
INTERNAL DOCUMENT 2 9 0

• E A C O I M L A B O R A T O R Y

INTRODUCTION TO SHIPBOARD COMPUTING FACILITIES

(UNIX SYSTEM)

T. P. LeBas

[This document should not be cited in a published bibliography, and is
supplied for the use of the recipient only].

I Natural
I Environment
I Research
I Council

INSTITUTE OF
OCEANOGRAPHIC SCIENCES

DEACON LABORATORY

INSTITUTE OF OCEANOGRAPHIC SCIENCES

DEACON LABORATORY

Wormley, Godalming,
Surrey, GU8 BUB, U.K.

Telephone: 0428 79 4141
Telex; 858833 OCEANS G

Telefax: 0428 79 3066

DIRECTOR; Dr. C. P. Summerhayes

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES

DEACON LABORATORY

INTERNAL REPORT NO. 290

INTRODUCTION TO SHIPBOARD COMPUTING FACILITIES

(UNIX SYSTEM)

T. P. LeBas

1989

D O C U I V I E N T D A T A S H E E T

AUTHOR
LEBAS T.P.

PU6L/CATfO/V
DATE 1989

TITLE

Introduction to Shipboard Computing Facilities (UNIX System)

REFEAEA/CE Institute of Oceanographic Sciences Deacon Laboratory,
Internal Document, No. 290, 28pp (Unpublished manuscript)

y48S7'R/\C7-

This report is intended to be an introductory guide to aid a programmer or user on the UNIX A-B-C

system. This system is available on most NERC ships and is supported by RVS.

/SSU//VG ORG/AN/S/M/O/V institute of Oceanographic Sciences
Deacon Laboratory
Wormiey, Godaiming
Surrey GU8 BUB. UK.

Director; q p Summerhayes

TELEPHONE

0428 79 4141

TELEX

858833 OCEANS G

0428 79 3066

UNIX
A-B-C
Computing

co/vrMcr

PROJECT

PRICE

Copies of this report are available from:
The Library, Institute of Oceanographic Sciences, Deacon Laboratory.

CONTENTS Page

1 . INTRODUCTION

2 . THE UNIX SYSTEM

2.1 System Commands

2.2 Directories

2.3 Files

2.4 Filename patterns and Wildcards

2.5 Repeating commands

2.6 External and Foreign Tapes

3 . PROGRAMMING ON THE UNIX SYSTEM

3.1 Fortran

3.2 Compiling

3.3 Linlting

3.4 Execution

3.5 Graphics

3.6 Input/Output

4 . THE EDITOR

4.1 Editing

4.2 The vi commands

5 . SHIPBOARD FACILITIES

5.1 Shipboard Programs
5.2 The Digitiser

5.3 Data files and their variables

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

1. INTRODUCTION

This report is intended to provide a simple introductory guide to the use of the UNIX system. It

is not intended to be highly detailed as further information is available from several sources: manuals

and system-dedicated publications, and program documentations. It is hoped that this report will give

the user a basic understanding of the UNIX system and the facilities the shipboard system can offer.

The report is based on the Plessey Microsystems System 68 on the R.R.S. Charles Darwin. A

similar computer is available on the R.R.S. Discovery and M.V. Farnella. The system comprises:-

M68000 Processor Board

2 X 0.5 Mbyte RAM

Sky floating point processor

2 eight-port serial I/O boards

84 Mbyte Winchester Disc drive and controller

Floppy-disc drive and controller

Cambridge Ring LAN DMA interface

Half-inch 1600bpi standard tape drives(2) and controller

Peripherals e.g. Terminals, graphics terminals, plotters, digitiser and printer.

The UNIX operating system is a very simple and low-level programming environment. The

shipboard facilities include:-

^ A 'C compiler and debugger

b) The Shell

c) The text editors ed and vi

d) Other language processors including FORTRAN and BASIC

e) Text processing and document preparation e.g. nroff

f) Graphics and plotting

g) General library of programs for data manipulation

m

it

Figure 1. The computing room aboard the R.R.S. Charles Darwin housing the UNIX
A-B-C system, with the disk and tape drives on the right hand side and some
terminals opposite.

C is the programming language used to write the UNIX operating system and most of its

commands. It is a very low-level programming language and consequently extremely complex. It is

not discussed here since it is of little use to high-level programmers. However if the user wishes to

program in this language there are many good texts for both novice and expert programmers (e.g.

Kernighan & Ritchie 1978). The command level of the system is called the shell and can be a

programming language itself as well as a command language. The command interpreter provides a

user interface to the UNIX operating system and is similar to function calls in C.

The programming language used and explained here is Fortran. No programming techniques

are given as it is assumed that the user already has an understanding of the Fortran language.

However for those users who are not programmers a section is devoted to the programs already

available and supported, which give various scientific calculations and plotting facilities. In addition all

parameters that can be logged by the computer system are explained, though in any one cruise not all

parameters will be present. Access to these data for use in the user's own programs is also covered.

As the shipboard system is under constant use, programs are constantly being updated and

altered. Some of the information in this report therefore may be outdated though should be

retrievable if the newer programs do not serve the user's exact requirements.

2. THE UNIX SYSTEM

2.1 System Commands

This section covers some of the basic commands of the UNIX system. Logging in is the first

problem and will generally be different according to circumstances. The user may be either given a

personal username and password to sign onto the system or given access to a communal username

(such as 'guest'). The main UNIX operator or 'superuser' has general system administrative

responsibility and can provide whichever type of i.d. the user requires.

Once you have logged in a prompt will appear, with any messages of the day. The prompt can

vary considerably from just a $ to a serialised command number and word (e.g. 1G0>). Learning a

new computer system in the abstract is difficult and so the best way to learn how to use the UNIX

system is to relax in front of a connected terminal and experiment.

Three useful control codes to mention at the outset are:-

the ERASE character is Del or Control-H

the LINE KILL character is Control-U

the BREAK character is Control-C

2.2 Directories

In the UNIX system there are two types of files, namely directories and ordinary files. These

are linked in a tree structure (Figure 2). A directory is a file which in itself does not take any space

though may contain other files and directories which will. A directory can therefore be regarded as a

branching point within the file structure. Thus any file which is owned by the user may appear to be in

the base level arrived at when logging in, but may be already several branches down the tree. The

following commands can show how to move around these directories and their use.

pwd Prints current working directory

cd <option> Changes directory

Examples:

cd

cd model

cd. .

cd /nerc/work/model

mkdir <name>

rmdir <name>

Changes to logon directory

Changes down to directory 'model'

Changes up to parent directory

Changes to given directory

Creates a directory within the current directory.

Removes an empty directory

2.3 Files

Any name may be given to a file (or directory) though it is often good practice to use standard

names. Standard format for a file is filename followed by a dot and followed by the filetype (e.g.

'xxxxxx.xxx'). Various names are suggested here as the UNIX software from time to time requires

special filetype markers. It is also recommended that the user only uses alphanumeric characters as

some commands can use file patterns.

name.for Fortran programs

name.dat Data files

name Files for execution

name Directories

name.c C programs

name.bak Backup or Archive files

name.txt Text files

name.o Compiled C programs

name.obj Compiled Fortran programs

1 0

bin usr nerc work dev

prog 1 sh lib work data prog 1 prog 2

report fort cobol prog 1

chapl ch,ap2 chap3 mag grav

Figure 2. Example of a fiypothetical file directory tree structure. Underlined names
are directories and non-underlined names are files. Thus file 'grav' has a full name
of /usr/work/cobol/grav.

11

Creation of files is done via the editor (see Section 4) and their execution is generally done by

typing the filename. There are no formal run or exec commands or statements.

File control is relatively straightforward and the commands are as follows;-

is Lists the current directory

Is -I Lists the current directory giving full file information

e.g. directory permissions, ownership, size, last

modification time

cat <filename> Lists file contents

more <filename(s)> Lists file(s) contents with a scroll stop every 24 lines

(space to continue)

Ip <filename(s)> Lists file(s) contents on line printer

mv <file1> <file2> Renames (moves) file1 to file2

cp <file1> <file2> Copies file1 to file2

rm <filename(s)> Delete (removes) file(s)

sd <fiiename(s)> Selective delete of files (from filename pattern)

2.4 Filename patterns and wildcards

File patterns and wildcards are generally used to catenate commands when working with a

library of files. A name is used which has a common feature with the other parts masked by wildcards

or 'metacharacters'. There are three metacharacters:-

any number of characters

? any single character

\ ignore the meaning of the next character (e.g. if it is another metacharacter)

Examples:

rm ?race.* Would delete trace.for and brace.obj but not fastrace.for nor

tracer.for <2.4.1 >

more ray*t.? Would list 'ray*t.c' and 'ray*t.d' but not 'rayit.c' <2.4.2>

Output can be directed in various ways. Default output is generally directed to the terminal.

But this can be changed by giving the command a directive path and thus putting normal output to a

file. Two possible path directions are;-

> file Output is written to the file named

» f i l e Output is appended to end of the file named

1 2

Examples:

cat test2 » tes t1 appends test2 to test1 <2.4.3>

Is -I >dirlist saves a long directory listing in file 'dirlist' <2.4.4>

2.5 Repeating commands

When typing in long commands it is sometimes annoying to keep repeating the line when,

say, only minor changes are required. The UNIX system allows for this with a 'history' command. This

command lists the last 20 commands of the present session. These commands are numbered and

are thus referencable and so can be rerun. The history commands are:-

history or h Prints the last 20 lines of commands

!! Reruns the previous command

In Reruns the command numbered n

Icde Reruns the last command which begins with 'cde'

'̂ cde'̂ fg Changes 'cde' in previous command to 'fg' and then rerun

Another way to keep repeating commands is to make a command file. Creation of a command

file is in the usual way via the editor. Execution however is only possible by having the mode

changed. This can only be done by the owner of the file who must use the chmod command. There

are 3 levels of user; owner, group and public. Within these 3 levels there are 3 types of permission:

read, write and execute. This therefore gives 9 possible permission tracks. Normally the owner is the

only person who requires read and write access but it may be required that all users have execute

access, this would give a permission mode of rwx--x-x or 711. Figure 3 shows how to calculate the

mode for the various permissions. The syntax is as follows:-

chmod <mode> <file> Changes the mode of the file

Example:

chmod 777 test Gives full access to everyone on file lest' <2.5.1 >

2.6 External and Foreign Tapes

Due to the simple programming environment it is relatively easy to recover programs and/or

data from foreign or external tapes and dump them onto file. The 'dd' command copies and converts

the source to a file from tape (or vice-versa if required). The syntax for this command is:-

1 3

owner

r w X

g r o u p

r w X

p u b l i c

r w X

\ / \ / \ V \ / w ' \ ' \

- > •

1

2

4

7 ^

10

20

40

-r?- 100

200

400

This example is mode for owner read, write and execute permissions together with
group and public execution permissions.

mode =

Mode Permissions

400 owner read
200 owner write
100 owner execute
10 group execute

public execute

Z l l

Figure 3. Translation diagram for chmod permissions.

1 4

dd <option=value>

options:

if=fiie

of=file

ibs=n

obs=n

cbs=n

skip=n

conv=

Input file (or device)

Output file (or device)

Input block size n byte (default 512 bytes)

Output block size n bytes

Conversion buffer size

Skip n records before cop

ascii Convert EBCDIC to ASCII

ebcdic Convert ASCII to EBCDIC

ibm Slight different map of ASCII to EBCDIC (for IBM)

lease Alphabetics to lowercase

ucase Alphabetics to uppercase

swab Swap every pair of bytes

noerror Do not stop processing on an error

Example;

dd if=/dev/rmtO of=mtdx ibs=800 (±>s=80 conv=ascii,swab <2.6.1 >

This will read a raw EBCDIC tape blocked in ten 80 byte EBCDIC card images per

record into the ASCII file 'mtdx'

Example 2.6.2 shows a step-by-step process for transferring a working Fortran program

'mtxrot.for' from a non-UNIX machine to a onboard A-B-C UNIX computer.

i) Copy the Fortran source program from the non-UNIX machine to a magnetic

tape

ii) Note the tape format (e.g. 800 bpi, EBCDIC, 72 characters per record, 16

records per block, first file on tape, byte swapped)

iii) Transfer the tape to the ship and load on the tape drive 0

iv) Read the tape to disk with the command:

dd if=/dev/rmtO of=mtxrot.for ibs=1152 cbs=72 conv=ascii,swab

v) Check the source program for any differences in programming that may need

changing (e.g. Input/Output streams and/or Graphics)

vi) Compile and link the program: f77 mtxrot.for

vii) Run the program: mtxrot <2.6.2>

1 5

3. PROGRAMMING ON THE UNIX SYSTEM

3.1 Fortran

Fortran is one of the most widely used scientific languages to date. The UNIX system

implementation is the American National Standards institute (ANSI) standard FORTRAN-77. This

section is a user's guide to Fortran execution as opposed to a Fortran reference manual (Metcalf

1985). But some graphics and input/output routines are included since these are a common area for

error and are usually machine-dependant. To run a Fortran program it will first have to be entered into

memory either from the editor or from some external source such as disc or tape. After this it must

then be compiled and linked so that an executable form can be created, 'an executable module'.

Compiling, linking and run-time error numbers are not listed here; firstly the error message is usually

explicit and secondly the Fortran language manual covers them adequately (Unisoft systems, Fortran,

Appendix A).

3.2 Compiling

The syntax of the compiler is;-

f77 <option> <filename>

options : -c to get object module (.obj)

-oofile to get executable module called 'ofile'

Examples:

f77 -c test.for produces object module from program 'test.for' called

lest.obf ready for linking <3.2.1 >

f77 trial.for produces executable module called 'trial' from program

'trial.for' - no linking required <3.2.2>

f77 -0 t n trial.for produces executable module called 'tr1' from program

'trial.for' - no linking required <3.2.3>

Examples 3.2.2 and 3.2.3 automatically link to the ordinary Fortran libraries but not the graphics

libraries. Thus with programs requiring graphics the linking process must be executed separately.

When compiling many subroutines in different files it is usually good programming practice to compile

each file on its own and subsequently join them with the link. This should also help in the debugging

of programs at compilation stage.

1 6

3.3 Linking

This is required to link to the Fortran libraries, any graphics libraries needed and possibly some

external user subroutines not included in the main program. This produces an executable module.

There are two commands to this process, 'ulinker' (UNIX object code formatter) and 'cc' (C compiler).

The syntax for ulinker is

ulinker listingfile outputfile inputfile(s)

The listing file is not necessary and can be suppressed

by using the option -I

The output file must be present and of type '.o'

The input files must include the Fortran libraries as well

as any special subroutines or libraries - they must all be of type '.obj'

The syntax of cc is:-

cc <options> <filename(s)>

options; -o output Names the final executable output file

Default is a.out

Examples;

ulinker -I test.o test.obj ftnlib.obj paslib.obj spisubs.obj cc -o test test.o <3.3.1>

This links compiled program test.obj to the Fortran libraries

and to the graphics library and then creates an executable

module called 'test'. No listing file is produced.

ulinker trial.Ist trial.o trial.obj ftnlib.obj paslib.obj

cctrial.0 <3.3.2>

This links compiled program trial.obj to the Fortran libraries,

creates a link listing 'trial.lsf and creates an executable module

called 'a.out'.

Examples 3.3.1 and 3.3.2 assume that ulinker, ftnlib.obj, paslib.obj and spisubs.obj are in the current

directory. This is not always the case and thus example 3.3.1 could look like this;-

/usr/lib/ulinker -I test.o test.obj/nerc/work/guest/fort/spisubs.obj

/usr/lib/ftnlib.obj /usr/lib/paslib.obj

cc-otesttest.0 <3.3.3>

1 7

3.4 Execution

The syntax of executing a program once it has been compiled and linked is:-

filename [| filter] [<input] [>(>)output]

options; | filter

<input

>output

»output

The pipe symbol | followed by an appropriate filter will

translate plotting such as a graphic display, plotter or

printer

Will take default input from file (instead of the terminal)

Will send default output to file (instead of the terminal)

Will append default output to end of file (instead of the

terminal)

Examples;

trial

trial >trial.out

trial <trial.in

test I ca1039

/nerc/geoph/mag2d

Runs program trial' <3.4.1 >

Runs program 'trial' and all output goes to file 'trial.out' <3.4.2>

Runs program 'trial' taking all input from file Irial.in' <3.4.3>

Runs program 'test' and outputs the plot on the calcomp

1039 <3.4.4>

Runs program 'mag2d' which is not stored on the current

directory but in directory '/nerc/geoph' <3.4.5>

NOTE

On the R.R.S. Charles Darwin computer system certain of the mentioned files are held in the

following directories and may not be present on other systems:

EILE

ulinker

ftnlib.obj

paslib.obj

spisubs.obj

SPI routines

DIRFCTORY

/usr/lib

/usr/iib

/usr/lib

/nerc/levc/ref/src/spif/fortran

/nerc/levc/ref/src/spif

Linker

Fortran library

Fortran library

Graphic library

Graphic sources

1 8

3.5 Graphics

The graphics available on the UNIX system is the SPI language. The subroutines available are

listed below. When using graphics the linking process must include the graphics libraries (e.g.

spisubs.obj). Programs can be run in several ways depending on the output path. Generally there are

three paths: the screen, the plotter, or a file. Each of these requires some kind of filter or path which

must be specified.

Examples;

test I m2250

test I ca1039

test >plot.plo

plots program 'test' results on the Micrographics m2250 terminal

screen <35.1 >

plots program lest' results on the Calcomp 1039 plotter <3.5.2>

saves all program output in a file 'plot.pio' - plotting can then be done

using cat plot.plo I m2250 <3.5.3>

Since all the output is piped on a certain path, there must be no mixing of graphics output with

alphanumeric output. Alphanumeric output should be written to file within the program thus not

confusing the two outputs. This also holds for inputs.

The graphics routines currently available are:-

anumb(degs,nflds,ndp,itype,size,angle,icont.ierr)

cench(n,size)

devend

enumb(r,nc,ndp,size,angle,icont,ierr)

fnumb(r,nc,ndp,size,angle,icont,ierr)

inumb(i,nc,size,angle,icont.ierr)

Iinby2(xr,yr)

linto2(xp,yp)

movby{2xr,yr)

movto2(xp,yp)

nc836

Write an angle or Lat./Long.

Plot centred mark number n

Terminate graphics activity and close

all devices

Write a number in fixed E- format

Write a number in fixed F- format

Write an integer

Draw a line by xr, yr from the current

SPI pen position

Draw a line to xp, yp

Move the pen by xr, yr from the

current SPI pen position

Move the pen to xp, yp

Select the nicolet 836 driver

(needed for all SPI programs)

1 9

pen(npen)

piccle

shift2(xp,yp)

text (string,nchars,size,angle,icont)

Select a new SPI current pen

SPI Pen 1 = Black

SPI Pen 2 = Red

SPI Pen 3 = Green

SPI Pen 4 = Blue

Closes the old page and opens a

new one, without resetting

parameters

Shifts the origin by xp, yp

Write nchar characters of text in

A1 format from array string

Availability of hardware on the R.R.S. Charles Darwin can be variable. In general there are two

graphics outputs: a Calcomp 1039 plotter and some Micrographics m2250 graphics terminals.

Unfortunately they appear to have different scales; the Calcomp having 1 unit per millimetre and the

m2250 having an area of 2100 units in the x-direction and 1600 units in the y-direction. In the course

of various trials it was observed that the m2250 would invert the y-axis if plotting began at figures less

than 36 hence a shift2 command is required at the outset.

Example graphics program to draw a small picture fFioure 4)

Test.for * '

C Requires spisubs.obj when linking

C

call nc836

call piccle

call shift2(0.0,36.0)

call movto2(30.0,80.0)

call pen(2)

call linby2(0.0,-50.0)

call Iinby2(30.0,0.0)

call Iinby2(0.0,50.0)

;Nicolet driver

iCIear screen

: Fudge I (see above)

: Move into the central area

; Change pen to red

20

UNIX A-B-C System

Figure 4. Graphical output from program example

2 1

call movto2{80.0,30.0)

call pen(3)

call Iinto2(80.0,80.0)

call linto2(110.0,30.0)

call linto2(110.0,80.0)

call movby2(20.0,-50.0)

call pen(4)

call Iinby2(0.0,50.0)

call movby2(20.0,0.0)

call pen(5)

call linto2(180.0,30.0)

call movby2(-30.0,0.0)

call llnto2(180.0,80.0)

call movby2(100.0,-40.0)

call pen(l)

call text('A-B-C system',12,2.5,0.0,3)

call devend

end

3.6 Input/Output

Input and Output routines in Fortran can differ from machine to machine. Standard input and

output channels are referred to as unit 0 or * and their default is formatted and sequential. The OPEN

statement is the main command discussed here. The other commands are similar to any other

system e.g. CLOSE, REWIND, ENDFILE and their syntax is available in the Fortran language manual.

OPEN(options)

options: UNIT=u u is the unit specifier

ERR=s s is the exit statement label

FlLE=fname fname is the filename

STATLIS=sta sta is the status - must be 'OLD', 'NEW,

'SCRATCH' or 'UNKNOWN'

ACCESS=acc acc is the access code - must be 'SEQUENTIAL' or 'DIRECT'

22

FORM=fm fm is the format code - must be 'FORMATTED' or

'UNFORMATTED'

Default is 'SCRATCH', 'SEQUENTIAL' & 'FORMATTED'.

4. THE EDITOR

4.1 Editing

There are two commonly available editors ed and vi. Of these ed is the more basic editor

initially designed for use on dumb terminals such teletypewriters, vi is a screen editor and takes full

advantage of the video screen. In this section only wis described as it is powerful and more useful

than ed which is adequately described in Unisoft Systems User Guide.

4.2 The w commands

Entry and Exit

w filename

;x

q
q!

file

Entry into file 'filename'

Exit vi saving changes

Exit w'with no save

Exit v/not saving any changes

write (copy) to file'

Cursor Movement

Return

Space

Backspace
$

0

cntl-D

cntl-U

cntl-F

cnti-B

/cde/

?cde?

nG

Down 1 line

Up 1 line

Right 1 character

Left 1 character

Move to end of line

Move to beginning of line

Move down half a page

Move up half a page

Move forwards a whole page

Move backwards a whole page

Search forwards for the pattern 'cde'

Search backwards for the pattern 'cde'

Go to line n

2 3

Insert (until ESC)

i

a

O

0

Insert text before current character

Insert text after current character

Insert text before current line

Insert text after current line

Change/Replace

r

cc

;s/X/Y/opt

g

c

P

Replace current character

Change current line (until ESC)

Substitute Y for the first occurence of X - options are;

change every occurrence in line

confirm each change

print each change

Delete

X

nx

dd

ndd

Delete current character

Delete n characters starting on the current character

Delete current line

Delete n lines starting on the current line

Undo

u

U

Undo last operation

Restore current line

Global Commands

:g/X/s//Y/opt

;g/X/s/Y/Z/opt

g

c

P

Globally find the string X on every line and substitute for the

string Y

Globally find the string X on every line and substitute the

string Z for the string Y on those lines - options are;-

change every occurrence in line

confirm each change

print each change

2 4

SHIPBOARD FACILITIES

5.1 Shipboard Programs

The following list gives an idea of what programs are available for data editing and processing

on the UNIX system on all NERC ships. Further information is available in the Level-C Operators

Manual (Shipborne Computer Group). It is suggested that these programs are only accessed with the

permission of the operator or under their supervision.

ANNOT Produces annotation specification

ANTPLOT Produces an annotated plot

COMPASS_C Plots compass rose (colour)

COMPASS_M Plots compass rose (monochrome)

DEPCODE Produces depth codes for Gloria replays

DIGREAD To generate files of converted digitiser data

DXFMT Produces merge-merge format 3 magtape for data transfer

EDSATS Edits satellite fix file satfix

EDSTATUS Edits status of data on most data files

GF3 Produces gf3 format file on disc or tape for data transfer

GPSNAV Combines relative navigation with GPS fixes

GRID Produces the grid specification

GRIDPLOT Produces an annotated plot

LISTIT General purpose data listing program

LIVENAV Produces live navigation for plot

LIVEPREP Sets up grid limits for live plotting

LIVEPLOT Plots the live data

LORIN Manual entry of Loran fixes

LORNAV Combines relative navigation with Loran fixes

MANDEP Manual entry of depth data

PRINTDEP Prints depths - corrected and uncorrected

PRINTIT Prints navigation data and/or other parameters

PRINTGPS Prints GPS fixes

PRINTLOR Prints Loran fixes

PRINTSAT Prints satellite fixes

PRODEP Corrects depths

PROGRAV Calculates free air anomaly (FAA)

PROMAG Calculates magnetic anomaly (RESIDMAG)

2 5

PRONAV

SATFUDGE

SATNAV

TITSIL

TRACK

TRACKPLOT

XYPREP

XYPLOT;

TP LOT

TPLOTJH

DPLOT

DPLOT_H

OPLOT

OPLOT H

Combines relative navigation with fixes

Forces satellite to give position to corresponding finalnav

Combines relative navigation with satellite fixes SPOT draws

markers on a grid

Writes data into a data file (reverse of LISTIT)

Produces the track specification

Produces a track plot

Creates input file for XYPLOT

Plot data against time (live)

Plot data against time (hardcopy)

Plot data against distance (live)

Plot data against distance (hardcopy)

Plot data against any other variable (live)

Plot data against any other variable (hardcopy)

Example:

Four programs are required to produce a navigation plot on a grid. The first two grid and track

are form programs allowing data to be input using forms and thus are relatively easy to operate. To

enter the parameters in each form window on the screen the following keys are used:-

TAB Move on one window

ESC Move back one window

LINEFEED Move on one space

BACKSPACE Move back one space

All the other keys act as normal.

When both data forms are filled, plotting can start. The grid is plotted first, followed by the

track plotted on top of this grid.

The series of commands thus could look like this:-

grid g.tarea

track t.tarea

gridplot g.tarea | ca1039

trackplot -g g.tarea - t.tarea | ca1039

26

The first line creates a form file g.tarea holding the user-defined grid parameters and the

second line similarly creates a form file t.tarea holding the data to be plotted on the grid. The last two

lines plot the grid and track respectively on the Calcomp 1039.

On the R.R.S. Charles Darwin all this must be done in directory /nerc/data/maps, and the user

must have the appropriate access permissions. These are available from the main UNIX operator.

5.2 The Digitiser

Hardware - Complot Series 7000 Digitiser (+ a terminal)

There is one interface program for the digitiser - DIGREAD. It is a menu driven program and

self-explanatory. To run this program the user must have the appropriate permissions for directory

/nerc/levc/ref/src/digitiser and be in that directory. Within the program the user can use the digitiser

predefined boxes (at the top of the tablet) to select the opening of the correct and input the scaling in

x-y coordinates. The digitising tablet should be set to point or stream mode via the keys on the side of

the tablet. Point mode is probably easier, especially in heavy seas! Use the digitising tablet mouse

keys 0-9 to enter the X and Y values. From there the terminal will give instructions to the program's

use. When finishing, use the exit and confirm predefined tablet boxes to stop the input.

The terminal attached to the digitiser has no graphics capabilities itself thus verification of the

digitisation is difficult. Therefore when digitising it is advisable to take note of which horizons or

contours have been digitised.

Program DIGREAD now writes directly to data files. Therefore they must be created before

execution by using program CREDAT. Seismic data is written with variables y and button number,

contour data is written with variables x and y, and Mercator data is written with variables lat and Ion

(though at present Mercator values are treated as a linear scale).

5.3 Data files and their variables

All these files are kept in binary files within directory /nerc/data/cruisen. Some of these files

are recirculatory which means that if the data file fills, it recycles itself overwriting the original version.

This saves space and gets rid of unwanted raw and unprocessed data (e.g. gyro) after it has been

processed. The recycling period is commonly about a week though can vary from a month to a single

day. This data is available if required in other programs via the LISTIT command program.

BESTNAV lat Ion vn ve cmg smg dist_mn heading source

EM_LOG speedfa speedps

EVNT_LOG evnt_no

GPSFIX lat Ion svc

GPSNAV lat Ion vn ve cmg smg dist_run heading

2 7

GRAVITY

GYRO

LIVENAV

LORFIX

LORNAV

MAGNET

MX1107

PROCTD

PRODEP

PROGRAV

PROMAG

RAWCTD

RAWDEP

RELMOV

SATNAV

SIMRAD

702FIX

grav_a

heading

lat Ion vn ve cmg smg dist_run heading

lat Ion td1 td2

lat Ion vn ve cmg smg dist_run heading

magfld

lat Ion sit sine! it ct dist dir sat r

press temp cond trans oxyc raw salin psu sigmat svanom

potemp sigmap depth soundv oxygen oxypc

uncdepth cordepth cartarea

gravfid gravfaa gravet latcor bouguer

magfield maganomaly

pressure temp cond trans oxyc oxyt spare 1 spare2

uncdepth

vn ve pfa pps pgyro

lat Ion vn ve cmg smg dist_run heading

lat Ion

lat Ion crse speed it el sit sin rms whdg wspd sat

All these data files have a machine encoded time code which can be used if required.

BIBLIOGRAPHY

Banahan M. & Rutter A., (1982) UNIX - the Book, Sigma Technical Press.

Bourne S.R., (1983) The UNIX System, Addison-Wesley.

Kernighan B.W. & Ritchie D.M., (1978) The C Programming Language, Prentice-Hall.

McGilton H. & Morgan R., (1983) introducing the UNIX System, McGraw-Hill.

Metcalf M. (1985) Effective Fortran 77, Clarendon Press.

Shipborne Computer Group, RVS (1983) Level C Operators's Manual, NERC.

Unisoft Systems, (1984) Uniplus+ System V ;

User Guide

User's Manual Section I

Fortran - Language Manual for Uniplus+

28

ACKNOWLEDGEMENTS

I would like to thank the RVS Shipboard Computer Group and especially Martin Beney for their

assistance while using this computer system. I would also like to thank Roger Searle for his

observations and recommendations in preparing this text.

