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SUMMARY

It was discovered a year or two ago that predicting extreme waves on a
seasonal basis and then combining them into an overall extreme gave a
higher answer than putting all the seasons together in the first place.
Theoretically, the effect was shown to exist in principle but it could not
be quantified. The present paper achieves this theoretical quantification:-
in the general cases it is shown that the effect is maximum when all the
extremes come from the same season (or month if monthly values are used),
but that its maximum possible value is negligible in all practical cases.
The differences found in practice arise from errors in the extrapolation

of limited data.

1. INTRODUCTION

There has recently been considerable work in IOS on the subject of the effect
of the variation in average wave conditions from month to month throughout
the year. For example, Carter and Challenor (Ref 1) prove that this
differentiation results in the expected value of the extreme wave in a given
period of time being larger than it would be if the same annual average
conditions were uniformly distributed throughout the year. However, they
were unable to quantify the effect analytically and had recourse to practical
demonstrations using 4 actual sets of ocean/meteorological data. The extreme
values using month-=by-month calculations all came significantly higher than
those using the data lumped together, but the differences were within the

confidence limits.

While reading the Carter and Challenor paper it occurred to the present

author how to demonstrate the true order of magnitude of the effect using a
numerical model, and this was done in internal document No 87. While trying
to extend this to more subtle cases it became clear how to derive a theoretical

value for the effect in the general case, and this is presented in this

document.

2. THE BASIC THEORY

2.1 Statement of the problem
The notation will be largely as in Carter and Challenor except that the

symbol M will be used for the total number of samples in the period for which
1



the extreme wave is being calculated (for example, if 3 hourly wave records
are taken and the highest wave in 50 years is being calculated, M=1.46 x 105).

T is the number of years corresponding to M sampling intervals.

The mean monthly wave height varies throughout the year (see, for example
Figure 1 which is from Carter and Challenor). Carter and Challenor show that
if the months are considered separately and the highest wave occurring
during, for example, any November in a T year period is considered, and if
these monthly extreme waves are properly combined, then in principle they
give a value for the extreme wave in T years which is higher than that

derived by lumping all the monthly populations into one.

It is the purpose of this document to evaluate the magnitude of the

difference, It is then shown that it is negligible in practical circumstances.

2.2 The maximum wave evaluated considering seasons separately

Following Carter and Challenor, we will mnotionally divide the year into wn
sections each of which is homogeneous within itself (these sections could,
for example, be calendar months). The variable we are observing is 2¢
Bach section has a population 7r£ where £.==1 (1) w . Let the cumulative
distribution of My be F¢@€) = probability that a random choice of the
variable is less than € , Over the period of time of interest (T years),

each population contributes "/ samples to the total of M samples,

Then if we take a sample size M, from W, , the probability of the maximum

X - being less than X is
¢ max

- m
P X per <) = [ F0] 2.2/1
The probability of the overall maximum >( belng less than € is
P (Kmae <) = [F0] [ ('x)] A (x)] 2./
This is Carter and Challenor's equation A.7.

We now depart from their argument.

Put FeG) = ) - S‘: 2.2/3



In the region we are concerned with 5" is small and of order l/m,_ (see

Section 3.1 below). (Y': is, of course, a function of % .
. m m ™m
. ‘P(Xm(x) = (I’{,) '(0-5,_) f_“,.(l—g,.) T 2o

The general term in the product series is

(0 -8V - 1-m¢§ + 'L..__.‘;;" [ S S

il

m2rs>  wmis]
= , m{ 2... - —iT-— *— - -
™" T T 3 3
- E-!.S + 3——’:\'—8 — -‘—l ¢+ R
: 4. 2.2/5

-m§ 2
= € - o(m5 ) 2.2/6

-1'\"5.' -m‘{‘. "\‘Jﬁ\

S P(K <) ~ € e - e

"(""v‘rl tm d, Tl m J.)

= €

= m%-(%m;' 5‘-) 2.2/1

The error term in 2.2/6 will be considered in more detail in Section 3 below.

2.3 The maximum wave evaluated by lumping all seasons together

If all the sub-populations are put together in the proportions of their ‘m,"
values and the samples X of wave height selected at random from the whole
population, then the probability of getting a sample from the 4.“ sub—

population is " /M where M = & wv,
-<

Thus P (X (x) = li(x) = Z _1:1_:1 F(. (x) 2.3/1

<



The largest in the sample M then has the cumulative probability
- n . "
™ 2.3/2
- ————— . .
)
This is effectively Carter and Challenor's equation A.2, though for our

purpose here it is fruitful to put it in this slightly different form.

= 5 0-50]

1

Thus P (xmé‘ )

&

) —-:Z‘nmint + jérf (22‘”»1:6;) - -

P | ar (Emh) (k) - £ (smik)"

2.3/3

eof (-2midi) = O L (5mes)" |
h (- 2 m; 5:) 2.3/4

Cst

1R

Which is the same as the result from grouped populations (equation 2.2/7).

While it can be seen in a general way that the terms neglected are small, it
ig important to quantify them in order to make sure thaﬁ they really can be
neglected in all circumstances of practical interest. This is do in the
following section. The final equation (2.3~3) is in fact a useful equation
in its own right and again one would like to know the limits of its

applicability.



3. EVALUATION OF THE DIFFERENCE IN THE HEIGHT OF THE EXTREME DESIGN WAVE
DERIVED BY CONSIDERING SEASONS SEPARATELY COMPARED WITH THAT DERIVED BY
LUMPING ALL SEASONS TOGETHER IN THE FIRST PLACE

3.1 Definitions of the extreme design wave

It is necessary first to consider these definitions because from them we

can get an upper limit for the parameters involved.
The classical method for evaluation of the T~year design wave considers the

primary population taking all seasons together and calculates the wave height

which is exceeded on average once in T yearss: that is, in M samples.

Probability (X >xn) - —,:—r

L
S P(X<Xp) = 1= R 3.1/1
Put P(x <x) - Fp>) = 1—«5,, 3.1/2
Thus, when X =T Xp
5 L 3.1/3
A M

Assuming that the population is homogeneous (that is, not grouped), the

cumulative probability distribution of the highest wave in T years is given by

P(Xppe <*) = Fp00 = [Plx<x)]"

[1-5]"

By arguments similar to those used in Section 2.2 this gives

"

11

- M1 éyg
P(Xpow <¥) = € 1/

Thus, for the T year return period wave for which Og = M (equation 3.1/3)

P (X nax <Xn) - _é_— 3.1/5

It F37 (XL) is a Fisher-Tippett 1 distribution, then this also corresponds
to the mode, that is, the most likely value of the highest wave in a T years

period.



The median XN of the distribution is, of course, given by

P(Xonx <Xw) -o0.5 3.1/6

Putting this into equation 3.1/4 gives a corresponding value of M g“ = 0,7,
To give a feel for the difference, in a particular real case the estimated

difference between Xl"l and XM is 2.5%.

The "designwave™ might be defined in terms of other parameters, for example
the average value of the maximum wave in a specified period, but all such

likely parameters correspond to values of P(xnnx <x) which are higher than
l/c_ , and therefore in general, whatever definition is used, for the value

of Sn corresponding to the extreme design wave
-
M, <1 3.1/1

Equation 2.3/1 shows how the probability function of the ungrouped parent
population is related to those of the component groups. Using the definition

of Sa in 3.1/2 then gives

l'gn=

S Mg Z omy é; 3.1/8
Thus TG 6‘€ | for the extreme design wave. 3.1/9
3.2 Evaluation of the error terms in equations 2.2/6 and 2.3/4
Consider again the general term in equation 2.2/4
(’_,6')"" = ) -mé + M(; ) 5 T g"" 3.2/1
From the binomial theorem the general term in this series is

m (=) m-2) - (m-7T+) (_ 8)7’ 3.2/2

e ad ]

.



Expanding the top line of the quotient gives

*-r
'nv"-""'r" (Z ':) +'""* ‘( )- T T
¢ =1

Y
The term in NV is completely negligible in the present context and our
i
problem is to evaluate the magnitude of the effect of the second term in the

final answer.

The sum of an arithmetic series is given by Z 1 = J;{ ‘r'('r-l)
<+

Returning to 3.2/2 then gives the general term as approximately

m - T'lr -2. r(""') ( 5) "( 5) ) mv-l(-().)f

! 2 ('r-l).'

Putting this back in 3.2/1 gives

(l-ff)mﬁ ) - mé§ t z,m 5‘-_:;_‘.,,‘:‘)"“_.* !m(f)')-ﬂ-~

2 X -2 X
C - -J.ng [; - md + 5 m --- +(,:l;:)3n (..ar)--..

zl

H

C-mg[" 'fmgl_] 3.2/3

Which is a more precise form of 2.2/6.

Equation 2.2/4 now becomes

-m 2 ~7"'t{1
Pl €3 € (1 5), ™ )

}

ty

e-%—'mi‘rc'('-lfm,J;'X,—‘gm‘;;‘Xl- '),---

~Em, ¢ X
e ~% m, 8y (l"f ‘th‘j?) + O[g" ”.,:(f‘a'] 3.2/4

It has been shown that m("{(?l(equation 3.1/9) so that the third term in
the bracket is negligible. Going through the similar computation for the

ungrouped population in Section 2.3 gives the answer.

3T 2
P (X <x) = €7 T 7 1= (2, )] 3.2/5



If we can now assume that the year can be divided into MU equal parts, each
homogeneous in itself, then the problem becomes a little easier. For example,

for seasonal distribution T™ = 4 or for monthly distributions » = 12.
Then each M = M/n

Equation 3.1/8 becomes

e s2/s

A

And the error term in 3.2/4 becomes

[ 2 _ _Ln .
" EE s s o E

The author has consulted his colleague A G Davies who has shown that the
maximum magnitude of this is given when one of the 5} = M dp and the

rest = O,

Thus, the maximum effect of grouping occurs when all maxima come from one of

the groups. The error term in equation 3.2/3 then becomes
-“-—'n.g) = - L pn s

¥ §
Compared with -— é? n éiﬁ for the ungrouped population.
| 2
The difference (ungrouped minus grouped) is ‘Ef'f7gb (1t") 3.2/7
~
As explained in 3.1, M Sn < for the conditions of interest.

If Er1 is the max difference due to grouping, then

n-1

|
12? — . o
-1
That is [, & ——
n 2 M
To get a numerical value for this, assume monthly grouping so that v = 12

and a 50 year maximum so that M = 1.46 x 105.

Then the maximum effect on the probability is 1 part in 2.7 x 104.



This is a proportional change P in the probability. To return to a

gpecified probability requires a change O X /)c given by

&x _ P dx AP
> x &P P
= __e_ dnac . E 3.2/9

<P in the extreme value region are typically 0.1, so that the
maximum effect on the extreme design wave is approximately 1 part in 3 x 105.

Values of ——
x

The effect is inversely proportional to M. The smallest possible value of M
corresponds to the annual extreme, when it is 2.9 x 103. Clearly the effect

is still completely negligible.



4. EXECUTIVE SUMMARY AND DISCUSSION

4.1 Executive summary

The wave climate at a particular point varies with the seasons. The
probability distribution of the highest wave in each season in a T=year
period can be calculated separately and then combined to give the overall
T-year maximum wave probability distribution. Alternatively, the seasons
can all be lumped together in the first place before the extremes are

calculated., Do estimates of the T=year maximum design wave derived from the

two methods differ?

The relationship of the probability distributions of the maximum wave to
that of the parent populations is derived for both processes and is found to

be the same (equations 2.2/7 and 2.3/4). This is a quite general result and

makes no assumptions at all about the parent distributions. However, to reach

these equations small terms are neglected.

In Section 3 the derivations are repeated carrying through the small terms
and the result for the method taking account of the seasons is given in

equation 3.2/4. This again is a perfectly general result.

Assuming that the year is divided into a number n of equal seasons,
it 1s then shown that the proportional difference in the probability in

the region of the extreme design wave values is (equation 3.2/8)

» =z n-l
Ln < M

where M is the number of independent values of wave height.

This simple result is again completely general. It can be converted into the
equivalent difference in design wave value using equation 3.2/@. The -

differences are shown to be negligible in all practical cases.

4.2 Comparison with a numerical model
Internal document No 87 set up a numerical wave climate model arranged to

produce the maximum possible differences, which were then calculated.

Putting the corresponding numbers into equation 3.2/8 gives the proportional
difference in probability as

- =z 9
L” < 2 x 1.46 x 10°

3.08 x 1o"5
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Putting the appropriate values into equation 3.2/§ allows this to be

converted to proportional errors in the design wave

A X -
= 7n 2 37 %1070
Xn
This compared with the value found in the model of 38 10—6 ~ 1.50 x 1O—6

=g *

The above inequalities become equations if the 50 year return-period wave
is considered whereas the model calculated the median 50 year maximum wave.

The agreement is therefore satisfactory.

It is, in fact, possible to go back to the exact equation 3.2/7. The value
of 5}; corresponding to the median value is 4.72 x 10—6. Putting this into
the equations gives AXH /XM = 1.51 x 10-6. This agreement is within

the accuracies of the figures calculated for the numerical model.

4.3 TWhat, then, is the reason for the differences found in practice?

These arise from the problems of extrapolating from short data series.

The standard process of extrapolation plots the measured cumulative probability
of the wave measurements on axes which will produce a straight line if a
certain postulated distribution formula is valid. Several formulae are tried
and the one giving the best fit is used. This is then extrapolated to the

probability corresponding to the T=year return period.

There is a great deal of judgement involved in this process. Clearly the
most relevant data points are those for the highest waves, but the higher the
waves the fewer the measurements and the greater the scatter. We do not know

enough about the physics involved to predict the shape of the curve.

In practice, the longest data set available (Seven Stones Light Vessel) fits
a Figsher<Tippett 1 formula quite well. Plotted month=by-month there is less
data but it is difficult to say that each month does not also fit such a
formula, and this has been done. However, this is mutually incompatible
since one cannot combine monthly distributions following FT-1 formulae into
an annual distribition with an FT=1 formula. One or other (or all) must be
wrong. Forcing them all to fit produces errors of the sense and magnitude

actually found by Carter and Challenor.
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The way in which monthly or seasonal distributions should be handled to
produce results consistent with the annual distribution will be discussed in

another report.
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