N\ Institute of
rf(é:%\\; Oceanographic Sciences

== Deacon Laboratory

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 352

Sonic Buoy - GCAT Raw Data Logger
handbook

C H Clayson
1995

Wormley

Godalming ;

Surrey GU8 S5UB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
DATE
CLAYSON, CH 1995
TITLE
Sonic Buoy ~ GCAT Raw Data Logger handbook.
REFERENCE
Institute of Oceanographic Sciences Deacon Laboratory, Internal Documnent, No. 352, 67pp.
(Unpublished manuscript)
ABSTRACT

The GCAT Raw Data Logger was developed as part of the Sonic Buoy development program; it was
required as an on-board partial back-up system to the (previously uniried) VHF Radio Telemetry
System for obtaining raw sonic anemorneter data.

It monitors the sonic anemometer transmit and receive lines to determine the start and end of the
sections of data used by the Sonic Processor and logs a single record to a 4 Mbyte Flash EEPROM

PCMCIA card at intervals of 48 hours.

This document describes in detail the design and operation of the GCAT Raw Data Logger; it is
intended to serve the combined purposes of documenting and design and acting as a guide to

operating the system and recovering the data.

KEYWORDS
ISSUING ORGANISATION
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GUS8 5UB. UK. Telephone Wormley (0428) 684141
Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066
£0.00

Copiles of this report are available from: The Library, PRICE

Index

1. INTRODUCTION
2. FUNCTIONAL DESCRIPTION

3. SOFT'WARE

3.1 Overview

3.2 SETTIME - Application for Clock Synchronisation
3.3 RAWLOG - Application for Control of Sonic Raw Data Logging

4. HARDWARE
4.1 General
4.2 Circuit Descriptions

4 2.1 BMPPROC?2 Motherboard
4.2.2 GCAT Boards

5. WIRING

6. OPERATIONAL

6.1 Procedures to power up system and set in the correct time
6.2 Erasure of the FlashCard prior to use in the GCAT PCMCIA socket

6.3 Recovery of data from the FlashCard
7. SPECIFICATION

7.1 Supplies
1.2 Power Consumption

7.3 Data Storage and Output
APPENDIX A SOURCE CODE FOR SETTIME

Appendix A.1 C Source Code
Appendix A.2 Assembly Code

APPENDIX B SOURCE CODE FOR RAWLOG

Appendix B.1 C Source Code

11

11
12

12

12

13

13
15
16

12

12
127
12

18

18
21

24

24

BAppendix B.2 Assembly Code FLASH5.ASM
APPENDIX C GENERAL ASSEMBLY

C.1 Parts List
APPENDIXD BMPPROC2

D.1 Motherhoard for GCAT and AMPRO MinimodulesTM

D.2 Parts List

APPENDIX E FORMAT OF PCMCIA DIRECTORY AND DATA FILES

40

61

61

62

62
65

1. INTRODUCTION

The Sonic Raw Data Logger is a PC-based processing system, using DSP Designs Ltd. GCAT
3000 processor board and GCAT 2000 peripherals board, mounted on a motherboard,
BMPPROC?, of IOSDL design. The system is mounted within a diecast box which also contains

a +12V power supply for the Radio Modem.

The Sonic Raw Data Logger is designed to acquire a 10 minute sample of raw Sonic
anemometer data at approximately noon on odd-numbered (Julian) days; the anemometer
sampling is controlled by the Sonic Processor, running FFTC2 and FASTCOM software. The
Raw Data Logger sample is synchronised with a 10 minute record period of the Sonic
Processor. The data are stored on a 4 Mbyte Series 1 PCMCIA Flash Card in the standard

FASTCOM raw data file format.

2. FUNCTIONAL DESCRIPTION

The main functions of the Sonic Raw Data Logger are as follows:

a) to idle for a 2 day period until just before noon (if the first time after boot up, wait
until the first odd Julian day at least 2 days after boot up)

b) to start logging anemometer raw data to the flash card when the first transmit
command has been sent to the anemometer after a change to prompted mode

¢) to stop logging data when the change is made back to unprompted mode
d) to repeat functions a) to c) until the flash card is full

The above functions are achieved by the application RAWLOG EXE which is held in EPROM
(ROM Disk drive) on the GCAT 3000 board. The ROM Disk also holds DOS version 5.0,
AUTOEXEC.BAT and CONFIG.SYS files, and the application SETTIME.EXE. The last
application is run upon boot-up before the main application RAWLOG, allowing setting of the
hardware Real Time Clock via the COMI port.; this is described in more detail in Section 3.2,
below. Anemometer data are received via the GCAT 3000 COM2 port, anemometer
commands are receivedvia the GCAT 2000 COM1 port. U —

3. SOFTWARE

3.1 Overview

The Sonic Raw Data Logger software is embedded in the GCAT 3000 in a 512k EPROM,; this
contains MS-DOS 5.0 system files, COMMAND.COM, AUTOEXEC.BAT and CONFIG.SYS, and
the applications SETTIME.EXE and RAWLOG.EXE. The EPROM also includes a suitable
ROMDISK.DRV driver (the DSP-supplied RD_512_T.DRV) and BIOS (the DSP-supplied
124011 .B02). These make the ROM Disk the A: drive (the boot drive) and the B: drive is a
PCMCIA drive (although we address the PCMCIA directly by memory mapping, in practice);

there is no C: drive. This version of the BIOS is used to prevent error messages from
occurring during boot up, due to the lack of a floppy drive. During development a BIOS was
used having A: as the floppy drive, with the software under development on the floppy.

The process for programming the EPROM is described in the DSP Designs Ltd. document
"Instructions for producing a ROM Disk for the GCAT-3000".

After boot up, the application SETTIME.EXE is run; this allows synchronisation of the GCAT
clock with the clock of an external PC, running the BASIC program SONTIM.BAS and with its
COM]1 port connected to the GCAT COMI port. This external PC is normally a battery-
powered Husky Hunter 16 (running GWBASIC under DOS).

After the completion or time-out of the application SETTIME, the application RAWLOG.EXE
runs; this is the main data acquisition control program with the functions described above. The
application RAWLOG remains running continuously until terminated by a key press, a manual
reset, or by a system failure. A system failure, such as a processor crash, will result in the
watch dog timer rebooting the system.

3.2 SETTIME - Application for Clock Synchronisation

The application is built from the object files SETTIME.OBJ and SETTIM.OB]. The former is
produced by compiling the 'C' code SETTIME.C,; the latter is produced by assembling the
assembly code SETTIM.ASM. The library SLIBCE.LIB is used when linking. A listing of the
source code is given in Appendix A.

When the application is run, the message "Date: DD/MM/YY Time: HH:'mm:SSQ" is prepared,

where

YY is Year, e.g. (19)93

MM is Month (01 - 12)

DD is Day of the Month (01 - 31)

HH is Hour (00 - 23)

mm is Minute (00 - 59)

SSis Second (00 - 59)

and Qis a terminator. The date and time are derived from the system clock.

The application then outputs the Date/Time message via the COM1 port. (on the GCAT 2000
board); the port is set up for 2400 baud (8 bits data, 1 stop bit, no parity). The application then
waits for a Date/Time message terminated by a line feed (character 10) from the external PC (if
present). If none is received within at set interval, the application times out. Otherwise, the
external PC's Date/Time message is decoded and used to set the GCAT's Real Time and
system clocks, using DOS DATE and TIME calls. The application then outputs a message in the
above format (using the received Date/Time) to the external PC via the COM1 port.

Note that the SETTIME application is only effective if the GCAT RAM has previously been set
up by entering the time/date in the SET UP screen upon power up; SET UP is entered by
pressing the F2 key repeatedly during boot up. This makes the connection of a keyboard and
VDU essential when first powering up the system. Thereafter SETTIME can be used to alter the
time/date by re-booting, using the manual reset push-button, with an external PC running
SONTIM.BAS attached to the COM1 port.

This version (2) of the application SETTIME is specific to the GCAT system, although a similar
application (but using the COM2 port) has been produced for the DSP ECAT system.

3.3 RAWLOG - Application for Control of Sonic Raw Data Logging

The application is built from the object files RAWLOG.OBJ and FLASH5.0BJ; the former is
produced by compiling the 'C' source code RAWLOG.C; the latter is produced by assembling
the assembly code FLASHS.ASM, this contains functions used for writing to the PCMCIA Flash
Card. The library SLIBCE.LIB is used when linking. The commands for carrying out the above
processes are:

masm /MX flash5;
to produce the object code FLASHS.OR], followed by:

nmake raw
where RAW is the make file, consisting of the following lines:

rawlog.exe : rawlog.c flash5.obj
QCL/AS /Zr [crawlog.c
LINK /M /ST:8000 rawlog flashS, rawlog.exe, slibce.lib
A listing of the C source code is given in Appendix B.]1 and the assembly code is given in
Appendix B.2
When the application is run, the following initialisation steps are carried out:
the COM ports are set up

the time zone is set to GMT

a check is made for the presence of the Flash Card and, if present, the last Flash Card
directory entry is read and pointers are initialised

the Julian day number for the first record is calculated
a number of flags are initialised

A continuous loop is then entered, this loop will terminate if no flash card space is available or if
a key is pressed. In this loop:

the clock is read and if the seconds count has changed, the watch dog circuit is
triggered by pulsing the speaker (this will normally cause an audible 1 second "tick”)

a check is made whether the date and time lie within the window for a new "record",
1.e. the day is correct (as defined in Section 2, above) and the time is in the range 11:85 -
and 12:08

if the above time window is fulfilled and the anemometer Prompted (2 Ps) and
Transmit Block (2 Ts) commands are detected, logging of received data commences
and continues until the Unprompted command (2 Us) is received. The logic is rather
more complicated than this, to cater for eventualities; the full logic is shown in the flow
diagrams, Figures 1 and 2. These should be read in conjunction with the RAWLOG.C

source code in Appendix B.1.

Figure 1

Loop Flow Chart

10

is unprompted during
time_window

llog_flag &&
time_window() &&
len start

set en_start
i
set logging when sonic
changes to prompted
N en_start && W o w50
log_flag &&
llogging [4
set logging
set last_rec_daytojdl

changes from prompted to
unprompted

h—

reset logging, en_start &
save_flag, incr record_no and
write directory entry

]

p_flag && logging
&&header written

_ v

build_header, save to
flash, set header_writien

r

reset
header_written

!

save data

11

Figure 2
Save Data Flow

Cliart start

. N save_flag Y _i

increment
packet_length

correct
packet_length

' 1
write data to flash

v

increment
bytes_saved

IN‘W

set overrun

reset overrun

v

reset save_flag
& first

Y
(ea)

The watchdog trigger is inhibited during the data acquisition period so that, if the end of
record (Unprompted command) is not detected, the data collection will be terminated by a re-
boot.

4. HARDWARE

4.1 General

The GCAT 2000 and 3000 boards are mounted on the BMPPROC?2 motherboard in a sealed
diecast aluminiumn alloy box. A'Lemo connector, GR1, supplies 24V dc to the dc-dc converters
on the motherboard. The anemometer RS232 Tx and Rx lines (optically isolated) for the raw
data logger and for the radio modem are input to the box via a Lemo connector, GR2, which

12

also carries the +5V supplies for the opto-isolators; the Tx and Rx lines for the radio modem
are chained through to a similar Lemo, GR3, for connection to the radio modem (see Section

5).
A general assembly drawing and parts list are given in Appendix C.

4.2 Circuit Descriptions

4.2.1 BMPPROC? Motherboard

The BMPPROC?2 motherboard is a general purpose board design which is only part filled for
this application. An on-board DC-DC converter produces a +5 Volt stabilised supply atup to 1
Amp from the (nominally) 24 volt input from the battery distribution system (DC-DC Converter
Box). This supply is conservatively rated for the Raw Logger system, even when the keyboard
is plugged in. The board includes the standard IOSDL watchdog circuit, as developed for the
1802 Microboard System; the time-out period is selectable by jumper on a pin header. The
watchdog can also be disabled from resetting the GCAT by removing a jumper.

The board includes a 12V 800mA supply, not shown in the circuit diagram, for the radio
modem.

The circuit diagram, PCB tracking and silk screen plots and a parts list are given in Appendix
D. ‘ :

4.2.2 GCAT Boards

The GCAT 3000 and 2000 boards are standard items, but with the applications software in a
ROM Disk (512k EPROM, type 27C040-10). The processor runs at 7.2 MHz (determined by the
version of the BIOS included in the EPROM.

5. WIRING

The wiring within the unit is relatively simple, consisting of input 24V power connections from
Lemo connector GR! to the BMPPROC?Z motherboard, anemometer Tx/Rx signal connections
from Lemo GR2 to the motherboard and to Lemo GR3 and, finally 12V power connections from
the motherboard to Lemo GR3 for the Radio Modem. The individual connections are listed in

eme |° EWI-I Function Destination Wire Colour
GR1 1 ov SK1 Pin 2 White/Black
GR1 2 +24V SK1 Pin 1 Red/Brown
GR2 1 +B8V GCAT RAW SK2 Pin 4 Yellow/Red
GR2 2 Sonic Tx SK1 Pin 3 Red/Creen
CGR2 3 Sonic Rx SK1 Pin 4 Orange/Brown

13

CR2 4 0V GCAT RAW I/P SK2 Pin 3 White/Red

GR2 5 +5VHF RAW /P SK2 Pin 4 Yellow

CR2 6 Sonic Tx CGR3Pin 6 Red

CR2 7 Somnic Rx GR3Pin7 Orange

GR2 8 OVHFRAW I/P SK2 Pin 3 White

GR3 1 N/C

GR3 2 N/C

CR3 3 N/C

CR3 4 N/C

GR3 5 +12V HF RAW O/P SK2 Pin 1 Red/Brown

GR3 6 Sonic Tx CR2 Pin 6 Red/

CR3 7 Sonic Rx CGR2Pin7 Orange/

GR3 8 OVHFRAW /P SK2 Pin 2 White/Brown
6. OPERATIONAL

The Radio Modem can be disabled, if required, by unplugging the orange plug-in terminal
block leading to the Lemo connector GR3 or by directly unplugging the cable to the Radio
Modem.

6.1 Procedures to power up system and set in the correct time

The Sonic Raw Data Logger and Radio Modem systems are both powered via the same cable
to this unit; it is not possible to power up the Radio Modem without powering up the Raw Data
Logger, unless a separate supply/cable are used.

Plug in a suitable keyboard (set for XT PC and NOT AT) and a suitable VDU (with TTL RGB
interface and NOT analogue; this may require some adjustment of the setting switches on the
keyboard and VDU). Plugin the (orange) PCB connector SK1 to PL1 on the motherboard.

Power up the DC-DC Converter Box from a 24V supply or battery pack and plug in the cable
from the DC-DC Converter Box to Lemo GR1. The GCAT should bleep and the ‘DSP Designs
..... etc." message should be displayed on the VDU. Keep pressing the keyboard F2 key as the
memory check is made and the machine should then run its "SET-UP" routine, displaying a

configuration screen.

The time must then be entered by using the <= and = arrow keys to highlight the Hours,
Minutes, Seconds, Year, Month and Day of the month positions on this screen and entering the
required values. In the case of the Month, use the (coloured) + and - keys in the numerical
keypad area to adjust the months (these keys can also be used to adjust the other entries, if
desired). When the required settings have been entered, pressing the F10 key will,

14

simultaneously, exit from the set-up and enter the set time and date into the GCAT Real Time
Clock. Note that, if the highlight remains on the last parameter altered, pressing F10 may not
have any effect, so always move the highlight to another parameter after setting the last
alteration. For exact time setting, move the highlight from the Seconds setting at exactly the
time which has been entered on the screen (down to the last second). Do not take too long
over the set up process, or the watchdog timer (if enabled by the jumper) may re-boot the

system.

IMPORTANT Note that, if the set-up process is not carried out as described above,
subsequent use of an external PC or Husky, running SONTIM.BAS, will NOT set the Real Time
Clock correctly when the application SETTIME runs after a re-boot.

The boot up process will then continue with the SETTIME application being run; this is
followed, a short interval later, by the NEWFORM application.

If it is necessary to correct the clock time by use of an external PC or Husky, running
SONTIM.BAS, carry out the following steps:

disconnect the IDC ribbon cable connector from BMPPROC2 H1 (COM1) - this runs to
the 8 way Lemo GR2

plug the special ribbon cable, labelled "Husky to Formatter", into the Husky or PC 25
way COMI port (use a 25 to 9 way adaptor if necessary) and into the H1 (COMI1 port)
comnnector

Set the PC Date/Time, using the DOS TIME and DATE commands, run the program
SONTIM.BAS under GWBasic or QBasic and wait for the "Ready” prompt - this involves
the following steps for the Husky:

press the red PWR key to turn the machine on
at the C:\ prompt, enter DATE

- the machine then displays its current date which can be accepted, by pressing
RETURN, or modified by keying in a new date with the same format and then
pressing RETURN

enter TIME

- the machine then displays its current time which can be accepted, by pressing
RETURN, or modified by keying in a new time with the same format and then
pressing RETURN

enter GWBASIC

enter LOAD "SONTIM"

enter CLS

enter RUN ’

wait for "READY FOR DATA" to appear at the top of the screen

press the reset button (labelled RESET) next to the VDU connector on the Raw Data
Logger BMPPROC?Z2 motherboard; this will cause a re-boot. When the SETTIME
application runs on the GCAT, the message

Date: DD/MM/YY Time: HH:mm:SS

18

should appear on the PC/Husky display, where:
DD = Day of the month (0 - 31)
MM = Month (1 - 12)
YY = Year, e.g. (19)93
HH = Hour (00 - 23)
mm = Minutes (00 - 59)
SS = Seconds (00 - 59)
- the displayed values being for the initial GCAT Date/Time.

This should be followed shortly by another message of the same format, showing the
new time set in to the GCAT from a similar format message sent from the PC/Husky to
the GCAT. The GCAT will, after a short pause, run the RAWLOG application.

Remove the ribbon cable from the GCAT COM1 port H1 and reconnect the ribbon
cable from Lemo GR2. Disconnect the VDU and keyboard connectors from the

motherboard.

6.2 Erasure of the FlashCaxd prior to nse in the GCAT PCMCIA socket

Although the application RAWLOG will examine the FlashCard when it runs (see program
description, above) and will append data to any existing entries, it is best to start any
prolonged logging session with an erased card. There are two ways in which this may be
achieved. The first is to use the Thincard PCMCIA drive and software, installed in a PC. For
example, using this with the Tandon 386 S3869, insert the FlashCard in the drive slot and enter:

c:

cd c:\thincard

er
This runs the batch file ER.BAT, which simply contains

tcerase -card IMCO004 e:

This will erase the complete FlashCard; NB there are no precautionary checks before erasure
commences. Note that the FlashCard drive has been defined as the E: drive in the THINCARD
installation process.
The card can also be erased, starting from a base address by including -base address in the
above command (see also the THINCARD User Guide).
Alternatively, one can run the IOSDL application FLASH2.EXE in the GCAT development
system. To do this:
connect the development system to a keyboard (XT PC - type and NOT AT-type), a
RGB TTL VDU and a +5V 2A supply
insert a bootable disk containing the FLASH2 EXE application

switch on the +5V supply to boot up the system

16

run FLASHZ EXFE by entering FLASH?2 at the A\ prompt, the VDU will then display
Erase Card? <Y/N> (pressyorY)

Enter Start Chip and Finish Chip (0-18) (separated by comma}):

(enter number of chips to be erased, separated by a comma, e.g. 0,4)

the required chips will then be erased; this takes a while, during which progress
messages will be displayed on the VDU. Note that the directory is in chip 0 and data
are in chips 1 - 15 inclusive (256k per chip for the 4 Mbyte TMC004 FlashCard)

The partial erasure allowed by FLASH? is useful when a card has only been used for a short

test, e.g. when only chips 0 and 1 need erasure; this can save a few minutes and is better for
the card than a total erasure.

6.3 Recovery of data from the FlashCard

At present, this can only be done via the THINCARD drive installed in the Tandon or another
PC. Insert the FlashCard in the THINCARD drive slot and then enter

c:
cd c:\thincard
t

ThlS runs the batch file T.BAT, which contains:
tcread -size 0x400000 e: test

read test

The whole card is read into a 4 Mbyte file c:\thincard\test and the application READ is then run
to allow examination of this file. It is obviously necessary to ensure that space is available for a
file of this length on the hard disk before commencing (or that an existing file TEST exists in the
c:\thincard directory and that the contents of this file are no longer required). The application
READ allows examination of the file TEST, 256 bytes at a time. After the file has been
examined, it can be copied to another directory or drive, under an informative name.

Since a 4 Mbyte file is unwieldy for some purposes, an application was written to allow it to be
split into four 1 Mbyte files. This application is called 4MTOIM.EXE The resulting files are
suffiexed .IMG, 2MG, .3MG, .AMG

Data are subsequently recovered from the file TEST by reading each (sequential) directory
entry and using the contents to find the related file of data. Software to decompose the entire
contents of a TEST file into a number of individual FASTCOM-format files has yet to be written,
but would be quite straightforward.

17

1. SPECIFICATION

7.1 Supplies

The Sonic Raw Data Logger requires a 24 Volt supply at 60 mA
The Radio Modem requires a 24 Volt supply at approximately 105 mA average

1.2 Power Consumption

The consumption including the DC-DC converters is typically 1.45 Watts at a primary bus
supply voltage of +24 Volts, this includes the quiescent consumption of the Radio Modem DC-
DC converter, with the Radio Modem disconnected.

7.3 Data Storage and Output

The raw Sonic data are stored on a Series 1 PCMCIA Flash Card in FASTCOM-format as
described in Appendix E.
The application oufputs diagnostic data to a VDU, if connected, during its operation. When the
application is run, diagnostic information regarding the Flash Card Status is produced; the
most likely message of any importance is:

***************Hash Card not inserted***************
If this appears, insert the Flash Card and re-boot by pressing the reset push-button.
Other (unlikely) catastrophic error messages are:

Exiting program, COMS error
- if this appears, there was a problem in initialising the COM ports.

Error in setting TZ
- if this appears, there was an error in setting the Time Zone (highly uniikely).

When a record is logged the following sequence of output messages should appear:

Window on

- beginning of time window has occurred
Enabled

- set during unprompted period within time window
H

- when the FASTCOM-format Header is written at the start of the record
R

- when mode changes to unprompted at end of the record

18

APPENDIX KX SOURCE CODE FOR SETTIME

Appendix A.1 C Source Code

/‘k*******************************SE‘HM' C**‘k*****************‘k********\
Version 2.0 for GCAT (includes port enable function in SETTIM.ASM)
This program is for inclusion in the autoexec.bat for the
sonic buoy sonic processor. It allows the dsp processor
clock to be reset at boot up time by connecting a PC
rumning the GWBasic program settime.bas to the COM1 port.
The DSP time is then set to the PC time.
If the PC is not connected, this program times out.
The autoexec then runs the sonic acq/processing prog fiic2.

\Rhkdhkkddhhdhhhkdrhhhhkhdhkkkkrdhhkhdhhhhhkdkkhhdhhkkhkkhhkkkkkkkkkkhik/

#include <stdio.h>
#include<stdlib.h>
#include <dos.h>
#include <bios.h>
#include<string.h>

extern void uart_on(void);
extern void uart_off(void);

main()

{

char rsout[45];
char dum[10];
char stbuf[35];
char dum1{10];

intn;
long loop_cir;

struct dosdate_t date;
struct dostime _t time;

unsigned status, data;

int ch, ch_hit, port=0; /*port=0for COMI, =1 for COM2 */
/* NB for COMZ2 set to 1/2 req'd baud rate */

uart_on(); /* enable GCAT ports */

/* initialise com1 port, 2400 baud, 8bit data, no parity, 1 stop bit */

data = (unsigned) (COM_CHRS8 | _COM_STOP1 | _COM_NOPARITY | _COM_2400);
_bios_serialcom(COM_INIT, port, data);

_dos_getdate(&date);
_dos_gettime(&time);

strepy(rsout, "Date:);
itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat{rsout, */");

itoa(date.month, stbuf, 10);
strcat{rsout, stbuf);

19

strcat(rsout, */");

itoa(date.year - 1900, stbuf, 10);
strcat(rsout, stbuf);

strcat(rsout, * Time: ");
itoa(time.hour, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, *.");

itoa(time minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, *:");

itoa(time.second, stbuf, 10);
strcat(rsout, stbuf);
streat(rsout, *Q");

printf("Sending %s to COM%d\n", rsout, port + 1);
loop_ctr = OL;

for (ch = 0; ch < strlen(rsout); ch++)

{
do

{
status = 0x2000 & _bios_serialcom(COM_STATUS, port, 0);
loop_ctr++;

whilé ((status = 0x2000) && (Joop_ctr < 100));

if(_bios_serialcom(COM_SEND, port, rsout[ch]) > 0x7fff)
éxit(O);

if ((sztatus & 0x8000) == 0xB8000)

printf("RS232 COM%d timed out\n®, port + 1);
break;
}

}

ch=0;
loop_ctr = 0L

do
{
status = 0x100 & _bios_serialcom{ COM_STATUS, port, 0);
if (status == 0x100)

{
ch_hit = Oxff & _bios_serialcom(_COM_RECEIVE, port, 0);
printf(*4c”, ch_hit);

if (ch_hit == 68) /* capital D */
{ .
ch=0;
)

stbuf[ch] = (char) ch_hit;

ch++;

}

loop_ctr++;

}
while ((ch_hit I= 10) && (loop_ctr < 100000L));

20

stbuf{ch] = 0;
printf("\n%s\n", stbuf);
date.month = 10 * (stbuf[5] - 48) + stbuf[6] - 48;
date.day = 10 * (stbuf[8] - 48) + stbuf[9] - 48;
date.year =1900 + 10 * (stbuf[13] - 48) + stbuf[14] - 48;
time.hour = 10 * (stbuf[21] - 48) + stbuf[22] - 48;
time.minute = 10 * (stbuf[24] - 48) + stbuff25] - 48;
time.second = 10 * (stbuf{27] - 48) + stbuf[28] - 48;
if (loop_ctr < 100000)
if (_dos_setdate(&date) I= 0)
{
printf("Error in date set\n");
}
if (_dos_settime(&time) = 0)

printf("Error in ime set\n");

}
strcpy(rsout, "Date: *);

itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
streat(rsout, /"),

itoa(date.month, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "/);

itoa(date.year - 1900, stbuf, 10);
strcat(rsout, stbuf);

strcat(rsout, " Time: ");
itoa(time hour, stbuf, 10);
strcat(rsout, stbuf);
strecat(rsout, "");
itoa(time .minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, ":");
itoa(time.second, stbuf, 10);
streat(rsout, stbuf);
strcat(rsout, "Q");
printf("Sending %s to COM%d\n", rsout, port + 1);
for (ch = 0; ch < strlen(rsout); ch++)
{
do
{
status = 0x2000 & _bios_serialcom(COM_STATUS, port, 0);
}
while (status = 0x2000);

_bios_serialcom(_COM_SEND, port, rsout{ch]);
if ((status & 0x8000) == 0x8000)
{

21

printf("RS232 COM%d timed out\n’, port + 1);
break;

}

}
uart_off();

Appendix A.2 Assembly Code

TRERKERKEKKKRERKAR R KA KA RRR AR LA SETTIM ASMARAhkkkkhrhhrkbhkdhrdhdirhhhris

: Assembly Code functions used to enable GCAT ports

: for use in conjunction with SETTIME.C

; assemble using MASM /MX SETTIM; to give SETTIM.OB]

: and then link with SETTIME.OBJ and SLIBCE.LIB to give SETTIME.EXE

; Author CHC Date 23/08/1993

vkkkkkkkkkddkkkkikikkkkkhkkkkkikkkkkikkkkkkkkkkkkikhkhkkikikkkkkdkikiikk
1

enable_uartclock equ 030CH
disable_uartclock equ 0304H
enable rs232 equ 030EH
disable rs232 equ 0306H

. *
'********PUBLKZS** kkkkk

public _uart_on
public _uart_off

assume cs._TEXT
assume ds: DATA

_DATA segment byte public DATA'
dummmy dw *?

_DATA ends

_TEXT segment word public 'CODE'

; NB this macro is not universal and is only correct for regmem == AX

: See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

LFEAT MACRO regmem
DB OFEH
DB 0F8H
ENDM

; NB this macro is not universal and is only correct for regmem == AL
; See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

STFEAT MACRO regmemm, sdata
DB OFEH
DB 0FOH
DB sdata

_uart on

ENDM

PROC

push
mov

push
push
push
push
push
push
push
push
push

22

BP
BP,SP

AX
BX
CX
DX
SI
DI
S5
DS
ES

; first select utility register by setting PS4 low

mov
mov
LFEAT

mov

mov
LFEAT

mov
mov
LFEAT

AH, 8EH ; set PS4 address (low byte) to Util Reg low byte
AL, 00H
AX

AH, 8FH ; set PS4 address (high byte) to Util Reg high byte
; OR'd with 0f8h (enable writes - 16 addresses)

AL, OFBH

AX

AH, 8CH ; set PS4 fn selector to "active low chip select"
AL, 64H
AX

; Utility Register is now selected

mov
mov
out
mov
mov
out

mov
mov
LFEAT

DX, enable uartclock

AL, 0 ; (byte written is immaterial)
DX, AL

DX, enable rs232

AL, 0

DX, AL

AH, 8CH ; set P54 to "input” for safety
AL, 0
AX

; Utility Register is now deselected

pop
pop
pop
pop
pop
pop
pop
pop
pop

mov

pop
ret

_uart on

_uart_off

_uart_off

ENDP

PROC

push
mov

push
push
push
push
push
push
push
push
push

23

BP
BP,SP

AX
BX
CX
DX
St
DI
S8
DS
ES

; first select utility register by setting PS4 low

mov
mov
LFEAT

mov

mov
LFEAT

mov
mov
LFEAT

AH, BEH ; set PS4 address (low byte) to Util Reg low byte
AL, O0H
AX

AH, 8FH ; set PS4 address (high byte) to Util Reg high byte
; OR'd with 0f8h (enable writes - 16 addresses)

AL, OFBH

AX

BH,8CH - ; set PS4 fn selector to "active low chip select"
AL, 64H
AX

; Utility Register is now selected

mov
mov
out
mov
mov
out

mov
mov
LFEAT

DX, disable_uartclock

AL, O ; (byte written is immaterial)
DX, AL

DX, disable rs232

AL, 0O

DX, AL

AH, 8CH ; set PS4 to "input” for safety
AL, 0
AX

; Utllity Register is now deselected

pop
pop
bop
pop
pop
pop
pop
pop
bop

mov

pop
ret

ENDP

ES
DS
SS
DI

SI
DX
CX .
BX
AX

SP, BP
BP

24

TEXT ends

end

APPENDIX B SOURCE CODE FOR RAWLOG

Appendix B.1 C Source Code

[rkkkkkkkkkkkkhkikidrhhkhicdxR AN QG Crrrkkkkkkkdkhkkkkkhhhhkhkikiikk

* Sonic Buoy Raw Data Logging system, using GCAT + Flashcard
*vyn 1.0

* Acquires raw data asynchronously from Sonic Sensor which is
* under control of the ECAT Sonic Processor

*

* Saves raw data to 4 MByte Flashcard in FASTCOM format

* For SWALES

*

* Compile using make file raw (uses flash5.0bj)
*

* Author CHC

* Started 17/08/1993
*

Fhkkkkkkkkkkkhkkhkikkkkkihkkkkkikkkkhbkhkkkhkkhhkkkikkkkhkkkkkrkk/

#include<stdio.h>
#include<stdlib.h>
#include<float.h>
#include<math.h>
#include<time.h>
#include<conio.h>
#include<string.h>
#include<ctype h>
#include<bios.h>
#include<dos.h>
#include"coms.c" /* Port & UART register definitions */
#define COMMAND_PORT 1 /* COMI i/p only for monitoring commands
- IRQ4 driven */
#define DATA_PORT 2 /* COM2i/p only for receiving data
- IRQ3 driven */
#define TRUE 1
#define FALSE 0
#define DISPLAY 1
/* FLASHCARD settings */
#define DIRECTORY_START - OL /* normally OL, set higher for dud card */
#define DIR CHIP 0 /* normally O, set higher for dud card */
#define DATA_START 2621441, /* normally 262144L,
set higher for dud card */
#define HEADER LENGTH 44
#define MAX _IENGTH 123144L /* limit to overrun of record length */

/*************************FUNCTION DECLARATIONS***********************’k*/
/* Functions in FLASHS5.ASM */

25

extern int pcmcia_save(unsigned, unsigned, unsigned, char *);

extern void chip_erase(unsigned);

extern unsigned long seek_end(int); /* for start-up/re-start only */
extern int read_header(unsigned, unsigned); /* for start-up/re-start only */
extern void progsupply_on(void);

extern void progsupply_off(void);

extern int card_detect(void);

extern void bankswitch_disable(void);

/* Functions in this file */

void readclock(int);

void read_hhmm(void);

void clean_up(void);

int init_coms(void);

int com_init(int, unsigned, unsigned, unsigned);

int ser_putc(int, char *);

int ser_getc(int);

int flash_save(char *, unsigned long, unsigned long);
int directory_entry(unsigned, unsigned, unsigned long, unsigned, char *);
void data_save(int);

void build_header(void);

int time_window(void);

void wdog(void);

/* Interrupt Handlers and addresses of default handlers */
void interrupt far our_irg3_handler(void);

void (interrupt far *old_irg3_handler)();

void interrupt far our_irg4_handler(void);

void (interrupt far *old_jrq4_handler)();

/**************GLOB Al VARIABLES******************/

char a[512], display_buffer[80], header[64], header_contents[40], julian[10];
char data_buffer[1024];

inthl, ml, sl, dl, nl, yyl,i jdl, start_day;

int command_flag = 0, full flag =0, log_flag = 0, save_flag=0;

int flash_full = 0, logging = 0, last_char =0, en_start = 0;

int packet_length = 0, p_flag = 0, first = 1, overrun = 0;

int last_ rec_day = 0, wdog_mask = 0;

unsigned old_ints;
unsigned header_block, header_startptr;
unsigned reclen, record _no = 0, segment, seg_ptr, start_block, start_offset;

unsigned long header_reclength, locn;

unsigned long dir_ptr =0, fl_ptr, old_fl ptr, bytes_saved;
main()

int header written, n, s11;

union REGS regs;

/* turn on Flashcard Programming Supply VPP */
progsupply_on();

/* the following CREG gets/writes for test purposes only
. ... delete down to "start of real stuff" */
regs.h.ah = Ox14;

regs.h.bh = 0x0f; /* F8680 UART config */
regs.h.al=0;
regs.h.bl =0, /* get creg */

mt86(0x1f, ®s, ®s);
#if DISPLAY == TRUE

26

{
printf("CREG OFh before init: %x\n\r", regs.h.al);

}
#endif

/* normally returns 0x0f, i.e. COM2, int active low, enabled */

/* get PC/CHIP and 82C710 Options */
regs.h.ah = 0x08;

regs.hbl=0; /* return options */
nt86(0x 1f, ®s, ®s);
#if DISPLAY == TRUE
érintf("PC/CHlP Options: %x\n\r", regs.h.al);
#enZiif
/* normally returns 0x02, i.e. drive B is PCMCIA */
#if DISPLAY == TRUE
é)rintf(“BZC'] 10 Options: %x\n\r", regs.h.ah);
#enc}ijf

/* normally returns Oxec, i.e. XT IDE, FDC, par and ser ports enabled

/*************************** real stuff starts here kkkkhkkkkhkkhhhhhkhhhhk/

/* set up the COM ports */
if (init_coms() == 0)

{
#if DISPLAY == TRUE
{
printf("Exiting program, COMS error\n\r");
#endif
exit(0);

/* need to set timezone to GMT */
if (putenv(*TZ=CGMT") == -1)

{
#if DISPLAY == TRUE

{
printf("Error in setting TZ\n\r");
}

#endif

return 0;

}
tzset();

/* In case of startup due to re-boot or with unerased FlashCard */
header_contents[0] = 255;

header_contents[1] = 0;

n = card_detect() & Oxf;

#if DISPLAY == TRUE

{
printf("SDATA 0A: %02x\n\r", 1);

27

}
#endif

if (n & 0x0c) /* Card Detect lines bits 2&3 should be low */
{
#if DISPLAY == TRUE

printf("*#kxxkikskxxxx*Flash Card not inserted***rrsstekriet\n\r";

}
#endif

flash full=1;
}

else

{

flash full=0;

/* Find last directory entry */
locn = seek_end(DIR_CHIP);

#if DISPLAY == TRUE
{
printf("Flash dir ptr:%Ix\n\r", locn);
}
#Hendif
segment = (unsigned) (locn >> 16);
seg_ptr = (unsigned) (locn & Oxfiff);
dir_ptr = locn;
if locn == DIRECTORY_START)
{
#if DISPLAY == TRUE
{
printf("Virgin FlashCard\n\r");
}
#Hendif
i ptr = DATA START;,
old_fl ptr =1 ptr;
}

else

/* Flashcard has data/directory entries, so must adjust for these
by setting pointers and loading n_saves bins */
if (seg ptr ==0)

{
seg_ptr = 65504;
}

else

{
seg_ptr -= 32;
#if DISPLAY == TRUE

{
printf("Last Directory Entry:- Segment %x, Offset %x\n\r",
segment, seg_ptr);

}
#endif

/* Read the directory entry */
read_header(segment, seg_ptr); /* result in header_contents[] */

28

strepy(display_buffer, *);
for m=0;n < 32; n++)

{

sprintf(julian, "%02x ", header_ contents[n] & 0xff);
strcat(display_buffer, julian);

if (n == 15)

{
strcat(display_buffer, "\n\r");
}

}
strcat(display_buffer, "n\r");
#if DISPLAY == TRUE

{
printf{display_buffer);
}

#endif

/* Calculate Flash Pointer (fl_ptr) for 1st free byte on Card */

header_block = (unsigned) header_contents[8] & Oxff:

header_startptr = (unsigned) header_contents[9] & Ox{f;

header_startptr += (((unsigned) header_contents[10] & 0xff) << 8);
header_reclength = (unsigned long) header_contents[11] & Oxff;
header_reclength += (((unsigned long) header contents[12] & 0xff) << 8L);

fl ptr = 65536L * header_block + header_startptr + header reclength + 65536L;
old_fl ptr = | ptr;

#if DISPLAY == TRUE

{
printf('Last Record:- Block %x, Offset %x, \
Length %lIx\n\rFlash data ptr %lx\n\r",

header_block, header_startptr, header_reclength, fi ptr):

}
#endif

} /* end of else (not a virgin flashcard) */
} /*end of else (locn not 0x40000) */

readclock(1);
if (jd1 < 363) /* jd1 runs from 0->364 in non-leap year */

{
start_ day =jdl + 2;
else
{
start_day = jdl - 363; /*NBJan Ist->ijdl =0 #/
}
log_flag = 0;
save_flag = 0;
header written = 0;

/********************START OF CON’I’INUOUS LOOP******************/
while (Ikbhit() && (fash_full == 0))

readclock(0);
if(slli=sl)
{

wdog();

sll =sl;
}

if (log_flag && time_window() && len_start)

29

/*log_flag setby 2 'P's + 2 'T's, reset by 2 'U's */

{
#if DISPLAY == TRUE

{
printf("Enabled\n");
}
#endif
en_start=1; /* set en_start when unpr during time_window */
last_rec_day =jdl;
wdog_mask = 1; /* inhibit wdog trigger until end of record */

}
if (en_start && log flag && llogging)
{
logging = 1; /* set logging when unpr->pr during time_window */
first=1;
bytes saved = 0;

}

if (logging && llog_flag) /* end of prompted data logging */
{
#if DISPLAY == TRUE

{
printf("R\n"),
}
#endif
logging = 0;
en start=0;
save_flag=0;
wdog_mask = 0;
record_no++;

/* make directory entry */

start_block = (unsigned) (old_fl ptr >> 16);

start_offset = (unsigned) (old_fl_ptr - (start_block << 16));
reclen = (unsigned) (f_ptr - old_fl ptr);

old fl ptr =1l ptr;

while (!directory_entry(start_block, start_offset, reclen, record_no, julian)
&& (dir_ptr < (DIRECTORY_START + 2621441L)))

{
dir_ptr += 32; /* allow full length of directory entry gap */
}
if (dir_ptr >= DIRECTORY_START + 262144L)
{
flash full=1;
}

}
if (p_flag && logging && header_written)

{

build header();

#if DISPLAY == TRUE
{
prjntf(IH") ;
}

#endif
data_save(HEADER _LENGTH);
header_written = 1;

}

if (log_flag && logging && loverrun)

30

/*log_flag is set by IRQ4 handler when 2 P's + 2 T'srxd
and reset by IRQ4 handler when 2 U's rxd */

{
if (save_flag) /* set by IRQ3 handler when 2nd EOT byte read */

/* reset when data written to Flashcard */
/* or by reading char other than 2nd EOT byte */

{
packet_length++;
/* printf("%d ", packet_length); */

if (I(div(packet_length - 6, 10).rem))
i(f((a[1] = (char) 0x81) && (paéket_lengm <513))
£or (n = 4; n < packet_length; n++)
data_buffer[n- 4] =a[n]; /* misses out SOT and rec no. */
data_save(packet_length - 6);

bytes_saved += (packet_length - 6);
if (bytes_saved > MAX_LENGTH)

{

overrun = 1;
e]se)
{
overrun = 0;
}
}
}
save_flag=0;
[*i=0; %/
first = 0;
}

}

else

header written = 0;

}
/***l’*****************END OF CONTINUOUS LOQP**kkkkkkkkdkhddhikkkik/

clean_up();
return O;

}
[FEEExkkkkkkkkikkkikxkSTART OF FUNCTION DEFINITIONS#**#*kkkkkkkkkkki/

/*******************RE ADCLOCK gets SYStem ﬁme & date**************/
void readclock(int d_enable)

{

struct tm *tmnow,

time_tthow;

time(&mow);

tmnow = gmtime(&mow);
hl = tmnow->tm_hour;
ml = tmnow->tm_min,

sl = tmnow->tm_sec;

dl = tmnow->tm_mday;
nl = tmnow->tm _mon + 1;
yyl = tmnow->tm_year;

31

jdl = tmmow->tm_yday;
#if DISPLAY == TRUE

{
if (d_enable == 1)

{

printf("date %02d/%02d/%02d: time %02d:%02d:%02d\n\r",
dl, nl, yyl, hl, ml, sl);

}

}
#endif

}

/*************’k** CLEAN ‘UP resets SYStem fOl' eXJt -k*****’k**'k*'k***/
void clean up(void)

int n;

/* reset UART GPO2s to disable interrupts */

n = inp(COM1_BASE + MODEM_CONTR_REG);
outp(COM1_BASE + MODEM_CONTR_REG, n & 0xf7);
n = inp(COM2_BASE + MODEM_CONTR_REG);
outp(COM2_BASE + MODEM_CONTR_REG, n & 0xf7);

/* reset interrupt enables in UART IERs */
/* NB include COMI1 for ARGOS XON detection */

outp(COM1_BASE + INT_ENABLE_REG, 0);
outp(COM?2_BASE + INT_ENABLE_REG, 0);

/* read every UART register to clear any interrupts pending */
for m=0;n<7,n++)

inp(COM1_BASE + n);
inp(COMZ_BASE + n);
}

/* Restore old interrupt masks */
outp(0x21, old_ints);

/* restore default interrupt handlers */
_disable();

_dos_setvect(INT_NOG, old_irg3_handler);
_dos_setvect(INT_NO4, old_irg4_handler);
_enable();

/* disable memory bank switch registers */
bankswitch_disable();

/* turn off VPP #*/
progsupply_off(});

}

[rEFFFFxFFRRx INIT _COMS sets up COMS H/Ware & S/Ware *¥*#kkkkik/
int init_coms(void)

{

intn;

unsigned imask = IRQ3 & IRQ4;

[ExRRRIThkkhhkkkhkhkk Set up baud rate etc **************‘k*******'k**/

32

/* NB if COM2, set up for 2400 baud rate as xtal is 3.6864 MHz
if COM1, set up for 4800 baud rate as xtalis 1.8432 MHz */
if (com_init(COMMAND_PORT, BAUD_4800, 0, CHRS_8 | STOP 1 | NOPARITY) == NULL)

{
#if DISPLAY == TRUE

{
printf("Initialised COM%d Port\n\r", COMMAND_PORT);

}
#endif

}

else
;(#if DISPLAY == TRUE
érintf('?aﬂed to initialise COM%d Port\n\r', COMMAND_PORT);
#enc}iif

return O;
}

if (com_init(DATA_PORT, BAUD_2400, 0, CHRS_8 | STOP_1 | NOPARITY) == NULL)
{
#if DISPLAY == TRUE

{
printf("Initialised COM%d Port\n\r", DATA_ PORT);

}
#endif

}

else
{
#if DISPLAY == TRUE

{
printf('Failed to initialise COM%d Port\n\r", DATA PORT);

}
#Hendif

return O;
}

[Rrxkkkkkkkkkkikkkdk Now set up mterrupt handlers ***kkkkkkkkrhkkrrk/

outp(0x20, 0x10);
outp(0x21, 0x08);
outp(0x21, 0x10); /* setto 10 to enable multiple ints from same channel */

outp(0x20, 0x20);

ouip(0x20, 0x68); /* enables special mask mode */

old_ints = inp(0x21) | 0xb8;

/*old ints = Obe‘ temp Fhkkkkkkkkkkkkkkkhkhhhkhkkhkhkhkkkkrxik]

#if DISPLAY == TRUE

(.
printf("Old Int Mask register Contents: %x\n\r", old_ints);

}
#endif

n = old_ints & imask; /* enables [RQ 3 &4 (ints 11 & 12) */
ouip(0x21, n);
n = inp(0x21);

33

#if DISPLAY == TRUE

{
printf("New Int Mask register Contents: %x\n\r*, n};

}
#endif

/* save existing int handlers */
old_irg3_handler = _dos_getvect(INT NO3);
old_irg4_handler = _dos_getvect(INT_NO4);

/* load new int handlers */

_disable();

_dos_setvect(INT_NO3, our_irg3_handler);
_dos_setvect(INT_NO4, our_irg4_handler);
_enable();

/* enable interrupts for Rx (not Tx or Modem) in UARTs */
outp(COMI1_BASE + INT_ENABLE REG, RX_DATA AVAIL EN | RX_FRR EN);
outp(COM2_BASE + INT_ENABLE_REG, RX_DATA_AVAIL EN | RX_ERR_EN);

/* read UART registers to clear any interrupts pending */
for(m=0;n<7;n++)

{
inp(COM1_BASE + n);
inp(COMZ_BASE + nj;

/* set GPO2 to enable required interrupts via PAL to IRQ lines */

outp(COM1_BASE + MODEM_CONTR_REG, 0x08);
outp(COM?2_BASE + MODEM_CONTR_REG, 0x08);

return 1;

)

JrxERkkkkkkkkikk COM_INI‘T sets up UARTS for COM Ports **************/

int com_init(int port, unsigned bauds,
unsigned int_enable_data, unsigned line_control data)

unsigned base_address, n;
switch(port)

case 1:
base_address = COM1_BASE;
break;

case 2:
base_address = COM2_BASE;
break;

default:
retumn -1;
break;

}

/* set baud rate by loading divisor latches */

outp(base_address + LINE_CONTROL_REG, DLAB);
outp(base_address + DIV_LATCH LSREG, bauds & 0xff);
ouip(base_address + DIV_LATCH _MSREG, (bauds & 0xff00) >> 8);

/* set word length, start/stop bits, parity */

outp(base_address + LINE_ CONTROL_REG, line_control data & 0x71);
/* set any interrupt criteria */

outp(base_address + INT ENABLE REG, int_enable data);

return O;

34

)

[FFFFxEXFAXINTERRUPT HANDLER FOR COM1 (Command) INTERRUPT
HANDL]N’G**********/
void interrupt far our_irg4_handler()

{

intm, n=20;

_enable();

m = inp(COM1_BASE + INT_IDENT_REG) & 0x07;
do /* added do-while 11/8/93 to stop int latching high */

{
switch(inp(COMI1_BASE + INT_IDENT REG) & 0x07)

{
case RX DATA AVAIL:
n =inp(COM1_BASE + RX BUFF REG);
break;
case RX_FRR:
inp(COM!1_BASE + LINE_STATUS REQG);
n=253:
break;
case MODEM_STATUS:
inp(COM1_BASE + MODEM_STAT REG);
n=254;
break;
case TXHR_EMPTY:
n = 254,
break;
case INT PENDING:
n = 255:
break;
default:
n = 255:
break;

}
if (n == 80)
{
if (command_flag == 80) /* P already received */

{
p_flag=1;
}

else

{

command_flag = 80;

}
}
f((n==284) && (p_flag==1))
{
if (command_flag == 84) /* T already received */

{
log_flag=1;
i=0;

}

else
(.
command_flag = 84;
save_flag=0;

}
}
if (n == 85)
{
if (command_flag == 85) /* U already received */

35

log flag=0;
p_flag=0;
}

else

command_flag = 85;
}
}

}
while ((m = (inp(COMI_BASE + INT_IDENT REG) & 0x07)) != INT_PENDING);

outp(0x20, 0x20); /* non-specific EQI ? in do-while */
_chain_intr{old_irg4 handler); /* other sources of int handled */

}
[¥*xkxxk*END OF INTERRUPT HANDLER FOR COMI INTERRUPT HANDLING *# s/

/****INTERRUPT HANDLER FOR COM2 (Data) INTERRUPT HANDLING#***%*/
void interrupt far our_irg3_handler()

intm,n=0;

_enable();

m = inp(COM2_BASE + INT IDENT REG) & 0x07;

do /* added do-while 11/8/93 to stop int latching high */
switch(m)

{

case RX_DATA AVAIL:
n = inp(COM2_BASE + RX_BUFF REG);
break;

case RX_ERR:
inp(COM2_BASE + LINE_STATUS REG);
n = 0x99;
break;

case MODEM_STATUS:
inp(COM2_BASE + MODEM_STAT REG);
n = 256;
break;

case TXHR_EMPTY:
n = 256;
break;

case INT_PENDING:
n = 256;
break;

default:
n = 255;
break;

} /* end of switch{m) */

if (n < 256)

{

if ((n == 0x81) && (last_char == 0x81))
{
i=1;
}

if ((n == 0x82) && (last_char == 0x82))
save flag=1;
packet_length = i;
}

else

save_flag=0;

}

36

a[i] = (char) n;

last char =n;

i++;

1 &= Ox3ff; /* restrict for buffer length 1024 */
}

else
{
afi]=0;
last_char = 0; /* if error */
it++,
i &= Oxff;
}

}
while ((m = (inp(COMZ2_BASE + INT_IDENT_REG) & 0x07)) |= INT_PENDING);
outp(0x20, 0x20); /* non-specific EOI 20, 20 */
_chain_intr(old_irg3_handler); /* other sources of int handled */

}
[rxxxkikixEND OF INTERRUPT HANDLER FOR COM2 INTERRUPT HANDLING**#* %/

[FEFERRdkkkxxxx% FLASH SAVE writes data to FLASH EFPROM Card ###**kkkdkkirrix/
int flash_save(char * s_buffer, unsigned long flash_pointr,
unsigned long nbytes)
/* address of 1st byte to be saved, flash pointer (0 - 4 MB)
and number of bytes to be written to flash */

{
unsigned block, b_ptr;
if (nbytes == 0)

{

exit(0);

}
do

{
block = (unsigned) (flash_pointr >> 16);
b_ptr = (unsigned) (flash_pointr - (block << 16));

if (block > 63)
{
#if DISPLAY == TRUE

{
printf("Out of Storage Space\n\r");

)
#endif

1* exit(0); */
full lag=1;
return(0);

}
if(((unsigned long) b_ptr + nbytes) > 65536)
{
if (pcmcia_save((unsigned) (65535 - b_ptr), block, b_ptr, s_buffer) == 0)
{
flash_pointr += (unsigned long) (65536 - b_ptr);
nbytes -= (unsigned long) (65536 - b_ptr);

s_buffer += (unsigned long) (65536 - b_ptr);
}

else

{
#if DISPLAY == TRUE

37

{
printf("Failed\n\r");
}

#endif

return(0);
}
}

else
{
if (pcmcia_save((unsigned) nbytes - 1, block, b_ptr, s_buffer) == 0)

{

flash_pointr += nbytes;
nbytes = 0;

}

else

{
#if DISPLAY == TRUE

é)rintf("Failedm\r“) ;
#enc}iif
return(0);
} whzle (nbytes > 0);
return(1); | /* returns 1 if OK, O if failure */

[rrxxkikkkkixirk DIRECTORY_ENTRY creates and writes an entry *¥#¥k¥ikkkkiaikk/
int directory_entry(unsigned start_block, unsigned start_offset,

unsigned long reclen, unsigned record_no, char * jul_start)
/* need to change a lot of this */

{

char dir_entry[35];
char *ptr;

char dummy[10];

int ch;

time_t thow;
struct tm *gmt;

time(&tnow);
gmt = gmtime(&mow);

strepy(dir_entry, 'v');

sprintf(dummy, "%603d", 1 + gmt->tm_yday);
strcat(dir_entry, dummy);
sprintf(dummy, "%02d", gmt->tm_hour);
strcat(dir_entry, dummy); -
sprintf({dummy, "%02d", gmt->tm_min);
strcat(dir_entry, dummy);

dir_entry[8] = (char) (start_block & 0xff);
ptr = (char *) &start_offset;

dir_entry[9] = *ptr++;

dir_entry[10] = *ptr;

ptr = (char *) &reclen;

dir_entry[l1] = *ptr++;

38

dir_entry[12] = *ptr++;
ptr = (char *) &record no;
dir_entry[13] = *ptr++;
dir_entry[14] = *ptr;
dir_entry[15] = 0;

for (ch = 0; ch < 16; ch++)

{
dir_entry[16 + ch] = dir_entry[ch];
)

if (lash_save(&dir_entry[0], dir ptr, 32L) == 1)

{

dir_ptr += 321;
return 1;

}

else

{
return O;

}

/****************D ATA—S AVE Writes data to Hashcard*********************/
void data_save(int data_length)

{

int ch;

while (iflash_save(data_buffer, fl ptr, data_length) && (fl_ptr < 4194284L))

fi_ptr += data_length; /* allow full length to ensure no overwrite */

}

if (fptr >= 4194284L)
{
logging = 0;
flash full=1;
}

else

{
fl ptr += data_length;

}

}

/******************BU’ILD-‘I{EADER creates FASTCOM—type header***************/
void build_header(void)

{
readclock(0);
sprintf(data_buffer,
"Mode 1\nAnalog 1\nTime %02d:%02d:%02d Date %02d/%02d/%02d\n",

hil, ml, sl, d1, nl, yyl);

[rxxFxFAEEFTIME_WINDOW returns 1 during selected 1/4 hour every 2 days*****%/
int time_window(void)

{

readclock(0);

/* allow for 70 days operation (odd only) and end-of-year case */

if (((jd]1 >= start_day) | | ((Gd1 - start_day) < -290)) && div(jdl, 2).rem)

{

39

i ((jd1 I=1ast_rec_day) && len_start
&& (((hl1 ==11) && (ml > 54)) || ((h]1 == 12) && (m1 < 10))))

{
#if DISPLAY == TRUE
{
printf("“Window on\n");

}
#endif
return 1;
}

else

retun 0;

}
}

else

{

return 0;

}

/* following lines for test purposes, may give 2 recs per 3hrs,
depending on window timing relative to sonic record */

/*

if (Y(div(hl, 3)rem) && (ml < 158) && len_start)

{
#if DISPLAY == TRUE

{
printf("Window on\n");
}

#endif

retum 1;
}

else
{
return 0;
}
*/
/* down to here */

}

[Axxxxrkkixakx WDOG sends a beep to speaker to trigger watchdog *****xkxrk/

void wdog(void)
{

/* to give a single cycle o/p on spkr */
unsigned n, status;
if ('wdog_mask)

{

status = inp(0x61);

outp(0x61, status | 3); /* speaker on */

for (n=0; n < 200; n++);

status = inp(0x61);

oulp(0x61, status & ~3); /* speaker off */

/* gives a short beep (long enough to trigger wdog) */

}

40

APPENDIX B.2 Assembly Code FLASHS.ASM

:Name FLASH5.ASM

; Function: GCAT - drivers for PCMCIA Flash EEPROM Card

assemble using masm /MX flash5;

; developed from DSP code, with extra functions

; uses LFEAT AX instructions which are not recognised by MASM.
; therefore Macro is defined to insert the bytes FE F8

 ¢he IOSDL 1/2/93

; Miscellaneous Equates

exitin equ 04ch ; function code for exit from program
cr equ 0dh ; ASCII carriage return

hid equ Oah ; ASCII line feed

EPROM equ 0f000h ; address of BIOS EPROM

FLASH equ 0e000h ; segment of mapped PCMCIA flash EEPROM
; Utllity Register Equates

CSUTIL,_BASE equ 300h ; default I/O address

VPP_OFF _PORT equ CSUTIL_BASE + 05h

VPP_ON_PORT equ CSUTIL_BASE + 0dh

; INT 1F Equates

GET_SET _CREG equ 14h ; Int 1f function to set/get CREG
SET_CREG equ 1 ; set CREG

GET_CREG equ 0

; CREG Equates

PS4 SELECTOR equ 8ch : PS4 function selector

PS4 ALOW equ 8eh : PS4 address low

PS4 _AHIGH equ &t : PS4 address high

WRITE_16 equ 0fi8h ; enable writes - 16 addresses
SELECT CS LOW equ 64h ; active low chip select
SELECT_INPUT equ 0 ; pin is an input

; see Chips and Technologies F8680 PC/CHIP Programmer's Reference Manual
; pp 3-54 to 3-85 for Bank Switch Register programming

BSHI equ QOafh
BSHI_VAL equ Och
BSLO equ - 0a3h
BSLO_VAL equ 0

: 28F020 Flash EEPROM Cormmands

CMD_READ equ 0
CMD_ERASE equ 20h
CMD_ERASE VERIFY equ 0aCh

; hi byte BSR for mapped 64k segment
; to set to 48MB (CardB)

; lo byte BSR for mapped 64k segment
; A2 maps to segment C000

; A3 maps to segment E000

4]

CMD_SETUP_PROGRAM equ 040h
CMD_PROGRAM_VERIFY equ OcOh
CMD_RESET equ Offh
CMD_IDENTIFY equ 90h
public _chip_erase
public _pcrmcia_save
public _seek_end
public _read header
public _progsupply_on
public _progsupply_off
public _card_detect
public _bankswitch_disable
extrn _data_buffer:BYTE
; extrn _card_ptr:dword
extrn _header_contents:BYTE
; extm _main_ds:WORD
assume cs. TEXT, ds:_ DATA
_DATA SEGMENT BYTE PUBLIC 'DATA'
dummy bw ?
answ_ax DW ?
_DATA ENDS
TEXT segment word public 'CODE'

; NB this macro is not universal and is only correct for regmem == AX
; See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

LFEAT MACRO regmem
DB OFEH
DB OF8H
ENDM
; NB this macro is not universal and is only correct for regmem == AL

; See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-189 incl.

STFEAT

MACRO regmem, sdata
DB OFEH

DB OFOH

DB sdata

ENDM

;**

; _chip_erase
:

; procedure to

erase a single flash EEPROM chip in the PCMCIA Card

!
;**

_chip erase

PROC

push bp
mov . bp, sp

push
push
push
push
push
push
push
push
push

mov
mov
shl
mov
cmp
g
mov
mov

call
call
jnz

jmp

Erase Error:

jmp

Argument_FErrorl:

jmp

Exitl:

o kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkikkkkkhkkkkkkkhkhhkkhhhkkkkkhkrkkhhkhhkkikkx

'
1
H
'
’
1
H
3
)
’
H

call

bop
pop
pop
pop
bop
pop
pop
pop
pop
mov
pop
ret

chip_erase ENDP

; _read_header

42

; save registers being used

cRemEgage

bx, WORD PIR [BP+4] ; chip number

cl 4

bx, cl ; multiply by 16

cx, bx ;no. of chip (0-15) x 16
cx, 0f0h ; CX used in Memory_map
Argument_FErrorl

ax, FLASH ; destination of the data
es, ax

VPP_ON ; switch on VPP

Erase All ; erase device - see fig 6 of 28F020

; data sheet
Erase_Error ; jump on error
Exitl
Exitl
Exitl

VPP_OFF ; switch off VPP

; procedure to read 32 bytes of directory information into the

; dlobalstring _header contents

; NB relies on a directory entry not crossing a segment boundary
; unsigned arguments SEGMENT and OFFSET/PTR are passed by calling code

; Returns 1 if successful, 0 if called with out-of-range segment

43

!
; kkkkkkkkkkkkkkkkkkkkkkikkkkkkkkhkkkkkkkkkkkkkkkkkkikkkkkikkkkkxkkkkkkkikikk

_read_header PROC

push bp
mov bp, sp
i push ax
push bx
push cx
push dx ; save registers being used
push si
push di
push ss
push ds
push es
mov bx, WORD PTR [BP+4] ; segment (0-63)
mov cl, 2
shl bx, cl ; mult by 4
mov Cx, bx ; (CX used in Memory._map)
cmp cx, Ofch
ig Argument_FError3 ; out of range
mov ax, FLASH
mov es, ax ; set up ES as mapped Flash segment
call Memory_map ;set up memory map
mov bx, WORD PTR [BP+6] ;seg_ptr (offset)
; es:bx points to start of header
call Read_Cmd ; issue read command
mov cx, 32
mov di, offset _header_contents
Head loop:
mov al, BYTE PTR es:[bx]
mov BYTE PTR [di], al
inc bx
inc di
loop Head. loop
mov BYTE PTR [di], O ; string terminator
mov ax, 1 ; flag for OK
jmp Tidy_up
Argument_Error3:
mov ax, 0 ; flag for failure
Tidy_up:
pop es
pop ds
pop ss
pop di
pop ©o8l
pop dx
pop cx
pop bx
; pop ax
mov sp, bp
pop bp

ret

_read_header ENDP

44

;**

)
; _pcmcia_save

; procedure to write LENGTH bytes, start in 64k segment SEGC at pointer PTR

)
)
)

(unsigned arguments passed in the above order at [BP+4], [BP+6], [BP+8])
and source data start address passed at [BP+10] (far address i.e. 4 bytes)

© KEARARKAAAKAAAA A ARE AT AR ARARARARRRRK Ak hkhkkdhkhhhhkkhdhkddkdkdkdikkhkhkrhkiik
L

_pcmcia_save PROC
push
mov

; push
push
push
push
push
push
push
push
push

mov
mov
shil
mov
cmp
i9
mov

mov

mov
mov

call
call

call
jnz

mov
call

mov
jmp
Program_Error:
; mov

call
mov

jmp

Argument_Frror2:

bp
bp, sp

ax
bx
cx
dx
si
di
ss
ds
es

bx, WORD PTR [BP+6] ; no. of Flash Segment (0-63)
cl 2 :

bx, cl ; mult by 4
cx, bx ; (CX used in Memory_map)
cx, Ofch

Argument_Error2
dx, WORD PTR [BP+4] ; no. of bytes to write less 1

bx, WORD PTR [BP+8] ; es:bx will point to

; start byte in Flash
ax, FLASH
es, ax ; set up ES as mapped Flash segment
VPP_ON

Memory_map ; set up memory map

Program_Set ;program device - see fig 5 of 28F020
; data sheet
Program_Error ; jump on error

dx, offset M_Program_OK
Print_Message ; print OK

ax, 0 ; return value for OK
Exit2

dx, offset M_Program FError

Print Message

ax, 2 ; return value for prog error
Exit2

45

; mov dx, offset M_Arg Frror2
; call Print_ Message
mov ax, 1 ; return value for segment call error
jmp Exit?
Exit2:
; call VPP_OFF ; switch off VPP
pop es
pop ds
pop S8
pop di
pop st
pop dx
pop cx
pop bx
; pop ax
mov sp, bp
pop bp
ret

_pcmcia_save ENDP

; kkkkkdkkkkkkkkkkkkikkkkikkkkkkkikkkikkkkkkkkkkkkkkkkkkkkikkkkkkkkkikkkkkkkik
;_seek end

; procedure to find 1st free byte in card (starting at chip number

; is passed to routine)

; result (long) returned to calling program. AX = Ptr, DX = Segment

; *hkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkhhhhhkhhkkhhkhkkkkkkkkkkhhkkhrhkkhrkkhkhhikix

_seek end PROC

push bp
mov bp, sp
; push ax
push bx
push cx
; push dx
push si
push di
push ss
push es
push ds
mov bx, WORD PTR [BP+4] ; chip number
mov cl 4
shl bx, cl ; multiply by 16
mov cx, bx ; no. of chip (0-15) x 16
cmp - cx, 0f0h ; CX used in Memory_map
ig Card_end
mov ax, FLASH ; destination of the data
mov es, ax

; temp code to read Identification Codes
; call VPP_ON ; switch on VPP
; call Memory_map ; map segment to FLASH (C000)

Xor
call
mov
call
mov
call
call
call

Seqg_search:

mov
push
mov
shr

pbop

call
call

cli
mov
mov
st
mov
jz
add
cmp
19
jmp

Card_end:

mov
mov

Found:

pop
bop
pop
bop
pop
pop
bop
pop
pop
mov
pop
ret

_seek_end ENDP

46

bx, bx
Identify

al, es:[0]
Print_Hex
al, es:[1]
Print Hex
Read Cmd
VPP_OFF

dx, cx

cl, 2
dx, cl

Memory_map
Find FF

ax, DATA
ds, ax

ax, answ_ax
Found

cx, 4

cx, Ofch
Card_end
Seg_search

; switch off VPP

; DX = Segment number (0 - 63)

; map segment to FLASH (C000)

; search a 64k segment for FF

; ensure DS is for this module

; AX = offset within card segment DX

; set CX for next segment

; returned pointer for failure
; returned segment (normal range 0-63)

» kkkkkkkdkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkrihkhkhhkhkkkikhix
)

. Find_FF

]

; finds first occurrence of byte==FF in a segment

3

If successful, returns pointer in AX with Z flag set
If FF not found, returns with Z flag reset

47

!
;**

Find FF PROC
push
push
push

mov
call

Ptr_loop:

cli
mov
mov
st
mov
mov

cmp
je
cmp
je
add
jmp

Located:

- 8
g
Q

End_seq:

End label:
pop
pop
pop
ret
Find FF ENDP

ax
bx
di

bx, 0 ; set ptr to start of segment
Read_Cmd ; issue read command

ax, DATA
ds, ax ; ensure DS is for this module

answ_ax, bx

al, BYTE PTR es:[bx] ; read data
Print_letter ; temp testing

al, Ofth ; data == FF?
Located

bx, OffeCh

End_seqg

bx, 32

Ptr_loop

ax, DATA
ds, ax

bx, answ_ax
ax, bx

ah, al
Print_hex
ah, al
Print_hex
ax, main_ds
ds, ax

di, offset _card_ptr

WORD PTR [di], bx

WORD PTR [di + 2], dx

Memory_Restore ; NEW!! reset Bank Switching
Print_Hex

ax, ax ; set Z flag for success

ax, bx

End label

Memory_Restore ; NEWII reset Bank Switching
ax : ; reset Z flag for failure

;**

]

48

« kkkkdkkkkkkhkhkkkkkkkkkkkkkkhhkkkhkkhkkhhkhkkkkikikkikkkhkkhkkdhhkhihhdhikkikkkk

; Print Hex
; Prints a byte in al as 2 hex chars
Print Hex PROC
push ax
push cx
mov ah, al
and al, 0fCh
mov cl, 4
shr al, cl
add al, 30h
cmp al, 3ah
i Dec_Charl
add al, 7
Dec_Charl:
call Print letter
mov al, ah
and al, Ofth
add al, 30h
cmp al, 3ah
i Dec_Char?2
add al, 7
Dec_Char2:
call Print letter
mov al, 20h-
call print_letter
pop cx
pop ax
ret
Print_Hex ENDP

; 1st hex character

; 2nd hex character

; print space

©kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhikkkkkkkkhkkkkkkkkkkhkhhhhkkkkkkkkkikhkhihiihk
'

Memory_Map

sets up PC/Chip address map registers to put the 1st 64k of
the PCMCIA flash EEPROM at CO00h

< Khkkkhkkkkhkkhhkhh Rk AR ARk Rhkhhkkhhhhhhhhhhhidhhhkkkikhdkkikikkkkikdkihkkiks
1
Memory Map PROC

push
push
push

ch

mov
mov
mov
mov
int
mov
mov
LFEAT

mov

ax
bx

bh, Och

bl, SET_CREG

al, 0

; CREG for bank switch enable

; value to reset enable

ah, GET_SET CREG

1fh

ah, Och
al, 0
ax

bh, BSHI

; call Superstate code

; hi byte for mapped 64k segment

49

; mov bl, SET _CREG
; mov al, BSHI VAL ;value to write to it
; mov ah, GET_SET _CREG
; int 1fth ; call Superstate code
mov ah, BSHI
mov al, BSHI_VAL
LFEAT ax
; mov bh, BSLO ; 1o byte for mapped 64k segment
; mov bl, SET_CREG
: mov al, BSLO_VAL ;value to write to it
; add ax, cx
; mov ah, GET_SET _CREG
; int 1fh ; call Superstate code
mov ah, BSLO
mov al, BSLO_VAL
add ax, cx
LFEAT ax
; mov bh, Och : CREG for bank switch enable
; mov bl, SET_CREG
; mov al, 1 ; value to set enable
; mov ah, GET_SET CREG
; int 1fth ; call Superstate code
mov ah, Och
mov al, 1
LFEAT ax
; st
pop ds
pop bx
pop ax
ret

Memory Map ENDP

;**

; Memory_Restore

; disables Bank Switching

i
;**

Memory_Restore PROC

push ax
push bx
push ds
; ch
; mov bh, Och ; CREG for bank switch enable
; mov bl, SET _CREG
; mov al, 0 ; value to reset enable
; mov " ah, GET_SET CREG
; nt 1th ; call Superstate code
mov ah, Och ,
mov al, 0
LFEAT ax
; st

pop ds

50

pop bx
pop ax
ret

Memory_Restore ENDP

;**

; Erase All
Uses algorithm in 28F020 data sheet to erase the chip
i returns with Z flag set if OK

)
;**

Erase All PROC

push cXx
mov ax, 0
Chip_seg: ; loop to program 48%64k segments to 0
push ax
call Memory_map
push cx
call Program_Zeros
pop cx
pop ax
jnz E_Error
add cx, 4 ; for next 64k
add ax, 1
cmp ax, 4
je All done
jmp Chip_seg
All done:
mov cx, 0 ; cx is PLSCNT in data sheet
EAL:
inc cx
cmp cx, 3000 ; tried 3000 times?
jz E Error) yes- quit
call Erase ; issue erase command
call Erase ; twice to enable erase
mov ax, 10000 ; 10ms
call Delay ; wait a while
mov bx, 0 ; address of bottom of EEPROM
EA2:
call Frase Verify ; issue erase verify command
mov ax, 6
call Delay ; wait 8us
mov al, es:[bx] ; read data
cmp al, Ofth ; data = f?
jnz EAl ; 1O - jump
inc bx : next address
nz - EA2 ; no - next byte
; mov al, "E* ‘
; call Print_Tetter ; status report
cmp bh, 0 ; gone all the way around?
jnz EA2

call Read Cmd ; issue read command

E Error:

Erase All

XOr

pop
ret

inc
pop cx
ret
ENDP

51

ax, ax ; set Z flag to show success
cx
cx ; clear Z flag to show failure

B s S T R e e e e e e e e e e e e e s D e e
i

Program_Set

; Uses algorithm in 28F020 data sheet to write to the chip
; bx points to 1st write address
and dx is the number of bytes to be written

. returns with Z flag set if OK

s khRRKKARRRKKRKk*Khhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkikkkkkkkhikkkhkkkkkhkkkkhikk
)

Program_Set

PAL:

PA2:

PA3:

PROC
push
push

mov
mov
mov

inc
c<mp
jz
call

mov

inc
inc
jc
cmp
je
dec
jmp

call
XOr

cx
di

di, offset data buffer ; ds:diis start of buffer
; to be written
di, WORD PTR [BP+10] ; address of start of source data

cx, 0 ; cx is PLSCNT in data sheet

cx

cx, 26 ; tried enough times?

P Error ; yes - fail

Setup_Program ; set up for programming
al, ds:[di] ; get byte from data source
es:[bx], al ; write byte to Flash EEPROM

ax, 10

Delay ; wait 10us

Program_Verify ; issue program verify command
ax, 6

Delay ; wait 6us

ah, es:[bx] ; read data from EFFROM

al, ds:[di] ; get byte from data_buffer

al, ah ; compare with source

PA2 ; jump if data not correct

al, "P"

Print_Letter

di ; next location in data_buffer

bx ; next address to write

Overrun

dx, 0

PA3

dx ; 0. remaining to be written less 1
PAl ; if any remaining, loop
Read_Cmd ; issue read command

ax, ax ; set Z flag to show success

pop
pop
ret

P _Error:
inc
pop
pop
ret

Overrun:
: mov
call

inc
pop
pop
ret

Program Set ENDP

52

cx
di
cx

; clear Z flag to show failure

dx, offset M_Overrun

Print_Message

cx
di
cx

; clear Z flag to show failure

s kkkkkhhkkkhkhkkkkkkkhhhkkhkhkkkbhhkhkhkkkkkkhkkhhkhkkhhhkkkkkhkkkkkkkkkkkikihhkikik
1

; Program_Zeros

H

; Uses algorithm in 28F020 data sheet to fill chip with 0

; returns with Z flag set if OK

1
v kkkkkkkkdkkhkhkh kA TARARRRRAARARLER I LI AT d kkkkkkkkkkkkkkkkkkkkkhhkhdkdhkhkii
’

Program_Zeros

mov

PZ1:
mov
PZ2:

inc
cmp
jz
call
mov
mov
mov
call
call
mov
call
mov
cmp
jnz
inc
cmp
jnz

; mov
cmp
jnz

call
Xor

PROC
bx, 0

cx, 0

cxX
cx, 26
P Error Z

Setup_Program

al, 0
es:[bx], al
ax, 10
Delay

Program_Verify

ax, 6
Delay

al, es:[bx]
PZ2

bx

bLO
PZ1

al' “ZII
Print_Letter

bh, 0
PZ1

Read Cmd
ax, ax

; point to start of EEPROM

; cx is PLSCNT in data sheet

; tried enough times?
; yes - fail
; set up for programming
; get byte to program
; write data to EEPROM

; wait 10us
; issue program verify command

; wait 6us

; read data from EEPROM
; compare with source

; jump if data not correct

; next memory address

; done whole block

; nop - loop

; gone all the way around?
; 1o - loop

; issue read command
; set Z flag to show success

83

ret

P Error Z:
inc cx ; clear Z flag to show failure
ret

Program_Zeros ENDP

o kkkkkkkkkkkkkkkkkkkkikkkkkkikhkkkhkhkkkikhkkkkhkkkkhkkkkkhkhkhkkhhrhkkrhkhkhhhkik
+

:Read_Cmd

. issues read command to EEPROM

- hkkkkkkkkkkkhkkkhkkkkkhkkhkkdkdkRkdkkhhdhhkhdhhkhhhhhkhkhhhkhkhhkhkhkkkhkhkhkkhkkkhk
1

Read Cmd PROC

push ax

mov al, CMD_READ

mov es:[bx], al ; issue command
pop ax

ret

Read Cmd ENDP

Identify PROC
push ax
mov al, CMD_IDENTIFY
mov es:[bx], al ; issue command
pop ax
- ret
Identify ENDP

R L e L R s e e T e e s e e e e e s e s
1

)
; Erase

:

; issues erase command to EEPROM

Bk e e e e e e T e e e S
)

Erase PROC
push ax
mov al, CMD_ERASE
mov es:[bx], al ; issue command
pop ax
ret
Erase ENDP

» kkkkkdkkkkkhkkkhkiokiokkkkkkkkkkkkkhkkkdiokkkkihkhihhihhkhhkhhkhkhhhhkhkhhkkxhiikxk
)

; Erase_Verify
; issues erase verify command to EEPROM
; bx must contain address

;**

Erase Verify PROC

push ax

mov al, CMD_ERASE VERIFY

mov es:[bx], al ; issue command
pop ax

ret

Erase Verify ENDP

54

;**
)

; Setup_Program

;

issues setup program command to EEPROM

;**

Setup Program PROC
push ax
mov al, CMD_SETUP_PROGRAM
mov es:[bx], al ; issue command
pop ax
ret

Setup Program ENDP

+ kkkkkkkkkkkkkkhhkkkkkkkk kR RAAkRRRRLRERR ARk kkhkkkdkkkkkkkkkkkkkhkhkkkkkkkkkhkk
¥

; Program_Verify

; issues program verify command to EEPROM

'

» kkdkkkkkkkhkkhkkkkkkkkhkhkkkkkkhhrrhhrkhhhhkhkhhkkhhkkdhhhkkhdkkhhhkhkhkkhhkkkkk
3

Program _Verify PROC
push ax
mov al, CMD_PROGRAM VERIFY
mov es:[bx], al ; issue command
pop ax
ret

Program_Verify ENDP

;**

; Delay
; ax contains the number of microseconds to delay
t very crude - uses program loop

¥

« kkkkhkhkkhkkhhkhhkkhkhhkhhkhkkkkkkdhkkkhikhkihkkdkhihkkkkhkkkikkkkikkkkkikikkk
)

Delay PROC
cmp ax, 0 ; count = 07
jz DL1 ; yes - extt
nop
nop
nop
nop
dec ax
jmp Delay
DL1I:
ret
Delay ENDP

s kkkkkkkkkkkkkkkhhkkkhhkhkhhkikihkkhkkhhikhkkikikkkkkkkkkkkhhhkkkkkkrrkkkhkkiksk
L}

.VPP_ON

; turns on VPP

55

1
B T R e L L R R e R e R e T e T e
)

VPP_ON PROC
push ax
push bx
push dx
; cli
call Enable CSUTIL ; enable PS4 to be CSUTIL pin
; access Utllity Register to turn on VPP
mov dx, VPP_ON_PORT ; turn on VPP
out dx, al ; data is ignored
; st
mov ax, 50000
call Delay ; wait 50ms for VEE to turn on
call Disable CSUTIL ; disable CSUTIL
pop dx
pop bx
pop ax
ret
VPP_ON ENDP

« hkEkRARRARkEkkRkRhkkkkhhkhhkkhkkkkhkkikkikkkkkkkkkkkkkkkkkkhkkkkkkhkkkkhciirk
1

. VPP_OFF
; turns of VPP
;**
VPP_OFF PROC

push ax

push bx

push dx
; cli

call Enable CSUTIL ; enable PS4 to be CSUTIL pin
; access Utility Register to turn on VPP

mov dx, VPP_OFF PORT ; turn off VPP

out dx, al ; data is ignored
; st

call Disable CSUTIL ; disable CSUTIL

pop dx

pop bx

pop ax

ret
VPP_OFF ENDP

;**
)
; progsupply_on

;

; turns on VPP (for external calls)
)

;**

_progsupply_on , PROC

push
mov
push
push
push
push
push
push
push
push
push

; cli
call

56

bp
bp, sp

bx

dx ; save registers being used
si

S8

ds
es

Enable CSUTIL ; enable P54 to be CSUTIL pin

; access Utility Register to turn on VPP

mov
out
; st

mov
call
call

pop
pop
pop
pop
pop
bop
pop
pop
pop
mov
pop
ret

_brogsupply_on

dx, VPP_ON_PORT ; turn on VPP
dx, al ; data is ignored

ax, 50000
Delay. ; wait 50ms for VEE to turn on
Disable_CSUTIL ; disable CSUTIL

es
ds
S8
di
si
dx
cx
bx
ax
sp, bp
bp

ENDP

o kkRRKREKKKIKkkkkkkkkkkkkhkkkkkikhkihkkkkkkkkikkikkkkkkkkkkkkkkkihkkkkkihikkkhhsx

i
:
'

; progsupply_off

; turns of VPP (for external calls)

;**

_progsupply_off

push
mov
push
push
push
push
push
push
push
push
push

PROC

bp
bp, sp
ax

bx

cx

dx ; save registers being used
si

di

ss

ds

es

; cli
call

57

Enable CSUTIL

; access Utlity Register to tum on VPP

mov
out
; sti

call

pop
bop
bop
pop
pop
pop
pop
pop
pop
mov
pop
ret

_progsupply_off

dx, VPP_OFF PORT
dx, al

Disable_CSUTIL

es
ds

ss

di

si

dx

cx

bx

ax

sp, bp
bp

ENDP

; enable PS4 to be CSUTIL pin

; turn off VPP
; data is ignored

; disable CSUTIL

» dkkkkkkkhkkkkkkhkkkihkikikhkihkkhkkkkkkkkkkkhikkhkhkkkihkhkkhkkhkhkkkhkkhkkkhkkrk
¥

 Enable_CSUTIL

1

; enable access to Utlity Register by setting PS4 pin

; to be an active low chip select

:

;**

Enable_CSUTIL
; mov
; mov
; mov
; mov
; int
mov
mov

LFEAT

mov
mov
mov
or
mov
int
mov
mov
or

LFEAT

mov
mov
mov
mov
int

mov
mov

PROC
bh, PS4_ALOW
bl, SET_CREG

al, CSUTIL_BASE and 0fth

ah, GET_SET_CREG
lth
ah, PS4 ALOW

; 1s bits of address

; call Superstate code

al, CSUTIL_BASE and 0ffH

ax

bh, PS4 AHIGH
bl, SET_CREG

al, (CSUTIL_BASE and 300h)/256

al, WRITE_16

ah, GET_SET_CREG

lfh
ah, PS4_AHIGH

; MS address
; add other bits

; call Superstate code

al, (CSUTIL,_BASE and 300H)/256

al, WRITE_16
ax

bh, PS4_SELECTOR
bl, SET_CREG

al, SELECT_CS_LOW
ah, GET_SET _CREG
lfh

ah, PS4_SELECTOR
al, SELECT_CS_LOW

; active low CS

; call Superstate code

58

LFEAT ax

ret
Enable CSUTIL ENDP

» kkkkkdkkhdkhkhhkhdhhkkkkhhhkhkkkkhkkkkhkkkkhkhhhkkkkkhkkhrkkhkhkkhkkihhkkkkkkkkkx
1

. Disable CSUTIL

'

; now disable access to Utility Register incase software crashes

:

;. and writes to it

H

¢ kkkkdkkhkkkhkkkhkhkdhkkhkhkdhhdhdrhkhkidrrkhhhkhkhhhhhhhhkhkkhhhhhhhhkhkkkhhkhkhkhkhkik
)

Disable CSUTIL PROC
; mov bh, PS4 SELECTOR
; mov bl, SET CREG
; mov al, SELECT INPUT ; set to input - pullup
; mov ah, GET_SET _CREG ; resistor holds it high
; int 1th ; call Superstate code
mov ah, PS4_SELECTOR
mov al, SELECT INPUT
LFEAT ax
ret
Disable CSUTIL ENDP

» kkkkkkkdkkkkkhkkkhkhkkrhkkkAARAhkhEddhhhrrddhhdhhrrrdrrhkrrbrbddddhddorhhohhhdiis
'

; Check Key Press

; uses MS_DOS interrupt to check for akey
1 zero flagis set if no key pressed

1
¢ kR I EKEEEEERLELAAAAAAATEAERAAARARRE AR A ARALL AL AR RARARARRRRRRRRR DR R AR hdhdkhd
¥

Check key_press PROC
push ax
push dx
mov ah, 06h ; console input call
mov d}, Offh ; input
int 21h ; see if key is pressed
; zero flag is set if no key was pressed
pop dx
pop ax
ret
Check_key press ENDP

+ kkKhkkkkkhkkhhkhkhrk ok krkhhhhrhkkh A Ao rrhrhkkbrhkkhkrrrrhhkbdorkrhdhhiihbhrkks
L}

; Print_message
; uses MS_DOS interrupt to print message
; ds:dx points to message

¥
B T r e ey e e R et e e e e e e ey T T R P L e P T
1

Print Message PROC
push ds
push ax

mov aX, Cs

mov

mov
int

pop

bop

ret
Print Message ENDP

59

ds, ax ; ds=cs to point to text
ah, Sh ; string output
21h ; DOS call

ax

ds

o kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhkkhkkkkkkikkkkkhkhikkkkkkkhkkhkikkk

H]
)
H

: Print_Letter

; uses MS_DOS interrupt to print letter in AL

;**

Print_Letter PROC
push
push
mov

mov
int

pop

pop

ret
Print_lLetter ENDP

ax
dx

di, al

ah, zh ; character output
21h ; DOS call

dx

ax

» kkkkkkkkkhhkkkhkkkhkkhkhkhhhkkhhhkkhkkhkkkhkkhkkkhhkkhkkkkkkkkkkhkkkkkkkhkhhkkrk
L

; _card_detect

. uses STFEAT to read SDATA 0A for PCMCIA interface status

!
;**

_card_detect PROC

push
mov

push
push
push
push
push
push
push
push

STFEAT

bop
pop
pop
bpop
pop
pop
bop
pop

bp
bp, sp

bx

cx

dx ; save registers being used
si

di

sS

ds

es

al, 0ah

es
ds
ss
di
si
dx
cx
bx

60

mov sp, bp
pop bp
ret

_card_detect ENDP

;**
'

; _bankswitch disable

1]

; disables Bank Switching

i
;**

_bankswitch_disable PROC

push ax
push bx
push ds
; ch
; mov bh, Och ; CREG for bank switch enable
; mov bl, SET_CREG
; mov al, 0 ; value to reset enable
: mov ah, GET SET CREG
; int 1fh ; call Superstate code
mov ah, Och
mov al, 0
LFEAT ax
; st
pop ds
pop bx
pop ax
ret
_bankswitch _disable ENDP

»kkkkkkkkkdkkkkkkkkhkhkkkikkhkkkkkkkikkikkikkhkikkkikkkikkkkkhkhkkkkkkkkhrhkiirk
1

_TEXT ends

end

61

APPENDIX C GENERAL ASSEMBLY

Figure 3.
p
Keyboard COM1
i
SK H8 | | sKH1}
2 SK H7
VDU
FlashCard
<K and
) GCATs
Reset PB
‘ Raw logger
Power Supply
CONV1
BMPPROC2
Motherboard .
Radio Modem
Power Supply
CONV2
to Radio —
Modem WDOG SEL
GR3 [Puski] [PLisK2 |
GR1
GR2
Power &
Tx/Rx In
C.1 Parts List
1 off Diecast Box RS Components Litd. 506-930
1 off Motherboard BMPPROC?2 see Appendix D

1 off 3 way bulkhead connector GRI1

Lemo Series 3, ERA 303 CNL

62

2 off 8 way bulkhead connector GR2, GR3 Lemo Series 3, ERA 308 CNL
4 off 12 mm M3 spacers RS Components Ltd. 222-402
1 off chassis (mounting plate) make to suit (no drawing)

APPENDIXD BMPPROC2

D.1 Motherboard for GCAT and AMPRO MinimodulesT™M

The board circuit diagram and component layout are shown in Figures 4 and 5, respectively.
Modifications to the standard circuit are listed below:

D1 is replaced by a link and D2 is omitted

+9V and -9V Supplies are omitted

Wind Sensor (frequency to voltage converter) Circuit is omitted

Analogue reference Circuits are omitted

Analogue Filter/MPX Bus connector is omitted

An additional convertor for the Radio Modem supply (CONV2) is mounted on the
board as shown in figure 3.

FLOPPY DRIVE
DskeHg- M8

GCATI®RB EXT BUS

Pty S DI e plig
Interrol Battery o HDSEL [T~ EEY Pla I0CHCK-Pla H3
e v e
+24Va ~N 424V 5 RDATA- GND
o— ™ M SIN < 40UT 5V — O
-rs————— ot . . 2 WPRT- e GRD 18
—— &= f=¢ —' 3 o TRIE T -
- =3 8 wi- I==s 8 - — 0 —
PLL 2 ATE- — e —
xz +5V — e
= ‘ - g o] GHD ATA~ Bk — 1Raz —
insae CONVY STEP- g8 — Qb ——
+24Vb DIR WATCHOOG INDICATOR NEE—— o Jp—
e Y e |
2B0H — —
| ® AN s +8¥ MTRe. I — i A — ps KEYBOARD
—— L2 Ly
- MIR1- — —— —
PL2 . . 4 o tl e Wit - | - —
=g g2s 2 g =22 DRVL- maf ——— — -
External Supaly | - & v _———— ——— PL H?
RRYE= i —— o2 — CATION PRESET-
]
o o] Mo INDEX.= T3 . —m— 00 !;i J—
proves & — mme— O SERTAL/PARALLEL BUS
—-—— —e— GND T— AN ——S - 4GND v RESET enp_ PY
— - T RIL [—
—-— g
. . ND b — — M GO, coMe [Toml
 — p— A3 — T oL 1
0 Y I o —— e R — ATER ATEL 1
2 3 i=3 — — Alg — B8 7Y
< —— — IO — i~
N O ALT =1 —— — M
— —
et —— g —a—
_out l -sv Sl — 408 — = i — T—
P — if S ———BACKLIGHT —— 2581 e
- -—— —— —
CONVE] o <. | B Y Pi® ny —a—
————] - —
——] ——
oha M o caA vioeo -
————1 " - HOR SYNC —'l:% —
= ——] -—— T—
Hind Sensor (from Lemo) r——— ﬁ%_ ———
- 1TY I'—-—_(
PL3 - ——— -
= = ST =
- —] C T
sy - = l ¢
——] » —— 2:;1: e —C SE——
- I SR — A e b S
— B —— —— —e—
- it —— iRQ7 _—— T ex (0P2) ' ——
-
1 — IRSE T .- 1o wbos ——
“g — T ——— —e—
GND GND — A8 s r1 ——
- IRRS NEEDS T0 @E FLIPPED ON PCB P34 —ame
o couLa3m — ra MMM (000/EVEN PINS INTERCHANGED) 2
cDLe3a COVBEE T ey A NEEDS TO BE FLIPPED ON PCB
') SET — — CODD/EVEN PINS INTERCHANGED
SET XTmag co% I
R Tz me LI v — -—
o] Rw Icz v ; ox® || . gg‘;’ — I5gd S
Skt akd o b—fres 8 wa — A W ANALOGUE
&] 5 _—-—ICB GND —CO6 —— .FRMR__— S Iv py FILTER/MPX BUS
T oho S¥rat —jr/oL | — — S~ 5YNC PP
! oo oo +2.5Vret —{1/02 Seum i —my A ——
GND GNO FREQUENCY-VOLTAGE CDNVERTOR GND —{X/D3 ——— S =:-_-I'I—3 =
102 ND —1/06 > P}-6ND AE
o e
—
— I: e —— YL s e
CD4838 g RE] -Al — — INS
E — 0sc —— —— iﬁ MPX —
T Connectlon 1o Seneor Intsrfoce Boord ~———ﬂ—___._ [49V —a—
GND . 49V —w—- e — ~3Y ——
GND —em — EE —— +5Y ——-
Y - ——
42 5Vref —mm W———-ICND GND NEEDS 10 BE FLIPPED ON PCB BACKLIGHT —wwm P15
e P3Z6 P32 CDDD/EVEN PINS INTERCHANGED) LS

[p—

—a—
424V —m—
BY —en

PLW

ol
o
2
3

PC BUS

INSTITUTE OF QCEANOGRAPHIC SCIENCES. DEACON LABORATORY,

FILENAME

BROOK ROAD., WORMLEY. GODALMING. SURREY GU8 SUB. ENGLAND

BMPPROC2.DGM

Sonic Buoy

Mot ion Package Processor Board

SHEET 10F 4

ISSUE 2

DATE 92/86/1993..

urezBeI(] IMOID ZDOUdJING ¥ ombi]

€9

Figure 5 BMPPROC2 Component Layout

Ha
PLS

J

28

gk d°
fa]
[-~]
N
ir
N E— xl
ee®
L (X 331
e eellge o
e® o0 oeiioe? S
«® [X eolige S
ot *olee| ||oe]loet p:
o3 oo ooluu oo ®
v jee eellgg® S
W o0 eoiioe ® w
d =< [oo] ||oef|e® e
(Y <
o2 [oo| |[sohes S
- ee}f 1€
(X] °
¥ .
®
)
0000000000000 000
000000000000000¢
)
m S b
& i

[R
- s}
(&)
o4 L4
=
o OO mﬂHﬂm
] .| 9%
® O ©
W
H
ok
" R
el
- n 4F 8 B8
(%)

D.2 Parts List

Alphabetically ordered List of Parts with Silk References and Descriptions

1 of PCB

2 off CTANT#15U

2 off CMKS2#0U47

1 off CTANT#22U

2 off CFKC2#220P

2 off CMKS2#0U1

1 off DC24-58

1 off DC24-125

1 off LED-0.2-RED

1 off IN4148

1 off IDC10

1 off DSSKT-RT

1 off IDC40

1 off DINSPIN-RT

1 off CD4025

BMPPROC?2

Cl1, C2,

C17, C23

C8

Cz21, C22

C24, C25

CONV1

CONVZ2

D3

D4

Hl

H4

He6

H?

IC1

Motherboard manufactured to IOSDL
artwork BMPPROC?2 ART

Capacitor Tantalum 35V

Farnell 100-907

Capacitor Polycarbonate

Farmnell 143-684

Capacitor Tantalum 25V

Farmell 100-892

Capacitor Polycarbonate

Farnell 147-661

Capacitor Polycarbonate

Farmell 143-680

24V i/p to BV @ 2A o/p DC-DC Converter
KRP Power Source UK, LPD 10/33 - 552000A
24V i/p to 12V @ 0.8A o/p DC-DC Converter
KRP Power Source UK, LPD 24-125800A
Red LED

Farnell 213-664

Small Signal Diode

Farnell IN4148

Male PCB mounting IDC header

Farmmell 145-057

90° PCB-mounting 9 way D Socket
Famell 150-738

Socket Double Row 40 way 0.1"

part of an M20-98332086

PCB-mounting DIN 5 way Socket

Farnell 148-505

Triple 3 ifp NOR gate

Farmell CD4025BCN

66

1 off CD4060 1C8 Oscillator/Divider
Farnell CD4060BCN
1 off GCATE4CON i Socket Double Row 64 way 0.1"

M20-9833206

2 off IDC34 J2,]3 Socket Double Row 34 way 0.1"
M20-9833706

1 off IDC34 16 Male PCB mounting IDC header
Farmell .609-3427

1 off IRF#4UTH LI RF.Choke
Farnell 177-508

2 off PCCON4 PL1, PL2 Top Entry PCB Header - Open End 4 way
Farnell 151-985

related parts *

* 2 off SK1, SK2 Free Plug 4 way
Farnell 151-969

1 off 470uF/16V Cx (between PL2 1&2) Farnell 294-457

5 of RMFW25#100K R16,R17, R18, R20, R21 Resistor 1/4W Metal Film
Farnell SFR25 100K

1 off RMEW25#1MO R19 Resistor 1/4W Metal Film
Farnell SFR25 1M
| of RMFW25#470R R22 Resistor 1/4W Metal Film
Farnell SFR25 470R
1 off SPDTBIASED RESET Push Button Switch Miniature
Farnell 150-543
2 off TP TRIG-N, TRIG-P pads for patching Watchdog i/p
1 of VN10KM TR1 Low Power MOSFET
Farnell VN10KM
1 of PATCHS WDOGSEL Pin Header Straight Double Row 10 way

part of Famell 148-195

APPENDIX E FORMAT OF PCMCIA DIRECTORY AND DATA FILES

The PCMCIA filing system is a non-standard system developed in the absence (at the time) of a
commercially available filing system for Flash EPROM PCMCIA cards. The Directory Area
begins at relative address 0 and occupies the first 256 kbytes. The Data Area occupies the
remainder of the 4 Mbytes.

87

Each directory entry consists of 32 bytes, which consist of a date/time stamp, data start address
and length information; remaining bytes are used for additional information, in this case for a
duplicate of the first 16 bytes. The format is shown below:
vjjjhhmmbfflrrGvjjjhhmmbffllrr0
where:
v = start character

jii = (decimal) Julian day number (range 1 to 366)

hh = (decimal) hours (range 00 to 23)(date/time of directory entry)
mm = (decimal) minutes (range 00 to 59)

b = (binary) block number (range 0 to 63)

(card space consists of 64 blocks, each of 64k bytes, numbered 0 to 63)

ff = (binary) offset relative to the above block in bytes (range 0 to 65535)

1 = (binary) file length in bytes (range 0 to 65535)

1T = (binary) record number (range 0 to 65535)

0 = terminating character _
In the above definitions, b’ and 'ff' both refer to the relative start address of the file,
e.g. b = 6, ff = 3060 refer to a relative start address of (6 - 1) * 65536 + 3060 = 330740.
The data area starts at block 4, offset 0 and ends at block 63, offset 65535.

Each FASTCOM-format file begins with a 44 character header of the following format:
Mode<SP>1<LF>Analog<SP>1<LF>Time<SP>hhmm:ss<SP>Date<SP>dd/mn/yy<LF>
where:

hh = (decimal) hours (range 00 to 23)

mm = (decimal) minutes (range 00 to 59)

ss = (decimal) seconds (range 00 to 59)

dd = (decimal) day of the month (range 00 to 31)

mn = (decimal) month (range 1to 12)

yy = (decimal) year (range 00 to 89, year = 18yy)

This header is followed by anemometer raw data, consisting of (file length - 44) / 10 samples;
each sample consists of 5 x (2 byte binary numbers), which represent U, V, W, C, H (three
components of wind speed, velocity of sound and buoy heading).

Due to the change from unprompted data to prompted data, it is found that the block of data
received by the Raw Data Logger after the Prompted and the first Transmit Block commands is
garbled; this is, therefore, discarded. The length of file may not, therefore, amount to exactly
44 + 12288 bytes. ‘

