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HF Radar: An assessment of its limitations 

for measuring waves 

M J TUCKER 

Note: This assessment is in two parts: the 

assessment itself for general readers, and an 

appendix giving detailed justification for 

some of the statements made in the assessment: 

this is necessary since some of the arguments 

appear to break new scientific ground. 

The assessment applies specifically to ground-

wave radar. Sky-wave radar will have the same 

limitations plus those due to propagation 

problems. 
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1 . INTRODUCTION 

A number of circumstances recently combined to make me feel that I 

had to try to make a thorough assessment of the present position with regard 

to the use of HF radar as a practical tool for the routine measurement of 

waves. One of the circumstances is a meeting of the Science and Engineering 

Research Council Panel concerned with the SERC-supported HF Radar project 

and this has set a severe time limit. Thus, I have not been able to do more 

than glance at a small proportion of the relevant literature on this 

occasion. However, I have had a long and helpful talk with Dr Lucy Wyatt 

at Birmingham University and so am reasonably confident that what is said 

below is not at variance with published knowledge. (The views expressed 

below are entirely my own.) 

A further incentive is a proposal by CODAR Inc for a major development 

programme to produce a platform-mounted HF radar for the measurement of 

waves and currents. Support for this is being solicited in the UK as well 

as elsewhere under the sponsorship of the Gulf Research and Development 

Corporation. Another commercial instrument is being developed by the 

French firm Syminex with the support of IFF. 

The inescapable conclusion from the present study is surprising: the 

most important limitations concern the properties of the first-order Bragg 

resonance. Not only is the relevant theory apparently not understood, but 

little attention has been devoted to the problem and the rather sparse 

empirical data is in many respects confusing and contradictory. 

2. THE LIMITING FACTORS FOR THE DETERMINATION OF WAVEHEIGHT AND 1-D SPECTRA 

2.1 The most promising technique for getting information about waves is 

interpretation of that part of the Doppler spectrum arising from non-linear 

interactions. This technique has been developed mainly by Barrick and Lipa. 

In a limited region near the first order Bragg lines (whose frequency is fg) 

the energy in the Doppler spectrum at a frequency fg +_ Af, arises from water wave 

components with frequencies f^ = Af. It is possible to "invert" this part of 

the Doppler spectrum into the corresponding wave spectrum with some (but not 

complete) confidence. The region which can be used at present is limited as follows: 

(a) At low Af by the skirts of the first order Bragg line (see below). 

(b) At high Af by linearising assumptions in the equations used. The limit 

quoted in the CODAR Inc proposal is Af - 0.4 fg., This seems to be optimistic, 

but even if valid represents a serious limitation. It seems to be possible in 

principle to extend this limit by the use of more sophisticated algorithms, such 

as CODAR Inc propose to develop. 
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Figure 6. The structure of features in the second-order portion 
of the Doppler spectrum (more heavily shaded) shows the dominant 
periods and strengths of wind waves and longer period swell. 



2.2 The absolute values of waveheight and spectral density are obtained by 

using the energy Eb of the first-order Bragg line as a reference. When 

integrating the spectrum to measure Hg, this is the factor limiting the 

accuracy and it is a serious limitation (confidence limits for Hg typically = ±10% 

even when integrating over a 3 hour record: see Section Al). 

2.3 With a radar frequency of 25 M Hz, typical Doppler spectra such as that 

shown in Fig 6(b) of the CODAR Inc proposal (reproduced here) give the point 

at which the skirts of the first-order Bragg line intersect the second-order 

spectrum as Af = 0.05 Hz. However, these "typical" values seem to 

correspond to modest waveheight (Hg of 1 to 2 m). 

It seems to have been established empirically that the width of the 

first-order Bragg line is roughly proportional to the significant waveheight 

Hs (though the evidence is by no means consistent: see A3 and A4). This has 

been proposed as one way of obtaining Hg, but is in fact not a good measure 

(see section A2). As Hg increases, the increased width of the first-order 

Bragg line more than compensates for the increased energy of the second-

order Doppler spectrum and the point of intersection moves to higher Af. 

This effect is thus a serious limitation on the ability of a 25 M Hz radar 

to measure low frequency waves. 

Simple physical arguments supported by some measurements (see section A3) 

show that the width of the first-order Bragg line increases with radar 

frequency fR, and probably as fg3/2^ Thus CODAR Inc's proposal to move to 

VHF in order to improve the limitation in 2(b) above seems doomed to 

failure. 

It will be seen that whereas limitation 2(a) favours lower radar 

frequencies, limitation 2(b) favours higher radar frequencies. The 

limitation mentioned in section 2.2 due to random sampling errors in Eg 

also favours higher frequencies. 

3. DIRECTIONAL SPECTRA 

Clearly the amplitude information is subject to the limitations discussed 

above, but perhaps there is useful information to be obtained about the 

relative directional distributions. 

The matrices used for obtaining the directional information are ill-

conditioned and can only be solved in practice by limiting the information 

obtained: so far as I can see, this amounts to smoothing. I have not had 

time to understand the process in detail, but from statements by Lipa it 



looks as though she solves the matrices for the lower order directional 

harmonics (zero, first and second). From some rather superficial thinking 

I would expect even the estimates of these to be unstable, but this subject 

is at the frontiers of research at the moment. 

Present techniques also involve either the use of two radars looking 

at the sea in different directions, or the assumption of a homogeneous 

wave field over a fairly wide area. 

4. CONCLUSIONS 

At present we do not know enough about the characteristics of the first-

order Bragg line either theoretically or empirically to establish with any 

degree of certainty the quantitative limits of the ability of HF radar to 

measure wave^ and how these vary with radar frequency. We are thus also 

unable to choose the optimum frequency. 

With present knowledge and techniques the limitations are serious enough 

to make HF radar a tool of doubtful practical value for measuring waves. 

The most urgent requirement is for research into the properties of the 

first-order Bragg line. 

While directional information is present in the radar Doppler spectra, 

its extraction in useful form is not yet convincingly established. 
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APPENDIX 

JUSTIFICATION FOR SOME OF THE STATEMENTS MADE IN THE ASSESSMENT 

(Al) Sampling errors 

If a random signal is sampled for a time T, the accuracy to which the 

energy in a range of frequencies 6f can be determined is I/(T 5f)2 (this is 

the rms value of the proportional sampling error, assuming the spectral 

density is uniform in the interval 6f). Thus, since in the region of interest 

the contribution to the Doppler spectrum from a wave of frequency f%̂  is at 

fg _+ f^, 6f in the Doppler spectrum equals 6f in the wave spectrum and if 

only one sideband is used, the sampling error is identical to that for a 

single wave buoy recorded for the same period of time. 

By the same argument*, the error in determining EB, the energy of the 

Bragg line, is 1/(T 6fB)5. The 3 db width of the Bragg line for a 25 M Hz 

radar is typically 0.01 Hz. So even for a 3 hour record (T - 10^), the rms 

proportional sampling error in EB is approximately 10%, giving confidence 

limits of approximately _+ 20%. (Equivalent to approximately half these values in 

terms of wave height.) 

(A2) Variation of 6fg with waveheight 

A model capable of giving a feel for the factors involved in the 

broadening of the first-order Bragg line is what BAR scientists call the 

two scale model. In this, the Bragg resonant waves are carried about and 

modulated by the much longer waves carrying the main wave energy. 

For example, using 25 M Hz, the Bragg resonant waves have a wavelength 

of approximately 6 m, whereas in a 15 m/s wind the dominant wavelength is 

approximately 150 m with a corresponding period of 10 s. The phase \elocity 

of a 6 m wave is approximately 3 m/s. Thus, to first-order with these 

parameters, the phase of the Bragg resonant wave is modulated by the 

horizontal displacements in the longer waves, which are equal in magnitude 

to the vertical displacements. 

Note that since the Bragg resonant waves are long—crested waves moving 

in the range direction, the relevant particle displacements in the long waves 

are the.components in the range direction. Thus, the broadening 6fg of the 

Bragg line is given by 

(5fB)2 cc Jfs(^0) cos20 df d0 

whereas by definition Hg2 = 16 ffs(f,0) df d0 

Thus, 6fB is not a good measure of Hs. ' 

*It is an approximate argument in this case: see section A4. 



It should be noted that this model is not valid for longer radar 

wavelengths or shorter seas, and that it seems to be by no means certain 

that a process of this type is even the main contributor to the broadening 

of the Bragg line (see section A5). 

(A3) Variation of Sfg with radar frequency 

For a given long-wave particle displacement the phase change of the 

Bragg resonant waves in radians is inversely proportion to the Bragg resonant 

wavelength X-q. Thus, so far as I can see, the proportional broadening of the 

Bragg line should be proportional to 1/Xg. Since f^g = g/27rXg, this gives 

gfg oc 1/Ag^/^, or 6fg o: fg3/2, X am not absolutely sure of the validity of 

this argument, but it seems plausible. 

The analysis techniques used in published papers do not allow adequate 

resolution of the width of the Bragg resonant line, but Barrick and 

Snider (1977) have measured the decorrelation time Tg of the peak (which is 

approximately the inverse of the bandwidth) at a range of radar frequencies. 

Using the maximum height of the higher of the two peaks (the advancing peak 

in this case) their results are as follows; 

Frequency: M Hz Td:S Deduced 5fg; Hz 

2.41 140 .007 

4.54 85 .012 

6.92 35 .029 

9.40 20 .050 

13.41 20 .050 

The resolution of their measurement of was not good enough to measure 

Tq accurately at the higher frequencies, but the trend is clear. 

They do not state the waveheight at the time, but they do state earlier 

in the paper that it did not exceed 4 m for any of their measurements. 

They could detect no change in Tq with waveheight: see the section A5 

for comment on this. 

(A4) The importance of the shape of the Bragg resonant band 

The precise equation for the proportional standard deviation O of the 

random sampling error in the estimate of the energy in a band of frequencies 

is 

= -

1 /s2(f) df 

T {/S(f) d f } * 

where T is the duration of observation, 

and the integral is taken over the band under consideration. 



For most circumstances this will be not very different from the simpler 

equation quoted in section A1 using 6f = the 3 db bandwidth. However, the 

bandwidth controlling the limit to which the non-linear spectrum can be used 

is more like the 25 db bandwidth. It is therefore important to understand the 

factors controlling the shape of the skirts of the first-order Bragg peak, 

as well as its 3 db width. 

The relationship between the decorrelation time and the bandwidth also 

depends on precise definition, but again, for approximate purposes the 3 db 

bandwidth is appropriate. 

At this point one must emphasise the importance of a properly designed spectral 

analysis procedure. Some methods in current use have poor characteristics 

in terms of the width of the lower skirts of their response functions. 

(A5) The bandwidth of the first order Bragg line in the absence of phase 

modulation, and the mechanisms for broadening it 

If the length of the radar pulse on the sea (that is, its range 

resolution) is L» then the number of Bragg resonant waves in it is N = L/Ag. 

If we consider a component of the wave system with n waves in L, then 

the value of n at which coherence is lost is n = N 1 (assuming a sharp-

edged square pulse). 

The corresponding wavelength is An given by 

1 = ElL = i_ 1 i 
An L Ab L 

The corresponding wave frequencies are 

0)̂  = (̂ B̂ ± JL 
2Trg 27rg L 

Putting CO = Wg ± Aw, where we assume Aa)«C0B gives 

to-IS ; 1 
U)g 

or Af = 1 
4wfB L 

Af here is the difference between the centre frequency and first zero, 

but this is also approximately the bandwidth between 3 db points. 

For example, for a 25 M Hz radar (fg - 0.5 Hz) with a resolution of 10 km, 

Af - 1.6 X 10~^ Hz. 



The above calculation is only approximate, and if the 3 db bandwidth 

were calculated more exactly taking account of the range of directions over 

which coherence is achieved, then a slightly narrower bandwidth would be 

produced. 

It is clear that measured bandwidths (for gound-wave radar) are much 

wider than this, so there is some mechanism in the sea broadening them. It 

is by no means certain that phase modulation due to the longer waves as 

discussed above is the main cause. For example, variations in surface 

current within the resolution cell would produce a Doppler spread and the 

rms variation would need to be only a few cm/s to produce the observed 

spreads. This seems quite possible, particularly in coastal waters, and 

could explain Barrick and Snider's observation of no dependence on waveheight, 

Assuming that the current pattern changes comparatively slowly so that a 

Doppler analysis is appropriate, the bandwidth is given by 

Sfg = 2 Vrms/Ag 

So in this case the bandwidth is proportional to radar frequency, which 

actually agrees better with Barrick and Snider's observations. 

I am, in fact, by no means certain in my own mind that the process of 

phase modulation by longer waves is not included in the non-linear analysis 

of Barrick and Lipa. If it is, then a very important conclusion follows: 

for higher radar frequencies (which includes 25 M Hz) the third and higher 

order interaction terms are very important, because wave particle 

displacements are comparable with or exceed the radar wavelength. 

To illustrate this point, at microwave frequencies the Doppler 

broadening of returns from the sea surface is several tens of Hertz. 




