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SUMMARY 

It was discovered a year or two ago that predicting extreme waves on a 

seasonal basis and then combining them into an overall extreme gave a 

higher answer than putting all the seasons together in the first place. 

Theoretically, the effect was shown to exist in principle but it could not 

be quantified. The present paper achieves this theoretical quantification 

in the general case; it is shown that the effect is maximum when all the 

extremes come from the same season (or month if monthly values are used), 

but that its maximum possible value is negligible in all practical cases. 

The differences found in practice arise from errors in the extrapolation 

of limited data. 

1. INTRODUCTION 

There has recently been considerable work in 108 on the subject of the effect 

of the variation in average wave conditions from month to month throughout 

the year. For example. Carter and Challenor (Ref 1) prove that this 

differentiation results in the expected value of the extreme wave in a given 

period of time being larger than it would be if the same annual average 

conditions were uniformly distributed throughout the year. However, they 

were unable to quantify the effect analytically and had recourse to practical 

demonstrations using 4 actual sets of ocean/meteorological data. The extreme 

values using month-by—month calculations all came significantly higher than 

those using the data lumped together, but the differences were within the 

confidence limits. 

While reading the Carter and Ghallenor paper it occurred to the present 

author how to demonstrate the true order of magnitude of the effect using a 

numerical model, and this was done in internal document No 8?. While trying 

to extend this to more subtle cases it became clear how to derive a theoretical 

value for the effect in the general case, and this is presented in this 

document. 

2. THE BASIC THEORY 

2.1 Statement of the problem 

The notation will be largely as in Carter and Challenor except that the 

symbol M will be used for the total number of samples in the period for which 
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the extreme wave is being calculated (for example, if 3 hourly wave records 

are taken and the highest wave in $0 years is being calculated, M =1.46 x 10^), 

T is the number of years corresponding to M sampling intervals. 

The mean monthly wave height varies throughout the year (see, for example 

Figure 1 which is from Carter and Challenor). Carter and Challenor show that 

if the months are considered separately and the highest wave occurring 

during, for example, any November in a T year period is considered, and if 

these monthly extreme waves are properly combined, then in principle they 

give a value for the extreme wave in T years which is higher than that 

derived by lumping all the monthly populations into one. 

It is the purpose of this document to evaluate the magnitude of the 

difference. It is then shown that it is negligible in practical circumstances. 

2.2 The maximum wave evaluated considering seasons separately 

Following Carter and Challenor, we will notionally divide the year into n. 

sections each of which is homogeneous within itself (these sections could, 

for example, be calendar months). The variable we are observing is . 

Each section has a population where € = 1 (I) . Let the cumulative 

distribution of be = probability that a random choice of the 

variable is less than -PC. . Over the period of time of interest (T years), 

each population contributes samples to the total of M samples. 

Then if we take a sample size from , the probability of the maximum 

X ' being less than ^ is 
t max 

The probability of the overall maximum X being less than Oc is 

L . " 2.2/2 

This is Carter and Challenor's equation A.1. 

We now depart from their argument. 

Put ° 2.2/3 



In the region we are concerned with is small and of order I J (see 

Section 3.1 below). is, of course, a function of "X 

( ' - ^ 0 " " ^ 2 . 2 / 4 

The general term in the product series is 

( I - f r = l -mX" -r <r 
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The error term in 2.2/6 will be considered in more detail in Section 3 below. 

2.3 The maximum wave evaluated by lumping all seasons together 

If all the sub-populations are put together in the proportions of their TPUi 

values and the samples ^ of wave height selected at random from the whole 

population, then the probability of getting a sample from the <. ̂  sub-

population is /m where M = Z 
4 

Thus P = ^ C x ) c 2. ^ ( x ) 2 . 3 / 1 



The largest in the sample M then has the cumulative probability 

This is effectively Carter and Challenor's equation A.2, though for our 

purpose here it is fruitful to put it in this slightly different form. 

n 
Thus 

= I - " " 

2 . 3 / 3 

— ( - 2.3/4 

Which is the same as the result from grouped populations (equation 2.2/?). 

While it can be seen in a general way that the terms neglected are small, it 

is important to quantify them in order to make sure that they really can be 

neglected in all circumstances of practical interest. This is do in the 

following section. The final equation (2.3' 3) is in fact a useful equation 

in its own right and again one would like to know the limits of its 

applicability. 



3. EVALUATION OP THE DIFFERENCE IN THE HEIGHT OP THE EXTREME DESIGN WAVE 

DERIVED BY CONSIDERING SEASONS SEPARATELY COMPARED WITH THAT DERIVED BY 

LUMPING ALL SEASONS TOGETHER IN THE FIRST PLACE 

3.1 Definitions of the extreme design wave 

It is necessary first to consider these definitions because from them we 

can get an upper limit for the parameters involved. 

The classical method for evaluation of the T—year design wave considers the 

primary population taking all seasons together and calculates the wave height 

which is exceeded on average once in T years; that is, in M samples. 

Probability ( X ^ 

f ( x < x „ ) . ) - 7T 3.1/1 

Put P ^ X ^ = F ( * ) r I — 3.1/2 

Thus, when ~ X ^ 

' i r 

Assuming that the population is homogeneous (that is, not grouped), the 

cumulative probability distribution of the highest wave in T years is given by 

By arguments similar to those used in Section 2.2 this gives 

< - ) 3.1/4 

Thus, for the T year return period wave for which (equation 3.l/3) 

I ^ , 
3.1/5 p ( x „ « . < x „ ) = r 

If is a Fisher—Tippett 1 distribution, then this also corresponds 

to the mode, that is, the most likely value of the highest wave in a T years 

period. 



The median of the distribution is, of course, given by 

^ = 0.5 3.1/6 

Putting this into equation 3.1/4 gives a corresponding value of M - 0.7. 

To give a feel for the difference, in a particular real case the estimated 

difference between and is 2,jfo, 

The "designwave" might be defined in terms of other parameters, for example 

the average value of the maximum wave in a specified period, but all such 

likely parameters correspond to values of ) which are higher than 

'/c > therefore in general, whatever definition is used, for the value 

of corresponding to the extreme design wave 

^Pi 3.1/7 

Equation 2.3/1 shows how the probability function of the ungrouped parent 

population is related to those of the component groups. Using the definition 

of 5"^ in 3.1/2 then gives 

J ^ '—L ( * ) 
<: ^ 

c 

M ^ 3.1/8 
i 

Thus ^ I for the extreme design wave. 3.l/9 

3.2 Evaluation of the error terms in equations 2.2/6 and 2.3/4 

Consider again the general term in equation 2.2/4 

0 - f r 1 - ^ 3.2/, 

From the binomial theorem the general term in this series is 

I — ( _ g y 3 3 / ^ 

- r * 



Expanding the top line of the quotient gives 

T»v - nŷ  " *') + ) • • " 

ir-X 

The term in TJX is completely negligible in the present context and our 

problem is to evaluate the magnitude of the effect of the second term in the 

final answer. 
> - I 

The sum of an arithmetic series is given by ~ "x "^(^'0 

< « I 

Returning to 3.2/2 then gives the general term as approximately 

( - < f r = 4 -'"'c-cT) 

Putting this back in 3.2/l gives 

{l " — f — Tn» S f ^ l A . * — 4 J"j ^ 
3. y, 

7t\.S 1^1- MvJ" t - p 

_Ttvv,^r ^ r*-1 

= e L ' J 3.2/3 

Which is a more precise form of 2.2/6. 

Equation 2.2/4 now becomes 

- ^ ^ (j - -2 +- 3.2/4 

It has been shown that ^ | (equation 3.l/9) so that the third term in 

the bracket is negligible. Going through the similar computation for the 

ungrouped population in Section 2.3 gives the answer. 

3.2/5 



If we can now assume that the year can be divided into Tb equal parts, each 

homogeneous in itself, then the problem becomes a little easier. For example, 

for seasonal distribution = 4 oi" for monthly distributions 1X> =12. 

Then each 7**,̂  = m/ Tl. 

Equation 3.l/8 becomes 

K - ^ "/< 

And the error term in 3.2/4 becomes 

The author has consulted his colleague A G Davies who has shown that the 

maximum magnitude of this is given when one of the = 7b and the 

rest =0. 

Thus, the maximum effect of grouping occurs when all maxima come from one of 

the groups. The error term in equation 3.2/3 then becomes 

Compared with — ^ for the ungrouped population. 

The difference (ungrouped minus grouped) is M ^ 3.2/? 

As explained in 3.1, M S ^ I for the conditions of interest. 

If is the max difference due to grouping, then 

I I T V - I 

fft ^ T ' l -PT 

That is ^ •' 

^ i n 

To get a numerical value for this, assume monthly grouping so that 7L =12 
5 

and a 50 year maximum so that M = 1.46 x 10 . 

Then the maximum effect on the probability is 1 part in 2.7 % 10^. 



At 
specified probability requires a change £^'X / X given by 

This is a proportional change p in the probability. To return to a 

_ P o U 

* etP • 

= ^ ^ . F 3.2/9 

DO % F ^ 

p «tjC 
Values of — — — in the extreme value region are typically 0.1, so that the 

% <CP c 
maximum effect on the extreme design wave is approximately 1 part in 3 x 10 . 

The effect is inversely proportional to M. The smallest possible value of M 

corresponds to the annual extre 

is still completely negligible. 

3 
corresponds to the annual extreme, when it is 2.9 x 10 . Clearly the effect 



4. EXECUTIVE SUMKLA-RY AND DISCUSSION 

4.1 Executive summary 

The wave climate at a particular point varies with the seasons. The 

probability distribution of the highest wave in each season in a T—year 

period can be calculated separately and then combined to give the overall 

T—year maximum wave probability distribution. Alternatively, the seasons 

can all be lumped together in the first place before the extremes are 

calculated. Do estimates of the T—year maximum design wave derived from the 

two methods differ? 

The relationship of the probability distributions of the maximum wave to 

that of the parent populations is derived for both processes and is found to 

be the same (equations 2.2/7 and 2.3/4)« This is a quite general result and 

makes no assumptions at all about the parent distributions. However, to reach 

these equations small terms are neglected. 

In Section 3 the derivations are repeated carrying through the small terms 

and the result for the method taking account of the seasons is given in 

equation 3.2/4. This again is a perfectly general result. 

Assuming that the year is divided into a number 71, of equal seasons, 

it is then shown that the proportional difference in the probability in 

the region of the extreme design wave values is (equation 3.2/8) 

where M is the number of independent values of wave height. 

This simple result is again completely general. It can be converted into the 

equivalent difference in design wave value using equation 3.2/9. The < 

differences are shown to be negligible in all practical cases. 

4.2 Comparison with a numerical model 

Internal document Wo 87 set up a numerical wave climate model arranged to 

produce the maximum possible differences, which were then calculated. 

Putting the corresponding numbers into equation 3.2/8 gives the proportional 

difference in probability as 

9 
P ^ 
n 2 X 1.46 X 10^ 

=• 3.08 X 10~5 
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Putting the appropriate values into equation 3.2/g allows this to be 

converted to proportional errors in the design wave 

^ ^ 3.17 X 10-G 

This compared with the value found in the model of 38 6 _ 6 
I 10 = 1 . 5 0 x 1 0 

The above inequalities become equations if the 50 year return—period wave 

is considered whereas the model calculated the median 50 year maximum wave. 

The agreement is therefore satisfactory. 

It is, in fact, possible to go back to the exact equation 3.2/?. The value 

of corresponding to the median value is 4«72 x 10~^. Putting this into 

the equations gives = 1.51 x 10 This agreement is within 

the accuracies of the figures calculated for the numerical model. 

4.3 What, then, is the reason for the differences found in practice? 

These arise from the problems of extrapolating from short data series. 

The standard process of extrapolation plots the measured cumulative probability 

of the wave measurements on axes which will produce a straight line if a 

certain postulated distribution formula is valid. Several formulae are tried 

and the one giving the best fit is used. This is then extrapolated to the 

probability corresponding to the T—year return period. 

There is a great deal of judgement involved in this process. Clearly the 

most relevant data points are those for the highest waves, but the higher the 

waves the fewer the measurements and the greater the scatter. We do not know 

enough about the physics involved to predict the shape of the curve. 

In practice, the longest data set available (Seven Stones Light Vessel) fits 

a Fisher—Tippett 1 formula quite well. Plotted month—by—month there is less 

data but it is difficult to say that each month does not also fit such a 

formula, and this has been done. However, this is mutually incompatible 

since one cannot combine monthly distributions following FT—1 formulae into 

an annual distribition with an FT—1 formula. One or other (or all) must be 

wrong. Forcing them all to fit produces errors of the sense and magnitude 

actually found by Carter and Challenor. 
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The way in which monthly or seasonal distributions should be handled to 

produce results consistent with the annual distribution will be discussed in 

another report. 
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