INTERNAL DOCUMENT 290

10S

DEACON LABORATORY

INTRODUCTION TO SHIPBOARD COMPUTING FACILITIES
(UNIX SYSTEM)

T. P. LeBas

[This document should not be cited in a published bibliography, and is
supplied for the use of the recipient only].

Research OCEANOGRAPHIC SCIENCES

Nat 1
é E:vlil:gnment INSTITUTE OF
Council DEACON LABORATORY

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

Wormley, Godalming,
Surrey, GU8 5UB, U.K.

Telephone: 0428 79 4141
Telex: 858833 OCEANS G
Telefax: 0428 79 3066

DIRECTOR: Dr. C. P. Summerhayes

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY
INTERNAL REPORT NO. 290

INTRODUCTION TO SHIPBOARD COMPUTING FACILITIES
(UNIX SYSTEM)

T.P. LeBas

1989

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
LEBAS T.P. DATE 1989

TITLE
Introduction to Shipboard Computing Facilities (UNIX System)

REFERENCE Institute of Oceanographic Sciences Deacon Laboratory,
Internal Document, No. 290, 28pp (Unpublished manuscript)

ABSTRACT

This report is intended to be an introductory guide to aid a programmer or user on the UNIX A-B-C
system. This system is available on most NERC ships and is supported by RVS.

ISSUING ORGANISATION Institute of Oceanographic Sciences TiLZP:OQIfm
Deacon Laboratory 042879
Wormiey, Godalming TELEX
Surrey GU8 5UB. UK. 858833 OCEANS G
. i TELEFAX
Director: C.P. Summerhayes 0428 79 3066
KEYWORDS CONTRACT
UNIX
A-B-C
Computing PROJECT
PRICE

Copies of this report are available from:
The Library, Institute of Oceanographic Sciences, Deacon Laboratory.

CONTENTS Page

INTRODUCTION
2. THE UNIX SYSTEM

2.1 System Commands

2.2 Directories

2.3 Files

2.4 Filename patterns and Wildcards
2.5 Repeating commands

2.6 External and Foreign Tapes

3. PROGRAMMING ON THE UNIX SYSTEM

3.1 Fortran

3.2 Compiling
3.3 Linking

3.4 Execution
3.5 Graphics

3.6 Input/Output

4. THE EDITOR

4.1 Editing
4.2 The vi commands

5. SHIPBOARD FACILITIES
5.1 Shipboard Programs
5.2 The Digitiser
5.3 Data files and their variables

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

1. INTRODUCTION
This report is intended to provide a simple introductory guide to the use of the UNIX system. It

is not intended to be highly detailed as further information is available from several sources: manuals

and system-dedicated publications, and program documentations. It is hoped that this report will give

the user a basic understanding of the UNIX system and the facilities the shipboard system can offer.
The report is based on the Plessey Microsystems System 68 on the R.R.S. Charles Darwin. A
similar computer is available on the R.R.S. Discovery and M.V. Farnella. The system comprises:-
M68000 Processor Board
2 x 0.5 Mbyte RAM
Sky floating point processor

2 eight-port sernial /0O boards

84 Mbyte Winchester Disc drive and controller

Floppy-disc drive and controller
Cambridge Ring LAN DMA interface
Half-inch 1600bpi standard tape drives(2) and controller

Peripherals e.g. Terminals, graphics terminals, plotters, digitiser and printer.

The UNIX operating system is a very simple and low-level programming environment. The

shipboard facilities include:-

Y
b)
c)

= e g

A 'C' compiler and debugger

The Shell

The text editors ed and vi

Other language processors including FORTRAN and BASIC
Text processing and document preparation e.g. nroff
Graphics and plotting

General library of programs for data manipulation

Figure 1. The computing room aboard the R.R.S. Charles Darwin housing the UNIX
A-B-C system, with the disk and tape drives on the right hand side and some
terminals opposite.

C is the programming language used to write the UNIX operating system and most of its
commands. ltis a very low-level programming language and consequently extremely complex. it is
not discussed here since it is of little use to high-level programmers. However if the user wishes to
program in this language there are many good texts for both novice and expert programmers (e.g.
Kernighan & Ritchie 1978). The command level of the system is called the shell and can be a
programming language itself as well as a command language. The command interpreter provides a
user interface to the UNIX operating system and is similar to function calls in C.

The programming language used and explained here is Fortran. No programming techniques
are given as it is assumed that the user already has an understanding of the Fortran fanguage.
However for those users who are not programmers a section is devoted to the programs already
available and supported, which give various scientific calculations and plotting facilities. In addition all
parameters that can be logged by the computer system are explained, though in any one cruise not all
parameters will be present. Access to these data for use in the user's own programs is also covered.

As the shipboard system is under constant use, programs are constantly being updated and
altered. Some of the information in this report therefore may be outdated though should be
retrievable if the newer programs do not serve the user's exact requirements.

2. THE UNIX SYSTEM

2.1 System Commands
This section covers some of the basic commands of the UNIX system. Logging in is the first
problem and will generally be different according to circumstances. The user may be either given a
personal username and password to sign onto the system or given access to a communal username
(such as 'guest’). The main UNIX operator or 'superuser’ has general system administrative
responsibility and can provide whichever type of i.d. the user requires.
Once you have logged in a prompt will appear, with any messages of the day. The prompt can
vary considerably from just a $ to a serialised command number and word (e.g. 1GO>). Learning a
new computer system in the abstract is difficult and so the best way to learn how to use the UNIX
system is to relax in front of a connected terminal and experiment.
Three useful control codes to mention at the outset are:-
the ERASE character is Del or Control-H
the LINE KILL characteris Control-U
the BREAK character is Control-C

2.2 Directories

In the UNIX system there are two types of files, namely directories and ordinary files. These
are linked in a tree structure (Figure 2). A directory is a file which in itself does not take any space
though may contain other files and directories which will. A directory can therefore be regarded as a
branching point within the file structure. Thus any file which is owned by the user may appear to be in
the base level arrived at when logging in, but may be already several branches down the tree. The
following commands can show how to move around these directories and their use.

pwd Prints current working directory

cd <option> Changes directory

Examples:
cd Changes to logon directory
cd model Changes down to directory ‘'model'
cd .. Changes up to parent directory

cd /nerc/work/model Changes to given directory
mkdir <name> Creates a directory within the current directory.

rmdir <name> Removes an empty directory

2.3 Files

Any name may be given to a file (or directory) though it is often good practice to use standard
names. Standard format for a file is filename followed by a dot and followed by the filetype (e.g.
'xxxxxx.xxx'). Various names are suggested here as the UNIX software from time to time requires
special filetype markers. it is also recommended that the user only uses alphanumeric characters as

some commands can use file patterns.

name.for Fortran programs
name.dat Data files

name Files for execution
name Directories

name.c C programs

name.bak Backup or Archive files
name.txt Text files

name.o Compiled C programs

name.obj Compiled Fortran programs

10

s

bin usr nerc work ev
prog 1 sh lib work data prog 1 prog 2

report fort cobol prog 1

/NN

chapl chap?2 chap3 mag grav

Figure 2. Example of a hypothetical file directory tree structure. Underlined names
are directories and non-underlined names are files. Thus file ‘grav' has a full name
of /usr/work/cobol/grav.

11

Creation of files is done via the editor (see Section 4) and their execution is generally done by
typing the filename. There are no formal run or exec commands or statements.
File control is relatively straightforward and the commands are as follows:-
Is Lists the current directory
Is4 Lists the current directory giving full file information
e.g. directory permissions, ownership, size, last
modification time
cat <filename> Lists file contents
more <filename(s)> Lists file(s) contents with a scroll stop every 24 lines
{space to continue)

Ip <filename(s)> Lists file(s) contents on line printer

mv <file1> <file2> Renames (moves) file1 to file2

cp <file1> <file2> Copies file1 to file2

rm <filename(s)> Delete (removes) file(s)

sd <filename(s)> Selective delete of files (from filename pattern)

2.4 Filename patterns and wildcards
File patterns and wildcards are generally used to catenate commands when working with a
library of files. A name is used which has a common feature with the other parts masked by wildcards

or 'metacharacters’. There are three metacharacters:-

* any number of characters
? any single character
\ ignore the meaning of the next character {e.qg. if it is another metacharacter)
Examples:
rm ?race.” Would delete trace.for and brace.obj but not tastrace.for nor
tracerfor <24.1>
more ray*t.? Would list 'ray*t.c’ and ‘ray*t.d' but not rayit.c’ <2.4.2>

Output can be directed in various ways. Default output is generally directed to the terminal.
But this can be changed by giving the command a directive path and thus putting normal output to a
file. Two possible path directions are:-

> file Output is written to the file named

>> file Qutput is appended to end of the file named

12

Examples:
cat test2 >>testi appends test2 to test1 <2.4.3>
Is -1 >dirlist saves a long directory listing in file 'dirlist’ <2.4.4>

2.5 Repeating commands

When typing in long commands it is sometimes annoying to keep repeating the line when,
say, only minor changes are required. The UNIX system allows for this with a 'history' command. This
command lists the last 20 commands of the present session. These commands are numbered and
are thus referencable and so can be rerun. The history commands are:-

history or h Prints the fast 20 lines of commands

" Reruns the previous command

In Reruns the command numbered n
lcde Reruns the last command which begins with ‘cde’
*cderMg Changes 'cde’ in previous command to 'fg' and then rerun

Another way to keep repeating commands is to make a command file. Creation of a command
file is in the usual way via the editor. Execution however is only possible by having the mode
changed. This can only be done by the owner of the file who must use the chmod command. There
are 3 levels of user: owner, group and public. Within these 3 levels there are 3 types of permission:
read, write and execute. This therefore gives 9 possible permission tracks. Normaily the owner is the
only person who requires read and write access but it may be required that all users have execute
access, this would give a permission mode of rwx--x--x or 711. Figure 3 shows how to calculate the

mode for the various permissions. The syntax is as follows:-

chmod <mode> <file> Changes the mode of the file
Example:
chmod 777 test Gives full access to everyone on file ‘test’ <25.1>

2.6 External and Foreign Tapes
Due to the simple programming environment it is relatively easy to recover programs and/or
data from foreign or external tapes and dump them onto file. The 'dd’ command copies and converts

the source to a file from tape (or vice-versa if required). The syntax for this command is:-

owner

13

group public
rw o x row x

This example is mode for owner read, write and execute permissions together with
group and public execution permissions.

mode

Mode Permissions
400 - owner read
200 - owner write
100 - owner execute

10 - group execute
1 - public execute
711

Figure 3. Translation diagram for chmod permissions.

10
20
40

100
200

400

14

dd <option=value>

options:
if=file Input file (or device)
of=file Output file (or device)
ibs=n Input block size n byte (default 512 bytes)
obs=n Output block size n bytes
cbs=n Conversion buffer size
skip=n Skip n records before cop
conv= ascii Convert EBCDIC to ASCII
ebcdic Convert ASCll to EBCDIC
ibm Slight different map of ASCIl to EBCDIC (for IBM)
lcase Alphabetics to lowercase
ucase Alphabetics to uppercase
swab Swap every pair of bytes
noerror Do not stop processing on an error
Example:
dd if=/dev/rmtQ of=mtdx ibs=800 cbs=80 conv=ascii,swab <2.6.1>

This will read a raw EBCDIC tape blocked in ten 80 byte EBCDIC card images per
record into the ASCII file 'mtdx’

Example 2.6.2 shows a step-by-step process for transferring a working Fortran program
‘mtxrot.for from a non-UNIX machine to a onboard A-B-C UNIX computer.

i) Copy the Fortran source program from the non-UNIX machine to a magnetic
tape

ii) Note the tape format (e.g. 800 bpi, EBCDIC, 72 characters per record, 16
records per block, first file on tape, byte swapped)

iii) Transfer the tape to the ship and load on the tape drive 0

iv) Read the tape to disk with the command:

dd if=/dev/rmt0 of=mitxrot.for ibs=1152 cbs=72 conv=ascii,swab
V) Check the source program for any differences in programming that may need
changing (e.g. Input/Output streams and/or Graphics)
vi) Compile and link the program: {77 mixrot.for

vii) Run the program: mixrot <26.2>

15

3. PROGRAMMING ON THE UNIX SYSTEM

3.1 Fortran

Fortran is one of the most widely used scientific languages to date. The UNIX system
implementation is the American National Standards Institute (ANSI) standard FORTRAN-77. This
section is a user's guide to Foriran execution as opposed to a Fortran reference manual (Metcalf
1985). But some graphics and input/output routines are included since these are a common area for
error and are usually machine-dependant. To run a Foriran program it will first have to be entered into
memory either from the editor or from some external source such as disc or tape. After this it must
then be compiled and linked so that an executable form can be created, 'an executable module'.
Compiling, linking and run-time error numbers are not listed here; firstly the error message is usually
explicit and secondly the Fortran language manual covers them adequately (Unisoft systems, Fortran,

Appendix A).

3.2 Compiling
The syntax of the compiler is:-
{77 <option> <filename>
options : < to get object module (.obj)
-0 ofile to get executable module called 'ofile’

Examples:
{77 -c test.for produces object module from program 'test.for' called

‘test.obj’ ready for linking «3.2.1>
177 trial.for produces executable module calied 'trial’ from program

frial.for' - no linking required <3.22>
f77 -0 tr1 trial.for produces executable module called 'tr1’ from program

trial.for' - no linking required <3.2.3>

Examples 3.2.2 and 3.2.3 automatically link to the ordinary Fortran libraries but not the graphics
libraries. Thus with programs requiring graphics the linking process must be executed separately.
When compiling many subroutines in different files it is usually good programming practice to compile
gach file on its own and subsequently join them with the link. This should also help in the debugging

of programs at compilation stage.

16

3.3 Linking
This is required to link to the Fortran libraries, any graphics libraries needed and possibly some
external user subroutines not included in the main program. This produces an executable module.
There are two commands to this process, 'ulinker' (UNIX object code formatter) and 'cc' (C compiler).
The syntax for ulinker is :-
ulinker listingfile outputfile inputfile(s)
The listing file is not necessary and can be suppressed
by using the option -|
The output file must be present and of type '.0'
The input files must include the Fortran libraries as well

as any special subroutines or libraries - they must all be of type '.obj'

The syntax of cc is:-
cc <options> <filename(s)>
options: -0 output Names the final executable output file

Default is a.out

Examples:
ulinker -I test.o test.obj ftnlib.obj paslib.obj spisubs.obj cc -0 test test.o <3.3.1>
This links compiled program test.obj to the Fortran libraries
and to the graphics library and then creates an executable
module called 'test’. No listing file is produced.

ulinker trial.lst trial.o trial.obj finlib.obj paslib.obj

cctialo <332
This links compiled program trial.obj to the Fortran libraries,
creates a link listing 'trial.Ist' and creates an executable module
called 'a.out'.

Examples 3.3.1 and 3.3.2 assume that ulinker, ftnlib.obj, paslib.obj and spisubs.obj are in the current
directory. This is not always the case and thus example 3.3.1 could look like this:-
/usr/lib/ulinker -I test.o test.obj/nerc/work/guest/fort/spisubs.obj
/usr/lib/ftnlib.obj /usr/lib/paslib.obj
cc-otesttesto <3.3.3>

3.4 Execution

17

The syntax of executing a program once it has been compiled and linked is:-

filename || filter] [<input] [>(>)output]

options: | filter

<input
>output

>>output

Examples:
trial
trial >trial.out
trial <trial.in
test | ca1039

/nerc/geoph/mag2d

NOTE

The pipe symbol | followed by an appropriate fiiter will
translate plotting such as a graphic display, plotter or
printer

Will take default input from file (instead of the termina)
Will send default output to file (instead of the ferminal)
Will append default output to end of file (instead of the
terminal)

Runs program trial

Runs program 'trial' and all output goes to file ‘trial.out’
Runs program ‘trial’ taking all input from file trial.in’

Runs program 'test' and outputs the plot on the calcomp
1039

Runs program 'mag2d’ which is not stored on the current

directory but in directory '/nerc/geoph’

<34.1>
<3.4.2>
<3.4.3>

<344>

<3.4.5>

On the R.R.S. Charles Darwin computer system certain of the mentioned files are held in the

following directories and may not be present on other systems:

EILE
ulinker
ftnlib.obj
paslib.obj
spisubs.obj

SPI routines

DIRECTORY USE

/usr/lib Linker

/usr/lib Fortran library
/usr/lib Fortran library
/nerc/levc/ref/src/spit/fortran Graphic library

/nerc/levc/ret/src/spif Graphic sources

18

3.5 Graphics

The graphics available on the UNIX system is the SPI language. The subroutines available are

listed below. When using graphics the linking process must include the graphics libraries (e.g.

spisubs.obj). Programs can be run in several ways depending on the output path. Generally there are

three paths: the screen, the plotter, or a file. Each of these requires some kind of filter or path which

must be specified.

Examples:

test | m2250 plots program ‘'test' results on the Micrographics m2250 terminal

screen

<35.1>

test | ca1039 plots program ‘test' results on the Calcomp 1039 plotter <3.5.2>

test >plot.plo saves all program output in a file 'plot.plo’ - plotting can then be done

using cat plot.plo | m2250

<353>

Since all the output is piped on a certain path, there must be no mixing of graphics output with

alphanumeric output. Alphanumeric output should be written to file within the program thus not

confusing the two outputs. This also holds for inputs.
The graphics routines currently available are:-

anumb(degs,nflds,ndp,itype,size,angle,icont,ierr)

cench(n,size)

devend

enumb(r,nc,ndp,size,angle.icont,ierr)
fnumb(r,nc,ndp,size,angle,icont,ierr)
inumb(i,nc,size,angle,icont,ierr)

linby2(xr,yr)

linto2{xp,yp)
movby{2xr,yr)

movto2(xp,yp)
nc836

Write an angle or Lat./Long.

Plot centred mark number n
Terminate graphics activity and close
all devices

Write a number in fixed E- format
Wirite a number in fixed F- format
Write an integer

Draw a line by xr, yr from the current
SPI pen position

Draw a line to xp, yp

Move the pen by xr, yr from the
current SPI pen position

Move the pen to xp, yp

Select the nicolet 836 driver
(needed for all SP| programs)

19

pen(npen) Select a new SPI current pen
SPI Pen 1 = Black
SPI Pen 2 = Red
SPI Pen 3 = Green
SPI Pen 4 = Blue
piccie Closes the old page and opens a

new one, without resetting

parameters
shift2(xp,yp) Shifts the origin by xp, yp
text (string,nchars,size,angle,icont) Wirite nchar characters of text in

A1 format from array string

Availability of hardware on the R.R.S. Charles Darwin can be variable. In general there are two
graphics outputs: a Calcomp 1039 plotter and some Micrographics m2250 graphics terminals.
Unfortunately they appear to have different scales; the Calcomp having 1 unit per millimetre and the
m2250 having an area of 2100 units in the x-direction and 1600 units in the y-direction. In the course
of various trials it was observed that the m2250 would invert the y-axis if plotting began at figures less
than 36 hence a shift2 command is required at the outset.

mple graphics program to draw a small pi (Figure 4)
Cc
C ***Testfor***
C
C Requires spisubs.obj when linking
Cc
call nc836 ;Nicolet driver
call piccle ;Clear screen
call shift2(0.0,36.0) ; Fudge ! (see above)
call movto2(30.0,80.0) ; Move into the central area
call pen(2) ; Change pen to red

cail linby2(0.0,-50.0)
call linby2(30.0,0.0)
call linby2(0.0,50.0)

20

U N IX A-B-C System

Figure 4. Graphical output from program example

21

call movt02(80.0,30.0)
call pen(3)

call linto2(80.0,80.0)

call linto2(110.0,30.0)
call linto2(110.0,80.0)
call movby2(20.0,-50.0)
call pen(4)

call linby2(0.0,50.0)

call movby2(20.0,0.0)
call pen(5)

call linto2(180.0,30.0)
call movby2(-30.0,0.0)
call linto2(180.0,80.0)
call movby2(100.0,-40.0)
call pen(1)

call text('A-B-C system',12,2.5,0.0,3)
call devend

end

3.6 Input/Output

Input and Output routines in Fortran can differ from machine to machine. Standard input and
output channels are referred to as unit 0 or * and their default is formatted and sequential. The OPEN
statement is the main command discussed here. The other commands are similar to any other
system e.g. CLOSE, REWIND, ENDFILE and their syntax is available in the Fortran language manual.

OPEN(options)
options: UNIT=u u is the unit specifier
ERR=s s is the exit statement label
FILE=fname fname is the filename
STATUS=sta sta is the status - must be 'OLD’, 'NEW",

'SCRATCH' or 'UNKNOWN'
ACCESS=acc acc is the access code - must be 'SEQUENTIAL' or 'DIRECT'

22

FORM=fm fm is the format code - must be 'FORMATTED' or
'UNFORMATTED'
Default is 'SCRATCH', 'SEQUENTIAL & 'FORMATTED".

4. THE EDITOR

4.1 Editing

There are two commonly available editors ed and vi. Of these ed is the more basic editor
initially designed for use on dumb terminals such teletypewriters. viis a screen editor and takes full
advantage of the video screen. In this section only viis described as it is powerful and more useful

than ed which is adequately described in Unisoft Systems User Guide.

4.2 The vicommands
Entry and Exit

vi filename Entry into file 'filename’

X Exit vi saving changes

q Exit vi with no save

q! Exit vi not saving any changes
w file write (copy) to file'

Cursor Movement

Return Down 1 line

- Up 1line

Space Right 1 character

Backspace Left 1 character

$ Move 1o end of line

0 Move to beginning of line

cntl-D Move down half a page

cntl-U Move up half a page

cntl-F Move forwards a whole page

cnil-B Move backwards a whole page
/cde/ Search forwards for the pattern 'cde'
?cde? Search backwards for the pattern 'cde’

nG

Gotolinen

23

Insert (until ESC)
i Insert text before current character

a Insert text after current character
O Insert text before current line
0 Insert text after current line
Change/Replace
r Replace current character
cc Change current line (until ESC)
8/X/Y/opt Substitute Y for the first occurence of X - options are:-
change every occurrence in line
confirm each change
p print each change
Delete
X Delete current character
nx Delete n characters starting on the current character
dd Delete current line
ndd Delete n lines starting on the current line
Undo
u Undo last operation
U Restore current line
Global Commands
:9/X/s/Y/opt Globally find the string X on every line and substitute for the
string Y
g/ X/slY/Ziopt Globally find the string X on every line and substitute the

string Z for the string Y on those lines - options are:-
change every occurrence in line
confirm each change

p print each change

24

5. SHIPBOARD FACILITIES

5.1 Shipboard Programs

The following list gives an idea of what programs are available for data editing and processing
on the UNIX system on all NERC ships. Further information is available in the Level-C Operators
Manual (Shipborne Computer Group). It is suggested that these programs are only accessed with the

permission of the operator or under their supervision.

ANNOT Produces annotation specification

ANTPLOT Produces an annotated plot

COMPASS_C Plots compass rose (colour)

COMPASS_M Plots compass rose (monochrome)
DEPCODE Produces depth codes for Gloria replays
DIGREAD To generate files of converted digitiser data
DXFMT Produces merge-merge format 3 magtape for data transfer
EDSATS Edits satellite fix file satfix

EDSTATUS Edits status of data on most data files

GF3 Produces gf3 format file on disc or tape for data transfer
GPSNAV Combines relative navigation with GPS fixes
GRID Produces the grid specification

GRIDPLOT Produces an annotated plot

LISTIT General purpose data listing program
LIVENAV Produces live navigation for plot

LIVEPREP Sets up grid limits for live plotting

LIVEPLOT Plots the live data

LORIN Manual entry of Loran fixes

LORNAV Combines relative navigation with Loran fixes
MANDEP Manual entry of depth data

PRINTDEP Prints depths - corrected and uncorrected
PRINTIT Prints navigation data and/or other parameters
PRINTGPS Prints GPS fixes

PRINTLOR Prints Loran fixes

PRINTSAT Prints satellite fixes

PRODEP Corrects depths

PROGRAV Calculates free air anomaly (FAA)

PROMAG Calculates magnetic anomaly (RESIDMAG)

25

PRONAV Combines relative navigation with fixes
SATFUDGE Forces satellite to give position to corresponding finalnav
SATNAV Combines relative navigation with satellite fixes SPOT draws
markers on a grid
TITSIL Wiites data into a data file (reverse of LISTIT)
TRACK Produces the track specification
TRACKPLOT Produces a track plot
XYPREP Creates input file for XYPLOT
XYPLOT :
TPLOT Plot data against time (live)
TPLOT_H Plot data against time (hardcopy)
DPLOT Plot data against distance (live)

DPLOT_H Plot data against distance (hardcopy)
OPLOT Plot data against any other variable (live)
OPLOT_H Plot data against any other variable (hardcopy)

Example:

Four programs are required to produce a navigation plot on a grid. The first two grid and track
are form programs allowing data to be input using forms and thus are relatively easy to operate. To
enter the parameters in each form window on the screen the following keys are used:-

TAB Move on one window

ESC Move back one window

LINEFEED Move on one space

BACKSPACE Move back one space

All the other keys act as normal.

When both data forms are filled, plotting can start. The grid is plotted first, followed by the
track plotted on top of this grid.
The series of commands thus could look like this:-
grid g.tarea
track t.tarea
gridplot g.tarea | ca1039
trackplot -g g.tarea - t.tarea | ca1039

26

The first line creates a form file g.tarea holding the user-defined grid parameters and the
second line similarly creates a form file t.tarea holding the data to be plotted on the grid. The last two
lines plot the grid and track respectively on the Calcomp 1039.

On the R.R.S. Charles Darwin all this must be done in directory /nerc/data/maps, and the user
must have the appropriate access permissions. These are available from the main UNIX operator.

5.2 The Digitiser

Hardware - Compilot Series 7000 Digitiser (+ a terminal)

There is one interface program for the digitiser - DIGREAD. |t is a menu driven program and
self-explanaiory. To run this program the user must have the appropriate permissions for directory
/nerc/leve/ret/src/digitiser and be in that directory. Within the program the user can use the digitiser
predefined boxes (at the top of the tablet) {o select the opening of the correct and input the scaling in
x-y coordinates. The digitising tablet should be set to point or stream mode via the keys on the side of
the tablet. Point mode is probably easier, especially in heavy seas! Use the digitising tablet mouse
keys 0-9 to enter the X and Y values. From there the terminal will give instructions to the program's
use. When finishing, use the exit and confirm predefined tablet boxes to stop the input.

The terminal attached to the digitiser has no graphics capabilities itself thus verification of the
digitisation is difficulf. Therefore when digitising it is advisable to take note of which horizons or
contours have been digitised.

Program DIGREAD now writes directly to data files. Therefore they must be created before
execution by using program CREDAT. Seismic data is written with variables y and button number,
contour data is written with variables x and y, and Mercator data is written with variables lat and lon

(though at present Mercator values are treated as a linear scale).

5.3 Data files and their variables

All these files are kept in binary files within directory /nerc/data/cruisen. Some of these files
are recirculatory which means that if the data file fills, it recycles itself overwriting the original version.
This saves space and gets rid of unwanted raw and unprocessed data (e.g. gyro) after it has been
processed. The recycling period is commonly about a week though can vary from a month to a single
day. This datais available if required in other programs via the LISTIT command program.

BESTNAV iat lon vn ve cmg smg dist_run heading source
EM_LOG speedfa speedps

EVNT_LOG evnt_no

GPSFIX iat lon svc

GPSNAV lat lon vn ve cmg smg dist_run heading

GRAVITY
GYRO
LIVENAV
LORFIX
LORNAV
MAGNET
MX1107
PROCTD

PRODEP
PROGRAV
PROMAG
RAWCTD
RAWDEP
RELMOV
SATNAV
SIMRAD
702FIX

27

grav_a
heading

lat lon vn ve cmg smg dist_run heading

lat lon td1 td2

lat lon vn ve cmg smg dist_run heading

magfld

fat lon slt sinel it ct dist dirsat r

press temp cond trans oxyc raw salin psu sigmat svanom
potemp sigmap depth soundv oxygen oxypc
uncdepth cordepth cartarea

gravfld gravfaa gravet latcor bouguer

magfield maganomaly

pressure temp cond trans oxyc oxyt spare1 spare2
uncdepth

vn ve pfa pps pgyro

lat lon vn ve cmg smg dist_run heading

lat lon

iat lon crse speed it el slt sln rms whdg wspd sat

All these data files have a machine encoded time code which can be used if required.

BIBLIOGRAPHY

Banahan M. & Rutter A, (1982) UNIX - the Book, Sigma Technical Press.

Bourne S.R., {1983) The UNIX System, Addison-Wesley.

Kernighan B.W. & Ritchie D.M., (1978) The C Programming Language, Prentice-Hall.
McGiiton H. & Morgan R., (1983) Introducing the UNIX System, McGraw-Hiil.

Metcalf M. (1985) Effective Fortran 77, Clarendon Press.

Shipborne Computer Group, RVS (1983) Level C Operators's Manua!, NERC.
Unisoft Systems, (1984} Uniplus+ System V :

User Guide
User's Manual Section |
Fortran - Language Manual for Uniplus+

28

ACKNOWLEDGEMENTS

I would like to thank the RVS Shipboard Computer Group and especially Martin Beney for their
assistance while using this computer system. | would also like to thank Roger Searle for his
observations and recommendations in preparing this text.

