 

6 spheres 

6 spheres 

7 spheres 

8 sphferes. 

106 

-37 

- 6 2 . 4 

- 3 7 . 8 

V_̂  (cm/s) 

87 

52 

62 

74 

V_̂  (cm/s) 

descent 

ascent 

ascent 

ascent 

70 

4 4 

57 

6 7 

obtained by 
calculation 
from section 4 
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it is clear that the calculations of section 4 overestimated the value 

of ZSC^ and consequently underestimated the terminal velocities. 

7.2 OVERTURNING TESTS 

To test the stability of the model when it is in position on the sea 

floor a ground board was slung beneath the tow carriage on the Wormley 

wave/tow tank facility. This device was previously constructed by 

Lampitt & Griffiths (1980) and is described in their paper. A diagram -

of the ground board and supporting structure is given in fig. 6. A 

fine mesh plankton net and four boundary layer trips of frayed netting 

are used to artificially thicken the boundary layer on the board. The 

natural boundary layer would otherwise be very thin over the working 

area which is approximately 1 m from the leading edge of the board. 

Boundary layer velocity profiles were measured using a miniature 

discus shaped e-m head, also shown in fig. 6. A similar head is 

described in Griffiths (1979). The head is capable of giving two 

components of velocity spacially averaged across the electrodes which 

are 25 mm apart. The e-m head is mounted on 30 cm of %" tube which 

was fixed into a length of streamlined aluminium strut. The strut 

was clamped in a block on the carriage which could position the head 

at any point above the board. The strut was calibrated to give the 

height of the sensor head above the ground plane. The signal from 

the sensor was filtered to give a mean velocity signal which was 

subsequently processed and recorded on the Camac/HP 26 47A computer 

on the tow carriage. The sampling rate was 5 Hz and most of the 

recordings were of about 20 sec duration. The electrodes were aligned 

to measure flow parallel and normal to carriage motion. The head was 

calibrated by raising it 90 cm above the board ('v 50 cm below the free 

surface) well out of the boundary layer and driving the carriage at a 

range of speeds between 0 - 5 0 cm/s accurately recording carriage speed 

when conditions were steady. 

Velocity profiles were taken at two stations on the board at 1 m and 

1,32 m from the leading edge on the centre line. This was just ahead 

and just aft of the position where the model frame was to be situated. 

A nominal tow carriage velocity of 40 cm/s was used in obtaining the 

velocity profiles since at model scale this corresponded to the maximum 

near bottom current given in the specification. For all of the runs 

at the various probe'heights and locations the average carriage speed 

was u^ = 39.28 cm/s. Details are given in Table 2. The velocity 
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profiles are plotted in fig. 7, these indicate that the boundary layer 

is between 20 — 30 cm thick at these locations. This corresponds well 

with the scaled thickness of the logarithmic layer 1 m full scale 

.. 25 cm at model scale) suggested by Wimbush- & Munk (1968) . Plotting 

the profiles on a logarithmic scale indicates the extent of the 

logarithmic layer on the model ground plane. The slope of the curve 

in this region, ignoring the point nearest the ground and those outside 

the boundary layer, enables the friction velocity to be estimated. 

Choosing the von Karman constant tc - 0.4 then from 

- = - In ( ^ ) + c 

where c is a constant and v the kinematic fluid viscosity, we find 

= 9.12 cm/s for = 39.28 cm/s. This value is very large compared 

with that previously measured in the ocean where u.̂  values of about 

0.1 cm/s are expected, see Wimbush & Munk (1968) . Hence although the 

boundary layer thickness is reasonably represented on the ground board 

the structure of the boundary layer is very different. It is thought 

that this is because of the very limited extent of the ground board 

which does not give the boundary layer long enough to develop and reach 

an equilibrium state. At lower velocities the situation is improved 

however. From the results of Lampitt & Griffiths (1980) velocity 

profiles at similar position on the same board for = 20 cm/s gives 

u.* = 1.67 cm/s. 

Fig. 8 shows the model in position on the ground board - the underwater 

T.V. camera can be seen in the background. Injecting dye into the 

boundary layer through an upstream capillary tube with and without the 

model in position showed that there was no observable influence of the 

structure on the flow in the vicinity of the heads. Fig. 9 shows 

multiple dye traces taken from an underwater T.V. recording of the 

dye injection experiments at a carriage velocity of 20 cm/s. This 

picture was obtained by superimposing individual dye traces taken 

from the 20 sec long recording. It thus portrays the envelope of the 

dye traces which are very similar both with and without the model in 

position. The greater density of traces in both cases shows fluid 

being entrained into the depths of the boundary layer. These are of 

doubtful value since the structure of the oceanic boundary layer will 

be very different but they perhaps lend some confidence to the design 

of the frame. 
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The main purpose of the moving ground experiments however was to 

determine the in situ stability of the chosen configuration subject to 

high speed currents. The fully assembled structure complete with the 

six buoyancy spheres was lowered onto the ground plane at the location 

shown in fig. 6. The tow carriage was slowly accelerated until the 

model was observed to move and the speed at which this occurred was 

recorded. With the six sphere buoyancy assembly the model moved at 

a carriage speed of between 4 1 - 4 4 cm/s. The model was observed to 

slide and hop downstream as if it were being lifted by the action of 

the current. Fig. 10 shows the model frame being towed on the ground 

board at 40 cm/s with the carriage moving from left to right in the 

picture. The dye capillary tube can be seen upstream of the model. 

The model was next oriented so that one of the tripod feet pointed into 

the stream and the rear feet were restrained from sliding using heavy 

steel wedges. The full-scale device has pegs on the bottom of the feet 

which sink into the sediment to give some anchorage against sliding. 

So the wedges were placed to prevent sliding but allow tipping. Repeating 

the experiment indicated that the leading foot lifted off the ground 

board at a tow speed of 42 - 43 cm/s. The frame did not tip right over 

but the front foot appeared to hang in the stream lifting further off 

the ground as the speed was increased. This behaviour again indicated 

that lift as well as drag was responsible for the separation from the 

bottom. The primary source of lift comes of course from the buoyancy 

but this is hydrostatic in origin. However in a current stream the 

buoyancy ring assumes an angle of incidence that may give rise to some 

hydrodynamic lift. The plane of the ring of spheres remains normal to 

the tether line which is swept back by the drag on the buoyancy assembly. 

7.3 BUOYANCY LIFT AND DRAG 

A further set of experiments was devised to measure the tether rope 

angle and tension for a range of currents 0 - 5 0 cm/s. The scheme of 

the experiment is shown in fig. 11. To provide comparative figures two 

buoyancy arrangements were considered (also shown in fig. 11). The back-

ward drift of the buoyancy in the current was measured using a sight-bar 

which gave the downstream displacement from the zero current position of 

a point sighted on the buoyancy. The tension was measured using a 

strain gauge balance which was calibrated before and after the experiment. 

The results are given in Table 3. Here 1 is the downstream drift of the 

sighted point on the buoyancy and h the height of the sight point above 
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the pulley centre line at (carriage speed) = 0. At speeds lower than 

those shown in the table for the respective configurations the tension 

carrying cable was fouled by the buoyancy structure so only comparitively 

high values of are shown. It is clear from the results that at current 

speeds greater than 40 cm/s at model scale the "3 on 3" configuration is 

much better than the "5 in a ring" configuration both in terms of tether 

angle and tension. At 40 cm/s the drag coefficients for the 2 configura-

tions are similar but at higher speeds the drag coefficient for the 

"6 in a ring" arrangement is approximately 1.8 times that of the "3 on 3". 

The negative lift coefficients are difficult to explain and may be due to 

friction in the pulley - however the influence of lift is clearly seen in 

the "6 in a ring" results at the higher* tow speeds. Drag coefficient is 

obviously a function of angle 6 and the simple estimates of section 3, 

though giving a reasonable low speed estimate of SC^ are inappropriate 

at higher speeds where the angle 0 becomes appreciable. 

8. IMPLICATIONS OF USING THE "3 ON 3" BUOYANCY ARRANGEMENT 

The ballasting requirements of the device with the "3 on 3" buoyancy assembly 

will be similar to that previously calculated with the "6 in a ring" arrangement. 

This is because the drag coefficients are similar at the model design speed 

of 40 cm/s (80 cm/s full scale) SC^ - 0.58 of. 0.61 previously estimated. 

The new arrangement offers some additional advantages in handling and the 

structure containing the spheres may be simplified thus reducing its weight. 

Also the terminal velocities on descent and ascent are likely to be increased 

which would save ship time. Using the drag estimates of section 4 and the 

measured drag in the free fall experiments it is possible to set some bounds 

on what the terminal velocities may be but without repeating the experiments 

it is difficult to be precise. Assuming the buoyancy drag to be half that 

calculated in section 4 then using the same theoretical estimates for the 

remaining structure the velocities become 

descent 84 cm/s 

ascent 54 cm/s 

This gives a lower bound to the terminal velocities for the drop tests have 

already shown that the theoretical SC^ values for the structure with a "6 in 

a ring" buoyancy arrangement were over estimated by a factor of - 1.5. If 

this same factor is applied to the new theoretic estimate with the "3 on 3" 

arrangement then the following velocities are obtained 

descent 106 cm/s 

ascent 66 cm/s 

— 1 6 — 



It is hoped that the true full-scale value will lie somewhere between these 

two empirical estimates. 

9. CONCLUSIONS 

The tests and calculations have provided a basis from which the ballasting ' 

and terminal velocity estimates for Bencat II can be made. 

At this stage a small aluminium frame is suggested to protect the sensors 

as in fig. 1. The logging/battery tubes are mounted horizontally above the 

frame to ,reduce lateral drag which is a severe constraint if the device is 

to withstand currents of 80 cm/s. The instruments record at a height of 

50 cm off the sea-bed and if grouped as suggested in section 5 will have an 

unobstructed azimuth window of approximately 134° as shown in fig. 2. 

Assuming component weights shown in table 1, the recommended additional 

ballast weight is 88 kg in water to prevent the instrument overturning in a 

80 cm/s current. The buoyancy selected is 6 x 17" Benthos glass spheres 

stacked 3 on 3, separated from the sea—bed unit by a 10 m (or more) wire strop. 

Terminal velocity estimates for the device are between 84 and 106 cm/s on 

descent and 54 and 66 cm/s on ascent.. Greater precision is not possible 

without further free fall testing with the buoyancy arrangement finally 

suggested. From the towing tests and dye studies there is no evidence of 

any severe flow distortion in the region of the sensors due to the presence 

of the surrounding structure. 

The theoretical estimates of required ballasting were well supported by 

the overturning tests which indicated that the device would move in a current 

stream of 84 cm/s. Suction forces on the feet might improve this performance 

if the device is deployed in regions of soft sediment where some settlement 

is expected. The calculated terminal velocities underestimated the model 

test velocities by approximately 23% both on descent and ascent. Hence the 

reason for the range of velocities given above to cover this uncertainty for 

the device with the modified buoyancy arrangement not tested at HMS Dolphin. 

The author is grateful for the assistance of Lt. Comms Charter and Russell 

and the staff of the Submarine Escape Training Tank, HMS Dolphin for their 

assistance in carrying out some of the experiments. 

Important An addendum is attached which gives updated estimates of component 

weights and how this influences buoyancy, ballasting and terminal velocity. 
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Table 1 

Full scale 1 
— full scale 
b4 

Measured model scale Trim (brass) 

Component Water in water Air Fresh water required actually added in experiment 

(kg) (gm) (gm) (gm) 
water air in air in water 

Frame + electronics 
instruments 

95 1 4 8 0 2 4 5 9 1365 115 131 40 35 

Base & ballast , 
ballast ss) 2 2 3 4 1 8 9 1 1 7 0 0 534 5 9 5 450 3 9 5 

1 X 17" sphere -25.4 X 6 = -152.4 -397 - -784 387 4 4 0 4 3 3 3 8 0 

Buoyancy structure = 2 0 3 1 3 716 6 2 4 -311 -354 -

Fully assembled 
* 

descent 105 1656 - 1695 3012 3088 - over ballasted by = 76 gm 
6 spheres 

over ballasted by = 76 gm 

. ascent -37 -578 

7 spheres 
fully assembled r . 

-400 

1290 descent 

-816 ascent 

2 4 1 7 2638 - over ballasted by - 221 gm 



Table 2 

Run y (cm) (cm/s) a(cm/s) I n (y) 

1 5 0 0 0 1.61 

2 5 3 9 . 3 7 16.8 0.427 1 . 6 1 

3 10 39.24 2 2 0.561 2 . 3 0 

4 15 39.14 3 1 . 8 0.812 2 . 7 1 
132 cm from 

L.E. 
5 2 0 39.04 3 6 . 9 0 . 9 4 5 3,00 

6 ' 25 3 8 . 9 3 37 0.95 3 . 2 2 

7 30 3 9 . 9 6 37.1 0 . 9 5 2 3 . 4 0 

11 4 . 1 0 0 0 1 . 4 1 

12 4.1 39.7 1 1 . 2 0 . 2 8 2 1 . 4 1 

13 9.1 3 9 . 3 4 2 0 . 8 0.529 2 ^ 2 1 

14 14.1 3 9 . 2 7 32.7 0 . 8 3 3 2 . 6 5 
100 cm from 

L.E. 
15 19.1 39.73 38.6 0.972 2 . 9 5 

16 24.1 3 9 . 3 9 37.5 0 . 9 5 2 3 . 1 8 

17 2 9 . 1 3 9 . 2 2 37.7 0.961 3.37 

Table 3 Comparative buoyancy lift/drag study 

(1) "3 on 3" h = 84 cm 

(cm/s) 1 (cm) 0° T (kg) D (kg) L (kg) SCg(m:) SC (m̂  ) 
full scale 

SCo (m̂  ) 

30 1 0 . 5 7.2 1.71 .21 - . 0 7 . 0 4 6 -.015 .736 

40 15.2 10.4 1 . 5 8 . 2 9 - . 2 2 . 0 3 6 -.027 .576 

50 2 2 . 8 15.7 1 . 6 6 .45 -.17 ,035 -.013 .56 

(2) "6 in a ring" h = 88 cm 

U (cm/s) 1 (cm) e° T (kg) D (kg) L(kg) 8Cp(m:) SC^ (m' ) 
full scale 
SCj) (m= ) 

40 14 9.2 1 . 6 9 . 2 7 -. 1 . 0 3 3 -.012 .53 

45 2 6 . 9 17.8 2 . 0 6 . 6 3 . 19 . 0 6 1 .018 . 9 8 

5 0 3 4 . 2 2 2 . 9 2 . 1 6 . 8 4 . 2 2 . 0 6 6 .017 1.06 



kg lb 

25 55 

18 40 

55 121 

98 kg 216 lb 

91 200 

12 27 

ADDENDUM 

REVISIONS DUE TO DESIGN CHANGES 

(i) REVISED WEIGHTS OF COMPONENTS IN WATER 

Frame: now to be manufactured from 8 SWG Al. tube 

Buoyancy structure 

Electronics and instruments (unchanged) 

Total weight of recoverable parts - in water 

Base: in heavier gauge steel 

Additional ballast weights 1" thick steel plate -
each to be added to base to increase ballast 

(ii) BUOYANCY 

Five spheres would be just sufficient to bring back the recoverable structure. 

In the event of a failure of one of the spheres, the buoyancy loss is 35 kg 

allowing for the weight of the glass of the damaged sphere. The remaining 

four spheres do not have sufficient lifting power to bring the instrument back 

so six spheres are still required to give a redundancy of one. Benthos suggest 

that a minimum separation of 1 diameter between spheres is advisable to prevent 

multiple failure in the event of one sphere imploding at depth. This constraint 

is difficult to overcome without making the buoyancy unwieldly to handle and 

of increased drag which would reduce the in-situ stability. Because of the 

high reliability to date of Benthos spheres, this latter constraint is to be 

ignored in favour of a more compact design. 

nett weight on descent (37 + W^) kg 

(73 + W^) kg with one sphere failed 

nett buoyancy on ascent 54 kg 

16 kg with one sphere failed 

(iii) ADDITIONAL BALLAST W^ TO PREVENT OVERTURNING IN 80 CM/S CURRENT 

Lateral drag coefficient of "3 on 3" buoyancy arrangement 

SC^ = 0.6 m̂  @ 80 cm/s - based on model test @ 40 cm/s 

gives D = 2 0 kg @ 80 cm/s. 

nett upthrust of buoyancy assembly B^ = 134 kg 

Al 



strop tension T = 135 kg angle to flow 8 = 81.5 

With the revised estimate for W = 171 kg (2) becomes 

W = 2(Ta + 45.5V^ - 85.5) 

and using (3) = 73 kg (160 lb) 

This is equivalent to adding 2 ballast weights to each foot. 

With this additional ballast the nett weight on descent becomes 

W nett = 110 kg 

145 kg with 1 failed sphere. 

(iv) TERMINAL VELOCITY ESTIMATES 

Using the same empirical criteria as discussed in section 8 gives 

min. theoretical . descent 

estimate for velocity ascent 

SCĵ (m̂ ) 

2.9 

2.4 

V^(cm/s) 

85 

65 

Viji(cm/s) with one 
sphere failed 

9 8 

3 6 

max. empirical estimate descent 1.8 

based on experiment ascent 1.6 

108 

80 

124 

44 

A2 
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