
INTERNAL DOCUMENT

PRECISION ECHO-SOUNDER TRACKER

C.G. Flewellen

[This document should not be cited in a published bibliography, and is
supplied for the use of the recipient only].

INSTITUTE OF
OCEANOGRAPHIC

SCIENCES

\
z

INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,
Surrey GU8 5UB
(042-879-4141)

(Director: Dr. A. S. Laughton, FRS)

Bidston Observatory,

Birkenhead,

Merseyside L43 7RA

(051-653-8633)

(Assistant Director: Dr. D. E. Cartwright)

Crossway,

Taunton,

Somerset TA1 2DW

(0823-86211)

(Assistant Director: M .J , Tucker)

PRECISION ECHO-SOUNDER TRACKER

C.G. Flewellen

INTERNAL DOCUMENT NO. 176

1983

Institute of Oceanographic Sciences,
Wormley, Godalming, Surrey GU8 5UB.

PRECISION ECHO-SOUNDER TRACKER

INTRODUCTION

This is a micro-processor depth digitiser and bottom tracking system.

The aim of the tracker is to produce a smoothed estimate of the depth

including phase information every two minutes and to internally save

(as long as the mains is on) up to 34 hours worth of depths in metres

with their associated times. A remote entry terminal allows the watch-

keeper to provide a starting time and at any time to preset the tracker

to a new depth should it have lost the bottom signal. Marker pulses sent

to the P.E.S. recorder show the start and end of the tracker's sampling

window and should hover about the echo. In deep water when several trans-

mission pulses are in the water-path it will still be necessary for the

watch-keeper to turn gating on and off otherwise the tracker is sure to

lose the bottom in the transmission reverberation. However, with gating

on the computer will recognise any sweep containing a transmission pulse

and not use this information for tracking, i.e. the sampling window will

not be moved. On other sweeps in the gating cycle the echo can be followed

through the transmission.

OPERATION

Switch on the remote keyboard and check that it is plugged in to PEST.

If it is not connected PEST will expect to get its initial time from a

terminal connected to the external serial port and will wait for this.

If the remote keyboard is connected, switch on the printer and PEST and

the program will start executing with an assumed time of 00.00 Day 1 1983.

Enter the time as four digits of hours and minutes followed by the day

number as three digits. An incorrect entry will cause the error pattern

to be displayed for a few seconds. Try again. A correct entry will be

redisplayed with a space inserted between time and day number. After a

few seconds this will disappear as it is transmitted to PEST. To get

- 1 -

the time correctly synchronised press ENTER TIME on the minute as entry

causes the seconds to be cleared. While waiting for the minute the entry

display will time-out to be replaced by the regular depth transmission

from PEST. The entry can be recalled with the RCL key or cleared with

the C/E key. Now a starting depth can be entered. This may be from

1 to 4 digits but not zero nor must it exceed 8999. A correct entry

will cause the display to shift to the left hand side with leading zeroes

added if necessary. This will soon disappear as it is transmitted.

A new depth can be entered at any time should PEST lose track. An

indication of the success of tracking is provided by a pair of lines

that should bracket the echo on the echo-sounder. These lines will be

present at switch-on but can be removed by pressing the red button on

PEST. Successive presses turns them on and off. In addition the time

will be printed out on the Mufax every six minutes and the smoothed depth

which is transmitted to the ship's logging system will be displayed every

two minutes below the two-minute mark it corresponds to.

PEST, as yet, has no control of the gating of the echo-sounder but

does need to know when gating is on. At least one Mufax has been modi-

fied to provide an external contact closure in parallel with the gating

switch.

PRINCIPLE OF OPERATION

The zero-depth pulse from the echo-sounder starts a count-down to a

sampling window. The audio output from the recorder is then digitised

and stored till the end of the window is reached. The stored signal

is examined for the strongest leading edge of the bottom signal with a

bias towards finding it near the centre of the window. The count-down

delay for the next sweep is then adjusted to centre the window more

nearly on the strongest echo. This adjustment is filtered to avoid an

erratic response to a noisy signal. Every sweep a new depth value is

- 2

computed from the position of the centre of the window and these are stored

away so that on the odd minute, two minutes worth of depths centred on the

previous even minute can be filtered. It is this value which is displayed

on the recorder and with its associated time is transmitted to the ship's

computer.

— 3 —

PROGRAM DESCRIPTION

The main program starts by calling a subroutine that initialises

parallel and serial ports and sets up a counter/timer to provide the

1 kHz sampling frequency and a one second pulse for the internal clock.

Various locations in RAM are then cleared including the error flags. A

number of other flags are initially set and the interrupt mask pattern

is preset to allow sweep trigger and one second pulse interrupts. With

all interrupts disabled a request is made for the time to be entered

from the control terminal. However, if the remote keyboard is plugged

in and running the program will start executing immediately with a

default time and depth. A whole set of constant parameters are then

transferred to the working locations and then the internal interrupt

flag is cleared. Sampling of the signal is achieved through interrupts

so the main program need only loop round until it detects that the sampling

done flag has been set. In this loop error messages if any are printed,

the spot depth is displayed and transferred to the remote terminal. The

front panel switches and the remote depth entry are checked for any change

and the time is regularly checked. Every even minute the spot depth and

time are printed and on the hour a heading as well. Each spot depth is

stored in an array which on the odd minute is applied to a filter which

smooths two minutes worth, of depths centred on the even minute. The

filter output is then transferred to another array where the time is

attached to it. An attempt is made to send a batch of recent depths to

the ship's logger and if unsuccessful a note is made that the depths are

pending and an attempt will be made to send them next time. Up to 34 hours

may be backed up like this.

SUBROUTINE DESCRIPTIONS

INIT

Program the parallel and serial ports and the interval timer. Set

up clock constants and variables-

- 4 -

Three 8+8 bit parallel l/O ports are programmed to define data

directions and the use to be made of their control lines.

(1) ADC PIA at $8004 all 16 bits are defined as I/Ps. Twelve from

the ADC and four as spare logic I/Ps. No control functions are selected

at this time.

(2) DAC PIA at $8008 fourteen bits are made O/Ps. Ten to the DAC

and four to the edge connector to drive LEDs. CA2 is programmed to

interrupt on a negative transition every 1 second to advance the internal

software clock. CBl is programmed to interrupt on a positive-going start

of sweep trigger.

(3) The A side of the PIA at $8020 is later programmed to provide

BCD communication among local LCD display and thumbwheel switches.

The B side of this PIA is set to provide 7 bits out to the Anadex

printer and 1 bit (the most significant) in to indicate the readiness of

the printer.

CA2 is programmed as an O/P generating a low strobe pulse as data

is written to the printer.

(4) A triple counter/timer appears at $8040. Only one of these is

actually needed to delay before sampling the echo, but use is made of

the Other two sections:-

Counter 0 divides by 1000 from the CPU clock at 1 MHz.

Counter 1 counts down from counter 0 O/P to provide 1 second for the

clock.

Counter 2 counts down using the 1 kHz from counter 0 to generate an

end of delay interrupt.

(5) The control terminal (during development) uses a serial interface

at $9002. During use this interfaces with, the ship's computer system.

(6) Initial time information is copied from ROM to RAM including a

list of limit values, i.e. 60 for seconds and minutes, 24 for hours, etc.

- 5 -

Communications

There are a number of l/P and O/P routines to cope with the control

terminal, the parallel printer, front panel display and local depth entry

switches and a serial (RS232) bus to communicate with a remote entry

terminal.

These are organised as three ports in order to share various l/O

processing routines such as the output of HEX or BCD, fetching a

character with a time-out and ASCII string printing.

Port 0 uses the original serial port of the utility routine and

uses subroutines in that routine.

Port 1 is an extra serial port for communicating with the remote

keyboard.

Port 2 is a parallel output port to drive the Anadex printer.

INPRT

Calls INCH or ZINCH depending on the port number specified by PORTNO.

OUTPRT

Calls OUTCH, ZOUTCH or PRINTC depending on the port number.

GETPRT

Calls GET or ZGET.

PRINTC

X Reg is saved then loaded with a value that gives about 1/2 sec

delay in a wait loop if the printer is not ready. If it is the character

is sent. A C/R is followed by a L/F to cause the printer to print its

buffer contents. The X Reg is then recovered and the routine returns with

the character sent in Acc. A»

PRINTS

The character string pointed to by the X Register is sent to the

port until the terminating byte 04 is reached.

ZOUTHL etc.

A set of routines to print left or right half of a byte in HEX and

- 6 -

hence a whole byte, whole byte and space or a double byte and space. These

routines will also work with packed BCD digits.

ZINCH

Input a character from port 1. The parity bit is masked off and the

program drops through to echo the character.

ZOUTCH

Output a character to port 1.

GET

Port 0 is examined for waiting character but if none only about two

character times (at 2400 baud) are wasted before the subroutine returns

with a null character.

ZGET

Does the same as GET but for port 1.

CLOCK

The interrupt service will call this subroutine every second. Before

the time is advanced and if the previous seconds were even the new depth

value is stored on a rotating stack starting at $1000. After storing a

new depth in two bytes the pointer is advanced but if it goes beyond the end

of the stack it is reset to the start so that only the most recent two

minutes worth of depths is retained.

The time is advanced one second. If the seconds reach their limit

of 60 the seconds are cleared and the routine advances round the loop and

increments the minutes. If they reached their limit then ... etc.

On January 1st the days would be reset so zero day number is changed

to 1.

CVBTD

Converts a double byte of binary in the X Register into a terminated

string of ASCII digits. Starting with 10,000 successive powers of ten

are repeatedly subtracted from the binary number. The number of times

each power GOES is counted then converted into an ASCII character which

— 7 —

is added to the string result. The string is terminated with 04 and the

X Reg. is pointed to its beginning ready for a call to print.

INDEC

Fetches four decimal digits via INDIG and packs them into the two

bytes DIG and DlG+1. A non-digit value causes a return. If more than

4 digits are entered only the last 4 will be retained.

INDIG

Fetches a character from the input port. If it is a digit it is

converted to binary and the carry bit is cleared. A character other than

a digit will cause the carry to be set.

TWOMIN

This routine is called regularly whenever the processor has spare

time and between interrupts. The depth and time are printed at the

beginning of the even minute. The EVNMIN flag set initially and during

the odd minute allows the routine to test the minutes for even. As soon

as the minutes become even the depth and time are printed but then EVNMIN

is cleared, preventing further printing until minutes have been odd.

PRDAT

Print two minute data. First a check is made for zero minutes

HRHEAD then hours, minutes and seconds are printed. The depth, (internally

in msecs) is scaled to metres then converted into a decimal/ASCII string

and printed followed by the estimated phase and an optional signed slope

value.

HRHEAD

The flag HRFLG plays the same role here as EVNMIN preventing repeated

printing while the minutes are still zero.

HEADING

If the minutes have just become zero an hourly heading is printed

followed by the day no. and year and column headings.

ERRS

There are seven RAM locations which can be set to signal up to seven

error conditions. Pointers are set to the beginning of these error codes

and to a list of error messages. The routine examines each code in turn

for a non-zero value when it prints the error message and clears the error

code. It is possible for all seven errors to occur at the same time.

GETTM

Get the time from the control terminal. After printing the request

for the time 4 groups of decimal digits separated by any non-digit

character (except ESC) are copied into the clock variables in the order

hours, minutes, day number and year. A mistake can be corrected with

ESC which returns to the beginning of the routine. On completion the

thank you message is sent.

ADDX

Add DATSIZ, the width, of the sampling window, to the index register.

ADDA

Add Acc. A to the index register. The two's complement number is

extended into Acc. B.

INTERRUPT SERVICE ROUTINE

All peripheral interrupts cause the program to be vectored to here.

When a transition occurs on a peripheral control line an internal flag

is set regardless of whether the device was enabled to interrupt. It

is thus necessary to keep a flag byte up-to-date to identify which device

is enabled to request an interrupt. As each of 4 possible devices is

interrupt enabled its flag bit is set. When the device is disabled the

flag bit is cleared. These flags are O/P to the edge connector each

time an interrupt occurs for scope monitoring.

On an interrupt each of the peripheral internal flags is shifted

into Acc. A which is then anded with the flag byte so that only enabled

interrupts are acknowledged. On a trigger, ADC end-of-conversion or

— 9 —

end of delay interrupt the appropriate routine is executed and then the

peripheral flags are tested again in case either another interrupt has

occurred during the servicing or in the event that two interrupts had

been simultaneous. Every trigger pulse the clock timer is reloaded to

count 500 msecs. This keeps the internal clock synchronised with the

trigger rate and phases the 1 second pulses so they occur a quarter and three

quarters of the way across the echo-sounder sweep.

A dot-matrix display on the recorder is initiated when required on the

one second interrupt, either on the left or right hand side of the paper

depending on the position of the bottom echo. The clock timer is reloaded

with 1000 msecs and the clock subroutine is called to advance the time.

If no flags are set a return from interrupt is executed. Since

interruption can only occur if the interrupt mask is cleared and this is

automatically set when the interrupt occurs there is no danger of the

service routine being interrupted itself.

TRIG

On receipt of a trigger TRGFLG is set. This can be cleared in the

main program and tested if synchronism is required. If the delay is

counting down when the trigger occurs the error EXTRA TRIGGER is flagged

and the timer is stopped and its interrupt capacity disabled. A count

is kept of the number of false triggers that occur consecutively. If

the delay was not active the false trigger count is cleared.

If the sampling done flag is cleared and the delay value is non-zero

the delay timer is loaded, its interrupt enabled and then started. Had

the delay been zero then the sample count DATCNT is initialised from

DATSIZ and sampling interrupts enabled. In order to mark the position

of the tracking window on the recorder the Mufax mark bit is set low.

(Negative logic is used).

TIM

When the count-down finishes sampling is initialised as above when

the delay value was zero.

- 1 0 -

Note that the delay value is a program variable not the instantaneous

counter value. In fact the counter is never read.

SAM

The program arrives here when sampling is enabled and an ADC conversion

has just been completed. However, the sampling done flag must have been

cleared, if not then sampling is disabled - likewise if the number of

samples required happens to be zero.

Setting the Mufax mark bit clears the pulse sent to the recorder.

Thus the start of the tracking window has been indicated.

Should the display mode flag be set data is not sampled but instead

subroutine RASTAS is called to output one dot of a depth or time display

on the recorder. When the display mode flag is clear a data sample is

taken from the ADC.

When after subsequent calls to SAM the sampling is finished the number

of signal overloads or the lack of them is used to calculate the binary

gain ranging value to be applied during the next sweep. This acts as a

course AGC reducing 12 bits from the ADC to 8 bits by left shifting up to

4 times. TVG is applied prior to this to eliminate the surface reverberation

and filter ringing immediately after the transmission, when DATCNT is 2

indicating that this is the penultimate sample the Mufax mark is turned on.

This is turned off again one sample later to mark the end of the sampling

window on the recorder.

ADJUST

The delay value having been adjusted to shift the sampling window to

track th-e echo, half the window width is then added to give the position

of the echo (in msecs) from the beginning of the same sweep. Multiples of

2000 msecs are added for each phase value greater than 1. Phase 1

corresponding conventionally to 0-1500 metres. A phase of less than 1

or greater than 6 generates the error PHASE OUT OF RANGE and no adjustment

is made. Finally an offset of 8 samples is added because in the course of

- 11 -

edge detection the data was shifted ahead this amount. The result is the

absolute depth but expressed in msecs.

EDGE

This is the edge detecting routine. The algorithm is a correlation

of 2N + 1 (N = 8) samples with a ramp that runs from -8 to +8. To speed

it up the process is made recursive. To prepare for running the algorithm

the first 17 samples are added up and the gradient is set to zero. The

oldest sample can be considered to have been multiplied by -8 thus adding

8 times the oldest cancels this out. Adding 9 times the new sample will

achieve the effect of multiplying by a ramp running from -7 to +9. Sub-

tracting the running sum gets the desired result. It is now necessary

to update the sum by subtracting the oldest and adding the newest samples.

The gradient is scaled up by eight but if negative is set to zero. This

is stored back at the beginning of the array giving it a -8 sample offset.

To avoid problems at the end of the array the correlation stops 17 samples

from the end and the rest of the array is cleared.

TVG

Applies Time-Varied-Gain at the beginning of the sweep to remove the

transmission reverberation. If th,e gating on flag is set application of

TVG is skipped. It is first necessary to find where the sample is in

relation to the start of sweep. DATCNT is a decreasing sample counter

and is thus a measure of how far from the end of the window the sample is.

Subtracting this from DATSIZ the window width and adding the delay gives

the required sample position. If this results in a value greater than

2000, 2000 is subtracted. If th.e sample is within the first 72 it is set

to zero. Within the range 72 to 200 (128 samples) the echo is ramped up

by multiplying by the fraction - twice sample position from 72 divided by

255. This has the effect of ramping it up linearly. When the edge detec-

tion algorithm is applied it is not likely to see a significant edge in this

— 12 —

region due to the gentle rise. Turning off TVG in the gating mode will

allow the tracker to follow an echo through the transmission provided

it only processes on sweeps when transmission has been gated off.

PEAK

This routine looks for the highest sample in an array that has been

passed through the edge detecter and thus consists of rounded peaks. It

is only necessary to find that sample which is greater than its previous

neighbour and greater than or equal to the next sample. As each local

peak is found it is weighted according to its distance from the centre

of the window. The weighting function is one in the middle decreasing

linearly to zero at either end. This local peak is compared with any

previous one recorded and displaces it if it is bigger. At the same time

the offset of the peak from a previously set prediction is compared with

any earlier offset and displaces it if the offset is smaller. When the

routine has run its course we have two peak values and their positions -

the largest overall after weighting and that one (often the same) which

is nearest to the prediction. The prediction is normally the centre of

the window but could be shifted either way to provide a bias when the

bottom is sloping.

WEIGHT

Weight a peak value, one in the centre to zero at the ends of the

sampling window. As the window width may be altered weight must work

with whatever width exists. (Unlike TVG which using binary tricks to

simplify the weighting operation). If the peak position is before the

centre then that position value can be used in the weighting. If it is

after then its position in the window is subtracted from the window size.

The weighting algorithm then multiplies the peak value by position from

ends of window and divides by the window width. The operands for the

division are scaled down if necessary to suit the division subroutine.

- 13 -

SHFTGT

Adjusts the delay to move the sampling window. Given the processed

echo position relative to the start of the window subtracting half the

window size provides a signed offset from the centre of the window.

Adding this to the present delay provides a new delay (which may go out

of range). A negative result i.e. the delay moves back before the trans-

mission is corrected by adding 2000 and the phase value is decreased by

one. A value of delay greater than 1999 has 2000 subtracted while the

phase is advanced by one. If the delay jumps like this subsequent filtering

would cause a large transient so the adjusted delay value is used to

"pre-charge" the filter accumulator - AVDPTH.

CVDTB

Convert from decimal to binary. Four decimal digits are converted

to a double byte of binary, starting with the most significant digit

1000 in binary is added to a results accumulator while th.e digit is

decremented to zero. The process is repeated for the remaining digits

with 100, 10, and Is being accumulated. The result is returned in Acc.s

B-A.

CVRTMS

This routine converts manually entered absolute depths in metres

into a sample count in msecs. , from the start of sweep plus a phase value.

A number of multiples of 1500 are subtracted until the result is less than

1500. The number of times less one that 1500 goes is the phase. The

remainder is scaled by 4/3 to convert from metres to msecs. and returned in

the index register.

Multiplication and Division

The hardware multiplier has internal registers for data, control and

results and appears in the memory between $FC and $FF. The multiplier

does an unsigned multiply of two single bytes to produce a double byte

product. The divider divides a double unsigned byte by a single byte and

- 14 -

generates one byte of quotient and the remainder. The chip is designed to

operate as one of up to four to give high resolution results but can be

used alone.

Arguments are passed to these arithmetic routines by pushing them

onto the stack before calling the subroutine and then using the index

register as a pointer to the operands then the results.

MPYDBL

Double byte times single using the internal accumulation. The result

will run to three bytes but the least significant is not returned.

DIVDBL

Divides two bytes by a single byte and returns the quotient and

remainder. If an overflow occurs the carry bit is set.

MPY1X3

Multiplies three bytes by a one byte multiplier and returns a four

byte product. Use is made of the internal accumulation.

MPY2X2

Two by two multiplier.

FILT

A single pole recursive filter to smooth double byte delay values.

The algorithm being

y(N + 1) = (X(N)*C0EF1 + YCN))*C0EF2

the coefficients being trimmed to produce zero DC offset to avoid

producing any drift. Y(N) or AVDPTH in the subroutine is preset to a new

value when the delay is changed discontinuously to prevent a serious

transient being generated.

INBCD

Gets four digits from the front-panel thumbwheel switches and stores

them unpacked in BCDIN. The switches are scanned starting from the least

significant end and since negative logic is used on the BCD bus for

incoming data, the BCD values must be complemented.

— 15 —

LCD

Displays up to eight digits on the front panel. The high 4 bits of

the byte written to the interface select the digit position while the low

4 bits contain the BCD value. After the byte is written an all ones byte

is sent to latch the data into the display latch/decoders-

INDPTH

Get a depth (in metres) from the front panel. This routine is called

regularly in a loop after processing has been completed and during the wait

for data to be sampled and so will respond to any depth entry. However,

instead of having the program pause in an entry wait loop it fetches the

depth by calling subroutine INBCD and then compares this depth with the

previous saved value. Only if the value is different is this value saved

and further processed. A call to CVDTB converts the four digits of unpacked

BCD into a double byte of binary. CVRTMS changes this into msecs. into the

sweep plus the phase value. Subtracting from the echo position the half-

width of the sampling window gives us the delay value required to centre

the window on this depth. This subtraction may put the delay value out

of bounds and so it is tested for negative or greater than one sweep. The

result is the new delay and is also stored in the delay filter variable

AVDPTH to prevent a transient.

DISPl

The most recent depth. NWDPTH is displayed. NWDPTH is th,e absolute

(including phase) depth but in msecs. It is converted to metres by multi-

plying by three quarters, converted into decimal digits CVBTD then sent to

the display routine LCD.

DPFILT

Depths are stored every 2 seconds in a rotating store holding just

over two minutes worth of data. On the odd minute these must be smoothed

to provide a good estimate of the depth on the two minute mark. The filter

is a correlator with a reference wave-form that is a leger-weighted sine,

function and thus gives low-pass characteristic.

— 1 6 —

with the coefficients chosen the cut-off frequency is a 0.1 Hz.

As the coefficients are symmetric about their centre only half the

army is needed. Pointers are set to the present oldest depth in the

rotating depth stack and to the beginning of the coefficient array.

As both coefficients and depths may be negative a sign flag preserves the

sign so an unsigned multiply can be performed. (A negative depth could

occur if in a later development it was decided to subtract a mean depth

from the whole array before filtering, thus improving the arithmetic

resolution). As each multiplication is completed, the sign information

is used to add the product to or subtract it from the accumulating answer.

After the middle coefficient has been used the pointer to the coefficients

reverses direction. When the end of the depth store is reached the

corresponding pointer is reset to the start.

STORDP

Every odd minute stores the filtered depth in a new array. After the

depth has been converted to metres in packed BCD it is stored at the next

pair of locations on the depth and time stack. Next come the year, day

number, hour and the least significant bit of the minutes is initially

set to indicate that the depth has not yet been sent to the ship's logger.

The stack pointer is then advanced eight places until, after about 34 hours,

the stack pointer is reset to the start of the stack and old depths start

getting over-written. If the Mufax display is enabled MFINIT is called to

set up for a display and the depth, digits are transferred to the Mufax

display store.

SRCHDP

After the previous routine the stack pointer will be pointing to the

next available set of locations on the stack which will either be clear

(the whole array was cleared after the power came on) or contain the

oldest depth still in residence. From here and right round to the most

recent depth entry the array is searched for any block with the least

— 17 —

significant bit of the minutes set. This depth and time are sent to the

ship's logger. (The minutes are made even for this purpose). If the depth

is acknowledged the least significant bit of the minutes is cleared and the

search continues. If the depth has not been received the bit is left set

and the routine returns to try again later.

XMIT

An attempt is made to send a two minute depth and time to the ship' s

logger. The carry bit is cleared if this is successful.

PROCSS

Process the newly acquired echo. Edge is called to differentiate the

echo signal and remove trailing waveform edges. Peak identifies the pro-

minent peak from the edge routine. The peak (may not be the biggest)

that is nearest to a prediction is also returned. A decision is made to

choose one or the other (at present the largest is chosen) . The position

of this peak is then used as the input to SHFTGT to move the sampling

window to centre it over the echo. The resulting delay value is smoothed

by FILT before becoming the new delay value to be used in the next sampling

session. Subroutine ADJUST converts the new depth into an absolute depth

though still expressed in msecs.

GATEST

Tests whether, when the gating is on, the present sweep contains a

transmission pulse. The position of the sampling window is tested to see

if it overlaps the start of sweep. If not or if gating is off, the carry

bit is set. Otherwise samples, from the data array are accumulated from

the start of sweep position up to a maximum of twenty samples or to the

end of the array. DIVDBL is called to convert the sum to an average.

When this is compared with a pre-set threshold the carry will be set if it

is less otherwise a clear carry will indicate that a transmission pulse has

been found on this sweep.

— 1 8 —

RASTAS

An ASCII string terminated by a carriage return is converted dot by

dot and line by line into a display on the recorder. The dot look-up

table caters for the character set:- 0123456789<=>:;? though a blank is

generated for Two parameters KWIDTH and KLINES allow the number

of dots per pixel to be chosen and the aspect ratio adjusted.

SEND

Transmits the depth to the remote keyboard each time a new one is

produced. Port 1 is tested for CLEAR-TO-SEND and if it is not ready an

error message will be printed. To prevent continuous printing of errors

when the keyboard is not connected an error count of 256 occurs before

the message is printed again. If the keyboard is available and ready

then 4 digits of depth are transmitted followed by two spaces. (Actually

"?" is sent as the keyboard will decode this as a blank). Two digits'of

seconds are then sent mainly to provide an indication that the keyboard

is active. A carriage return is sent to terminate the sequence. A

response to this is expected within two character times otherwise error

6 is flagged. If the response is a carriage return then the hand-

shaking is complete. The receipt of a "D" or a "T" indicates that the

keyboard has a new depth or time to send. The four digits of depth

received are then treated as though their input had been local. The

digits of time are used to preset the software clock whose seconds are

cleared. A carriage return terminator is expected otherwise the error

RX ERROR is flagged.

- 19 -

HARDWARE DESCRIPTION

The Motorola 6800 system comprises three boards.

(1) 16K of dynamic memory configured to occupy the 1st quarter of

the address space.

(2) The processor board.

(3) An I/O board.

Additionally the front panel display is mounted on a board containing

latches and interfacing.

(1) The memory is a standard block of dynamic RAM that is refreshed

by on-board circuitry by stealing the occasional clock cycle.

(2) The 6800 CPU has 16 address lines, 8 data lines and a hand-full

of control lines that are buffered on the CPU board. The 1 MHz clock

provides two clock phases to drive the CPU and can be momentarily stopped

to allow for memory refreshing. A one-of-eight decoder generates negative

logic select signals from the top 4 address lines

$8000 Selects the I/O board

$9000 Selects the serial port used to transmit to the ship's logger

$A000 Selects 128 bytes of scratch-pad memory used by the monitor program

$B000 IS not used

$C000 The non-volatile RAM containing PEST firm-ware

$D000 Is not used

$E000 Selects the serial port used by the remote keyboard

$F000 Selects an EPROM holding the monitor firm-ware

$0Q0-$3FFF is where the RAM board appears but with one exception, the

multiplier/divider is addressed by $00FC-$00FF.

A 614.4 kHz crystal oscillator and binary divider chain provides a number

of baud-rates for the serial interfaces. The l/Ps and O/Ps of the serial

interfaces are buffered to meet RS232C line requirements.

(3) The l/O board comprises three parallel interface adapters (PIAS),

a triple counter/timer and analogue circuitry. These are all memory-mapped

- 2 0 -

devices and appear at addresses as follows

$8004-$8007 The ADC interface with 12 lines in from the ADC

$8008-$800B The DAC interface with 10 lines out to the DAC

$8020-$8023 This provides a BCD bus to the display and the local depth

entry switches

The printer uses one half of this PIA

$8040-$8043 Comprises three counter data registers and a common control

register for the counter/timer

1 kHz from counter 0 (dividing by 1000 from the CPU clock) provides the

convert trigger for the ADC, though provision is made for an external

sampling clock. This division is reset every trigger pulse.

The signal from the echo-sounder is a base-band signal and is thus

full-wave rectified before being applied to a 300 Hz four pole anti-

aliasing filter. A sample and hold circuit is triggered by the 1 kHz

ADC clock to hold the signal during digitising.

Tenth-inch pitch edge connectors connect to BNCs for analogue signals,

a loom to a 15 way socket for the printer and a loom to the front panel.

These boards are fed from two 5 volt power cards, one of which also

provides + and - 15 volts for the analogue circuitry.

REMOTE TERMINAL

This is an intelligent keyboard which communicates with the main

processor via an RS232C bus. A Motorola 6803 CPU scans a 16 key keyboard,

refreshes an eight digit LED display, receives depths from the tracker

and can transmit back a new depth or time.

A remote terminal is used to satisfy three requirements:-

(1) So as not to tie up a typewriter or VDU to communicate with the main

processor and for the convenience of the watch-keeper. The main

processor can be mounted on a 19 inch rack out of the way.

(2) To transmit depths and times to the ship's logger.

- 21 -

REMOTE KEYBOARD FOR P.E.S.T.

Program Description

A power-on reset starts the program running at INIT which programs the

serial and parallel ports. The serial interface is enabled to interrupt on

receipt of a character. The internal (to the CPU) parallel port is programmed

to provide eight bits out - seven to drive 8 LED displays.

Two registers and a buffer are maintained by the program and these are

initially clear by filling them with hexidecimal 0F. With the interrupt mask

cleared the program enters a loop in subroutine NRMDSP only exitted when a

key is pressed (and regularly left to service interrupts) . The contents of

DATAl holding a depth, transmitted from PEST, are displayed continuously on

the LEDs.

When a digit key is pressed the digit value is decoded from a table (to

adapt the key layout to a calculator style) and left shifted into th6 entry

register DATA2. After each digit DATA2 is displayed for several seconds

until either another key is pressed or the time is up, in which case we

return to the regular display of the contents of DATAl. If the key were not

a digit but hexidecimal. A, B, E or F routine COMMND decodes the command and

jumps to an appropriate routine.

While this is proceeding, characters sent from the tracker on the

serial line cause interrupts and these characters are stored away in a

buffer. Line-feed codes are ignored as are carriage-returns when the buffer

is still empty. When a carriage-return terminates a string of digits or

the buffer becomes full anyway the up to eight ASCII characters in the

buffer have their four most significant bits cleared before they are copied

into DATAl to be regularly displayed on return from interrupt. If either

the depth entered flag DPENFG or the time entered flag TMENFG are non-zero

then the contents of DATA2, the entry register, are converted to ASCII and

transmitted back to PEST. The depth, comprises 4 digits preceded by D and

the time string is 7 digits long (with included space) and is preceded by T.

- 2 2 -

After either string a carriage-return is sent as would be the case if

neither flag had been set.

Command A

Enter depth.

The subroutine DPFMAT is called to check the format of the contents

of DATA2. If the depth is zero or greater than 9999 or if the entry

register were filled with blanks an error pattern is displayed for a few

seconds, the entry register is cleared and a normal display resumed. A

correct entry causes the depth to be shifted to the left-hand end of the

display with leading zeroes added as necessary. The flag DPENFG is then

set to signal to the interrupt service that a depth is waiting. The

entry register is displayed until transmission of the contents causes it

to be blanked. The program then jumps back to continue the normal display.

Command B

Enter time.

The format is checked for legal time and a day number in the range

1-365. The flag TMENFG is then set. The procedure is then the same as

for Command A.

Command B

Recall entry.

This results in a return to the entry register display loop with,

the time-out count reset.

Command F

Clear entry.

DATA2 is filled with blanks and this is displayed for a brief time,

i.e. the display is seen to go blank for half a second before the normal

display loop is entered.

Hardware Description

The central processor used is the Motorola MC6803, a version of the

6800 that is intended to be used with a minimum of extra components. There

23 -

is 128 bytes of RAM in the chip plus a serial and an eight bit parallel

ports. The data lines are multiplexed with the low order address lines

and an eight bit latch (74LS373) is used with the address strobe line to

separate address and data. A one-of-eight decoder driven by the 3 highest

address lines generates low level chip selects on 8K boundaries. Seven of

the parallel port outputs provide digit select and BCD outputs to drive an

array of 8 multiplexed LEDS. An additional parallel port (MC6821) is used

to read 4 bits from a 15 key keyboard encoder. (Originally it was intended

to use a parallel for communicating with PEST hence the use of an extra

parallel port chip).

Internal clock circuitry requires only an external crystal to provide

the basic clock rate. The crystal was chosen to also provide a frequency

input for a baud-rate generator chip. A timer provides a power-on reset.

This reset also disables the EPROM containing the program to prevent a

bus contention at switch on and pulls P22, the clock input line for the

serial interface, low as the chip has optional operating modes which must

be selected during a reset. The RS232C lines TXD, RXD and RTS are buffered

by line drivers and receivers.

In addition to the program in the EPROM there is a utility program

that was used in development and uses two of the chip select lines to

start and stop an external counter which then asserts a non-maskable

interrupt to aid program tracing.

— 24 —

FLOW CHARTS

ADC

INIT

S
INTE
MA

ET
RRUPT
SK

PROGR
FOR 1

I]

ZIM ADC
2 BITS

Program and
Initialise I/O

DAC

PROGRAM DAC
FOR 10 BITS
OUT + 4 OUT
TO LEDs

TIMER

PROGRAM

COUNTER 0

TIOOO FROM
1 MHz

1 kHz to ADC and
Counters 1 and 2

PROGRAM
COUNTER 1
FLOOO FROM

1 kHz

1 HZ to Clock
Interrupt

INITIALISE
COUNTER 2
(DELAY)

Will count down
at sampling
frequency = 1 kHz

PRINTR
7 BITS OUT TO
PRINTER WITH
HANDSHAKE

MSB tested for Printer
ready strobe pulse
generated on write to Printer

SERIAL INTERFACE
ACIAS 8 BITS INTERNAL

f 16 2 STOP BITS

COPY
INITIAL

CLOCK DATA
INTO RAM

RETURN

- 25 -

(PRINTC I

SAVE X

PRINT

RETURN

PRINT
L/F

ACC A = C/R

0,X A

(j MO X $04

I RETURN J

PRINT A CHARACTER
FROM ACC. A

TIME-OUT DELAY
COUNT

FOLLOW C/R
WITH L/F
SO THAT
PRINTER
PRINTS ITS
BUFFER STORE
CONTENTS

PRINT A
STRING.
X POINTS
TO START
OF STRING.
$04 TERMINATES IT.

— 2 6 —

GET
CHARACTER
MASK-OFF
PARITY BIT ZOUTCH

EMPTY

OUTPUT
CHARACTER

{ RETURN 1 SET-UP
COUNT
DOWN

REG.
FULL

YES

f

DECREM
COUN

ENT
T

GET
CHARACTER
MASK-OFF
PARITY BIT

RETURN

RETURN
= NUL

- 27 -

ACC S

TTl

YES

GE
NEW E

.T
)EPTH

•> r

STOP
DEPTH

£ IN
STACK

ADVANCE
STACK
POINTER

BEYOND
END OF
STACK
9

LOAD
POINTER

WITH START

ADVANCE
TIME

ONE SECOND

RETURN

YES
— ?

0 X

1 ^
DAY

NUMBER
= 001

DOUBLE
BYTE

TO ACC A,B

BTEMP'. = 0

SUBTRACT
POWER
OF TEN TO BTEMP

Convert 2 Bytes Binary
to Decimal Digit String

ADD POWER
OF TEN
BACK

> f

MAKE BTEMP
ASCII DIGIT
AND STORE AT

NEXT DIGIT POSN

f

GET NEXT
POWER
OF TEN

TERMINATE
DIGIT STRING
X POINTS TO IT

- 29

DIG = 0
DIG+1 = 0

CINDIG)

(RETURN I

Input Decimal
Number to
DIGS - DIGS+1

SHIFT
DIG+
4 B:

DIG ANE
1 LEFT
CTS

> f

DIG+]
ACC
D]

OR
A -»
:G+I

I

C ZINCH)

f

A-$30
^A

> f

SET CLEAR
CARRY CARRY

Input
Character
into Acc A

30

Print Time
and Depth
at Start of
Even Minute

Print Title
and Headings
at Start of
Hour

TWOMIN

EVNMIN
SET

MINS
= 0?

SHIFT UNITS
OF MINS

RIGHT TO C MINS
SHIFT UNITS
OF MINS

RIGHT TO C
CHEADNG)

YEi'i). (YK'=i

RETURN PRDAT

CLEAR
EVNMIN

SHIFT LEFT
C -> EVNMIN

PRINT
TITLE DAY NO

YEAR AND
COLUMN HEADINGS

(HRHEAD)

CONVERT
DEPTH TO

DECIMAL Ms

PRINT
DEPTH

AND PHASE
RETURN I

- 31 -

ERRS

POINTER
TO

ERROR
MESSAGES

ERl

ÊRROR
CODE

YES

WO

CPRINTS)

ER2

FINISHED NO

YES

RETURN

ADVANCE
POINTERS

POINTER
TO

ERROR
CODES

• CLEAR
ERROR
CODE

Any of Seven
Error Codes
may be Non-Zero

Make sure it is
only printed once

Print Error
Message

- 32 -

GETTM

Q INDEC)

YES
ESC

DIG ̂
HRS

C' INDEC)

YES
ESC

DIG
MINS

C INDEC)

YES
ESC

DIG ̂
DAYS

C INDEC)

YES
ESC

C" TYPES)

RETURN

DIG -)•
YEARS

Get time
from Keyboard

Type "Time Please

Type "Thank You"

- 33

ADDX

X REG -4-
ACCS B,A

ADD DATSIZ
TO
B,A

RESULT
-4- X REG

f

Add DATSIZ
to X Reg

Add Acc A to
X Reg (or Subtract

if Negative)

ADDA

NO YES

. ADD X REG
(IN XTEMP)
TO ACCS B,A

RETURN
RESULT
^ X REG

ACC B
= — 1

CLEAR
ACC B

34 -

INTERRUPT SERVICE

One of X
4 Interrupts INT

YES SET

NO

'RIGGER. YES

C CLOCK }

YES END
OF

DELAY

NO

/END
/ OF ^
CONVERSION,

YES

NO

TRIGGER
ROUTINE

COLLECT
INTERRUPT
FLAGS

REAL TIME
INTERRUPT
ROUTINE

DELAY AND
SAMPLING
ROUTINES

- 35

YES

RE-LOAD
CLOCK TIMER
WITH 1 SEC

CLEAR-
DISPMD

DISPEN
CLEAR

CLEAR
DSFRST

SET
DISPMD

V

ENABLE
SAMPLING

(CLOCK

NO

SET
DSFRST

f

CONTINUE
THROUGH
LOOP

- 36 -

Delay
Timer
Interrupt

TIM TRIG Trigger
Interrupt

J4

DISPDN
CLEAR

YES

NO

YES SMDONE
SET

TRGl

DELAY J5 YES

NO
NO YES

J7

*and send Pulse

RETURN
TO

V LOOP J

RETURN
TO

L LOOP ,

/DELAY
TIMER
ACTIVE

SET
DISPEN

SET
TRGFLG

CLEAR
DISPEN

ENABLE
SAMPLING*

DATSIZ
^ DATCNT

LOAD DELAY
TIMER AND
ENABLE

INCREMENT
FALSE

TRIG. COUNT

CLEAR
FALSE

TRIG. COUNT

RE-LOAD
CLOCK TIMER
WITH h SEC

STOP DELAY
TIMER AND
DISABLE

STOP DELAY
TIMER AND
DISABLE

*and send Pulse
to Mark Start
of Sampling

- 37 -

YES

YES

MDON
SET

o

DATCNT
= 0

YES

ADC
End-of-Conversion
Interrupt

(RASTAS)
Do Raster
Line of
Display

RETURN
TO
LOOP

SAMPLE ECHO
DECREMENT
DATCNT

If Gating on
then Apply no
TVG

J8

DATCNT
= 0
9

YES J9

RETURN
TO
LOOP

> t

CONTINUE
SAMPLING*

\ /

SET
SMDONE

RETURN
TO
LOOP

DISABLE
SAMPLING*

> f

DC
A.G.

CALCUI

)
C.
JATION

*0n Penultimate Sample
Turn on Mufax Mark
Pulse and Turn it off
again when Sampling
finished.

RETURN
TO
LOOP

— 38 —

DISABLE
SAMPLING

> i

CLI
SMDC

:AR
)NE

Adjust AGC Scale Factor.
If no Overloads during
Sampling then increase
(Sain. If Overloads
exceed a Limit then
reduce Gain unless
no Reduction possible
then Flag Error 2.

OVFLW

SCALE = 4

SCALE +1

SCALE -1 ERROR 2

CLEAR
OVFLW

RETURN
TO
LOOP

"OVERLOADING"

- 39

ADJUST

DATSIZ/2

DELAY

PHASE
^ > 0?

YES

NO

'HASE YES

NO

0? YES

NO

ADD
2000

TO DEPTH
DEPTH +8
-4- NWDPTH

RETURN

PHASE
• PHTEMP

ERROR 4

PHTEMP -1
-4. PHTEMP

— 40 —

ADD UP
FIRST 17
SAMPLES

IST + 17TH
X 8 + IST

SK

Detect Leading
Edge of Echo

Initialise
SUMK to Avoid
GLITCH at Start

Running
Correlation

SUBTRACT
SUMK
^ SK

Ha If-Wave
Rectify.
We Only Want
Rising Edges

SCALE U
IF OVE
SET T

P BY 8
RFLOW
0 $FF

> /

SUMK =
- IST +

SUMK
17TH

/

STO
RESUL

IS

RE
T AT
T

Update Running
Sum

yf

Result Put Back
into l/P Array
8 Places Early
(Corrected for
in 'ADJUST')

YES
NO , /?INISHEI^ ^ CLEAR ^ I

X ? y f LAST 17 ^ \

- 41

Apply TVG to
Signal Sample
Set to Zero
if within 72 mS
of TX or Ramp
up Linearly if
within 200 mS

YES

TV5

^ NO

DELAY +
DATSIZ -

DATCNT B,A

> f

RETURN
No TVG
During
Gating

Add Window Size to
Delay and Subtract
Count-down to End
of Window. Result
in Acc. B-A is
Distance from TX.

TVl

RETURN

Blot Out TX
Completely

SUBTRACT
2000

<200

SUBTRACT
72

DOUBLE AND
MULTIPLY BY
SAMPLE VALUE

©No- Change

If Sample Position was
72 Then x 0, If 199
Then x 254. However
Multiplicand is
Treated as a Fraction

(RETURN J

— 42 —

PKVAL = 0
PKPOSN = 0

OFFSET = MAXM

GET
lA SAMPLE

ADVANCE
POINTER

NEXT

RETURN

THIS IS NEW
OFFSET

SAVE ITS POSN

THIS IS
NEW PVAL

SAVE POSITION

GET OFFSET
(UNSIGNED)

FROM PREDIC

— 43 —

Change delay value
to skew sampling
window to centre
on echo.

NEW DEPTH The Contents of Acc. B,A
IN is Position from Start

ACC. B,A of Window.
B,A - DATSIZ/2 is

* f signed Offset from Centre
of Window.

B,A - DATSIZ/2
+ DELAY B,A

Delay is increased/
decreased by adding
this to it.

f

YES

<1999 YES

NO

SUBTRACT
2000

INCREMENT PHASE
STORE AT AVDPTH

NO

ADD 2000
DECREMENT PHASE
STORE AT AVDPTH

Check and Correct if
out of Range.

THIS IS

RETURN

- 44 -

FROM

THI
MULTI

S IS
PLICAND

I
ATEML
MULTI]

P IS
PLIER

(MPYDBLj

RIGHT SHIFT
PRODUCT AND
DATSIZ/2

THIS IS
DIVISOR

SCALED PROD.
IS

DIVIDEND

I

Acc. B,A contains
relative position
within window.
ATEMP contains
peak amplitude.

Perform

Peak Value x Distance
from centre of
window T half window
width.

Double Byte x Single
retain 2 most-sig-
nificant bytes.

Since DATSIZ/2 may be
>255 both Numerator
and Denominator are
scaled down.

C DIVDBL̂ I

< — 3

Divide Double Byte
Joy Single Byte.

GET
HIGH BYTE
OF QUOTIENT

4 RETURN j

— 45 —

y/

POINTER TO
HIGHEST
POWER
OF TEN

Convert 4 Decimal Digits
to 2 Bytes Binary.

POINTER TO
HIGHEST
DIGIT

V

ADVANCE

RETURN

FETCH
POWER
OF TEN

TEST
DIGIT

0?

NO

DIGI T-1

f

B,
POM
OF

A+
ER
TEN

— 46 —

CVRTMS

BTEMP = 0

BTEMP + 1

SUBTRACT
1500

ADD BACK
1500

1 c

X 4

Convert Depth in Metres
to Msecs. Re-Start of
Sweep Result in X Reg.
Phase in Acc. A.

X — Converts Metres to Msecs.

THIS
TO

MULTIPLICAND

MULTIPLIER
= 0.3333

C MPY2X2)
Double Byte x Double
Byte gives 4 Byte Product.

/

2 HIGH BYTES
OF PRODUCT
TO X REG.

BTEMP->A=PHASE

S /
2 HIGH BYTES
OF PRODUCT
TO X REG.

BTEMP->A=PHASE

— 47 —

INDPTH

NO YES
MINUTES
EVEN

NO r MINS N
DIVISIBLE
V BY 6 y

NO 'SECS .
BETWEEN

NO DISPDN
SET

COPY TIME
AND DAY

INTO DISPLAY
BUFFER

INDl

CLEAR
DISPDN

INIT
MUFAX
DISPLAY

48 -

INDl

Get Unpacked
BCD

Convert to
Double Byte
Binary^_

C CVDTB^

NO

YES

RETURN

SAME \
AS LAST
ENTRY .

STORE
AS LAST
ENTRY

PROGRAM
PANEL

I/O PORT

STORE IN
AVDPTH

AND
DELAY

CONVERT TO
MSECS + PHASE
THIS "IS NEW

DELAY

— 49 —

r ~ \
I DISPl I

f

NWE
X

PTH
%

> f

(CVBTD)

> f

TRANSFER
DIGITS

TO LCD DISP.
BUFFER

r

C LCD)

C SEND)

RETURN

- 50 -

DPSTCK
POINTER 2

f

COl
^ POIl

2FST
\ITER 1

Pointer to Rotating
Stack Containing
Two Minutes Worth
of Depths.

GET NEXT COEF.
NEGATE IF

NEGATIVE SAVE
SIGN

DOWN

BELOW
BEGINNING

•?

I RETURN I

POINTER 1

BEYOND
END

DECREMENT
POINTER 1

INCREMENT
POINTER 1

AT
MIDDLE

Coefficients are
Symmetric about Middle
so only First Half are
Used. Forwards during
First Half of Filter
then Backwards for
Remainder.

REVERSE
DIRECTION

GET NEXT DEPTH
NEGATE IF

NEGATIVE SAVE
SIGN

YES
DO SIGNED
MULTIPLY

AND
ACCUMULATE

INCREMENT
POINTER 2

- 51 -

(DPFILT)

CONVERT

. , STORE
NEXT ON
STACK

•

STACK
STACK
STACK

YEARS
DAYS
HOURS

SET LSB
OF MINUTES

STACK MINUTES

\ (

ADD
ST

POI

8 TO
ACK
NTER

Get two Minutes of
Most Recent Depths
and Filter.

Stack contains about .
34 hours of two minute
depths in groups of
eight bytes
2 Bytes - Depth
2 Bytes - Year
2 Bytes - Day No.
1 Byte - Hours
1 Byte - Mins

LSB of Minutes is set
to flag a depth not
yet sent to ship's
logger. This is
clear when the depth
has been sent and
acknowledged.

BEYOND
END

STACK
POINTER
TO START

SRCHDP

- 52 -

SRCHDP

MINS
LSB
SET

NO

YES

Try to transmit depth
and time, carry clear
if successful.

Try aaain later YES

SET

NO

RETURN

YES
BEYOND
END

NO

ADD 8 TO
STACK
POINTER

CLEAR
LSB OF
MINUTES

STACK
POINTER
TO START

53 -

ROWPT = PATRNS
CHARPT = MUFDSE

Initialise Mufax raster
display.

Start of dot patterns.
Start of raster display
character buffer.

DOTS = 10000000
LINES = 2
WIDTH = 2

Pixel size set to 2 x 2.

CLEAR
DSFRST

DELAY +

h DATSIZ

>2000

SUBTRACT
2000

(RETURN]

— 54 —

PROCSS

C EDGE)

C PEAK)

NO YES PKVAL
>NRSTHT

CSHFTGT)

CADJUST)

DISPL

GET
PKPOSN

GET
NRSTPS

RESULT
IS

DELAY

STORE
IN

NWDPTH

- 55 —

NO

V

skip if not in
gating mode

Out of range

CARRY = 1

RETURN

2000-DELAY
-DATSIZ

YES

ADD BACK
DATSIZ

ADD FIRSTX
COPY.TO
X REG.

ACCUMULATE
INDEXED
SAMPLES

HAS REVERBERATION BEEN SAMPLED?

DATSIZ

m

LIMIT

FIRST X

DELAY

ILAST X

2 0 0 0 '
*LIMIT

ACCUMULATED
DOUBLE BYTE
f NUMBER

CARRY = 1 CARRY = 0

(RETURN I

56 -

CLEAR DISPMD
DISABLE
SAMPLING

LINES-1

YES

ROWPT
TO NEXT
ROW

SET
DISPDN

DOTS = $80

\

FROM BUFFER

Raster Display Subroutine

CODE
AS $3F

MASK
4 LS

OFF
BITS

>

ADD TO
ROW

POINTER

Characters

0, 1, 2, 3, 4, 5, 6, 7
8, 9, fr <, =/ Space.

MASK ROW
PATTERN

WITH 'DOTS'

O/P LOW O/P HIGH

f RETURN I

WIDTH
- 1

DOTS = $80
CHARPT + 1

I RETURN!

RETURN

(SEND)

>

PORT
NUMBER
= 1

>

CLEAR
TO
SEND

ERROR 6 OUTPUT 4
DEPTH DIGITS

+??

INCREMENT

OUTPUT 10s
AND UNIT OF
SECONDS

I RETURN I

OUTPUT
C/R

WAIT
FOR

RESPONSE

f RETURN j

- 58

SN6 SN5

GET

CHARACTER

YES YES [ULL

NO

NO DIGITS
IN

DIGITS
IN

NO C/R

YES

RETURN

IND2

RETURN

LULI?

CLEAR
SECONDS

CONVERT
TO
BINARY

ERROR 7

CHARACTER

GET

CHARACTER

GET

GET
4 MORE
DIGITS

LATTER THREE
DIGITS ->•
DAY NO.

MASK OFF
4 MSBITS AND
STORE IN BCDIN

MASK OFF
4 MSBITS AND
STORE IN BCDIN

STORE IN
HOURS AND
MINUTES

- 59 -

REMOTE

COMMND

INIT

INITIALISE
I/O PORTS

^CLEAR

CLEAR
DATA2
BUFF

DATAL,

AND
ER

START

C NRMDSP") Display DATAl until
key is pressed.

YES

ENTl

SHIFT INTO
DATA2 •

FROM RIGHT

ENT2
SET

TIME-OUT
COUNT

C DSPENT)

ENT3

NO /TIMED
4 — K OUT

Display DATA2

YES

4 -

('DECODE}

YES

— 50 —

REMOTE

I COMMND 1

CLEAR
TMENFG

SET
DPENFG

{TMFMAT")
•i'

RESET-
TIME-OUT
COUNT

CI
DPE

£AR
MFG

% /

SE
TMEN

T
[FG

>

{ ENT3 I

RESET
TIME-OUT
COUNT

0
ERROR

SET UP

ERROR
DISPLAY

\

(DSPENT")

N /

CL
DA

EAR
TA2

FILL
DATA2
WITH

BLANKS

LOAD
TIME-OUT

COUNT
FOR

H SEC

NIO
C,D may be
used later.

> /

Reset Time-Out
Count and Display
DATA2.

6 1 -

REMOTE

Interrupt Service

Receive depth and seconds
from PEST then if required
send back new depth or time.

INTSRV

GET A
CHARACTER

COPY
BUFFER
INTO DATAl

STORE IN
BUFFER

ADVANCE POINTER

SEND FIRST 4
CHARACTERS AS
ASCII. CLEAR
OUT DATA2.

FULL

I RETURN

TMENF
SET
3

SEND C/R
RESET BUFFER

POINTER

SEND 8
CHARACTERS AS
ASCII. CLEAR
OUT DATA2

CLEAR
TMENFG I RETURN I

— 62 —

PROGRAM LISTINGS

Is t
2: *

t
4:
5: *
6: *
73 *
8: t
9: *
10s t
11: *
12: *
13: *
14:
15: *
16: *
17: *

18: *
19; t
20:
21: *

23; *
24: *
25: *
26: *
27: *
28: *
29: *
30: t
31: *

"

*
34: *
35: t
36: *
37: *
38: *
39: *
40: *
41: *
42:
43: *

P.E.S TRACKING AND DIGITISATION PROGRAM

This program running on a motorola 6800 micro-processor
receives a zero-depth trigger from the precision echo-
sounder recorder and samples the audio-output during a
gating time. Time-varied and automatic gain control are
applied as apropriate to the block of data before echo
detection is attempted.

The "window" of data is weighted linearly - zero at the
ends and one at the middle. An algorithm is then called
to differentiate the signal by correlating it with a
ramp. Negative results are set to zero. The routine
'PEAK' returns with the position (relative to the start
of the window) of the largest peak and the peak nearest
to the position 'PREDIC,

The selected peak position is then used to adjust the
pre—sampling delay to move the window in order to centre
it the echo.

While the program is running a new depth can be entered
to force the window to a new position. Every two minutes
depth and time are printed. Errors are printed as they
occur.

A raster display output of depth and time is available
for marking a chart recorder. The timing of the display
insures that the echo is not over—printed.

PROGRAM STRUCTURE

a) Subroutines for initialisation, I/O amd processing.
b) The interrupt routine.
c) The main program which sets and adjusts parameters

and dictates strategy. This program is appended to
the rest of the routines to so that it can be easily
modified during development.

— 63 —

PEST82 SSB MNEMONIC ASSEMBLER

1: NAM PESTS2
2: OPT NOG,PAG

4: *I/0 SPECIFICATIONS
5: *MULT 8 bit by 8 bit multiplier/di vider
6: a

OOFC 7: MULT EQU $FC
8s *
9: *ADC 1 2 bit single channel analogue to digital converter
10: * This is • preceded by a FW rectifier, anti -al i assi ng
11:
12;

t filter and sample & hold chip^

8004 13: ADC EQU $8004
14: *
15: *DAC 10 bit digital to analogue converter
16: *

8008 17: DAC EQU $8008
18: t
19: *FRONT PANEL BCD SWITCH AND LCD DISPLAY
20: *

8020 21: PANEL EQU $8020

23: SPRINTER ANADEX Parallel printer
24: *

8021 25: PRINTR EQU $8021
26:
27: *TIMER 3 independent 16 bit counter/timers
28: * Used to divide down from 1 Mhz. to IKhz. and Ihz.
29:
30 5

t and count down pre—
•n

sampling delay.

8040 31:
"TO .

TIMER EQU $8040
a

33: *ACIAS Serial port for control terminal.
34: *

E002 35: AC I AS EQU $E002
36: *

0200 37: MEMBEG EQU $200 Start of available data storage
38: * memory

1000 39: DPSTRT EQU $ 1000 Start of 2 sec. depth storage
2000 40: DPTMST EQU $2000 Start of buffer for 2 min.

41: * depths.
CF40 42: PATRNS EQU $CF40
CFCO 43: COEFFS EQU $CFCO Depth filter coefficients
AOOO 44: lOVECT EQU $A000 I/O interr-upt vectoring address

45: * MINIBUG
46: *BASE PAGE ALLOCATIONS
47: *

0058 48: ORG $58
0058 49: ER6CNT RMB 1
0059 50: MUFDSP RMB 10 Mufax display buffer
0063 51: XSTOR RMB 2
0065 52: DISPEN RMB 1 Mufax display enable flag
UV66 53: DSFRST RMB 1 Display 1_HS or RHS flag
0067 54: DISPDN RMB 1 Display done flag
0068 55: CHARPT RMB 2 Character pointer
006A 56: ROWPT RMB 2 Dot matrix row pointer
006C 57: DISPMD RMB 1 Display or sample mode flag
006D 58: DOTS RMB 1 Dot mask
006E 59: LINES RMB 1 Number of line repeats

— 64 —

PEST82 SSB MNEMONIC ASSEMBLER

006F 60: WIDTH RMB 1 Number of dot repeats
0070 61: THRHLD RMB 1 Threshold for TX test.
0071 62: SRCHCT RMB 1 Number of pending depths sent.
0072 63: RVBSIZ RMB 2 No. of reverb, samples.
0074 64: DPTMPl RMB 2 Pointers for stacking 2 min.
0076 65: DPTMP2 RMB 2 depths and times.
0078 66: FILTOP RMB 4 Depth filter accumulator
007C 67: SIGN RMB 1 Sign indicator for DPFILT
007D 68: PNTRl RMB 2 Coeff pointer for DPFILT
007F 69: PNTR2 RMB 2 Depth pointer for DPFILT
0081 70: DIRFLG RMB 1
0082 71: DPSTCK RMB 2 Pointer to newest depth

72: % in depth stack
0084 73: LSTENT RMB 2 Most recent manually entered depth
0086 74: BCD IN RMB 8 8 unpacked bed digits. 4 entered

75: * from front panel and 8 for display
008E 76: TXNO RMB 1 Tx number in gating sequence
008F 77: LOOPCT RMB 1 Count of number of passes while no

78: * TX.
0090 79: SCTEMP RMB 1 Temp for AGC gain value
0091 80: NRSTHT RMB 1 Value of peak nearest to PREDICtion.
0092 81: NRSTPS RMB 2 Position of above.
0094 82: PREDIC RMB 2 Predicted echo position. Normally

83: * gate centre.
0096 84: SAVX RMB 2 Temp for Index reg.
0098 85: OFFSET RMB 2 Difference between echo position and

86: * PREDICtion.
009A 87: PKVAL RMB 1 Value of greatest peak.
009B 88: PKPOSN RMB 2 Position of above.
009D 89: FIRSTX RMB 2 Pointer to start of data array.
009F 90: LASTX RMB 2 Pointer to end of data array.
OOAl 91: SK RMB 2 Accumulator used by EDGE.
00A3 92: SUNK RMB 2 Accumulator used by EDGE.
00A5 93: EGEND RMB 2 Pointer to last value used by EDGE.
00A7 94: PHTEMP RMB 1 Temp for phase.
00A8 95: FLSTRG RMB 1 Flag to indicate extra trigger.
00A9 96: RVRBCT RMB 2 Decremented reverb, samples

97: * while testing for presence of TX.
OOAB 98: TXSAMP RMB 2 Accumulator for samples during TX.
OOAD 99: SMDONE RMB 1 Hand-shake flag between main prog

100: * and interrupt service.
101: * SET by MAIN to enable sampling.
102: * CLEARED by interrupt service
103: * when sampling over.

OOAE 104: FRSTTX RMB 2 TXSAMP after first attempt to find
105 s * TX.

OOBO 106: BCNDTX RMB 2 TXSAMP after second attempt to find
107: * TX,

00B2 108: GATNFG RMB 1 Gating on flag.
00B3 109: COEFl RMB 2 First coefficient for FILTer.
OOB5 110: C0EF2 RMB 2 Second coefficient for FILTer.
00B7 111: AVDPTH RMB 2 FILTer accumulator.
00B9 112: ATEMP RMB 1 Temp for acc A.
OOBA 113: DELAY RMB 2 Presampling delay. 1ms. units.
OOBC 114: FLAGS RMB 1 Interrupt routine enable mask.
OOBD 115: TRGFLG RMB 1 Set by occurrence of trigger.
OOBE 116: DATSIZ RMB 2 Size of data sampling window.
OOCO 117: DATCNT RMB 2 Counted down to zero during sampling
00C2 118: OVFLW RMB 2 Number of overloads during sampling.
00C4 119: SCALE RMB 1 AGC gain. Binary gain steps.

65 -

PEST82 SSB MNEMONIC ASSEMBLER

00C5 120: DESTAD RMB 2 Destination address of sampled data."
00C7 121: HRFLG RMB 1 Set after- printing hour headings.
00C8 122s DDDMIN RMB 1 Set to cause 2 min. filtering
00C9 123: EVNMIN RMB 1 Clear after printing 2 minute depth."
OOCA 124: MWDF'TH RMB 2 Up to date depth.
OOCC 125: PHASE RMB 1 Present depth phase.
OOCD 126: SLOPE RMB 1 Gradient of bottom. Samples/sweep.
OOCE 127: ERRORS RMB 7 Error signalling flags.
00D5 128: XT RMB 2 Temp for X reg.
00D7 129: DIG RMB 2 Location for 4 packed BCD.
00D9 130: BTEMP RMB 1 Temp for acc B.
OODA 131 ! DIGITS RMB 6 Ascii digit string and terminator.
OOEO 132: YEARS RMB 2 BCD year.
00E2 133: DAYS RMB 2 BCD day number.
00E4 134: MRS RMB 2 BCD hour.
00E6 135: MINS RMB 2 BCD minutes.
GOES 136: SECS RMB 2 BCD seconds.
OOEA 137: RMB 10 Clock constants.
00F4 138: XTEMP RMB 2 Temp for X reg.
OOF6 139: SPTEMP RMB 2 Temp for Stack pointer.
OOF8 140: RMB 4

141: *MULT appears here.
142: *
143: *
144: * SUBROUTINES
145: * = =

146: * INITIALLISE I/O
147: *

COOO 148: ORG $cooo
149: *

COOO OF 150: INIT SEI ,
COOl 7F 8004 151: CLR ADC 8 bits in 4 Isbits from ADC
C004 7F 8005 152: CLR ADC+1 8 bits in from ADC.
C007 CE 0404 153: LDX #$0404 Select data registers.
COOA FF 8006 154: STX ADC+2
GOOD CE FFFF 155: LDX #$FFFF 8 bits to DAC B side.
CO 10 FF 8008 156: STX DAC 2 bits to DAC and 6 logic drives.

157: ^Initialise TIMER
CO 13 CE 8040 158: LDX #TIMER
C016 86 36 159: LDA A #$36 Select Counter 0
CO 18 A7 03 160: STA A C', X Binary count. Load 2 bytes.
COIA 86 E8 161: LDA A #$E8 • Low byte first.
COIC A7 00 162: STA A 0, X
CO IE 86 03 163: LDA A #3 High byte.
C020 A7 00 164: STA A 0, X Divide by 1000 from IMhz.
C022 86 70 165: LDA A #$70 Select Counter 1
C024 A7 03 166: STA A 3, X Binary count. Load 2 bytes.
C026 86 E8 167: LDA A #$E8 Low byte -first.
C028 A7 01 168: STA A 1, X Divide by 1000 from 1Khz.
C02A 86 03 169: LDA A #3 High byte.
C02C A7 01 170: STA A 1, X O/P = 1 sec. pulse for clock.
C02E 86 BO 171: LDA A #$B0 Prepare counter 2
C030 A7 03 172: STA A 3, X for 2 byte load.
C032 CE 1C07 173: LDX #$1C07 CA2 +ve edge 1 sec pulse
C035 FF 800A 174: STX DAC+2 CBl -i-ve edge trigger
C038 86 10 175: LDA A #$ 10 Negative logic MUFAX time mairk
C03A B7 8008 176: STA A DAC initialised high.

177: Initialise communications
C03D 86 7F 178: LDA A #%oi m i l l 7bits out to PRINTER
C03F B7 8021 179: STA A PRINTR Msb handshake from PRINTER

— 6 6 —

PEST82 SSB MNEMONIC ASSEMBLER

C042 86 2C ISO: LDA A #$2C
C044 B7 8023 181: STA A PRINTR+:

182: *Copy CLOCK constant
C047 9F F6 183: STS SPTEMP
C049 8E C05A 184: LDS #12-1
C04C C6 14 185: LDA B #20
C04E CE OOEO 186: LDX #YEARS
C051 32 187: 11 PUL A
C052 A7 00 188: STA A 0, X
C054 08 189: I NX
C055 5A 190:, DEC B
C056 26 F9 191: BNE 11
CO 58 9E F6 192: LDS SPTEMP
C05A 39 193: RTS
C05B 19 82 194: 12 FDB $1982
C05D 00 01 195: FDB 1
C05F 00 00 196: FDB 0
C061 00 00 197: FDB 0
C063 00 00 198: FDB 0
C065 99 99 199: FDB $9999, $:

CA2 1 us strobe pulse
into base page.

N.B.interrupts are disabled

i $60,$60
200:
201;
202 s

*

*Print
t

a character.

C06F DF F4 203 s PRINTC STX XTEMP
C071 CE 86B2 204: P5 LDX #$86B2
C074 7D 8021 205: PI TST PRINTR Printer busy ?
C077 2B 06 206: BMI P2 No
C079 09 207: DEX Decrement count
C07A 26 F8 208: BNE PI Try again
C07C OD 209: SEC Still not ready
C07D 20 OD 210: BRA P3 . Timed—out return
C07F B7 8021 211: P2 STA A PRINTR 0/P character
C082 81 OD 212: CMP A #$D Was it C/R ?
C084 26 06 213: BNE P3 No
C0S6 86 OA 214: LDA A #$A Yes. Send L/F as
C088 8D E7 215: BSR P5 Call again
C08A 86 OD 216: LDA A #$D Return with C/R
C08C DE F4 217: P3 LDX XTEMP
COSE 39 218: RTS

219: *
220 s *Print a string up to EOT.

COSF 8D DE
X 5

222: P4 BSR PRINTC
C091 08 223: INX
C092 A 6 00 224: PRINTS LDA A 0,X Enter here
C094 81 04 225: CMP A #4 EOT?
C096 26 F7 226: BNE P4
C098 39 227: RTS

228: t
229: *Input a character from control port.

C099 B6 E002 231: INCH LDA A ACIAS
C09C 47 232: ASR A RX reg. full?
C09D 24 FA 233: BCC INCH No Not yet
C09F B6 E003 234: LDA A ACIAS+1 I/P character.
C0A2 84 7F 235: AND A #$7F Mask off parity

j:- •>.» O 0
237: ^Output a character to control port.
238: *

C0A4 37 239: DUTCH PSH B

with carry set

wel 1

— 67 —

PESTS: SSB MNEMONIC ASSEMBLER

C0A5 F6 E002 240: OUTCl LDA B ACIAS
C0A8 57 241 s ASR B TX reg. empty?
C0A9 57 242: ASR B
COAA 24 F9 243: BCC OUTCl
COAC B7 E003 244: STA A ACIAS+1 O/P character
COAF 245: PUL B
COBO 39 246: RTS

247: *
248: *Get a charcter with time—out
249: t

GOBI 37 250: GET PSH B
C0B2 C6 00 251: LDA B #0
C0B4 B6 E002 252: SI LDA A ACIAS
C0B7 47 253: ASR A
COBS 25 06 254: BCS G2
COBA 5 A 255: DEC B
COBB 26 F7 256: BNE G1
COBD 4F 1—f 7 • CLR A
COBE 20 05 258: BRA G3
COCO B6 E003 259: G2 LDA A ACIAS+1
C0C3 84 7F 260: AND A #$7F
C0C5 33 261: G3 PUL B
C0C6 39 262: RTS

263: *
264: *Output hex.
265: *

C0C7 44 266: OUTHL LSR A O/P left nibble
coca 44 267: LSR A
C0C9 44 268: LSR A
COCA 44 269: LSR A
COCB 84 OF 270: OUTHR AND A #$F 0/P right nibble.
COCD SB 30 271: ADD A #' 0 Make ASCI I
COCF 81 39 272: CMP A #'9
CODl 23 02 273: BLS OUT 0 to 9
C0D3 SB 07 274: ADD A #7 A to F
CODS 20 98 275: OUT BRA PRINTC Print then return.
C0D7 A6 00 276: 0UT2H LDA A 0, X 0/P byte in HEX
C0D9 8D EC 277: BSR OUTHL
CODB A6 00 278: LDA A 0, X
CODD 08 279: INX
CODE 20 EB 280: BRA OUTHR Print then return.
COEO SD F5 281: 0UT4HS BSR 0UT2H 0/P 2 bytes + spac
C0E2 8D F3 282: 0UT2HS BSR 0UT2H 0/P 1 byte + space
C0E4 86 20 283: OUTS LDA A #$20 0/P space/.
C0E6 20 ED 284: BRA OUT and then return.

O wj a

286: ^Update time.
287: t

COES 37 288: CLOCK PSH B
C0E9 36 289: PSH A
COEA D6 E9 290: LDA B SECS+1
COEC 54 291: LSR B
COED 25 IS 292: BCS TTl
COEF D6 CA 293: LDA B NWDPTH Stack depth every -
COFl 96 CB 294: LDA A NWDPTH+1
C0F3 DE 82 295: LDX DPSTCK
C0F5 E7 00 296: STA B 0, X
C0F7 A7 01 297: STA A 1, X
C0F9 08 298: INX
COFA 08 299: INX

68

PEST82 SSB MNEMONIC ASSEMBLER

COFB DF 82 300: STX DPSTCK
COFD SC 1080 301: CPX #4*3l+DPSTRT+4
CI 00 26 05 302 : BNE TTl
CI 02 CE 1000 303 s LDX #DPSTRT
C105 DF 82 304! STX DPSTCK
C107 C6 05 305; TTl LDA B #5
C109 CE OOES 306! LDX #SECS
ClOC A6 01 307 5 T1 LDA A 1, X
ClOE SB 01 308: ADD A #1
Clio 19 309 5 DAA
c m A7 01 310: STA A 1, X
Cl 13 24 02 311: BCC T2
C115 6C 00 312: INC 0, X
C117 A1 OB 313: T2 CMP A 11, X
C119 25 OF 314: BCS T3
Cl IB A6 00 315: LDA A 0,X
C U D A1 OA 316: CMP A 10,X
CllF 25 09 317: BCS T3
C121 6F 00 318: CLR 0,X
C123 6F 01 319: CLR 1,X
C125 09 320: DEX
C126 09 321s DEX
C127 5A 322: DEC B
C128 26 E2 323: BNE T1
C12A 7D 00E3 324: T3 TST DAYS+1 Set day 000 to
C12D 26 08 325: BNE T4
C12F 7D 00E2 326: TST DAYS
C132 26 03 327: BNE T4
C134 70 00E3 328: INC DAYS+1
C137 32 329: T4 PUL A
C138 330: PUL B
C139 39 331:

3-'̂ 2: -4/

RTS

333: ^Convert double byte in X reg. to BCD.
334: *as ASCII in DIGITS + EOT.
335: *

C13A DF F4 336: CVBTD STX XTEMP
C13C 96 F4 337 s LDA A XTEMP
C13E D6 F5 338: LDA B XTEMP+1
C140 CE OODA 339: LDX #DIGITS
C143 DF F4 340: STX XTEMP
C145 CE C17A 341: LDX #CONST
C14S 7F 00D9 342: CVDECl CLR BTEMP
C14B EO 01 343: CVDEC2 SUB B i,x
C14D A2 00 344: SBC A 0, X
C14F 25 05 345: BCS CVDEC3
C151 7C OOD9 346: INC BTEMP
C154 20 F5 347: BRA CVDEC2
C156 EB 01 348: CVDEC3 ADD B i,x
C158 A9 00 349: ADC A 0, X
C15A 36 350: PSH A
C15B DF F6 351! STX SPTEMP
C15D DE F4 352: LDX XTEMP
C15F 96 D9 353: LDA A BTEMP
C161 SB 30 354: ADD A #' 0
C163 A7 00 355: STA A 0, X
C165 32 356: PUL A
C166 08 357 5 INX
C167 DF F4 358 5 STX XTEMP
C169 DE F6 359: LDX SPTEMP

69 -

PEST82 SSB MNEMONIC ASSEMBLER

C16B 08 360: INX
C16C 08 3615 INX
C16D SC C184 362: CPX #C0NST+10
C170 26 D6 363! BNE CVDECl
C172 86 04 364: LDA A #4 Put EOT on the end.
C174 97 DF 365: STA A DIGITS+5
C176 CE OODA 366: LDX #DIGITS
CI 79 39 367: RTS
C17A 27 10 368: CONST FDB 10000,1000, 100,10,1

369: %
370 5 tl/P up to 4 BCD digits.

CI 84 7F 00D7
O / j. «
372: INDEC CLR DIG

CI 87 7F 00D8 373: CLR DIG+1
C18A 8D 21 374: DG3 BSR INDIG
CISC 24 01 375: BCC DG4 Is it a digit ?
C18E 39 376: RTS No
C18F 78 OODS 377: DG4 ASL DIG+1
C192 79 00D7 378: ROL DIG
C195 78 00D8 379: ASL DIG+1
CI 98 79 00D7 380: ROL DIG
C19B 78 OODS 381: ASL DIG+1
C19E 79 00D7 382: ROL DIG
ClAl 78 0008 383: ASL " DIG+1
C1A4 79 00D7 384: ROL DIG
C1A7 9A D8 385: ORA A DIG+1 '

C1A9 97 D8 386: STA A DIG+1
ClAB 20 DD 387: BRA DG3

388: *
389: * I/P one digit.
390: %

ClAD BD C099 391: INDIG JSR INCH
CI BO 80 30 392: SUB A #'0
C1B2 2B 04 393: BMI DGl
C1B4 81 09 394: CMP A #9
C1B6 2F 02 395: BLE DG2
C1B8 OD 396: DGl SEC Not digit. Return with carry set.
C1B9 39 397: RTS
CIBA OC 398: DG2 CLC Digit. Return with carry clear.
CIBB 39 399: ' RTS

400: *
401: *Send a string to console.
402: %

CIBC BD C0A4 403: TPl JSR DUTCH
CIBF 08 404: INX
CI CO A6 00 405: TYPES LDA A 0,X Enter here.
C1C2 81 04 406: CMP A #4 EOT ?
C1C4 26 F6 407: BNE TPl
C1C6 39 408: RTS

409: t
410: *Pri nt heading on the hour.
411: *

C1C7 7D 00C7 412: HRHEAD TST HRFLG
CICA 27 OD 413: BEQ HD2
CICC D6 E7 414: LDA B MINS+1
CICE 26 06 415: BNE HDl
CIDO 8D OC 416: BSR HEADNG
C1D2 7F 00C7 417: CLR HRFLG
C1D5 39 418: RTS
C1D6 D7 C7 419: HDl STA B HRFLG

- 70 -

PEST82 SSB MNEMONIC ASSEMBLER

C1D8 39 420! RTS
C1D9 D6 E7 421! HD2 LDA B MINS+1
CIDB 26 F9 422: BNE HDl
CIDD 39 423:

424: *
RTS

CIDE CE C1F7 425: HEADNG LDX #HEAD1
ClEl BD C092 426: JSR PRINTS .
C1E4 CE 00E2 427: LDX #DAYS
C1E7 BD COEO 428: JSR 0UT4HS
ClEA CE OOEO 429: LDX #YEARS
CIED BD COEO 430 s JSR 0UT4HS
CIFO CE C21A 431 s LDX #HEAD2
C1F3 BD C092 432: JSR PRINTS
C1F6 39 433: RTS
C1F7 OA 434: HEADl FCB $A
C1F8 20 435: FCC " PEST82
C218 OD 436: FCB $D,4
C21A OD 437: HEAD2 FCB $D,$A
C21C 20 438: FCC " TIME
C234 OD 439:

440: *
FCB $D,4

441: *Print DEPTH every twi
442: *

C236 7D 00C9 443: TWQMIN TST EVNMIN
C239 27 OF 444: BEQ PD2
C23B D6 E7 445: LDA B MINS+1
C23D 54 446: LSR B
C23E 25 06 447: BCS PDl
C240 8D 13 448: BSR PRDAT
C242 7F OOC9 449: CLR EVNMIN
C245 39 450: RTS
C246 79 00C9 451: PDl ROL EVNMIN
C249 39 452: RTS
C24A D6 E7 453: PD2 LDA B MINS+1
C24C 54 454: LSR B
C24D 24 05 455: BCC PD3
C24F 79 ooce 456: ROL ODDMIN
C252 20 F2 457: BRA PDl
C254 39 458:

459:
PD3
* RTS

C255 BD C1C7 460: PRDAT JSR HRHEAD
C258 CE 00E5 461: LDX #HRS+1
C25B BD C0E2 462: JSR 0UT2HS
C25E CE 00E7 463: LDX #MINS+1
C261 BD C0E2 464: JSR 0UT2HS
C264 CE 00E9 465: LDX #SECS+1
C267 BD C0E2 466: JSR 0UT2HS
C26A 96 CA 467: LDA A NWDPTH
C26C D6 CB • 468: LDA B NWDPTH+1
C26E 58 469: ASL B
C26F 49 470: ROL A
C270 DB CB 471: ADD B NWDPTH+1
C272 99 CA 472: ADC A NWDPTH
C274 44 473: LSR A
C275 56 474: ROR B
C276 44 475: LSR A
C277 56 476: ROR B
C278 97 F4 477: STA A XTEMP
C27A D7 F5 478: STA B XTEMP+1
C27C DE F4 479: LDX XTEMP

DEPTH PH SLOPE"

71

PEST8] SSB MNEMONIC ASSEMBLER

C27E BD C13A 480: JSR CVBTD
C281 BD C092 481: JSR PRINTS
C284 BD C0E4 482: JSR OUTS
C287 CE oocc 483: LDX #PHASE
C28A BD C0E2 484: JSR 0UT2HS
C2SD 86 20 485: LDA A #$20
C28F D6 CD 486: LDA B SLOPE
C291 2A 03 487: BPL PD4
C293 50 488: NEG B
C294 SB OD 489: ADD A #$D
C296 BD C06F 490: PD4 JSR PRINTC
C299 17 491: TBA
C29A BD COCB 492: JSR OUTHR
C29D 86 OD 493: LDA A #$D
C29F BD C06F 494: JSR PRINTC
C2A2 39 495:

496: *
RTS

497: *Print error messages.
498: *

C2A3 CE C350 499: ERRS LDX #ERMESS
C2A6 DF F6 500: STX SPTEMP
C2A8 CE OOCE 501: LDX #ERRORS
C2AB A6 00 502: ERl LDA A 0,X
C2AD 27 OD 503: BEQ ER2
C2AF 6F 00 504: CLR 0,X
C2B1 DF D5 505: STX XT
C2B3 DE F6 506: LDX SPTEMP
C2B5 EE 00 507: LDX o,x
C2B7 BD C092 508: JSR PRINTS
C2BA DE D5 509: LDX XT
C2BC 96 F7 510: ER2 LDA A SPTEMP+1
C2BE SB 02 511: ADD A #2
C2C0 24 03 512: BCC ER3
C2C2 7C 00F6 513: INC SPTEMP
C2C5 97 F7 514: ER3 STA A SPTEMP+1
C2C7 08 515: I NX
C2C8 8C OOD5 516: CPX #ERR0RS+7
C2CB 26 DE 517: BNE ERl
C2CD 39 518:

519: *
RTS

520: *Get time from K/B
521: *

C2CE CE C307 522: GETTM LDX #MESS1
C2D1 BD CI CO 523: JSR TYPES
C2D4 BD C184 524: JSR INDEC
C2D7 81 EB 525: CMP A #$EB
C2D9 27 F3 526: BEQ GETTM
C2DB DE D7 527: LDX DIG
C2DD DF E4 528: STX MRS
C2DF BD C184 529: JSR INDEC
C2E2 81 EB 530: CMP A #$EB
C2E4 27 E8 531: BEQ GETTM
C2E6 DE D7 532: LDX DIG
C2E8 DF E6 533: STX MINS
C2EA BD C184 534: JSR INDEC
C2ED 81 EB 535: CMP A #$EB
C2EF 27 DD 536: BED GETTM
C2F1 DE D7 537: LDX DIG
C2F3 DF E2 538: STX DAYS
C2F5 BD C184 539: JSR INDEC

Esc $ 3 0

- 72 -

PEST82 SSB MNEMONIC ASSEMBLER '

C2F8 81 EB 540: CMP A #$EB
C2FA 27 D2 541: BED GETTM
C2FC DE D7 542: LDX DIG
C2FE DF EO 543: STX YEARS
C300 CE C343 544: LDX #MESS2
C303 BD CI CO 545: JSR TYPES
C306 39 546: RTS
C307 OD 547: MESSl FCB $D. $A
C309 54 548: FCC "TIME PLEASE (HRS/MINS/DAY/YEAR) "
C329 50 549: FCC "PRESS ESCAPE TO RESTART"
C340 OD 550: FCB $D,$A,4
C343 OD 5515 MESS2 FCB $D,$A
C345 54 552: FCC "THANKYOU"
C34D OD 553: FCB $D,$A,4

554: *
C350 C3 5E 555: ERMESS FDB ERRl,ERR2,ERR3,ERR4,ERRS,ERR6,ERR7
C35E 21 556: ERRl FCC "!! EXTRA TRIG."
C36C OD 557: FCB $D,4
C36E 21 558: ERR2 FCC "!! OVER SAMPLING"
C37E OD 559: FCB $D,4
C380 21 560: ERR3 FCC "!! OVER LOADING"
C38F OD 561: FCB $D,4
C391 21 562: ERR4 FCC "! ! PHASE IS WRONG"
C3A2 OD 563: FCB $D,4
C3A4 21 564: ERRS FCC "! i NO TX"
C3AC OD 565: FCB $D, 4
C3AE 21 566: ERR6 FCC "!! CAN'T XMIT"
C3BB OD 567: FCB $D,4
C3BD 21 568: ERR7 FCC "!! RX ERROR"
C3C8 OD 569: FCB $D,4

570: *
571: *Add DATSIZ to X reg.
572: *

C3CA DF F4 573: ADDX STX XTEMP
C3CC 96 F5 574: LDA A XTEMP+1
C3CE D6 F4 575: LDA B XTEMP
C3D0 9B BF 576: ADD A DATSIZ+1
C3D2 D9 BE 577: ADC B DATSIZ
C3D4 97 F5 578: STA A XTEMP+1
C3D6 D7 F4 579: STA B XTEMP
C3D8 DE F4 580: LDX XTEMP
C3DA 39 581: RTS

582: *
583: *Add acc A to X reg.
584: *

C3DB 37 585: ADDA PSH B
C3DC 5F 586: CLR B
C3DD 4D 587: TST A
C3DE 2A 01 588: BPL ADBA
C3E0 5A 589: DEC B
C3E1 DF 63 590: ADBA STX XSTOR
C3E3 9B 64 591: ADD A XSTOR+1
C3E5 D9 63 592: ADC B XSTOR
C3E7 97 64 593: STA A XSTOR+1
C3E9 D7 63 594: STA B XSTOR
C3EB 595: PUL B
C3EC DE 63 596: LDX XSTOR
C3EE 39 597: RTS

598: *
599: ^INTERRUPT SERVICE ROUTINE

- 73 -

PESTS2 SSB MNEMONIC ASSEMBLER

600: *
C3EF 4F 601: INT CLR A
C3F0 F6 8006 602: LDA B ADC+2 Test for fc.DC
C3F3 58 603: ASL B
C3F4 49 604: ROL A
C3F5 F6 800A 605: LDA B DAC+2 Test for 1 sec. and timer.
C3F8 7D 8008 606: TST DAC Clear timer interrupt flag.
C3FB 58 607! ASL B
C3FC 49 608: ROL A
C3FD 58 609: ASL B
C3FE 49 610: ROL A
C3FF F6 800B 611; LDA B DAC+3 Test for trigger.
C402 58 612: ASL B
C403 49 613: ROL A
C404 D6 EC 614: LDA B FLAGS
C406 F7 8008 615: STA B DAC 0/P to LEDs
C409 94 BC 616: AND A FLAGS Mask—off interrupts not enabled.
C40B 26 01 617: BNE JO
C40D 3B 618: RTI Return from interrupt.
C40E 44 619: JO LSR A
C40F 24 02 620: BCC J1
C411 20 44 621: BRA TRIG Was trigger interrupt.
C413 44 622: J1 LSR A
C414 24 35 623: BCC J2
C416 36 624: PSH A

625: *Load cloc k : t ;.imer for 1 Sec.
C417 C6 E8 626: LDA B #$E8
C419 F7 8041 627: STA B TIMER+1
C41C C6 03 628: LDA B #3
C41E F7 8041 629: STA B TIMER+1
C421 7F 006C 630: CLR DISPMD
C424 7D 0065 631: TST DISPEN
C427 27 IE 632: BEG) CLK3
C429 7D 0066 633: CLKl TST DSFRST -

C42C 26 05 634: BNE CLK2
C42E 73 0066 635: COM DSFRST
C431 20 14 636: BRA CLK3 Do display next time
C433 7F 0066 637: CLK2 CLR DSFRST
C436 73 006C , 638: COM DISPMD Do display now
C439 C6 05 639: LDA B #5
C43B F7 8006 640: STA B ADC+2 Enable sampling interrupts
C43E 7D 8004 641: TST ADC
C441 D6 BC 642: LDA B FLAGS
C443 CA 08 643: ORA B #7.1000
C445 D7 BC 644: STA B FLAGS
C447 BD COES 645: CLK3 JSR CLOCK Advance t i me
C44A 32 646: PUL A
C44B 44 647: J 2 LSR A
C44C 24 03 648: BCC J 3
C44E 7E C4CC 649: J MP TIM Was timer end of count interrupt.
C451 44 650: J3 LSR A
C452 24 9B 651: BCC INT Check no -further interrupts.
C454 7E C4DF 652:

653: t
J MP SAM Must be sampling interrupt.

654: ^Trigger.
655: *

C457 7D 8009 656: TRIG TST DAC+1 Clear trig, interrupt flag.
C45A C6 F4 657: LDA B #$F4
C45C F7 8041 658: STA B TIMER+1 Load TIMER 1 with 1/2 sec.
C45F C6 01 659: LDA B #1

— 74 —

PEST82 SSB MNEMONIC ASSEMBLER

C461 F7 8041 66U i STA B TIMER+1
C464 7F 0065 661! CLR DISF'EN
C467 7D 0067 662: TST DISPDN Display requested?
C46A 26 03 663: BNE TRGl
C46C 73 0065 664: COM DISPEN Yes, set display enable
C46F 7C OOBD 665: TRGl INC TRGFLG
C472 86 04 666: LDA A #7.0100 Timer mask pattern.
C474 95 BC 667: BIT A FLAGS Timer still running?
C476 27 16 668 3 BEQ J 4
C478 C6 01 669: LDA B #1
C47A D7 CE 670: STA B ERRORS
C47C 7C 8042 671: INC TIMER+2 Stop timer.
C47F 7D 8008 672: TST DAC Clear its interrupt flag.
C482 D6 BC 673: LDA B FLAGS
C484 C4 IB 674: AND B #%11011 Clear its mask bit.
C486 D7 BC 675: STA B FLAGS
C488 7C 00A8 676: INC FLSTRG False trigger count.
C48B 7E C3EF 677)

678: *
J MP INT

C48E 7F 00A8 679: J4 CLR FLSTRG
C491 7D OOAD 680: TST SMDONE Sampling to be done?
C494 26 33 681: BNE J6
C496 DE BA 682: LDX DELAY Yes
C498 27 IF 683: BEQ J5 No delay. Don't start timer

684: *Set up ti mer.
C49A C6 BO 685: LDA B #$B0
C49C F7 8043 686: STA B TIMER+3
C49F D6 BB 687: LDA B DELAY+1 Low byte
C4A1 F7 8042 688: STA B TIMER+2
C4A4 D6 BA 689: LDA B DELAY High byte
C4A6 F7 8042 690: STA B TIMER+2
C4A9 C6 IF 691: LDA B #$1F
C4AB F7 800A 692: STA B DAC+2 Enable timer int.
C4AE 7D 8008 693: TST DAC
C4B1 D6 BC 694: LDA B FLAGS
C4B3 CA 04 695: ORA B #7.0100 Set timer mask bit.
C4B5 D7 BC 696; STA B FLAGS
C4B7 20 10 697:

698: *
BRA J6

699: *Get ready for sampling
C4B9 DE BE 700: J5 LDX DATSIZ
C4BB DF CO 701: STX DATCNT
C4BD C6 05 702: LDA B #5 Enable sampling
C4BF F7 8006 703: STA B ADC+2
C4C2 7D 8004 704: TST ADC
C4C5 C6 IB 705: LDA B #7,11011
C4C7 D7 BC 706: STA B FLAGS
C4C9 7E C3EF 707:

708:
J6 J MP INT

709 5 *DI=.LAY Here when count — down finished.
710:

C4CC 7C 8042 711; TIM , INC TIMER+2 Stop timer.
C4CF C6 IE 712: LDA B #$1E Stop timer.
C4D1 F7 BOOA 713: STA B DAC+2
C4D4 7D 8008 714: TST DAC
C4D7 D6 BC 715: LDA B FLAGS Clear its mask bit.
C4D9 C4 IB 716: AND B #7.11011
C4DB D7 BC 717: STA B FLAGS
C4DD 20 DA 718: BRA J5

719: ^Sample, Here ' on EOC pulss from ADC.

- 75

PEST82 SSB MNEMONIC ASSEMBLER

C4DF 7D 8004 720: SAM TST ADC CI ear int. f 1 ag
C4E2 7D 006C 7215 TST DISPMD Display mode?
C4E5 27 06 722: BEQ SMI
C4E7 BD CC62 723: JSR RASTAS Yes
C4EA 7E C3EF 724: J MP INT
C4ED 7D OOAD 725: SMI TST SMDONE No, sampling done?
C4F0 26 47 726: BNE J8
C4F2 DE CO 727: LDX DATCNT No, no data to be sampled?
C4F4 27 43 728: BEQ J8

729: *Sample during echo
730: *Apply ABC and TVG
731: *

C4F6 D6 C4 732: LDA B SCALE
C4F8 D7 90 STA B SCTEMP
C4FA B6 8005 734; LDA A ADC+1 Get high 8 bits.
C4FD F6 8004 735: LDA B ADC Get low 4 bits.
C500 BD C63S 736: JSR TVG
C503 7D 0090 737: J13 TST SCTEMP
C506 27 13 738: BEQ J15 Already maxm. gain.
C508 7A 0090 739: DEC SCTEMP
C50B 58 740: ASL B
C50C 49 741: ROL A Double sample.
C50D 24 F4 742: BCC J13 Overl oaded?
C50F 86 FF 743: LDA A #$FF Yes. Set to F.S.
C511 7C 00C2 744: J14 INC OVFLW Count over-flows.
C514 26 09 745: BNE J16 -

C516 7A 00C2 746: DEC OVFLW Count saturates at $FF
C519 20 04 747: BRA J16
C51B 81 FF 748: J15 CMP A #$FF F.S.?
C51D 27 F2 749:

750: $Store
BEQ
the

J14
sample

Yes

C51F DE C5 751: J16 LDX DESTAD
C521 A7 00 752: STA A 0, X Store in array
C523 08 753: INX Advance painter
C524 DF C5 754: STX DESTAD
C526 B7 8009 755: STA A DAC+1 Echo sample to DAC
C529 DE CO 756: LDX DATCNT Decrement data count
C52B 09 757: DEX
C52C DF CO 758: STX DATCNT
C52E 27 ID 759: BEQ J9 Zero - -finished sampling.

760: ^Continue sampling.
C530 D6 BC 761: LDA B FLAGS
C532 CA 08 762: ORA B #%1000 Set sampling mask bit.
C534 D7 BC 763: STA B FLAGS
C536 7E C3EF 764:

765: *
J MP INT

766: *Disable sampling
C539 C6 04 767: J8 LDA B #4
C53B F7 8006 768: STA B ADC+2
C53E 7D 8004 769: TST ADC
C541 D6 BC 770: LDA B FLAGS
C543 C4 17 771: AND B #%10111 Clear its mask bit.
C545 D7 BC 772; STA B FLAGS
C547 7F 8009 773; CLR DAC+1
C54A 7E C3EF 774:

775: *
J MP INT

776: ^Sampling finished.
C54D C6 01 777: J9 LDA B #1
C54F D7 AD 778: STA B SMDONE Set sampling done flag
C551 C6 04 779; LDA B #4

- 76

PESTS; SSB MNEMONIC ASSEMBLER

C553 F7 8006 780: STA B ADC+2
C556 7D 8004 781: TST ADC
C559 D6 BC 782: LDA B FLAGS
C55B C4 17 783: AND B #%10111 Clear its mask bit
C55D D7 BC 784: STA B FLAGS
C55F 7F 8009 785: CLR DAC+1 Echoed Q/P goes to zero.

786 s %Adju st gain for next sampling session
C562 7D 00C2 787: TST OVFLW
C565 27 16 788: BEQ J19 No overflows
C56? D6 C2 789: LDA B OVFLW
C569 CI 05 790: CMP B #5 No. of overflows allowed
C56B 25 IF 791: BCS J21
C56D 7D 00C4 792: TST SCALE
C570 26 06 793: BNE J18 Gain can be increased
C572 C6 03 794: LDA B #3
C574 D7 DO 795: STA B ERRORS+2 "Over loading"
C576 20 14 796: BRA J21
C578 7A 00C4 797: J is' DEC SCALE Reduce gain
C57B 20 OF 798: BRA J21
C57D D6 C4 799: J19 LDA B SCALE
C57F CI 04 800: CMP B #4 Can gain be increased?
C581 25 06 801: BCS J 20 Yes
C5S3 C6 04 802: LDA B #4 No set it to maxm.
C585 07 C4 803: STA B SCALE
C587 20 03 804:- BRA J21
0589 7C 00C4 805: J 20 INC SCALE Increase gain
C58C 7F OOC2 806: J21 CLR OVFLW
C58F 7E C3EF 807:

808: *
J MP INT And return

809: ^Adjust DEPTH <ms) for delay and PHASE
810: *

C592 D6 CA 811: ADJUST LDA B NWDPTH
C594 96 CB 812: LDA A NWDPTH+1 Get fresh depth
C596 9B BB 813: ADD A DELAY+1
C598 D9 BA 314: ADC B DELAY Add on delay <mS)
C59A 37 815: PSH B
C59B .06 CC 816: LDA B PHASE
C59D 2E 07 817: BGT ADJ2 Zero or negative?
C59F C6 04 818: ADJl LDA B #4
C5A1 07 D1 819: STA B ERRORS+3 Phase out of range
C5A3 33 820: PUL B
C5A4 20 12 821: BRA ADJ4
C5A6 CI 06 822: ADJ2 CMP B #6
C5A8 24 F5 823: BCC ADJl Phase too large
C5AA D7 A7 824: STA B PHTEMP
C5AC 825: PUL B
C5AD 7A 00A7 826: AD J 3 DEC PHTEMP 0-1500 m actually phase :
C5B0 27 06 827: BEQ ADJ4
C5B2 SB DO 828: ADD A #$D0
C5B4 C9 07 829: ADC B #7 Add 2000 mS
C5B6 20 F5 830: BRA AD J 3 Loop until PHTEMP=0
C5B8 SB 08 831: ADJ4 ADD A #8 Adjust for shift due to '
C5BA C9 00 832: ADC B #0 Propagate carry
C5BC D7 CA 833: STA B NWDPTH
C5BE 97 CB 834: STA A NWDPTH+1 Put it back corrected.
C5C0 39 835:

836: *
RTS

837: *Fi nd 1eading edges of echo si gnal.
838: ^Correlate with 17 sample ramp — -8 to +8
839: *

77

PESTS2 SSB MNEMONIC ASSEMBLER

C5C1 CE 0000 840: EDGE LDX #0
C5C4 DF Al 841: STX SK
C5C6 DE 9D 842: LDX FIRSTX
C5C8 86 11 843: LDA A #17
C5CA BD C3DB 844: JSR ADDA
C5CD DF F4 845: STX XTEMP
C5CF DE 9D 846: LDX FIRSTX
C5D1 4F 847: CLR A
C5D2 5F 848: CLR B
C5D3 AB 00 849: El ADD A 0, X
C5D5 09 00 850: ADC B #0
C5D7 08 851: I NX
C5D8 9C F4 852: CPX XTEMP
C5DA 26 F7 853: BNE El
C5DC D7 A3 854: STA B SUMK
C5DE 97 A4 855: STA A SUMK+1
C5E0 DE 9F 856: LDX LASTX
C5E2 86 FO 857: LDA A #-16
C5E4 BD C3DB 858: JSR ADDA
C5E7 DF AS 859: STX EGEND
C5E9 5F 860: CLR B
C5EA DE 9D 861: LDX FIRSTX
C5EC A6 00 862: E2 LDA A 0, X
C5EE AB 11 863: ADD A 17,X
C5F0 C9 00 864: ADC B #0
C5F2 48 865: ASL A
C5F3 59 866: ROL B
C5F4 48 867: ASL A
C5F5 59 868: ROL B
C5F6 48 869: ASL A
C5F7 59 870: ROL B
C5F8 AB 00 871: ADD A 0, X
C5FA C9 00 872: ADC B #0
C5FC 9B A2 873: ADD A SK+1
C5FE D9 Al 874: ADC B SK
C600 90 A4 875: SUB A SUMK+1
C602 D2 A3 876: SBC B SUMK
C604 97 A2 877: STA A SK+1
C606 D7 Al 878: STA B SK
C608 2A 02 879: BPL E3
C60A 4F 880: CLR A
C60B 5F 881: CLR B
C60C 48 882: E3 ASL A
C60D 59 883: ROL B
C60E 48 884: ^ ASL A
C60F 59 885: ROL B
C610 48 886: ASL A
C611 59 887: ROL B
C612 24 02 888: BCC E5
C614 C6 FF 889: LDA B #$FF
C616 37 890: E5 PSH B
C617 5F 891: CLR B
C618 A6 11 892: LDA A 17,X
C61A AO 00 893: SUB A 0, X
C61C C2 00 894: SBC B #0
C61E 9B A4 895: ADD A SUMK+1
C620 D9 A3 896: ADC B SUMK
C622 97 A4 897: STA A SUMK+1
C624 D7 A 3 898: STA B SUMK
C626 899: PUL B

Initialise running sum

Edge stops before end of data

Start algorithm

Times 8

Set -ve values to O

Times 8

Over loaded?
Set to F- S.

— "78 —

PESTS2 SSB MNEMONIC ASSEMBLER

C627 E7 00 900: STA B 0, X Over-write with result
C629 5F 901: CLR B
C62A 08 902; I NX
C62B 90 AS 903: CPX EGEND Finished yet?
C62D 26 BD 904: BNE E2 No loop back
C62F C6 11 905; LDA B #17 Clear rest of array
C631 6F 00 906: E4 CLR 0, X

Clear rest of array

C633 08 907: INX
C634 5A 908; DEC B
C635 26 FA 909: BNE E4
C637 39 910;

911: *
RTS

912: *Apply TVG in TX range.
913: *

C638 7D 00B2 914: TVG TST GATNFG Gating mode?
C63B 26 39 915: BNE TVS If yes then don't apply TVS
C63D 37 916s PSH B
C63E 36 917: PSH A
C63F 96 BB 918: LDA A DELAY+1
C641 D6 BA 919: LDA B DELAY
C643 9B BF 920: ADD A DATSIZ+1
C645 D9 BE 921; ADC B DATSIZ
C647 90 CI 922: SUB A DATCNT+1
C649 D2 CO 923; SBC B DATCNT

924: *We now have posi ti on of sample re. TX
C64B CI 07 925; CMP B #7
C64D 22 06 926; BHI TVl
C64F 25 08 927; BCS TV2
C651 81 DO 928: CMP A #$D0
C653 25 04 929: BCS TV2
C655 80 DO 930; TVl SUB A #$D0 Result is greater than 2000
C657 C2 07 931; SBC B #7 therefore subtract 2000
C659 5D 932: TV2 TST B High byte zero?
C65A 26 09 933: BNE TV3 If no then out of TVG range
C65C 81 48 934; CMP A #72
C65E 24 05 935: BCC TV3
C66u 31 936: INS Repair stack
C661 31 937; INS
C662 4F 938; CLR A 0-72 therefore return zero
C663 5F 939; CLR B
C664 39 940 s RTS
C665 5D 941: TV3 TST B
C666 26 OC 942: BNE TV4
C668 81 C8 943: CMP A #200
C66A 24 08 944: BCC TV4
C66C 80 48 945: SUB A #72 Ramp data 0 - 1
C66E 48 946: ASL A
C66F 36 947: PSH A
C670 BD C6E5 948: JSR MPYDBL X 2(sample no.-114)
C673 31 949: INS
C674 32 950: TV4 PUL A
C675 951; PUL B
C676 39 952:

953:
954:

TVS
*

*PEAK

RTS

955; *Fi nd nearest peak to PREDICtion and largest overall
956: *

C677 4F 957: PEAK CLR A
C678 97 9A 958: STA A PKVAL
C67A 97 9B 959: STA A PKPOSN

79

PESTS; SSB MNEMONIC ASSEMBLER

C67C 97 9C 960: STA A PKPOSN+1 -

C67E DE 9F 961: LDX LASTX
C680 09 962: DEX
C681 DF A5 963: STX EGEND
C683 CE 7FFF 964: LDX #$7FFF Largest +ve No. to start with
C686 DF 98 965: STX OFFSET
C688 DE 9D 966: LDX FIRSTX
C6SA A6 01 967: PKl LDA A 1, X
C68C A1 00 968: CMP A 0, X
C68E 23 04 969: BLS PK2
C690 A1 02 970: CMP A 2,X
C692 24 06 971: BCC PK3
C694 08 972: PK2 INX
C695 9C A5 973: CPX EGEND
C697 26 F1 974: BNE PK1
C699 39 975: RTS
C69A 08 976:

977:
PK3
* INX This sample is greater then adjacent

ones.
C69B DF 96 978: STX SAVX
C69D 9C A5 979: CPX EGEND
C69F 26 01 980: BNE PK4
C6A1 39 981: RTS
C6A2 97 B9 982: PK4 STA A ATEMP
C6A4 96 97 983: LDA A SAVX+1
C6A6 D6 96 984: LDA B SAVX —

C6A8 90 9E 9S5J SUB A FIRSTX+1 Find relative position
C6AA D2 90 986: SBC B FIRSTX
C6AC 97 D6 987: STA A XT+1
C6AE D7 D5 988: STA B XT

989: *Cal 1 WEIGHT to weight signal 0 at edges to 1 in middle
C6B0 BD C76A 990: JSR WEIGHT
C6B3 97 B9 991: STA A ATEMP
C6B5 91 9A 992: CMP A PKVAL > than pr-evi C3US greatest?
C6B7 23 06 993: BLS PK5
C6B9 97 9A 994: STA A PKVAL Yes. It becomes newest maxm.
C6BB DE D5 995: LDX XT
C6BD DF 9B 996: STX PKPOSN And save its position
C6BF 96 D6 997: PK5 LDA A XT+1
C6C1 D6 D5 998: LDA B XT

999: * Is it closest to PREDICtion?
C6C3 90 95 1000: SUB A PREDIC+1
C6C5 D2 94 1001: SBC B PREDIC
C6C7 2A 02 1002: BPL PK6 We only want modulus o-f difference
C6C9 40 1003: NEG A
C6CA 53 1004: COM B
C6CB Dl 98 1005:

1006:
PK6 * CMP B OFFSET Have we a smaller OFFSET than

before?
C6CD 22 12 1007 5 BHI PK8 No
C6CF 25 04 1008: BCS PK7
C6D1 91 99 1009: CMP A OFFSET+1
C6D3 22 OC 1010: BHI PK8
C6D5 97 99 1011: PK7 STA A OFFSET+1 Yes Save i t
C6D7 D7 98 1012: STA B OFFSET This is new OFFSET
C6D9 96 B9 1013: LDA A ATEMP
C6DB 97 91 1014: STA A NRSTHT Save its amplitude
C6DD DE D5 1015: LDX XT
C6DF DF 92 1016: STX NRSTPS Save its position
C6E1 DE 96 1017: PK8 LDX SAVX
C6E3 20 A5 1018:

1019: *
BRA PKl

— 80 —

Keep looking

PEST82 SSB MNEMONIC ASSEMBLER

1020:
1021!
1022:
1023 s
1024:
1025:
1026:
1027:
1028:

C6E5 30 1029:
C6E6 C6 70 1030:
C6E8 D7 FC 1031!
C6EA A6 02 1032:
C6EC 97 FF 1033:
C6EE A6 04 1034:
C6F0 97 FE 1035:
C6F2 C6 79 1036:
C6F4 D7 FC 1037:
C6F6 01 1038:
C6F7 01 1039:
C6F8 A6 03 1040:
C6FA 97 FE 1041:
C6FC C6 71 1042:
C6FE D7 FC 1043:
C700 01 1044:
C701 01 1045:
C702 96 FD 1046:
C704 A7 03 1047:
C706 96 FE 1048:
C708 A7 04 1049:
C70A 39 1050:

1051:
1052:
1053:
1054:

C70B 30 1055:
C70C C6 70 1056:
C70E D7 FC 1057:
C710 A6 02 1058:
C712 97 FF 1059:
C714 A6 03 1060:
C716 97 FD 1061:
C71S A6 04 1062:
C71A 97 FE 1063:
C71C C6 72 1064 s
C71E D7 FC 1065:
C720 01 1066:
C721 01 1067:
C722 96 FE 1068:
C724 A7 03 1069:
C726 96 FD 1070:
C728 A7 04 1071:
C72A 7D OOFC 1072:
C720 27 01 1073:
C72F OD 1074:
C730 39 1075:

1076:
1077:
1078:

C731 DE BE 1079:

^Multiply double byte by single byte but throw away LSBytt
^Arguments are passed on stack
*1ow byte multiplicand (first on stack)
*high byte "
*one byte multiplier
^Results in
*Low byte product
*high byte "

^unchanged mu11 i p 1 i
MPYDBL TSX

LDA B #$70
STA B MULT
LDA A 2, X
STA A MULT+3
LDA A 4,X
STA A MULT+2
LDA B #$79
STA B MULT
NOP
NOP
LDA A <1 X
STA A MULT+2
LDA B #$71
STA B MULT
NOP
NOP
LDA A MULT+1
STA A 3, X
LDA A MULT+2
STA A 4,X
RTS

Start multiplier

Wait for it

^Divide double byte by single byte.
^Dividend and divisor on stack.
*Quotient and remainder returned.
DIVDBL TSX

LDA B #$70
STA B MULT
LDA A 2, X
STA A MULT+3
LDA A 3, X
STA A MULT+1
LDA A 4, X
STA A MULT+2
LDA B #$72
STA B MULT
NOP
NOP
LDA A MULT+2
STA A 3, X
LDA A MULT+1
STA A 4,X
TST MULT
BEQ DVl
SEC

DVl RTS
*Shi ft gate by adjusting delay.
*Out of range delay is prevented,
%

SHFTGT LDX DATSIZ

— 81 —

PEST82 SSB MNEMONIC ASSEMBLER

C733 DF F4 1080: STX XTEMP
C735 74 00F4 1081: LSR XTEMP
C738 76 OOFS 1082: RQR XTEMP+1
C73B 90 F5 1083: SUB A XTEMP+1
C73D D2 F4 1084: SBC B XTEMP
C73F 9B BB 1085: ADD A DELAY+1
C741 D9 BA 1086: ADC B DELAY
C743 2A OB 1087: BPL SHI
C745 SB DO 1088: ADD A #$D0
C747 C9 07 1089: ADC B #7
C749 7A OOCC 1090: DEC PHASE
C74C 97 B8 1091 s STA A AVDPTH+1
C74E D7 B7 1092 s STA B AVDPTH
C750 CI 07 1093: SHI CMP B #7
C752 22 06 1094: BHI SH2
C7S4 25 OF 1095: BCS SH3
C756 81 CE 1096: CMP A #$CE
C758 23 OB 1097: BLS SH3
C75A 80 CF 1098: SH2 SUB A #$CF
C75C C2 07 1099: SBC B #7
C75E 7C OOCC 1100: INC PHASE
C761 97 B8 1101: STA A AVDPTH+1
C763 D7 B7 1102: STA B AVDPTH
C765 97 BB 1103: SH3 STA A DELAY+1
C767 D7 BA 1104: STA B DELAY
C769 39 1105:

1106: *
RTS

1107: ^WEIGHT differentiate
1108: *one in middle.
1109: t

C76A DE BE 1110: WEIGHT LDX DATSIZ
C76C DF F4 1111: STX XTEMP
C76E 74 00F4 1112: LSR XTEMP
C771 76 OOFS 1113; ROR XTEMP+1
C774 96 D6 1114: LDA A XT+1
C776 06 DS 1115: LDA B XT
C778 D1 F4 1116: CMP B XTEMP
C77A 22 06 1117: BHI WGl
C77C 25 OA 1118: BCS WG2
C77E 91 F5 1119: CMP A XTEMP+1
C780 23 06 1120: BLS WG2
C782 40 1121: WGl MEG A
C783 53 1122: COM B
C784 9B BF 1123: ADD A DATSIZ+1
C786 D9 BE 1124: ADC B DATSIZ
C788 36 1125: WG2 PSH A
C7S9 37 1126: PSH B
C78A 96 89 1127: LDA A ATEMP
C78C 36 1128: PSH A
C78D BD C6E5 1129: JSR MPYDBL
C790 31 1130: INS
C791 1131: PUL B
C792 32 1132: PUL A
C793 7F 00B9 1133: CLR ATEMP
C796 7D 00F4 1134 5 WG3 TST XTEMP
C799 27 OD 1135: BED WG4
C79B 74 00F4 1136: LSR XTEMP
C79E 76 OOFS 1137: ROR XTEMP+1
C7A1 54 1138: LSR B
C7A2 46 1139: ROR A

— z ero at ends

82

PESTS2

C7A3 76 00B9 1140: ROR ATEMP
C7A6 20 EE 1141: BRA WG3
C7A8 D6 B9 1142: WG4 LDA B ATEMP
C7AA 37 1143: PSH B
C7AB 36 1144: PSH A
C7AC 96 F5 1145: LDA A XTEMP+1
C7AE 36 1146: PSH A
C7AF BD C70B 1147: JSR DIVDBL
C7B2 31 1148: INS
C7B3 32 1149: PUL A
C7B4 31 1150: INS
C7B5 39 1151 5 RTS

1152: *
1153: ^Single pole FILTer
1154: *

C7B6 36 1155: FILT PSH A
C7B7 37 1156: PSH B
C7B8 96 B4 1157: LDA A COEFl+1
C7BA 36 1158: PSH A
C7BB 96 B3 1159: LDA A COEFl
C7BD 36 1160: PSH A
C7BE BD C81D 1161s JSR MPY2X2
C7C1 33 1162: PUL B
C7C2 32 1163: PUL A
C7C3 31 1164: INS
C7C4 31 1165: INS
C7C5 9B B8 1166: ADD A AVDPTH+
C7C7 D9 B7 1167: ADC B AVDPTH
C7C9 36 1168: PSH A
C7CA 37 1169: PSH B
C7CB 96 B6 1170: LDA A C0EF2+1
C7CD 36 1171: PSH A
C7CE 96 B5 1172: LDA A C0EF2
C7D0 36 1173: PSH A
C7D1 BD C81D 1174: JSR MPY2X2
C7D4 1175: PUL B
C7D5 32 1176: PUL A
C7D6 31 1177: INS
C7D7 31 1178: INS
C7D8 97 B8 1179: STA A AVDPTH+
C7DA D7 B7 1180: STA B AVDPTH
C7DC 39 1181: RTS

1182: *
1183s *Multiply 3 : bytes by
1184: *and product passed i
1185: t

0070 1186: RESET EQU $70
0079 1187: MULCLR EQU $79
0071 1188: MULCOM EQU $71

1189: *
C7DD 30 1190: MPY1X3 TSX
C7DE 86 70 1191: LDA A #RESET
C7E0 97 FC 1192: STA A MULT
C7E2 A6 02 1193: LDA A 2,X
C7E4 97 FF 1194: STA A MULT+3
C7E6 A6 05 1195: LDA A 5, X
C7E8 97 FE 1196: STA A MULT+2
C7EA 86 79 1197: LDA A #MULCLR
C7EC 97 FC 1198: STA A MULT
C7EE 01 1199: NOP

SSB MNEMONIC ASSEMBLER

1. Multiplier,multiplicand

- 83

PEST82 SSB MNEMONIC ASSEMBLER

C7EF 01 1200: NOP
C7F0 96 FE 1201 s LDA A MULT+2
C7F2 A7 05 1202: STA A 5, X
C7F4 86 70 1203: LDA A #RESET
C7F6 97 FC 1204: STA A MULT
C7F8 A6 04 1205 s LDA A 4,X
C7FA 97 FE 1206: STA A MULT+2
C7FC 86 71 1207; LDA A #MULCOM
C7FE 97 FC 1208: STA A MULT
ceoo 01 1209 s NOP
C801 01 1210; NOP
CS02 96 FE 1211; LDA A MULT+2
CS04 A7 04 1212; STA A 4,X
C806 96 70 1213: LDA A RESET
C808 97 FC 1214; STA A MULT
C80A A6 03 1215: LDA A 3, X
C80C 97 FE 1216; STA A MULT+2
C80E 86 71 1217: LDA A #MULCOM
CSIO 97 FC 1218: STA A MULT
C812 01 1219: NOP
CS13 01 1220: NOP
C814 96 FE 1221: LDA A MULT+2
C816 A7 03 1222: STA A 3, X
C818 96 FD 1223: LDA A MULT+1
C81A A7 02 1224; STA A 2,X
C81C 39 1225: RTS

1226:
1227: *Multipiy 2 bytes by
1228: *

C81D 30 1229: MPY2X2 TSX
C81E 86 70 1230; LDA A #RESET
C820 97 FC 1231; STA A MULT
C822 A6 03 1232; LDA A 3, X
CS24 97 FF 1233; STA A MULT+3
C826 A6 05 1234; LDA A 5, X
C828 36 1235: PSH A
CS29 97 FE 1236; STA A MULT+2
CS2B 86 79 1237: LDA A #MULCLR
C82D 97 FC 1238; STA A MULT
C82F 01 1239; NOP
C830 01 1240; NOP
CS31 96 FE 1241: LDA A MULT+2
CS33 A7 05 1242; STA A 5, X
C835 86 70 1243: LDA A #RESET
C837 97 FC 1244; STA A MULT
C839 A6 04 1245; LDA A 4, X
C83B 36 1246: PSH A
CS3C 97 FE 1247: STA A MULT+2
C83E 86 71 1248; LDA A #MULCOM
C840 97 FC 1249; STA A MULT
C842 01 1250: NOP
C843 01 1251: NOP
C844 96 FE 1252; LDA A MULT+2
C846 A7 04 1253; STA A 4, X
C848 86 70 1254; LDA A #RESET
C84A 97 FC 1255: STA A MULT
C84C A6 02 1256: LDA A 2, X
C84E 97 FF 1257: STA A MULT+3
C850 32 1258: PUL A
C851 97 FE 1259; STA A MULT+2

- 84 -

bytes

PEST8: SSB MNEMONIC ASSEMBLER

C853 86 71 1260: LDA A #MULCOM
C855 97 FC 1261s STA A MULT
C857 01 1262: NOP
C858 01 1263: NOP
C859 96 FE 1264: LDA A MULT+2
C85B A7 03 1265: STA A p X
C85D A6 02 1266: LDA A 2, X
C85F 36 1267: PSH A
C860 96 FD 1268: LDA A MULT+1
C862 A7 02 1269: STA A 2,X
C864 86 70 1270: LDA A #RESET
C866 97 FC 1271: STA A MULT
C868 32 1272: PUL A
C869 97 FF 1273: STA A MULT+3
C86B 32 1274: PUL A
C86C 97 FE 1275: STA A MULT+2
C86E 86 79 1276: LDA A #MULCLR
C870 97 FC 1277: STA A MULT
C872 01 1278: NOP
C873 01 1279: NOP
C874 96 FE 1280: LDA A MULT+2
C876 AB 04 1281: ADD A 4,X
C878 A7 04 1282: STA A 4,X
C87A 96 FD 1283: LDA A MULT+1
C87C A9 03 1284: ADC A 3,X
C87E A7 03 1285: STA A 3, X
C880 24 02 1286: BCC MPl
CS82 6C 02 1287: INC 2,X
C884 39 1288:

1289:
MPl
*

RTS

1290: *I/P 4 unpacked BCD d
1291: ^Thumbwheel switch en
1292: *0r enter at BC2 to f'
1293: *

C885 C6 BO 1294: INBCD LDA B #$B0
C887 F7 8020 1295: BC3 STA B PANEL
C88A B6 8020 1296: LDA A PANEL
C88D 43 1297: COM A
C88E 84 OF 1298: AND A #$F
C890 A7 00 1299: STA A 0,X
C892 08 1300: INX
C893 CO 10 1301: SUB B #$10
C895 CI 70 1302: CMP B #$70
C897 26 EE 1303: BNE BC3
C899 39 1304:

1305: *
RTS

1306: *Convert 4 un 1-packed 1
1307: *to binary i r 1 acc.s B
13u8 * *

C89A 4F 1309: CVDTB CLR A
C89B 5F 1310: CLR B
C89C CE C8C9 1311: LDX #TENPWR
C89F DF F4 1312: STX XTEMP
C8A1 CE 0086 1313: LDX #BCDIN
C8A4 60 00 1314: CVBINl TST 0, X
C8A6 27 OE 1315: BEQ CVBIN2
C8A8 6A 00 1316: DEC o,x
C8AA DF F6 1317: STX SPTEMP
C8AC DE F4 1318: LDX XTEMP
C8AE AB 01 1319: ADD A 1,X

:s into "BCDIN"
completed by push-button.
1 entry anytime.

Select digit 3
Get BCD.
Was -ve logic
Mask off 4 Isb'
Into buffer.

(digits O

Select ne;.
Finished?

BCD digits

t highest digit,

- 85 -

PESTS: SSB MNEMONIC ASSEMBLER

CSBO E9 00 1320 s ADC B 0,X
C8B2 DE F6 1321: LDX SPTEMP
C8B4 20 EE 1322; BRA CVBINl
C8B6 08 1323! CVBIN2 INX
C8B7 DF F6 1324: STX SPTEMP
C8B9 DE F4 1325 ! LDX XTEMP
C8BB 08 1326: INX
C8BC 08 1327; INX
C8BD 8C C8D1 1328: CPX #TENPWR+e
C8C0 27 06 1329: BEQ CVBIN3 ,
CSC2 DF F4 1330: STX XTEMP
C8C4 DE F6 1331: LDX SPTEMP
C8C6 20 DC BRA CVBINl
C8C8 39 1333; CVBIN3 RTS
C8C9 03 E8 1334: TENPWR FDB 1000,100,

C8D1
C8D4
C8D7
CSD9
C8DC
C8DE
C8E1
CSE3
C8E5
C8E6
C8ES
C8E9
C8EC
C8EE
C8F1
C8F3
C8F5
C8F7

C8F8
C8F9
C8FA
C8FB
C8FC
C8FD
C8FE
C900
C901
C902
C905
C906
C907
C908
C909
C90B
C90D
C910
C913
C915

CE 0086
7F 8022
86 FF
B7 8020
86 04
B7 8022
C6 70
A6 00
08

84 OF
IB
B7 8020
86 FF
B7 8020
CO 10
CI FO
26 EC
39

48
59
48
59
36
37
86 55
36
36
BD C81D

31
31
DE BE
DF F4
74 00F4
76 OOFS
90 F5
D2 F4

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1379
1379

*Di splay 8 unpacked BCD on front panel
*

LCD LDX #BCDIN
CLR PANEL+2
LDA A #$FF
STA A PANEL
LDA A #4
STA A PANEL+2
LDA B #$70

LCI LDA A 0,X
INX
AND A #$F
ABA
STA A PANEL
LDA A #$FF
STA A PANEL
SUB B #$10
CMP B #$F0
BNE LC1
RTS

^Convert metres to mS.
*Result in >; reg. PHASE *

CVRTMS ASL A
ROL B
ASL A
ROL 5
PSH A
PSH B
LDA A #$55
PSH A
PSH A
JSR MPY2X2
PUL B
PUL A
INS
INS
LDX DATSIZ
STX XTEMP
LSR XTEMP
ROR XTEMP+1
SUB A XTEMP+1
SBC B XTEMP

i n acc A

PESTS; SSB MNEMONIC ASSEMBLER

C917 2A 02 1380: BPL CVRl
C919 4F 1381: CLR A
C91A SF 1382: CLR B
C91B 7F 00D9 1383: CVRl CLR BTEMP
C91E 7C 00D9 1384: CVR2 INC BTEMP
C921 80 DO 1385: SUB A #$DO
C923 C2 07 1386: SBC B #7
C925 24 F7 1387: BCC CVR2
C927 8B DO 1388: ADD A #$D0
C929 C9 07 1389: ADC B #7
C92B 97 F5 1390: STA A XTEMP+1
C92D D7 F4 1391: STA B XTEMP
C92F DE F4 1392; LDX XTEMP
C931 96 D9 1393 ! LDA A BTEMP
C933 39 1394: RTS

1395:
1396:
1397:

*
*Subr. to unpacked time digits.

C934 16 1398: GETLFT TAB
C935 54 1399: LSR B
C936 54 1400; LSR B
C937 54 1401; LSR B
C938 54 1402: LSR B
C939 20 01 1403: BRA GETRl
C93B 16 1404: GETRGT TAB
C9-3C C4 OF 1405: GETRl AND B #$F
C93E CB 30 1406: ADD 8 #' 0
C940 CI 39 1407: CMP B #'9
C942 23 02 1408: BLS GETR2
C944 CB 37 1409: ADD B #' 7
C946 39 1410: GETR2 RTS

C947 BD C236
C94A BD C2A3

1411
1412:
1413:
1414s
1415:
1416:
1417:
1418:

: *
*Get depth from front panel
^Return if depth entry not changed.
*Also call TWOMIN and ERRs *

INDPTH JBR
JSR

TWOMIN
ERRS

*Decide whether to send time to Mufax,
C94D 96 E7 1419: LDA A MINS+1
C94F SB 94 1420: INDO ADD A #$94 Test MINS divisible by 6
C951 19 1421: DAA
C952 2A FB 1422: BPL INDO
C954 88 06 1423: ADD A #6
C956 19 1424: DAA
C957 26 48 1425: BNE INDl
C959 96 E9 1426: LDA A SECS+1
C95B 81 20 1427: CMP A #$20
C95D 25 42 1428: BCS INDl
C95F 81 26 1429: CMP A #$26
C961 24 3E 1430: BCC INDl
C963 7D 0067 1431: TST DISPDN
C966 27 39 1432: BEQ INDl

1433: *Get ready for Mufax time display.
C968 BD CBA3 1434: JSR MFINIT Initialise mufax dis play
C96B CE 0059 1435: LDX #MUFDSP Transfer to display buffer
C96E 96 E5 1436: LDA A HRS+1
C970 8D C2 1437: BSR GETLFT Hours
C972 E7 00 1438: STA B 0, X
C974 8D C5 1439: BSR GETRGT

- 87 -

PESTS: SSB MNEMONIC ASSEMBLER

C976 E7 01 1440: STA B 1,X
C978 C6 3A 1441: LDA B # ' :

C97A E7 02 1442: STA B 2, X
C97C 96 E7 1443: LDA A MINS+1
C97E 8D B4 1444: BSR GETLPT Mi nutes
C980 E7 03 1445: STA B 3, X
C982 8D B7 1446: BSR GETRGT
C984 E7 04 1447: STA B 4,X
C986 C6 20 1448: LDA B #$20
C988 E7 05 1449: STA B 5, X
C98A 96 E2 1450: LDA A DAYS
C98C 8D AD 1451! BSR GETRGT Day number
C98E E7 06 1452: STA B 6,X
C990 96 E3 1453: LDA A DAYS+1
C992 8D AO 1454: BSR GETLPT
C994 E7 07 1455: STA B 7, X
C996 8D A3 1456: BSR GETRGT
C99S E7 08 1457: STA B 8, X
C99A C6 OD 1458: LDA B #$D
C99C E7 09 1459: STA B 9,X
C99E 7F 0067 1460: CLR DISPDN Signal start of display
C9A1 CE 0086 1461: INDl LDX #BCDIN
C9A4 7F 8022 1462: CLR PANEL •+•2
C9A7 86 FO 1463: LDA A #$F0
C9A9 B7 8020 1464s STA A PANEL
C9AC 86 04 1465: LDA A #4
C9AE B7 8022 1466: STA A PANEL+2
C9B1 BD C885 1467: JSR INBCD Get BCD from front panel.
C9B4 BD CS9A 1468: JSR CVDTB Convert to binary.
C9B7 D7 F4 1469: STA B XTEMP
C9B9 97 F5 1470: STA A XTEMP+1
C9BB DE F4 1471: LDX XTEMP -

C9BD 9C 84 1472: CPX LSTENT Same as before?
C9BF 27 OB 1473: BED IND3 Go and display depth.
C9C1 DP 84 1474: STX LSTENT New changed depth entry.
C9C3 BD COPS 1475: IND2 JSR CVRTMS Convert t o mS.
C9C6 97 CC 1476: STA A PHASE
C9C8 OF B7 1477: STX AVDPTH
C9CA DP BA 1478: STX DELAY
C9CC 39 1479; IND3 RTS

1480: *Display present depth and send to remote K/B
C9CD D6 CA 1481: DISPl LDA B NWDPTH
C9CF 96 CB 1482: LDA A NWDPTH+1
C9D1 48 1483: ASL A
C9D2 59 1484: ROL B Times 2
C9D3 9B CB 1485: ADD A NWDPTH+1
C9D5 D9 CA 1486: ADC B NWDPTH Times 3
C9D7 54 1487: LSR B
C9D8 46 1488: ROR A
C9D9 54 1489: LSR B -

C9DA 46 1490: ROR A Divide by 4
C9DB D7 F4 1491: STA B XTEMP Nett reset 11 times 3/4
C9DD 97 P5 1492: STA A XTEMP+1
C9DF DE F4 1493: LDX XTEMP This is now depth in metres.
C9E1 BD C13A 1494: JSR CVBTD Convert t o decimal.
C9E4 DE DB 1495: LDX DIGITS+1 Transfer to display buffer.
C9E6 DP 86 1496: STX BCD IN
C9E8 DE DD 1497: LDX DIGITS+3
C9EA DP 88 1498: STX BCDIN+2
C9EC BD C8D1 1499: JSR LCD Di splay it.

8 8 —

PESTS; SSB MNEMONIC ASSEMBLER

C9EF BD CCE7 1500: JSR SEND
C9F2 39 1501; RTS

1502 s *
1503: ^FILTER 2 ' sec. depths
1504! *

C9F3 DE 82 1505: DPFILT LDX DPSTCK
C9F5 DF 7F 1506: STX PNTR2
C9F7 CE CFCO 1507: LDX ttCOEFFS
C9FA DF 7D 1508: STX PNTRl
C9FC 7F 0081 1509: CLR DIRFLG
C9FF 7F 0078 1510: CLR FILTOP
CA02 7F 0079 1511: CLR FILTOP+1
CA05 7F 007A 1512: CLR FILTOP+2
CA08 7F 007B 1513: CLR FILTOP+3
CAOB 7F 007C 1514: CRl CLR SIGN
CAOE A6 01 1515: LDA A 1,X
CAIO E6 00 1516s LDA B 0, X
CA12 2A 09 1517: BPL CR2
CA14 4D 1518: TST A
CA15 26 01 1519.: BNE CR6
CA17 5A 1520: DEC B
CA18 40 1521s CR6 NEG A
CA19 53 1522: COM B
CAIA 73 007C 1523: COM SIGN
CAID 36 1524 s CR2 PSH A
CAIE 37 1525: PSH B
CAIF 7D 0081 1526: TST DIRFLG
CA22 26 OE 1527: BNE CRRl
CA24 08 1528: INX
CA25 08 1529: I NX
CA26 DF 7D 1530: STX PNTRl
CA2S 8C CFFE 1531: CPX #2*31+C0E
CA2B 26 09 1532: BNE CRR2
CA2D 7C 0081 1533: INC DIRFLG
CA30 20 04 1534: BRA CRR2
CA32 09 1535: CRRl DEX
CA33 09 1536: DEX
CA34 DF 7D 1537: STX PNTRl
CA36 DE 7F 1538: CRR2 LDX PNTR2
CA38 A6 01 1539: LDA A 1,X
CA3A E6 00 1540: LDA B 0, X
CA3C 2A 09 1541: BPL CR3
CA3E 4D 1542: TST A
CA3F 26 01 1543: BNE CR7
CA41 5A 1544: DEC B
CA42 40 1545: CR7 NEG A
CA43 53 1546: COM B
CA44 73 007C 1547: COM SIGN
CA47 36 1548: CR3 PSH A
CA4S 37 1549: PSH B
CA49 BD C81D 1550: JSR MPY2X2
CA4C 30 1551: TSX
CA4D 31 1552: INS
CA4E 31 1553: INS
CA4F 31 1554 s INS
CA50 31 1555s INS
CA51 7D 007C 1556: TST SIGN
CA54 2A lA 1557: BPL CR4
CA56 96 7B 1558: LDA A FILTOP+3
CASS D6 7A 1559: LDA B FILTOP+2

Send it to remote K/B

mi n.

- 89

PESTS2 SSB MNEMONIC ASSEMBLER

CA5A AO 03 1560: SUB A 3,X
CA5C E2 02 1561 s SBC B 2,X
CASE 97 7B 1562: STA A FILTOP+3
CA60 D7 7A 1563: STA B FILTOP+2
CA62 96 79 1564: LDA A FILTOP+1
CA64 D6 78 1565: LDA B FILTOP
CA66 A2 01 1566: SBC A 1, X
CA68 E2 00 1567 s SBC B 0,X
CA6A 97 79 1568: STA A FILTOP+1
CA6C D7 78 1569: STA B FILTOP
CA6E 20 18 1570: BRA CR5
CA70 96 7B 1571: CR4 LDA A FILTOP+3
CA72 D6 7A 1572: LDA B FILTOP+2
CA74 AB 03 1573: ADD A 3, X
CA76 E9 02 1574: ADC B 2, X
CA78 97 7B 1575: STA A FILTOP+3
CA7A D7 7A 1576: STA B FILTOP+2
CA7C 96 79 1577: LDA A FILTOP+1
CA7E D6 78 1578: LDA B FILTOP
CA80 A9 01 1579: ADC A i , x
CAS2 E9 00 1580: ADC B o,x
CA84 97 79 1581: STA A FILTOP+1
CA86 D7 78 1582: STA B FILTOP
CA88 DE 7F 1583: CR5 LDX PNTR2
CA8A 08 1584: INX
CASE 08 1585: INX
CA8C DF 7F 1586: STX PNTR2
CASE 8C 1080 1587: CPX #4*31+DPSTRT+4
CA91 26 05 1588: BNE CRR3
CA93 CE 1000 1589: LDX #DPSTRT
CA96 DF 7F 1590: STX PNTR2
CA98 DE 7D 1591: CRR3 LDX PNTRl
CA9A 8C CFBE 1592: CPX #C0EFFS-2
CA9D 27 03 1593: BEQ CRR4
CA9F 7E CAOB 1594: J MP CRl
CAA2 39 1595 s CRR4 RTS

1596:
1597:
1598:
1599:
1600:

^Filter over
*Store them i
^Transfer any
*

+&— 1 Min. depths on the 2 Mi n. mark
n a rolling stack
unsent depths to the ship's logger.

CAA3 BD C9F3 1601: STORDP JSR DPFILT
CAA6 DE 78 1602: LDX FILTOP
CAAS 7D 007A 1603: TST FILTOP+2
CAAB 2A 01 1604: BPL STl
CAAD 08 1605: INX
CAAE DF F4 1606: STl STX XTEMP
CABO 96 F5 1607: LDA A XTEMP+1
CAB2 D6 F4 1608: LDA B XTEMP
CAB4 48 1609: ASL A
CABS 59 1610: ROL B
CAB6 9B F5 1611: ADD A XTEMP+1
CABS D9 F4 1612; ADC B XTEMP
CABA 54 1613: LSR B
CABB 46 1614: ROR A
CABC 54 1615: LSR B
CABD 46 1616: ROR A
CASE D7 F4 1617: STA B XTEMP
CACO 97 FS 1618: STA A XTEMP+1
CAC2 DE F4 1619: LDX XTEMP

- 90 -

PEST82 SSB MNEMONIC ASSEMBLER

CAC4
CAC7
CAC9
CACB
CACD
CACF
CADO
CADI
CAD2
CAD3
CAD4
CAD6
CAD8
CADA
CADC
CADD
CADE
CADF
CAEO
CAEl
CAE3
CAES
CAE7
CAE9
CAES
CAED
CAEF
CAFl
CAF3
CAF5
CAF7
CAF9
CAFA
CAFB
CAFC
CAFE
CBOO
CB03
CB06
CB08
CBOB

BD C13A
DE 74
96 DB
D6 DC
C4 OF
48
48
48
48
IB
A7 00
96 DD
D6 DE
C4 OF
48
48
48
48
IB
A7 01
96 EO
A7 02
96 El
A7 03
96 E2
A7 04
96 E3
A7 05
96 E5
A7 06
96 E7
44
OD
49
A7 07
86 08
BD C3DB
8C 4000
26 03
CE 2000
DF 74

1620:
1621:
1622:
1623;
1624:
1625:
1626;

1627:
1628 s
1629:
1630 s
1631:
1632:
1633:
1634:
1635:
1636:
1637:
1638:
1639:
1640:
1641:
1642;
1643:
1644:
1645:
1646:
1647;
1648:
1649:
1650:
1651;
1652:
1653:
1654:
1655:
1656:
1657:
1658:
1659;
1660:
1661:
1662:

JSR
LDX
LDA
LDA
AND
ASL
ASL
ASL
ASL
ABA
STA
LDA
LDA
AND
ASL
ASL
ASL
ASL
ABA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
LSR
SEC
ROL
STA
LDA
JSR
CF'X
BNE
LDX
STX ST2

*

*Get ready

CVBTD
DPTMPl

A DIGITS+1
B DIGITS+2
B #$0F
A
A
A
A

A 0, X
A DIGITS+3
B DIGITS+4
B #$0F
A
A
A
A

A 1,X
A YEARS
A 2,X
A YEARS+1
A 3,X
A DAYS
A 4, X
A DAYS+1
A 5, X
A HRS+1
A 6,X
A MINS+1
A

A
A 7, X
A #8

ADDA
#DPTMST+$2000
ST2
#DPTMST
DPTMPl

to send depth to Mufa>
1663: $

CBOD 7D 0067 1664: TST DISPDN
CBIO 27 23 1665: BEQ SRCHDP
CB12 BD CBA3 1666: JSR MFINIT
CB15 CE 0059 1667: LDX #MUFDSP
CBIS 86 20 1668 s LDA A #$20
CBIA A7 00 1669; STA A 0, X
CBIC A7 01 1670: STA A 1, X
CBIE 96 DB 1671; LDA A DIGITS+1
CB20 A7 02 1672: STA A 2,X
CB22 96 DC 1673; LDA A DIGITS+2
CB24 A7 03 1674 s STA A f X
CB26 96 DD 1675: LDA A DIGITS+3
CB28 A7 04 1676; STA A 4,X
CB2A 96 DE 1677: LDA A DIGITS+4
CB2C A7 05 1678: STA A 5, X
CB2E 86 OD 1679: LDA A #$D

- 91

PESTS: SSB MNEMONIC ASSEMBLER

CB30 A7 06 1680: STA A 6, X
CB32 7F 0067 16813

1682: *
CLR DISPDN

1683: ^Search list of depths and times for any not
1684: *yet sent to ship's logger.
1685 s *

CB35 DE 74 1686: SRCHDP LDX DPTMPl
CB37 86 05 1687: LDA A #5
CB39 97 71 1688: STA A SRCHCT
CB3B DF 76 1689: ST5 STX DPTMP2
CB3D A6 05 1690: LDA A 5, X
CB3F 27 ID 1691: BED ST3
CB41 A6 07 1692: LDA A 7,X
CB43 85 01 1693 s BIT A #1
CB45 27 17 1694: BEQ ST3
CB47 84 FE 1695: AND A #$FE Clear LSB for TX.
CB49 A7 07 1696: STA A 7,X
CB4B 8D 25 1697: BSR XMIT
CB4D 25 06 1698: BCS ST4
CB4F 7A 0071 1699: DEC SRCHCT
CB52 26 OA 1700: BNE ST3
CB54 39 1701! RTS
CB55 DE 76 1702: ST4 LDX DPTMP2
CB57 A6 07 1703: LDA A 7,X
CB59 8A 01 ^ 1704: ORA A #1
CB5B A7 07 1705: STA A 7,X
CB5D 39 1706: RTS
CB5E DE 76 1707: ST3 LDX DPTMP2
CB60 86 08 1708: LDA A #8
CB62 BD C3DB 1709: JSR ADDA
CB65 8C 4000 1710: CPX #DPTMST+$2000
CB68 26 03 1711: BNE ST6
CB6A CE 2000 1712: LDX #DPTMST
CB6D 9C 74 1713: ST6 CPX DPTMPl
CB6F 26 CA 1714s BNE ST5
CB71 39 1715:

1716:
1717:

*
*

RTS

1718: *Try to send depth and time to ship's logger.
1719: *

CB72 B6 E002 1720: XMIT LDA A AC I AS
CB75 85 08 1721: BIT A #%00001000
CB77 27 02 1722: BEQ XMl
CB79 OD 1723: SEC
CB7A 39 1724 5 RTS
CB7B 86 45 1725: XMl LDA A #'E
CB7D BD C0A4 1726: JSR DUTCH
CB80 BD F17C 1727: JSR $F17C
CB83 BD F17C 1728: JSR ' $F17C
CB86 BD F17C 1729: JSR $F17C
CB89 BD F17E 1730: JSR $F17E
CB8C BD F17E 1731: JSR $F17E
CB8F 86 OD 1732: LDA A #$0D
CB91 BD F108 1733: JSR $F108
CB94 86 OA 1734: LDA A #$0A
CB96 BD F108 1735: JSR $F108
CB99 BD COBl 1736: JSR GET
CB9C 4D 1737: TST A
CB9D 26 02 1738: BNE XM2
CB9F OD 1739: SEC

- 92

PESTS: SSB MNEMONIC ASSEMBLER

CBAO 39 1740: RTS
CBAl oc 1741: XM2 CLC
CBA2 39 1742 5

1743: *
RTS

1744: *Ini t 1 Muf a; display r
1745: *

0002 1746: KLINES EQU 2
0002 1747:

1748:
KWIDTH * EQU 2

CBA3 CE CF40 1749s MFINIT LDX #PATRNS
CBA6 DF 6A 1750: STX ROWPT
CBA8 CE 0059 1751: LDX #MUFDSP
CBAB DF 68 1752: STX CHARPT
CBAD 86 SO 1753: LDA A #$80
CBAF 97 6D 1754: STA A DOTS
CBBl 86 02 1755: LDA A #KLINES
CBB3 97 6E 1756: STA A LINES
CBB5 86 02 1757: LDA A #KWIDTH
CBB7 97 6F . ,1758: STA A WIDTH
CBB9 7F 0066 1759: CLR DSFRST
CBBC 96 BB 1760: LDA A DELAY+1
CBBE D6 BA 1761: LDA B DELAY
CBCO DE BE 1762: LDX DATSIZ
CBC2 DF F4 1763: STX XTEMP
CBC4 74 00F4 1764: LSR XTEMP
CBC7 76 OOFS 1765: ROR XTEMP+1
CBCA 9B F5 1766: ADD A XTEMP+1
CBCC D9 F4 1767: ADC B XTEMP
CBCE CI 07 1768: CMP B #7
CBDO 22 06 1769: BHI MFO
CBD2 25 08 1770: BCS MFFl
CBD4 81 DO 1771: CMP A #$D0
CB06 04 1772: BLS MFFl
CBDS 80 DO 1773: MFO SUB A #$D0
CBDA C2 07 1774: SBC B #7
CBDC CI 04 1775: MFFl CMP B #4
CBDE 25 03 1776: BCS MFl
CBEO 73 0066 1777: COM DSFRST
CBE3 39 1778:

1779:
MFl RTS

1780: EPROCESS gated signal
1781: *Compi1 ation of vario
1782: t

CBE4 BD C5C1 1783: PROCSS JSR EDGE
CBE7 BD C677 1784: JSR PEAK
CBEA 96 91 1785: LDA A NRSTHT
CBEC 91 9A 1786: CMP A PKVAL
CBEE 24 06 1787: BCC PRl
CBFO 96 9C 1788: LDA A PKPOSN+1
CBF2 D6 9B 1789: LDA B PKPDSN
CBF4 20 04 1790: BRA PR2
CBF6 96 93 1791: PRl LDA A NRSTPS+1
CBFS D6 92 1792: LDA B NRSTPS
CBFA 97 CB 1793: PR2 STA A NWDPTH+1
CBFC D7 CA 1794: STA B NWDPTH
CBFE BD C731 1795: JSR SHFTGT
CCOl BD C7B6 1796: JSR FILT
CC04 97 BB 1797: STA A DELAY+1
CC06 D7 BA 1798: STA B DELAY
CC08 BD C592 1799: JSR ADJUST

routine RASTAS

processing routines.

- 93 -

PESTS2 SSB Mh

CCOB 7E C9CD 1800: J MP DISPl
1801: $
1802: *Test for TX when gating on
1803:

CCOE 7D 00 B2 1804: GATEBT TST GATNFG
CCll 27 4D 1805: BEQ GTS
CC13 C6 07 1806: LDA B #7
CC15 86 DO 1807: LDA A #$D0
CC17 90 BB 1808: SUB A DELAY+1
CC19 D2 BA 1809: SBC B DELAY
CCIB 90 BF 1810: SUB A DATSIZ+1
CCID D2 BE 1811: SBC B DATSIZ
CCIF 2A 3F 1812: BPL GTS
CC21 9B BF 1813: ADD A DATSIZ+1
CC23 D9 BE 1814: ADC B DATSIZ
CC25 DE 9D 1815: LDX FIRSTX
CC27 DF F4 1816: STX XTEMP
CC29 9B F5 1817: ADD A XTEMP+1
CC2B D9 F4 1818: ADC B XTEMP
CC2D 97 F5 1819: STA A XTEMP+1
CC2F D7 F4 1820: STA B XTEMP
CC31 DE F4 1821: LDX XTEMP
CC33 7F 00A3 1822: CLR SUMK
CC36 7F 00A4 1823: CLR SUMK+1
CC39 4F 1824: CLR A
CC3A 5F 1825: CLR B
CC3B A6 00 1826: GTl LDA A 0, X
CC3D 08 1827: INX
CC3E 5C 1828: INC B
CC3F 9B A4 1829: ADD A SUMK+1
CC41 24 03 1830: BCC GT2
CC43 7C 00A3 1831: INC SUMK
CC46 97 A4 1832: GT2 STA A SUMK+1
CC48 9C 9F 1833: CPX LASTX
CC4A 27 04 1834: BEQ GT3
CC4C CI 14 1835: CMP B #20
CC4E 25 EB 1836: BCS GTl
CC50 96 A4 1837: GT3 LDA A SUMK+1
CC52 36 1838: PSH A
CC53 96 A3 1839: LDA A SUMK
CC55 36 1840: PSH A
CC56 37 1841: PSH B
CC57 BD C70B 1842: JSR DIVDBL
CC5A 31 1843": INS
CC5B 32 1844: PUL A
CC5C 31 1845: INS
CC5D 91 70 1846: CMP A THRHLD
CC5F 39 1847: RTS
CC60 OD 1848: GTS SEC
CC61 39 1849: RTS

1850: *
18515 *Raster display subroutine.
1852: *

CC62 DE 68 1853: RASTAS LDX CHARPT
CC64 A6 00 1854: LDA A 0, X
CC66 81 OD 1855: CMP A #$D
CC68 27 41 1856: BEQ RAS4
CC6A 81 20 1857: CMP A #$20
CC6C 26 02 1858: BNE RASO
CC6E 86 3F 1859: LDA A #$3F

94

PESTS; SSB MNEMONIC ASSEMBLER

CC70 80 30 1860: RASO SUB A #' 0
CC72 84 OF 1861: AND A #$F
CC74 DE 6A 1862: LDX ROWPT
CC76 BD C3DB 1863: JSR ADDA
CC79 A6 00 1864: LDA A 0, X
CC7B 94 6D 1865: AND A DOTS
CC7D 27 OB 1866: BEQ RASl
CC7F 96 BC 1867: LDA A FLAGS
CC81 84 EF 1868: AND A #$EF
CC83 B7 8008 1869: STA A DAC
CC86 97 BC 1870: STA A FLAGS
CCSS 20 09 1871c BRA RAS2
CC8A 96 BC 1872: RASl LDA A FLAGS
CC8C 8A 10 1873: ORA A #$10
CC8E B7 8008 1874: STA A DAC
CC91 97 BC 1875: STA A FLAGS
CC93 7A 006F 1876: RAS2 DEC WIDTH
CC96 26 12 1877: BNE RAS3
CC98 86 02 1878: LDA A #KWIDTH
CC9A 97 6F 1879: STA A WIDTH
CC9C 74 006D 1880: LSR DOTS
CC9F 26 09 1881: BNE RAS3
CCAl 86 80 1882: LDA A #$80
CCA3 97 6D 1883 3 STA A DOTS
CCA5 DE 68 1884: LDX CHARPT
CCA7 08 1885: INX
CCA8 DF 68 1886: STX CHARPT
CCAA 39 1887: RAS3 RTS
CCAB 7F 006C 1888: RAS4 CLR DISPMD
CCAE C6 04 1889: LDA B #4
CCBO F7 8006 1890: STA B ADC+2
CCB3 7D 8004 18915 TST ADC
CCB6 D6 BC 1892: LDA B FLAGS
CCB8 C4 17 1893 s AND B #7.10111
CCBA D7 BC 1894: STA B FLAGS
CCBC 7A 006E 1895: DEC LINES
CCBF 26 OE 1896: BNE RAS5
CCCl 86 02 1897: LDA A #KLINES
CCC3 97 6E 1898: STA A LINES
CCC5 96 6B 1899: LDA A ROWPT+1
CCC7 SB 10 1900: ADD A #$10
CCC9 97 6B 1901: STA A ROWPT+1
CCCB 81 CO 1902: CMP A #$C0
CCCD 27 OA 1903 s BEQ RAS6
CCCF CE 0059 1904: RAS5 LDX #MUFDSP
CCD2 DF 68 1905: STX CHARPT
CCD4 86 80 1906: LDA A #$80
CCD6 97 6D 1907: STA A DOTS
CCDS 39 1908: RTS
CCD9 96 BC 1909: RAS6 LDA A FLAGS
CCDS 8A 08 1910: ORA A #%1000
CCDD 97 BC 1911: STA A FLAGS
CCDF B7 8008 1912: STA A DAC
CCE2 86 FF 1913: LDA A #$FF
CCE4 97 67 1914: STA A DISPDN
CCE6 39 1915:

1916: *
RTS

1917: *Send depth and seconds to remote K/E'
1918: %then accept new depth or time entry
1919: $

- 95

PEST82 SSB MNEMONIC ASSEMBLER

CCE7 B6 E002 1920: SEND LDA A AC I AS
CCEA 85 08 19213 BIT A #%00001000
CCEC 27 OD 1922: BEQ SN2
CCEE 7D 0058 1923: SNl TST ER6CNT
CCFl 26 04 1924: BNE SNIO
CCF3 86 06 1925: LDA A #6
CCF5 97 D3 1926: STA A ERRORS+5
CCF7 7C 0058 1927: SNIO INC ER6CNT
CCFA 39 1928: RTS
CCFB 86 53 1929: SN2 LDA A #'S
CCFD BD C0A4 1930: JSR DUTCH
CDOO CE OODB 1931: LDX #DIBITS+1
CD03 A6 00 1932: SN3 LDA A 0, X
CD05 BD C0A4 1933: JSR DUTCH
CD08 08 1934: INX
CD09 8C OODF 1935: CPX #DIGITS+5
CDOC 26 F5 1936; BNE SN3
CDOE 86 3F 1937 s LDA A # ' ?
CD 10 BD C0A4 1938: JSR DUTCH
CD 13 BD C0A4 1939: JSR DUTCH
CD16 CE 00E9 1940: LDX #SECS+1
CD19 BD F17E 1941: JSR $F17E
CDIC CE C34D 1942: LDX #MESS2+10
CDIF BD CI CO 1943: JSR TYPES
CD22 BD COBl 1944: JSR GET
CD25 4D 1945: TST A
CD26 27 C6 1946: BEQ SNl
CD28 81 OD 1947: CMP A #$D
CD2A 26 01 1948: BNE SN4
CD2C 39 1949: RTS
CD2D 81 44 1950 s SN4 CMP A #' D
CD2F 26 26 1951: BNE SN6

1952: ^Remote depth entry
CD31 CE 0086 1953: LDX #BCDIN
CD34 BD COBl 1954: SN5 JSR GET
CD37 4D 1955: TST A
CD38 27 66 1956: BEQ SN9
CD3A 84 OF 1957: AND A #$F
CD3C A7 00 1958: STA A 0, X
CD3E 08 1959! INX
CD3F 8C 008A 1960: CPX #BCDIN+4
CD42 26 FO 1961: BNE SN5
CD44 BD COBl 1962: JSR GET
CD47 81 OD 1963: CMP A #$D
CD49 26 55 1964: BNE SN9
CD4B BD C89A 1965: JSR CVDTB
CD4E D7 F4 1966: STA B XTEMP
CD50 97 F5 1967: STA A XTEMP+1
CD52 DE F4 1968: LDX XTEMP
CD54 7E C9C3 1969: J MP IND2

1970: ^Remote time entry
CD57 CE 0086 1971: SN6 LDX #BCDIN
CD5A BD COBl 1972: SN7 JSR GET
CD5D 4D 1973: TST A
CD5E 27 40 1974: BEQ SN9
CD60 84 OF 1975: AND A #$F
CD62 A7 00 1976: STA A 0, X
CD64 08 1977: INX
CD65 8C OOSA 1978: CPX #BCDIN+4
CD68 26 FO 1979: BNE SN7

— 96 —

PESTS: SSB MNEMONIC ASSEMBLER

CD6A 96 86 1980: LDA A BCD IN
CD6C 48 1981: ASL A
CD6D 48 1982: ASL A
CD6E 48 1983: ASL A
CD6F 48 1984: ASL A
CD70 9A 87 1985: ORA A BCDIN+1
CD72 97 E5 1986: STA A HRS+1
CD74 96 88 1987; LDA A BCDIN+2
CD76 48 1988: ASL A
CD77 48 1989: ASL A
CD78 48 1990: ASL A
CD79 48 1991: ASL A
CD7A 9A 89 1992; ORA A BCDIN+3
CD7C 97 E7 1993: STA A MINS+1
CD7E CE 0086 1994; LDX #BCDIN
CD81 BD COBl 1995: SNS JSR GET
CD84 4D 1996; TST A
CD85 27 19 1997; BED SN9
CD87 84 OF 1998: AND A #$F
CDS9 A7 00 1999: STA A 0, X
CD8B 08 2000: INX
CD8C 8C 008A 2001: CPX #BCDIN+4
CD8F 26 FO 2002; BNE SN8
CD91 96 87 2003; LDA A BCDIN+1
CD93 97 E2 2004; STA A DAYS
CD95 96 88 2005: LDA A BCDIN+2
CD97 48 2006: ASL A
CD98 48 2007: ASL A
CD99 48 2008: ASL A
CD9A 48 2009; ASL A
CD9B 9A 89 2010: ORA A BCDIN+3
CD9D 97 E3 2011: STA A DAYS+1
CD9F 39 2012: RTS
CDAO 86 07 2013; SN9 LDA A #7-
CDA2 97 D4 2014: STA A ERRORS+6
CDA4 39 2015;

2016:
2017;

*
*

RTS

2018:
2019: *
2020; *MAIN PROGRAM
2021; *

CDA5 BD COOO 2022: JSR INIT Ini ti al1i se I/O and CLOCK
CDA8 CE C3EF 2023; LDX #INT
CDAB FF AOOO 2024 3 STX lOVECT Set up I/O interrupt add.
CDAE CE 03ES 2025: LDX #1000
CDBl DF BA 2026: STX DELAY Set delay to 1 Sec.
CDB3 4F 2027; CLR A
CDB4 CE 2000 2028: LDX #$2000 DPTMST
CDB7 A7 00 2029; MNO STA A 0, X
CDB9 08 2030; INX
CDBA 8C 4000 2031: CPX #$4000 DPMTST+$2000
CDBD 26 FS 2032; BNE MNO
CDBF CE OOCE 2033: LDX #ERRORS
CDC2 A7 00 2034: MNl STA A 0, X Clear ERRORS and flags.
CDC4 08 2035; INX
CDC5 8C 00D5 2036: CPX #XT
CDC8 26 FS 2037: BNE MNl
CDCA 97 6C 2038: STA A DISPMD
CDCC 97 65 2039: STA A DISPEN

97 -

PEST82 SSB MNEMONIC ASSEMBLER

CDCE 97 C4 2040: STA A SCALE
CDDO 97 AS 2041: STA A FLSTRG
CDD2 97 CD 2042: STA A SLOPE
CDD4 97 C8 2043! STA A ODDMIN
CDD6 97 58 2044! STA A ER6CNT
CDDS 86 01 2045: LDA A #1 Set -flags.
CODA 97 C7 2046: STA A HRFLG
CDDC 97 C9 2047: STA A EVNMIN
CDDE 97 CC 2048: STA A PHASE
CDEO 97 67 2049: STA A DISPDN
CDE2 86 13 2050: LDA A #7.10011 Mask pattern for clock
CDE4 97 BC 2051: STA A FLAGS and trigger interrupts.
CDE6 BD C2CE 2052; JSR GETTM Get time and date.
CDE9 CE 1000 2053: LDX #DPSTRT
CDEC DF 82 2054 s STX DPSTCK
CDEE CE 2000 2055: LDX #DPTMST
CDFl DF 74 2056: STX DPTMPl
CDF3 DF 76 2057: STX DPTMP2
CDF5 CE 0080 2058: LDX #$80 No of reverb samples.
CDF8 DF 72 2059: STX RVBSIZ
CDFA CE 0100 2060: LDX #$100 Initial echo gate length.
CDFD DF BE 2061: STX DATSIZ
CDFF CE 0080 2062: LDX #$80 PREDICtion = centre of gate.
CE02 DF 94 2063: STX PREDIC -

CE04 CE 6DB6 2064: LDX #$6DB6
CE07 DF B3 2065! STX COEFl
CE09 CE B334 2066: LDX #$B334
CEOC DF B5 2067 3 STX C0EF2 Set up FILTer coefficients.
CEOE 7F 00B2 2068: CLR GATNFG
CEll CE 0200 2069: LDX #MEMBEG
CE14 DF C5 2070: STX DESTAD
CE16 DF 90 2071s STX FIRSTX
CE18 BD C3CA 2072: JSR ADDX Add DATSIZ
CEIB DF 9F 2073: STX LASTX
CEID DE BA 2074: LDX DELAY
CEIF DF B7 2075: STX AVDPTH "Charge up" FILTer
CE21 7F OOAD 2076; CLR SMDONE
CE24 01 2077; NOP
CE25 OE 2078: CLI We're off- Interrupts enabled.
CE26 BD C947 2079: MN2 JSR INDPTH Waiting for sampling to be done
CE29 7D OOAD 2080: TST SMDONE
CE2C 27 F8 2081: BEQ MN2
CE2E CE 0200 2082: MN3 LDX #MEMBEG Get ready for next sweep.
CE31 DF C5 2083: STX DESTAD
CE33 7F OOAD 2084 s CLR SMDONE
CE36 B6 8004 2035: LDA A ADC
CE39 43 2086: COM A
CE3A 84 01 2087: AND A #1
CE3C 97 B2 2088: STA A GATNFG
CE3E BD CCOE 2089: JSR GATEST
CE41 24 OE 2090: BCC MN5
CE43 BD CBE4 2091: JSR PROCSS Process recent data.
CE46 7D OOCS 2092: TST ODDMIN
CE49 27 06 2093; BEQ MN5
CE4B BD CAA3 2094; JSR STORDP
CE4E 7F OOCS 2095: CLR ODDMIN
CE51 BD C947 2096: MN5 JSR INDPTH
CE54 7D OOAD 2097: TST SMDONE
CE57 27 F8 2098: BEQ MN5
CE59 20 D3 2099; BRA MN3

98

PESTB; SSB MNEMONIC ASSEMBLER

2100: *
2101: *
2102: END

NO ERROR(S) DETECTED

SYMBOL TABLE:
AC I AS E002 ADBA C3E1 ADC 8004 ADDA C3DB
ADDX C3CA ADJl C59F AD J 2 C5A6 ADJ3 C5AD
ADJ4 C5B8 ADJUST C592 ATEMP 00B9 AVDPTH 00B7
BC3 C887 BCD IN 0086 BTEMP 00D9 CHARPT 0068
CLKl C429 CLK2 C433 CLK3 C447 CLOCK C0E8
COEFl OOB3 C0EF2 00B5 COEFFS CFCO CONST C17A
CRl CAOB CR2 CAID CR3 CA47 CR4 CA70
CR5 CASS CR6 CA18 CR7 CA42 CRRl CA32
CRR2 CA36 CRR3 CA9S CRR4 CAA2 CVBINl C8A4
CVBIN2 C8B6 CVBIN3 C8C8 CVBTD C13A CVDECl C148
CVDEC2 C14B CVDEC3 C156 CVDTB CS9A CVRl C91B
CVR2 C91E CVRTMS C8F8 DAC 8008 DATCNT OOCO
DATSIZ OOBE DAYS 00E2 DELAY OOBA DESTAD 00C5
DGl C1B8 DG2 CIBA DG3 C18A DG4 C18F
DIG OOD7 DIGITS OODA DIRFLG 0081 DISPl C9CD
DISPDN 0067 DISPEN 0065 DISPMD 006C DIVDBL C70B
DOTS 006D DPFILT C9F3 DPSTCK 0082 DPSTRT 1000
DPTMPl 0074 DPTMP2 0076 DPTMST 2000 DSFRST 0066
DVl C730 El C5D3 E2 C5EC E3 C60C
E4 C631 E5 C616 EDGE CSCl EGEND 00A5
ERl C2AB ER2 C2BC ER3 C2C5 ER6CNT 0058
ERMESS C350 ERRl C35E ERR2 C36E ERR3 C380
ERR4 C391 ERRS C3A4 ERR6 C3AE ERR7 C3BD
ERRORS OOCE ERRS C2A3 EVNMIN 00C9 FILT C7B6
FILTOP 0078 FIRSTX 009D FLAGS OOBC FLSTRG 00A8
FRSTTX OOAE G1 C0B4 G2 COCO G3 COCS
GATEST CCOE GATNFG 00B2 GET GOBI GETLFT C934
GETRl C93C GETR2 C946 GETRGT C93B GETTM C2CE
GTl CC3B GT2 CC46 GT3 CC50 GTS CC60
HDl C1D6 HD2 C1D9 HEADl C1F7 HEAD2 C21A
HEADNG CIDE HRFLG 00C7 HRHEAD C1C7 MRS 00E4
11 C051 12 C05B INBCD C88S INCH C099
INDO C94F INDl C9A1 IND2 C9C3 IND3 C9CC
INDEC C184 INDIG ClAD INDPTH C947 INIT COOO
INT C3EF lOVECT AOOO JO C40E J1 C413
J13 C503 J 14 C511 J15 C51B J16 C51F
JIB C578 J 19 C57D J2 C44B J 20 C589
J21 C58C J3 C451 J4 C48E J5 C4B9
J6 C4C9 J8 C539 J 9 C54D KLINES 0002
KWIDTH 0002 LASTX 009F LCI C8E3 LCD C8D1
LINES 006E LOOPCT OOSF LSTENT 0084 MEMBEG 0200
MESSl C307 MESS2 C343 MFO CBD8 MFl CBE3
MFFl CBDC MFINIT CBA3 MINS 00E6 MNO CDB7
MNl CDC2 MN2 CE26 MN3 CE2E MNS CE51
MPl CS84 MPY1X3 C7DD MPY2X2 CSID MPYDBL C6E5
MUFDSP 0059 MULCLR 0079 MULCOM 0071 MULT OOFC
NRSTHT 0091 NRSTPS 0092 NWDPTH OOCA ODDMIN 00C8
OFFSET 0098 OUT CODS 0UT2H C0D7 0UT2HS C0E2
QUT4HS COEO OUTCl C0A5 OUTCH C0A4 OUTHL C0C7
OUTHR COCB OUTS C0E4 OVFLW 00C2 PI C074
P2 C07F P3 C08C P4 C08F PS C071
PANEL 8020 PATRNS CF40 PDl C246 PD2 C24A

- 99 -

PESTS2 SSB MNEMONIC ASSEMBLER

PD3 C254 PD4 C296 PEAK C677 PHASE OOCC
PHTEMP 00A7 PKl C68A PK2 C694 PK3 C69A
PK4 C6A2 PK5 C6BF PK6 C6CB PK7 C6D5
PK8 C6E1 PKPOSN 009B PKVAL 009A PNTRl 007D
PNTR2 007F PRl CBF6 PR2 CBFA PRDAT C255
PREDIC 0094 PRINTC C06F PRINTR 8021 PRINTS C092
PROCSS CBE4 RASO CC70 RASl CC8A RAS2 CC93
RAS3 CCAA RAS4 CCAB RAS5 CCCF RAS6 CCD9
RASTAS CC62 RESET 0070 ROWPT 006A RVBSIZ 0072
RVRBCT 00A9 SAM C4DF SAVX 0096 SCALE 00C4
SCNDTX OOBO SCTEMP 0090 SECS OOE8 SEND CCE7
SHI C750 SH2 C75A SH3 C765 SHFTGT C731
SIGN 007C SK OOAl SLOPE OOCD SMI C4ED
SMDONE OOAD SNl CCEE SNIO CCF7 SN2 CCFB
SN3 CD03 SN4 CD2D SN5 CD34 SN6 CD57
SN7 CD5A SN8 CD81 SN9 CDAO SPTEMP 00F6
SRCHCT 0071 SRCHDP CB35 STl CAAE ST2 CBOB
ST3 CB5E ST4 CB55 ST5 CB3B ST6 CB6D
STORDP CAA3 SUMK 00A3 T1 ClOC T 2 C117
T3 C12A T4 C137 TENPWR C8C9 THRHLD 0070
TIM C4CC TIMER 8040 TPl CIBC TRGl C46F
TRGFLG OOBD TRIG C457 TTl CI 07 TVl C655
TV2 C659 TV3 C665 TV4 C674 TVS C676
TVS C638 TWOMIN C236 TXNO 008E TXSAMP OOAB
TYPES CI CO WEIGHT C76A WGl C782 WG2 0738
WG3 C796 WG4 C7A8 WIDTH 006F XMl CB7B
XM2 CBAl XMIT CB72 XSTOR 0063 XT 00D5
XTEMP 00F4 YEARS OOEO

— 1 0 0 —

PSCO EF

1 5
2:
3 s
4:
5:
6:

CF40 7 s
8:
9:

CF48 18:
CF40 58 1 1 :
CF48 70 12:

13:
CF50 90 14:
CF58 88 15:

16:
CF60 98 17:
CF68 88 18:

19:
CF70 98 28:
CF78 78 21:

CF80 98 23:
CF88 88 24:

25:
CF90 98 26:
CF98 88 27:

28:
CFAS 68 29:
CFA8 78 30:

31:
CFB0 00 32:
CFB8 00 33:

34:
35:
36:
37:

CFC0 38:
CFC0 08 00 39:
CFC2 00 00 40:
CFC4 FF D3 4 1 !
CFC6 FF D5 42:
CFC8 88 3B 43:
CFCA 08 7D '44:
CFCC 88 08 45:
CFCE FF 43 46:
CFD0 FF 74 47:
CFD2 88 A 4 48 s
CFD4 81 35 49:
CFD6 08 88 50:
CFD8 FE 66 51:
CFDA FE DE 52:
CFDC 81 4A 53:
CFDE 02 61 54:
CFE0 00 00 55:
CFE2 FC EB 56:
CFE4 FD D4 y "
CFE6 82 7C 58:
CFE8 84 9D 59:

SSB MNEMONIC ASSEMBLER

NAM
OPT

PSCOEF
NOG,PAG

*PEST3 RASTER DOT PATTERNS AND DEPTH FILTER
*COEFFICIENTS.

ORG $CF48

*ROW 8
PATRNS EQU

FCB
FOB

*ROW 1
FCB
FCB

*ROW 2
FCB
FCB

*ROW 3
FCB
FCB

*ROW 4
FCB
FCB

*ROW 5
FCB
FCB

*ROW 6
FCB
FCB

*ROW 7
FCB
FCB

*DEPTH FILTER COEFFICIENT
*

$68,$20,$78,$7e,$10,&F8,$3e,$F8
$78,$78,$88,$68,$88,$88,$80,$00

$90,$60,$88,$88,$38,$80,$48,$08
$88,$88,$60,$60,$18,$00,$48,$88

$98,$28,$88,$08,$50,$Fe,$80,$10
$88,$88,$60,$08,$28,$F8,$28,$80

$98,$28,$70,$38,$98,$88,$F8,$20
$70,$78,$88,$60,$48,$88,$10,$08

$98,$28,$88,$88,$FS,$88,$88,$40
$88,$08,$60,$68,$20,$F8,$28,$00

$98,$28,$80,$88,$10,$88,$88,$88
$88,$18,$68,$28,$18,$00,$40,$80

$68,$78,$F8,$78,$18,$78,$78,$80
$70,$60,$88,$40,$08,$08,$80,$80

$88,$08,$80,$00,$00,$80,$80,$80

$80,$80,$08,$88,$08,$80,$00,$00

COEFFS EQU
FDB
FDB
FDB
FDB
FDB
Fi:
F[
FC
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

*

$8808
$0000
$FFD3
$FFD5
$8838
$887D
$8888
$FF43
$FF74
$8844
$8135
$0888
$FE66
$FEDE
$014 A
$0261
$0000
$FCEB
$FDD4
$027C
$849D

- 1 0 1 -

PSCOEF SSB MNEMONIC ASSEMBLER

CFEA 88 00 60: FDB $MW08
CFEC F9 CD iS. 1 s FDB $F9CD
CFEE FB ?E 62: FDB $FB7E
CFF8 05 60 63: FDB $0560
CFF2 0A 92 64: FDB $8A92
CFF4 00 00 65: FDB $0000
CFF6 EE E0 66: FDB $EEE0
CFF8 F:L 5E 67: FDB $F15E
CFFA 16 BC 68: FDB $16BC
CFFC 4C IC 69: FDB $4C1C
CFFE 67 EC 70: FDB $67EC

71: *REMAINDER IS MIRROR

73: END
HO ERROR ;S) DETECTEC

ss MBOL TABLE:
COEFFS CFC0 PATRNS CF40

MIDDLE
IMAG

1 0 2 -

SSB MNEMONIC ASSEMBLER

1:
1:
::
4 3

NAM REMOTE

3: &REMOTE ENTRY TERMINAL FOR PES DIGITAL TRACKER

cooo 5s KEYBD EQU $cooo Keypad
0000 6 s LEDS EQU $oooo 8 digit LED display
0001 7 s P0RT2 EQU $ 1
0010 8: P0RT3 EGU $10
OOFC 9 s SP EQU $FC
OOFE 10: lOV EQU $FE

1 1 3 *
0080 12: ORG $0080
0080 13: DATAl RMB s Register for PEST depth
0088 14: DATA2 RMB s Keyboard entry register
0090 15: BUFFER RMB 9 Storage for TX from PEST
0099 16: XTEMP RMB 2
009B 17 s TMENFG RMB 1 Time entered flag
009C 18: DPENFG RMB 1 Depth entered flag
009D 19: BUFPNT RMB 2

EOOO 21: ORG $E000
EOOO 7E E1C4 22: JMP INTSRV
E003 8E 00E8 23: INIT LDS #$E8 Here on POWER—ON reset:.
E006 9F FC 24: STS SP -

E008 86 01 25: LDA A #1
EOOA 97 01 26 3 STA A P0RT2 Bit 0 as 0/P = RTS
EOOC 4F 27 3 CLR A
EOOD 97 03 28: STA A P0RT2+2 Set NOT RTS low
EOOF CE OCIA 29: LDX #$0C1A Enable interrupt on RX
E012 DF 10 30: STX P0RT3
E014 7F COOO 31s CLR KEYBD pragram !/• ports
E017 C6 06 32: LDA B #6
E019 F7 C002 33: STA B KEYBD+2
EOlC C6 FF 34 3 LDA B #$FF
EOIE D7 00 35: STA B LEDS

36: *

E020 CE 0080 37: CLEAR LDX #DATA1 Fill both registers with
E023 86 OF 38: LDA A #$F $F — b 1 an n:
E025 A 7 00 39: CLl STA A 0, X
E027 08 40: INX
E02S 8C 0099 41: CPX #BUFFER+9
E02B 26 F8 42: BNE CLl
E02D 7F 009B 43: CLR TMENFG
E030 7F 009C 44: CLR DPENFG
E033 CE 0090 45: LDX #BUFFER
E036 DF 9D 4 A 3 STX BUFPNT
E038 OE 47: CLI Allow serial input interrupt.
E039 BD E0B5 48: START JSR NRMDSP Normal display routine
E03C 81 09 49: CMP A #9 display received depth
E03E 22 26 50: BHI COMMND Is it a command key?
E040 CE 0088 51: ENTl LDX #DATA2 No. slide entry along one
E043 E6 01 52: ENT4 LDA B 1 „ X digit towards left
E045 E7 00 STA B 0, X
E047 OS 54 s INX
E048 SC 008F CPX #DATA2+7
E04B 26 F6 BNE ENT4
E04D A 7 00 57: STA A 0, X Insert new digit at RHS
E04F C6 00 b & s ENT2 LDA B #0 Set t :i. ff! e - a lit count
E051 3D EOAD 59: ENT3 JSR DSPENT Display entry

- 103 -

REMOTE S5B MNEMONIC ASSEMBLER

E054 27 E:3 60! BEG START Ti med-out'?
E056 71) . C002 ii 1 s TST KEYBD+2 No. Then has key been pressed'
E059 2A F6 62: BPL ENT3 No
E05B B6 COOO 63: LDA A KEYBD Yes. Get ksy code
E05E 84 OF 64 AND A #$F Mask LSBi ts
E060 80 54 65: BSR DECODE Decode it
E062 81 09 66 ii CMP A #9 Command?
E064 23 DA 67: BLS ENTl If no then enter new digit

68: *
69: *HERE IF KEY IS A COMMAND

EiUoib 80 OA 71 li COMMND SUB A #$A
E068 26 03 72: BNE CMl
E06A 7E E188 73: J MP ENTDP Code An Errter depth
E06D 4 A 74: CMl DEC A
E06E 26 03 75: BNE CM2
E070 7E E197 76: JMP ENTTM Code B. Enter time and day no
E073 4A 77: CM2 DEC A
E074 26 03 78: BNE CM3
E076 7E E1A6 79: JMP SENDDP Code C. Send depth
E079 4 A 30: CM3 DEC A
E07A 26 03 81: BNE CM4
E07C 7E ElAC 82: JMP SENDTM Code D. Send time and Day No.
E07F 4A 83 ii CM4 DEC A
E080 26 CD 84: BNE ENT2 Code E. Recall entry
E082 7E E1B2 85: JMP CLRENT Code F„ CI ear entry

W6 ii *
87: *DISPLAY DEPTH SENT PEST
88: *

E085 7D C002 89: NRMDSP TST K2YBD+2 Check for key entry
E088 2B 07 90: BMI RETl Skip if key pressed
E08A CE 0080 91: LDX #DATA1 Otherwise keep displaying
E08D 8D OA 92: BSR DISP
EOSF 20 F4 93: BRA NRMDSP
E091 B6 COOO 94: RETl LDA A KEYBD Get key code
E094 84 OF 95: AND A #$F Mask LSBits
E096 8D IE 96: BSR DECODE Decode it
E098 39 97: RTS

98: *

99: *SUBR. TD DISPLAY EIGHT DIGITS
100: $

E099 C6 FO 11)1: DISP LDA B #$F0 Get digit select code
E09B A6 00 102: DSPl LDA A 0, X Get di git value
E09D IB 103: ABA Combine them
E09E 97 02 104: STA A LEDS+2 u/P to LEE'S
EOAO 86 FF lijE): LDA A #$FF
E0A2 4 A 106: DSP2 DEC A Hold during count—down
E0A3 26 FD lO/T; BNE DSP2 of Acc. A
E0A5 OS 108: INX
E0A6 CO 10 109: SUB B #$10 Advance to next digit
E0A8 CI 70 110: CMP B #$70
EOAA 26 EF 111: BNE DSPl
EOAC 39 112: RTS

1 13 ii A
114: *DISPLAY ENTRY REGISTER
115: *

EOAD CE 0088 116: DSPENT LDX #DATA2
EOBO 117: PSH B Acc. B contains time-out
EOBl 8D !£ c! 118: BSR DISP d e!!. a /
E0B3 33 119: PUL B

- 104 -

REMOTE SSB MNEMONIC ASSEMBLER

E0B4
E0B5

5A

E0B6
E0B8
E0B9
EOBC
EOBD
EOBE
EOCO
E0C2
E0C3

EOCB
EOCD
EOCF
EODl
E0D3

DF
37
CE
16
3A
A6
DE

39

OA
07
09
04
06
01
03
00

OF

99

E0C4

00

99

08
OB
05
or;
02

OD
OE

120:
121:
122:
123:
124:
125:
126:
127:
1 2 8 :
129:
130:
131:

1 33 s
134:
135:
136:

DEC B
RTS

*
*CHANGE KEY CODE TO MATCH CALCULATOR
*TYPE LAY-OUT

DECODE STX
PSH B
LDX
TAB
FOB
LDA A
LDX
PUL B
RTS

*
TABLE FCB

XTEMP

#TABLE

$3A
0, X
XTEMP

ABX Add Acc. B to X reg.

:?>A, 7, 8,9,$B,4,5,6, $C, 1,2,, 3 , $D, 0,, $E,, $!-'

E0D4 CE 0088 138: ERROR LDX *DATA2 Generate error display pattern
E0D7 06 oc 139: LDA B #$C
E0D9 E7 00 140: STA B 0, X
EODB E7 01 141: STA B 1,X
EODD E7 02 142: STA B 2, X
EODF E7 05 143: STA B 5, X
EOEl E7 06 144: STA B 6,X
E0E3 E7 07 145: STA B 7, X
E0E5 5F 146: CLR B
E0E6 E7 03 147: STA B 3, X First digit of error no.
E0E8 A 7 04 148: STA A 4, X , Error no.
EOEA 06 00 149: LDA B 4*0
EOEC BD EOAD 150: ER JSR DSPENT Display it with time-out
EOEF 26 FB 151: BNE ER
EOFl CE 0088 152: LDX #DATA2
E0F4 C6 OF 153: LDA B #$F then clear the register
E0F6 E7 00 154: ERl STA B 0, X
E0F8 08 153: I NX
E0F9 3C 0090 156: CPX #DATA2+8
EOFC 26 F8 157 3 BNE ERl
EOFE 8E 00E8 158: LDS #$E8 Clean up unused returns
ElOl 7E E039 159:

160: *
J MP START

161: KCHECK FORMAT OF DEPTH ENTRY
162: $

E104 CE 0088 163: DPFMAT LDX #DATAZ
- 105 -

REMOTE SSB MNEMONIC ASSEMBLER

El 07 A6 00 164: DPFl LDA A 0, X First 4 places should be b
El 09 Cut 165: BEQ DPF2 or z eroes
El OB 81 OF 166: CMP A #$F Depth 1i mi ted to 4 figures
ElOD 26 16 167: BNE DPF4
El OF 08 168: DPF2 INX
El 10 8C 008C 169: CPX #DATA2+4
El 13 26 F2 170: BNE DPFl
El 15 A6 00 171: DPF3 LDA A o,x Next pi aces may be zeroes
El 17 27 06 172: BEQ DPF7 or b 1 an Ic s
El 19 81 OF 173: CMP A #$F
EllB 26 OC 174: BNE DPF5
EllD 6F 00 175: CLR o,x if blank then set to zero
EllF 08 176: DPF7 INX
El 20 8C 0090 177: CPX #DATA2+8 Got to end yet?
b. 123 26 FO 178: BNE DPF3 If all zero then
E125 86 01 179: DPF4 LDA A #1 Error #1
E127 20 AB 180: BRA ERROR "FORMAT ERROR"
E129 CE 0088 181: DPF5 LDX #DATA2 Indicate correct entry by
E12C C6 OF 182: LDA B #$F left justifying it
E12E A6 04 183: DPF6 LDA A 4, X
El 30 A 7 00 184: STA A 0, X
E132 E7 04 185: STA B 4, X
E134 08 186 3 INX
E135 8C 008C 187: CPX #DATA2+4
E138 26 F4 188: BNE DPF6
E13A 39 189: RTS

190: $

191: *CHECK FORMAT OF TIME ENTRY
192: *

E13B CE 0088 193: TMFMAT LDX #DATA2
E13E A 6 01 194: LDA A i,x
El 40 81 02 195: CMP A #2 Check tens of hours
E142 22 3F 196: BHI TMF3 greater than 2?
El 44 06 197: BNE TMFO Error 1
E146 A6 02 198: LDA A 2, X If tens of hours = 2
El 48 81 03 199: CMP A #3 then uni ts greater than
E14A 22 37 200: BHI TMF3
E14C A 6 03 201: TMFO LDA A 3, X Check tsjns of minutes
E14E 81 05 202: CMP A #5
El 50 22 31 203: BHI TMF3
E152 A6 05 204: LDA A 5, X Check hundreds of day no.
E154 81 03 205; CMP A #3 Greater- tl~ian 3?
El 56 C'O 2B •dOh 1! BHI TMF3
E158 26 OE 207: BNE TMFl
EISA A6 208: LDA A 6, X If - 3 are tens
E15C 81 06 209: CMP A #6 = 6?
E15E 2? 210: BHI TMF3
El 60 26 06 211: BNE TMFl
El 62 H6 07 212: LDA A 7, X If yes then are units
El 64 81 06 213: CMP A #6 greater than 6 ?
E: 1 6 6 22 IB 214: BHI TMF3
E168 6D 215: TMFl TBI" 5, X Go through Day no. again
E16A 08 216: BNE TMF2
E16C 6D 06 217: TST 6,X to check that all digits
E16E 26 04 218: BNE TMF2 are not zero
E170 6D 219: TST 7, X
E172 27 OF BEQ TMF3
El 74 A 6 0 1 221 j TMF2 LDA A 1 , X S Li c c e s s f i1 e n t r y
E176 A7 00 STA A 0, X 1 eft justify time
El 78 08 223; INX

- 1 0 6 -

REMOTE SSB MNEMONIC ASSEMBLER

E179
E17C
E17E
El 80
E182
E1S3
E185

E67F
E6F0

8C
26
86
A7
39
86
7E

008C
FA
OF
00

01
E0D4

El 98
E18B
E18E
El 90
E192
E194

BD
7F
86
97
C6
7E

E104
009B
FF
9C
00
E051

E197 BD E13B
F19A 7F 009C
E19D 86 FF
E19F 97 98
ElAl C6 00
E1A3 7E E051

E1A6 BD El04
E1A9 7E E1B2

ElAC BD E13B
ElAF 7E E1B2

C6 OF
E7 00

E686

E1C4
E1C7

224:
225:
226:
227 s
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
2 6) 6 s
267:
'2ciB s
269:
270:
271:

E1B2 CE 0088
E1B5
E1B7
E1B9 08
ElBA 8C 0090
ElBD 26 F8
ElBF C6 20 272:
ElCl 7E E051 273:

274:
275:
276:
277;
278:
279:
280:
281:

7D 0011 282:
96 12 283:

CPX #DATA2+4
BNE TMF2
LDA A #$F
STA A 0,X
RTS

TMF3 LDA A #1
JMP ERROR

*
OUTHR EQU $E67F
SPC EQU $E6F0
*
CENTER DEPTH
* .

ENTDP JSR DPFMAT
CLR TMENFG
LDA A #$FF
STA A DPENFG
LDA B #0
JMP ENT3

*
*ENTER TIME AND DAY NO.
$

ENTTM JSR TMFMAT
CLR DPENFG
LDA A #$FF
STA A TMENFG
LDA B #0

and put blanl-:: between
ti me and day no.

No good. "FORMAT ERROR'

Fi rBt check format

Hirst check format

JMP ENT:
*
*
*SEND DEPTH
*

SENDDP JSR DPFMAT
JMP CLRENT

&

*SEND TIME
*

SENDTM JSR TMFMAT
JMP CLRENT

$

*CLEAR ENTRY REGISTER

First check -format

First check format

Fill with blanks

Display for about 1/2 sec,

CLRENT LDX #DATA2
LDA B #$F

CLRl STA B 6 . x
INX
CPX #DATA2+8
BNE CLRl
LDA B #$20
JMP ENT3

*
*

* INTERRUPT SERVICE
^PROGRAM ARRIVES HERE WHEN PEST TRANSMITS
*A CHARACTER
*
OUTCH EQU AE686

INTSRV TST P0RT3+1
LDA A F0RT3+2 Get a character

- 107

REMOTE

E1C9 81 on Z84 3 CMP A #$D
EICB 27 1 1 285: BEQ CR
EICD 81 OA 266 = CMP A #$A
EICF 27 OC 287: BEQ RETURN
ElOl DE 9D 288: LDX BUFPNT
E1D3 A7 00 289: STA A 0, X
E1D5 08 290: INX
E1D6 DF 9D 291: STX BUFPNT
E1D8 8C 0099 292: CPX #BUFFER+
EIDB 2 / 08 293: BEQ FINI
EIDD 3B 294: RETURN RTI

295: *
EIDE DE 9D 296: CR LDX BUFPNT
ElEO 8C 0090 297: CPX #BUFFER
E1E3 27 5B BEQ SETUP
E1E5 CE 0080 299: FINI LDX #DATA1
E158 A6 10 300: FNl LDA A 16, X
ElEA 84 OF 301: AND A #$F
ElEC A7 00 302: STA A 0, X
ElEE 08 303: INX
ElEF 8C 0088 304: CPX #DATAl+8
E1F2 26 F4 305: BNE FNl
E1F4 7D 009C 306: TST DPENFG
E1F7 27 26 " 307: BEQ FN2
E1F9 86 44 308: LDA A #' D
EIFB BD E686 309: JSR DUTCH
EIFE CE 0088 310: LDX #DATA2
E201 C6 OF 311: LDA B #$F
E203 A 6 00 312: LPl LDA A 0, X
E205 E7 00 313: STA B 0, X
E207 8B 30 314: ADD 4̂ #$30
E209 BD E686 315: JSR OUTCH
E20C 08 316: INX
E20D 8C 008C 317: CPX #DATA2+4
E210 26 F1 318: BNE LPl
E212 E7 00 319: LP3 STA B 0, X
E214 08 320: INX
E215 8C 0090 321: CPX #DATA2+8
E218 26 F8 322: BNE LP3
E21A 7F 009C 323 s CLR DPENFG
E21D 20 21 324: BRA SETUP
E21F "D 009B •32 b; FN2 TST TMENFG
E222 27 IC 326: BEQ SETUP
E224 86 54 LDA A #' T
t >: 2 6 BD E6Sc' •:>28: JSR OUTCH
E229 CE 0088 329: LDX #DATA2
E22C C6 OF 330: LDA B #$F
E22E A6 00 331: LP2 LDA A o,x
E230 E7 00 332: STA B 0, X

3B 30 333 s ADD A #$30
E234 BD E686 334: JSR OUTCH
E237 OS -J" " . INX
E238 8C 0090 336: CPX #DATA2+8
E23B 26 F1 337: BNE LP2
E23D 7F 009B 338: CLR TMENFG
E240 86 OD 339: SETUP LDA A #$D
E242 BD E686 340: JSR OUTCH
F245 CE 0090 :34 1 ; LDX #BUFFER
E248 DF 91) 342: STX BUFPNT
E24A 33 343: RTI

SSB MNEMONIC ASSEMBLER

C/R?

L/F?

Store ch a.r acter in but te r

Buffer full?
No.Return from interrupt

le.nothi ng has been sent
Transfer i nta depth register

- 1 0 8

;^MOTE SSB MNEMONIC ASSEMBLER

3 4 4 :
NO ERROR(S) DETECTED

END

SYMBOL TABLE:
BUFFER 0090 BUFPNT 009D CLl E025 CLEAR E020
CLRl E1B7 CLRENT E1B2 CMl E06D CM2 E073
CM3 E079 CM4 E07F COMMND E066 CR EIDE
DATAl 0080 DATA2 0088 DECODE E0B6 DISP E099
DPENFG 009C DPFl E107 DPF2 ElOF DPF3 E115
DPF4 E125 DPF5 E129 DPF6 E12E DPF7 El IF
DPFMAT E104 DSPl E09B DSP2 E0A2 DSPENT EOAD
ENTl E040 ENT2 E04F ENT3 E051 ENT4 E043
ENTDP E188 ENTTM E197 ER EOEC ERl E0F6
ERROR E0D4 FINI E1E5- FNl E1E8 FN2 E21F
INIT E003 INTSRV E1C4 lOV OOFE KEYBD COOO
LEDS 0000 LP ;i. E203 LP2 E22E LP3 . E212
NRMDSP E085 OUTCH E686 OUTHR E67F P0RT2 0001
PGRT3 0010 RETl E091 RETURN EIDD SENDDP E1A6
SENDTM ElAC SETUP E240 SP OOFC SPC E6F0
START E039 TABLE E0C4 TMENFG 009B TMFO E14C
TMFl E168 TMF2 E174 TMF3 E183 TMFMAT E13B
XTEMP 0099

- 109

CIRCUIT DIAGRAMS

CD UOll

0
1

o
k:

S? o
o o o
V V

O

CiKKJ
C M 2 _ J

N~C. ()5K)

N-C.
4 5 v'i'i-Ti X-a nF
|NV'.'"(;T;r.'.|
Cit/f rr.t

C D /.OJD CDlfOlt^
f yl''

- 3"/̂

GVOLfS

/V\LJFAX M O D U L A T O F ?

T"
v«

irto! '

T T
+/»f< (• 4

f>0 cyj] I

-={;=«! i H ' V ' r

% -̂.. i ft
Pav/r«-ow —lYT'-
Resfx •

nc^h7}

nc

fiferT

Ikgq

7U.LS Aooee
2-,0K f1 V L \ PL i * 0 R

Aa-Al
Rfjre

wc_ 2<*! Vft

/tit NO

Au ^-; f <»
ikJ RSO 4f, • ft "T AOt'V Ets.

A,, U.S.

rooo

e.-rf 1 : lu

fft O&eA'i
FPAoM

KV-

rtnrf,
Wit-.

U.f L.
Pat 'V j f M.P

Pr COLFR.

6!Wr'U KM*

7UU7
^sp, ^

Vi? U ^ *-

b-lo'/ S
, (i c- t? f',

io! Pi I &%!* ' • i f !
(1 • [̂ z: A. ..

ht-« ST LtcT

f-rvTi nrbLro 6AVP P«* I e 6^ f̂.

KS? ?7C c K tc,
. K23& ,'-''ll« flpo

iflwofr J-
l f c

Ti<C

PAvC f*TP

f?S 7^92-2

,i'.
J)

<*

. n

.:; "t.

A
f, <
P

T

fAl pC2._ fAl pC2._
J

_i-i sT

o«i (f'.Y J

1 'i

X T

1»
'i
•7

i j j j

K/C

X F V C;n r P c,

F Co

EOO-£
-I'o K

M 3 tfS
—f>.. ; O

IkSI

-or.
. \

O H

>-
- i _ v

I î -fg
_|

I)

K

u

f "XT g/v Sfff>f)L liV̂ 'E r fp O W Cf U C'r; H P (j

ISSUED TO DRAWING No. I.S.O./

K" 5 M L^T r • / \r̂ 0 • * '•• • * •*- •*
4- /f00'"^ 0fi -1 f- . r T r P Vj C -̂. 6 REVISED

DRAWN BY r.C ft r ,, C I \ -V, DATE £ / I ? /£ ?

INSTITUTE OF OCEANOGRAPHIC SCIENCES. ISSUED FOR ORDER No.

SHEET No.

FOR

Woking Dyeline

BLANK SIZE A.3.(297mm x 420mm) PRINT TRIMMING LINE I.S.O. FORM No. 106(1/75)

Z
C/)
H
H
C
H
m

O
•n
O
O
m >
z
o
o
3 >
•o
X
o
(n
O
m
z
o
m
(/>

4

c

o-
%

t>

JO
m <
w
m
D

U)
tn
c
m
o

rv

C

• >

• >

/t.

4
3
n

o
s
O
3
O
m
X
z o

o
X

c
z
H
(A

D

S

$
X'?
N

(ji
X
m
m
H
Z
o

0
X
1
z
o
z o

b
b

l|~CHEZ>-r|0

31

\

*' I I ' T" *f"f 1 f

1

^ \ -

-Ti", :

r-| 1 ?

ujw
-Aid"'

.v>\VV\V.;a.V:

1-3'̂ N - Vlwf
I

MFL* I
XCL*

aj5.5.TP®
r p "J

jw #j 2-U^O
XfA: Kl'jf V f '-"PP

<?ifr
! V.

s
r\| Ay\, J> "Sw •!>> "5:

W '*! T J)

r u n
m n

-*> i%wSr92s:3s

ILGFETE^M

?-:isS;35;s1S5

'HMkl
riTT'-Tr

^ i I?
K'

••z \a -1̂

i- KTK

3/

a/o let

0C
Ik 11*: I '5It
S T 2 L

-iSt
l»: vs

. _ V. Pa

MfM CI*'

7ZPZ
Tr?

i; Lt:33

n r-o

; IkLS | € ^ U O

% ?r5
Ti M e R

Zi bT

A%
i&fk A* Dgf A<%/« #yw

7 ,E#o ?VJ>

?ii .n7t>
:(i ?S1

A D d

F 7 14 (2-

f-.» '5-1 r
(..

ZZiE!
K' If-

Itv;*'
.JT-

iy T J r J 4

- F Z : It-
—1.

T(?!^
I*j [

I :

D A C

n p ! w-'iiz.

i !

rlljiillllili ! Ill 111

M C 2 l/o

rA f ̂ c f-

^iozo

4-

"I-
t> I 7. y U ̂ ̂ 7 • ' i %W(17

I 1 • r I ! • ? r f }

Vrf!

IT! I I

J

. ri-t:
4-Sv

-1 ii "o 71 ?» Z"7 - - IC .,1

M ^
+SV Si'r .r
-jJLi J J UJ-,
i O- i
i niiLSt22
;a t 5

i I

I RrTiMf ̂
-TPtf. '' O

1

Pi^ft Rl W

\N\

)W)

-titv

_AN4 C»'ti

I

IKI-* V-.

toe.

I !

LOCK '
t^o /%Nfl 0 V !

IKM*

r -€>

4- '-t -i f? K~j'

t l

j n i y H

SilrPLt
: ' O I. O

- F'^Kl

+ l?v

X
6 U

ft LTf.ft.

Cu

:
RRI

ivi 0 J
k; .:

V

—-(K K1 i

pmci
ovri

V« It 1%:)% Z1I4

/30K

i w > 4
^ J

^ J ;R-
-i'v

P . -y f ,fj 1

INSTITUTE OF OCEANOGRAPHIC SCIENCES.
I / O €:)/" I 0

ISSUED TO

REVISED

DRAWING No. I.S.O./

DRAWN BY, DATE 2 ? / ^ / ? ^ SHEET No.

ISSUED FOR ORDER No. FOR UNITS

Woking Dyeline A3 PS293S

