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SUMMARY 

Long-term instrumental measurements of significant wave 

height and mean zero-crossing period at 7 stations are analyzed. 

The marginal distribution of significant heights is far better 

described by a Weibull law than by a log-normal law. The long-

term distribution of individual wave heights is calculated from the 

joint distribution of significant wave height and mean wave period. 

It is found to be nearly exponential. 
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1. INTRODUCTION 

The N.I.O. has carried out wave measurements at a number of 

locations. The measurements generally cover a one-year period, and 

the results may serve as a basis for estimating extreme wave conditions 

in the respective areas. In making such estimates, the one-year data 

must be extrapolated. To this end the data are considered to be the 

result of random sampling from a population, the distribution of which 

is to be estimated. Once a distribution is found which gives a 

sufficiently close fit to the data, then extrapolation beyond the 

original range of the measurements can be made. The confidence which 

one has in the extrapolations increases with increasing goodness of fit 

of the distribution on which it is based. Some authors, following 

Jasper (1956), have stated that the logarithm of the significant wave 

height would be Gaussian distributed. This distribution function was 

found not to give a fully satisfactory fit to the N.I.O. data, the 

measured wave heights in the upper range tending to fall below the line 

of best fit for a given probability of exceedance. In view of the 

extrapolation referred to above it is important that the upper tail 

of the distribution fits the data well. It was therefore desirable to 

obtain a function which would give a better representation of the data, 

and this is one purpose of the work reported herein. A second purpose 

is to compute the long-term distribution of individual wave heights from 

the data. 
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station Location 
Depth 

(fathoms) 

Dates of 

observa-

tions 

Total 
number of 

observations 

Reference 

OWS Station 
India 

59°N. 19°W 

OWS Station 52 30' N. 

Juliett I 2^0^ 

Sevenstones I 20mi. S.W. of 
f Land's End 

Morecambe 
Bay 

Mersey Bar 

Varne 

Smith's 
Knoll 

15mi. W of 

Fleetwood 

3 mi. W. of 
buoyed 
channel to 
the Mersey 

Dover Strait 

22mi. E.N.E. 

of Great 

Yarmouth 

33 

12 

9.6 

15 

27 

•52 - '64 

(intermit-

tently 

'52 - '64 
(intermit-
tently) 

Jan '62 - '63 

Sept '65 - '66 

Feb '65 - '66 

Mar '59 - '60 

2400 

1440 

2920 

2920 

2920 

2920 

Draper and 

Squire 

Draper and 

Whitaker 

I Draper and 
? Fricker 

Nov '56 - '57 2920 ! Draper 

Draper and 

I Blakey 

Draper and 

Graves 

Draper 

TABLE 1 
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2. WAVE DATA USED 

The majority of long-term wave data presently available is 

based on visual observations. Instrumental data are far fewer both in 

number of locations and in time. It was nevertheless decided to use only 

instrumental data in the present study because of their greater reliability. 

There exists a systematic difference between the two sets for relatively 

large wave heights. Draper and Tucker (1970) report that at Ocean Weather 

Ship station "India" the significant height exceeds 10m in 1.5% of the 

instrumental measurements, and in only 0.02% of the visual observations. 

This difference will be discussed again in section 5.1. 

The instrumental data chosen for analysis have been obtained 

by the N.I.O. from measurements with shipborne wave recorders. Table 1 

contains pertinent information about the wave data. "India" and "Juliett" 

are Ocean Weather Ship stations, and the others are Light Vessel stations. 

The locations are indicated in Figure 1. 

The original data generally consist of records of 12 minutes 

duration, taken every 3 hours during one year, for a total of 2920 records. 

For purposes of analysis each record is regarded as a (short) sample from 

a stationary random Gaussian process. The work of Rice (1944), Longuet-

Higgins (1952), Cartwright and Longuet-Higgins (1956) and Cartwright (1958) 

provides the theoretical basis for the subsequent analysis, a convenient 

procedure for which has been described by Tucker (1961). Each record 

yields, among others, an estimate of the significant height and 

of the mean zero-crossing period 7" appropriate to the random process 

of which the record is a sample. The Figures 2 to 8, taken from the 

publications referred to in Table 1, give the probabilities, expressed in 
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parts per thousand, that and T simultaneously fall in 

certain ranges. The original publications give many additional statistics 

but in this report only these so-called scatter diagrams for and 7" 

will be used* It is to be noted that these diagrams represent the lumped 

data for one year. Seasonal variations are suppressed. 
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3. VARIABLES CONSIDERED 

It is necessary to distinguish statistics obtained from a 

single record, and statistics obtained from a collection of records, 

Covering in this report a period of one year. The former are conveniently 

called short-term statistics, the latter long-term statistics. The 

short-term probability structure can, in principle at least, and apart 

from scale factors, be deduced theoretically assuming that one is deal-

ing with a random process which is approximately stationary and Gaussian. 

The long-term probability structure is a reflection of local and distant 

climatological features and cannot be dealt with by deductive methods. 

The only wave parameters which will be considered herein are; 

Wave height, H , the difference between maximum and minimum water 

surface elevation between two adjacent zero up-crossings (sometimes 

referred to as "individual wave height"). 

The short-term mean of the highest one third of the wave heights, 

the significant height 

The short-term mean of zero-crossing periods, i.e. the short-term 

mean value of the time intervals between adjacent zero up-crossings, 

denoted by "T (The data to be used herein do not carry information 

about individual values of zero up-crossing time intervals, although these 

could of course be extracted from the original records if desired). 

The remainder of this report deals mainly with the long-term 

probability distributions of 4/^ and H 
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4, PROBABILITY DISTRIBUTIONS 

In this chapter several probability functions will be defined, 

and some relationships between them will be given. Most of these are 

stated in general terms, without reference to local situations. Some of 

the relationships will be used in chapter 5 for the analysis of the measure-

ments. 

4.1 Notation 

In the context of this report the three variables introduced in 

the previous chapter are considered as stochastic variables, denoted by 

capital letters. Particular values which each of them may assume will be 

denoted by the corresponding lower case letter. Probability densities 

will be written as " p and cumulative probabilities as " P ". 

4.2 Joint distribution of //% and T . 

The joint probability density (p.d.) of and T is 

j » estimates of which are given in the Figures 2 to 

8. No attempt has been made to find analytical approximations to the 

measurements. 

A conspicuous feature of all the scatter diagrams is the cut-

off at some upper limit of J T*" . There seems to be a limiting 

steepness ranging from 1:16 to 1:20, with most values near 

1:18,where the steepness is defined as the ratio of significant height 

to the deep-water wave length based on mean zero-crossing period; 

ITrHy, 
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This has been noted by Draper et al (references in Table 1) who further-

more compare the 1 : 18 value with the 1 : 7 value which is the theoretical 

limiting steepness of irrotational, periodic, progressive, two-dimensional 

gravity waves in deep water. Sea waves depart too much from waves of these 

categories for the comparison to be satisfactory. Particularly the 

assumption that the waves are periodic is unrealistic. This assumption is 

not made in the calculation which is outlined in the following, and which is 

believed to provide a more meaningful basis for comparison with the 

measurements. 

The elevation of the sea surface above its mean value is 

considered as a random, stationary process in time with a variance density 

spectrum ^ • If the moments of S'foj) are given by 

/ ao • 
CO doo (2) 

then 

(3) 

(Longuet-Higgins, 1952; Hess et al, 1969) and 

/ 
so that 

If it is supposed that ^ 0 ^ ^ has the shape of a Pierson-Moskowitz-

Bretschneider spectrum, then 
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SCoS)=^ -oc ̂  CO ^ (6) 

which gives 

C7, 

The maximum values of oc , determined from equilibrium ranges in the 

spectra of wind-driven waves, vary from (0.8 to 1.4) 10"^ (Phillips, 

1966), This gives maximum values of ranging from 1:20 to 1:15, 

in very close agreement with the observed range of 1 :20 to 1 :16. 

4.3 Marginal distributions of ^̂'/t and T" . 

The marginal p.d. of Hy^ and 7~ are given by 

(8) 

and 

(9) 

Only ^ ) will be considered further in this report (Chapter 5). 

4.4 Conditional distributions of and 7 . 

The conditional p.d. of /(g is given by 

and a similar formula holds for ^ j . Conditional 

- 8 -
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X 

distributions of Hy^ or T will not be dealt with here. Reference 

may be made in this respect to Nordenstr^m (1969) who analysed j 

as obtained from visual observations at a number of stations in the North 

Atlantic as well as from the instrumental data for station "India" published 

by Draper and Squire (1967). It appeared that a Weibull distribution fitted 

the data well. It should be pointed out, however, that the fitted conditional 

distributions of Hy^ , unlike the marginal distributions, should not be 

extrapolated beyond the upper limit discussed in section 4,2. In this 

respect there is a fundamental difference between the conditional and the 

marginal distribution of //^ 

4.5 Conditional distribution of // . 

The so-called short-term p.d. of individual wave heights H is 

the conditional p.d. of H for given and 7" , formally written 

as ^ . It is approximately given by the Rayleigh p.d,, 

with only one parameter, , and which is independent of 'i' : 

-C 
— ;2. 

(11) 

The cumulative probability is 

= / - - « (12) 

The validity of (11) and (12) will be assumed here without further inquiry. 

Reference may be made to Hess et al (1969) for a recent survey of empirical 

evidence in support of the Rayleigh distribution. 

4.6 Marginal distribution of ^ 

The marginal (long-term) p.d. of individual wave heights, 

can be derived as a weighted sum of Rayleigh probability densities, 

- 9 -



The weight factor should not only include the variability of 

but that of T as well, despite the fact that the Rayleigh p.d. does 

not contain ^ as a parameter. The reason for this is that probabilities 

of occurrence of certain 6^ - values, expressed as fractions of time, are 

transformed into probabilities of occurrence of certain hf - values, 

expressed as fractions of a number of waves. At some stage in the 

transformation one is converting time intervals into numbers of waves; 

in other words, one must divide by the wave period. It follows that the 

marginal (long-term) p.d. of // can be found as a sum of the conditional 

(short-term) p. densities, weighted with / and with the probability 

that and 7" simultaneously fall in certain ranges: 

Jsf-hJ = — (13) 

The denumerator in this expression is equal to 7""' , the long-term 

average number of waves per unit time. 

A step-by-step derivation of (13) may be given as follows. 

For brevity, the following abbreviations are used: 

Exp. = expected; 

n.o.w. = number of waves; 

p.u.t. = per unit time; 

(I) = 

From the definition of the joint p.d. of and 7 it follows that 

£xp. time during which (I) ^ (14) 

total time 
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Therefore, 

Exp, n.o.w. in time during which (I) ^ ^ z O ^ (15) 

total time 

Of these waves, a fraction has a height h/ such 

that ^ ^ Thus 

Exp, n.o.w. in the time during which (I) and for which ^ i (16) 

total time 

= / / V I J ^ '\p 

and 

Exp . n.o.w. for which ^ < // i ^ / < 3 / ^ 

total time 

= Exp. n.o.w. p.u.t. for which / / < 

from which it follows that 

(17) 

11 -



Exp. total n.o.w. p.u.t. = ^ 

= J f ^ (18) 

= r 

) (19) 

because the expression in brackets equals 1. 

Finally, 

Exp, n.o.w. p.u.t. for which c A/ ^ ^ 

Exp. total n.o.w. p.u.t. 

= fraction of the waves for which -jf < 4 

- J 

in which is the long-term p.d. of wave heights 

From (17), (18), and (19), (13) results. 

Integration of (13) with respect to gives the cumulative 

probability of : 

or 
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(21 ) 
r-' 

in which j ̂  is the cumulative conditional probability 

of /-/ . Substitution of the Rayleigh law for ' 

given by (12),yields 

T" 

(22) 

for the probability that f~f will exceed . This equation will 

serve as a basis for the computations to be mentioned in section 5.2. 

It differs from equivalent expressions usually given (Jasper, 1956; 

ISSC, 1964; Lewis, 1967; Nordenstr^m, 1969), in which the effect on 

of the variability of 7 ~ is not mentioned at all: 

( 2 3 ) 

The effect of this omission depends on the degree of correlation which 

exists between and "7" . If these are stochastically 

independent then both approaches yield identical results, as can be seen 

by substituting 

(24) 

into (22). Generally, however, there is a positive correlation between 

and / , as can be seen by inspection of Figures 2 to 8. This 

means that neglecting the effects of variations of f results in over-

estimating , because the number of large waves occurring in a given 
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length of time will on the average be less than the number of small waves. 

In chapter 5.2 a comparison will be made of the results from both methods. 

4.7 Formulas for discrete data 

The estimates in Figures 2 to 8 are in discrete form, and the 

formulas used in this chapter therefore need a slight modification. Let 

the midpoints of the class intervals of and / be and 

irj, resp. for c = 1,2,.... and 1 , 2 , . . . . , let 

the class widths be and , and let the numbers given in the 

Figures be i • These numbers represent estimates of the probability 

element at the point : 

, _ ? 
/O ^ 

(25) 

All integrals of •> '^) should be replaced by summations of 

J ' Thus, the cumulative marginal probability of is 

£ 

^ 4 7 - • j oCl* f (26) 

which becomes 

4 . 7 . i z 
r (27) 
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Similarly, (22) is rewritten in the following form: 

2 2 

(28) 

Z 2 
oMi (f y 

In the Figures 5, 6 and 7 a number is given for the probability of 

occurrence of calms. These numbers were considered to apply to a class 

of zero wave heights. A wave period cannot be associated with them. A 

consequence of this will be considered in section 5.2, 

4.8 Return period and risk. 

In engineering applications of probability distributions it is 

customary to introduce the return period, which is equal to the average 

(time) interval between occurrences of the event being considered. Let 

the result of a random experiment be % . Successive trials are assumed 

independent; in other words, the prob s *• J = 'PCat each trial, 

-I 

independent of the outcome of the other trials. If is the fraction 

of (a great number of) trials for which \ ^ then '71 is the dimension-

less return period corresponding to exceedances of ; 

/ ' 
(29) 

If the trial is repeated every Z" (time) units then the dimensional return 

period would be 
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T" 
y ^ ^ — (30) 

' / - Pr'-n) 

in the same units. 

If the return period of an event is known, one can calculate: 

the probabilities that it will occur a given number of occasions within a 

given interval of time; the expected damage which may result from it; etc. 

These risk-analyses are of great importance, for the return period concept 

by itself is of rather limited usefulness, and may in fact be misleading if 

used superficially. For example, the probability that the event [)( > 

will not occur in trials (i.e., in a time interval equal to its return 

period) is given by ^ 'P j ^ > which approaches 

- / 

•€. 0.37 for large 'Tv . Thus, the probability that an event will 

occur (at least once) during one return period is 1 - 0.37 = 0.63. If a 

structure is designed to (just) withstand a wave which has a return period 

equal to the lifetime of the structure, then the chances of its being 

destroyed are 63%. If the latter risk must be reduced to 10% then the 

return period should be almost 10 times the lifetime of the structure.' 

Reference is made to Borgman (1963) for an analysis of these and related 

subjects. 

Applications to individual wave heights. 

In section 5.2 the probability of exceedance of individual wave 

heights will be calculated for selected values of the return period (1 month, 

1 year, 20 years, 50 years, 100 years). The long-term expected number of 

waves per unit time is T~' , and the expected number of waves during 

the return period is therefore ->1 7 ' , from which it 

follows that 
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Nordenstr*Jm (1969) uses T 7 ~ as the time unit for converting 

probability of exceedance into return period, Thi;s does not seem to 

be correct, because the return period is based on the expected number 

of occurrences, which is ' and not ^ ^ 7 ~ ^ 

Application to significant wave heights 

Nordenstr^m (1969) calculates return periods from 

on the basis of ~C = 1 2 minutes, assuming that 12 rain, records are 

taken continuously (and analysed once every 12 min). Applying the 

result to an extrapolated log-normal distribution, he finds = 35 m 

for a return period of 1 year at station "India", from which he concludes 

that the log-normal distribution must be rejected because it would predict 

significant heights of unrealistic magnitude. This argument does not seem 

to be valid (although the conclusion that the log-normal distribution can 

be rejected is valid, but on other grounds). An interval 7" = 12 min. 

between observations is too small compared with the time scale of variation 

of in the ocean. The return period in this case has no relevance 

to actual time intervals between geophysical events, such as severe storms, 

which give rise to the occurrences of very large heights. The following 

equalities are considered in order to clarify this point: 

2 sec/day = 1 2 rain/year = 1 0 hours/50 years = 20 hours/100 years 

Each of these ratios equals the probability of exceedance of a significant 

wave height, say 20 m, with a return period of 1 year based on one 

observation every 12 minutes. By the same reasoning, this height has a 

return period of 1 day based on observations every 2 sees, (such a frequency 

of observations is possible with remote-sensing equipment scanning an 

extended area of the sea surface). Clearly, the notion of return period, 
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defined as the average time interval between "events" in the statistical 

sense ( = observations H'/̂  > 20m) has no connection whatsoever with the 

intervals between geophysical "events" ( = storms) during which > 

20m. The latter intervals might typically be 50 to 100 years for an 

assumed storm duration of 10 to 20 hours, as can be seen from the last 

two equations above. Equally clearly the probability distribution of 

H'/̂  does not provide sufficient information to take the storm-duration 

effects into account. Knowledge of ,) alone does not enable one 

to distinguish, for example, one storm of 10 hours' duration from 10 storms 

of 1 hour's duration. This is evidently an unsatisfactory situation. 

The point will not be pursued here, but it would seem that an adequate 

description of wave climates should include information about the 

probabilities of the duration and intensity of major geophysical events 

such as storms. 

The difficulties in applying the idea of return period to 

H'/̂  arise from the fact that is defined (has a value) at each 

instant of time. Thus one cannot speak of the number of occurrences that 

has a given value. For this reason the probability of exceedance of 

, dealt with in section 5.1 , will not be converted into return periods. 

The notation of return periods can perhaps be fruitfully applied 

to by considering the maximum value reached each year. This variate 

should have the Fisher-Tippett double exponential distribution of extremes 

because the underlying or parent distribution is approximately given by the 

Weibull distribution (see section 5.1), which is of the exponential type 

(Gumbel, 1958). However, many years of wave measurements would be 

required for such an analysis. The data treated in this report cover 

a one-year period only. 
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4.9 The log-normal distribution and the Weibull distribution. 

The following two distributions will be used in the following 

chapter. They are here defined in terms of the probability of exceedanee: 

Log-normal; 

X 

x " (32) 

— ao 

in which log and are the mean and the standard deviation of 

log /Y • It plots as a straight line on paper with a Gaussian scale 

as one co-ordinate and log sc. as the other. 

Weibull: 

= I — ^ -for X^/4 . 3>o (33) 

. i C>Q 
_ y -far X t A 

Xl is a lower limiting value of X. 

^ is a scale parameter 

d " is a shape parameter. The distribution becomes steeper 

(the prob. density function narrower) with increasing , 

The mean value of ){ is given by 

X ^ A f S 
(34) 
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and the standard deviation is 

s/rr-f)-rV"£j7 (35) 

From (33) it follows that 

so that a plot of the Weibull distribution is a straight line on paper 

with J"/— as one co-ordinate and 

as the other. 
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5. ANALYSIS OF THE DATA 

5.1 Marginal distribution of » 

As stated in the introduction, the distribution of 

was found to be clearly non-Gaussian in the upper ranges. Examples of 

the measurements of plotted on Gaussian paper are given in 

Figs. 9 and 10. The co-ordinates of the plotted data points are the 

upper limit of the class interval, and the fraction of the observations 

for which is less than this upper limit. This plotting 

rule has been used throughout. It is the most convenient one because 

the basic data in the Figures 2 to 8 give probabilities (of occurrence 

of and / falling within certain limits) in parts per thousand. 

A disadvantage of this rule is that the uppermost observation cannot be 

plotted. 

The examples given in the Figures 9 and 10 are based on the 

data from stations "India" and "Smith's Knoll". These were chosen 

because they seemed to represent the best and the worst fit of the Gaussian 

distribution for log . (The data from "Juliett" are almost identical 

with those from "India" and could equally well have been chosen for this 

purpose). 

The poor fit of the Gaussian distribution has also been noted 

by Nordenstr/Sm (1969), who proposes to use the Weibull distribution for 

the description of long-term instrumental wave data at "India" and 

UL and 
"Juliett" and v i s ^ l data at these/other stations in the North Atlantic. 

The application of the Weibull distribution to wind wave problems had 

previously been suggested by Bretschneider (1965) for a description of 

the short-term statistics. 
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In the Figures 11 to 17 the data for the 7 stations have been 

plotted on Weibull paper, for both = 0 and, where necessary, for 

/\ ^ 0 such that the best fit was obtained, as judged by eye. The 

parameters B and C have been estimated from the best-fitting straight 

line so obtained. The results are tabulated below: 

Station A 3 C Area 

Cm) (m) -

India 0.80 2.70 1.22 

Juliett 0.90 2.70 1.24 ' Atlantic Ocean 

Sevenstones 0.60 1.67 1.21 

Morecambe Bay 0.00 0.78 1.05 \ 
0.69 1.01 

I Irish Sea 
Mersey Bar 0.00 0.69 1.01 ) 

Varne 0.00 1.05 1.30 ) 

0.89 1.28 
f North Sea 

Smith's Knoll 0.08 0.89 1.28 J 

Table 2 - PARAMETERS OF FITTED WEIBULL DISTRIBUTIONS OF 

The seven stations where the data were obtained can be broadly 

grouped into three areas, as indicated in the last column of Table 2. 

It is noteworthy that the shape parameter C does not vary much between 

stations from one area, although it varies appreciably between areas. 

The parameter /4 , which can be loosely described as an indication of 

"background noise" (such as might be due to swells) appears to be correlated 

with the degree of exposure of the locations. 

A comparison of Fig. 9 and 10 with Fig. 11 and 17 shows that 

the Weibull distribution fits the data far better than the Gaussian 

distribution does. In a few cases the fit is almost perfect (Juliett, 

Fig. 12; Smith's Knoll, Fig. 17). In some cases it is quite good except 

for the lowermost point, which is not very important (Mersey Bar, Fig. 15; 

- 22 



Varne, Fig. 16). In the remaining three cases the measurements show a 

certain sinuosity (particularly in Morecambe Bay, Fig. 14) although the 

overall-fit seems fair. The significance of the sinuosity is not clear. 

Due to lack of time no statistical tests of goodness of fit were applied. 

It seems worthwhile to carry out such tests at a later time. 

Hogben (1967) has compared the fit of the log-normal and the 

Weibull distribution to visual wave height observations at a number of 

locations in the North Atlantic and to the instrumental data from "India" 

reported by Draper and Squire (1967). He concludes: "The log-normal 

distributions seem to give a better overall fit extending down to quite 

low wave heights. In the important region of large heights, however, 

the Weibull plottings appear more nearly straight." The first of these 

conclusions seems largely to be based on the fact that the Weibull distribution 

gave a poor fit in the lower range. However, Hogben considered a two-

parameter distribution only (setting A = 0 a priori). Inclusion of the 

third parameter A greatly improves the fit of the Weibull distribution, 

as can be seen in Figure 11, The second conclusion by Hogben quoted above 

is stated in cautious terms which are not suggestive of the differences 

which can be seen, for instance, between the Figures 9 and 11. The reason 

for this seems to be that Hogben's conclusion is mainly based on visual data, 

which do not include observations of > approx. 10 m. Instrumental 

data at "India" were also considered by him, but for reasons unknown to the 

present author the upper tail of the measurements (prob. of exc. < 0.6% 

appr.) was not included in the figures. This is precisely the range where 

the measurements deviate strongly from the log-normal law, while the Weibull 

law still appears to fit. 
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5.2 Marginal distribution of H 

The cumulative marginal probability distribution of H were 

calculated on the basis of equation (28) and the ^ values contained 

in the Figs. 2 to 8. Values of were obtained for 0 ft., 

4 ft., 8 ft., etc; up to a value of twice the maximum significant height 

measured at the station. This upper limit was chosen because it is fairly 

representative of the upper range of the measurements, in as much as for 

these data the most probable maximum wave height in 3 hours, as well as its 

expected value, is approximately twice the significant height. The results 

are plotted in the Figures 18 to 24 using a co-ordinate system in which the 

Weibull distribution is represented by a straight line. The Figures show 

that a two-parameter Weibull distribution, with = 0, fits the computed 

values quite well, except for the lower range at "India" and "Juliett". 

The values of the scale - and shape parameters JB and d, were estimated 

from the straight lines drawn through the points by eye- They are given 

in Table 3 for the respective stations. The shape parameter C is fairly 

close to 1 in all cases but one (Morecambe Bay), which implies that the long-term 

distribution of individual wave height is nearly exponential. This type of 

distribution has previously been found to apply to wave induced stress "heights" 

in a drilling rig (Bell and Walker, 1970) and in ship's hulls (Nordenstr^m, 1965). 

Station 3 C T F {o-pjT'y' 

(ft) — (sec) (sec) — (sec) 

India 5.76 0.97 9.43 9.26 0 9.26 

\ Juliett 5.82 .99 9.53 9.34 0 9.34 

1 Sevenstones 3.76 .97 8.03 7.80 0 7.80 

i Morecambe Bay 1 .53 .85 5.40 4.98 0.159 5.92 

1 Mersey Bar 1 .87 1.06 4.98 4.82 0.517 9.98 

Varne 2.33 1 .03 5.38 5.25 0.065 5.61 

Smith's Knoll 1.67 .93 6.15 5.96 0 6.15 

Table 3 

PARAMETERS OF LONG-TERM DISTRIBUTION OF 
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The three stations Morecambe Bay, Mersey Bar and Varne 

require special consideration because calms are reported there during 

a given fraction of time. The "calm" conditions are not defined 

explicitly in the reports from which the Figs. 2 to 8 were taken. 

The values have been accepted at face value. 

In the calculation of the distributions shown in the Figs. 18 

to 24 the occurrence of calms was completely ignored. In other words, 

the summations in equation (28) only extended over the values of 

for the non-calm conditions. The resulting values of must 

therefore be interpreted as the expected ratio between the number of 

waves for which //sf , and the total number of waves occurring; 

by definition, no waves occur during calms. 

The occurrence of calms necessitates a slight modification of 

the relationship between return period ^ and cumulative probability 

. The expected number of waves per unit time, given that it 

is not calm, is T . If the fraction of time during which calms 

occur is 7" , then the expected number of waves in the return period is 

Values of the (long-term) mean zero crossing period T , and of the 

reciprocals of 7" and (J ~ ' , are given in Table 3. 

The difference between (7~ ') and 7" (which is used by 

Nordenstr^m to convert ^ into ) is relatively minor and has in 

no case been found to have a noticeable effect on the height calculated 

from a given return period. 

For each of the stations, values of were computed 

according to (37) for = 30 days, 1 year, 20 years, 50 years and 100 

years. The corresponding values of can be read off the graphs provided 

the measured distributions are extrapolated beyond = 1 year. 
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The marginal distributions of If were not only calculated 

according to equation 22, but also according to equation 23, which is the 

conventional relationship. Table 4 gives the results from both methods 

for station "India", for = 0 (8) 96 ft. The effect of not taking 

the period variability into account is to over-estimate the probabilities 

of exceedance of individual wave heights. This is to be expected in view 

of the positive correlation between and , as noted in section 

4.6. The magnitude of the relative error increases with At all 

the 7 stations it was approximately 50% for the height with a return 

period of 1 year. For station "India" this can be seen in the last 

line of Table 4. 

/ -

(ft.) acc to acc to 
eq. 22 eq. 23 

0 

8 

1.0000 

.2806 

1.0000 

.3022 

16 .6526 * 10-1 .7520 * 10-1 

24 .1795 * 10-1 .21 72 * 10-1 

32 .5435 * 10-2 .6813 * 10-2 

40 .1679 * 10-2 .2159 * 10-2 

48 .5077 * 10-3 .6679 * 10-3 

56 .1484 * 10-3 .1997 * 10-3 

64 .4194 * 10-4 .5779 * 10-4 

72 .1149 * 10-4 .1619 * 10-4 

80 .3045 * 1 0 - 5 .4371 * 1 o"^ 

88 .7723 * 1 0 - * .1124 * 10-5 

96 .1844 * 1 0 - * .2708 * 1 0 - * 

Table 4. 

PROBABILITIES OF EXCEEDANCE OF INDIVIDUAL WAVE 

HEIGHTS AT STATION "INDIA" 
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6. CCWCLUSICWS 

1. The upper envelope bounding the observed joint distribution of 

significant wave height //^ and (short-terra) mean zero cross-

ing period T , has been shown to be consistent with current know-

ledge of energy spectra of wind driven waves. 

2. The conditional distribution of H , for given 7~ , should not 

be extrapolated beyond the limit mentioned in 1. 

3. The statement that the logarithm of is Gaussian distributed 

does not apply to the data analysed herein. 

4. The measured marginal significant wave height distributions can be 

well approximated by the Weibull function. This statement is based 

on visual inspection, rather than statistical tests of goodness-of-

fit. 

5. Long-term distributions of individual wave heights have been 

calculated from the measured joint distributions of /t^ and 77 

The results are well described by Weibull function with an exponent 

close to 1. 

6. The long-term distribution of H is conventionally calculated from 

the marginal distribution of , disregarding the effect of 

period variability. This leads to a considerable overestimate of 

the probabilities of exceedance of ^ , 

7. The conversion of a probability of exceedance of // into a return 

period (or vice versa) should strictly speaking be based on the 

long-term expected number of waves per unit time 7 ^ , rather 

than on the mean wave period T which is sometimes used. However, 

the differences were found to be very small. 
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8. The various distributions referred to are based on the data for a whole 

year; no distinction between seasons has been made. It would be use-

ful to carry out a more comprehensive analysis, based on more extensive 

data, in which seasonal variations are not suppressed. The same can 

be said with regard to intensities and duration of storms. 
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