NATIONAL INSTITUTE OF OCEANOGRAPHY WORMLEY, GODALMING, SURREY

N.I.O. Computer Programs 6

N.I.O. Internal Report No. N6

JANUARY 1966

N.I.O. COMPUTER PROGRASS VI

edited by

Pamela Mamands

Internal Report N. 6

N.I.O. Programs VI

49 Analysis of tidal currents at La Chapelle Bank, Tuly 1962
50 Directional wave analysis 1
51 Direotional wave analysis 2
52
52A
Tidal spreading, parts 1 and 2
53 Check by differencing
54. Diaectional wave analysis 3

55 Statistical moments
55
56A) Polynomial fitting to thermistor calibration curves
57 Integrals of products of associated Iegendre Functions
58 Atlas Station data
Special 58 Atlas Station data (for DISCOVRPY CRUTSE 6, 1965)
58 Beroury Station data
59 Thermoneter corrections for deep-sea reversing themometers
60 Cross spectrum of two sexies

N．I．O．PROGRAN 49

Titie Analysis of Tidal Curments at La Chapolle Banik，July 1962.
Gode Mercury autocode Machine NERCURY
Pyarpoge To combine and extend NoI。O．Programs 41 and 42.
fapes Program tape followed by data tape．
Data（a） 27 numbers being the values of t not required in the majovity of the matrix calculations（where $w=\frac{1}{2} t-18.0$ and w is the time in half－hours）．
（b）Then 17 Ifines each containing 3 values：
$x_{i} \quad y_{i} \quad z_{i 1} \quad 1=0(1) 16$
（These values are the tidal parameters $\sigma_{i,} \phi_{i}, R_{i}$ ）
（c）Followed by values of
$v_{i}\left(t_{)}\right)$
$v_{2}(t)$
$v_{3}(t)$
$v_{4}(t)$$\left\{\begin{array}{l}t h e r e ~ \\ t=0(1) 104 \text { onitting those values of } t \text { in }(a)_{0}, ~\end{array}\right.$
（These values are the North（shallow），North（deep）， East（shallow），East（deep）velocity components of currents．）

End Indication \rightarrow CRIF
Cperation Read in progran tape folloved by data tape only a fifth of the data tape is read in at first．Punching begins． After the third set of results has been punched，the remainder of the data is read and the punching recommenses almost imediately and continues to the end when the machine hoots．

Output
（a） 105 blocks of 8 numbers（as output of NoI．O．Program 41）
（b）Matrix $[\mathrm{M}](7 \times 7)$
（c）Matrix $\left[\mathrm{m}^{-1}\right](7 \times 7) \cdots$
（d）Matrix $[v]\left[M^{-1}\right](7 \times 4)$
（e） 4 values of σ^{2}
（f）Matrix（ 4×104 ）
Restrictions See note（1）．
Time 7 minutes．
Method（a）As for NoI．O．Program 41，but the values of t dirfer．
（b）The following natrix［m］is then computed for values of t （omitting those vaiues at the start of the data tape），

78	EP1	if_{2}	$2 f_{4}$	Σz^{2}	2g2	Σ_{54}
Eft	$2 \mathrm{~F}_{1}^{2}$	$\mathrm{zf}_{1} \mathrm{ff}_{2}$	Eif fr_{4}	Vifig	$2 \mathrm{If}_{182}$	2f：g4
「fa		Ef ${ }^{2}$	$\mathrm{Ef}_{2} \mathrm{P}_{4}$	2fect	2fegr	$\mathrm{Ef}_{2} \mathrm{SG}_{4}$
Ef4	Vfifif	戗持？	$\Sigma \mathrm{f}_{4}^{2}$	［ $a_{4} 0_{1}$	2fag2	
$\Sigma_{\text {g }}^{1}$		¢girs	$\mathrm{Sg}_{4} \mathrm{if}_{4}$	2 Et	\sum_{86192}	CBH_{164}
$\Sigma_{g_{2}}$	$\sum_{8 z} z_{1}$	$\mathrm{z}_{52 \mathrm{~F}}$	$\Sigma_{\text {g }} \mathrm{ff}_{4}$	Σ_{2681}	${ }^{2}$	${ }^{\text {deg }}$ 264
Σ_{84}	Egst	$\mathrm{CB}_{4} \mathrm{f}^{\text {f }}$	［84	$\underline{5}$	¿g4	

（c）is（b）inverted：$\left[\mathrm{m}^{-1}\right]$ ．
(d) Values of a anä β are conputed as follows using vanues of $v_{i}(t)$
(e) The four values of σ_{i}^{2} are then computed (where $\left.i=1(1)_{4}\right)$.

$$
\begin{aligned}
& \left.-\beta_{i 1} \Sigma v_{i 5_{1}}-\beta_{22} \Sigma v_{152}-\beta_{i 4} \Sigma v_{i E_{4}}\right)_{0}
\end{aligned}
$$

(f) Then the four series as follows are computed
 where $\mathcal{I}=1(1) 4$ and for gits values of t (including those previously omitted).

Motes (1) This is not a general purpose program, but one speciaily whitten for Job no. 1284.
(2) See also $\mathbb{N o I}_{0} \mathrm{I}_{0}$. Programs 41 and 42.
(3) This program has been used suocessfully with chil 3 and 40

Programmer Mins. Wndy wilison
(d) Values of α anä β are computed as follows using values of $v_{1}(t)$
(e) The four values of σ_{i}^{2} are then computed (where $i=1(1) 4$).

$$
\begin{aligned}
\sigma_{i}^{2}=\frac{1}{78}\left(\Sigma v_{1}^{2}-\alpha_{1} \delta \Sigma v_{i}\right. & -\alpha_{i 4} \Sigma V_{i j} I_{1}-\alpha_{i 2} Z v_{i} f_{2}-\alpha_{i 4} \Sigma v_{i f_{4}} \\
& \left.-\beta_{i 1} \Sigma v_{i E_{1}}-\beta_{i 2} v_{1 E_{2}}-\beta_{i 4} \Sigma v_{i E_{4}}\right) .
\end{aligned}
$$

(f) Then the four series as follows are computed
 where $i=1(1) 4$ and for vis values of t (including those previously omitted).

Notes (1) This is not a general purpose program, but one speciaily witten for Job no. 1284.
(2) See also N.I.O. Programs 41 and 42.
(3) This program has been used successfully with chtir 3 and 40

Progranmer Mis. WRND WILSon

Titile Directional Wave Analysis 1 .
Code Mercury autocode. Migchine MERCURY
Purpose Given the cosine and sine components of the Fourier analyses of 8 wave signals, over a range of frequencies, to form the com and quadmspectirum estimates between various pains of signals (incinaing automspectrian estimates) with a triangular smothing fil ter of axbitrary width.

Tapes Program tape, parameter tape 1, data tape, parameter tape 2.
Parameter tape $1 n^{\prime}$ no. of terns in each of the $2 x 8$ sets of values m smoothing factor ℓ^{\prime} finst value of s of A_{s} and B_{s} values $\left.i^{\prime}\right] n=i^{\prime}\left(j^{\prime}\right) k^{\prime}$ where the $n^{\text {th }}$ terms of the snoctned wh values are required for NoI。O. Progran 51 input h a constant.

Data 8 blocks of numbers, each block containing n ' pains of numbers, A_{S} and B_{S}. (A_{S} and B_{S} are obtained by Fourier analysis.)

Parameter tape 2 Sets of 3 values at a time:

$$
\mathrm{p} \quad \mathrm{q} \quad \mathrm{o}
$$

Ending with a nurber 9 .
Operation Read the program followed by paraneter tape 1 and the data tape. Then road in parameter tape 2. The machine reads a set of p, q and o values and punches a block alternately until the number 9 is read when punching becomes continuous until an end hoot.

Output The output is in two parts.
Part 1 consists of blocks of numbers, as nany blocks as there are sets of parameters on parameter tape 2; each biock is headed by the values

$$
p \quad q \quad o
$$

and followed by colums of either
(a) i $C_{i}^{p}(\mathrm{pq}) \quad D_{1}^{\prime}(\mathrm{pq})$ when $0=3,5$
(b) i $\mathrm{C}_{2}^{\prime}(\mathrm{pq})$ only
" $0=1,4$
(o) i $D_{i}^{\prime}(\mathrm{pq})$ only
" $0=2,5$
(d) $i-C_{i}^{\prime}(\mathrm{pq}) \quad D_{i}^{\prime}(\mathrm{pq})$
" $0=8,10$
or (e) $1-C_{i}^{\prime}(\mathrm{pq})$ only
" $0=7,9$
where $i=m(1) n^{\prime}-n+1$ 。

Part 2 is arranged specifically for Job no, 1501 and may be found to be too compicated to rearrange for any other job. It is made up of n blocks of 4 sets of 6 or 7 numbers. These are the 4 sets of numbers:

$$
\begin{aligned}
& c_{n}^{\prime \prime}(A) \\
& c_{n}^{\prime \prime}(B) \\
& c_{n}^{\prime \prime}(C) \\
& C_{1}^{\prime \prime}(D) \\
& c_{n}^{\prime \prime}(B) \\
& c_{11}^{\prime \prime}(F)
\end{aligned}
$$

```
\(\mathrm{D}_{\mathrm{n}}^{1 \prime \prime \prime}(\mathbb{N})\)
\(D_{12}^{\prime \prime}(\mathrm{A})\)
\(D_{n}^{\prime \prime}\) ( \(B\) )
\(\mathrm{I}_{12}^{\prime \prime}\) (C)
\(D_{n}^{\prime \prime}(D)\)
\(D_{n}^{\prime \prime}\) ( \(\mathbb{D}\) )
\(D_{n}^{\prime \prime}(\mathrm{F})\)
\(\mathrm{C}_{\mathrm{n}}^{\prime \prime \prime}\) (G)
\(\mathrm{C}_{\mathrm{n}}^{\text {II }}\) (H)
\(\mathrm{C}_{n}^{2 \prime \prime}(\mathrm{I})\)
\(\mathrm{C}_{\mathrm{n}}^{\prime \prime \prime}(\mathrm{J})\)
\(\mathrm{C}_{\mathrm{n}}^{\prime \prime \prime}(\mathrm{K})\)
\(\mathrm{C}_{\mathrm{n}}^{\prime \prime \prime}(\mathrm{I})\)
\(\mathrm{D}_{\mathrm{n}}^{\prime \prime \prime}\) (M)
\(D_{n}^{\prime \prime \prime}(G)\)
\(\mathrm{D}_{\mathrm{n}}^{\prime \prime \prime}\) ( H )
\(D_{n}^{\prime \prime \prime}(\mathrm{I})\)
\(D_{11}^{\prime \prime \prime}(J)\)
\(D_{n}^{\prime \prime \prime}(\mathrm{K})\)
\(D_{n}^{\prime \prime \prime}\left(I_{i}\right)\)
```

Parameters None.
Restrictions $\quad 0<n^{\prime} \leqslant 120$
$1<n \leqslant n^{\prime}-2(n-1)$, where $n=i^{\prime}\left(j^{\prime}\right) k^{\prime}$
$1 \leqslant p, q \leqslant 8$
$1 \leqslant 0 \leqslant 10$
Time This is difficult to estimete, but when

$$
\begin{aligned}
& n^{\prime}=119 \\
& m=15 \\
& n=1(10) 91
\end{aligned}
$$

and with 25 sets of p, q and 0 the time taken was 25 minutes.
Method The symbols used are
$p=A_{S}$ block label
$q=B_{S}$ block label
For 0 see o coding belov.
Given 8 sets of values of A_{5} :
$A_{11}, A_{12}, A_{13}, \ldots . A_{14}$,
$A_{21}, A_{22}, A_{23}, \ldots . A_{i n^{\prime}}$
$A_{31}, A_{32}, A_{35} \ldots . . A_{3 n^{\prime}}$
$A_{81}, A_{82}, A_{83} \ldots . . A_{8 n^{\prime}}$
and a similar 8 sets of values of B_{S}, values of $C_{i}(p q)$ and $D_{i}(p q)$ oan be calculeted thus:

$$
\left.\begin{array}{l}
C_{i}(p q)=A_{p i}, A_{q i}+B_{p i} \cdot B_{q i} \\
D_{i}\left(p q_{i}\right)=A_{p i} B_{q i}-B_{p i} A_{q i}
\end{array}\right\} \dot{1}=1(1) n_{n}^{\prime}
$$

From these anwers the following are cajoulated and the results pmoned. (This is Part 1 of the output.)

$$
\begin{aligned}
& \quad \begin{array}{l}
C_{i}^{\prime}(p q)=\frac{1}{m^{2}}\left(\sum_{i=-m}^{+n}(m-|n|) C_{i+i}(p q)\right) \\
D_{i}^{\prime}(p q)=\frac{1}{I^{2}}\left(\sum_{r=-m}^{+m}(m-|n|) D_{n+i}(p q)\right) \\
\text { Where } i=m(1) n^{\prime}-m+1 .
\end{array}
\end{aligned}
$$

Part 2 of the output, which is calculated and punched aftex the machine has read the "g" at the end of the paraneter tape 2 , consistis of the following values.

$$
\begin{aligned}
& C_{n}^{\prime \prime}(p q)=\frac{C V^{\prime}(p q)}{\sqrt{C_{n}^{\prime}(p p) C_{n}^{\prime}(q q)}}, \quad D_{m}^{\prime \prime}(p q)=\frac{D_{n}^{\prime}\left(p q_{i}\right)}{\sqrt{C_{n}^{\prime}(p p) C_{n}^{\prime}(q q)}} \\
& \sigma_{n}^{m}(p q)=\frac{h C_{n}^{\prime}(p q)}{G_{n}^{\prime}(p p)} \quad, \quad D_{n}^{m}(p q)=\frac{h D_{n}^{\prime}(p q)}{C_{n}^{\prime}(p p)} \\
& D_{n}^{\prime \prime \prime}(p q)=\frac{h D_{n}^{\prime}(p q)}{C_{n}^{\prime}(q q)} \\
& \text { where } n=i^{\prime}\left(j^{\prime}\right) k^{\prime} \text { 。 } \\
& 2 \text { " D' and store } \\
& 3 \text { " } C^{\prime} \text { and } D^{\prime} \text { and store } \\
& 4 \text { " } 0^{\prime} \\
& 5 \text { " D' } \\
& 6 \text { " } C^{\prime} \text { and } D^{\prime} \\
& 7 \text { " }-C^{\prime} \text { and store } \\
& 8 \text { " }-\mathrm{C}^{\prime} \text { and }+\mathrm{D}^{\prime} \text { and store } \\
& 9 \text { " -G' } \\
& 10 \quad "-C^{\prime} \text { and }+D^{\prime}
\end{aligned}
$$

2 Coding $0=1$ Pirint O^{\prime} and store

Where values are stored it is for use in Chapter 0 and re-arrangement for $\mathrm{N}_{\mathrm{S}} \mathrm{I} . \mathrm{O}$. Progran 51 input.

Remariss (1) Highest Charter no. is 2.
(2) Auriliary voriables range from 0 to 10,000 .
(3) This progran is for use with crive 3 and 4.

Motes If Part 2 of the output is not required then the "9" at the end of parameter tape 2 may be onitted and the program will end asking for more data.

Progranmer

Title Directional wave analysis - 2.
Code
Mercury Autocode Mechine MBRCURY
Purpose To compute Bessel Functions $J_{n}\left(q_{x}\right), J_{n}\left(q_{r}^{r}\right), n=O(1) N$, for given series of arguments $\mathrm{qr}, \mathrm{q}^{1} \mathrm{r}$, and to solva certain sets of simultaneous linear equations with the Bessel Functions as coefficients.
51.0 computes only the Bessel Punctions.
51.1 and 51.2 are similar to 51 , but can solve a smaller veriety of sets of equations.

Tapes Progran. Basic data. Paraneters and data.
Parane ters and data
(a) Integers $I, ~$ 何 $N, ~ P o$
(b) I numbers $q_{p}(r=1(1) \mathrm{L})$ o
(a) If $P=3$, repeat from ($\left.\begin{array}{rl}r\end{array}\right)$ (Progran 54,0 roturns to (a) for all P) otherwise
(e) Integers i, z (exoept in Progran 51,0)
(f) Sets of data listed in Table 1 , eccording to the value of $i>0$. (Progran 51.1 allows only $i \leqslant 6$, Progran 51.2 allows only $i \leqslant 12$). If $i=0$ or any negative integer, repeat fron (a), othervise
(8) Repeat from (e).
N.B. If $i \leqslant O$, it must still be followed by a (dumm) integer ℓ. $i=11$ or 13 is nomally preceded by a sequencr (e-f)hoadod by $i=1$ $i=12$ or 14 " " " " " " " " n $i=8$ $\begin{array}{lllllllll}i=15 & " & " & " & " & " & " & " & " \\ i=16 & " & " & " & " & " & " & " & "\end{array}$
Operation After the progran tape, after the basic data tape, and again after any given lata tape, (terminated by an arrow), the progran asks for more data, It never stops itself, unless given invalid data (see restrictions), in which case it indicates a fault. Output is produced after every input sequence ($a-d$), unless $P=0$, and after every input sequence (e-f).

Qutput (a) Title
(b) If $P=0$, prints $q_{r}(2,4), r=1(1) L$, then $q^{\prime} r(2,4), r=1(1)$ M, If $P=1$, prints $q_{r}(0,8), J_{S}\left(q_{r}\right)(1,8), s=0(1) N$, for $r=1(1) I_{0}$ If $P=2$ or 3 , prints $q_{r}(0,8), q^{\prime} r(0,8), J_{S}\left(q_{r}\right), J_{S}\left(q^{\prime} r\right)(1,8)$, $s=O(1) \mathrm{N}$, for $r=1(1) \mathrm{I}$.
(c) Prints i, e,
(a) If $i>0$, prints numbers listed in Table 1_{0} Sequences (b, c, d) are repeated as the corcesponding input sequences are repeated.

Restrictions $\quad 1 \leqslant \ell \leqslant I \leqslant 8$
$0 \leqslant M \leqslant 8 ;$ if $\mathbb{M} \geqslant 1$, then $1 \leqslant n \leqslant M$.
If $i=14$ or 16 , then $m \geqslant 2$
$0 \leqslant \mathrm{~N} \leqslant 20$
$0 \leqslant P \leqslant 3$ $0 \leqslant q_{r} \leqslant 24 \cdot 5,0 \leqslant q_{r}^{\prime} \leqslant 24 \cdot 5$, a11 r. $i \leqslant 16$, (12 for Progren 51.2, 6 for Progran 51.1) a $K \neq 0$ 。
If $\dot{i}=11$, then $y_{r} \neq 0$
The value of I should not be less than the highest order of Bessel Function required in any set of equations following it,

Method The basic data consists of $10 \mathrm{~d}_{\mathrm{e}} \mathrm{p}_{\mathrm{f}}$ values of $J_{n}(x)$ for $n=O(1) 29$, $x=1(1) 24$, taken fron Table II of Gray et al ${ }^{1}$, with corrections as listed in Fletcher et al ${ }^{2}$ vol. 2, p.824. Given input data (a, b, c), the program computes and stores all values of $J_{n}\left(q_{n}\right)$, $J_{n}\left(q^{\prime} r\right)$, using the formulae:

$$
\begin{aligned}
& J_{n}(x+a)=J_{n}(x)+\sum_{p=1}^{\infty}(2 / 2)^{p}\left(p_{a}^{s}\right)^{-y} \Delta_{2}\left[J_{m}(x)\right], \\
& \text { where } \Delta_{1}\left[J_{2}(x)\right]=J_{2 x, w}(x)-J_{w_{2}}(x) \text {, } \\
& \Delta_{p}\left[J_{n}(x)\right]=\Delta_{p o i}\left[J_{n-i}(x)\right]-\Delta_{p \times i}\left[J_{w+i}(x)\right], \\
& \text { and } J_{-m}(x)=(\cdots 1)^{n} J_{n}(x) \text { 。 }
\end{aligned}
$$

The sumation is taken as far as $p=9$ ．Since $2^{-p^{p}}<1$ for all p ，and it is axcanged thet ix is always taken as the integer nowest to a_{n} so that $|a| \leqslant 0,5$ ，the errer due to truncation of the series is always less than $0.5 \times 10^{\prime \prime}$ 。

The parmetar P merely detemmes whother on not the Bessel Functiog are prived，end whether there is an immeutate retwon to smot（ n ）

The paraneser i detemnenes which of 15 different sets of instmetious are Collowed．In caoh set，the stored Bessel Funotions core used（without being destroyed）to fonm and solve the equations for the unknowns an on ba detailed in Table II，given values of w_{r} or $y_{\text {so }}$ as right hand sides．Apart from the trivial single－ vambile equattons show，cases $\dot{j}=1$ to 10 solve ℓ equations for 2 whowns．Cases $i=13$ to 16 solve the triviel equations，if ady，then m equations foc m unknowns，and inolude in their right hand sides ℓ on $\ell+1$ values ar on br，which are stoned as solutions from the previous case i．To meke physical sevse，this previous value of imut be as indicated in Table II。 Casesi＝11， 12 merely form in estimatos of a value K whioh is the ratio of a giren number y_{n} to ax expression involving the Beasel Practions and the stored solutions of the previous case i as indicated．

After printing the solutions，the progren requests anotion parameter i with asscoiated data．Any number of sequencos headed by i may le taken，or repcated with different data，using the same set of Bessel Functions．Only $\dot{x}=0$ or any negative integer $\geqslant-511$ ， followed by an integer ℓ ，returns the program to the opening secuenee to compute a new set of Bessel Functions，which replace the previous set．

Physical inderpretation

The program is intended for determining the anguar harmonics a_{s}, b_{s} of a directioncol wave spectrum $\mathrm{E}_{\mathrm{r}}(E)$ ，

$$
a_{B}+E b_{s}=\int_{0}^{2 \pi} \operatorname{ta}(\theta) e^{\operatorname{sis} \theta} \theta,
$$

with sfrom 0 up to a certain order，giren the components of the cross speotra x_{n} or y_{r}（as functions of frequency \dot{f} ），between wave detectors at ared distances along the Iine from which θ is measured．Detectors of horizontal motion（or slope）as well as of vertical wave motion are essumed in most of the equations． The croas spectra may be wtained in the required form by means of NoI．0．Progran 50，The arguments G_{n} of the Bessol Functions ace essentially

2r x dintances between deteotors／waveleagth，
and must be canculated separately，according to the fregueroy and the phygical rature of the weves，Eguations $\dot{A}=1$ to 10 aro wufsosent fon ocem surface werfes，but all equations are molovant to scisme vavos（momosolismz）．In practice a complote set of hamonica（mp to cemtain order）may be obtained fron a jimited selection of the equetions avatable．

Who thoow foc ocear wros mey be foun in papers by

in an unpulished manuscript by Mos. Longuet-Figeins, refot. (N, B. There are some misprints in the equations on the 8 th and gth pages of the latter manuscript $)$

Romergs If the program is to be used for oumputation of Bossel puactions only, it is quicker to use the abmeviated fom 51.0 , which ont to the 3 chapters contairing the instructions. Similarly, for ocean wave analysis, progran 51.2 is suticiont and guioker than 5\%. Program 51.1 is quidker than 51.2, but is leas comprehensive.

Fererences 1. Gray, Mathows, and Macrobert. A treatise on Bessel Funotions. Macmillan, London, 2nd edn. 1952.
2. Fistoher, Miller, Roserhead, and Comeio. An index of mathematical tables. Blabkell Sci. Pubs. Oxford, zad edn. 1962.
3. Barber, N.T. A proposed method of surveying the ware state of the ooean. N.Z.J. Soi. 2, 99-108 (1959).
4. Longuetmiggins, MoS. Theory of noise measurement by seismic arrays. (Unpubished manseripi).

Pyogumees DATP CARTMRICMT

TABETE

1	Invat	Priated cubpat＊
1	$\ell+1$ numbers $x_{n}, r=0(1) e_{\text {d }}$	$0,20, x_{r},(r=1(1) R), s, a_{g},(s=2(2) 20)$ 。
2	$\ell+2$ numbers $x_{0}, x^{\prime}, x_{r}, x=1(1) e_{0}$	$0,20,2, a_{2}, x_{n},(r=1(1) b), s, a_{s},(s=4(2) 2 c+2)$.
3	Seme as 1	$1, a_{1}, \mathrm{x}_{r},(r=1(1) 2), s, a_{s},\left(s=3(2) 2^{2}+1\right)$.
4	ℓ mabers $y_{r}, x=1(1)$ ，	$x_{s}(x=1(1) b), s, a_{s},(s=1(2) 2 l-1)$.
5	$\ell+1$ nurbers $y_{r}, r=0(1) \ell$.	Same as 1.
6	$\ell+2$ numbers yo， $\mathrm{y}^{\prime}, \mathrm{y}_{\mathrm{r}}, \mathrm{r}=1(1) \mathrm{E}_{0}$	Same as 2。
7	Same as 1.	1，$b_{1}, x_{r},(r=1(1) 0), s, b_{s},(s=3(2) 23+1)$.
8	Sene as 1.	Same as 3.
9	Same as t\％	2，$b_{2}, x_{r}(r=1(1) e), s, b_{s,}(s=4(2) 2 \ell+2)$ 。
10	ℓ numers $x_{r} r=1(1) l_{0}$	$x_{r},(r=1(1) 0), s_{s} b_{S},(s=2(2) 20)$ 。
11	Integer m ，then m mubers $\mathrm{y}_{\mathrm{r}}, r=1(1) \mathrm{m}$ ，	$y_{r}, z_{r}, z_{r} / y_{r},\left(r=1(1) m\right.$ ，z_{r} ，is $l_{\text {，}} h_{0} s_{0}$ of equation（Table II）
12	Same as 11.	
13	Integer in，number K ，then $\mathrm{m}+2$ mumbers $\mathrm{yo}^{\text {，}} \mathrm{y}^{\prime}, \mathrm{y}_{\mathrm{r}}, \mathrm{r}=1(1) \mathrm{m}$ ，	$m, K, 0, a_{0}^{\prime}, ~ Y 0,2, a_{2}^{\prime}, y_{2}^{\prime} \nabla_{i},(r=1(1) \mathrm{n}), \mathrm{s}, \mathrm{a}_{S}^{\prime},(\mathrm{s}=4(2) 2 m+2)$ 。
14	$" \quad$＂，then m numbers $y_{r}, x=1(1) \mathrm{m}$ ．	$\mathrm{m}, \mathrm{K}, \mathrm{V}_{\mathrm{r}},(\mathrm{r}=1(1) \mathrm{m})$ y $\mathrm{s}, \mathrm{a}_{s}^{\prime},(\mathrm{s}=1(2) 2 \mathrm{~m}-1)$ ．
15	$", \quad$ ，，then $\mathrm{m}+1$ mubers $\mathrm{y}^{\prime}, \mathrm{V}_{\mathrm{r}}, \mathrm{r}=1(1) \mathrm{m}$ 。	$m, K_{2} 2, b_{2}^{\prime}, \mathrm{y}^{\prime}, y_{r},(r=1(1) \mathrm{m}), \mathrm{s}, \mathrm{b}_{\mathrm{s}}^{\prime},(\mathrm{s}=4(2) 2 \mathrm{n}+2)$ 。
16	Same as 14，	$\mathrm{m}_{\mathrm{y}} \mathrm{K}, \mathrm{y}_{r}(r=1(1) \mathrm{m}), \mathrm{s}, \mathrm{b}_{\mathrm{s}}^{\prime},(\mathrm{s}=1(2) 2 \mathrm{~m} \cdots 1)$ 。

＊Thess printed cutputs follow those detailed mder Output（b）and（c）．

TABLETI

\therefore	
1	$a_{0}=x_{0} ; \frac{1}{2} a_{0} J_{0}\left(q_{1}\right)-a 2 J_{2}+\ldots 0+(-1)^{b_{2}} a_{2} J_{2}\left(o_{1}\right)=\frac{1}{\varepsilon_{2}}$
2	$r_{0}=x_{0} ; a_{2}=x^{\prime} ; \frac{1}{2} a_{0} J_{0}\left(q_{1}\right)-a_{2} J_{2}+\ldots m(\ldots 1)^{2} a_{2} b_{2} J_{2} d_{2}\left(q_{1}\right)=x_{1} x_{1}$
3	
4	
5	Similar to $i=1$ ，but with argument $q^{\prime} \times$ ingteed of q
6	＂＂去 2 ，＂＂＂＂＂＂
7	
8	
9	
10	
11	Solutions from $A=1$ used to give m estimaten of \mathbb{K} fron
12	Solutions from $i=3$ used to compute m estimates of K from
13\％	$a^{\prime} 0=50 \cdots a_{0} ; a^{\prime} 2=y^{\prime}+a_{2} ;$
	where the a_{3} are solutions from $i=i$ ，dividod by K^{2} ，
14：	
	whers the $a_{i s}$ are sclutions fron $\dot{L}=8$ ，divaded by $K_{\text {。 }}$
15＊	
	where the b_{5} are solutions from $i=10$ ，dyvided by K ．
16＊	
	where the ${ }^{\text {a }}$ ，are solutions from $\dot{i}=7$ ，atraded by \mathbb{R} ，

For $1=1-10$ ，the surfter takes the ratues $1(1)$ e，
Fow $i=13-16$ ，$: \quad$ i in is it $1(1) \mathrm{m}$ 。

M.I.O. PROGRAM 52 and 524 .

Title Tidal spreading, parts 1 and 2 being Prograns 52 and 52A,
Language CHF $3 / 4$
Machine Meroury
Purpose $\mathbb{N}_{\mathrm{I}} \mathrm{I}_{\mathrm{O}}$, Progran 52 attempts to fit the product of a Iow pass filter and tidal frequenoies assuning that the input is the amplitude spectrun of tho tides.
M.I. O. Progran 52A attompts the same thing but also allows the velocity spectrum to enter.

These are special purpose prograns. Details of the computations are kept in a mathematics library file.

Programer JAMBS CRRISE
H.I.O. PROCRAM 5

Trity Che b by Differencing.
Code Meroury antocode Mochine merctry
Poxpose To find large mistakes in data ponohed on 5-hole Meroury tape
Tapes Program tape, paraneter tepe, data tapo.
Permeten Rape $\left.\begin{array}{c}j \\ k \\ x\end{array}\right\}$ where $n=100 j+k$ is the meximum diference ofpected, terms.
Deta in nombers.
End Tnacation \rightarrow CEF.
Qpenatore (1) Run in the prosem tape:
(2) Run in the paranetex tape followed by the dats. Parchag will begia witht the dete is being read. Pintshes asiving fow more data.
(3) (2) may be repeated with a new set of parameters and datu。

Output This is a list of the mubers of the terms where the differences exceed the value x.
At the end of the just the sum of all the terms is given.
Parameters None.
Pestrictions $\quad 0 \leqslant j \leqslant 511$
$0 \leqslant \mathrm{k} \leqslant 99$
Inge, $0.56 n+0.22 N$ (where N is the no, of tines x is exceeded)
Mothod The data is a series of n terms, denoted by a; where $i=0(1)_{n}-1$. The program first punches a list of the values of \pm for which $\left|a_{i}-a_{i-1}\right|>x$
and then punohes the value

Remangs (1) The highost bapter no. is 0.
(2) Matrix routhes are not required.
(3) This progrem males no vse of any CHIF 3 or 4 facinity.

Note This program was written under Job no. 1605.

Progranmer MAS. WINDY WILSON

NoI.O. PROCRM 54

Tiftle Direotional wave analysis - 3 .
Code Moroury Aatocode. Machine MERCURY
Purpose Given tho amplitudes of the Fousex harmonios up to owder of an unknom function, to compute two reasonable approximetrons to the function at given incernents of angle from 0 to 360°.
(Destoned premarily for use with output of Progran 51)
Pepes Program, Parmeters and date.
Perameters and data 5 invegers:
$I=$ IGentifioution peraneter (such as frequency)
$J=$ (a) any integer <0; results divided by 7
(b) ary integew $\geqslant 0$; results not duvided by π $K=R e f e r e n c e ~ a n g l e ~ i n ~ w h o l e ~ d e g r e e s ~$
$\bar{L}=$ Incremental angle in whole degrees
$H=$ Highest order harnonio
followed by:
N pairs of maners s (integer), A_{s} (fixed decinal number), where s covers the numbers 1 to N in any crder, then another set of N pairs $s_{3} B_{S}$, arranged similem $2 y$.
(It is assumed that $A_{0}=1$, so that in practice these hammios ane in efrect $A_{s} / A_{0,} B_{g} / A_{0}$)

Pestrietjons $\quad 0 \leqslant K \leqslant 360$
$1 \leqslant L \leqslant 90$
$1 \leqslant N \leqslant 64$
Qperation The conputer takes the progran, then parameters and data tape, prints output, then returns to ask for next set of paraneters and data, starting with I.
ontput (a) 4 integers I, J, K, N, from invut
(b) Integea s, followed by 2 numers $\mathbb{E}_{1}(\mathrm{~s}), \mathrm{E}_{2}(\mathrm{~s})$, where s talses the values $O(I) M, H$ being the largest multipie of L which i.s $\leqslant 360$.

Method If $I \geqslant 0$, so thot E_{4} and E_{2} are not divided by π, the quantities computed are

$$
\begin{aligned}
& \mathbb{E}_{4}(s)=\frac{t}{2}+\sum_{r=1}^{M}\left[A_{r} \cos r(s-K)+B_{r} \sin r(s-K)\right], \\
& \mathbb{F}_{2}(s)=\frac{1}{2}+\sum_{r=1}^{M} Q_{r}(s)\left[A_{r} \cos r(s-R)+B r \sin r(s-K)\right], \\
& \text { where } Q_{r}(s)=\frac{(N)^{2}}{(N+r)(N-r)!}
\end{aligned}
$$

Remarts The quantities $\mathbb{E}_{1}, \mathrm{~F}_{2}$, defined abore, can be shom to be erpressible in the form

$$
\mathrm{E}_{\mathrm{p}}(\mathrm{~s})=\int_{-\pi T}^{A} \mathbb{T}(\phi-\mathbb{R}) \mathrm{I}_{\mathrm{p}}(\phi-B) \mathrm{d} \phi
$$

$$
\begin{aligned}
& \text { where } E(\phi)=\frac{1}{2}+\sum_{i=1}^{-2}\left(A_{n} \cos x \phi+E_{r} \sin m \phi\right) \text {. } \\
& f_{1}(\hat{i})=\frac{1}{2 m} \frac{\sin \left(\mathbb{N}+\frac{1}{2}\right) 2}{\sin 2}, \\
& \rho_{2}(\phi)=\frac{2^{2 N}}{2 \pi} \frac{(N)^{2}}{(2 N)!} \cos ^{2 N} \frac{t}{2} \phi .
\end{aligned}
$$

$f_{1}(\phi)$ and $f_{a}(\phi)$ are "rilter functions" of total integral unity, psaked in the afrection $\phi=0$, the more sharply the lerger the value of N .

Fon a general fuotion $P(\phi)$ we have also

$$
\begin{gathered}
E(\phi)=\pi \mathbb{R}(\phi) / \int_{-\pi}^{\pi} R(\dot{\phi}) d \phi \\
\text { and } A_{r}+i B_{r}=(1 / \pi) \int_{\cdots \pi}^{\pi} E(\phi) e^{i x \phi} d \phi .
\end{gathered}
$$

Brogranmer DAVID CARTWRTGHI

N.T.O. PRCGRAM 55

Titte Statistical Moments.
Code Meroury Autocode. Mashine MmRCURY
Furpose To compute the mean, moments, and currolents, up to order 4 , of a given set of numbers, and also the comoments and comomaleats when two parallel sets of numbers are given.

Tapes Progran, paraneters, data (possibly data tape 1 and date tape 2).
Parameters (1) Integer $i=1$ or 2 .
(2) Integers j, k, where $(100 j+k)=n$ is the number of terms in each series.

Data If $i=1$, a single set of n numbers.
If $i=2$, the first set, followed by the second set, each containing n mubers.
The numbers in the data need not be integers, on positive.
Operation Atter taking the progran, the computer may repeat the cyole: paraneters-data-ontput, any number of tines, and calls for further parameters and data after each output.

It a set of data A is to be used in son fanction with set B and also with set C, then it must be fed in twice separately, as for exemple, 2, j, k, A, B; 2, j, k, A, C; and so on. This means that tape A may have to be re-wound rather quickly.

Output (1) Titile.
(2) If $i=2$, prints $n, m_{10 y} m_{01,}$, then the following array of 36 numbers:

μ_{10}	μ_{01}			
μ_{20}	μ_{11}	μ_{02}		
μ_{30}	μ_{21}	μ_{12}	μ_{03}	
μ_{40}	μ_{31}	μ_{22}	μ_{13}	μ_{04}
κ_{40}	κ_{31}	κ_{22}	κ_{13}	κ_{04}
1	μ_{11}^{\prime}	1		
μ_{30}^{\prime}	μ_{21}^{\prime}	μ_{12}^{\prime}	μ_{03}^{\prime}	
μ_{10}^{\prime}	$\mu^{\prime} 34$	$\mu^{\prime} 22$	μ_{13}^{\prime}	$\mu^{\prime} 04$
K_{40}^{\prime}	K_{31}^{\prime}	$K^{\prime} 22$	K_{13}^{\prime}	K_{04}^{\prime}

Values of μ and x axo printod $(0,4)$; votuos of μ^{\prime} ond k^{i} axe printed (2,4).
(2b) If $i=1$, prints $n_{,} m_{10}$, then 9 numbers, consisting of the first colum orly of the above armay.
(3) Ontput of the form $2 a$ or $2 b$ is repeared after every imput sequence starting with i, j, k.

Restrigtions $\quad i=1$ or 2 only
$0 \leqslant j \leqslant 245$ if $i=1,107$ if $i=2$
$0 \leqslant k \leqslant 99 ; \quad i(100 j+k) \leqslant 21504$
Both j and k mast be given, even if one of them is 0 .
Method Calling the two series $x_{r}, J_{r}, r=1(1) n, n=100 j+k_{\text {, }}$
(w_{2} only ${ }_{3}$ if $\pm=1$), the progran first computes the nean values

$$
m_{10}=\frac{1}{n} \Sigma x_{n}, \quad m_{01}=\frac{1}{n} \Sigma N_{n},
$$

then, after replacing each value x_{r}, Ir by

$$
X_{r}=X_{r}-m_{10}, \quad Y_{r}=Y_{r}-m_{01}
$$

computes the moments $\mu_{\mathrm{pq}},(\mathrm{p}+\mathrm{q}=1,2 ; 3,4)$,

$$
\text { where } \mu_{\mathrm{pq}}=\frac{1}{\mathrm{n}} \mathrm{EX}_{\mathrm{Y}} \mathrm{p}^{\mathrm{q}} \text {, }
$$

and the 4 th order cumulants:

$$
\begin{aligned}
& \kappa_{40}=\mu_{40}-3 \mu_{20}^{2} \\
& \kappa_{31}=\mu_{31}-3 \mu_{11} \mu_{20} \\
& \kappa_{22}=\mu_{22}-\mu_{20} \mu_{02}-21_{11}^{2} \\
& \kappa_{13}=\mu_{13}-3 \mu_{11} \mu_{02} \\
& \kappa_{04}=\mu_{04}-3 \mu_{02}^{2}
\end{aligned}
$$

Finally, the program computes the nomainsed monents and cumiants:

$$
\begin{array}{ll}
\mu^{\prime} \mathrm{pq}=\mu_{\mathrm{pq}} /\left(\mu_{20}\right)^{p / 2}\left(\mu_{02}\right)^{q / 2}, & (p+q=2,3,4), \\
\kappa_{\mathrm{pq}}^{\prime}=\kappa_{\mathrm{pq}} /\left(\mu_{20}\right)^{\mathrm{p} / 2}\left(\mu_{02}\right)^{q / 2}, & (p+q=4) .
\end{array}
$$

Notes μ_{10} and μ_{0}, should ideally be zero, but owing to rounding-off exrors they will usually be printed (in flcating decimal) as small non zero numbers. The nomalised variances μ^{\prime} zo, $\mu^{\prime} 0_{0}$ ase always printed as exactly 1.
$\mu^{\prime}{ }_{1 i}$ is the correlation coefficient
$\mu^{\prime}{ }_{30}, \mu^{\prime} 03$ are the coefficients of "skewness"
$\mu^{\prime}{ }_{40}, \mu^{\prime} 04$ are the coefficients of "luurtosis"
The cumbants of order 2 and 3 are identical with the corresponding moments.

Programmer DAVID CARTWRTGIL

NoI.O. PROCRAIS 56 ana 56 A

Thtle Polynomial fitting to Themistor Caluration Curves.

Code Meroury autocode Machine NERCTIT

Parpose To approxinate to some measured calibration curves of a series of thermistors (used on Discovery II, August 1962) by polynomions of degree up to 4 , fifted by "least squares" to 7 pains of readings.

Tapes Program and data on one tape.
Perameter tape None.
Data. A. block of 7 pairs of numbers

	zi y_{1}	, where $:=1(1) 7$
End Indtation	\Rightarrow CRTP.	

Operation (1) Run in the program.
(2) Rum in the date, Punches output.
(3) (2) may be repeated with more blocks of data.

Qutpuat A list of values

```
an where n = O(1)4
\mp@subsup{V}{4}{4}
an}\mathrm{ where n=0(1)3
v
an whwre n = O(1)2
*
(In NoI_O. program 56A va, v
```

Parameters None.
Restrintions $\quad i=\overline{7}$

$$
n=4(-1) 2
$$

Feilumes $\mathbb{N}, I_{0} 0$ Program 56 fails when asked to calculate a negative square root; i.e. when v^{2} is negative. If this oocurs run the data with IN. I.0. Progran 56A, which prints V^{*} (which equels v^{2}) instead of v 。

The The program took 3 minutes to do 5 cases.
Method Given 7 values of x and y_{i}, we use matrix substitution to find the values of a_{n} in the following simultaneous equations:

$$
\begin{aligned}
& 7 a_{0}+a_{1} \Sigma x+a_{2} \Sigma x^{2} \ldots \ldots+\sigma_{n} \Sigma x^{n}=\Sigma y \\
& a_{0} \sum x+a_{1} \Sigma x^{2}+a_{2} \Sigma x^{3}, \ldots 00+i_{n} \sum x^{2}+4=\sum x y \\
& a_{0} \sum x^{n}+a_{1} \Sigma x^{n+2}+a_{2} \Sigma x^{n+2} \ldots \ldots+a_{n} x^{n n}=\Sigma x^{n} y
\end{aligned}
$$

where $n=4(-1) 2$.
We also require either
(a) the value v_{1}^{*} in Progran 56 A

$$
V_{2}^{*}=\frac{1}{n}\left\{\Sigma y^{2}-a_{0} \Sigma y-a_{1} \Sigma x y \ldots a_{n} \Sigma x^{n} y\right\}
$$

or (b) the value of $v_{i s}$ in Program 56

$$
v_{n}=\sqrt{v_{n}}
$$

Notes (1) This is not a general purpose progran but one written specially for Job no. 1626.
(2) When NoI.O. Progran 56A is used an $*$ is printed against the last figure of the value of vit.

Progammer MRS, WENDY WILSON
N. I.O. PROCRMM 57A, Atlas and Hercury

Ti土tie Integrels of products of associated Iegendre Functions.
Lenguage Atias version $\left.\begin{array}{c}\text { Rercury version }\end{array}\right\}$ chlle $3 / 4$
Hotes M.I.0. Frogram 57A was tested amd initionly mun on iercury; it was then run on tilas to obtain more accurrey.

IT.I.O. Progran 57 was abazdoned before completion becouse the data was incorrect.

These are special purpose prograns.
Programaer JMiES CREASE

N.I.O. PROCRAM 58 Atlas - Station data

There are several versions of this program depending on the ther pressure of depth is imput (see note A in mothod). They are:-
a) NIO 58 Atlas pressure (ab) input
b) NO 58 Atlas pressure ($1 / 10 \mathrm{~kg} / \mathrm{cm}^{2}$) input
c) NIO 58 Atlas pressure (ab) input, poti a output
d) NIO 58/1 AtIas, depth input, Heditemaneen
e) NTO $58 / 2$ Atlas, depth input, Westem IVorth Atlantio
f) NIO 58/3 Atlas, depth input, Eastern Morth AtIantic.

Language

Machine Amps:
Purpose $\quad \begin{aligned} & \text { Tarious properties on sea water are calculated from the sets } \\ & \text { of readings of pressure (on depth), temperature and salinity } \\ & \text { taken at a station. Some results axe given at observed, and } \\ & \text { some at stendard, pressures. }\end{aligned}$
Tapes $\quad \begin{aligned} & \text { Progren, perameters and data are all one dooument but usually } \\ & \end{aligned}$
tape 1 job description and procram, which ends with the progran constants and ***T
tape 2 parameters and date, ending with * * * Z.
N.B. It is essential that the tapes be read into the computer in the correct order.

Job description
end progran
This is at the start of the progran tape and consists of:-
JOB
S001 + 6 digits, followed by program title
ourreus
0 LINT PRTNTER I ITITES
Compumitg o insmructions
STORE 22 BLOCKS
Whene $I=200+100$ (no, of stations)
and $c=1500+300$ (no. of stations)
The progrem is headed by:-
comptiter mita
Paraneters and
atta
The parane ters are:-

1) I (salinity correction, zero usually)
2) $m \quad\left(t \leqslant 19\right.$ and must be odd, see a_{i} below)
3) a_{i} (standard pressures and intervals) for $i=0(1) m-1 p$ The standard pressures are defined by

$$
p=a_{0}\left(a_{1}\right) a_{2}\left(a_{3}\right) a_{4} \ldots \ldots \ldots c \cdot a_{m-3}\left(a_{m-2}\right) a_{m-1} .
$$

The data consists of itams 4) to 6):-
4) a title consisting of one line only, i,e. 1 teleprinter line, such as ship and station muver, date, ete;; the title must not be onitted and must begin with CR; it may not contain another CR before the final CR LF.
5) a the number of samples for that station ($n \leqslant 4.9$).
6) pressure, temperaturo and selinity values punched as integers, 1 sample per line, and beins:-
$p_{i} \quad 100 t_{i} \quad 1000 \mathrm{~s}_{i}$ for $i=0(1) \mathrm{n}-1$
where p is pressure or depth (wetres), integer (see first paragraph of progran description, a) to f), for form of input);
t is temperature ${ }^{\circ} \mathrm{C}, 2 \mathrm{D}$;
S is salinity \%, 3D.
If t_{i} is missing punch 9999;
if S_{i} is missing punch 99999 。
For any i, eithor of t_{i} or S_{i} may be missing but p_{i} must be present.
If pois a surface value (e_{A} é po $=1$) punch 0 .
The data, items 4) to 6), may be repeated as of ten as required.

If new paranetors are required iten 6) should be followed by
munout CR LF
NEW PARATETERTB

* (asterislr)
and parameters 1) to 3) followed by data 4) to 6).
At the end of the data, item 6) should be followed by monout CR LT

ITO MORE DATA
$>$
more than $6^{\prime \prime}$ blanis tape

* * * Z

Output The output for each station consists of:-station title
a) results at observed pressures
b) results at standard pressures.

Sections a) and b) are on separate pages on the line printer output.
In section a), if either temperature or salinity was missing in the data an asterisk (*) is printed in place of each missine value. The pressure and any remaining data are printed for the relevant line, but no other results appear on that line.

The results a) at observed pressures are:-
sample number;
pressure, decibars (see note A in Method), integer;
this is cosorved or interpolated from mprotected themometer readings;
deptl, metres, integer; calsulated from pressure and speoific volune:
salinity, \% 3D; from electrical conductivity;
temperature, ${ }^{\circ} \mathrm{C}, 2 \mathrm{D}$;
potential tompercture, ${ }^{\circ} \mathrm{C}, 2 \mathrm{D}$;
o_{t}, 3D: progrem o) in list in first poragraph of program
description hes potential density \dot{i}, e. $\sigma_{\theta}(\theta$ being
potential tomperature) outpat here, 30 , instead of of;
specific volumes $\mathrm{ml} / \mathrm{cm}$, 5D;
spocific volume anomaly, mi/ $\mathrm{gm}, 6 \mathrm{D}$.

The latter four quantities are computed fron Hkmen's
compressibility formula (1908), and Cox and Amith's
(1959) values of specific heat.

The results b) at standard pressures are:-
pressure, decibars, integer;
dynamic height anomaly, dynamic metres, 3D;
this is obtained by interpolation and integration of specific volune anomalies;
potential onergy anomaly, metres x decibars, $1 D$;
obtained by integration of product of pressure and
specific volume anomaly, diviled by gravity;
sound velocity, metres/second, 1D; by W.D. Wilson's formula (1960),
sounding velocity, metres/second, $1 D$; hamonic mean of sound velocity from su face to depth equivelent to given pressure.
All values except pressure are followed by the interpolation error.

Method The complete calculation for one station will be described A station consists of n sets of data, where one set of data (or one sample) consists of three numbers - pressure or depth (see first paragraph of this program desoription), temperature and solinity.
Note A Depth inputs are immediately convarted to pressure
(ab) by the best available relation betreen pressure and depth for the geographical area in question, of the form

$$
p=C_{16} \partial+C_{17} \partial^{2}
$$

where $C_{1 s}$ and C_{17} are the last two constants on the program tape. C_{3} and C_{9} have also been adjusted using formulae

$$
C_{9}=C_{0} / C_{16}
$$

and.

$$
C_{3}=-C_{17} \quad C_{9}^{2} / C_{15}
$$

Missing data

If the pressure is missing, the whole sample must be omitted, In either or both of the terperature and salinity are missing, but the pressure is present, the sample is included in the station, but it is not used in any celculation.

The progran

Mhis is in 4 chapters, 3 for computation and one mainly for orgmisation (bapter 0). The oalculations fall into three distinct sections as follows:-
(1) Quantities depending on only one sample (chapter 1).
(2) Quantities depenaing on several adjacent samples (chaptor 2).
(3) Interpolation to stendard pressures (chapter 3).

The ith sample consists of 3 values, pressure (P_{i}), temperature $\left(t_{i}\right)$ and salinity $\left(S_{i}\right)$, w ere $i=0(\mathcal{F}) n-1$, and the coreeoted values, not the original readings, are constiered in the following description. Other symbols will be defined as they arise.

Calculation (1)

For a sample i, there are 5 quantities which depend on P_{i}, t_{i} and S_{i} only. They are

$$
\begin{aligned}
\sigma_{t} & =\text { signe } t \\
\alpha & =\text { specific volune } \\
\delta & =\text { specific volume anomaly } \\
\theta & =\text { potential temperature } \\
V & =\text { sound velocity }
\end{aligned}
$$

and all are defined as polynomials in $F_{9} t$ ard S_{0}. In general., the polynomiel coeficients b_{j}, and the other constants c_{j}, have been obtained by the method of Least Squares.

We first define

$$
\begin{equation*}
\sigma_{0}=\sum_{0}^{3} b_{r} s^{r} \tag{1}
\end{equation*}
$$

and then

$$
\begin{equation*}
\sigma_{t}=\frac{\sum_{r=0}^{3} b_{r+4} t^{r}+\sum_{r=0}^{3} b_{r+4} t^{r}+\sigma_{0} \sum_{r=0}^{3} b_{r+a} t^{r}+\sigma_{0}^{2} t \sum_{r=0}^{3} b_{r+12} t^{r},}{a_{3}} \tag{2}
\end{equation*}
$$

To derine $\alpha \equiv \alpha(S, t, P)$ and $0 \equiv \delta(S, t, P)$, we require

$$
\begin{array}{r}
\alpha(S, t, 0)=\left(1+0_{4} \sigma_{t}\right)^{-i} \\
\text { and } \alpha(35,0, P,)=\frac{\sum_{r=0}^{3} b_{r+34} P^{r}}{c_{8}+c_{9} P} \tag{4}
\end{array}
$$

whence

$$
\begin{align*}
\frac{\alpha(S, t, P)}{a(S, t, 0)} & =b_{15}+P \sum_{r=0}^{3} b_{r+16} t^{r}+P \sigma_{0} \sum_{r=0}^{2} b_{r+20} t^{r} \\
& +P \sigma_{0}^{2} \sum_{r=0}^{1} b_{r+23} t^{r}+P^{2} \sum_{r=0}^{2} b_{r+25} t^{r}+P^{2} \sigma_{0} \sum_{r=0}^{2} b_{r+2 a} t^{r} \\
& +P^{2} \sigma_{0}^{2} \sum_{r=0}^{1} b_{r+31} t^{r}+b_{33} P^{3} t-\frac{c_{5} P}{c_{5}+c_{7} P} \tag{5}
\end{align*}
$$

and $\delta(S, t, P)=\alpha\left(S, t_{y} P\right)-\alpha(35,0, P)$
A11 the constants in equations (1) to (5) come from [1].
A new formula for the potential tempereture has been derived, by fitting a least squares polynomial to the results from
N.I.O. Progrem 32. The various steps of the cslculation can be followed from the liethod descriptions of N.I.O. Erograms 31, 34 and 32 , in that order. The least squares procren used was RUE 195/A, (ee also Note (1)).

The polymonial is
$\theta \cdots 10=\sum_{t=0}^{4} \sum_{m=0}^{4} \sum_{n=0}^{4} b{ }_{162+4 n+11+59}(1-3000)^{l}(t-10)^{m}(S-35)^{n}(7)$
where $\ell+m+n \leqslant 4$.
Pinally, the sound velocity is derined by

$$
\begin{equation*}
V=b_{3 s}+\Delta V_{t}+\Delta V_{P}+\Delta V_{s}+\Delta V_{s t p} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta V_{t}=t \sum_{r=0}^{3} b_{r+39} t^{r} \tag{9}\\
& \Delta V_{p}= p \sum_{r=0}^{3} b_{r+43} P^{r}, \tag{10}\\
& \Delta V_{s}= b_{47}(S-35)+b_{48}(3-35)^{2} \tag{11}\\
& \text { and } \Delta V_{s t p}=(S-35)\left(b_{49} t+b_{50} P+b_{51^{2}} P^{2}+b_{52} P t\right) \\
&+P t \sum_{r=0}^{2} b_{r+53} t^{r}+P^{2} t \sum_{r=0}^{1} b_{r+56} t+b_{58} P^{3} t \tag{12}
\end{align*}
$$

The coefficients used in equations (3) to (12) cone from [2]. The sound velocity is the only case in which the pressure is in $\mathrm{kg} / \mathrm{sq}$ am and not in deribars.

Calculation (2)
There are 4 quantities obtained by integration, and these depend on several values of i; that is, on several samples. They are

$$
\begin{aligned}
D & =\text { depth } \\
\Delta \overline{D I} & =\text { dynamic height anomaly } \\
\underline{x} & =\text { potential energy anonaly } \\
\bar{V} & =\text { sounding velocity }
\end{aligned}
$$

The genercl formal definitions are

$$
\begin{align*}
& D_{i}=C_{10} \int_{p}^{P_{i}} \alpha(S, t, p) d p \tag{13}\\
& \Delta D_{i}=C_{11} \int_{p}^{P_{i}} \delta(s, t, p) d p \tag{14}\\
& \chi_{i}=C_{10} \int_{p}^{P_{i}} p \delta(S, t, p) d p \tag{15}\\
& \frac{1}{V_{i}}=\frac{1}{D_{i}} \int_{0}^{D_{i}} \frac{d D}{V} \tag{16}
\end{align*}
$$

The constants ensure that P may be given in decibars.
Since P is given at unequal, but fairly close, intervals, integration by the trapezium rule is convenient and adequate. The formulae used in the celculation follow, and in all cases we define for convenicace

$$
\begin{align*}
2 h_{i} & =P_{i}-P_{i-i}, \\
\alpha_{i} & =\alpha_{i}(S, t, P)^{\prime} \\
\text { and } \quad \delta_{i} & =\delta_{i}(S, t, P)_{Q} \tag{17}
\end{align*}
$$

Thus we have

$$
\begin{equation*}
D_{i}=D_{i-1}+C_{10} h_{i}\left(\alpha_{i}+\alpha_{i-1}\right) \text { for } i \geqslant 1_{i} \tag{18}
\end{equation*}
$$

and $D_{0}=C_{9}\left(C_{10} P_{0}\right)+C_{8}\left(C_{10} P_{0}\right)^{2}$.
Similarly

$$
\begin{equation*}
\Delta D_{i}=\Delta_{i-1}+C_{i 1} h_{i}\left(\delta_{i}+\delta_{i-i}\right) \text { for } i \geqslant 1 \tag{20}
\end{equation*}
$$

and $\Delta D_{0}=0$. The potential enerey anomaly becomes

$$
\begin{equation*}
x_{i}=\chi_{i-1}+C_{10} h_{i}\left(P_{i} \delta_{i}+P_{i-1} \delta_{i-1}\right) \text { for } i \geqslant 1 \tag{2i}
\end{equation*}
$$

and $x_{0}=0$.
Finally we have
$P_{i} \bar{V}_{i}=P_{i-1} \bar{V}_{i-1}+h_{i}\left(V_{i}+V_{i-1}\right)$
$\operatorname{ard} \overline{\mathrm{V}}_{a}=\mathrm{V}_{0}$
When Celculations (1) and (2) are complete, the first table of results is punched. No interpolation has jet been attempted.

Calculation (3)
Sore of the quantities calculated in Sections (1) and (2) are required at standard pressures, and these are
$\Delta D=$ dynamic height anonaly
$\chi=$ potential energy anomaly
$V=$ sound velocity
$\vec{V}=$ sounding velocity
The argument is the pressure P.
The interpolation for ecch variable is carried out in an exactly similar way, so only one variable y, say, will be considered.

We start with n values of P_{i}, $i=O(1) n-1$, and there is a y_{i} corresponding to each P_{i}. Then y is required for certain specitic values of P denoted by $P_{j}, j=O(1) M-1$. Generally P_{j} is specified at equal intervals, but the interval may vary over the rance of P. (See Porameter tape). We now consider one value P for which $y \equiv y(F)$ is required.

There are 5 possible coses.
(1) $P<P_{0}$
(2) $P_{0} \leqslant P<P$,
(3) $P_{i} \leqslant P<P_{i+1}$ for $i=1(1) n-3$
(4) $P_{n-2} \leqslant P \leqslant P_{n-1}$
(5) $P>P_{n-1}$

In cases (1) and (5) interpolation is impossible. In the other cases two values $\left(Y_{1}\right.$ and $\left.Y_{2}\right)$ of y are computed, using different formulae or slightly different arguments, and y is taken as the mean of the results. The difference e gives an indication of the accuracy. Thus we calculate

$$
\begin{aligned}
y & =\frac{1}{2}\left(Y_{1}+Y_{2}\right) \\
\text { and } \theta & =\frac{1}{2}\left(Y_{1}-Y_{2}\right)
\end{aligned}
$$

In general the fagrange 3 point interpolation formula is used. If the arguments are P_{r-1}, P_{P} and P_{r+1}, then

$$
\begin{aligned}
Y_{1}\left(\text { or } X_{2}\right) & =A_{r-1} Y_{r-1}+A_{r} Y_{r}+A_{r+1} Y_{r+1} \\
\text { where } A_{r-1} & =\frac{\left(P-P_{r}\right)\left(P-P_{r+1}\right)}{\left(P_{r-1}-P_{r}\right)\left(P_{r-1}-P_{r+1}\right)} \\
A_{r}= & \frac{\left(P-P_{r-1}\right)\left(P-P_{r+1}\right)}{\left(P_{r}-P_{r-1}\right)\left(P_{r}-P_{r+1}\right)}
\end{aligned}
$$

$$
\text { and } A_{r+1}=\frac{\left(P-P_{r-1}\right)\left(P-P_{r}\right)}{\left(P_{r+1}-P_{r-1}\right)\left(P_{r+1}-P_{r}\right)}
$$

Near the end of the range linear interpolation is necessary. We can now list the formulae used in each case.

Case (1) Interpolation is impossible.
Case (2) $Y_{1}=Y_{0}+\frac{Y_{1}-Y_{0}}{P_{1}-P_{0}}\left(P-P_{0}\right)$

$$
Y_{2}=A_{0} Y_{0}+A_{1} Y_{1}+A_{2} Y_{2}
$$

Case (3) $\quad Y_{1}=A_{i-1} Y_{i-1}+A_{i} Y_{i}+A_{i+1} Y_{i+1}$

$$
Y_{2}=A_{i} y_{i}+A_{i+1} y_{i+1}+A_{i+2} y_{i+2}
$$

Case (4) $\quad Y_{1}=A_{n-3} Y_{n-3}+A_{n-2} Y_{n-2}+A_{n-1} Y_{n-1}$

$$
Y_{2}=Y_{n-2}+\frac{Y_{n-1}-Y_{n-2}}{P_{n+1}-P_{n-2}}\left(P-P_{n-2}\right)
$$

Case (5) Interpolation is impossible.
During interpolation aach line is output as soon as the calculation is tinished. Any specified pressures which fall outside the rance of date given are ignored completely.

Note (1) Whe least squares trivariate polynomial for $\theta(P, S, t)$ was obtained in 6 stages.
(i) $\Gamma(P, S, t)$ was calculated for specified velues of P, S and to (N.I.O. Program 31).
(ii) Results fron (i) were scaled and rearranged. (H.I.O. Progron 34).
(iii) A least squares polynomial was fitted to $\Gamma(P, S, t)$. (R.A. R. 195/A).
(iv) $\theta(P, S, t)$ was obtained fron ar integral equation, wing the polynomial to calculete $I(P, S, i)$. (N.I。O. Progrem 3?)
(v) Results fron (iv) were scaled and rearranged. (N.I.O. Program 34).
(vi) A least squares polynonial was fitted to $(\mathrm{P}, \mathrm{S}, \mathrm{i})$. (R.A.E. 195/).
(2) The polynomial coefricients and other constants are listed at the end of the prozran tape $\left(b_{0}-b_{93}\right.$ followed by $\left.c_{0}-c_{17}\right)$.
(3) If several stations are punched on one tape, there must be nothing except blank tape between the final SpSp on CRIF of one station and the first CR of the next title, i.e. the final number of a station must be followed by two characters only, SpSp or CRLF.
(4) Mercury versions of these prograns are described separately.
(5) W,D. WILSON'S OCMOBRR 1960 formula replaces that of JTNE 1960 which wes used in previous versions of the station data progran, i.e. N.I.O. Programs 28 and 36.

References [1] Fisheries Research Eoord of Canada. M.R.27. By M.F. Foronoric and C. Proese.
[2] W.D.Wilson. Speed of sound in sea water as a function of salinity, temperature and prescure. J. Acoustrical Soc. Anerica, 32, 6, p. 641 (1960)

Progremmer JhMES CREASR

Special IV.I, 0 , EROCRMP 58 Atlas, dated 10/11/1965

This is a special version of N.I.O. Program 58 Atlas pressure (ab) input, for use only with data from DISCOVERY cruise 6, 1965. It is a modernised version (i.e. some lercury instructions have been replaced by Eri ones) and has additional instructions to compute and print-out the percentage of Norwegian Sea water at each observed pressure level.

The program deseription for W.I.O. Progren 58 Atlas is applivable to this special program with tine folloming reservations:-
a) Parameters 1) to 3) (i.e. T, m, a_{i}) must here be followed by tro special parameters U and B, being the values of σ_{t} for North Atlantio water ($t=9^{\circ} \mathrm{C}, \mathrm{S}=35 \cdot 33 \%$) and Norwegian Sea water $\left(t=-0.45^{\circ} \mathrm{C}, S=34.92 \%\right.$) respectively, where $\mathrm{U}=27.399$, $B=28.084$.
b) The woras Dard TTHIE must precede the line of title (iten 4) of data) in every case; similarly it new parameters are required on the end of the data is reached, the line of title must be precoded by the words DATA TITTA, e.g.

```
DATA TTTYE
DI 5684
24
followed by data
    \vdots
DATA mITLE
IDG PARANETERS
*
followed by parameters I, m, a c,
27.399
28.084
DARA TITLE
DI }568
    :
ending data tape with
DARA TIMTE
mO MORE DATA
>
* * * Z
c) The output has an extra value (unlabelled) for each observed pressure, the value betng the percentage of normecian Sea water at that pressure (as defined above).
```

N.I.O. PROGRAM 58 Eercury - Station data

There is a sec of prograns for hercury similar to the set for Atlas, i.e. prograns a) to f) Iisted in the MO Frogran 53 Atlas description

The hercury prograns differ from the Atzas ones only as Follows:-

1) In the Rercury versions there is no JOB DESCRTPMOM or COMPTLER heading, Instead there are two lines of titile.
2) In the Atlas versions there are two RUII OUTI instructions near the end of chapter 0 ; these are omithed in the Nercury versions.
3) In the Mercury version the progran tape ends with \rightarrow; the Atlas one ends with $* * *$ T
4) The Hercury programs are in CHIF 3/4, not Bila,

The Mercury data tapes end with \rightarrow; the Atlas ones end with $* * * Z$.
Wercury operation 1) Read in program; it stops on the arrow.
2) Read in paraneter and data tape; the progran reads and punches for one station at a time until the arrow at the end of the data is reached.

Ir the program is restarted, the re-enter procedure should be used, and the last three blocks on the program tape must be re-read, i.e. the constents.
Itime About $(5 n+2 N)$ seconds per station + progran reading time, where IV is the number of standard pressures obtained.

Title	Therwometer corroctions for deep-sea reversing thermometers.
Language	CHLF $3 / 4$
Machine	MERCURY

Purpose In correcting doep-sea reversing themoneter readings, corrections which are dependort on the water temperaturos the ambient temperature in the laboratory, and the index errors of the themoneters, must be applied. Monual correction is simpliried if the following grophs are prepared with the aid of this program.
a) Protected thermometers. A. graph of observed main themoneter readines against observed auxiliny thermoneter readings for a sequenco of values of Δp, where ΔA_{p} is the correction to be added to the observed main reading to give the true in situ temperature.
2T. B. Index corrections for both aurilinry and nain themone ters are included in this groph.
b) Unprotectod thermoters.

A graph oi observed main themonetor readines wainst the difference between the in situ terperature and the true auxiliary temper ture, for a sequence of volues of ΔT_{u}, where ΔT_{u} is the correction to be added to the observed main terperature to give the true in situ reading of the man themoneter. N. B. Luxiliary thermoters must have index corrections applied before using this graph, but min themometen index corrections are included (see note at the end of llethod).

Tepes

1) Routine 304 (General print, GHIF 3/4)
2) NIO Prograin 59
3) data (including parameters).

The three items ay be corbined onto one or tro tapes, as required; the tapes should all end with \rightarrow.

Parameters and Both protected and unprotected themoneters can be dealt Data with.

Poraneters are as follows:-

1) themoneter cormotion increment in ${ }^{\circ} \mathrm{C}$ (see inote 1 at end of progron description).
2) for protected themoveters, the range of ambient temperatures required, ${ }^{\circ} \mathrm{C} ;$ e. $6.5 \notin \notin 35$; for unprotected thomoneters, the ronge of ambient

- in situ temperatures recuired, ${ }^{\circ} \mathrm{C} ;$ e.5. -10 自台 35.

3) thermoneter number, e.s. 3563
4) thernoweter type, 0 for protectod, 1 for umprotected
5) nonth and yeer of calibration, e.c. 6 \& A 1965
6) the value of V_{0}, the volune of nercury in the stom below $0^{\circ} \mathrm{C}$.

Data follows and consists of two blooles of pairs of readings of ambient terperature and the corresponding index correction.

Let $\quad x=T^{\prime}+V_{0}, \quad y=T^{\prime}-t$
2.)

$$
\text { or } y=\frac{C_{p}(K-x)-I X}{X+C_{p}}
$$

We are given $I^{\prime}, ~ V o, K$ and I (and therefore x) at a number of tomperctures $T_{i}{ }^{\prime}$ and we wish to find y and thence t and t^{\prime} for a sequence of C_{p} sufficient to cover a prescribed range of t from t_{1} to t_{2} say.
$\therefore \quad t_{1}<t<t_{2}$
$\therefore \quad y_{1}=T^{\prime}-t_{2}, \quad y_{2}=T^{\prime}-t_{i}$ are the lover and upper linits of y.

Correspondingly

$$
\begin{align*}
& C_{1} \approx x_{1} / K+I \\
& C_{2} \approx x_{2} / K+I
\end{align*}
$$

are the approxinate lower and upper linits of C_{p}. Suppose we want a C_{p} inorement of b, then for a given T^{\prime} we will start with a ΔT of
b [Integral pert $\left.\left(\frac{C_{1}}{b}+0.5\right)-1.5\right]$
and increment C_{p} by b until a ΔT of
$b\left[\right.$ Integral pert $\left.\left(\frac{C_{2}}{b}+0.5\right)+1.5\right]$
is reached. This allows for the colculation of an extra two values of y below and above y_{1} and y_{2}.

Heving found y from 3) for each increnent of C_{p} for a given x (ant therefore I), t is found from 2) and finally t^{\prime} is found by ading the interpolated auxiliary index error I_{i} to t.

The whole process is then repeated for another value or T'。

2 Unproteoter thermotere
We require for this eraph to plot $\mathrm{T}_{\mathrm{u}}^{\prime}$ against $T_{w}-t_{u}$ for a series of values of C_{u}, where $T_{W}=$ known in situ terperature of the water $T_{u}{ }^{\prime}=$ observed unmotected themoneter reading $t_{v}=$ trae unprotocted auxiliary thermoneter reading

$$
C_{u}=T_{u}-T_{u}{ }^{\prime}
$$

In this ease

$$
C_{u}=\frac{\left(T_{u}{ }^{\prime}+V_{0}\right)\left(T_{W}-t_{u}\right)+I W}{X-\left(T_{W}-t_{u}\right)}
$$

Writing $\quad x=T_{u}{ }^{\prime}+V_{o}, \quad y=T_{W}-t_{u}$
we have

$$
y=\frac{X\left(C_{u}-I\right)}{x+C_{u}}
$$

with approximate lower and uper limits on C_{u} of

$$
C_{1}=\frac{x y_{1}}{K}+I_{3} \quad C_{2}=\frac{x y_{2}}{I_{2}}+I
$$

where y_{1} and $y_{2}=T_{V}-t_{1}, T_{w}-t_{2}$
Prom 6) we oan find $Y\left(i . e . T_{W}, t_{u}\right)$ as a function of x (and therenore $T_{u}{ }^{\prime}$) for each increnent of C_{u}.

Note that in this case the unprote oted cuxiliary , themoneter resding is the true reading and any index corrections to the muxiliery themoneter wust be applied before using the graph. This is becouse t only enters the computations in conjunction with T_{w}. Consequently a given (T - t_{u}) might arise from a variety of T and t_{u}, the $t_{u}{ }_{u}$ all having different index corrections.

Notes

1) If it is aesired to mow comrections to $0.01^{\circ} \mathrm{C}$ without interpolation, the increnent would be 0.01 . Por a given main themoneter reading T, the auxilicry ther oneter reading would be evaluated at points such that the correction G is ± 0.005, ± 0.015 etc., i.e. it would be centred about zero C so that, for example, "any point on the graph between the 0.005 and 0.015 Ines for C Winll represent a correction of 0.01 (to the neerest 0.005).

Such a small increment produces a large output and we have found it best to use a large increment and sub-divide with multi-point dividers. In this case note that if sub-division dow to 201 is fincliy required an odd multiple of this must be used, othemwise, for exmple, on incronont in the program of 0.10 mould give t at values of $\mathrm{C}= \pm 0.05$, ± 0.15 etc., and sub-division into 0.01 gtops mouta give values for t at C of $0, \pm 0.01, \pm 0.02$ etc. This in turn neans, for example, that points between lines $C=+0.01,+0.02$ correspond to a correction of $+0.015 \pm 0.005$, and our corroction now involves a third decimai.
In practice, for values of Vo less than about 9 we use plotting intervals of 0.01 and an increment of 0.09 ; for larger $V 0$ tre use plotting intervels of 0.02 and an increrent of 0.18 ; then nine points of ten-point dividers are used for sub-divicing in both cases.
2) The values of T and ΔT (moin themometer readings and index corroctions) can be taken from the N.P.I. calibration certificetes or the H_{o} I. O. calibration. curves (the M.I.O. calibrations being wade at M.A.F.F., Lovestoft); in the latter case the values are read of whenever the line changes grodient significantly

The values of t and Δt (aumiliory thermoneter reedings and corrections) are talen fron the IT.P.I. certificates; in the case of unprotected therroceters they ar not actually used in the computations, and a duny pair of zero coractions noy be inserted insteed of actual readings.

Programer: JLES CREASE

N.I.O. PROGRMI 60

Title Cross spectrun of two series.
Code Mercury CHIP 3/4
Machine MERCURY
Pumpose Given two tine series, with tems presented alternately, to compute the ir means, variances, covariance, auto- and cross-covariances with lags $0-\mathrm{I}$, and irom these to compute the auto speotra, phase lead, coherence, co- and quad-spectra for frequencies 0 to $M / 2 I$. For the last four quantities the second series is assumed to be $\frac{1}{2}$ a tine interval (second) later than the first. (See Notes below)

Tapes
(1) Prograin.
(2) Parametors and data.

Parameters
(a) 7 integers:-
$S=$ Run nuraber.
T = Pair nuriber.
$I=1-$ Prints means, auto and cross spectra etc. only.
or 2 - Prints means and laged covariances only,
or 3 - Prints means, covariances and auto and cross spectra.
J, K where $100 J+K$ is the number of tems in each series.
$L=$ Largest Lag required for covariances (Spectral analysis
is in tems of homonios of the basic frecucncy $0.5 / \mathrm{L}$).
$M=$ Largest order of hamonic in spectra, frequency $0.54 /$. .
(b) 4 numbors (firod decimal point) D-G :-
$D=$ Maximum allowable diference between consecutive values
of series 1.
$E=$ Maximun allowble dincerence between consecutive valuos
of series 2.
$F=$ Celibretion factor, physical units per digit, series 1.
$G=$ Calibretion Icotor, physicai units per digit, series 2 .

Data Series of numbers, positive on negetive, with or without decinal point, in the order

$$
x_{0} \quad y_{0} \quad x_{1} \quad y_{1} \quad x_{2} \quad \ldots \ldots x_{n-1} \quad y_{n-1}
$$

where $n=100 J+K$.
(As present, the form of print-out for the digital meons and varianoe assumes the tems are integers between -1000 and +1000 but this is not essential to the program as a whole,')

Restrictions $-512<S, T<512$
$I=1,2$ or 3 only
$J \geqslant 1 \quad(\mathrm{n} \neq 100)$
$0 \leqslant \mathbb{K} \leqslant 99$
$100 J+K+3 I \leqslant 10,238$ with ent 4 6,142 with CIIT 3
$2 \leqslant I \leqslant 140$
$1 \leqslant \mathrm{M} \leqslant \mathrm{L}$
Operation (1) Read in program
(2) Read in parmeters and data.

As it reads in the data tape the computer tests each
difference $\left(x_{r}-x_{r-1}\right),\left(y_{r}-y_{r-1}\right)$ and prints out the relue
of n in the form $j_{2} k$ where $r=j+k$ for any difference exceeding the given D or E．Values for the y series are preceded by twalve spaces．All such values of r ，if arys are printed and unless there is none in both serses the computation will not procesd any further，but returns to ask fox another sot of paraneters and data，sterting with S ．If there are no＂errors＂in the data，the computations ard printmout follew in due course，acooding to the parameter I．Operation（2）may then be repeated，starting with parameter S ．

Ontpet
（a）ritia．
（b）Rua number，pais number．
（0）Error numbers r（described above）
（d）If there is nothing in（0）：－
（i）Number of terns in each series（ $100 \mathrm{~J}+\mathrm{K}$ ）。
（ii）Wean value of series $x_{\text {，}}$ mean value of sexies y （digital units）．
（iii）Variance of x ，variance of y ，coveriance $x y$ （digital units）．
（iv）Vaxtance of x ，varience of y ，covariance $x y$ （physioal urits）．
（e）（Oizly if $I=2$ or 3）For $s=O(1)$ prints（1 line for each s）：－
s
$\psi_{11}=$ Normalised auto－covariance of series x_{2} with s lags．
$\psi_{2 a}=$ Normalised auto－covariance of series y_{2} with s lags．
$\Psi_{12}=$ Normalised crossweovarlance，x with s time units later than y ．
$\psi_{21}=$ Nomalised cross covariance，y with s time units later than x 。
（A）（Only if $I=1$ or 3 ）
（i）Frequency inorement $0.5 / \mathrm{L}$ ．（See Notes below）
（ii）For $s=0(1)$ prints（1 line for eah $s):-$
s
\mathbb{B}_{1}＝Energy speotrum（spestrum of variance）of serien x
（phystical units）．
$E_{s Z}=$ Enercy spectran（spectrum of variance）of series y （physioal units）。
（fiii）For $s=0(1) \mathrm{M}$ prints（1 Ine for each s）：－ 3
$\mathrm{E}_{12}=$ Comspectrum，cormected for $\frac{1}{2}$ unit time lag of y
（physicel units）．
$E_{2^{2}}=$ Guadmspectrum，corrected for $\frac{1}{2}$ unit tine lag of y （physical units），
$\dot{\varphi}=$ True phase las of series x behind series y（decrees） （If $\dot{\phi}$ is negative，it means x is leeding in phase．）
$\gamma^{2}=$ Coherence of x and y ．
The value of y^{2} is left blank for any volue for which the prodnot of the mormalised values of $\mathrm{E} \mathrm{H}_{1}$ and B_{22} is nogative or less than 10^{-2} ．

Time 2 minutes to read in the progeri tape.
The following example is a guide to the computation tine:
With $I=3, J=12, K=0, L=M=50 \quad$ Time $=9$ minutes (D, E not exceed.d).

Method
Mean vanes: $X=\frac{1}{n} \mathrm{Ex} \quad Y=\frac{1}{n} \mathrm{ny}$
Each ralue x and y is then replacod $b y$

$$
x^{\prime}=X-X, \quad y^{\prime}=Y-Y
$$

and the vartaroes computed:
$V_{i 1}=\frac{1}{n-1} \Sigma x^{\prime 2} \quad\left(\times F^{2}\right.$ for physioal units)
$V_{22}=\frac{1}{n-1} \Sigma y^{\prime 2} \quad\left(x G^{2}\right.$ for piysicel unitz)
$V_{i 2}=\frac{1}{n-1} \mathrm{Lx} y^{\prime} \quad(\times \operatorname{HG}$ for physical units)
Normatised eutom and crossmotrariances:

$$
\begin{aligned}
& \psi_{1}(s)=\left[(n-s-1) V_{i 1}\right]^{-1} \sum_{r^{2}=0}^{n-s-1} x^{\prime} x_{1} x^{\prime} x^{\prime} \\
& \psi_{22}(s)=\left[(n-s-1) V_{22}\right]^{-1} \sum_{r^{n}=0}^{n-S-1} y_{r+3}^{\prime} Y_{r}^{\prime} \\
& \psi_{12}(s)=\left[(n-s-1) \sqrt{V_{1+2}}\right]^{-1} \quad \sum_{n=0}^{n-a m} x_{r+s}^{\prime} y_{r}^{\prime}
\end{aligned}
$$

where s is the lag number.

Auto specire:

$$
\begin{aligned}
& E_{11}(s)=1 / 4 e_{11}(s-1)+\frac{1}{2} e_{11}(s)+1 / 4 e_{11}(s+1), \quad s \neq 0 \\
& E_{11}(0)=\frac{1}{2} e_{11}(0)+\frac{1}{2} e_{11}(1)_{L_{1}} \\
& \text { where } e_{11}(s)=4 \mathbb{F}^{2} V_{14} \underset{r=0}{L_{0}^{\prime \prime}} \psi_{11}(r) \cos \left(\frac{r s t}{\square}\right) \\
& \text { and } \Sigma^{\prime \prime} \text { means the sum with the first and last terms halved, } \\
& \text { and } s \text { is the harnonic number. } \\
& \mathcal{F}_{22}(\mathrm{~s}) \text { is similamly defined. }
\end{aligned}
$$

Gow and quad-spectra:
(The cross spoctrun is usually defined as the compler quantity E: 2 + 谓: $\left.2^{*}\right)^{\circ}$ 。
Pirstly the direct oross speotral components are somputed:

$$
\begin{aligned}
& F_{12}(s)=1_{4} f_{12}(s-1)+\frac{1}{2} f_{12}(s)+1 / 4 f_{12}(s+1), \quad s \neq 0 \\
& F_{12}(0)=\frac{1}{2} f_{12}(0)+\frac{1}{2} f_{12}(1) \\
& \text { Where } f_{12}(s)=4 F G \sqrt{V 1 \sqrt{22}} \quad \sum_{n=0}^{n} \frac{1}{2}\left[\psi_{12}(r)+\psi_{2 s}(r)\right] \cos \left(\frac{r s t}{L}\right) \\
& \text { and } \mathbb{F}_{12} *(s) \text { is defined similarly in terms of } f_{12} * \text {, }
\end{aligned}
$$

Then the corrections for the time delay are applied:

$$
\begin{aligned}
& W_{y}(3)=F_{12}(3) \cos \frac{1}{2} k s+F_{3} e^{*}(3) \sin \frac{1}{2} k s \\
& \mathrm{E}_{82} *(\mathrm{~s})=\mathrm{F}_{12} *(\mathrm{~s}) \cos \frac{1}{2} \mathrm{ks}-\mathrm{F}_{12}(\mathrm{~s}) \sin \frac{1}{2} \mathrm{ks} \\
& \text { where } k=\pi / s_{n}
\end{aligned}
$$

Fron these values the phase lag is computed:

$$
\phi=\arctan \left(\mathbb{N}_{12} \% / \mathbb{E}_{\mathbf{i} 2}\right)
$$

Finally, the coherence is evaluated:

$$
\gamma^{2}=\frac{E_{1} 2^{2}+E_{1} 2^{2}}{E_{11} E_{22}}
$$

Notes The Fourier sums are computed by means of Wattis iteration process
(see, for example, Cartwight and Catton, Int. Hyd. Rev., Vol. 11, No. 1, 1963). In the actual computations the last terns corresponding to $r=I$ are omitted for conventenoe; the final results arter $1 / 4+1 / 2+1 / 4$ smoothing are quite unaffected by the omission.

The method of derivine the spectmon is a standard one discussed, for example, in "The Measurenent of Power Spectra" Dy Blackmen and Tukey (Dover pubs, 1958). The $1 / 4+1 / 2+1 / 4$ smoothing process is that apparently due to a certain \int. voa Ham, and is equivalent to multiplying the lagged corariances by $\cos ^{2}\left(\frac{2 t}{25}\right)$.
In contrast, the Bartaett smoothing process, used in some $R_{0} A_{0} R_{0}$ prograns, multiplies the lagged covariances by $|1-(S)|$ but the resulting spectral filter (ow window) has larger sidelobes then in the Hann process.

The program as written assumes that each series is sampied once per second. If a different interval (t seconds) is used the spectral per second. if a anferent interval (t seconds) is used the gpecta although the frequency increment will still be printed as
$\frac{0.5}{2} \mathrm{c} / \mathrm{s}$. The largest harmonio will have frequenoy $\frac{0.5 M}{\mathrm{~L}} \mathrm{o} / \mathrm{s}$.

Progxamex DAVID CARTVRIGHI

