NATIONAL INSTITUTE OF OCEANOGRAPHY

WORMLEY, GODALMING, SURREY

N.I. O. Computer Programs 1

by
DIANA CATTON

N. I. O. Internal Report No. N 1
N.I.O. COMPUTER PROGRAMS I
by

Diana Catton

CONTENTS

Paga

INTRODUCRION 1
GHNERAL REMAPKS 1

N.I.O. PROGRAMS

1 Card sorting March 19583
2 Cross band spectra September 1958 4
3 Fouriex analysis, RAS 528 modified December 1959 6
4 Card sorting, Southport December 1959 7
5 Comrelation, RAE 506 modieied September 1959 8
6 Pitah and roll buoy predominant azimuth angles Merch 1960 9
7 Pitch and roll buoy filtered directional spectrum Maron 1960 11
8 Smoothing Maroh 1960 12
9 Dover Straits May 1960 14.
10 Combining two series Maroh 1959 16
11 Sixth differences October 1959 17
12 Slope correction to waveheights November 1959 19
R.A.E. PROGRAMS
174 Cormelation 21
300 Fourier analysis 24
528 Fourier analysis 25

This report contains a collection of prograns written for Deuce between January 1958 and June 1960. Prograns 5, 10 and part of 2 are due to Mrs. Pamela Edwards, who has also done a considerable anount of work on the final editing of the program cards and on preparing the desoriptions.

The programs were developed (and are now used for production runs) on the two computers at the Royal Aircraft Establishment, Farnborouch; we should like to thank the Mathematical Services Department for their help.

The desoriptions of the programs (including a few frequently used standard ones) are complete only when read in conjunction with the general remarks under the appropriate heading; this is particularly important when preparing data and operating the computer.

The report is intended primarily as a manual for the operator, and so only brief comnents on the mathematios and programing methods are given.

GEMERAL REMARKS

Pitle This includes the source of the progran, if it is not originel. Most of the original programs use standard subroutines.

Code The present possibilities are
Dence: (a) Deuce basic
(b) Alphacode
(c) Programs under the control of a general interpretive program (GIP), for example, Scheme B.

Purpose This amplifies the title.
Order of cards This gives the complete assembly for input to Deuce.
Data These comments apply also to the parameter cards and end cards. Unless otherwise stated, the following conventions are observed:-
(1) Unspecified colums may be lert blank, and this usually includes the whole of the β-field. Anything punched on an unspecified column in the α field is ignored, but this is not necessarily true for the β efield.
(2) All specified colums must be punched, zeros being insexted where necessary. Decimal mumbers are punched. from left to right in the usual way. Positive signs (that is, holes in the \bar{I}-row) need not be punched.
(3) The columns containing data are not stated explicitly when the layout is obvious. For example, 8 signed 4 digit numbers fit into the $\alpha-f i e l d$ in only one way, and the signs must be overpunched; that is, in the same column as the first digit.
(4) In general the data is in decimal form, but layout parameters, for example, are in binary.
(5) When the position of the data is specified by a layout parameter, it is not necessary to include all the digits appearing on the card, provided thet the specipied digits (and the sign) are consecutive.

Operation Before starting, make sure that the stop-normal key is up - that is, at normal. Unless otherwise stated, all other keys should be in the horizontal position. The field switches on the reader and the punch must be at the 64 column setting.

After reading the progran cards with the instial input key, wait until the program stops before running in the data (that is, reading with the run in key). (Large sets of data may be read in sections.) The stopper is sometines specified, but in most cases it is

$$
\text { either } N, 16-1
$$

$$
\text { on } N, N-13
$$

where $1 \leqslant \mathbb{N} \leqslant 8$, and depends on where the read subroutine is stored.

All cards must be placed in the reader with the Y row downwards, that is, leading, and with the face of the card away from the operator.

The program may be restarted by reading the last card (if both α and $\beta-f i e l d s$ are punched) or the last two cards (if only the $\alpha-\mathrm{field}$ is punched.) with the initial input key. This is not true for programs which only use the high speed store. Tnless otherwise stated, it may be assumed that the last card restarts the progran.

Output Unspecified columns are left blank. A few of the programs fit standard listing boards, but in general a board must be plugged to fit the output.

Paraneters These are either set to the most commonly requiped values, or the position is left blank. Careful checking is essential. Parameters are of ten binary numbers (see Note 1).

Ideally, there should be nothing in this section, as variables are more oonveniently set by a special parameter card. But it is sometimes easier to set those variables which are constant for nost sets of data within the program, leaving the parameter card for more variable quantities.

Restrictions These have been specified and tested as fully as possible, but it should be remembered that some deficiency in a program might come to light only when a particuler case is encountered - perhaps after many hours of production. All results should be checked as carefully as possible.

Failures Besides the specified failures, a program may not work because of the unforeseen cases mentioned above (see Restrictions). Also older programs may not work because of later modifications to the computer and/or the timing connected with the reader and the punch.

Time In general this excludes reading the program, but includes reading data, the calculation and the punching time. The approximate times given are intended as a guide, and should not be relied on too mach.

Method This section contains definitions of the symbols used elsewhere in the description, together with a summary of the method. In general,

```
n = number of terms in a series
N = other counts.
```

Notes (1) A number $x=a .2^{b}$ is said to be in standard floating binary (s.f.b.) if

$$
\begin{array}{lr}
\text { either } & -1 \leqslant a<-\frac{1}{2} \\
\text { or } & \frac{1}{2} \leqslant a<1 \\
\text { or } & a=0
\end{array}
$$

and b is an integer. The store of Deuce also demands that a is specified to 30 bp (binary places) and that $-2^{31} \leqslant b<2^{31}$.

N.I.O. PROGRAM 1

Title Card sorting (written for job 459, MS, RAE). RAE Program 566.
Code Devce basic.
Purpose To separate 4 series,
Order of cards Prograrn (cards 0-27), data.
Parameter cards None.
Data 8 positive 4 digit numbers per card in the α-field. The number of cards must be a multiple of 4 , and so up to 3 extra cards filled with zeros may be necessary. Unused α-field columns on the last dati card must be filled with zeros.

Endeard None.
Operation Read the program with the initial input key and then run in the data. Run in more data when required. The last card alone will not restart the program.

Output 8 positive 4 digit numbers per card in the α-field. Signs are punched.
Parameters None.
Restrictions The number of data cards must be a multiple of 4.
Pailures None.
Time. About $N / 36$ minutes, where N is the number of data cards.
Method The program alternately reeds 4 cards and punches 4 cards. The numbers are rearranged as follows:-

Input: \quad Card 1	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
2	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	
3	x_{16}	x_{17}	x_{19}	x_{19}	x_{20}	x_{121}	x_{22}	x_{23}	
Output:	Card 1	x_{24}	x_{25}	x_{26}	x_{27}	x_{23}	x_{29}	x_{30}	x_{31}
	2	x_{4}	x_{8}	x_{12}	x_{16}	x_{20}	x_{24}	x_{28}	x_{12}
	x_{17}	x_{21}	x_{25}	x_{29}					
	3	x_{2}	x_{6}	x_{10}	x_{14}	x_{18}	x_{22}	x_{26}	x_{30}
4	x_{3}	x_{7}	x_{11}	x_{15}	x_{19}	x_{23}	x_{27}	x_{31}	

Notes (1) The original data came from a film containing 4 traces, which were read concurrently.
(2) The 4 packs of cards are finally separated by the Hollerith collator or by the sorter.

N.I.O. PROGRAM 2

Title Cross band spectra, for use with output of RAE 300 (periodogram). In its present form it cannot be used with output of RAE 528.

Code Deuce basic.
Purpose To condense and combine the periodogram outputs of two relate sets of data.

Order of cards Progran (cards 0-52), series 1 of data, end card, series 2 of data, end card.

Parameter card None.
Data Output of periodogram prograin RAE 300 .
Columns 17-20 s ; sign in colurn 17
$21-30 \quad I_{s}$; 21
31-38 $\quad A_{S}$; 31
39-46 $\mathrm{B}_{\mathrm{s}} ; \quad 39$
All the numbers are integers. I may not have more than eight significant digits, and A and B may not have more than six significant dieits.

Ena card P_{1} on row $1_{\alpha} ; \quad P_{1}$ on row 2_{α}.
Operation (1) Fead the program with the initial input key.
(2) Run in series 1 of data, rollowed by an end card.
(3) Run in series 2 of data, followed by an end card.
(4) The machine will stop on $5,0-13$, when the value $N_{o} P_{1}$ should be set up on the I.D. switohes in binary;
(5) Single shot. This will allow the program to continue and to punch the first output card. It stops a ain on 5,0-13.
(6) Either leave the former value of N on the I.D. switches or set up a new value of N .

Repeat (5) and (6) until all the output cards have been punched, when the machine will hoot.

To use the program with new data, read in the last card of the program with the initial input key. Then run in the data as usual.

Output Columns 17-20 s_{1}
21-24 N
25-28 s_{N}

29-32 b
33-40 $8 I$; sign in column 33
41-48 8 i ; 41
49-56 $10^{-2} \Sigma \mathrm{~A} \alpha$; $\quad 49$
57-64 $\quad 10^{-2} 2 \mathrm{ZB} \beta ; \quad 57$
65-72 $10^{-8} \Sigma I^{2}$
$73-80 \quad 10^{-8} \Sigma i^{2}$
All these numbers are integers.
Parameters The scaling factors are chosen according to the magnitude of the input and the required accuracy of the output. Full details may be found in Computing Folder 1, which is kept by the person in charge of the N.I.O. I i.brary programs.
(1) $k_{1} \cdot F_{2}$ on card number 25 , row $B_{\beta} ; k_{1}=7$ is set
(2) k_{2}, \mathbb{P}_{22} on card number 25 , rows $4_{\beta}, 5_{\beta} ; k_{2}=4$ is set.

These values allow I and i to have seven significant digits, and A, α, B and β to have four (and probably some terms of five) significant digits.

Restrictions (1) $n_{1}=n_{2} \leqslant 511$. If the input data exceeds this number it must be broken up into several batches; in this case the last card of the progran must be run in in front of each batch of data.
(2) $\mathrm{b}=\mathrm{s}_{\mathrm{N}}-\mathrm{s}_{1} / \mathrm{N}-1 \leqslant 19$. If $\mathrm{b}>19$ the calculation will be carried out correctly but $s_{N T}$ and b will be wrongly punched.

Failures
(1) $4,7-24 \times$ 5 (series 1) $\neq \mathrm{s}$ (series 2)
(2) $8,7-24 \times$ x $n_{1} \neq n_{2}$
(3) $2,0-17 \mathrm{x}$ more data required
(4) $6,7-24 x \quad b$ is too large, i.e. $b \geqslant 20$. Give a single shot to continue.
(5) 5, 0-13 x (after hoot) $\Sigma \mathbb{N}>\mathrm{n}$ (see note 2)]
(6) $1,7-24 \mathrm{x}$) overflow in one of ΣI, $\sum i, \Sigma A \alpha, \sum B \beta$. A single shot allows the program to continue. A large overflow may not be recorded. See separate note for further details.

Time About n $(N+8) / N$ seconds.
Method $s=a(b) c$, as defined in RAE 300 .
$n=$ total number of input oards in one series.
$N=$ number of terms in one group.
s_{1} and $s_{\mathbb{N}}$ are the first and last values of S in any one group of N.
I, A and B are $I_{s} \prime, A_{S}{ }^{\prime}$ and $B_{S}{ }^{\prime}$ as defined in RAE 300 .
i, α and β are similarly for a scond series of date.
k_{1} and k_{2} are scaling factor constants.
Notes (1) If N is to remain constant the stopper on card number 37, row 2_{8}, can be removed (the instruction here is $0-13 \mathrm{x}$); in this case $\mathbb{N}_{0} P_{1}$ must be set up on the I.D. switches before the data are run in.
(2) If the last group of data has fewer than \mathbb{N} values, \mathbb{N} may be "counted down" on the I。D. switches until a single shot has effect, that is, until the new value of \mathbb{N} is appropriate.
(3) The following convention may be followed for the "optional" output columns:-

Columns 5-7 job number
8-10 run and parameter humbers
11, 12 scaling factors for (1) I and i, and (2) A, α_{3} B and β.
(4) This program is going to be rewnitten.
N.I.O. PROGRAM 3

Title Fourier analysis (periodogran), RAE 528 modified. RAE Program 567.
Code Deuce basic.
Purpose To calculate the harmonic components A_{S}, B_{S} for selected s.
Order of cards Program (cards 0-31), s-paraneter card, s-data, parameter card, data.

Parameter cards (1) s-marameter card: columns 17-20 $N+1$
(2) s-data: the N values of s are punched as 8 positive 4 digit integers per card in the cufield. An x (minus) must be punched in the column after the last value of s. This may man starting a fresh card.
(3) Paramoter card: columns $\begin{array}{r}17-20 \mathrm{n}, \\ 21-24 \mathrm{k} \text {. }\end{array}$

The n values of y_{r} are punched as 8 signed 4 digit integers per card, in the α-field.

End card None.
Operation (1) Read the progran with the initial input key.
(2) Run in the s-parameter card Pollowed by the s-data.
(3) Run in the parameter card followed by the data.

When a run is complete the progran stops, and operation (3) may be repeated. If new s-data is required the program must be restarted.

Output Colums $18-21 \mathrm{~s}$; sign in column 17

$$
24-30 \quad A_{S} ; \quad 23
$$

$33-39 \mathrm{~B}_{\mathrm{S}}$; $\quad 32$
42-48 I_{s}; 41
There are three more decinal places in A_{S}, B_{S} and I_{S} than in y_{r}.

Paraneters None

Restrictions

```
(1) \(0 \leqslant s \leqslant 9999\) (not tested for \(s>4428\) )
(2) \(1 \leqslant \mathbb{N} \leqslant 95\)
(3) \(n^{2} M \leqslant 2 \cdot 14 \times 10^{9}\) where \(\left|y_{r}\right| \leqslant M, r=0(1) n-1\)
```

Failures None
Time About $n \mathbb{N} / 200$ seconds
Method

$$
\begin{aligned}
& A_{0}=\frac{1}{n} \sum_{r=0}^{n-1} y_{r}, \quad B_{0}=0 \quad \text { when } s=0 \\
& A_{s}=\frac{2}{n} \sum_{r=0}^{n-1} y_{r} \operatorname{lin}_{\sin }^{\cos }\left(\frac{2 \pi_{r} s}{k n}\right) \text { when } s>0 \\
& I_{s}=\sqrt{A_{s}^{2}+B_{s}^{2}} \text { for all } s, \\
& \text { where } s \text { is an integer. If } 0 \leqslant 0 \leqslant 13 \text { is an integer, then } k=2^{c} .
\end{aligned}
$$

Notes (1) The method of caloulation is described in The Computer Journal, 1 , 4, p. 162.

N.I.O. PROGRAM 4

Title Card sorting, Southport. Written for job 852 (MS, RAE)。RAE Program 568.
Code Deuce basic.
Purpose Given one value of each of \mathbb{N} series per card, to form \mathbb{N} packs of oards, one pack per series, and with eight values per card.

Order of cards Progran (cards 0-31), parameter card, data.
Paraneter card Columns 17-20 m
Date N signed 4 digit numbers in the α-field, punched consecutively, and with overpunched signs, with the first sign and digit in colum 17.

End card None.
Operation (1) Read in the program with the initial input key. The program stops on 7, 5-5.
(2) Run in the parameter card and data. The program is still at $7,5-5$.
(3) Single shot. The progrom reads the parameter card and data and stops on 7, 13-12.
(4) Single shot. The first set of results is punched. The progran stops at 7, 13-12.
(5) Repeat (4), making N times in all, and N sets of output. The progran does not stop at 7, 13-12 after the Nth tine.
(6) The hooter sounds and the program stops at 7,5-5. After clearing the hooter, operations (2) to (6) may be repeated with more date.

Qutput N packs of cards, with 8 signed 4 digit numbers Ber card. If $\mathrm{m} / 64$ is an integer, each pack will contain $\mathrm{m} / 64$ cards. Otherwise, each pack will contain the integral part of $(m / 64+1)$ cards.

Parmeters $(\mathbb{N}-1), P_{17}$ on card number 5 , row 9α. This is set for $\mathbb{N}=6$.
Restrictions

```
(1) }1\leqslantN\leqslant
    (2) }8\leqslantm\leqslant7520,\mathrm{ that is, 1 s number of cards }\leqslant94
```

Failures None
Time About $\mathrm{Nn} / 40$ seconds.
Method The values on columns 17-20 of the input data are punched successively on the first pack of output cards, with eight values per card. Then the values from colums 21-24 form the second pack of output, and so on for the \mathbb{N} series, giving \mathbb{N} packs of output.

We define m as $8 x$ the number of data cards.
Notes (1) The stopper after stage (3) of Operation allows time for the manul setting of new series numbers, zeroising aard numbers, ruming out cards and so on.
(2) If any column in the input is left blank the corresponding output column contains a nine.
(3) If $m / 64$ is not an integer (that is, if the number of cards is not a multiple of 8), the last output card will be completed with zeros.

N.I.O. PROCRAM 5

Title Correlation, based on RAB 506 (unavailable) (MS, RAEE). RAE Program 548.
Code Deuce basic.
Purpose Tofind the autocorrelation coeficients of a time serios or the cross correlation coefficients of two series.

Order of cerds Program (cards 0-55), parameter card, data.
Parameter card $Y a$ row: data layout. A one in each digit (or sign) position except the last digit of a mmber, and zeros everywhere else.

The rest of the card is exactly as Por PAE 174 except that zeros must be punched instead of blank columns. No positive signs may be punched.

Data Fither 1 or 2 signed numbers per card. If 2 are specified the first is series 1 and the second series 2; if only 1 is specified it is called series 2, in which case the autocomelation parmeter is K_{2}. Columns other than those specified are ignored. The sign is in the column preceding the first digit, and the finst sign must be in colunn 17.

End card None.
Operation (1) Read the program with the initial input key.
(2) Run in the parameter card, followed by the data. When one run is complete, (2) may be repeated.

Qutput See RAE 174.
Parameters (1) c. P_{1} in binary on cerd 8 , row Y_{α}. Here $c=5000$. (2) $r_{c} P_{1}$ in binary on cand 7, row 4α. Here $r=5$. (3) 10.P, in binary on card 8 , row 6α.

Restrictions

$$
\begin{aligned}
& \text { (1) } 0<n \leqslant 3488 \\
& \text { 2) } 0 \leqslant K_{1}, \mathbb{K}_{2} \leqslant 159 \\
& \text { 3) } 0 \leqslant L_{1}, I_{2} \leqslant 127 \\
& \text { (4) }-5005 \leqslant X_{i}, y_{i} \leqslant 4994, i=0(1)_{n-1}
\end{aligned}
$$

Failures See RAE 174. There are also 2 failures peculiar to this program, namely:-
(1) 6, 6-6, with hooter; x_{i} and/or $y_{i}>4994$
(2) $6,7-7$, with hooter; x_{i} and/or $y_{i}<-5005$.

Tine $A b o u t(N n / 60)+n$ seconds, where N is any of $K_{1}, K_{2}, I_{1,} L_{2}$.
Method The main calculation is exactly the same as for RAE 174. Before entering the main section the data are made to satisfy certain conditions, If the original number x_{i} satisfies Restriction (4), then the program calculates Z_{i}, where

$$
z_{i}=\frac{x_{i}+c+r}{10}
$$

and $0 \leqslant Z_{i} \leqslant 999$.
Notes (1) The checks are the same as for RAE 174.
(2) It is clear that by juggling with Parameters (1), (2) and (3) and Restriction (4), and taking account of the relation between $x i$ and Z_{i}, almost any data may be dealt with and made to satisfy $0 \leqslant z_{i} \leqslant 999$. The failures depend on c rather than on the actual values named in Restriction (4).

N.I.O. PROGRAM 6

Title Pitch and roll buoy predominant azimuth angles. Written for job 832 part I (MS, RAF)。

Code Deuce basic.
Purpose To find the two main directions of wave propagation from the first five Fourier coefficients.

Order of cards Program (cards 0-37), data.
Parameter card None.
Data Columns 17-18 10 ; sign in colum 17
19-24 $10^{3} \mathrm{a}_{0} ; \quad 19$

25-30 $10^{3} a_{1} ; \quad 25$
$31-36 \quad 10^{3} \mathrm{~b}_{1}$; $\quad 31$
37-42 $10^{3} \mathrm{a}_{2} ; \quad 37$
$43-4.8 \quad 10^{3} \mathrm{~b}_{2} ; \quad 43$
All the numbers are integers, and 6 digits (2 for 10σ) must be punched.

End card None.
Operation Read the program with the initial input key and then run in the data. The program alternately reads 1 card and punches 1 card until no more data is left. Further data cards may then be run in.

Output Columns 17-19 10σ; sign in column 17

$\left.\begin{array}{l} 21-24 \\ 25-26 \end{array}\right]$	6	$\begin{aligned} & \text { (degrees) } \\ & \text { (minutes) } \end{aligned}$;	21
28-31	ψ	(degrees)	;	28
32-33		(minutes)		
35-40		$10^{3}\left(\varepsilon_{0}-I\right)$		35
42-47		$10^{3} \mathrm{I}$		42

Paraneters None.
Restrictions (1) $0 \leqslant|\sigma| \leqslant 9.9$
(2) $0<\left|a_{0}\right| \leqslant 999.999$
(3) $0 \leqslant\left|a_{1}\right| \leqslant 999 \cdot 999$, and similarly for b_{1}, a_{2}, b_{2}.

Fallures If the data are incompatible (for example, if they would give $|\cos \psi|>1$) the program will fail. It may stop on 4, 24-14 (that is, a number > 1 is about to be produced during the floating to fixed point conversion) or there may be other stoppers in the standard subroutines, or there may be no indication at all.
time About $\mathbb{N} / 14$ minutes, where \mathbb{N} is the number of data cards.
Method $\sigma=$ reference mumber

$$
\begin{gathered}
\theta=\cos ^{-1} x /\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \quad 0 \leqslant \theta \leqslant 2 \pi \\
\psi=\cos ^{-1} z / 2\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \quad 0 \leqslant \psi \leqslant 2 \pi \\
a_{0} I=a_{0}^{2}-a_{1}{ }^{2}-b_{1}{ }^{2}-\left(p^{2}+Q^{2}\right)^{\frac{1}{2}} \\
\text { where } x=\left(a_{0}-I\right) a_{1}-\left(a_{1} a_{2}+b_{1} b_{2}\right) \\
y=\left(a_{0}-I\right) b_{1}-\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
z=\left(a_{0}-I\right)^{2}-\left(a_{2}^{2}+b_{2}^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& P=a_{0} a_{2}-a_{1}{ }^{2}+b_{1}{ }^{2} \\
& Q=a_{0} b_{2}-2 a_{1} b_{1}
\end{aligned}
$$

Notes (1) For a theoreticel account see M.s. Longuet-Higgins, Proc. Camb. Phil. Soo., 51.4, 590-603, 1955.
(2) The data i.s the some as in $\mathrm{N}_{0} \mathrm{I}_{0} \mathrm{O}_{0}$ Pragran 7.

N.I.O. PROGRAM 7

Title Pitch and roll buoy filtered directional spectrum. Written for job 832 part 2 (MS, RAE).

Code Deuce basic.
Purpose To obtain a smoothed estimate of the directional energy spectrum of the waves fron the first five Fourier coefficients.

Onder of cards Program (cards 0-34); deta.
Parameter card None.
Data Columns 17-18 10σ; sign in column 17

$$
19-24 \quad 10^{3} a_{0} ; \quad 19
$$

$$
25-30 \quad 10^{3} a_{1} ; \quad 25
$$

$$
31-36 \quad 10^{3} \mathrm{~b}_{1} ; \quad 31
$$

$$
37-42 \quad 10^{3} a_{2} ; \quad 37
$$

$$
43-48 \quad 10^{3} \mathrm{~b}_{2} ; \quad 43
$$

A11 the numbers are integers, and 6 digits (2 for 10σ) must be punched.
End card None.
Operation Read the program with the initial input key and then run in the data. The program alternately reads 1 card and punches 12 cards until no more data is left. Further data cards may then be run in.

Output Colums 17-19 100 ; sign in coluan 17
$21-24$ (degrees) ; 21
$26-32$ 106-r F ; 26
Parameters 10^{-0} in standard floating binary on card number 29, rows $6_{\beta}, 78$, where r is defined in Method. Normally $r=1$.

Restrictions (1) $0 \leqslant|\sigma| \leqslant 9 \cdot 9$
(2) $0<\left|a_{0}\right| \leqslant 999.999$
(3) $0 \leqslant\left|a_{1}\right| \leqslant 999 \cdot 999$, and similerly for a_{1}, a_{2}, b_{2}.
(4) $10^{-r}|F|<1 \quad r \geqslant 0$ See note (1)

Failures None.
Time About $\mathbb{N} / 2$ minutes, where \mathbb{N} is the number of data cards.
Method $6 \pi F=3 a_{0}+4\left(a_{1} \cos \phi+b_{1} \sin \phi\right)+\left(a_{2} \cos 2 \phi+b_{2} \sin 2 \phi\right)$,
where $\phi=-180^{\circ}\left(+30^{\circ}\right) 150^{\circ}$.
An upper bound for $|F|$ can be derived.
Suppose $\left|\max \left(a_{0}, a_{1}, b_{1}, a_{2}, b_{2}\right)\right|=M \leqslant 999 \cdot 999$.
Then $|T| \leqslant \frac{13 M}{6 \pi}<0.7 \mathrm{M}$.
We must choose the parameter $r \geqslant 0$ so that

$$
\left|10^{-r} E\right|<1
$$

but is as large as possible subject to this restriction.

N.I.O. PROGRAM 8

Title Smoothing. Written for job 670 (MS, RAB). RAB Program 570.
Code Deuce basic.
Purpose To scale and smooth a series.
Order of cards Progran (cards $0-43$), Darameter card, data.
Pararmeter card Column 25-28 a
33-36 c
37-40 k
41-44p
Data Columns 21-30 I_{s}; sign in colum 21. See parameter (1).

End card None.
Operation (1) Read the progran with the initial input ley. It stops at 6, 9-8.
(2) Run in the parameter card, followed by the data. The program is still at 6, 9-8.
(3) Give a single shot.
(4) When one rum is completed the progran returns to 6, 9-8. Operations (2) and (3) may then be repeated.

Output Columns 17-21 s ; sign in column 17
$23-32 \quad \mathrm{q}_{1} \mathrm{I}_{\mathrm{S}}{ }^{\prime} ; \quad 23$
33-42 $\mathrm{g}_{2} \mathrm{I}_{\mathrm{S}}{ }^{\prime \prime}$; 33
Parameters (1) Data layout. A one in each digit (or sign) position except the last digit of a number, and zeros everywhere else. Column 17 must be zero. This isset as described under Data. The layout parameter is on cerd 11, row 3_{a}.
(2) q_{1} in standord Ploating binary on card 6 , rows $2_{a}, 3_{a}$.
(3) q_{2} in standard floating binary on card 6 , rows $4 \alpha, 5_{\alpha}$.

Restrictions (1) $0 \leqslant c-a+1 \leqslant 1824, a \geqslant 0$
(2) $1 \leqslant p \leqslant 912$, but the smoothing is useful only when $0 \leqslant 2 p-1 \leqslant c-a+1$
(3) $0 \leqslant|k| \leqslant 9999$.
(4) $|k| M q_{1} / p^{2}<1, \quad 4|k| M C_{2}<1$, where $\mathbb{M}=\max .\left|I_{S} / s^{4}\right|$, and q_{1}, q_{2} are the largest possible multiples of 10 or $\frac{1}{10}$ subject to the above restrictions. Nomally $q_{1}=q_{2}=1$. See Mote (2).
(5) $\left|I_{S}\right| \leqslant 2 \cdot 14 \times 10^{\circ}$.

Failures None.
Time About $\frac{3}{2}(c-a+1)$ seconds.
Method The smoothed value $I_{S}{ }^{\prime \prime}$ is defined by

$$
\begin{align*}
& I_{S}^{\prime \prime}=I_{S-p+1}^{\prime}+2 I_{S-p+2}^{\prime}+\ldots .+(p-1) I_{S-1}^{\prime}+p I_{S}^{\prime}+(p-1) I_{S+1}^{\prime}+\ldots .+2 I_{S+p-2}^{\prime}+I_{S+p-9}^{\prime} \\
& \text { where } I_{s}^{\prime}=\frac{k}{p^{2}} \frac{I_{s}}{s^{2}} \text {, and } s=a(1) c \text {. } \tag{1}\\
& I_{s} \text { is given for } s=a(1) c \text { and } k, p \text { are given constant integers. } \\
& \text { We define } I_{s}{ }^{\prime \prime} \equiv 0 \text { for } a \leqslant s \leqslant a+p-2 \text { and } c-p+2 \leqslant s \leqslant c \text {. It is } \\
& \text { easy to show that } \\
& \nabla I_{S}^{\prime \prime}=I_{S}^{\prime \prime}-I_{S-1}^{\prime \prime}=\sum_{\mathcal{S}=\mathrm{S}}^{S+p-1} \quad\left(I_{\mathrm{C}}^{\prime}-I_{q-p}^{\prime}\right) \tag{3}\\
& \nabla^{2} I_{S}^{\prime \prime}=\nabla I_{S}^{\prime \prime}-\nabla I_{S-1}^{\prime \prime}=I_{S+p-1}^{\prime}-2 I_{S-1}^{\prime}+I_{S-p-1}^{\prime} \tag{4}
\end{align*}
$$

Stage 1. $I_{a+p-1}^{\prime \prime}$ and $I_{a+p}^{\prime \prime}$ (and hence $\nabla I_{a+p}^{\prime \prime}$) are caloulated from (1). Stage 2. $\nabla^{2} I_{S}^{\prime \prime}$ is calculated from (4) and $\nabla I_{S}^{\prime \prime}$ and $I_{S}^{\prime \prime}$ are built up for $s=(a+p+1)(1)(c-p+1)$. This involves addition and subtraction only, and is far quicker than direct evaluation of (1).
Stage 3. $I_{c-m+1}^{\prime \prime}$ is calculated fron (1) and compared with the last value obtained in Stage 2 。

Notes (1) The program was originelly intended to accept the output from the periodogram program RAE 300 ; that is, $s, I_{S,} A_{S}$ and B_{S} for $s=a(1) c$. The essential number I_{S} (regarded as an integer) is in colums 21-30, with sign in column 21.
(2) A brief derivation of restriction (4) is as follows:

The stored quantities which must not overthow are $s, I_{S}, I_{s}, I_{s}{ }^{\prime \prime}$ $|\nabla I \||$ and $\left|\nabla^{2} I_{S}^{\prime \prime}\right|$, of which the first two are integers with upper limit $2^{31}-1$, and the others are fractions with upper limit unity.
By definition, s and I_{s} are in range.
Let $M=\max .\left|\frac{I_{S}}{S^{4}}\right|$
Then $\left|I_{s}\right| \leqslant \frac{|k| M}{p^{2}}$
From equations (1) and (2) we see that

$$
\begin{aligned}
\left|I_{S}^{\prime \prime}\right| & \leqslant \frac{M|k|}{p^{2}}|1+2+\ldots+(p \cdots 1)+p+(p-1)+\ldots+2+1| \\
& =|k| M
\end{aligned}
$$

Al.so $\left|\nabla I_{S}^{\prime \prime}\right| \leqslant 2\left|I_{S}^{\prime \prime}\right|,\left|\nabla^{2} I_{S}^{\prime \prime}\right| \leqslant 4\left|I_{S}^{\prime \prime}\right|$,
so the inequality which covers $I_{S}^{\prime \prime}, \nabla I_{S}{ }^{\prime \prime}$ and $\nabla^{\circ} I_{S}^{\prime \prime}$ is
$4\left|I_{s}^{\prime \prime}\right| \leqslant 4|x| M$
Equations (5) and. (6) give the inequalities of restriction (4), namely,

$$
\begin{aligned}
& \frac{|k| m}{p^{2}} q_{1} \leqslant 1 \\
& 4|k| m q_{2} \leqslant 1,
\end{aligned}
$$

where q_{1} and g_{2} are independent constants.
(3) It is not possible to give an adequate analysis of the rounding errors here, but it is clear that there nay be such errors in the two initial values of $I_{S}^{\prime \prime}$, and also that the error in the last value of $I_{s}^{\prime \prime}$ will depend to some extent on the number of steps. The cheok value of $I_{S}^{\prime \prime}$ (see Method, Stage 3) will give an indication of this error, and if it is too large to be accepted, then either the range of s must be reduced or the number of decimal places increased by increasing q_{1} andor q_{2} 。
(4) The program could be adapted to smooth I_{s} in other ways, for example, by setting $s \equiv 1$ in the appropriate routine. However, it is a special. purpose program, and would probably be inefficient in any other context.

N.I.O. PROGRAM 9

Title Dover Straits. Written for job 885 (MS, RAR)。
Code Deuce besic.
Purpose Given the baronetric pressure at Felixstowe, Tangmere (or Thorney Island) and Calais, to calculate the difference in water level between Ramsgate and Dunkirk due to the pressure difference and wind stress.

Order of cards Progran (cards 0-25), data, end card.
Parameter card None.
Data (1) Tangnere.

Columns | $17-20$ | reference number; | sign in column | 17 |
| ---: | :--- | :--- | :--- |
| $22-26$ | p_{1} | $;$ | 22 |
| $27-31$ | p_{2} | $;$ | 27 |
| $37-41$ | p_{3} | $;$ | 37 |

(2) Thorney Island

Columns $17-20$	reference number;	sign in column 17	
$22-26$	p_{1}	$;$	22
27	x (minus)		
$32-36$	p_{2}^{\prime}	$;$	32
$37-41$	p_{3}	$;$	37

End card x (minus) in column 17
Operation (1) Read the program with the initial input key. It stops on 6, 3-1
(2) Run in the data, followed by the end card.
(3) When the end card has been read the progran stops at $8,8 m$. Clearing the hooter and giving a single shot causes the program to return to $6,3-13$. Operation (2) may then be repeated.

Output Columns 17-21 reference number ; sign in column 17

$22-25$	d	$;$	22
$26-29$	d^{\prime}	$;$	26
$30-33$	δ_{1}	$;$	30
$34-37$	δ_{2}	$;$	34
$38-41$	δ_{1}	$;$	38
$42-45$	δ_{2}		42

All the numbers (except the reference number, which is an integer) are given to 2D.

Paremeters The a, b, a are punched in binary (to 30 bp) on card 22, rows $2_{\alpha} \mathrm{m}$ 9_{α}, and card 23 , rows $Y_{\alpha}-5 \alpha$, as follows:

Card 22, row 2	2α	a_{1}	now set as	+ 1797/5960
	3α	a_{2}		+ 1780/5960
	$4 a$	a_{3}		- $3577 / 5960$
	5α	0_{1}		+ 0.0327
	6_{α}	aí		+ 1995/6480
	7α	a_{2}^{\prime}		$+1780 / 6480$
	8_{α}	a_{3}^{\prime}		- 3775/6480
	9α	c_{2}		-0.0844
Card 23, row	Y_{α}	b_{1}		$+3283 / 5960$
	x α	b_{2}		- 1660/5960

Card 23 row 0_{α}	b_{3}	now set as	$-1623 / 5960$
1α	c_{3}		+0.241922
2α	b_{1}^{\prime}		$+3531 / 6480$
$3 \alpha_{\alpha}$	b_{2}^{\prime}		$-1660 / 6480$
4_{α}	b_{3}^{\prime}		$-1871 / 6480$
$5 \alpha_{\alpha}$	c_{4}		+0.970296

Restrictions (1) $0 \leqslant$ reference number $\leqslant 9999$
(2) $\left|p_{1}\right| \leqslant 9999 \cdot 9$, and similariy for p_{2}, p_{2}^{\prime} and p_{3}.
(3) $|\mathrm{d}| \leqslant 9 \cdot 99$, and similarly for $\mathrm{a}^{\prime}, \delta_{1}, \delta_{2}, \bar{\delta}_{1}$, and $\bar{\delta}_{2}$.
(4) $N \geqslant 5$, where N is the number of data cards.

Failures None.
Time $N / 29$ minutes, where N is the number of data cards.
Method $p_{q}=$ pressure at Pelixstowe
$p_{2}=$ pressure at Tangmere
$p_{2}^{\prime}=$ pressure at Thorney Island
$p_{3}=$ pressure at Calais
$a_{1}=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}=a_{1}^{\prime} p_{1}+a_{2}^{\prime} p_{2}^{\prime}+a_{3}^{\prime} p_{3}$
$a_{2}=b_{1} p_{1}+b_{2} p_{2}+b_{3} p_{3}=b_{1}^{\prime} p_{1}+b_{2}^{\prime} p_{2}^{\prime}+b \frac{1}{3} p_{3}$
$\delta_{1}=c_{1} d_{1}$
$\delta_{2}=c_{2}\left(d_{1}^{2}+d_{2}^{2}\right)^{\frac{1}{2}}\left(c_{3} d_{1}+c_{4} d_{2}\right)$
$8 \delta_{1}^{(s)}=\delta_{1}^{(s-2)}+2 \delta(s-1)+2 \delta_{1}^{(s)}+2 \delta_{1}^{(s+1)}+\delta_{1}^{(s-2)}$
$3 \delta_{a}^{(s)}=\delta_{a}^{(s-2)}+2 \delta_{i}^{(s-1)}+2 \delta_{1}^{(s)}+2 \delta_{i}^{(s+1)}+\delta(s+2)$
The a, b, c are given paraneters. The program alternately reads one card and punches one card. The first two cards and the last two cards have $\delta_{1}=$ گ゙ $_{2} \equiv 0$.

Notes (1) In practice, the pressures $p_{1}, p_{2}, p_{2}^{\prime}, p_{3}$ had a constant ($900 \cdot 0$) subtracted before they were punched. This simplification does not affect the progran provided

$$
a_{1}+a_{2}+a_{3} \equiv 0,
$$

and similarly for the a^{\prime}, b and b^{\prime}.
(2) Only 4 signs can be obtained comfortably on the Hollerith 805 lister, so in this case the signs of α_{1} and d_{2} (which have the same signs as δ_{1} and δ_{2} respectively) were not listed.

NoI.O. PROGRAM 10

Title Combining two series. Written for job 538 (MS, RAE)。RAE Program 569.
Code Deuce basic.
Purpose To difference corresponding terms of two series, and to sum the resulting series.

Order of cards Program (oards 0-18), data (in pairs of cards).
Parameter card None.
Data Columns 18-27 x_{i} or $y_{i} ; \quad$ sign in column 17. There must be n pairs of cards.

End card None.
operation (1) Read in the program with the initial input key. The last card alone will not restart the program.

Output Columns 18-27 wi; sign in column 17.
Parameters nop, on card number 01, row 9 o
Restrictions (1) $0<n \leqslant 499$
(2) $\left|x_{i}\right| \leqslant 999999,\left|y_{i}\right| \leqslant 999999$, for $i=1(1) \mathrm{n}$.

See also Note (2).
Failures None.
Time About $2 n$ seconds.
Method If thene are n pairs of data cards, denoted by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots \ldots$ (x_{i}, y_{i}) $\left(x_{n}, y_{n}\right)$, then the program computes $W_{i}=\frac{1}{2}\left(x_{i}-y_{i}\right)$ for $i=1(1) \mathrm{n}$, and also $\sum_{i=1}^{n} W_{i}$

Notes (1) If $W_{i}^{\prime}=\frac{1}{2}\left(X_{i}+y_{j}\right)$ is required instead of $W_{i s}$ the destination number on card number 18 , row Y_{α} should be changed fron 26 to 25. (This has not been tested.)
(2) The progran has been fully tested only for values within the limits given under Restrictions, but it may well work for larger numbers. Care must be taken to ensure that ΣW_{i} (in 172) does not overflow.
(3) Given two pecks of cards, A and B, the corresponding terms of the two series can be paired by placing the A pack in front of the B pack and sorting the whole lot on the sorter (sorting on the card number and starting at the units end of the card number as usual).
N.I.O. PROGRAM 11

Tithe Sixth differences. RAR Pxogram 549.
Code Deuce basic.
Purpose To obtain central differences of a given numerioal function.
Order of cards Progran (cards 0-31), paraneter card, data, end card.
Parameter card Y_{α} row: a one in each digit (or sign) position except the last
digit of a number, and zeros everywhere else.
Data Two integers in the α-field. Both must have signs in the same columas the first digit (see Parameters) and the first number must begin in column 17. Nothing may be punched in the Y row of column 48.

End card Y_{α} row: P_{32} only.
Operation (1) Read the program with the initial input key。 It stops on 3,0-16.
(2) Run in the parameter card, data and end card.
(3) When one difference table is complete, the hooter sounds and the program returns to 3,0-16. The hooter may then be cleared and operation (2) repeated.

Output 8 signed 8 digit integers per card. Non-significant zeros are suppressed. The cards are in pairs as follows:-

Card 1	x	$f(x)$	space	δ^{2}	space	δ^{4}	space	δ^{6}
Card 2	space	space	δ	space	δ^{3}	space	δ^{5}	space

Card 1 column 17-24 x; sign in column 17

$17-24$	x	$;$	sign in column 17
$25-32$	$f(x)$	$;$	25
$41-48$	8^{2}	$;$	41
$57-64$	8^{4}	$;$	57
$73-80$	8^{5}	$;$	73

Card 2 columns $33-40$ o ; sign in column 33

$49-56$	8^{3}	$;$	49
$65-72$	8^{5}	$;$	65

The missing differences at the begimine and end of the teble are replaced by spaces.

Parameters If the data has signs in the column before the first digit, then the tining number on card 16 , row 9_{α} must be changed from 0 to 8 .

Restrictions (1) $|f(x)| \leqslant 9999$ 9999. If any function value or difference exceeds this limit, wrong results will be punched and values depending on the incorrect one may be affected.
(2) There must be at least 6 data cards.

Failures None.
Time About $n / 15$ minutes, where n is the number of input cards.
Method The first integer on each data card is regarded as the argunent, and the second is differenced. Except at the begiming and end of the difference table, the program alternately reads 1 card and punches 2 cards.

Notes (1) The program makes use of two apparently unpublished subroutines both due to G. Cork and J.M. Watt (MS, RAB) and originally designed for use with sterling. Both subroutines have been slightly modified, and tho relevant partis of these versions are briefly described below. Together they occupy DL 6, 7,8.
(a) Binary to 4 digit binary coded decimel conversion.

First order, entry	6200						
Stores used	13	14	15	16	19	20	21
Entry	Iink marder	x	divisor	-	-	-	
Exit	-	-	-	-	-	-	x

The marker consists of many 3 digit groups, the first one to be interpreted being in $P_{30-32^{\circ}}$ These groups are interpreted as follows:-
Finst group: 0 Code first digit 1 Code first digit suppressing non-significent zeros

Other groups: 0,1 Code space
2,3 Multiply by 10 and code next digit.
If the value of any of these groups is even, non-significant zeros will not be suppressed from that point.

The divisor $=16 \mathrm{~N}-1$ where N is the number of units corresponding to a most significant digit of 1 . For example, if the number to be coded is x, and $x=432$, then $\mathbb{N}=100$.

If x has 8 digits or less the coded result is entirely in 21_{2}.
(b) Punch decimal from 4-digit binary. Tirst onder, entry 8_{26}.
 Exit - - - - - - - - - - 4 digit

If any digit is d, then if $a=0,1,2, \ldots$, an appropriate hole is punched in that colum and if $d \geqslant 10$, the corresponding column is left blank.

The layout of binary coded digits ready for punching in columns 17-80 is as follows:-

Di. 10	P_{1-4}	P_{5-8}	P_{9-12}	P_{13-16}	P_{17-20}	P_{21-24}	P_{25-28}	P_{29-32}
mc 24	24	23	22	21	20	19	18	17
25	32	31	30	29	28	27	26	25
26	40	39	38	37	36	35	34	33
27	49	47	46	45	44	43	42	41
28	56	55	54	53	52	51	50	49
29	64	63	62	61	60	59	58	57
30	72	71	70	69	68	67	66	65
31	80	79	78	77	76	75	74	73

N.I.O. PROGRAM 12

Title Slope correction to waveheishts. Written for job 596 (MS, RAE)。
Code Deuce basic.
Purpose To modify a set of data, using two related sets of data and suitable constants.

Order of cords Program (cards $0 \ldots 4$), paraneter oard, data.
Parameter card Columns 17-20 n

$21-24$	0_{1}
$25-28$	$10^{7} \mathrm{c}_{2}$

29-32 $\quad 10^{7} c_{3}$
33-48 zeros
No colum in the α-field may be left blank, and a zero should be punohod where there is no other digit.

Deta 8 positive 4 digit numbers per card in the $\alpha-f i e l d$. If n is not a multiple of 8 the last card must be filled with zeros.

End card None.
Operation (1) Read the progran with the initial input key. The program stous on 3, 16-1.
(2) Run in the paraneter card, followed by R, P, Q in that order.
(3) When one calculation is finished the hooter sounds and the program stops on 3, 16-1. The hooter may then be cleared and operation (2) repeated.
Output $Q^{*},(n=O(1) n-1)$, punched as 8 positive 4 digit numbers per cand in the α-field. No signs are punched. If the number of data caris in not a multiple of 4 , up to 3 superfluous cards containing zeros will be punched.

Parameters None.
Restriotions. (1) Each number x in the data must satisfy $0 \leqslant x \leqslant 999$
(2) $0 \leqslant n \leqslant 2560$
(3) $Q_{r}-\bar{Q}+c_{1} \geqslant 0$ for $0 \leqslant r \leqslant n-1$.
(4) $0 \leqslant c_{2}\left(P_{r}-\bar{P}\right)^{2}+c_{3}\left(R_{r}-\bar{R}\right)^{2} \leqslant 214$ for $0 \leqslant r \leqslant n-1$.
(5) $0 \leqslant c_{1} \leqslant 9999$, and similarly for $10^{7} \mathrm{c}_{2}$ and $10^{7} \mathrm{c}_{3}$.

Failures None

Time About $3 n / 500$ minutes.
Method $Q_{r}^{*}=Q_{r}-\left(Q_{r}-\bar{Q}+c_{1}\right)\left[c_{2}\left(P_{r}-\vec{P}\right)^{2}+c_{3}\left(R_{r}-\bar{R}\right)^{2}\right]$ for $0 \leqslant r \leqslant n /$. where $n=$ the number of terms in each series, and $\bar{P}=\frac{1}{n} \sum_{0}^{n-1} P_{r}, \quad$ with similar definitions of $\overline{0}$ and \bar{R}.

Notes (1) The program was originally written for data obtained from the fitoh and roll buoy. The aim was to obtain the vertical acceleration Q° Pron the pitch P, roll R and acceleration Q.
(2) At the end of the program DL 12 contains the following integan, apart from constants and working space.

```
mc 0 n
    1 o,
```

3 mi $\quad 2 \quad 10^{7} \mathrm{c}_{2}$
$3 \quad 10^{7} c_{3}$
4 number of cards (either $\left[\frac{n}{8}\right]$ or $\left[\frac{n}{8}\right]+1$, depending on n)
$9 \quad \overline{0}$
$\begin{array}{ll}10 & \stackrel{P}{2} \\ 11 & \stackrel{\rightharpoonup}{R}\end{array}$

RoA.E. PROGRAM 174

Title Correlation.
Code Deuce basic.
Purpose To find the outocorvelation coefficients of a time series or the cross correlation coefficients of two series.

Order of cards Program (cords 0-49), paraneter card, series 1, series 2 (if required).

Parameter card Columns 17-20 n
21-24 K_{1}
25-28 $\quad \mathrm{K}_{2}$

29-32 I_{1}
33-36 I_{2}
41-44 p
45-48 must be left blank。
If any of $K_{1}, K_{2}, I_{1}, I_{2}$ are omitted (that is, the comesponding colums are blonk), the appropriate section of the program is omitted. If both I_{1} and L_{2} are omitted, only one series is read and K_{1} autom correlation coefficients are found.
If p is onitted, no blank cards are inserted.
Data The n terms of a series are punched as 8 positive 4 digit integers per card in the $\alpha-f i e l d$. Series 2, if present, must have the sane number of terns (n) as series 1.

End card None.
Operation (1) Read the progran with the initiol input key.
(2) Run in the parameter card, followed by series 1.
(3) Run in series 2, if present.
(4) When one run is complete, (2) and (3) may be repected.

Output There are two types of output.

(1) Autocorrelation.	Card 1	Mean
	Card 2	Variance
	Card 3	Blank
	Card 4 onwards	Correlation coefficients.
(2) Cross correlation.	Card 1	Blank
	Card 2 onwards	Correlation coefficionts.

The correlation coefficients are separated by a blank card after every p output cards, and there is a blank card at the end.

There are two types of card layout.
(1) Colums $18-26$ a ; sign in column 17

47-48 Marker
If either the mean or the variance is denoted by c, then $c=a .10^{m b}$.
(2) Columns $\begin{array}{r}18-26 \\ 34-36 \\ \\ \text { rj } \\ j\end{array} ; \quad$ sign in column 17

47-4 4 Marker
Here r_{j} is the correlation coefficient for lag j.
Both a and r_{j} are punched to $8 D$. The marker is defined under Method.
Parameters None.

Restrictions (1) $0<n \leqslant 3488$
(2) $0 \leqslant K_{1}, K_{2} \leqslant 159$
(3) $0 \leqslant I_{1}, I_{2} \leqslant 127$
(4) $0 \leqslant x_{i}, y_{i} \leqslant 999, i=0(1)_{n-1}$ 。

Failures (1) If any of Restrictions (1)-(3) are violated, the program hoots and stops on 1, 1-1. The output staticiser lights indicate the mistake, as follows:-

$$
\begin{array}{ll}
P_{1}: & n>3488 \\
P_{17}: & K_{1}>159 \text { and/or } K_{2}>159 \\
P_{1-32}: & I_{1}>127 \text { and/or } I_{2}>127
\end{array}
$$

(2) There are also indications of machine failures. The program hoots and stops on 1, 1-1 (excluding the above), 6,2-2 or 5,3 3.3. A single shot usually repeats the appropriate section, but it is safer to restart the run completely.

Time About $3 n / 80$ seconds to read 1 series, and $n \mathbb{N} / 210$ seconds to calculate and punch 1 set of correlation coofficients, where iN is the number of lags.

Method (1) If we are given 2 series, each with n terms, denoted by

$$
\begin{aligned}
& x_{0}, x_{1}, \ldots \ldots x_{n-1} \quad(\text { series } 1) \\
& y_{0}, y_{1}, \ldots \ldots y_{n-1} \quad(\text { series } 2)
\end{aligned}
$$

then the cross correlation coefficient is defined by

$$
r_{j}=\frac{\mathrm{c}^{2}}{A B}
$$

$$
\text { where } \begin{aligned}
(n-j) c^{2} & =(n-j) \sum_{j^{\prime}}^{n-j} x_{i} y_{i+j}-\left[\sum_{1}^{n-j} x_{i}\right]\left[\sum_{j+1}^{n} y_{i}\right], \\
(n-j) A^{2} & =(n-j) \sum_{i}^{n-j} x_{i}{ }^{2}-\left[\sum_{1}^{n-j} x_{i}\right]^{2} ; \\
(n-j) B^{2} & =(n-j) \sum_{j+1}^{n} x_{i}{ }^{2}-\left[\sum_{j+1}^{n} y_{i}\right]^{2}
\end{aligned}
$$

and where $j \geqslant 0$ is the lag number.
The autocorrelation coefficient is obtained when $x_{i} \equiv y_{i}$ for all in in the above formulae. In this case we may also define the mean \bar{x} and the varianoe σ_{x}^{2} as follows:...

$$
\begin{aligned}
n \bar{x} & =\sum_{1}^{n} x_{i} \\
(n-1) \sigma_{x}^{2} & =\sum_{1}^{n} x_{i}^{2}-n \bar{x}^{2}
\end{aligned}
$$

(2) The numbers K and I on the parameter card denote the number of lags in the 4 possible ceses.

$$
8
$$

K_{1} : series 1 autocorrelation, with marker 1,1
K_{2} : series 2 autocorrelation, with marker 2,2.
I_{1} : oross correlation, series 1 leading, with marker 1,2
I_{2} : cross correlation, series 2 leading, with marker 2,1
Also $p=$ punch spavinc.
"Series 1 leading" means that x_{n-i} and y_{i}, $i=O(1) j-1$, are excluded from the calculation of r_{j}.
Notes There are two simple checks on the output.
(1) The first autocorrelation coefficient (that is, the one with zero lag) is unity.
(2) If r_{0} and r_{0}^{\prime} denote the cross correlation coefficients with zero 7 n for series 1 leading and sexies 2 leading respectively, then $r_{0} \equiv n_{0}^{\prime}$.
R.A.E. PROGRAM 300

Title Fourier analysis (periodogran)
Code Deuce basic.
Purpose To calculate the harmonic components A_{S}, B_{S} for $s=a(b) c$.
Order of cards Program (cards 0-28), paraneter card, data.
Parameter eard Columns 17-20 n 21-24 zeros
25-28 a 29-32 b 33-36 c

Data The n values of y_{r} are punched as 8 signed 4 digit integers per card, in the α-field.

End card None.
Operation (1) Read the program with the initial input key.
(2) Run in the parameter card, followed by the data. When a run is complete, (2) may be repeated.

Output Columns 17-20 s ; sign in column 17

$21-30$	$I_{s} ;$	21
$31-38$	$A_{s} ;$	31
$39-46$	$B_{S} ;$	39

All these numbers are integers.

Parameters None.

Restrictions (1) $0 \leqslant s \leqslant 2047$
(2) $n M^{2} \leqslant 1.08 \times 10^{9}$, where $\left|y_{r}\right| \leqslant M, r=O(1)_{n-1}$
(3) $n^{2} M \leqslant 2 \cdot 14 \times 10^{9}$

Failures (1) s is punched incorrectly for $s>2047$, but the other quantities may be correct.
(2) If Restriction (3) is violated, the program might punch the corresponding I_{S} as -1 and sound the hooter. But rubbish may be punched with no indication.

Time About $n \mathbb{N} / 200$ seconds, where N is the number of values of s.
Method

$$
\begin{aligned}
& A_{0}=\sum_{r=0}^{n-1} y_{r}, B_{0}=0 \quad \text { when } s=0 \\
& A_{s}=\sum_{r=0}^{n-1} y_{r} \frac{\cos }{\sin }\left(\frac{2 \pi r s}{n}\right) \text { when } s>0 \\
& I_{s}=\frac{2}{n}\left(A_{s}^{2}+B_{s}^{2}\right) \text { for all } s,
\end{aligned}
$$

where s is an integer.
Notes The method of calculation is described in The Computer Journal, 1, 4, p. 162.

R.A.E. FROGRAM 528

Title Fourier analysis (periodogram)
Code Deuce basic.
Purpose To calculate harmonic components A_{S}, B_{S} for $s=O\left(a_{1}\right) b_{1}\left(a_{2}\right) b_{2}\left(a_{3}\right) b_{3}$
Order of cards Progran (cards 0-28), parameter card, data.
Paraneter cards Colums 17-20 n

$21-24$	k
$25-28$	a_{1}
$29-32$	b_{1}
$33-36$	a_{2}
$37-40$	b_{2}
$41-44$	a_{3}
$45-48$	b_{3}

No column may be left blank, so if $a_{2}, b_{2}, a_{3}, b_{3}$ are not needed, zeros should be punched in their place.

Data The n values of y_{r} are punched as 8 signed 4 digit integers per ard, in the α-field.

End card None.
Operation (1) Read the program with the initial input key.
(2) Run in the parameter card, followed by the data. When a run is complete, (2) may be repeated.

Output Columns 18-21 s ; sign in colurn 17

$24-30$	$A_{S} ;$	23
$33-39$	$B_{S} ;$	32
$42-48$	$I_{S} ;$	41

There are three more decinal places in A_{S}, B_{S}, and I_{S} than in y_{r}.
Parameters None.
Restrictions $n^{2} M \leqslant 2 \cdot 14 \times 10^{9}$, where $\left|y_{r}\right| \leqslant M, r=0(1) n-1$.
Failures None
Tine About $n \mathbb{N} / 200$ seconds, where N is the number of values of s.
Method
$A_{0}=\frac{1}{n} \sum_{r=0}^{n-1} y_{r}, \quad B_{0}=0 \quad$ when $s=0$
$\mathrm{n}-1$
$\begin{aligned} & A_{S} \\ & B_{S}\end{aligned}=\frac{2}{n} \sum_{r=0} y_{r} \quad \begin{aligned} & \cos \\ & \sin \end{aligned}\left(\frac{2 \pi r s}{k n}\right) \quad$ when $s>0$
$I_{S}=\sqrt{A_{S}^{2}+B_{S}^{2}} \quad$ for all s
where s is an integer. If $0 \leqslant c \leqslant 13$ is an integer, then $k=2^{c}$.
Notes The method of calculation is desoribed in The Computer Journal, 1, 4, p. 162.

