

INTERNAL DOCUMENT No. 303

Macroplanktonic biomass in the North Atlantic Ocean

P M Hargreaves & P J Allen

1991

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES DEACON LABORATORY

INTERNAL DOCUMENT No. 303

Macroplanktonic biomass in the North Atlantic Ocean

PM Hargreaves & PJAllen

1991

Wormley Godalming Surrey GU8 5UB Tel 0428 684141 Telex 858833 OCEANS G Telefax 0428 683066

DOCUMENT DATA SHEET

AUTHOR	PUBLICAT	ION						
HARGREAVES, P.M. & ALLEN, P.J.	DATE	1991						
TITLE	<u>_</u>							
Macroplanktonic biomass in the North Atlantic Ocean.								
REFERENCE								
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, N (Unpublished manuscript)	Io. 303, 71pp.							
ABSTRACT								
The vertical and horizontal distribution of macroplanktonic biomass, meavolume is described. The data drawn from samples taken with rectaincludes data on macroplanktonic vertical distribution based on horizo stations in open ocean water located between the equator and 60° r 1500m. Further data are derived from repeated samples taken within the two transects of 0-1000m oblique hauls. Integrated data (0-1000m) show area macroplanktonic biomass tends to be greatest to the north of 42°N areas. Generally a decrease in biomass occurs with increasing depresented to previously published data on micronekton derived from the of macroplankton to micronekton discussed.	Isured by wet d angular midwat ntal tows taker forth to average top 600m at 44 ws that within th and is lower in oth. The presen same stations a	isplacement fer trawls 1 n at various e depths of "N and from ne sampling n subtropical nt data are and the ratio						
KEYWORDS								
ATLNE BIOLOGICAL DATA BIOMASS NORTHEAST ATLANTIC PLANKTON								
RECTANGULAR MIDWATER TRAWL (RMT 1), (RMT 8)								
ISSUING ORGANISATION Institute of Oceanographic Sciences Deacon Laboratory Wormley, Godalming								
Surrey GU8 5UB. UK. Director: Colin Summerhayes DSc	<i>Telephone</i> Worn <i>Telex</i> 858833 OC <i>Facsimile</i> (0428)	nley (0428) 684141 EANS G. 683066						
Copies of this report are available from: The Library,	PRICE	£0.00						

CONTENTS	PAGE
ABSTRACT	3
INTRODUCTION	7
MATERIALS AND METHODS - HORIZONTAL HAULS	7
DISTRIBUTION PATTERNS - HORIZONTAL HAULS	10
MATERIALS AND METHODS - OBLIQUE HAULS	12
DISTRIBUTION PATTERNS - OBLIQUE HAULS	13
DISCUSSION	13
REFERENCES	15
TABLES 1-2	19
FIGURES 1-19	21
APPENDIX 1	41

INTRODUCTION

Although information is available on the distribution of total macroplanktonic or micronektonic biomass in the North Atlantic Ocean much of this relates to a relatively small number of stations, or to limited areas of the water column, or to the continental shelf, (see VINOGRADOV, 1968; DEEVEY and BROOKES, 1971; LONGHURST and WILLIAMS,1979; BOYD *et al* 1986). ANGEL and BAKER, (1982), summarising preliminary data from Rectangular Midwater trawls (RMT 1+8) taken in the deep water column at three widely separated stations concluded that the macroplanktonic standing stock generally exceeds that of the micronekton and that there is an exponential decrease in macroplanktonic and micronektonic biomass at depths below 1000m. WISHNER (1980) concluded that benthopelagic planktonic biomass decreases exponentially with depth until just above the sea-floor where an increase may occur. ANGEL (1989) found that there were clear seasonal differences in the depth of the biomass maximum within the top 100m at a series of stations in the vicinity of the Azores front.

During the last two decades the Institute of Oceanographic Sciences Deacon Laboratory (IOSDL) biology department has deployed opening/closing Rectangular Midwater Trawls (RMT) 1+8, mesh size 0.32mm and 4.5mm respectively, to collect numerous macroplanktonic and micronektonic samples in the North Atlantic mainly over depth ranges between the surface and 1000/2000m, (exceptionally down to 4000/5000m).

The provisional data set presented here, based mainly on RMT1 samples obtained during 1969-1988, provides useful information not only on standing stock within the water column at various stations but also enables comparisons to be made with micronekton standing crops and also between biomass profiles in widely separated geographic areas. This report, the second of two, presents macroplanktonic biomass profiles based on RMT1 catches. A previous report provides information on micronekton biomass based on RMT8 catches, (HARGREAVES and GREEN, 1990).

MATERIALS AND METHODS-HORIZONTAL HAULS

Prior to the late 1970's the IOS midwater trawl (RMT1+8), (BAKER *et al*, 1973; ROE *et al*, 1980) has been deployed for the sampling of macroplankton and micronekton respectively. The nets are opened and closed acoustically via a net monitor which activates the release gear. Information on the depth of the net and its velocity is telemetered back to the ship. Since the late 1970's a multiple version of the RMT 1+8 has been used (ROE and SHALE 1979). Here three pairs of RMT1 + RMT8 nets are deployed within the same framework and can be operated in sequence at the required depth. The main logistic advantage is that there is considerable saving in ship time spent in retrieving the nets.

At each station samples were taken systematically so that the whole water column between the nearsurface and maximum depth was sampled. During the earlier cruises (1969-1972) day and night samples were taken to certain maximum depths (see Table 1). During later cruises this sampling strategy was continued except that, more usually, depths below 900m were sampled irrespective of the time of day. Generally nets were fished at 10-100m depth intervals in the top 900-1000m but at 200m, 250m or 500m intervals below this depth.

Initially the samples were fixed in 5% formalin solution in seawater. Total displacement volume of most samples was measured several months later after initial shrinkage had occurred, except for those samples taken during the 1960's and early 1970's where wet displacement volumes were either measured several years later or estimated from fractions of samples before being transferred to Steedman's preserving fluid, (1976).

So as to simplify the presentation of data in this report, the cruises are categorised into eight groups depending on geographic position and/or sampling strategy. These are described in subsections (i-viii) below and summarised in Fig. 1 and Table 1. At each station complementary Conductivity/Temperature/Depth (CTD) or Temperature/ Salinity/Depth (TSD) profiles were obtained and these will be summarised in a companion IOSDL data report.

(i) During 1969-74, at various times of the year, a series of horizontal hauls were taken at seven positions, approximately at 10° intervals of latitude between 0°N and 60°N and close to the 20°-25°W meridians, (Positions A-G). At each position samples were taken from near surface to a maximum depth .of 2000-2500m, with the exception of the station at 18°N where the maximum depth was 1250m. For cruise reports see DAVID (1970), DAVID *et al*, (1971; 1972), FOXTON (1971) and THORPE *et al*, (1974).

(ii) To provide further information on vertical and horizontal distributions of taxa, during 1973-1979 samples were taken at several sites to maximum depths of 1400-1500m. These included one site in the Rockall Trough, two in the Porcupine Seabight,one site over the Azores/Biscay Rise, and one in oceanic water near Bermuda, (Positions H-L). For cruise reports see DAVID and SWALLOW (1973), ANGEL (1978) and HERRING *et al*, (1979).

(iii) During May/June 1981 (Cruises 120/121) five stations were worked near to the Azores front within the area 30°-35°N, 30°-34°W, (Fig.1. positions M-Q, maximum depth 1400-2300m). The front delineates the edge of what is believed to be the southern branch of the south-easterly flowing N. Atlantic Drift/Gulf Stream which meanders in the region studied possibly as a result of the influences of seamounts, (GOULD 1982, 1985; KASE and SEILDER 1982).Western Atlantic Water (WAW) can be distinguished from Eastern Atlantic Water (EAW) by the depth of the 15-16° C isotherm. To investigate changes in patterns of biomass distribution across the front one station was worked in the frontal zone (position O), one in WAW (M), one in EAW (Q), one in an eddy of EAW (P), which had pinched off from the meander a month earlier, and one in WAW inside one of the meanders (N). Details of sampling are given in cruise reports (FASHAM *et al*, 1981; ANGEL *et al*, 1981b).

During October/November 1980 prior to cruises 120/121 three stations were worked in the Azores front area to a maximum depth of 1100m (cruise 114, positions R-T). One station was worked in EAW

(position T), and one in mixed EAW/WAW (S). In addition what was thought to be WAW was sampled but this was later found also to be mixed EAW/WAW (R). However, the data obtained from all these positions proved to be useful to provide a seasonal comparison with the more recently acquired data from the frontal area. For details of sampling see IOS Cruise Report No. 108 (ANGEL *et al* 1981a).

(iv) During March/April 1984 at 39°- 46°N, 14°-15°W samples were collected to maximum depths of 800-1800m in order to study changes in the structure of the oceanic community where hydrographic stratification in the epipelagic and upper mesopelagic zone periodically results in a series of weak fronts. Details of sampling are given in IOS Cruise Report No. 168 (ANGEL *et al*, 1984). A series of hauls was taken in the vicinity of 39°N, 15°W and were repeated at the same position two-three weeks later (positions V,W respectively). A third series of samples was obtained at 45-46N, 14W (U). The two series at U and V were affected by poor weather conditions which prevented sampling. However, the sampling at position W extended deep into the water column providing useful comparative data with other samples.

v) During June/July 1985 samples were collected at the Great Meteor East, in the vicinity of 31°N 25°W to a maximum depth of 5000m, (Position X) as part of a study, commissioned by the Department of the Environment, on the vertical distribution of macroplankton and micronekton between the surface and the sea floor and on general environmental conditions. For details of sampling see ROE *et al*, (1986; 1987).

(vi) During June/July 1988 samples were collected at approximately 47°N 20°W (BIOTRANS site) to a maximum depth of 4500m, (Position Y). This cruise was undertaken as a prelude to the BOFS (Biogeochemical Ocean Flux sampling) programme. For details of sampling see cruise report 175, PUGH *et al*, (1988).

(vii) During May 1990 samples were collected at the Porcupine Seabight, in the area of 48°N 17°W to a maximum of 1900m, (position PS).

(viii) During April 1974 four series of repeated samples each at 100m, 250m, 450m and 600m respectively were taken over a 48hr period at 44°N, 12°-14°W close to the northern boundary of the subtropical gyre (Position 48HS - see Roe *et al*, 1984). In addition a series of vertical hauls were taken between the surface and 1000m at the same position (station 8507).

In this report the vertical biomass profiles at each station are illustrated by histograms of data standardised to mls per 10^3 m³ of water filtered. The average maximum depth is 2000m but exceptionally profiles are given down to 5000m. Night data for horizontal hauls are shaded. During some of the earlier sampling precise flow measurements were not made and for these samples flow has been standardised based on the duration of the haul assuming that the speed of the net was a constant 2 knots. The scales for the histograms vary between series according to the total volumes caught, rare occurrences are indicated with a '+' sign, (NS = No sample at this depth).

BIOMASS DISTRIBUTION PATTERNS - HORIZONTAL HAULS

Total biomass profiles, expressed as wet displacement volume, (wdv), normalised to mls per 10³m³ water filtered are described below. Data values are given in Appendix 1.

(i) 20°-25°W (Positions A-G, Figs. 1 and 2)

Concentrations of macroplanktonic biomass tended to be relatively high at position A, lower at B, D, F and G and lowest at C and E. At position A, which is close to the N.W. African Upwelling area, daytime values in the top 600m were particularly variable, reaching maxima of >120mls per $10^3 m^3$ in some hauls but not in others taken at similar depths (Appendix 1, Fig. 2). At stations B-G above 1000m in daytime there was less variation in biomass between continuous hauls, although deep and shallow maxima were apparent in some cases. Position F, for example, shows a maximum at 200-300m, and position D shows a maximum at 400-500m. Night data for positions B-G also demonstrated deep maxima at some depths. For example, position B has a maximum at 700-800m, and position F at 800-900m. A sharp decrease in biomass concentration is apparent for both day and, where available, night data below 1000m for positions A, B, D, E, F, and G.

(ii) Off-Bermuda, Azores/Biscay Rise, Porcupine Seabight, Rockall Trough (Positions H-K, Figs. 1 and 3).

Concentrations of macroplanktonic biomass tended to be relatively high at positions I and J, values exceeding 120mls per 10^3m^3 by day at depths of 0-100m and 400-500m for position I, and at 0-100m for position J. Values were lower at position K, and particularly low at H, (Fig. 3), daytime values, not exceeding 30mls per 10^3m^3 . Positions J and K are at similar latitudes, but the former station was sampled in May and the latter in September. Seasonal effects could thus account for the differences in biomass concentrations observed for these two stations. Several samples from tropical and subtropical stations contained large aggregations of *Pyrosoma* in addition to the expected catch. These are marked with an asterisk in Appendix 1 where the total biomass values given excludes values for *Pyrosoma*) Standardised values for 24 repeated RMT8 hauls sampled at approximately 1000m at position I are given in Appendix 1. Angel *et al* (1982) calculated the mean displacement volume of macroplanktonic concentrations as 38.91 + -10.72 mls per 10^3m^3 .

(iii) Azores front (Positions M-Q, R-T, Rp1-Rp2, Figs.1, 4 and 5)

Data from three stations worked in summer (M-Q), three in winter (stations R-T) and two sets of repeated samples within the surface 100m (RP1-RP2) has been described in detail (Angel, 1989). A summary will be given here.

During May/June 1981 concentrations of macroplanktonic biomass tended to be highest in EAW (position Q), E EDDY (position P), and at the front station (position O) with values of up to 53mls per $10^3 m^3$. Generally, values were lower in WAW (position M) and W MEANDER (position N), (Fig 4). However, at all

stations by day and by night, biomass was greatest in the top 50-100m, coinciding with the depth of the seasonal thermocline. Below this depth there was an erratic decrease in biomass with increasing depth.

Macroplanktonic biomass concentrations for winter stations at the Azores front (positions R-T) are given in Fig. 5. Values tended to be lower at the predominantly WAW station (position R) than at the intermediate station (position S) and the EAW station (position T). The daytime concentrations at 600-700m at position S and the night-time concentrations at the surface 150m at positions S and T were unusually high and are shown with an asterisk. On investigation, these were found to be due to the presence of *Pyrosoma* in the catches at these depths. Two series of repeated night samples at 50m at stations 10232 and 10241, (RP1 and RP2), gave average standing crops of 39.50 and 39.14mls per 10³m³ respectively, excluding *Pyrosoma*, (Angel 1989). Values for the macroplankton crop in EAW suggested that the standing crop had increased considerably between November 1980 and May/June 1981. In WAW there was relatively little change in biomass concentrations between Winter and Summer.

ANGEL, (1989), comparing ratios of macroplankton and micronekton biomass, found that by day macroplankton exceeded micronekton biomass by up to an order of magnitude in the surface layers but that the ratios declined with depth, approaching unity at 200m in Winter. However in Summer the ratios were 5.5:1 (WAW) and 4.5:1 (EAW).

(iv) Cruise 146 (Positions U-W, Figs. 1 and 6)

Concentrations of macroplanktonic biomass showed little variation between the three stations at positions U, V, and W, except within the surface 80-200m at position V, (day), where the biomass was twice that recorded of similar depths at U or W. HULL, (1985), further investigating the relationship between wet displacement volume, wet weight and dry weight in various size fractions of material from these stations found that there were differences in the displacement volume/wet weight slopes for biomass measurement for material sized 0.32-1.0mm between the northern and southern stations but this could not be confirmed for the 1.0-4.5mm sized material.

(v) Great Meteor East (Position X, Figs. 1 and 7)

Planktonic and micronektonic biomass distribution based partly on dry weight were described by Roe *et al*, 1987.

Generally biomass concentrations tended to be low. Below 1000m there was an exponential decrease in biomass concentration (Fig. 7b).

(vi) 47°N,20°W (Position Y, Figs. 1 and 8)

Macroplanktonic biomass profiles were described by PUGH (1988). Above 500m depth, daytime biomass concentrations show a maximum of 32mls per 10^3 m³ in the 100-400m range, while at night there is a minimum between 300 and 400m and a maximum in the top 100m, which presumably indicates diel vertical

migration. Below 500m, a slight decline in biomass was observed. There are two low values which can be related to loss of part of the catch due to its having been caught up in the mouth of the net, indicated by an asterisk in the table in Appendix 1.

(vii) Station 12060 (Position PS, Figs. 1 and 9)

Data for micronektonic biomass is presented as well as that for macroplanktonic biomass in the table in Appendix 1. The micronekton data for this station had not been collected in time for its inclusion in the report by HARGREAVES and GREEN, (1990), and has therefore been presented in this report. Macroplankton biomass concentrations showed a day-time maximum in the top 50-100m, and at night, maxima were observed in the surface 50m and between 200 and 300m depth. Macronektonic biomass concentrations also showed a maximum in the top 50m at night, but daytime concentrations were often quite variable, reaching, for example, 42mls per 10^3m^3 in one haul taken at 400-500m depth, but not at other hauls taken at the same depth.

(viii) 48 hour series (Position 48HS1, 48HS2, Figs. 1 and 10)

Concentrations of micronektonic biomass for the series of samples taken at four depths of 100m, 250m, 450m and 600m are given in Fig. 10, (note change of scale for different depth hauls). Diel variation in biomass was most apparent at 100m depth, with an average daytime biomass concentration of 36.5mls per 10^3m^3 , whereas the average night time biomass concentration was 66.1mls per 10^3m^3 . At 250m, macroplanktonic biomass concentrations were generally relatively high, often exceeding 250mls per 10^3m^3 . For a full discussion see Roe *et al*,(1984) who reported significant differences between populations from day and night hauls at 100m. Average day and night values for biomass concentration at 450m and 600m were lower than those at 250m, effects of diel vertical migration being least apparent at 600m depth.

MATERIALS AND METHODS - OBLIQUE HAULS

A series of oblique RMT 1 hauls were taken between the surface and 1000m across two different lines of stations in the North Atlantic (Figs.1, 11a and b). These were as follows :-

(i) During February/ March 1973 twelve oblique hauls were taken across an east-west transect between the surface and 1000m at 32°N 16°-60°W (Stations 8262-8279, Madeira - Bermuda).

(ii) During April/May 1978 a north-south line of hauls was taken to investigate the effects of a series of weak intermittent hydrographic fronts on species distribution. Eight (0-1000m) oblique hauls were taken between 42°N and 50°N, (stations 8792-9801).

Full details of the RMT1 net and sampling procedures are as described for the RMT1 horizontal hauls.

DISTRIBUTION PATTERNS - OBLIQUE HAULS

Oblique 1. Station 8262-8279 (Fig.11a)

Macroplanktonic biomass concentrations in the 0-1000m hauls ranged from a minimum of 9.31mls per 10^3m^3 to a maximum of 22.35mls per 10^3m^3 , tending to be slightly higher at 16° -20° W, although no clear change in biomass profiles from east to west was apparent. Obligue 2. Stations 9792-9801 (Fig.11b)

Macroplanktonic biomass concentrations in the 0-1000m hauls were generally higher than in the Madeira-Bermuda transect, reaching average values of 29mls per 10³m³. There was no apparent change in biomass concentrations from north to south.

DISCUSSION

These data, although based on single samples, are considered to be representative of macroplankton distribution within the North-East Atlantic Ocean. ANGEL *et al* (1982), summarizing data from 24 repeated hauls at a depth of 1000m, gave means for the values of macroplankton as 38.91 +/- 10.72 per 10³m³ which suggests that a single sample has a 90% probability of being within a factor of two of the mean, though at this depth the variability was lower than that observed by McGOWEN (1976) for zooplankton in the area of the California Current. Throughout the sampling area macroplankton biomass declined with increasing depth thus confirming observations by various authors, including VINOGRADOV (1968) and LONGHURST and HARRISON (1989) that there is a vertical decrease of macroplanktonic biomass of about one order of magnitude for each kilometre of depth.

There was some disparity between day and night totals throughout the water column but this was attributable to two major factors; net avoidance by day, and accumulation of diel migrants by night particularly near the surface.

A summary of totals by day of macroplankton, expressed as wet displacement volume (mls) beneath $1m^2$ of sea surface at 0-1000m is given in Fig. 12, together with a summary of the daytime profiles at most deep-water stations sampled in summer (Figs. 13a, 13b, and 14a), and two deep-water stations sampled in winter (Figs. 13c and 14b). The data agree well with those of BE, FORNS and ROELS (1971) who, studying geographic variation in biomass distribution of zooplankton in the upper 300m in the Atlantic, recorded values of wet displacement volume in the upper 300m as 50-100mls per 10^3m^3 to the north of 45°N. The present data also confirm the comparatively low values recorded in open oceanic subtropical waters. ALLISON and WISHNER (1986) similarly recorded higher values of zooplankton biomass at the northern boundary of the Gulf stream than in the Sargasso Sea. With regard to the Azores Front stations, there is clearly a reduction in macroplankton biomass in WAW in comparison with EAW, values for the latter stations, however, agreeing broadly with those recorded at 30°N 23°W, (position D). The high values for macroplanktonic biomass to the North of 40-42°N can be correlated with the occurrence of deep winter mixing and high productivity which has

been well documented for high latitudes, while lower values to the South of 40°N can be correlated with more stable oligotrophic water, (see ROBINSON *et al*, 1979; RAYMONT, 1983). The high and rather erratic profiles off the N.W. African coast are as expected in this unstable region.

As expected, seasonal variations occurred between values for macroplanktonic biomass, not only at higher latitudes but also in the subtropics (Figs. 12, 13b, and 13c). This was exemplified in the Azores Front summer and winter data (see ANGEL 1989, and Figs. 14a and 14b). DEEVEY, (1971) also reported seasonal changes in the annual cycle of zooplankton off Bermuda.

Values for micronekton at specific stations as described by HARGREAVES and GREEN (1990) have been compared to those of macroplankton. A summary of daytime ratios of macroplankton/micronekton (Figs. 15-19) show that in general at northerly latitudes during April to October the wet displacement volume of macroplankton exceeds that of micronekton by a factor of 2 to 3 whilst in subtropical regions the ratios are in the region of 3 to 5, a situation which, to some extent, was reflected down to the depths of 600-700m. However, in deeper water, ratios of macroplankton/micronekton tended to be lower and more variable. With regard to the slope of the profiles, a reduction of ratio with increasing depth was clearly seen for depths between 200m and 800m at 30°N, whereas at 53°N the ratios between 200m and 1000m remained at the same level and increased at 1000-2000m. The variation in day/night ratios pointed to a reduction in ratio by night, which is almost certainly due to diel migration.

Throughout the sampling area dominant taxa included ostracods, copepods, other larval and juvenile crustaceans, chaetognaths and molluscs. Some have been identified to species, the data of which may have proved to be important in confirming the existence of faunal zones, ocean circulation and other hydrographic features, (FASHAM and ANGEL, 1975; McGOWAN, 1974,1986; McGOWAN and WILLIAMS, 1973; McGOWAN and WALKER, 1985). ANGEL, (1989), discussing vertical profiles in the vicinity of the Azores Front, found that biological communities on either side of the front were almost indistinguishable in terms of their species composition, despite differences in the size of the standing crops.

In conclusion it is hoped that these estimates of standing crop will prove to be useful in furthering our understanding of the processes involved in modifying the flux of organic material through the water column in the open ocean (see ROBINSON and BAILEY, 1981; FOWLER and KNAUER, 1985). Recently, LONGHURST and HARRISON (1989) have emphasised the importance of biomass profiles not only as an indirect method to assess the availability of regenerated dissolved nitrogen, but also as a pointer to sources of particulate organic matter.

ACKNOWLEDGEMENTS

We wish to thank numerous colleagues and students who have participated in the collection and measurement of the samples.

REFERENCES

ALLISON, S.K. & WISHNER, K. F. 1986 Spatial and Temporal patterns of zooplankton biomass across the Gulf Stream.

Marine Ecology Progress Series, 31, 233-244.

- ANGEL, M.V. 1978 RRS 'Discovery' Cruise 92, 4 April-23 May Midwater and benthic sampling in the Porcupine Sea Bight and midwater studies along 13°W and 17°W and around 42°N 17°W. Institute of Oceanographic Sciences, Cruise Report, No. 70, 42pp.
- ANGEL, M.V. 1989 Vertical profiles of pelagic communities in the vicinity of the Azores Front and their implications to deep ocean ecology. Progress in Oceanography, 22, 1-46.
- ANGEL, M.V. & BAKER, A. de C. 1982 Vertical distribution of the standing crop of plankton and micronekton at three stations in the Northeast Atlantic. Biological Oceanography, 2, 1-29
- ANGEL, M.V. et al, 1981a RRS 'Discovery' Cruise 114, 16 October-30 November 1980. Biological and physical investigations into the front between the western and eastern Atlantic water south west of the Azores. Institute of Oceanographic Sciences, Cruise Report, No. 108, 45pp.
- ANGEL, M.V. et al, 1981b RRS Discovery Cruise 121, 5-26 June 1981. Biological investigations of the oceanic front to the south-west of the Azores. Institute of Oceanographic Sciences, Cruise Report, No. 115, 22pp.
- ANGEL, M.V., HARGREAVES, P.M., KIRKPATRICK, P. & DOMANSKI, P. 1982 Low variability in the planktonic and micronektonic populations at 1000m depth in the vicinity of 42°N 17°W; evidence against diel migratory behaviour in the majority of species. Biological Oceanography, 1, 287-319.
- ANGEL, M.V. et al, 1984 RRS 'Discovery' Cruise 146, 27 March-24 April 1984. Biological and physical investigations at 39° 30'N 15°W to 46°N 14°W of the events leading up to and associated with the onset of thermal stratification. Institute of Oceanographic Sciences, Cruise Report, No. 168, 69pp.
- BAKER, A. de C., CLARKE, M.R. & HARRIS, M.J. 1973 The N.I.O. combination net (RMT 1+8) and further developments of rectangular midwater trawls. Journal of the Marine Biological Association of the United Kingdom, 53, 167-184.
- BE, A.W.H., FORNS, J.M. & ROELS, D.A. 1971 In Fertility of the sea. Volume 1 (ed. Costlow, J.D). Gordon and Breach; New York. pp. 17-50.
- BOYD, S.H. WIEBE, P.H., BACKUS, R.H., CRADDOCK, J.E., DAHER, M.A. 1986 Biomass of the micronekton in Gulf Stream ring 82-B and environs: Changes in time. Deep-Sea Research, 33, 1885-1905.
- DAVID, P.M. 1970 RRS "Discovery" Cruise 30, October-December 1969 Vertical distribution of zooplankton at 18°N 25°W. National Institute of Oceanography, Cruise Report, No. 30, 30pp.
- DAVID, P.M. et al, 1971 RRS "Discovery" Cruise 36, September-November 1970. Plankton investigations at 40°N 20°W.

National Institute of Oceanography, Cruise Report, No. 36, 20pp.

- DAVID, P.M. *et al*, 1972 RRS Discovery Cruise 45, February-April 1972. Plankton investigations at 11°N 20°W, 18°N 25°W and 30°N 23°W. National Institute of Oceanography, Cruise Report, No. 50, 46pp.
- DAVID, P.M. & SWALLOW, J.C. 1973 RRS "Discovery" Cruise 52, February-March 1973. Transatlantic section in 32°N and biological work in Ocean Acre. National Institute of Oceanography, Cruise Report, No. 59, 23pp.
- DEEVEY, G.B. & BROOKES, A.L. 1971 The annual cycle in quantity and composition of the zooplankton of the Sargasso Sea off Bermuda. II The surface to 2000m. Limnology and Oceanography 16, 927-943.
- FASHAM, M.J. & ANGEL, M.V. 1975 The relationship of the zoogeographic distributions of the planktonic ostracods in the North-east Atlantic to the water-masses. Journal of the Biological Association of the United Kingdom, 55, 739-757.
- FASHAM, M.J.R. *et al*, 1981 RRS "Discovery" Cruise 120, 9 May-1 June 1981. Biological and physical investigations of the oceanic front to the south-west of the Azores. Institute of Oceanographic Sciences, Cruise Report, No. 124, 25pp.
- FOWLER, S.W. & KNAUER, G.A. 1986 Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography, 16 (3) 147-194.
- FOXTON, P. 1971 RRS 'Discovery' Cruise 39, April-June 1971. Plankton investigations at 60°N 20°W and 53°N 20°W. National Institute of Oceanography, Cruise Report, No. 40, 32pp.
- GOULD, W.J. 1982 RRS "Discovery" Cruise 119, 9 April-5 May 1981. Physical oceanography of a frontal region south-west of the Azores. Institute of Oceanographic Sciences, Cruise Report, No. 130, 18pp.
- GOULD, W.J. 1985 Physical oceanography of the Azores front. pp. 167-190 in Essays on Oceanography, a tribute to John Swallow. (eds. CREASE, J., GOULD, W.J. and SAUNDERS P.M.). Oxford: Pergamon Press. Progress in Oceanography, 14, 167-190.
- HARGREAVES, P.M. & GREEN, P.R.S. 1990 Micronektonic biomass in the North Atlantic. Institute of Oceanographic Sciences Deacon Laboratory, Report, No. 280, 103pp.
- HERRING, P.J. et al, 1979 RRS 'Discovery' Cruise 105, 29 August-23 October 1979. Midwater and benthic sampling in the region of the Rockall Trough, Porcupine Sea Bight and north-west African coast with associated physiological investigations. Institute of Oceanographic Sciences, Cruise Report, No. 82, 42pp.
- HULL, R.M. 1985 Biomass analyses of zooplankton collected at 39°N 30'W, 15°W to 46°N 14°W. Institute of Oceanographic Sciences, Internal Document, No. 242 (unpublished manuscript).
- KASE, R.H. & SEIDLER, G. 1982 Meandering of the subtropical front south-east of the Azores. Nature, 300, 245-246.
- LONGHURST, A.R. & HARRISON, W.G. 1989 The biological pump. Profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, 22, 47-123

- LONGHURST, A.R. & WILLIAMS, R. 1979 Materials for plankton modelling, vertical distribution of Atlantic zooplankton in summer. Journal of Plankton Research, 1, 1-28.
- McGOWAN J.A. 1974 The nature of oceanic ecosystems. pp.9-26 in The biology of the oceanic Pacific. (ed. C.B. Miller). Oregon State University.
- McGOWAN, J.A. 1976 What regulates pelagic community structure in the Pacific?. pp.423-443 in Ocean Sound Scattering Prediction. (ed. N.R. Anderson, and B.J. Zahuranec) Marine Science, 5.
- McGOWAN J.A. 1986 The biology of pelagic ecosystems. pp.191-200 in Pelagic biogeography. (ed. A.C. Pierrot-Bults, S. van der Spoel, B.J. Zahuranec, and R.K. Johnson). UNESCO Technical Paper in Marine Science 49.
- McGOWAN, J.A. & HAYWARD, T. 1978 Mixing in oceanic productivity. Deep Sea Research, 25, 771-793
- McGOWAN, J.A. & WALKER, P.W. 1985 Dominance and diversity maintenance in an oceanic ecosystem. Ecological Monographs, 55, 103-118.
- McGOWAN, J.A. & WILLIAMS, P.M. 1973 Oceanic habitat differences in the North Pacific. Journal of Experimental Marine Biology and Ecology, 12 (2) 187-212.
- PUGH, P.R. *et al*, 1988 RRS "Discovery" Cruise 175 18 June-15 July 1988. Investigations of the flux of biogeochemical material and its transformation by the midwater biota at the BIOTRANS site. Institute of Oceanographic Sciences, Cruise Report, No. 204, 72pp.
- RAYMONT, J.E.G. 1983 Plankton and productivity in the oceans. (2nd. edition). Zooplankton. Volume 2. Pergamon, 824pp.
- ROBINSON, M.K. BAUER, R.A. & SHROEDER, E.H. 1979 Atlas of the North Atlantic-Indian Ocean. Monthly mean temperatures and mean salinities of the surface layer. Naval Oceanographic Office Reference Publication 18. Washington. D.C.
- ROBINSON, B.H. & BAILEY, T.G. 1981 Sinking rates and dissolution of midwater fish faecal matter. Marine Biology 65 (2) 135-142.
- ROE, H.S.J. 1974 Observations on the diel vertical migrations of an oceanic animal community. Marine Biology, 28, 99-113
- ROE, H.S.J., & SHALE, D.M. 1979 A new multiple rectangular midwater trawl RMT 1+8M. Marine Biology, 50, 283-288.
- ROE, H.S.J., BAKER A. DE C., CARSON, R.M., WILD, R. & SHALE, D.M. 1980 Behaviour of the Institute of Oceanographic Sciences' rectangular midwater trawls: theoretical aspects and experimental observations. Marine Biology, 56, 247-259.
- ROE, H.S.J., ANGEL, M.V., BADCOCK, J., DOMANSKI, P., JAMES, P.T. PUGH, P.R. & THURSTON, M.H. 1984 The diel migrations and distributions within a mesopelagic community in the north-east Atlantic. Progress in Oceanography, 13, pp. 245-511.
- ROE, H.S.J., DOMANSKI, P.A. & FASHAM, M.J.R. et al., 1986 Great Meteor East: an interim report on biological sampling and general relationship to physical oceanography. Institute of Oceanographic Sciences Report No. 225, 60pp.

- ROE, H.S.J., BADCOCK, J., BILLETT, D.S.M., CHIDGEY, K.C., DOMANSKI, P.A., ELLIS, C.J., FASHAM, M.J.R., GOODAY, A.J., HARGREAVES, P.M., HUGGETT, Q., JAMES, P.T., KIRKPATRICK, P.A., LAMPITT, R.S., MERRETT, N.R., MUIRHEAD, A., PUGH, P.R., RICE, A.L., RUSSELL, R.A., THURSTON, M.H. & TYLER, P.A. 1987 Great Meteor East: a biological characterisation. Institute of Oceanographic Sciences Deacon Laboratory, Report, No. 248, 260pp.
- STEEDMAN, H.F. 1976 General and applied data on formaldehyde fixation and preservation of marine zooplankton. pp.103-154 in, Zooplankton Fixation and Preservation. (ed. H.F. Steedman). UNESCO Press, Paris.
- THORPE, S.A. *et al.*, 1974 RRS "Discovery" Cruise 64, 17 July-13 August 1974. Physical oceanography and marine biology of the equatorial Atlantic: Part of GARP Atlantic Tropical Experiment (GATE) oceanic equatorial experiment. Institute of Oceanographic Sciences, Cruise Report, No. 13, 36pp.
- VINOGRADOV, M.E. 1968 Vertical distribution of the oceanic zooplankton. Moscow: Nauka. 339pp. Translation from the Russian, Jerusalem: Israel program for scientific translation, 1970.
- VINOGRADOV, M.E. & TSEITLIN, V.B. 1983 Deep-sea pelagic domain (aspects of bioenergetics). pp 123-165 in, The Sea, Vol. 8, Deep-Sea Biology. (ed. G.T. Rowe). New York: Wiley Interscience.
- WISHNER, K. F. 1980 The biomass of the deep-sea benthopelagic plankton. Deep Sea Research, 27A, 203-216.

	STATION	POSITION		MONTH	YEAR	MAX. DEI (m)	PTH TIME
(i)	8553- 8568 7824 7089 7856 7406 7711 7709	00 [°] N 22 [°] W 11 N 20 W 18 N 25 W 30 N 23 W 40 N 20 W 53 N 20 W 60 N 20 W	(A) (B) (C) (D) (E) (F) (G)	JUL/AUG. MARCH NOV. MAR/APR. OCT/NOV. MAY/JUN. APR/MAY	1974 1972 1969 1972 1970 1971 1971	2000 2000 1250 2500 2000 2000 2000	D &/or N D &/or N D & N D & N D &/N D &/N D &/N D &/N
(ii)	8281 9801 9791 10115 10105	32 N 64 W 42 N 17 W 50 N 14 W 50 N 14 W 54 N 13 W	(H) (I) (J) (K) (L)	MARCH MAY MAY SEP. AUG/SEP.	1973 1978 1978 1979 1979 1979	3500 4000 1505 1300 1900	D &/or N D &/or N D &/or N D &/or N D &/or N
(iii)	10380 10378 10376 10382 10379 10233 10222 10228 10232 10241	30 N 34 W 32 N 30 W 33 N 33 W 33 N 32 W 35 N 33 W 32 N 32 W 30 N 30 W 33 N 32 W 33 N 32 W 33 N 32 W	(M) (N) (O) (P) (Q) (R) (S) (T) (RP1) (RP2)	JUNE JUNE JUNE JUNE NOV. OCT. NOV. NOV. NOV.	1981 1981 1981 1981 1980 1980 1980 1980	2300 1415 1700 1400 1900 1100 1100 1100 65 110	D &/or N D & N D &/or N D &/or N D & N D & N D & N D & N N N
(iv)	11050- 11058 11036- 11047 11078- 11095	46 N 14 W 39 N 15 W 39 N 15 W	(U) (V) (W)	APRIL MAR/APR. APRIL	1984 1984 1984	800 1095 1405	D &/or N D &/or N D &/or N
(v)	11261	31 N 25 W	(X)	JUN/JUL.	1985	1500	D &/or N
(vi)	11794	47 N 20 W	(Y)	JUN/JUL	1988	4450	D &/or N
(vii)	12060	48 N 17 W	(PS)	MAY	1990	1900	D &/or N
(viii)	8507- 8508	44 N 13 W	(48HS)	APRIL	1974 2	100, 50,450,60	D & N 00

Table 1.	Horizontal	hauls:	Summary	of	the	main	sampling
	positions	in the N	lortheast	err	n Ati	lantic	

MONTH	STATION	Р	OSITION	DAY-TIME RMT8/	RATIO BIOMASS RMT1
MARCH MARCH	7824 8281	(B) (H)	11 [°] N 20 [°] 32 N 64	W 1.5 W 3.2	
MAR/APR.	7856	(D)	30 N 23	W 5.8	
APR/MAY	7709	(G)	60 N 20	W 1.8	
MAY MAY MAY	9801 9791 10376	(I) (J) (0)	42 N 17 50 N 14 33 N 33	W 2.7 W 3.4 W 3.4	
MAY/JUNE	7711	(F)	53 N 20	W 2.3	
JUNE JUNE JUNE JUNE	10380 10378 10382 10379	(M) (N) (P) (Q)	30 N 34 32 N 30 33 N 32 35 N 33	W 5.3 W 3.2 W 4.3 W 4.5	
JUL/AUG.	8553- 8568	(A)	00 N 22	W 2.5	
SEPT.	10115	(K)	50 N 14	₩ 3.3	
OCT.	10222	(S)	30 N 30	W 3.4	
OCT/NOV	7406	(E)	40 N 20	W 1.3	
NOV. NOV. NOV.	7089 10233 10228	(C) (R) (T)	18 N 25 32 N 32 33 N 32	W 1.4 W 1.8 W 2.9	

TABLE 2.	Day-time ratios	of RMT8:RMT1	total stand	dardised
	biomass for sta	tions sampled	at various	positions.

Fig. 1. Station positions in the North Atlantic for which macroplanktonic biomass data are available. A-Y, 48HS1-2, RP1-2, and PS represent the position of RMT1 horizontal hauls.

Fig. 2. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at positions A-G. Values are standardised to mls. per $10^{3}m^{3}water$ filtered. NS = No sample

Fig. 3. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at positions H-L. Values are standardised to mls. per $10^3 m^3$ water filtered. NS = No sample

Fig. 4. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at positions M-Q. Values are standardised to mls. per $10^3 \text{m}^3 \text{water}$ filtered. NS = No sample

Fig. 5. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at positions R-T. Values are standardised to mls. per 10^3m^3 water filtered. NS = No sample

Fig. 6. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at positions U-W. Values are standardised to mls. per 10^3 m^3 water filtered. NS = No sample

Х

Fig. 7a. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at position X. Values are standardised to mls. per 10^3 m^3 water filtered. NS = No sample

Fig. 7b. Log. biomass for RMT8 and RMT1 samples at position X.

Fig. 8. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at position Y. Values are standardised to mls. per 10^3m^3 water filtered. NS = No sample.

.

29

Y

Fig. 9. Day and night profiles of total biomass, measured by wet displacement volume, from RMT1 samples taken at position PS. Values are standardised to mls. per $10^3 m^3$ water filtered. NS = No sample, + = low value.

PS

Fig. 10. RMT1 biomass profiles recorded during a 48 hr. period at each of four discrete depth ranges of 100m, 250m, 450m, and 600m at $44^{\circ}N$ 13°W, (position 48HS).

Fig. 11a. Total biomass (mls. per 10³m³water filtered) for Oblique1 hauls

Fig. 12. Estimated total macroplanktonic biomass (mls) beneath lm^2 of sea surface in the top 1000m of the water column at the positions sampled.

Fig. 13a. Daytime profiles of biomass for summer stations north of $42^{\circ}N$.

Fig. 13b. Daytime profiles of biomass for summer stations south of 42 $\stackrel{\rm O}{\rm N}$ (RMT1)

Fig. 13c. Daytime profiles of biomass for winter stations south of 40 $^{\rm O}{\rm N}$ (RMT1)

Fig. 14a. Daytime RMT1 biomass values at Azores front stations sampled in summer.

Fig. 14b. Daytime RMT1 biomass values at Azores front stations sampled in winter

Fig. 15. Daytime ratios of macroplankton/micronekton of some of the main stations throughout the sampling area.

Fig. 16. Daytime ratios of macroplankton/micronekton at the Azores Front stations sampled in winter and summer.

Fig. 17. Daytime ratios of RMT8:RMT1 biomass (mls beneath lm^2 sea surface) for stations at positions sampled from April to October inclusive.

Fig. 18. Daytime ratios of RMT8:RMT1 biomass (mls beneath 1m sea surface) for stations at positions sampled from November to March inclusive.

APPENDIX 1. Biomass values per 10^3m^3 at station positions A-Y, PS, Oblique 1, Oblique 2. Most of the earlier data include the total catch in the 0.32 mm mesh RMT1 net i.e. animals of size fraction 0.32-4.5mm and a few >4.5mm the latter of which are likely to avoid the net. The more recent data excludes the >4.5mm fraction and this is indicated where appropriate. An asterisk indicates where data exclude values for intermittently occurring <u>Pyrosoma</u>. STATIONS:8543-8591 GEAR:RMT1

POSITION:0-3°N 21-23°W (A)

STATION	DEP	TH(m)	STANDARDISE	D 22
	UPPER	LOWER	WDV(mls)/10	SW₂
855903	10	28	964.88	
856803	10	25	105.46	
855902	25	52	236.71	
856705	23	55	158.35	
855804	51	102	91.04	
856802	50	103	112.44	
855901	105	200	104.09	
856205	100	160	45.87	
856704	100	180	73.29	
856703	150	200	36.43	
856204	150	205	38.94	
855803	203	300	271.59	
856801	198	306	37.50	
855601	300	405	59.61	
856702	305	400	58.62	DAY
855802	400	500	151.10	
856503	400	500	32.67	
855301	505	600	47.98	
856701	505	600	38.39	
855302	605	700	38.81	
856502	600	705	27.76	
855801	700	800	21.45	
856501	700	800	23.01	
855603	805	900	39.94	
856301	805	900	22.81	
855602	905	1000	28.02	
856302	905	1000	18.76	
856001	1005	1250	11.70	
855904	1250	1500	6.25	
856002	1510	2000	5.03	
856304	12	25	112.63	
856209	10	33	453.42	
856303	25	50	192.38	
856211	25	60	207.26	
856306	44	104	141.14	
856212	48	104	97.79	
856506	104	150	68.79	
856208	102	152	64.89	NIGHT
856505	150	200	40.90	
866207	152	200	84.95	
856213	200	300	73.75	
856806	206	300	27.71	
856503	400	500	32.67	
856502	600	700	27.76	
856501	700	800	23.01	

STATION:7824 GEAR:RMT1 POSITION:11° N 20° W (B)

	STANDARDISED	'TH(m)	DEF	STATION
	$WDV(m1s)/10^3 M^3$	LOWER	UPPER	
	26.87	110	50	782467
	27.42	150	100	782462
	16.81	200	150	782461
	19.21	250	200	782460
DAY	36.68	300	250	782459
	22.78	400	305	782432
	30.04	500	400	782430
	34.09	600	505	782410
	24.71	700	605	782406
	40.23	800	700	782417
	10.42	910	800	782434
	11.57	1000	895	782439
	5.79	1250	1000	782419
	62.64	60	20	782456
	11.78	200	100	782469
	11.07	300	205	782465
	20.38	400	305	782470
NIGHT	14.45	500	405	782471
	19.06	600	500	782437
	19.25	700	610	782422
	57.94	800	710	782401
	17.87	900	805	782414
	13.00	1000	900	782402
	9.33	1250	1000	782413
	8.78	1500	1250	782436
	4.61	2000	1500	782421

STATION:7089 GEAR:RMT1

POSITION:18	°N 2	5°₩ ((C)
-------------	------	-------	-----

STATION	DEF	YTH(m)	STANDARDISED	
	UPPER	LOWER	$WDV(mls)/10^{3}M^{3}$	
708935 708931	0 10	10 20	2.86 24.67	
708930	20	50	18.03	
708920	55	100	16.78	
708919	210	194	11.43	
708923	210	290	9 16	
708929	305	400	13.46	
708924	410	500	13.39	0/11
708913	515	600	8.21	
708909	610	700	13.57	
708905	700	790	9.72	
/08904	800	890	6.67	
/08914	910	1020	2.86	
700020	10	25	26 70	
708928	10	25 60	30.70	
708926	2J 49	100	29.11	
708923	110	200	13.33	
708903	210	300	12.50	
708911	300	400	10.71	
708922	410	500	8.85	NIGHT
708917	505	600	14.82	
708915	610	/10	16.96	
708915	700 800	785	8.65 7 14	
708908	900	1010	7.14	
708932	1000	1250	4.52	

STATION:7856 GEAR:RMT1 POSITION: $30^{\circ}N 23^{\circ}W$ (D)

STATION	DEP	TH(m)	(m) STANDARDISED		
	UPPER	LÓWER	WDV(mls)/2	10 ³ M ³	
785627	0	10	21.43		
785626	10	25	67.26		
785625	25	50	131.49	PELAGIA SWARM	
785624	55	100	120.00		
785618	102	203	37.38		
785617	205	300	31.43		
785611	305	400	36.68		
785602	405	505	56.50		
785616	500	600	35.43		
785610	600	700	18.35	DAY	
785609	700	800	12.88		
785604	795	900	7.73		
785603	910	1000	7.87		
785650	1000	1250	3.65		
785651	1250	1500	5.47		
785654	1500	2000	3.00		
785680	2010	3000	1.19		
785640	0	10	171.43		
785639	10	25	132.08		
785638	25	50	146.42		
785637	50	100	45.42		
785622	100	200	47.27		
785621	205	300	31.89		
785615	300	400	36.05		
785608	405	500	14.68		
785620	500	600	20.38	NIGHT	
785614	600	700	15.40		
785613	700	800	13.09		
785607	800	895	6.01		
785606	900	1000	5.28		
785648	1005	1250	5.30		
785652	1250	1500	3.92		
785657	1500	2020	2.17		

STATION:7406 GEAR:RMT1 POSITION: 40 N 20 W (E)

STATION	DEP UPPER	TH(m) LOWER	STANDARD WDV(m1s)	ISED ∕10 ³ M ³	
740639	0	10	5.89		
740617	10	25	7.50		
740615	25	50	18.03		
740616	50	100	4.46		
740601	110	205	4.46		
740602	210	300	5.00		
740609	310	400	5.18		DAY
740628	410	500	11.61		
740632	502	610	31.43		
740638	550	655	14.16		
740644	650	745	8.93		
740614	710	800	10.18		
740629	805	900	10.36		
740603	910	1000	39.46	numerous	medusae
740633	990	1250	/.4/		
748000	1250	1510	8.57		
740642	0	10	21.07		
740619	10	27	26.07		
740613	30	50	26.15		
740612	52	100	15./1		
/40605	110	195	3.39		NTOUT
740620	210	300	10.00		NIGHI
/40626	310	400	6.96		
740631	400	500	10.00		
740625	500	590	14.28		
740624	010 700	700	8.57		
740018	700	/90	0.78		
740011	010	900	0.21 0.12		
740000	910	1000	9.13 10 25		
740041	1200	2000	2 40		
740040	2000	2000	3.48 2.15		
140201	2000	2000	5.15		

STATION:7711 GEAR:RMT1M POSITION: 53 N 20 W (F)

STATION	DEP	TH(m)	STANDARE	DISED	
	UPPER	LOWER	WDV(mls)	/10 ³ M ³	
771148	0	10	200.00		
771118	10	25	2.14		
771117	25	50	212.50		
771116	5 0	100	85.71		-
771115	110	200	316.07	numerous	salps
771111	205	300	95.53		
771107	300	400	25.00		
771106	410	500	23.02		DAV
771110	505	600	25.00		DAY
771109	605	700	16.96		
771108	700	805	16.96		
771104	800	900	17.85		
771101	900	1000	20.90		
771140	1005	1250	23.21		
//114/	1260	1500	1/.41		
//1139	1520	2000	8.03		
771143	10	25	332.14		
771142	25	50	81.63		
771124	50	102	98.21		
771131	100	200	26.78		
771123	200	300	39.28		
771103	310	400	30.36		NTOUT
771138	400	500	65.18		NIGHI
771137	495	590	31.25		
771132	605	700	33.03		
771130	710	800	17.86		
771113	800	900	41.28		
771102	900	1000	17.86		
771165	1020	1250	17.86		
771156	1250	1500	8.5/		
//1161	1520	2000	6.70		

STATION:7709 GEAR:RMT1M

.

POSITION: $60^{\circ}N \ 20^{\circ}W$ (G)

STATION	DEP ⁻ UPPER	TH(m) LOWER	STANDARDISED WDV(m1s)/10 ³ M ³	
770960 770959 770958 770933 770901 770902 770974 770927 770927 770926 770921 770925 770924 770935 770944 770945	0 10 25 55 110 205 310 410 500 600 710 810 910 1010 1260 1525	10 25 50 200 300 400 500 600 700 800 900 995 1250 1500 2000	107.14 35.71 29.46 41.96 26.78 6.25 23.31 26.78 46.43 28.57 21.43 8.03 26.78 11.16 15.18 6.25	
770947 770946 770948 770970 770904 770937 770929 770923 770903 770936 770928 770922 770917 770963 770976 770991	0 9 25 55 105 205 300 405 495 600 705 800 900 1000 1250 1520	9 25 50 100 200 300 400 500 590 700 800 900 1000 1250 1500 2000	185.71 62.50 66.96 15.18 32.14 32.14 30.49 25.00 22.32 25.00 23.75 22.11 26.78 17.78 12.50 6.55	

DAY

NIGHT

STATION:8281 GEAR:RMT1 POSITION: $32^{\circ}N 64^{\circ}W$ (H)

STATION	DEP	TH(m)	STANDARDISED	
	UPPER	LÓWER	WDV(mls)/10 ³ M ³	
828124	0	10	27.41	
828123	12	25	26.36	
828125	26	50	31.32	
828126	52	100	28.80	
828142	102	200	21.93	
828141	190	300	12.57	
828105	305	400	14.91	
828131	405	500	14.69	DAY
828115	510	600	18.18	
828111	600	700	12.72	
828110	710	800	13.71	
828109	805	900	10.18	
828103	910	1000	13.96	
828114	1010	1250	11.50	
828130	1260	1500	9.81	
828135	1520	2000	3.47	
828117	n	10	136 43	
828120	10	25	43 74	
828118	25	50	100 53	
828119	55	100	75 75	
828116	102	200	37.33	
828132	205	300	15.49	
828102	295	400	22.16	
828128	405	505	6.74	
828113	505	600	8.87	
828108	605	700	9.51	NIGHT
828107	700	800	10.44	i i carri
828106	800	900	6.93	
828101	905	1000	7.79	
828112	1000	1250	6.73	
828129	1250	1500	5.16	
828133	1490	2000	5.46	
828145	2005	2500	1.32	

STATION:9801 GEAR:RMT1M

POSITION:42°N 17°W (I)

STATION	DEP UPPER	TH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M ³	
980109 980110 980111 980121 980122 980123 980103 980103 980104 980105 980118 980119 980120 980182 980183 980183 980184 980190 980189 980188	10 95 200 300 400 515 600 695 800 890 1100 1280 2100 2300 2500 3300 3500 3700	95 200 300 400 515 600 700 800 900 1100 1280 1500 2300 2500 2700 3500 3710 3900	125.00 47.17 36.93 68.39 129.08 62.55 62.96 58.73 40.19 47.15 38.54 20.76 1.89 5.88 5.46 1.87 2.90 1.90	DAY
980115 980116 980117 980112 980113 980114 980127 980128 980129 980129 980160 980179 980180 980181 980185 980185 980185 980187 980191	10 100 200 300 395 500 600 700 800 985 1500 1690 1900 2700 2900 3100 4300	100 200 300 400 500 600 700 800 900 1010 1710 1900 2100 2900 3100 3300 4520	134.29 66.12 52.99 50.25 36.09 40.89 72.85 70.61 52.53 30.13 21.04 5.83 7.33 6.85 4.43 2.78 4.28	NIGHT

STATION:98 GEAR:RMT1	801 (HAUL 57-58)	POSITION:41-42 [°] N 1000m REPEATS	17 ⁰ W	(1)
STATION	STANDARDISED WDV(m1s)/10 ³ M ³			
980158 980159 980160 980161 980162 980163 980164 980165 980166 980166 980167 980168 980169 980170 980171 980172 980173 980174	53.40 32.72 30.07 39.37 36.49 41.32 43.82 29.20 44.94 58.36 36.23 37.17 44.61 18.38 50.98 50.98 50.98 25.45			
980176 980177 980178	20.00 41.98 36.50			

STATION:9791 GEAR:RMT1M

POSITION: 50°N	14°₩	(J)
----------------	------	-----

STATION	DEP	TH(m)	STANDARDISED	
	UPPER	LOWER	WDV(mls)/10 ³ M ³	
979105	10	100	244.93	
979106	100	200	76.24	
979107	200	300	67.15	
979114	300	400	91.53	
979115	400	500	92.00	
979116	500	600	48.08	DAY
979102	600	705	41.95	
979103	700	800	60.22	
979104	800	905	36.48	
979117	895	1100	27.43	
979118	1095	1300	26.37	
979119	1300	1505	18.49	
979111	10	100	137.60	
979112	100	200	64.00	
979113	200	300	136.52	
979108	300	400	92.99	
979109	400	500	54.45	NIGHT
979110	500	600	33.12	
979120	600	700	37.61	
979121	700	800	17.69	
979122	800	900	9.07	

STATION:101 GEAR:RMT1M	15	POSITION:	50°N 14°₩	(K)
STATION	DEF UPPER	PTH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M ³	3
1011515 1011516 1011517 1011505 1011506 1011507 1011502 1011503 1011504 1011518 1011519	10 100 200 300 400 500 600 700 800 900 1100	100 200 300 400 500 600 700 800 900 1100 1300	56.07 27.46 44.38 45.37 89.00 53.21 39.40 32.75 30.57 53.71 86.37	DAY
1011521 1011522 1011523 1011512 1011513 1011514 1011509 1011510 1011511	10 195 295 400 500 600 700 800	100 200 300 400 500 600 700 800 900	117.26 89.08 31.71 17.50 34.16 53.50 30.39 39.60 36.98	NIGHT

GEAR:RMT1M	05	POSITION:	54 N 13 W	(L)
STATION	DEI UPPER	PTH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M	3
1010514 1010515 1010508 1010509 1010509 1010505 1010506 1010507 1010501 1010502 1010503 1010517 1010518	10 100 195 300 410 500 500 700 800 900 1090 1290 1500 1700	100 195 300 410 500 600 700 810 900 1100 1190 1500 1700 1900	4.60 53.61 27.31 26.37 58.49 63.52 31.70 48.89 34.82 25.60 39.09 68.63 19.80 22.87	DAY
1010524 1010523 1010522 1010521 1010520 1010519 1010511 1010512	10 100 200 300 400 500 600 700 770	100 200 300 400 500 600 700 810	41.77 50.41 2.83 18.19 33.65 20.84 29.92 40.98 49.21	NIGHT

1001 713 - -- - . .

STATION:10380 GEAR:RMT1M POSITION: 30°N 34°W (M)

STATION)N DEPTH(m)		STANDARDISED		
	UPPER	LÓWER	WDV(mls)/10 ³ M ³		
1038001	5	50	20.90		
1038002	50	100	53.27		
1038003	100	200	25.66		
1038021	200	300	7.82		
1038022	300	400	14.45		
1038023	400	500	16.59		
1039030	500	600	10.72		
1038031	600	700	13.60		
1038032	700	805	12.75		
1038008	800	900	8.02	DAY	
1038009	900	1000	11.81		
1038010	995	1100	7.29		
1038005	1100	1200	2.57		
1038006	1200	1300	4.87		
1038007	1300	1400	4.35		
1038018	1400	1498	2.94		
1038019	1498	1600	5.08		
1038020	1600	1698	6.01		
1038033	1700	1900	4.67		
1038034	1900	2100	3.05		
1038035	2100	2300	1.35		
1038027	0	50	43.54		
1038028	50	100	50.09		
1038029	100	205	35.66		
1038015	200	300	8.99		
1038016	300	400	10.62		
1038017	400	505	9.19		
1038024	500	600	1.3.48		
1038025	600	710	8.56	NIGHT	
1038026	705	800	9.07		
1038012	800	900	7.30		
1038013	900	1000	10.30		
1038014	1000	1100	5.44		
1038036	1102	1120	5.08		
1038037	1120	1200	4.14		
1038038	1200	1300	4.71		

STATION:10378 GEAR:RMT1M

POSITION: $32^{\circ}N 30^{\circ}W$ (N)

STATION	DEP	FH(m)	STANDARDISED	
011112011	UPPER	LÓWER	$WDV(mls)/10^{3}M^{3}$	
1037801 1037802 1037803 1037827 1037828 1037829 1037814 1037815 1037816 1037811 1037812 1037813 1037824 1037825 1037826	5 50 100 200 300 400 500 600 705 800 900 1000 1100 1200 1305	50 100 200 300 400 500 600 705 800 900 1000 1100 1202 1305 1400	12.31 43.15 20.61 7.45 14.33 10.85 14.69 19.20 12.06 18.83 12.08 11.04 8.68 10.24 8.59	DAY
1037821 1037822 1037823 1037818 1037819 1037820 1037808 1037809 1037809 1037810 1037805 1037805 1037806 1037830 1037830 1037831 1037832	0 52 105 200 300 400 500 602 700 800 902 1000 1097 1200 1290	52 105 200 310 405 498 602 700 800 902 1000 1100 1200 1295 1415	36.44 * 65.35 31.43 17.43 16.69 12.71 20.11 32.78 13.07 13.03 9.90 11.52 8.70 10.49 8.71	NIGHT

STATION:10376 GEAR:RMT1

STATION	DEPTH(m)		STANDARDISED	
	UPPER	LOWER	WDV(mls)/1	0 ³ M ³
1037603	5	40	14.68	
1037604	40	60	31.24	
1037605	60	200	45.84	
1037616	200	300	19.87	
1037617	300	400	31.94	
1037618	400	50 0	29.78	
1037613	505	600	24.84	
1037614	605	700	35.23	
1037615	690	798	17.99	DAY
1037628	795	900	14.87	
1037629	900	1005	25.57	
1037630	1005	1100	12.59	
1037625	1095	1205	10.59	
1037626	1205	1305	11.84	
103/62/	1295	1400	8.1/	
103/63/	1400	1500	6.21	
103/638	1500	1600	/./b	
103/639	1000	1700	4.60	
1007001	F	25	FO 60	
103/031	5	25	58.89 161 25	
1037632	20	205	21 101.33	
1037633	200	205	24.41	
1037622	200	400	36 35	
1037623	400	500	24 00	
1037610	500	602	22 75	
1037611	602	705	19.69	NTGHT
1037612	705	807	30.58	
1037607	800	900	18.95	
1037608	900	1000	16.57	
1037609	1000	1100	18.97	
1037634	1100	1200	12.52	
1037635	1200	1300	14.56	
1037641	1300	1400	9.26	
1037642	1398	1502	13.91	
1037643	1498	1600	6.51	

STATION:10382 GEAR:RMT1M POSITION: 33°N 32°W (P)

STATION	DEP	TH(m)	STANDARDISED		
	UPPER	LÓWER	WDV(mls)/10 ³	M ³	
1038226	5	50	35.72		
1038227	50	99	46.33		
1038228	97	200	45.11		
1038223	200	300	18.63		
1038224	300	400	30.89		
1038225	400	500	28.18		
1038214	500	600	31.74		
1038215	600	700	31.30	DAY	
1038216	700	800	22.12		
1038211	800	900	19.91		
1038212	900	1000	27.70		
1038213	1000	1100	15.48		
1038202	1100	1200	10.44		
1038203	1200	1300	9.53		
1038204	1300	1400	7.21		
1038217	0	50	66.16		
1038218	50	100	108.74		
1038219	100	200	46.90		
1038220	200	300	15.02		
1038221	300	420	23.12		
1038222	405	500	21.06		
1038208	500	600	13.30	NIGHT	
1038209	605	700	18.15		
1038210	700	800	13.07		
1038205	800	900	17.16		
1038206	900	1000	17.27		
1038207	1000	1100	13.01		
1038231	1080	1210	16.67		

STATION:10379 GEAR:RMT1M POSITION: 35° N 33° W (Q)

STATION	DEPTH(m)		STANDARDISED		
	UPPER	LÓWER	WDV(mls)/10) ³ M ³	
1037901	5	50	29.20		
1037902	50	100	52.88		
1037903	98	200	24.12		
1037904	200	300	26.03		
1037905	300	400	31.61		
1037906	400	500	36.41		
1037930	500	600	23.63		
1037931	600	700	29.74		
1037932	700	800	24.25		
1037918	800	900	21.56		
1037919	900	995	12.91	DAY	
103/920	995	1100	14.64		
103/914	1100	1200	8.41		
103/915	1200	1300	11.//		
103/916	1300	1410	10.91		
103/92/	1400	1500	4.91		
103/928	1498	1700	7.03		
103/929	1600	1700	6.09		
1037911	0	50	120.14 *		
1037912	50	100	95.92		
1037913	100	200	44.96		
1037924	200	300	29.24		
1037925	298	400	30.00		
1037926	400	500	29.32		
1037921	495	600	15.00		
1037922	600	700	21.58		
103/923	/00	800	17.14		
103/908	800	900	20.49	NIGHI	
103/909	900	995	11.85		
103/910	1000	1100	13.22		
103/933	1100	1200	8.86		
103/934	1200	1300	/.58		
103/935	1400	1410	8.50 7.70		
103/941	1400	1500	1.10		
103/342	1495	1700	/./0		
103/343	1000	1/00	4.92		

STATION: 10233 GEAR:RMT1M

POSITION: 32°N 32°W (R)

DEPTH(m)		STANDARDISED	
UPPER	LOWER	WDV(mls)/10 ³	М ³
0	70	20.84	
65	97	27.37	
90	200	9.00	
200	303	11.8/	
295	400	b.14 7 07	DIV
400	490	/.U/	DAY
500	600	9.95	
500	700	/.39	
700	805	10.94	
800	910	17.03	
900	1010	/.12	
1000	1100	5.36	
10	90	64.03	
80	105	40.69	
95	200	12.48	
185	300	11.13	
300	400	11.50	
400	500	10.43	NIGHT
500	600	10.62	
600	700	12.42	
700	800	6.98	
800	900	7.86	
900	1002	8.57	
1000	1100	7.14	
	DEP UPPER 0 65 90 200 295 400 500 600 700 800 900 1000 1000 1000 1000 500 600 700 800 900 1000	DEPTH(m) UPPERLOWER07065979020020030329540040049050060060070070080580091090010101009095200185300300400400500500600600700700800800900900100210001100	$\begin{array}{c ccccc} DEPTH(m) & STANDARDISED \\ UPPER & LOWER & WDV(m1s)/10^3 \\ \hline 0 & 70 & 20.84 \\ 65 & 97 & 27.37 \\ 90 & 200 & 9.06 \\ 200 & 303 & 11.87 \\ 295 & 400 & 6.14 \\ 400 & 490 & 7.07 \\ 500 & 600 & 9.95 \\ 600 & 700 & 7.39 \\ 700 & 805 & 10.94 \\ 800 & 910 & 17.03 \\ 900 & 1010 & 7.12 \\ 1000 & 1100 & 5.36 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10 & 90 & 64.03 \\ 80 & 105 & 40.69 \\ 95 & 200 & 12.48 \\ 185 & 300 & 11.13 \\ 300 & 400 & 11.50 \\ 400 & 500 & 10.43 \\ 500 & 600 & 10.62 \\ 600 & 700 & 12.42 \\ 700 & 800 & 6.98 \\ 800 & 900 & 7.86 \\ 900 & 1002 & 8.57 \\ 1000 & 1100 & 7.14 \\ \hline \end{array}$

STATION:10222 GEAR:RMT1M POSITION: 30 N 30 W (S)

STATION	DEP	TH(m)	STANDARDISED	
	UPPER	LOWER	WDV(mls)/10 ³ M ³	
1022221	20	120	32.36	
1022222	100	180	21.58	
1022223	130	205	12.64	
1022210	200	305	14.20	
1022211	300	400	16.67	DAY
1022212	400	505	13.25	
1022207	500	600	22.88	
1022208	600	700	21.30 *	
1022209	700	800	16.95	
1022216	10	105	57.94 *	
1022217	105	160	90.57	
1022218	160	200	10.13	
1022213	200	300	11.46	
1022214	300	400	10.88	
1022215	400	500	4.33	NIGHT
1022204	495	600	10.73	
1022205	600	700	13.13	
1022206	700	800	14.03	
1022201	800	900	10.86	
1022202	900	1000	15.47	
1022203	1000	1100	8.54	

STATION:10228 GEAR:RMT1M

POSITION: 32 N 33 W(T)

STATION	DEP	TH(m)	STANDARDISED	
	UPPER	LÓWER	WDV(mls)/10 ³ M ³	
1022815	15	57	49.15	
1022816	80	130	32.78	
1022817	128	200	15.35	
1022831	205	300	19.57	
1022832	300	400	17.63	
1022833	390	505	13.15	DAY
1022803	500	605	14.31	
1022804	600	705	28.64	
1022805	705	805	7.58	
1022828	800	900	12.33	
1022829	900	1000	12.28	
1022830	995	1100	7.97	
1022824	10	120	5/1 82 *	
1022825	90	140	21 77 *	
1022826	120	200	12 33	
1022821	200	300	18.41	
1022822	300	400	15.16	
1022823	400	500	10.25	NIGHT
022809	500	600	14.69	NI GIV
022810	600	700	10.54	
022811	700	800	9.48	
1022806	800	900	24.69	
1022807	900	1000	13.10	
022808	1000	1100	7.00	

STATION:11050 GEAR:RMT1M		POSITION: 46°N	14 ⁰ W (U)	(excludes >4.5 fraction)	
	STATION	DEP UPPER	TH(m) LOWER	STANDARDI WDV(mls)/	SED 10 ³ M ³
	1105602 1105603 1105501 1105502 1105503	50 100 200 305 400	100 200 305 400 495	53.96 20.03 7.28 14.91 20.59	DAY
	1105801 1105802 1105803 1105701 1105702 1105703 1105001 1105002 1105003	0 50 95 200 300 395 500 600 700	50 100 200 300 400 500 600 700 800	38.20 45.49 25.40 8.14 10.84 9.59 11.54 15.35 6.71	NIGHT

STATION:11036 GEAR:RMT1M POSITION:39 N 15 W (V)

STATION	DEPTH(m)		STANDARDISED	
	UPPER	LOWER	WDV(mls)/10 ³ M	3
1104702	50	105	172.79	
1104703	105	180	55.21	
1104201	180	280	13.33	
1104202	280	380	12.78	
1104203	380	480	10.53	
1104001	470	565	18.32	DAY
1104002	565	660	20.23	
1104003	660	800	10.76	
1103601	790	890	4.05	
1103602	890	995	5.10	
1103603	990	1095	6.18	
1104502	45	100	88.69	
1104503	100	180	38.77	
1103801	180	280	5.25	
1103802	280	385	7.21	NIGHT
1103803	385	470	12.07	
1103901	470	565	10.00	
1103902	565	660	7.34	
1103903	660	775	5.25	

STATION:11078 GEAR:RMT1M

POSITION: 39°N 15°W (W)

STATION	DEPTH(m)		STANDARDISED	
	UPPER	LOWER	$WDV(mls)/10^3 M^3$	
1109401	0	50	41.36	
1109402	50	100	38.43	
1109403	100	200	5.09	
1108801	200	300	20.16	
1108802	300	400	37.93	
1108803	400	498	8.44	
1108301	500	600	5.05	
1108302	600	700	16.42	DAY
1108303	700	800	3.69	
1108101	800	905	3.00	
1108102	900	1000	4.85	
1108103	1000	1100	3.74	
1108601	0	50	26.13	
1108602	50	100	50.35	
1108603	100	200	9.49	
1107901	200	300	6.48	
1107902	300	400	10.37	
1107903	400	495	4.37	
1107801	500	600	5.18	NIG
1107802	605	695	6.45	
1107803	695	795	1.47	
1108501	800	900	1.49	
1108502	900	1000	3.18	
1108503	1000	1100	2.99	

НT

STATION:11261 GEAR:RMT1M POSITION: $31^{\circ}N \ 25^{\circ}W$ (X)

STATION	DEP [.] UPPER	TH(m) LOWER	STANDARDISED WDV(m1s)/10 ³ M ³	(excludes >4.5
1126114 1126129 1126130 1126131 1126113 1126112 1126101 1126102 1126104 1126105 1126106 1126115 1126116 1126117 1126126 1126127 1126128	0 25 50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400	100 25 50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	11.04 3.15 10.17 17.99 18.58 4.56 5.17 4.98 10.86 6.50 5.14 4.17 3.87 3.68 2.01 3.66 4.24 3.04	DAY
1126139 1126173 1126174 1126175 1126140 1126141 1126122 1126123 1126124 1126161 1126162 1126138 1126138 1126119 1126120 1126121 1126166 1126167	0 25 50 100 200 300 400 500 600 700 800 910 1000 1100 1200 1300	100 25 50 100 200 300 400 500 600 700 800 900 1000 1110 1200 1300 1400	17.67 35.88 33.84 18.20 11.62 6.05 3.41 5.02 1.27 4.96 4.25 5.21 3.95 3.86 1.48 3.01 3.34	NIGHT

Continued...

Continued...

1126201	1500	1910	1.60
1126202	1910	2315	1.01
1126203	2310	2700	0.75
1126204	2700	3110	0.18
1126205	3110	3500	0.19
1126206	33 30	3910	0.31
1126210	3900	4295	0.10
1126211	4295	4720	0.12
1126212	4720	5110	0.18
1126225	5340	5375	0.15
1126226	5 375	5415	0.14
1126227	5415	5430	0.24
1126148	5132	5182	0.16
1126147	5233	5279	0.08
1126146	5325	5376	0.22
1126154	5347	5388	0.12
1126255	5388	5415	0.18
1126156	5410	5425	0.04
1126163	5345	5385	0.06
1126164	5385	5410	0.11
1126165	5410	5430	0.04

DEEP

STATION:11794 GEAR:RMT1

POSITION: Y

STATION	DEP UPPER	TH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M ³	(excludes >4.5
1179404 1179405 1179406 1179425 1179426 1179427 1179417 1179418 1179419 1179401 1179402 1179403 1179435 1179436 1179437 1179456 1179457 1179458 1179458 1179459 1179430 1179431 1179465 1179461 1179471	0 50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1750 2000 2275 2500 2750 3010 3255 3490	50 100 195 305 400 490 600 700 800 900 1000 1100 1200 1300 1400 1500 1750 2000 2300 2505 2750 3010 3255 3500 3800	14.03 13.95 32.66 32.82 32.17 28.85 26.16 21.83 22.38 18.32 8.80 € 20.62 24.60 20.34 16.33 13.54 16.92 10.10 4.73 3.08 2.64 12.76 3.00 0.94 1.32	fraction) DAY
1179449 1179450 1179451 1179446 1179447 1179448 1179438 1179439 1179439 1179440 1179409 1179410 1179411 1179421 1179421 1179423 1179423 1179472 1179473	20 110 200 300 405 500 600 700 795 890 1000 1115 1210 1305 1400 3800 4085	110 200 300 405 505 600 700 795 900 1000 1115 1200 1315 1400 1500 4085 4450	26.22 18.03 14.17 9.67 22.07 18.09 18.76 21.72 15.56 17.51 24.08 14.43 22.53 7.20 ♥ 17.01 2.21 2.19	NIGHT

 $\boldsymbol{\boldsymbol{\varpi}}$ Lower than expected; hang-up in net.

STATION:12060 GEAR:RMT1M POSITION 48°N 17°W

69

(PS)

STATION	DEP UPPER	ſH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M ³	(excludes >4.5
1208803 1210503 1206407 1206406 1208802 1210502 1206405 1208801 1210501 1206203 1208703 1210506 1206202 1210505 1206201 1208701 1210504 1206409 1206409 1206408 1206903 1206901	5 5 10 50 50 100 100 105 200 195 195 300 300 400 400 400 400 500 610 710 800 900 1020	$\begin{array}{c} 50\\ 50\\ 50\\ 100\\ 100\\ 200\\ 200\\ 200\\ 200\\ 300\\ 300\\ 300\\ 3$	57.59 86.64 165.47 122.20 76.16 60.61 45.13 57.99 29.96 40.97 28.88 36.04 57.31 51.27 53.95 23.54 37.26 59.63 45.93 21.69 23.41 11.17 16.24	DAY
1207703 1207702 1207701 1207101 1207706 1207705 1207704 1207104 1208206 1208205 1209306 1208205 1209305 1208204 1209304 1209603 1209602 1209601	5 25 50 100 200 300 400 400 500 500 600 610 695 700 1000 1100 1190	25 55 100 200 300 400 500 600 610 700 700 800 800 1100 1200 1350	578.87 251.18 37.15 37.30 120.57 35.81 31.35 40.32 19.79 21.77 16.81 18.93 18.22 22.10 15.07 20.47 25.12	NIGHT

STATION: 1 GEAR:RMT8	.206 0 M	POSITION	48°N 17°W	(PS)
STATION	DE UPPER	PTH(m) LOWER	STANDARDISED WDV(mls)/10 ³ M ³	
1208803 1206406 1208802 1210502 1206405 1208801 1210501 1206203 1208703 1210506 1206202 1208702 1210505 1206201 1208701 1210504 1206409 1206408 1206903 1206902 1206901	5 50 50 100 100 105 200 195 195 300 300 300 400 400 400 400 400 500 610 710 800 900 1020	50 100 105 200 200 200 300 300 300 400 400 400 400 500 500 500 500 500 610 710 800 900 1020 1100	30.89 5.56 25.69 5.46 10.75 22.09 4.08 4.22 6.76 13.82 10.45 9.48 8.53 13.33 21.94 42.23 9.56 10.03 14.31 8.75 14.77 18.60	DAY
1207702 1207103 1207701 1207102 1207101 1207704 1207104 1208206 1208205 1208205 1209305 1208204 1209304 1209603 1209602 1209601	25 50 50 65 100 400 400 500 600 610 695 700 1000 1100 1190	55 80 100 200 500 600 610 700 700 800 800 1100 1200 1350	66.95 22.89 13.74 8.34 6.01 15.55 11.36 10.08 14.98 6.83 8.80 7.30 7.60 13.22 12.81 18.64	NIGHT

OBLIQUE HAUL:MADEIRA BERMUDA GEAR:RMT1 (FEB/MAR 1973)			(OBLIQUE 1)		
STATION	DEP1 UPPER	ſH(m) LOWER	POSITION	STANDARDISED WDV(mls)/10 ³ M ³	
8262	0	1000	32 N 16 W	21.43	
8263	0	1000	32 N 20 W	22.35	
8264	0	1000	32 N 23 W	17.62	
8 26 5	0	1000	32 N 27 W	17.93	
8270	0	1000	32 N 34 W	21.38	
8271	0	1000	32 N 39 W	15.81	
8272	0	1000	31 N 43 W	17.47	
8274	0	1000	31 N 47 W	9.31	
8275	0	1000	31 N 50 W	11.08	
8276	0	1000	31 N 54 W	14.15	
8277	0	1000	32 N 57 W	13.09	
8279	0	1000	32 N 60 W	14.49	

OBLIQUE HAUL:NORTH EAST ATLANTIC (OBLIQUE 2) GEAR:RMT1 (APRIL/MAY 1978)

STATION	def Upper	YTH(m) LOWER	POSITION	STANDARDISED WDV(mls)/10 ³ M ³
9792	0	1000	50 N 16 W	32 33
9793	Ō	1000	48 N 17 W	30.02
9794	0	1000	47 N 17 W	29.28
9795	0	1000	46 N 17 W	26.05
9796	0	1000	45 N 16 W	23.61
9797	0	1000	44 N 16 W	33.27
9798	0	1000	44 N 16 W	34.06
97 9 9	0	1000	43 N 16 W	30.66
9801	0	1000	43 N 17 W	25.81