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Introduction 

Leg 85 of GLOMAR CHALLENGER left Honolulu on May 5th 1982, and arrived 

Yokohama on June 19th 1982, after sampling six sites in the western North 

• Pacific. The primary objectives of the leg were to unravel the palaeo-

oceanography of the North West Pacific, collect evidence of Cenozoic aeolian 

and authigenic deposition preserved in 'red clay' sections, and hydraulically 

piston core (HFC) the Cretaceous-Tertiary boundary at the location of DSDP 

Site 47 on Shatsky Rise. 

The primary objective of my participation as 'Physical Properties 

Specialist' was to obtain undisturbed samples for laboratory permeability 

and consolidation tests especially from the 'red clays'. Although 'red clays' 

cover large areas of the Pacific sea-floor they are relatively scarce in the 

Atlantic. However, their importance to the study into the feasibility of 

disposing of high-level radioactive waste beneath the sea-floor is in the 

fact that they lie at one end of the pelagic sediment spectrum (coarse 

carbonate oozes lie at the opposite end) . Many of the geotechnical properties 

of 'red clays' probably represent the limit that is found in deep sea sediments 

for having high plasticities, low grain size and probably the lowest 

permeabilities. 

To date at lOS a wide range of near surface N. Atlantic sediment samples 

have been tested in the laboratory. In particular the permeabilities have been 

measured at decreasing porosities by applying a uniaxial load in a back-

pressured consolidation cell. The consolidation characteristics of the 

sediments are also measured at the same time. The uniaxial load simulates 

the progressive increase in overburden pressure caused on the sea-floor by 

pelagic sedimentation. Consequently, predicted permeability/depth profiles 

are obtained from tests on these near surface samples. However, the rapid 

increase in load in the laboratory experiments are not comparable with the 

rate of loading imposed by tlie slow accumulation of sediment on the sea-floor. 

A load equivalent to 100 metres of sediment is normally applied over a 
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period of lo days; compare this to the 5-50 million years in which lOO metres 

of sediment would take to accumulate in the deep sea. 

GLOMAR CHALLENGER Leg 86 provided a unique opportunity to obtain 

relatively undisturbed HPC samples from a continuous section of 'red clay' 

to a depth of 55 metres (Site 575), and to greater depths 17o metres (Site 

578) but without continuous 'red clay' deposition. Consolidation and 

permeability tests on samples obtained from these sites are currently 

taking place at ICS which will enable the predicted consolidation/depth 

and permeability/depth profiles to be directly compared with the measured 

profiles. This will allow the assumptions that are made in laboratory 

experiments to be directly tested. In addition to this, the cores from 

Hole 576A (from which most of the samples were obtained) were transported 

back to the USA without being split and they have now been sub-sampled by 

a geotechnical consortium who intend to perform an extensive range of other 

geotechnical tests. This means that the consolidation and permeability data 

will be supported by a suite of geotechnical characteristics that together 

will define this sediment section in more detail than has previously been 

obtained on any other deep sea sediment. 

Apart from obtaining the samples discussed above a range of other 

physical properties measurements were performed on board ship, at all the 

sites cored, which will help in the broader understanding of the differences 

which exist for various sediment types in the deep sea. Measurements included 

seismic wave velocities (P and S), vane shear strength and bulk density on 

sediments,which ranged from red clays to bio-siliceous and carbonate oozes. 

Details of this work are included in the physical properties site reports 

together with some of the shipboard data. 
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SITE SUMMARY 

HOLE LATITUDE LONGITUDE WATER DEPTH. 

(metres) 

PENETRATION 

(metres) 

5 7 6 
576A 
576B 

3 2 ° 2 1 . 3 6 ' N 
3 2 ° 2 1 . 3 8 ' N 
3 2 ° 2 1 . 3 7 ' N 

1 6 4 ° 1 6 . 5 4 ' E 
1 6 4 ° 1 6 . 5 2 ' E 
1 6 4 ° 1 6 . 5 2 ' E 

6 2 1 7 
6 9 . 2 
6 5 . 7 
7 4 . 8 

5 7 7 
57 7A 
577B 

3 2 ° 2 6 . 5 1 ' N 
3 2 ° 2 6 . 5 3 ' N 
3 2 ° 2 6 . 4 8 ' N 

1 5 7 ° 4 3 . 4 0 ' E 
1 5 7 ° 4 3 . 3 9 ' E 
1 5 7 ° 4 3 . 3 9 ' E 

2 6 7 5 
1 1 8 . 8 
1 2 3 . 4 
1 1 3 . 9 

5 7 8 3 3 ° 5 5 . 5 6 ' N 1 5 1 ° 3 7 . 7 4 ' E 6 0 1 0 1 7 6 . 8 

5 7 9 
579A 

3 8 ° 3 7 . 6 B ' N 

3 8 ° 3 7 . 6 1 ' N 
1 5 3 ° 5 0 . 1 7 ' E 
1 5 3 ° 5 0 . 2 8 ' E 

5737 1 7 . 9 
1 4 9 . 5 

5 8 0 • 4 1 ° 3 7 . 4 7 ' N 1 5 3 ° 5 8 , 5 8 ' E 5 3 7 5 1 5 5 . 3 

5 8 1 4 3 ° 5 5 . 6 2 ' N 1 5 9 ° 4 7 . 7 6 ' E 5 4 7 6 3 5 2 . 5 



SITE 576 

. G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the three HPC holes 576, 576A and 576B. 

576 576A 576B 

Shear strength: hand operated vane x - x 

motorized vane x - x 

Compressive strength: hand held penetrometer x - x 

Wave velocity: shear wave x - x 
compressional wave x - x 

Water content/bulk density: shipboard analysis x - -

laboratory analysis x - x 

Bulk density by 2-minute GRAPE x - -

Consolidation and permeability - x -

Techniques 

In general the above measurements or samples were taken at 1.5-meter 

intervals throughout the core (one per section). However, highly disturbed 

regions were seldom measured and more measurements were taken at lithologic 

changes. The techniques used are largely described in the DSDP physical 

properties handbooks. 

Shear strengths were measured on split sections perpendicular to the 

core axis using both the 'Torvane' hand held device (large and medium size 

vanes were used) and the modified Wykeham Farrance Vane Apparatus (springs 

1, 2 and 3 were used). 

Unconfined compressive strengths were measured perpendicular to the 

core axis on the split sections using the 'Soiltest' penetrometer. A large 

(one inch diameter) tip was used for most of the measurements. Both the 



'Torvane' and the penetrometer were initially used parallel to the core , 

axis at the ends of each section as they were cut. However, the rotational 

disturbance caused by this procedure was not appreciated by those 

interested in magnetic properties and was suspended after Core 3 in Hole 

576. 

Compressional wave velocities were generally measured perpendicular to 

the core axis through the liner using the Hamilton Frame Velocimeter at 400 

kHz after calibration of the system through the various velocity standards. 

A few measurements were taken parallel to the core axis using bulk samples. 

Shear wave velocity measurements made on this leg are not normally 

conducted on DSDP cores. The technique employed piezoelectric bender 

elements as transducers which were inserted into the split core at a 

separation of 25.5 "mm both parallel and perpendicular to the core axis. 

The rising edge of a 10 v square wave was used to drive the transmitter and 

the received signal was high pass filtered at about 1 kHz to remove 

extraneous noise. The onset time of the received pulse was then measured 

using the delayed time base of the oscilloscope. 

Water content/bulk density samples were taken by inserting metal 

cylinders of a known volume (referred to as 'Boyce cylinders') into the 

split section. A d.c. voltage (20-25 v) applied between the cylinder 

(cathode) and a platinum anode was used to minimize the disturbance caused 

by the sampling technique. This results from the electro-osmotic effect 

which continuously lubricates the steel cathode with water, preventing the 

sediment from sticking to the sampling cylinder. Wet and dry weights of 

these samples allow the volumetric and weight relationships for the 

sediment to be calculated; bulk density, water content, porosity, void 
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ratio and grain density. The samples taken for shipboard analysis were * 

also subjected to a 2-minute GRAPE test for calibration of the gravimetric 

methods with the continuous GRAPE records of the whole,sections. 

Samples were taken from the unsplit cores at Hole 576A for 

consolidation and permeability testing back in the UK laboratory. These 

samples were taken from 10 cm sections which had been cut from the ends of 

alternate 1.5-meter sections from each core. Sub-sampling was achieved by 

inserting a stainless steel cylinder (50 mm in diameter and 20 mm high) 

internally coated with PTFE into the section and trimming with an 

electro-osmotic knife. These samples were stored under water for 

transportation back to the laboratory for testing. 

- Data 

Some of the calculated data are presented in Figures G-1, -2, -3 and 

-4 which show profiles of shear strength, shear wave velocity, compres-

sional wave velocity, water content, bulk density and porosity in Holes 576 

and 576B. A detailed discussion of these data is not appropriate here but 

the following points are worth noting. 

1) The correlation both in trends and magnitude of shear strength 

obtained from the hand held and motorized vane test is remarkably good 

(Figs. G-1 and -3) . s 

2) Shear strengths and shear wave velocities in the carbonate layers^ 

are generally much less than in the brown clay. This does not necessarily 

mean that the dm situ strengths vary by this amount; it may be caused by 

different forms of stress disturbance in the different lithologies. 



3) Where there is a large amount of visual disturbance, the shear <? 

strength in the bro^'m clay is markedly reduced (Fig. G-1, flow in), whereas 

the shear wave velocity is only slightly reduced. 

4) The large Increase in the shear strength and shear wave velocities 

in the brown clay below 65 meters in Hole 576B may be indicative of the 

onset of diagenesis (Fig. G-3). 

5) The offset in the shear strength and shear wave velocities between 

Cores 2, 3 and 4 in Hole 576 (Fig. G-1) may be indicative of non-visual 

coring disturbance. 

6) The compressional wave velocity profile shows no obvious trend 

through the brown clay section and is always less than the water velocity. 

Peaks in the compressional wave velocity occur for ash and carbonate 

layers. 

7) The uniformity of shear wave velocities measured parallel and 

perpendicular to the core axis indicate a total lack of anisotropy within 

any of the lithologies (Fig. G-2). 

8) There is a marked increase in water content up to 220% between 11 

meters and 20 meters in the brown clay unit before it gradually decreases 

to 110% at 50 meters. The cause of this is not known but a change in 

mineralogy, similar to that found in GPC3, is suspected. The increase in 

water content is consistent with a decrease in shear strength around 16 

meters as shown in Figure L-1. 

9) Figure G-5 is an e-log P plot of the brown clay unit using data 

from Hole 576. In contrast to the typical laboratory consolidation curve. 

Figure G-5 illustrates the geotechnical complexities caused by what may 

appear to be only subtle changes in the brown clay. The compression index 
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lies between 1.2 and 4.2 which compares favorably with available laboratory 

data from GPC3 (2.8-4.4). 
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SITE 577 

G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the two HFC holes, 577 and 577A. 

577 511k 

Shear strength: hand operated vane 
motorized vane 

Wave velocity: shear wave 
compressional wave 

Water content/bulk density: shipboard analysis 
laboratory analysis 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Bulk density by 2-minute GRAPE 

Consolidation and permeability - x 

Techniques 

In Hole 577 the above measurements or samples were taken at approx-

imately 3-meter intervals throughout the core (alternate sections). For 

Hole 577A measurements or samples were taken at approximately 4.5-meter 

Intervals. 

The techniques used have previously been described for Site 576; no 

significant changes were made for this site. 

Data 

Figures G-1, —2 and -3 show profiles (Holes 577 and 511k) of shear 

strength, compressional wave velocity and shear wave velocity, 

respectively. Shipboard determinations of water content and bulk density 

are shown in Figure G-4. 
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The following points are worth noting: 

1. There are wide variations in the shear strength measurements down 

to 50 meters, below which there is a rapid decrease in strength which 

remains consistently low. The reduction in shear strength correlates with 

the boundary of lithologic units I and II (Chapter D), and is thought to 

occur as a result of the changing carbonate content (Fig. D-2). It is 

postulated that at carbonate contents in excess of 90 to 95 percent, the 

sediment strength is drastically reduced by the coring process (the 

interparticulate bonding may be more brittle). If this is the case, then 

the shear strength profile shown in Figure G-1 bears little relation to the 

in situ profile. 

2. The shear wave velocity data shown in Figure G-3 show no distinct 

trends throughout the two holes, the velocity varies between 20 m/s and 70 

m/s. Poor signal quality in most of these cores limits the accuracy of 

these measurements to ±10 m/s. 

3. Figure G-4 shows profiles of water content and bulk density for 

Hole 577. A sudden increase in bulk density (decrease in water content) 

at about 60 meters is the major feature which occurs just below the 

lithologic boundary between Units I and II. This corresponds to a possible 

30-40 m.y. missing section in the mid-Tertiary (see biostratigraphic 

summary. Chapter E), which at 3.9 m/m.y. would represent up to 156 meters 

of missing sediment. Laboratory consolidation data from Hole 577A may be 

able to indicate whether this was a non-depositional or an erosional 

hiatus. 

4. The compressional wave velocity profile (Fig. G-2) also shows a 

major discontinuity at 60 meters. The velocity increases rapidly from 
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around 1480 m/s to 1530 m/s. The corresponding impedance change using bulkb 

density values of 1590 and 1720 kg/m^, respectively, are 2.35 x 10^ and 

6 - 2 - 1 

2.63 X 10 kg m S (a change of more than 10%). However, this depth does 

not correspond to a distinct reflector on the 3.5 kHz seismic record. 
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SITE 578-

G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the HFC hole, 578. 

578 

Shear strength: hand operated vane x 
motorized vane x 

Wave velocity: shear wave ' x 
compressional wave x 

Water content/bulk density: shipboard analysis x 

laboratory analysis x 

Bulk density by 2-minute GRAPE x 

Consolidation and permeability x 

Techniques 

In Hole 578 the above measurements or samples were taken at approx-

imately 3-meter intervals throughout the core (alternate sections). Four 

samples were taken from 10 cm whole core sections (Cores 17 and 19) for 

consolidation and permeability tests. 

The techniques used have previously been described for Site 576; no 

significant changes were made for this site. 

Data 

Figures G-1, and G-2 show profiles of shear strength, compressional 

and shear wave velocity, respectively. Shipboard determinations of water 

content and bulk density are shown in Figure G-3. 

The following points are worth, noting: 

1) The compressional wave profile (Fig. G-2) is dominated by high 

velocity layers of pyrite-indurated clay and ash beds superimposed on a 
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constant velocity profile down to 160 meters. Not all of the numerous 

layers were measured but it can be assumed that they all have higher 

velocities. Below 160 meters there is an indication that a positive 

velocity gradient is developing in the very dark pelagic clay. 

2) Shear wave velocities increase slowly up to 65 m/s at a depth of 

120 meters (Fig. G-2). A rapid increase up to 128 m/s occurs between 120 

and 130 meters, below which the velocity remains essentially constant. 

This transition coincides with the lithologic boundary between Unit II and 

III (Chapter D) in the pelagic clay. 

3) The lithologic boundary between Units II and III is also 

characterized by a reduction in water content from 120% to 90% with a 

3 

corresponding increase in the bulk density from 1,37 to 1.47 g/cm (Fig. 

G-3). Another significant change in water content occurs between Cores 17 

and 18 (155-160 m) where it falls rapidly from 90% to 60%. This transition 

does not coincide with any obvious lithological boundary. 

4) The shear strength profiles (Fig. G-1) show an increasing strength 
2 

with depth from 0 at the sea floor to around 1500 g/cm at 176 meters in 

Core 20. Recovery from Cores 17, 18, 19 and 20 were progressively shorter, 

with Cor.e 20 being only 0.81 meters long. These shear strengths in pelagic 

brown clays obviously represent the operational limits of the HPC in its 

present configuration. It is also interesting to note that the high 

lateral stresses within the core prevented any flow-in occurring (presum-

ably water must have flowed around the piston during pull out). 

The two discontinuities of water content at 120-130 meters and 155-160 

meters discussed above are also revealed by rapid increases in the shear 

strength profiles. At 123 meters (boundary of Units II and III) there is a 
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2 2 
rapid increase from 500 g/cm to 1100 g/cm according to the motorized vane 

measurements (a less pronounced step is revealed by the hand held vane). 

2 

At 157 meters the hand held vane shows an increase from 1050 g/cm to 

2 

1500 gm/cm (a less pronounced step is revealed in this case by the 

motorized vane). 

5) The four dark brown pelagic clay samples taken from Cores 17 and 

19 for consolidation testing will supplement those samples taken at Site 

576 by extending the depth of burial from 70 meters to 170 meters. It is 

interesting that the brown clay from 70 meters at Site 576 had a water 
2 

content of 60% with a shear strength of approximately 1000 g/cm while at 
Site 578 the brown clay from 170 meters still has a water content of 60%, 

2 
but a significantly higher shear strength (1500 g/cm"). 



I KLUI LL (i [ CO. f/AILIMUSA cloid 

10 

20 

30 

50 

70 

i 

i . 
t 
tioo 

• O 
CO 
^ i JO 
a 
V] 

/2(; 

hix) 

w 

/,$0 

/7(? 

/»? 

/•^0L.£ 5 7 g 
1 

z 

3 

4 

5 

7 

e 

9 

to 

II 

17-

13 

/4-

15 1 

/6 

17 

;9 

If 

sh£f)/^ stflens^rn ^/crri~ 
Soo looo ISOO 

horofkit^e-o vA/ve snefifk. strs-mg-th 
O 500 logo /goo 

. O 
» 

0 

I 
N) 
I 



57s » . 

lo 

20 

30 

50 

70 

Uj 
Q 7^ 

g/6^ 

o 
CO 
^110 
Cb 
vn 

/2Z? 

W 

/^ 

/,go 

/7i9 

/8C 

:;̂l!! 

m 
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SITE 579 

G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the HPC holes 579 and 579A. 

579 and 579A 

Shear strength: hand operated vane • x 
motorized vane x 

Wave velocity: shear wave x 
compressional wave x 

Water content/bulk density: shipboard analysis x 

laboratory analysis x 

Bulk density by 2-minute GRAPE x 

Techniques 

The above measurements or samples were taken at approximately 

4.5-meter intervals throughout the core. 

The techniques used have previously been described for Site 576; no 

significant changes were made for this site. 

Data 

Figures G-1, and G-2 show profiles of shear strength, compressional 

and shear wave velocity, respectively. Shipboard determinations of water 

content and bulk density are shown in Figure G-3. 

The following points should be noted: 

1) The compressional wave velocity profile is dominated by many (6]) 

high velocity ash layers and numerous ('^325) thin (<0.5 cm) stiff indurated 

dark greenish gray layers. Velocities measured in a few ash layers are 

typically about 1600 m/s. The thin indurated green layers also have higher 

velocities but they tend to be variable, one was as high as 1770 m/s. 
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Velocities in the siliceous clay and ooze are remarkably uniform throughout 

the hole at 1480 m/s (Fig. G-2). 

2) Shear wave velocity measurements show no distinct trends down to 

73 meters. The transducer broke at this point, preventing further mea-

surements. 

3) Shear strength measurements (Fig. G-1), although exhibiting a 

large amount of scatter, show increasing strength down the hole. A major 

discontinuity exists in Core 9 with very high shear strengths in Section 5 

relative to shallower sections. Values decrease again in Core 10, however. 

This maximum cannot be explained by any visible lithological changes. 

4) In the bottom of Core 6, Section 5, a good example of flow in 

occurred. Measurements with both the hand held and motorized vane showed 

that the remolded flow-in section had decreased in strength by a factor of 

2 2 
M from 380 g/cm in the 'undisturbed' region to 100 g/cm in the flow-in 

section. 

5) The water content profile (Fig. G-3) can be split into three 

units. Unit I from 0-41 meters has a decreasing water content from 220% to 

111% which is probably caused by normal consolidation processes. Unit II 

from 41-134 meters has slowly increasing water content from around 170% to 

228%, with a rapid change occurring between Units I and II. Unit III, 

below 134 meters, shows a decreasing water content down to 158% at 149 

meters. 

These units do not correlate to the lithological units based on visual 

descriptions. It is probable that changes in clay mineralogy are respon-

sible for the strength variations observed. 
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SITE 580. 

G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the HPC hole, 580. 

580 

Shear strength; hand operated vane x 

motorized vane x 

Compressional wave velocity: x 

Water content/bulk density: shipboard analysis x 

laboratory analysis x 

. Bulk density by 2-minute GRAPE x 

Techniques 

In Hole 580 the above measurements or samples were generally taken at 

4.5-meter intervals throughout the core. Detailed compressional wave 

velocity profiles were made on selected ash layers to determine the fine-

scale velocity structure. 

The techniques used have previously been described for Site 576; no 

significant changes were made for this site. 

Data 

Figures G-1, and G-2 show profiles of shear strength and compressional 

wave velocity, respectively. Shipboard determinations of water content and 

bulk density are -shown in Figure G-3. 

The following points are worth noting: 

1) As at Sites 578 and 579, the velocity profile for Site 580 (Fig. 

G-2) is dominated by high velocity pyrite-indurated clay and ash beds. 

Velocities in the siliceous clays and oozes rise gradually downhole from 

^1470 m/s in Core 1 to 1490 m/s in Core 17 at 150 meters. 
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2) A detailed velocity structure was obtained on 5 ash layers by 

taking measurements at 1 or 2 cm intervals through the beds. These are 

also shown in Figure G-2. Some of these examples clearly show the effect 

of a sharp basal contact producing a maximum velocity near or at the bottom 

of the ash layer. The velocities tend to decrease more slowly up through 

the layers. 

3) The velocity structure in these ash beds are primarily governed by 

their bulk density structure. A GRAPE record for Core 2, Section 2, is 

shown in Figure G-4, illustrating the close relationship between the two 

profiles. This type of detailed profile may prove useful for modeling 

acoustic reflectors for correlation with seismic sections. 

4) The water content profile (Fig. G-3) shows an erratic decrease 

from around 230% at the sea floor to 120% at 63 meters. This corresponds 

roughly to lithologic subunit lA (biosiliceous clay). An increase of up to 

212% in water content occurs in subunit IB (calcareous biosiliceous clay, 

60-79 m). In subunit IC (79-117.3 m), which is lithologically similar to 

subunit lA, the water content is essentially constant at "^180%. Subunit ID 

(diatom ooze) initially exhibits a decrease in water content to 140% but 

then increases slowly through subunit ID before decreasing again in subunit 

IE (which is lithologically similar to lA and IC). 

Although the correlation of water content with lithologic units is not 

a good one, there does seem to be a pattern which more accurate laboratory 

determinations may reveal more clearly. 

5) The shear strength measurements (Fig. G-1) shows a nearly linear 

2 

increase with depth up to 800 g/cm at 150 meters. Figure G-5 is a com-

parison of the shear strength data obtained using the two techniques. 
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It can be seen that the Torvane gives strengths which are 30% higher than 

the motorized vane tests. 
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SITE 581 

G. PHYSICAL PROPERTIES 

Introduction 

The following table summarizes the physical properties measurements 

made and samples taken from the rotary-cored hole, 581. 

581 

Shear strength: hand operated vane x 

motorized vane x 

Compressional wave velocity: x 

Water content/bulk density: shipboard analysis x 

laboratory analysis x 

Bulk density by 2-minute GRAPE x 

Techniques 

The above measurements on samples were taken approximately once per 

core in the unconsolidated sediments. A number of compressional wave 

velocity measurements were taken on the chert and basalt samples. Shear 

strength measurements were hampered by the brittle nature of the semi-

indurated sediments. This resulted in major cracks developing either upon 

initial insertion of the vane or during the test. If this happens the test 

is invalid because the failure plane is no longer a cylinder described by 

the vane blades. In an attempt to overcome this problem, a minimum amount 

of confining pressure was applied by using two strips of angle aluminum 

either side of the split core which were held together by G clamps (see 

Fig. G-1). This eliminated the gap between the liner and the sediment and 

prevented the cracking described above. 

Other measurement techniques have previously been described for Site 

576 and no other significant changes were made for this site. 
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Data 

Figures G-1 and G-2 show profiles of shear strength and compresslonal 

wave velocity, respectively. Shipboard determinations of water content and 

bulk density are shown in Figure G-3. 

The following points should be noted: 

I) The shear strength measurements (Fig. G-1) should be viewed with 

even more caution than usual. Rotary coring causes significantly more 

structural disturbance than the HPC. This is true even when the strati-

graphic sequence looks undisturbed. Much of the material in Cores 1-7 

consisted of alternating layers of soft and stiff sediments which is 

probably caused by intermittent 'rotation' and 'punch' coring (rotation 

causing the most disturbance and hence the softer layers). Measurements 

were made in the largest sections of stiff material that could be found in 

each core. The first few readings were taken without the G-clamp modifi-

cation and show comparatively low strengths. In the remaining sections of 

unconsolidated sediments, the shear strengths lie between 600 and 

1300 g/cm^. 

2) Compressional wave measurements (Fig. G-2) show a small decrease 

in velocity below 240 meters which correlates with the boundary of litho-

logic units I and II (biosiliceous clay-clay). Some measurements were made 

on selected chert and basalt samples and these varied between 4000 m/s and 

5500 m/s as shown in Figure G-2). 

3) The water content and bulk density profiles (Fig. G-3) show a 

rapid change below 200 meters. Water content reduces rapidly from 200% to 

75% at 262 meters. This corresponds to a rapid increase in clay content 

through units lA, IB and II. Water content in the pelagic clay (unit II) 



-45-

is 75% at a sub-bottom depth of 252 meters, whereas at Sites 576 and 578 

water contents as low as 60% were found at sub-bottom depths of 60 and 170 

meters, respectively. 

4) The lack of good recovery in the pelagic clay section prevented a 

whole core sample being obtained for consolidation analysis. Hopefully, 

this can be achieved on Leg 88 using the HPC. 
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~ŝ  
0 

Ki 
C5 
O 

% ( N (X ij-j ..]>. W 

o 

1) 

Q 

O 

g 

SN 
I 

X 

> 
o 
o 

1̂  
o 

1 

1 

I 

I-? 
I, I 
i1 
> 
n 

r\ \ 

S 
n 
:i 
> 
N>' 
3 

t 

atssa 

pi»i;»,̂ m-s»»»«'! 

\ / O 

9\ 
I 
n 

-I 
Oi 
O 

X » 

7n 

s 

(\ 

I 

0 
o 

I 

§ 

-9t-



o vb 

J) 

w 
w 
o 

CO 

, s 
In 

sus -60ttoh p£^ti-f rn. 

w 

^ bt 

o 

"l) 

o 

X) 
•JN 
( \ 

% 

K. 
k 

% % o 

0\ (-n 

o 

-Is 

% O 

>0 

Y 
(i: 
7:) 
rn 

I 

CA 

S I 

m 

% % 

/h 
I 
^ (n 

1; 
- i s 

I 
t 
•n 

V 

•̂4 

O. 

Ci 
7) 

5y-:9/VT!/f/:p 

n y 

W 

U) 

XV C\ 

n\ "-
Q.lt 

; 
% I 
r 
E 

A 

3 

II 
<5 

-lv-



Xi 
% 

Xi 

C) 

X) 

o 
I I — f 

-<ll ^ I \l 

Xi 
C4 
Cj 

OS 

jj- JTB I/) 

5> 
(h 
% 

\ti 

I 

GM 
(A 

<a 

> 

I 
s 

w 

0 

. ! 
% 

<b 

S\ 
7a 
•ii 

C) 

I 

Uj 

>1 

I 

-I 

@\9 

w 
Ci 

\b 

To 

r 

^ ft! 
c, ̂  

y 
X 

it 
U\ 

-ot-




