
Institute of
Oceanographic Sciences
Deacon Laboratory

INTERNAL DOCUMENT No. 352

Sonic Buoy - GCAT Data Logger
handbook

C H Clayson

1995

Natmal Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 352

Sonic Buoy - GCAT Raw Data Logger
handbook

C H Clayson

1995

Wormley
Godalming
Surrey GU8 5UB UK
Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

Bia«i mmm
' "• ' * vMWg. ^ ' 4 '

V . r i \ V ' * - i f : W ' i . : • ; ; ; = ! l

KECSâ .'& .'
* # # 3 ? , g a

"1̂ i r .

,/%& "/** s, gt

JA Vg&

D O C U M E N T D A T A S H E E T

CLAYSON. C H

PUBZifCATYON
D/STE

1995

TITLE

Sonic Buoy - GCAT Raw Data Logger handbook.

REFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 352, 67pp.
(Unpublished manuscript)

ABSTRACT

The GCAT Raw Data Logger was developed as part of the Sonic Buoy development program; it was
required as an on-board partial back-up system to the (previously untried) VHF Radio Telemetry
System for obtaining raw sonic anemometer data.

It monitors the sonic anemometer transmit and receive lines to determine the start and end of the
sections of data used by the Sonic Processor and logs a single record to a 4 Mbyte Flash EEPROM
PCMCIA card at intervals of 48 hours.

This document describes in detail the design and operation of the GCAT Raw Data Logger; it is
intended to serve the combined purposes of documenting and design and acting as a guide to
operating the system and recovering the data.

iSgUZNC ORGAMSA HON
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 BUB. UK. Telephone Wormley (0428) 684141

TeVex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Copies of this report are a vailable from: The Library, PRICE

Index

1. INTRODUCTION 7

2. FUNCTIONAL DESCRIPTION 7

3. SOFTWARE 7

3.1 Overview 7

3.2 SE'i'i'iME - Application for Clock Synchronisation 8

3.3 RAWLOG - Application for Control of Sonic Raw Data Logging 9

4. HARDWARE 11

4.1 General 11

4.2 Circuit Descriptions 12
4.2.1 BMPPROC2 Motherboard 12
4.2.2 GCAT Boards 12

5. WIRING 12

6. OPERATIONAL 13

6.1 Procedures to power up system and set in the correct time 13

6.2 Erasure of the FlashCard prior to use in the GCAT PCMCIA socket 15

6.3 Recovery of data from the FlashCard 16

7. SPECIFICATION 17

7.1 Supplies 17

7.2 Power Consumption 17

7.3 Data Storage and Output 17

APPENDIX A SOURCE CODE FOR SETTIME 18

Appendix A. 1 C Source Code 18

Appendix A.2 Assembly Code 21

APPENDIX B SOURCE CODE FOR RAWLOG 24

Appendix B. 1 C Source Code 24

Appendix B.2 Assembly Code FliASH5.ASM 40

APPENDIX C GENERAL ASSEMBLY 61

C.l Parts List 61

APPENDIX D BMPPROC2 62

D. l Motherboard for GCAT and AMPRO MinimodnlesTM 62

D.2 Parts List 65

APPENDIX E FORMAT OF PCMCIA DIRECTORY AND DATA FILES 66

1. INTRODirCTION

The Sonic Raw Data Logger is a PC-based processing system, using DSP Designs Ltd. GCAT

3000 processor board and GCAT 2000 peripherals board, mounted on a motherboard,

BMPPROC2, of lOSDL design. The system is mounted within a diecast box which aJso contains

a +12V power supply for the Radio Modem.

The Sonic Raw Data Logger is designed to acquire a 10 minute sample of raw Sonic

anemometer data at approximately noon on odd-numbered (Julian) days; the anemometer

sampling is controlled by the Sonic Processor, running FFTC2 and FASTCOM software. The

Raw Data Logger sample is synchronised with a 10 minute record period of the Sonic

Processor. The data are stored on a 4 Mbyte Series 1 PCMCIA Hash Card in the standard

FASTCOM raw data ffle format.

2. FUNCTIONAL DESCRIPTION

The main functions of the Sonic Raw Data Logger are as follows:

a) to idle for a 2 day period until just before noon (if the first time after boot up, wait
until the first odd Julian day at least 2 days after boot up)

b) to start logging anemometer raw data to the flash card when the first transmit

command has been sent to the anemometer after a change to prompted mode

c) to stop logging data when the change is made back to unprompted mode

d) to repeat functions a) to c) until the flash card is full

The above functions are achieved by the application RAWLOG.EXE which is held in EPROM

(ROM Disk drive) on the GCAT 3000 board. The ROM Disk also holds DOS version 5.0,

AUTOEXEC .BAT and CONFIG.SYS files, and the application SETTIME.EXE. The last

application is run upon boot-up before the main application RAWLOG, allowing setting of the

hardware Real Time Clock via the COMl port.; this is described in more detail in Section 3.2,

below. Anemometer data are received via the GCAT 3000 COM2 port, anemometer

commands are received via the GCAT 2000 COMl port. —

3. SOFTWARE

3.1 Overview

The Sonic Raw Data Logger software is embedded in the GCAT 3000 in a 512k EPROM; this
contains MS-DOS 5.0 system files, COMMAND.COM, AUTOEXEC.BAT and CONHG.SYS, and
the applications SETTIME.EXE and RAWLOG.EXE. The EPROM also includes a suitable
ROMDISK.DRV driver (the DSP-supplied RD_512_T.DRV) and BIOS (the DSP-supplied
124011.B02). These make the ROM Disk the A: drive (the boot drive) and the B: drive is a
PCMCIA drive (although we address the PCMCIA directly by memory mapping, in practice);

8

there is no C: drive. This version of the BIOS is used to prevent error messages from
occurring during boot up, due to the lack of a floppy drive. During development a BIOS was
used having A: as the floppy drive, with the software under development on the floppy.

The process for programming the EPROM is described in the DSP Designs Ltd. document

"Instructions for producing a ROM Disk for the GCAT-3000".

After boot up, the application SE'l'l'lME.EXE is run; this allows synchronisation of the GCAT

clock with the clock of an external PC, running the BASIC program SONTM.BAS and with its

COMl port connected to the GCAT COMl port. This external PC is normally a battery-

powered Husky Hunter 16 (running GWBASIC under DOS).

After the completion or time-out of the application SETITME, the application RAWLOG.EXE
runs; this is the main data accjuisition control program with the functions described above. The
application RAWLOG remains running continuously until terminated by a key press, a manual
reset, or by a system failure. A system failure, such as a processor crash, will result in the
watch dog timer rebooting the system.

3.2 SETUME - Applicatton for Clock Synchronisation

The application is built from the object ffles Stri'l'lME.OBJ and SETTIM.OBJ. The former is

produced by compiling the 'C code SE'lTlME.C; the latter is produced by assembling the

assembly code SE'l"l'lM.ASM. The library SLIBCE.LIB is used when linking. A listing of the

source code is given in Appendix A.

When the application is run, the message "Date: DD/MM/YY Time: HH:mm:SSQ" is prepared,

where

YY is Year, e.g. (19)93
MM is Month (01-12)
DD is Day of the Month (01-31)
HH is Hour (00 - 23)
mm is Minute (00 - 59)
SS is Second (00 - 59)
and O is a terminator. The date and time are derived from the system clock.

The application then outputs the Date/Time message via the COMl port, (on the GCAT 2000
board); the port is set up for 2400 baud (8 bits data, 1 stop bit, no parity). The application then
waits for a Date/Time message terminated by a line feed (character 10) from the external PC (if
present). If none is received within at set interval, the application times out. Otherwise, the
external PC's Date/Time message is decoded and used to set the GCAT's Real Time and
system clocks, using DOS DATE and TIME calls. The application then outputs a message in the
above format (using the received Date/Time) to the external PC via the COMl port.

Note that the SE'i'l'lME application is only effective if the GCAT RAM has previously been set

up by entering the time/date in the SET UP screen upon power up; SET UP is entered by

pressing the F2 key repeatedly during boot up. This makes the connection of a keyboard and

VDU essential when first powering up the system. Thereafter SETTIME can be used to alter the

time/date by re-booting, using the manual reset push-button, with an external PC running

SONTEM.BAS attached to the COMl port.

This version (2) of the application SEITIME is specific to the GCAT system, although a similar
application (but using the COM2 port) has been produced for the DSP ECAT system.

3.3 RAWLOG - Application for Control of Sonic Raw Data Logging

The application is built from the object files RAWLOG.OBJ and FLASH5.0BJ; the former is
produced by compiling the 'C source code RAWLOG.C; the latter is produced by assembling
the assembly code FLASH5.ASM, this contains functions used for writing to the PCMCIA Hash
Card. The Kbrary SUBCE.LIB is used when linking. The commands for carrying out the above
processes are:

masm /MX flashS;

to produce the object code FLASH5.0BJ, followed by:

nmake raw

where RAW is the make file, consisting of the following lines:

rawlog.exe: rawlog.c flashS.obj

OCL /AS /Zr /c rawlog.c

LINK /M /ST:8000 rawlog flashS, rawlog.exe„slibce.lib

A listing of the C source code is given in Appendix B.l and the assembly code is given in

Appendix B.2

When the application is run, the following initialisation steps are carried out:

the COM ports are set up

the time zone is set to GMT

a check is made for the presence of the Hash Card and, if present, the last Hash Card

directory entry is read and pointers are initialised

the Julian day number for the first record is calculated

a number of flags are initialised

A continuous loop is then entered, this loop will terminate if no flash card space is available or if

a key is pressed. In this loop:

the clock is read and if the seconds count has changed, the watch dog circuit is

triggered by pulsing the speaker (this wDl normally cause an audible 1 second "tick")

a check is made whether the date and time lie within the window for a new "record",

i.e. the day is correct (as defined in Section 2, above) and the time is in the range 11;S5 - .

and 12:09

if the above time window is fulfilled and the anemometer Prompted (2 Ps) and
Transmit Block (2 Ts) commands are detected, logging of received data commences
and continues until the Unprompted command (2 Us) is received. The logic is rather
more complicated than this, to cater for eventualities; the fuU logic is shown in the flow
diagrams, Hgures 1 and 2. These should be read in conjunction with the RAWLOG.C
source code in Appendix B.l.

10

Figiire 1
Loop How Chart

Start of loop

set en_start when sonic
is unprompted during

time window

wmdowO

set en start

set logging when some
changes to prompted

en_start &&
log_flag &&

Hogging
set logging

set last_rec_day to jd 1

I

reset logging when some
changes from prompted to

unprompted

logging &&
Ilogjlag

reset logging, en_start &
save_flag, incr record_no and

write directory entry

p_flag && logging
&&!header written

build_header, save to
flash, set header written

log_flag &&
logging &&

loverrun

reset save data
header written

1
^ End of loop J

11

start

N

•—N

MAX_LENGTH

end

Figure 2
Save Data How

a p u

increment
packetjength

reset overrun

write data to flash

set overrun

increment
bytes_saved

The watchdog trigger is inhibited during the data acquisition period so that, if the end of

record (Unprompted command) is not detected, the data collection will be terminated by a re-

boot.

4.&aSBWJIB£

4.1 General

The GCAT 2000 and 3000 boards are mounted on the BMPPROC2 motherboard in a sealed
diecast aluminium alloy box. ALemo connector, GRl, supplies 24V dc to the dc-dc converters
on the motherboard. The anemometer RS232 Tx and Rx lines (optically isolated) for the raw
data logger and for the radio modem are input to the box via a Lemo connector, GR2, which

12

also carries the +5V supplies for the opto-isolators; the Tx and Rx lines for the radio modem

are chained through to a similar Lemo, GR3, for connection to the radio modem (see Section

S).

A general assembly drawing and parts list are given in Appendix C.

4.2 Circuit Descriptions

4.2.1 BMPPROC2 Motherboard

The BMPPROC2 motherboard is a general purpose board design which is only part filled for
this application. An on-board DC-DC converter produces a +5 Volt stabilised supply at up to 1
Amp from the (nominally) 24 volt input from the battery distribution system (DC-DC Converter
Box). This supply is conservatively rated for the Raw Logger system, even when the keyboard
is plugged in. The board includes the standard lOSDL watchdog circuit, as developed for the
1802 Microboard System; the time-out period is selectable by jumper on a pin header. The
watchdog can also be disabled from resetting the GCAT by removing a jumper.

The board includes a 12V 800mA supply, not shown in the circuit diagram, for the radio

modem.

The circuit diagram, PCS fracldng and silk screen plots and a parts list are given in Appendix

D.

4.2.2 GCAT Boards

The GCAT 3000 and 2000 boards are standard items, but with the applications software in a
ROM Disk (512k EPROM, type 27C040-10). The processor runs at 7.2 MHz (determined by the
version of the BIOS included in the EPROM.

S. WIRING

The wiring within the unit is relatively simple, consisting of input 24V power connections from

Lemo connector GRl to the BMPPR0C2 motherboard, anemometer Tx/Rx signal connections

from Lemo GR2 to the motherboard and to Lemo GR3 and, finally 12V power connections from

the motherboard to Lemo GR3 for the Radio Modem. The individual connections are listed in

tne taJDie
Lemo Function Destination Wire Colour

GRl 1 PV SKI Pin 2 White/Black

GRl 2 +24V SKI Pin 1 Red/Brown

GR2 1 +5V GCAT RAW SK2Pm4 Yellow/Red

GR2 2 Sonic Tx SKI Pin 3 Red/Green

GR2 3 Sonic Rx SKI Pin 4 Orange/Brown

13

GR2 4 OV GCAT RAW I/P SK2Pin3 White/Red

GR2 5 +5VHFRAWI/P SK2Pin4 Yellow

GR2 6 Sonic Tx GR3Pin6 Red

GR2 7 Sonic Rx GR3Pin7 Orange

GR2 8 OVHFRAWI/P SK2Pin3 White

GR3 1 N/C

GR3 2 N/C

GR3 3 N/C

GR3 4 N/C

GR3 5 + 12VHFRAWO/P SKZPinl Red/Brown

GR3 6 Sonic Tx GRZPinG Red/

GR3 7 Sonic Rx GR2Pin7 Orange/

GR3 8 OVHFRAWI/P SK2Hn2 White/Brown

6. OPERATIONAL

The Radio Modem can be disabled, if required, by unplugging the orange plug-in terminal

block leading to the Lemo connector GR3 or by directly unplugging the cable to the Radio

Modem.

6.1 Procedures to power up system and set in the correct time

The Sonic Raw Data Logger and Radio Modem systems are both powered via the same cable

to this unit; it is not possible to power up the Radio Modem without powering up the Raw Data

Logger, unless a separate supply/cable are used.

Plug in a suitable keyboard (set for XT PC and NOT AT) and a suitable YDU (with TTL RGB

interface and NOT analogue; this may require some adjustment of the setting switches on the

keyboard and VDU). Plug in the (orange) PCB connector SKI to PLl on the motherboard.

Power up the DC-DC Converter Box from a 24V supply or battery pack and plug in the cable

from the DC-DC Converter Box to Lemo GRl. The GCAT should bleep and the "DSP Designs

etc." message should be displayed on the VDU. Keep pressing the keyboard F2 key as the

memory check is made and the machine should then run its "SET-UP" routine, displaying a

configuration screen.

The time must then be entered by using the <= and => arrow keys to highlight the Hours,
Minutes, Seconds, Year, Month and Day of the month positions on this screen and entering the
recjuired values. In the case of the Month, use the (coloured) + and - keys in the numerical
keypad area to adjust the months (these keys can also be used to adjust the other entries, if
desired). When the required settings have been entered, pressing the FIO key will.

14

simultaneously, exit from the set-up and enter the set time and date into the GCAT Real Time
Clock. Note that, if the highlight remains on the last parameter altered, pressing FIO may not
have any effect, so always move the highlight to another parameter after setting the last
alteration. For exact time setting, move the highlight from the Seconds setting at exactly the
time which has been entered on the screen (down to the last second). Do not take too long
over the set up process, or the watchdog timer (if enabled by the jumper) may re-boot the
system,

IMPORTANT Note that, if the set-up process is not carried out as described above,
subsequent use of an external PC or Husky, running SONTM.BAS, will NOT set the Real Time
Clock correctly when the application SKll'lME runs after a re-boot.

The boot up process will then continue with the SETTIME application being run; this is
followed, a short interval later, by the NEWFORM application.

If it is necessary to correct the clock time by use of an external PC or Husky, running
SONTIM.BAS, carry out the following steps:

disconnect the IDC ribbon cable connector from BMPPROC2 HI (COMl) - this runs to

the 8 way Lemo GR2

plug the special ribbon cable, labelled "Husky to Formatter", into the Husky or PC 25
way COMl port (use a 25 to 9 way adaptor if necessary) and into the HI (COMl port)
connector

Set the PC Date/Time, using the DOS TIME and DATE commands, run the program
SONTIM.BAS under CWBasic or QBasic and wait for the "Ready" prompt - this involves
the following steps for the Husky:

press the red PWR key to turn the machine on

at the C:\ prompt, enter DATE

- the machine then displays its current date which can be accepted, by pressing
RETURN, or modified by keying in a new date with the same format and then
pressing RETURN

enter TIME

- the machine then displays its current time which can be accepted, by pressing
RETURN, or modified by keying in a new time with the same format and then
pressing RETURN

enter GWBASIC

enter LOAD "SONTIM'

enter CLS

enter RUN

wait for "READY FOR DATA" to appear at the top of the screen

press the reset button (labelled RESET) next to the VDU connector on the Raw Data
Logger BMPPROC2 motherboard; this will cause a re-boot. When the SETTIME
application runs on the GCAT, the message

Date: DD/MM/YY Time: HH:mm:SS

15

should appear on the PC/Husky display, where:

DD = Day of the month (0-31)

MM = Month (1 - 12)

YY = Year, e.g. (19)93

HH = Hour (00 - 23)

mm = Minutes (00 - 59)

SS = Seconds (00 - 59)

- the displayed values being for the initial GCAT Date/Time.

This should be followed shortly by another message of the same format, showing the

new time set in to the GCAT from a similar format message sent from the PC/Husky to

the GCAT. The GCAT will, after a short pause, run the RAWLOG application.

Remove the ribbon cable from the GCAT COMl port HI and reconnect the ribbon

cable from Lemo GR2. Disconnect the VDU and keyboard connectors from the

motherboard.

6.2 Erasure of the FlashCaxd prior to nse in the GCAT PCMCIA socket

Although the application RAWLOG will examine the FlashCard when it runs (see program

description, above) and will append data to any existing entries, it is best to start any

prolonged logging session with an erased card. There are two ways in which this may be

achieved. The first is to use the Thincard PCMCIA drive and software, installed in a PC. For

example, using this with the Tandon 386 S3869, insert the FlashCard in the drive slot and enter:

c:

cd c:\thincard

er

This runs the batch file ER.BAT, which simply contains

tcerase -card IMC004 e:

This wiU erase the complete FlashCard; NB there are no precautionary checks before erasure

commences. Note that the FlashCard drive has been defined as the E: drive in the THINCARD

installation process.

The card can also be erased, starting from a base address by including -base address in the

above command (see also the THINCARD User Guide).

Alternatively, one can run the lOSDL application FLASH2.EXE in the GCAT development

system. To do this:

connect the development system to a keyboard (XT PC - type and NOT AT-type), a

RGB TIL VDU and a +5V 2A supply

insert a bootable disk containing the FLASH2.EXE application

switch on the +5V supply to boot up the system

16

run FLASH2.EXE by entering FLASH2 at the A:\ prompt, the VDU will then display

Erase Card? <Y/N> (press y or Y)

Enter Start Chip and Finish Chip (0-15) (separated by comma):

(enter nuniber of chips to be erased, separated by a comma, e.g. 0,4)

the required chips win then be erased; this takes a while, during which progress
messages will be displayed on the VDU. Note that the directory is in chip 0 and data
are in chips 1 - 1 5 inclusive (256k per chip for the 4 Mbyte IMC004 HashCard)

The partial erasure allowed by ELASH2 is useful when a card has only been used for a short

test, e.g. when only chips 0 and 1 need erasure; this can save a few minutes and is better for

the card than a total erasure.

6.3 Recovery of data from the FlashCaxd

At present, this can only be done via the THINCARD drive installed in the Tandon or another

PC. Insert the FlashCard in the THINCARD drive slot and then enter

c:

cd c:\thincard

t

This runs the batch file T.BAT, which contains:

tcread -size 0x400000 e: test

read test

The whole card is read into a 4 Mbyte file c:\thincard\test and the application READ is then run

to allow examination of this file. It is obviously necessary to ensure that space is available for a

file of this length on the hard disk before commencing (or that an existing file TEST exists in the

c:\thincard directory and that the contents of this file are no longer required). The application

READ allows examination of the file TEST, 256 bytes at a time. After the file has been

examined, it can be copied to another directory or drive, under an informative name.

Since a 4 Mbyte file is unwieldy for some purposes, an application was written to allow it to be
split into four 1 Mbyte files. This application is called 4MT01M.EXE The resulting files are
suffiexed .IMG, .2MG, .3MG, .4MG

Data are subsequently recovered fi'om the file TEST by reading each (sequential) directory

entry and using the contents to find the related file of data. Software to decompose the entire

contents of a TEST file into a number of individual FASTCOM-format files has yet to be written,

but would be quite straightforward.

17

7. SPECIFICATION

7.1 Supplies

The Sonic Raw Data Logger requires a 24 Volt supply at 60 mA

The Radio Modem r e g i e s a 24 Volt supply at approximately 105 mA average

7.2 Power Consumption

The consumption including the DC-DC converters is typically 1.45 Watts at a primary bus

supply voltage of +24 Volts, this includes the quiescent consumption of the Radio Modem DC-

DC converter, with the Radio Modem disconnected.

7.3 Data Storage and Output

The raw Sonic data are stored on a Series 1 PCMCIA Hash Card in FASTCOM-format as

described in Appendix E.

The application ou^uts diagnostic data to a VDU, if connected, during its operation. When the

application is run, diagnostic information regarding the Hash Card Status is produced; the

most likely message of any importance is:

Card not inserted***************

If this appears, insert the Hash Card and re-boot by pressing the reset push-button.

Other (unlikely) catastrophic error messages are:

Exiting program, COMS error

- if this appears, there was a problem in initialising the COM ports.

Error in setting TZ

- if this appears, there was an error in setting the Time Zone (highly unlikely).

When a record is logged the following sequence of output messages should appear:

Window on

- beginning of time window has occurred

Enabled

- set during unprompted period within time window

H

- when the FASTCOM-format Header is written at the start of the record

R

- when mode changes to unprompted at end of the record

18

APPENDIX A SOITRCE CODE FOR SETTIME

Appendix A. 1 C Source Code

I • I 'I **********************^
Version 2.0 for GCAT (includes port enable Amotion in St'lTlM.ASM)
This program is for inclusion in ftie autoexec.bat for the
sonic buoy sonic processor. It allows the dsp processor
clock to be reset at boot up time by connecting a PC
running the GWBasic program settime.bas to the COMl port.
The DSP time is then set to the PC time.
If the PC is not connected, this program times out.
The autoexec then runs the sonic acq/processing prog fitc2.

#include <stdio.h>
#include<stdlib .h>
#include <dos.h>
#include <bios.h>
#include<string.h>

extern void uart_on(void);
extern void uart_off(void);

mainO
{

char rsout[45];
char dum[10];
char stbuf[35];
char duml[10];

intn;
longloop_ctr;

struct dosdate j date;

struct dosttme_t time;

unsigned status, data;

int ch, ch_hit, port = 0; /* port = 0 for COMl, = 1 for C0M2 */

/* NB for COM2 set to 1/2 req'd baud rate */

uart_on(); /* enable GCAT ports */

/* initialise coml port, 2400 baud, 8bit data, no parity, 1 stop bit */

data = (unsigned) LCOM_CHR8 I _COM_STOPl I _COM_NOPARITY I _COM_2400);

_bios„serialcom(_COM_INIT, port, data);

_dos_getdate(&date);

_dos_gettime(&time);

strcpy(rsout, "Date;");

itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, T);
itoa(date.month, stbuf, 10);
sti'cat(rsout, stbuf);

19

strcat(rsout,

itoa(date.year - 1900, stbuf, 10);

strcat(rsout, stbuf);

strcat(rsout," Time:");

itoa(time.hour, stbuf, 10);
strcat (rsout, stlDuf);
strcat(rsout,":");
itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout,":");

itoa(time.second, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "0");

prmtf("Sendmg %s to COM%d\n", rsout, port +1);
loop_ctr = OL;

for (ch = 0; ch < strlen(rsout); ch++)
{
do

{
status = 0x2000 & _bios_serialcom(_COM_STATUS, port, 0);
loop_ctr++;
}

while ((status != 0x2000) && (loop_ctr < 100));

if(_bios_serialcom(_COM_SEND, port, rsout[ch]) > Ox7f£0
{

exit(O);
}

if ((status & 0x8000) == 0x8000)
{
printf("RS232 COM%d timed out\n", port + 1);
break;
}

}

ch = 0;
loop_ctr = OL;

do
{
status = 0x100 & _bios_serialcom(_COM_STATUS, port, 0);

if (status == 0x100)
{
ch_hit = Oxff & _bios_serialcom(_COM_RECEIVE, port, 0);
printfC%c", ch_hit);
if (ch_hit == 68) /* capital D */

{
ch = 0;
}

stbuf[ch] = (char) ch_hit;
ch++;
}

loop_ctr++;
}

white ((ch hit!- 10) && (loop_ctr < lOOOOOL));

20

stbuf[ch] = 0;

priiitf("\n%s\n", stbuf);

date.month = 1 0 * (stbiif[5] - 48) + stbuf[6] - 48;
date.day = 1 0 * (stbuf[8] - 48) + stbuf[9] - 48;
date.year =1900 + 10* (stbuf[13] - 48) + stbuf[14] - 48;
time.hour = 1 0 * (stbufI21] - 48) + stbuf[22] - 48;
tiine.rmnute = 1 0 * (stbuf[24] - 48) + st±)uf[25] - 48;
time.second = 1 0 * (stbufj[27] - 48) + stbufi28] - 48;

if (loop_ctr < 100000)
{
if (_dos_setdate(&date) 1= 0)

{
priiitf("Error in date set\n");
}

if (_dos_settiine(&time) != 0)
{
printf('Error in time set\n");
}

strcpy(rsout, "Date:");

itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "f);

itoa(date.month, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, T);

itoa(date.year - 1900, stbuf, 10);

strcat(rsout, stbuf);

strcat(rsout," Time:");

itoa(time.hour, stbuf, 10);
strcat(rsout, stlDuf);
strcat(rsout,":");
itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout,":");

itoa(time.second, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "O"))

printfC'Sending %s to COM%d\n", rsout, port +1);

for (ch = 0; oh < strlen(rsout); ch++)
{
do

{
status = 0x2000 & _bios_serialcom(_COM_STATUS, port, 0);
}

while (status != 0x2000);

_bios_serialcom(_COM_SEND, port, rsout[ch]);
if ((status & 0x8000) == 0x8000)

{

21

printf("E?S232 COM%d timed out\n", port + 1);
break;
}

}
}

uart_off();
}

Appendix A. 2 Assembly Code

*

Assembly Code functions used to enable GCAT ports

for use in conjunction with SETHME.C

assemble using MASM MX SETITM; to give SEl'l'lM.OBJ

and then link with SETTIME.OBJ and SIJBCE.LIB to give SETTIME.EXE

; Author CHC Date 23/08/1993

enable_uartclock equ 030CH
disable_uartclock equ 0304H
enable_rs232 ecju 030EH
disable_rs232 equ 0306H

.******** PUBLICS ********

public _uart_on
public _uart_off

assume cs:_TEXr
assume ds:_DATA

_DATA segment byte public 'DATA'

dummy dw ?

_DATA ends

_TEXT segment word public 'CODE'
; NB this macro is not universal and is only correct for regmem == AX
; See Appendix A of CHIPS Superstate R biterfece Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

LFEAT MACRO regmem
DB OFEH
DB 0F8H
ENDM

; NB this macro is not universal and is only correct for regmem == AL
; See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

STFEAT MACRO regmem, sdata
DB OFEH
DB OFOH
DB sdata

ENDM

22

_uart_on PROC

push BP
mov BP,SP

push AX
push EX
push CX
push DX
push SI
push DI
push SS
push DS
push ES

; first select utility register by setting PS4 low

; set PS4 address (low byte) to Util Reg low byte mov
mov
LFEAT

mov

mov
LFEAT

mov
mov
LFEAT

AH. 8EH
AL, OOH
AX

AH, 8FH

AL, OFBH
AX

AH, 8CH
AL, 64H
AX

; set PS4 address (high byte) to Util Reg high byte
; OR'd with OfSh (enable writes - 16 addresses)

; set PS4 6i selector to "active low chip select"

; Utility Register is now selected

mov
mov
out
mov
mov
out

mov
mov
LFEAT

DX, enable_uartclock
AL, 0 ; (byte written is immaterial)
DX, AL
DX, enable_rs232
AL,0
DX, AL

AH, 8CH
AL,0
AX

; set PS4 to "input" for safety

; Utility Register is now deselected

pop ES
pop DS
pop SS
pop DI
pop SI
pop DX
pop CX
pop BX
pop AX

mov SP, BP
pop BP
ret

23

_uart_on ENDP

uart off PROC

push BP
mov BP,SP

push AX
push EX
push CX
push DX
push SI
push DI
push SS
push DS
push ES

; first select utility register by setting PS4 low

mov AH, 8EH ; set PS4 address (low byte) to Util Reg low byte
mov AL, OOH
LFEAT AX

mov AH, 8FH ; set PS4 address (high byte) to Util Reg high byte
; OR'd with OfSh (enable writes -16 addresses)

nww ALOFmi
LFEAT AX

mov AH, 8CH ; set PS4 6i selector to "active low chip select"
mov AL, 64H
LFEAT AX

; Utility Register is now selected

mov DX, disable_uartclock
mov AL, 0 ; (byte written is immaterial)
out DX, AL
mov DX, disable_rs232
mov AL, 0
out DX, AL

mov AH, BCH ; set PS4 to "input" for safety
mov AL, 0
LFEAT AX

; Utility Register is now deselected

uart off

pop ES
pop DS
pop SS
pop DI
pop SI
pop DX
pop CX
pop EX
pop AX

mov SP,BP
pop BP
ret

ENDP

24

_TEXT ends

end

APPENDIX B SOURCE CODE FOR RAWLOG

Appendix B.l C Source Code

* Sonic Buoy Raw Data Logging system, using GCAT + Flashcard
*vn 1.0
* Acquires raw data asynchronously from Sonic Sensor which is
* under control of the ECAT Sonic Processor
*

* Saves raw data to 4 MByte Flashcard in FASTCOM format
* For SWALES
*

* Compile using make file raw (uses flashS.obj)
*

* Author CHC
* Started 17/08/1993

#include<stdio.h>
#include<stdlib.h>
#include<float.h>
#include<math.h>
#include<time.h>
#include<conio.h>
#include<string.h>
#include<ctype.h>
#include<bios.h>
#include<dos.h>

#include"coms .c"

#define COMMAND_PORT

#defineDATA_PORT

#defineTRUE
#define FALSE
#define DISPLAY

/* FLASHCARD settings */
#deGne DIRECrORY_STARr
#define DIR_CHIP
#define DATA_START

#define HEADER_LENGTH
#defineMAX LENGTH

1

2

1
0
1

/* Port & UART register definitions */

/* COMl i/p only for monitoring commands
- IR04 driven */

/* COM2 i/p only for receiving data
- IR03 driven */

OL /* nonnaUy OL, set higher for dud card */
0 /* normally 0, set higher for dud card */
262144L /* normally 262144L,

set higher for dud card */
44
123144L /* limit to overrun of record length*/

DECLARATIONS*************************/
/* Functions in FLASH5.ASM */

25

extern int pcmda_save(xinsigned, unsigned, unsigned, char *);
extern void chip_erase(unsigned);
extern unsigned long seek_end(int); /* for start-up/re-start only */
extern int read_header(unsigned, unsigned); /* for start-up/re-start only */
extern void progsupply_on(void);
extern void progsupply_off(void);
extern int card_detect(void);
extern void bankswitch_disable(void);

/* Functions in this file */
void readclock(int);
void read_hhmm(void);
void clean_up(void);
int init_coms(void);
int com_init(int, unsigned, unsigned, unsigned);
int ser_putc(int, char *);
int ser_getc(int);
int flash_save(char *, unsigned long, unsigned long);
int directory_entry(unsigned, unsigned, unsigned long, unsigned, char *);
void data_save(int);
void build_header (void);
int time_window(void);
void wdog(void);

/* Interrupt Handlers and addresses of defeult handlers */
void interrupt far our_irq3_handler (void);
void (interrupt far *old_irq3_handIer)();
void interrupt far our_irq4_handler (void);
void (interrupt far *old_irq4_handler)0;

VARIABLES******************/
char a[512], display_buffer[80], header[64], header_contents [40], julian[10];
char data_buffer [1024];
int hi, ml, si, dl, nl, yyl, i, jdl, start_day;
int command_flag = 0, full_flag = 0, log_flag = 0, save_flag = 0;
int flash_full = 0, logging = 0, last_char = 0, en_start = 0;
int packet_leng& = 0, p_flag = 0, first = 1, overrun = 0;
int last_rec_day = 0, wdog_mask = 0;

unsigned oldjnts;
unsigned header_block, header_startptr;
unsigned reclen, recordjno = 0, segment, seg_ptr, start_block, start_offset:

unsigned long header_reclength, locn;
unsigned long dir_ptr = 0, fl_ptr, old_fl_j)tr, bytes_saved;

main()
{
int header_wntten, n, s 11;
union REGS regs;

/* turn on Hashcard Programming Supply VPP */
progsupply_on();

/* the following GREG gets/writes for test purposes only
. . . . delete down to "start of real stuff' */
regs.h.ah = 0x14;
regs .h.bh = OxOf; /* F8680 UART config */
regs.h.al = 0;
regs.h.bl = 0; /* get creg */
int86(0xlf, ®s, ®s);

#if DISPLAY == TRUE

26

{
printf("CREG OEh before init: %x\n\r", regs.h.al);
}

#endif

/* normally returns OxOf, i.e. COM2, int active low, enabled */

/* get PC/CHIP and 82C710 Options */
regs.h.ah = 0x08;
regs.h.bl - 0; /* return options */
int86(0xlf, Sregs, ®s);

#if DISPLAY ==TRUE
{

printf("PC/CHIP Options: %x\n\r", regs.h.al);
}

#endif

/* normally returns 0x02, i.e. drive B is PCMCIA */

#if DISPLAY == TRUE
{

printf("82C710 Options: %x\n\r", regs.h.ah);
}

#endif

/* normally returns Oxec, i.e. XT IDE, EDC, par and ser ports enabled

/*************************** stuff starts tisrs ***********************/

/* set up the COM ports */
if (init_conisO == 0)

{
#if DISPLAY == TRUE

{

printf('Exiting program, COMS error\n\r");
}

#endif
exit(O);
}

/* need to set timezone to GMT */
if (putenv('TZ=GMT") == -1)

{
#if DISPLAY == TRUE

{

printf('Error in setting T7\n\r");
}

#endif
return 0;
}

tzsetO;

/* In case of startup due to re-boot or with unerased HashCard */
header_contents[0] - 255;
header_contents[l] = 0;

n = card_detect() & Oxff;

#if DISPLAY == TRUE
{

printfC'SDATAOA: %02xW, n);

27

}
#endif

if (n & OxOc) /* Card Detect lines bits 2&3 should be low */
{
#if DISPLAY == TRUE

{

printf("***************nash Card not inserted*************'**\n\r");
}

#endif

flash_full = 1;
}

else
{
flash_full = 0;
/* Hnd last directory entry */
locn = seek_end(Dffi_CHIP);

#if DISPLAY == TRUE
{

printf("nash dir ptr;%]x\n\r", locn);
}

#endif

segment = (unsigned) (locn » 16);
seg_ptr = (unsigned) (locn & OxfEH);
dir_ptr = locn;
if (locn == DIRECrORY_START)

{
#ifDISPIAY==TRUE

{

printf("Virgin ElashCard\n\r");
}

#endif

a_ptr = DATÂ START;
old_flj)tr = fljDtr;
}

else
{
/* Flashcard has data/directory entries, so must adjust for these

by setting pointers and loading n_saves bins */
if (seg_ptr == 0)

{
seg ptr = 65504;
}

else
{
seg ptr -= 32;
}

#if DISPLAY == TRUE
{

printf('Last Directory Entry:- Segment %x, Offset %x\n\r",
segment, seg_ptr);

}
#endif

/* Read the directory entry */
read_header(segment, seg_ptr); /* result in header_contents[| */

28

strcpy(display_bufFer,
for (n = 0; n < 32; n++)

{
sprintf(julian, "%02xheader_contents[n] & 0x8);
strcat(display_buffer, juliaii);
if (n == 15)

{
strcat(display_buffer, "\n\r");
}

}
strcat(display_buffer, "\nVr");
#if DISPLAY == TRUE

{

printf(display_buffer);
}

#endif

/* Calculate Hash Pointer (fl_ptr) for 1st free byte on Card */
header_block = (unsigned) header_contents[8] & Oxff;
header_startptr = (unsigned) header_contents[9] & Oxff;
header_star^tr += (((unsigned) header_contents[10] & OxfQ « 8);
header_reclength = (unsigned long) header_contents[l 1] & Oxff;
header_reclength += (((unsigned long) header_contents[12] & OxfQ « 8L);

fl_ptr = 65536L * header_block + headerstartptr + headerreclength + 65536L;
old_fl_ptr = fl_ptr;

#ff DISPLAY == TRUE
{

printf("Last Record:- Block %x, Offset %x, \
Length %bc\n\rHash data ptr %lx\n\r",

header_block, header_startptr, header_reclength, fl_j3tr);
}

#endif

} /* end of else (not a virgin flashcard) */
} /* end of else (locn not 0x40000) */

readclock(l);
if (jdl < 363) /* jdl runs from 0->364 in non-leap year */

{
start_day = jdl + 2;
}

else
{
start_day = jdl - 363; /* NB Jan 1st > jdl = 0 */
}

log_flag = 0;
save_flag = 0;
header_written = 0;

Qp CONTINUOUS LOOP******************/
while (!kbhit() && (flash_full == 0))

{
readclock(O);
if (sll != si)

{
wdogO:
s l l = si;
}

if (!log_flag && time_window() && !en_start)

29

/* log flag set by 2 'P's + 2 'T's, reset by 2 U's */
{
#if DISPLAY == TRUE

{

printf('Enabled\n");
}

#endif
en_start= 1;
last_rec_day = jd 1;
wdog_mask= 1;
}

if (en_start && log_flag && Hogging)
{
logging = 1;
first = 1;
bytes_saved = 0;
}

if (logging && !log_flag)
{
#if DISPLAY == TRUE

{

printf("R\n");
}

#endif
logging = 0;
en_start = 0;
save_flag = 0;
wdog mask = 0;
record_no++;

/* set en_start when unpr during time_window */

/* inhibit wdog trigger until end of record */

/* set logging when unpr->pr during time_window */

/* end of prompted data logging */

/* make directory entry */
start_block= (unsigned) (old_fi_ptr» 16);
start_offeet = (unsigned) (old_fl_ptr - (start_block « 16));
reclen = (unsigned) (fl_ptr - oId_fi_ptr);
old_fl_ptr = fl_ptr;

while (!directory_entry(start_block, start_ofEset, reclen, record_no, jiilian)
&& (dir_ptr < (DIRECTORY_START + 262144L)))

{
dir_ptr +=32; /* allow full length of directory entry gap */
}

if (dir_ptr >= DIRECTORY_START + 262144L)
{
flash_full = 1;
}

}

if (p_flag && logging && !header_written)
{
build_header();
#if DISPLAY == TRUE

{

printf('H");
}

#endif
data_save(HEADER_LENGTH);
header_written = 1;
}

if (log_flag && logging && ! overrun)

30

/* log_flag is set by IR04 handler when 2 'P's + 2 'T's rxd
and reset by IR04 handler when 2 XJ's rxd */

{
if (save_flag) /* set by IR03 handler when 2nd EOT byte read */

/* reset when data written to Flashcard */
/* or by reading char other than 2nd EOT byte */

{
packet_length++;
/* printfC'%dpacketjengfh); */

if (!(div(packet_length-6, 10) .rem))
{
if ((a[I] = (char) 0x81) && (packetjength < 513))

{
for (n = 4; n < packetjength; n++)

{
data_buffer[n - 4] = a[n]; /* misses out SOT and rec no. */
}

data_save(packet_length - 6);
bytes_saved += (packetjength - 6);
if (bytes_saved > M A X J J E N G T H)

{
overrun - 1;
}

else
{
overrun = 0;
}

}
}

save_flag= 0;
/* i = 0; */
first = 0;
}

}
else

{
header_wntten = 0;
}

}
OF CONTINUOUS LOOP*********************/

clean_up();
return 0;
}

OF FUNCTION DEFINITIONS***************/

/*******************READCLOCKgets system time & date**************/
void readclock(int d_enable)

{
struct tm *tmnow;
time J tnow;

time(&tnow);
tmnow = gmtime(&tnow);
hi = tmnow->tm_hour;
ml = tmnow->tm_min;
s 1 = tmnow->tm_sec;
dl = tranow->tm_mday;
nl = tmnow->tm_mon + 1;
yyl = tmnow->tm_year;

31

jdl = tmnow->tm_yday;
#if DISPLAY == TRUE

{

if (d_enable == 1)
{
printfCdate %02d/%02dV%02d: time %02d:%02d:%02d\n\r',

dl, nl, yyl, hi, ml, si);
}

}
#endif
}

/**************** CLEAN_UP resets system for exit ***************/
void clean_up(void)
{
intn;

/* reset UART GP02s to disable interrupts */
n = inp(COMl_BASE + MODEM_CONTR_REG);
ou1p(COMl_BASE + MODEM_CONTR_REG, n & Oxf7);
n = inp(COM2_BASE + MODEM_CONTR_REG);
ou1p(COM2_BASE + MODEM_CONTR_REG, n & OxfZ);

/* reset interrupt enables in UART lERs */
/* NB include COMl for ARGOS XON detection */

outp(COMl_BASE + INT_ENABIE_REG, 0);
ou1p(COM2_BASE + INT_ENABLE_REG, 0);

/* read every UART register to clear any interrupts pending */
for (n = 0; n < 7; n++)

{
mp(COMl_BASE + n):
inp(COM2_BASE + n);
}

/* Restore old interrupt masks */
outp(0x21, old_ints);

/* restore default interrupt handlers */
_disableO;
_dos_setvect(INT_N03, old_irq3_handler);
_dos_setvect(INr_N04, old_irq4_handler);
_enable();

/* disable memory bank switch registers */
bankswitch_disable();

/* turn offVPP */
progsupply_offO;

}

/************ nsnr cOMS sets up COMS H/Ware & SA/Vare **********/
int init_coms(void)
{

intn;

unsigned imask = IRQ3 & IR04;

y** *** ************** up rate etc *************************/

32

/* NB if COM2, set up for 2400 baud rate as xtal is 3.6864 MHz
if COMl, set up for 4800 baud rate as xtal is 1.8432 MHz */

if (com_imt(COMMAND_PORT, BAUD_4800, 0, CHRS_8 I STOP_l I NOPAEUTY) == NULL)
{
#if DISPLAY == TRUE

{

printfCInitialised COM%d Por tW, COMMAND_PORT);
}

#endif
}

else
{
#if DISPLAY == TRUE

{

printf("Failed to initialise COM%d Port\n\r", COMMAND_PORT);
}

#endif

return 0;
}

if (com_imt(DATA_PORT, BAUD_2400, 0, CHRS_8 I STOP_l I NOPARTTY) == NULL)
{
#if DISPLAY == TRUE

{

printf("Initialised COM%d PortW", DATA_PORT);
}

#endif
}

else
{
#if DISPLAY == TRUE

{

printf("Failed to initialise COM%d Port\n\r", DATA_PORT);
}

#endif

return 0;
}

/******************* Now s©t up icitsrrupt handlsrs ******************/
outp(0x20, 0x10);
outp(0x21, 0x08)
ou^(0x21, 0x10)
ou^(0x20, 0x20)

/* set to 10 to enable multiple ints from same channel */

ou1p(0x20, 0x68); /* enables special mask mode */

old_ints = inp(0x21) I 0xb8;
old. ints — 0xb8' tsmp *********************************

#if DISPLAY == TRUE
{

printfC'Old Int Mask register Contents: %x\n\r", old_ints);
}

#endif

n = old_ints & imask; /* enables IRQ 3 & 4 (ints 11 & 12) */
ou1p(0x21, n);
n = inp(0x21);

33

#if DISPLAY == TRUE
{

printf("New Int Mask register Contents: %x\n\r", n);
}

#endif

/* save existing int handlers */
old_irq3_handler = _dos_getvect(INT_N03);
old_irq4_handler = _dos_getvect(INT_N04);

/* load new int handlers */
_disableO;
_dos_setvect(INT_N03, our_irq3_handler);
_dos_setvect(INT_N04, our_irq4_handler);
_enable();

/* enable interrupts for Rx (not Tx or Modem) in UARTs */
outp(COMl_BASE + INT_ENABLE_REG, RX_DATA_AVAIL_EN I RX_ERR_EN):
outp(COM2_BASE + IKrr_ENABLE_REG, RX_DATA_AVAIL_EN I RX_ERR_EN);

/* read UART registers to clear any interrupts pending */
for (n = 0; n < 7; n++)

{
inp(COMl_BASE + n);
inp(COM2_BASE + n);
}

/* set GP02 to enable required interrupts via PAL to IRQ lines */

outp(COMl_BASE + MODEM_CONTR_REG, 0x08);
outp(COM2_BASE + MODEM_CONTR_REG, 0x08);

return 1;
}

/*************** C0M_INir sets up UARTS for COM Ports **************/
int com_init(int port, unsigned bauds,

unsigned int_enable_data, unsigned]ine_control_data)
{
unsigned base_address, n;
switch(port)

{
case 1:

base_address = COMl_BASE;
break;

case 2:
base_address = COM2_BASE;
break;

default:
return -1;
break;

}

/* set baud rate by loading divisor latches */
ou1p(base_address + LINE_CONTROL_REG, DLAB);
ou1p(base_address + DIV_LATCH_LSREG, bauds & 0x8);
outp(base_address + DIV_LATCH_MSREG, (bauds & OxffiOO) » 8);
/* set word length, start/stop bits, parity */
ou1p(base_address + LINE_CONTROL_REG, luie_control_data & 0x7f);
/* set any interrupt criteria */
outp(base_address + INT_ENABLE_REG, int_enable_data);
return 0;

34

}

/**********INTERRIIPT HANDLER FOR COMl (Command) INTERRUPT
HANDLING**********/
void interrupt far our_irq4_handlerO

{
int m, n = 0;
_enable();

m = inp(COMl_BASE + INT_IDENT_REG) & 0x07;
do /* added do-wMe 11/8/93 to stop int latching high */

{
switch(inp(COMl_BASE + INr_IDENT_REG) & 0x07)

{

case RX_DATAJWAIL:
n = inp(COMl_BASE + RX_BUrF_REG):
break;

case RX_ERR:
inp(COMl_BASE + LINE_STATUS_REG);
n = 253;
break;

case MODEM_STATUS:
inp(COMl_BASE + MODEM_STAT_REG);
n = 254;
break;

case TXHR_EMPTY:
n = 254;
break;

cage INT_PENDING:
n = 255;
break;

default;
n = 255;
break;

}
if (n == 80)

{
if (command_flag == 80)

{

p_flag= 1;
}

else
{
coinmand_flag = 80;
}

/* P already received */

}
if ((n == 84) && (p_flag

{

if (command_flag == 84)
{

log_flag= 1;
i = 0;
}

else
{
cominand_flag = 84;
save_flag = 0;
}

}
if (n == 85)

{
if (coinmand_flag == 85)

{

1))

/* T already received */

/* U already received */

35

log_flag = 0;
p_flag = 0;
}

else
{
cornmand_flag = 85;
}

}
}

while ((m = (inp(COMl_BASE + INT_IDENT_REG) & 0x07)) != INT_PENDING);

outp(0x20, 0x20); /* non-specific EOI ? in do-while */
_chain_intr(old_irq4_handler); /* other sources of int handled */
}

/*********END OF INTERRUPT HANDLER FOR COMl INTERRUPT HANDLING*******/

/****INTERRUPT HANDLER FOR COM2 (Data) INTERRUPT HANDLING****/
void interrupt far our_irq3_handler0

{
int m, n = 0;
_enableO;

m = inp(COM2_BASE + INT_IDENT_REG) & 0x07;
do /* added do-while 11/8/93 to stop int latching high */

{
switch(m)

{
case RX_DATA_AVAIL:

n = inp(CX)M2_BASE + RX_BUFF_REG);
break;

case RX_ERR:
inp(COM2_BASE + LINE_STATUS_REG);
n = 0x99;
break;

case MODEM_STATUS:
inp(COM2_BASE + MODEM_STAT_REG);
n = 256;
break;

case TXHR_EMPTY:
n = 256;
break;

case INT_PEND]NG:
n = 256;
break;

defeult:
n = 255;
break;

} /* end of switch(m) */
if(n<256)

{
if ((n == 0x81) && (last_char == 0x81))

{
i = 1;

}
if ((n == 0x82) && (last_char == 0x82))

{
save_flag= 1;
packetjength = i;
}

else
{
save_flag = 0;
}

36

a[i] = (char) n;
last_char = n;
i++;
i &= 0x3ff; /* restrict for buffer length 1024 */
}

else
{
a[i] = 0:
last_char = 0; /* if error */
i++;
i &= Oxff;
}

}

while ((m = (inp(COM2_BASE + INT_E)ENT_REG) & 0x07)) != rNT_PENDING);

ouQj(Gx20, 0x20); /* non-specific EOI20, 20 */

_chain_intr(old_irq3_handler); /* other sources of int handled */
}

/*********END OF INTERRUPT HANDLER FOR COM2 INTERRUPT HANDLING*******/

/*************** FLASH_SAVE writes data to FLASH EEPROM Card ****************/
int flash_save(char * s_buffer, unsigned long flash_pointr,

unsigned long nbytes)
/* address of 1st byte to be saved, flash pointer (0- 4]\ffi)

and number of bytes to be written to flash */
{
unsigned block, b_ptr;

if (nbytes == 0)
{
exit(O);
}

do
{
block = (unsigned) (flash_porntr » 16);
b_ptr = (unsigned) (flash_pointr - (block << 16));

if (block > 63)
{
#if DISPLAY = = TRUE

{

printf("Out of Storage Space\n\r");
}

#endif

/* exit(O); */
full_flag= 1;
retum(0);
}

if(((unsigned long) b j i t r + nbytes) > 65536)
{
if (pcmcia_save((unsigned) (65535 - b_ptr), block, b_ptr, s_buffer) == 0)

{
flash_pointr += (unsigned long) (65536 - b_ptr);
nbytes -= (unsigned long) (65536 - b_ptr);
sjDuffer += (unsigned long) (65536 - b_ptr);
}

else
{
#if DISPLAY = = TRUE

37

{
printf("Failed\n\r");
}

#endif

retum(0);
}

}
else

{
if (pcmcia_save((unsigned) nbytes - 1, block, b_ptr, s_buffer) == 0)

{

flashjpointr += nbytes;
nbytes = 0;
}

else
{
#ifDISPLAY==TRUE

{

piintf("FaiIed\n\r");
}

#endif

retum(0);
}

}
} wMe (nbytes > 0);

retuin(l); /* returns 1 if OK, 0 if failure */
}

/*************** DIRECTORY_ENTRY creates and writes an entry ****************/
int directory_entry(unsigned start_block, unsigned start_ofiset,

unsigned long reclen, unsigned record_no, char * jul_start)
/* need to change a lot of this */
{
char dir_entry[35];
char *ptr;
char dummy [10];

int ch;

time_t tnow;
struct tm *gmt;

time(&tnow);
gmt = gmtime(&tnow);

strcpy(dir_entry, V);
sprintf(dummy, "%03d", 1 + gmt->tm_yday);
strcat(dir_entry, dummy);
sprintf(dummy, "%02d", gmt->tm_hour);
strcat(dir_entry. dummy);
sprintf(dummy, "%02d", gmt->tm_min);
strcat(dir_entry, dummy);
dir_entry[8] = (char) (start_block & OxQ;
ptr = (char *) &start_ofEiset;
dir_entry[9] = *ptr++;
dir_entry[10] = *ptr;
ptr = (char *) &reclen;
dir_entry[l 1] = *ptr++;

38

dir_entry[12] = *ptr++;
ptr = (char *) &record_no;
dir_entry[13] = *ptr++;
dir_entry[14] = *ptr;
dir_entry[15] = 0;

for (ch - 0; ch < 16; ch++)
{
dir_entry[16 + ch] = dir_entry[ch];
}

if (flash_save(&djir_entry[0], dir_ptr, 32L) == 1)
{

dir_ptr += 32L;
return 1;
}

else
{
return 0;
}

}

writes data to Hashcard*********************/
void data_save(int datajength)
{
intch;

while (!flash_save(data_buffer, fl_j3tr, datajength) && (fl_ptr < 4194284L))
{
fljptr += datajengfh; /* allow full length to ensure no overwrite */
}

if(a_ptr>=4194284L)
{
logging = 0;
flash_full = 1;
}

else
{
fl_ptr += datajength;
}

}

creates FASTCOM-type header***************/
void build_header(void)

{
readclock(O);
sprintf(data_bufEer,

"Mode l\nAnalog IXnTime %02d:%02d:%02dDate %02d/%02d/%02d\n'',
hi, ml, si, dl, nl, yyl);

}

/**********TIME_WINDOW returns 1 during selected 1/4 hour every 2 days******/
int time_window(void)

{
readclock(0);
/* allow for 70 days operation (odd only) and end-of-year case */
if (((jdl >= start_day) I I (Qdl - start_day) < -290)) && divQdl, 2).rem)

(

39

if ((jdl != last_rec_day) && !en_start
&& (((hi == 11) && (ml > 54)) I I ((hi == 12) && (ml < 10))))

{
#if DISPLAY == TRUE

{

printf("Window on\n");
}

#endif
return 1;
}

else
{
return 0;
}

}
else

{
return 0;
}

/* following lines for test purposes, may give 2 recs per Shrs,
depending on window timing relative to sonic record */
/*
if (!(div(hl, 3).rem) && (ml < 15) && !en_start)

{
#if DISPLAY == TRUE

{

printfCWindow on\n");
}

#endif
return 1;
}

else
{
return 0;
}

*/
/* down to here */
}

/************ VVDOG sends a beep to speaker to trigger watchdog ***********/
void wdog(void)

{
/* to give a single cycle o/p on spkr */
unsigned n, status;
if (!wdog_mask)

{
status = inp(0x61);
ou1p(0x61, status I 3); /* speaker on */
for (n = 0; n < 200; n++);
status = inp(0x61);
oulp (0x61, status & ~3); /* speaker off */
/* gives a short beep ^ong enough to trigger wdog) */
}

}

40

APPENDIX B.2 Assembly Code FLASH5.ASM

Name FLASH5.ASM

Function: GCAT - drivers for PCMCIA Hash EEPROM Card

assemble using masm /MX flashS;

developed from DSP code, with extra functions
uses IiFEAT AX instructions which are not recognised by MASM.
therefore Macro is defined to insert the bytes FE F8

chc lOSDL 1/2/93

; Miscellaneous Equates

exitfii equ 04ch ; function code for exit firom program
cr equ Odh ; ASCII carriage return
If equ Oah ; ASCII line feed
EPROM ecpi OfOOOh ; address of BIOS EPROM
FLASH equ OeOOOh ; segment of mapped PCMCIA flash EEPROM

; Utility Register Equates

CSUnL BASE equ 300h ; default I/O address
VPP OFF PORT equ CSUTIL_BASE + OSh
VPP_ON_PORT equ CSUTIL_ BASE + Odh

; INT IF Equates

GET SET CREG ecju 14h ; Int If function to set/get CREG
SET CREG equ 1 ; set CREG
GET_CREG equ 0

; CREG Equates

PS4 SELECTOR equ 8ch ; PS4 function selector
PS4 ALOW equ 8eh ; PS4 address low
PS4_AHIGH equ Bfh ; PS4 address high

WRITE 16 equ 0f8h ; enable writes -16 addresses
SELECT CS LOW ecju 64h ; active low chip select
SELECT INPUT equ 0 ; pin is an input

; see Chips and Technologies F8680 PC/CHIP Programmer's Reference Manual
; pp 3-54 to 3-55 for Bank Switch Register programming

Bsm ecju Oafh ; hi byte BSR for mapped 64k segment
BSHI VAL equ Och ; to set to 48MB (CardB)
BSLO eq[u Oa3h ; lo byte BSR for mapped 64k segment
BSLO VAL equ 0 ; A2 maps to segment COOO

; A3 maps to segment EOOO

; 28F020 Hash EEPROM Commands

CMD_READ
CMD_ERASE
CMD ERASE VERIFY

equ 0
equ 20h
equ OaOh

41

CMD SETUP PROGRAM equ 040h
CMD PROGRAM VERIFY equ OcOh
CMD RESET equ Offli
CMD IDENTIFY equ 90h

public
public
public
public
public
public
public
public

extm
; extm
extm
; extm

_chip_erase
_pcmcia_save
_seek_end
_read_header
_progsupply_on
_progsupply_off
_cajd_detect
_baiikswitcli_disable

_data_bi]aer:BYTE
_card_ptr:dword
_lieader_contents :BYTE
main ds:WORD

assume

_DATA
dummy
answ_ax

DATA ENDS

cs:_TEXT, ds:_DATA

SEGMENT BYTE PUBLIC 'DATA'
DW ?
DW ?

TEXT segment word public 'CODE'

; NB this macro is not universal and is only correct for regmem == AX
; See Appendix A of CHIPS Superstate R interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

LFEAT IVlACRO
DB
DB
ENDM

regmem
OFEH
0F8H

; NB this macro is not universal and is only correct for regmem == AL
; See Appendix A of CHIPS Superstate R Interface Guide for general case
; also, see CHIPS Programmer's reference Manual pp 2-12 to 2-19 incl.

STFEAT MACRO
DB
DB
DB
ENDM

regmem, sdata
OFEH
OFOH
sdata

* ^

_chip_erase

procedure to erase a single flash EEPROM chip in the PCMCIA Card
**

chip_erase PROC

push
mov

bp
bp, sp

42

Erase Error:

push
push
push
push
push
push
push
push
push

mov
mov
shl
mov
cmp
jg

mov
mov

call

can

jnz

jmp

jmp

Argument_Error 1:
jmp

Exitl:
call

pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

; save registers being used

ax
bx
cx
dx
si
di
ss
ds
es

bx, WORD PTR [BP+4] ; chip number
cl, 4
bx, cl ; multiply by 16
cx, bx ; no. of chip (0-15) X 16
cx, OfOh ; CX used in Memory_map
Argument_Error 1

ax, FLASH
es, ax

V P P _ O N

Erase_A11

Erase_Error

Exitl

Exitl

Exitl

V P P _ O F F

es
ds
ss
di
si
dx
cx
bx
ax
sp,bp
bp

; destination of the data

; switch on VPP

; erase device - see fig 6 of 28F020
; data sheet
; jump on error

; switch off VPP

chip_erase ENDP

_read_header

procedure to read 32 bytes of directory information into the
global string _header_contents

MB relies on a directory entry not crossing a segment boundary

unsigned arguments SEGMENT and OFFSET/PTR are passed by calling code

Returns 1 if successful, 0 if called with out-of-range segment

43

' AAAAA'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'AAAAAAAAAAA A*** A A A A A A A A A A A* A A A
read header PROC

Headjoop:

push
mov
push
push
push
push
push
push
push
push
push

mov
mov
shl
mov
cmp
jg

mov
mov

call

mov

call

mov
mov

mov
mov
inc
inc
loop

mov
mov
jmp

Argument_Error3:
mov

Tidy_up;
pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

; save registers being used

bp
bp, sp
ax
bx
CX

dx
si
di
ss
ds
es

bx, WORD PTR [BP+4] ; segment (0-63)
cl,2
bx, cl ; mult by 4
CX, bx ; (CX used in Memory_map)
cx, Ofch

Argument_Error3 ; out of range

ax, FLASH
es, ax ; set up ES as mapped Hash segment
Memory_map ; set up memory map

bx, WORD PTR [BP+6] ; seg_ptr (ofeet)
; es:bx points to start of header

Read_Cmd ; issue read command

cx, 32
di, ofEset _header_contents

al, BYTE PTR es:[bx]
BYTE PTR [di],al
bx
di
Headjoop

BYTE PTR [di], 0 ; string terminator
ax, 1 ; flag for OK
Tidy_up

ax, 0

es
ds
ss
di
si
dx
cx
bx
ax
sp, bp
bp

; flag for Mure

44

_read_header ENDP

************ ***5Hr****7Wr* ******* **********

jicmcia_save

procedure to write LENGTH bytes, start in 64k segment SEG at pointer PTR

(unsigned arguments passed in the above order at [BP+4], [BP+6], [BP+8])
and source data start address passed at [BP+10] (far address i.e. 4 bytes)

**

_j3cmcia_save PROG
push bp
mov bp, sp

push
push
push
push
push
push
push
push
push

ax
bx
cx
dx
si
di
ss
ds
es

mov
mov
shl
mov
cmp
jg

mov

mov

mov
mov

call
caU

call

jnz

mov
call

mov
jmp

bx, WORD PTR [BP+6] ; no. of Hash Segment (0-63)
cl, 2
bx, cl ; mult by 4
cx, bx ; (CX used in Memory_map)
cx, Ofch
Argument_Error2

dx, WORD PTR [BP+4] ; no. of bytes to write less 1

bx, WORD PTR [BP+8] ; es:bx will point to
; start byte in Hash

ax, FLASH
es, ax ; set up ES as mapped Hash segment

VPP_ON
Memory_map ; set up memory map

Program_Set ; program device - see fig 5 of 28F020
; data sheet

Program_Error ; jump on error

dx, offset M_Program_OK
Pnnt_Message ; print OK

ax, 0
Exit2

; return value for OK

Program_Error:
; mov
; call

mov
jmp

Argument_Error2:

dx, offeet M_Program_Error
Print_Message
ax, 2 ; return value for prog error
Exlt2

45

mov
call
mov
jmp

dx, ofEset M_Arg_Error2
Print_Message
ax, 1
Exit2

; return value for segment call error

ExitZ:

call VPP OFF ; switch off VPP

pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

es
ds
ss
di
si
dx
cx
bx
ax
sp, bp
bp

_pcmcia_save ENDP
***** **************** ********** ************************** ******** *********

_seek_end

procedure to find 1st fi-ee byte in card (starting at chip number
is passed to routine)
result (long) returned to calling program. AX = Ptr, DX = Segment

**

seek end PROG

push
mov

push
push
push
push
push
push
push
push
push

bp
bp, sp

ax
bx
cx
dx
si
di
ss
es
ds

mov
mov
shl
mov
cmp
jg

mov
mov

bx, WORD PTR [BP+4] ; chip number
cl, 4

; multiply by 16
; no. of chip (0-15) x 16
; CX used in Memoryjnap

bx, cl
cx, bx
cx, OfOh
Card end

ax, FLASH
es, ax

temp code to read Identification Codes
can VPP ON

; destination of the data

; switch on VPP
call Memory_map ; map segment to FLASH (COOO)

46

xor
call
mov
call
mov
caU
caU
call

bx, bx
Identify
al, es:[0]
Print_Hex
al, es:[l]
Print_Hex
Read_Cmd
YPP OFF ; switch off VPP

Seg_search:
mov
push
mov
shr
pop

dx, cx
cx
cl, 2
dx, cl
cx

; DX = Segment number (0 - 63)

Card end:

Found:

call

call

di
mov
mov
sti
mov
jz

add
cmp
jg
jmp

mov
mov

pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

Memory_map ; map segment to FLASH (COOO)

Find FF

ax,_DATA
ds, ax

ax, answ_ax
Found

cx, 4
cx, Ofch
Card_end
Seg search

ax, 0
dx, 40h

ds
es
ss
di
si
dx
cx
bx
ax
sp, bp
bp

; search a 64k segment for FF

; ensure DS is for this module

: AX = ofeet within card segment DX

; set CX for next segment

; returned pointer for failure
; returned segment (normal range 0-63)

_seek_end ENDP
**

Find_FF

finds first occurrence ofbyte==FFin a segment

If successful, returns pointer in AX with Z flag set
If FF not found, returns with Z flag reset

47

Hnd_FF PROC
push ax
push bx
push di

mov bx, 0 ; set ptr to start of segment
call Read Cmd ; issue read command

Ptrjoop:

Located:

End_seg:

End label:

di
mov ax, DATA
mov ds, ax ; ensure DS is for this module
sti
mov answ_ax, bx
mov al, BYTE PTR es: [bx] ; read data
call Printjetter ; temp testing
cmp al, OfEh ; data == FF?
je Located
cmp bx, OffeOh
je End_seg
add bx, 32
jmp Ptrjoop

cli
mov ax, DATA
mov ds, ax
mov bx, answ_ax
mov ax, bx
xchg ah, al
call Pnnt_hex
xchg ah, al
call Print_hex
mov ax, main_ds
mov ds, ax
sti

mov di, offeet _card_ptr
mov WORD PTR [di], bx
mov WORDPTR[di + 2],dx
call Memory Restore ; NEW!!! reset Bank Switching
call Print_Hex
xor ax, ax ; set Z flag for success
mov ax, bx
jmp End_label

call Memory_Restore ; NEW!!! reset Bank Switching
inc ax ; reset Z flag for failure

pop di
pop bx
pop ax
ret

Find_FF ENDP

• *

48

Print_Hex

Prints a byte in al as 2 hex chars

Print_Hex PROG
push ax
push cx

mov
and
mov
shr
add
cmp
jl
add

ah, al
al, OKh
d, 4
al, cl
al, 30h
al, 3ah
Dec_Charl
al,7

Dec Charl:
call
mov
and
add
cmp
jl
add

Printjetter
al, ah
al, Ofh
al,30h
al, 3ah
Dec_Char2
al,7

; 1st hex character

Dec CharZ:
call
mov
call

Print_letter
al, 20h
printjetter

2nd hex character

; print space

Print Hex

pop
pop
ret
ENDP

cx
ax

**
Memory_Map

sets up PC/Chip address map registers to put the 1st 64k of
the PCMCIA flash EEPROM at COOOh

********A A A A A * ***
Memory_Map PROC

push
push
push

cli

ax
bx
ds

mov
mov
mov
mov
int
mov
mov
LFEAT

bh, Och ; CREG for bank switch enable
bl, SEr_CREG
al, 0 ; value to reset enable
ah, GET_SET_CREG
Ifh ; call Superstate code
ah, Och
al,0
ax

mov bh, BSHI ; hi byte for mapped 64k segment

49

mov bl, SET_CREG
mov al, BSHI_VAL ; value to write to it
mov ah, GET_SET_CREG
int Ifh : call Superstate code
mov ah, BSHI
mov al, BSHLVAL
LFEAT ax

mov bh, BSLO ; lo byte for mapped 64k segment
mov bl, SET_CREG
mov al, BSLO_VAL ; value to write to it
add ax, cx
mov ah, GET_SET_CREG
int Ifh ; call Superstate code
mov ah, BSLO
mov al, BSLO_VAL
add ax, cx
LFEAT ax

mov bh, Och ; CREG for bank switch enable
mov bl, SEr_CREG
mov al, 1 ; value to set enable
mov ah, GET_SET_CREG
int Ifh ; call Superstate code
mov ah, Och
mov al, 1
LFEAT ax

sti

pop
pop
pop
ret

ds
bx
ax

Memory_Map ENDP
*******************************^^

Memory_Restore

disables Bank Switching
************ ********* ******** ** ************ ** *** ***** ************** *******

Memory-Restore

push
push
push

cH

mov
mov
mov
mov
int
mov
mov
LFEAT

PROG

ax
bx
ds

bh, Och : CREG for bank switch enable
bl, SET_CREG
al, 0 ; value to reset enable
ah, GET_SET_CREG
Ifh ; can Superstate code
ah, Och
al,0
ax

sti

pop ds

50

pop
pop
ret

Memory_Restore

bx
ax

END?

******** * A * *************^

Erase M

Uses algorithm in 28F020 data sheet to erase the chip
returns with Z flag set if OK

A A A A A A A ' A A ' A A ' A A A A ' A ' A A A A A A A A A A A A A A A A A A A * A A * * * * * * * * * * * * * * * * * * * A A A A A A A A A A A * * * * * *

Erase M PROC

Chip_seg:

M_done:

EAl:

EA2:

push cx

mov ax, 0

; loop to program 48*64k segments to 0
push ax
call Memory_map

push cx
can Program_Zeros
pop cx
pop ax
jnz E_Error

add cx, 4 ; for next 64k
add ax, 1
cmp ax, 4
je M_done
jmp Chip_seg

mov cx, 0 ; cx is PLSCNT in data sheet

inc cx
cmp cx, 3000 ; tried 3000 times?
jz E_Error ; yes- quit
call Erase ; issue erase command
call Erase ; twice to enable erase
mov ax, 10000 ; 10ms
caU Delay ; wait a while
mov bx, 0 ; address of bottom of EEPROM

call EraseJVerify ; issue erase verify command
mov ax, 6
call Delay ; wait 6us
mov al, es:[bx] ; read data
cmp al, OfBi ; data = ff?
jnz EAl ; no - jump
inc bx : next address
jnz EA2 ; no - next byte

mov al,"E"
call Print_Letter ; status report

cmp bh,0 : gone all the way around?
jnz EA2

call Read_Cmd ; issue read command

51

E Error:

xor
pop
ret

mc
pop cx
ret

Erase AH ENDP

ax, ax
cx

cx

; set Z flag to show success

; clear Z flag to show failure

Prograin_Set

Uses algorithm in 28F020 data sheet to write to the chip
bx points to 1st write address
and dx is the number of bytes to be written
returns with Z flag set if OK

Prograin_Set PROC
push
push

PAl:

PA2:

mov

mov

mov

inc
cmp
jz
call

cx
di

di, offset _data_buffer ; ds:di is start of buffer
; to be written

di, WORD PTR [BP+10] ; address of start of source data

cx, 0 ; cx is PLSCNT in data sheet

cx
cx, 26 ; tried enough times?
P_Error ; yes - fail
Setup_Program ; set up for programming

PAS:

mov

mov
mov
caU
call
mov
caU
mov
mov
cmp
jnz

mov
call

inc
inc
jc
cmp
je
dec
jmp

call
xor

al, ds: [di] ; get byte from data source

es: [bx], al ; write byte to Flash EEPROM
ax, 10
Delay ; wait lOus
ProgramJVerify ; issue program verify command
ax, 6
Delay ; wait 6us
ah, es: [bx] ; read data from EEPROM
al, ds: [di] ; get byte from data_buffer
al, ah ; compare with source
PA2 ; jump if data not correct

al,"P"
Print_Letter

di
bx
Overrun
dx, 0
PAS
dx
PAl

Read_Cmd
ax, ax

; next location in data_buffer
; next address to write

; no. remaining to be written less 1
; if any remaining, loop

; issue read command
; set Z flag to show success

52

P Error:

Overrun:

Program_Set

pop
pop
ret

mc
pop
pop
ret

mov
call

inc
pop
pop
ret
END?

di
cx

cx
di
cx

; clear Z flag to show failure

dx, offeet M_Overrun
Print_Message

cx
di
cx

; clear Z flag to show failure

***************** A A A A A A A A A A A A A A A A ************************************

Program_Zeros

Uses algorithm in 28F020 data sheet to fill chip with 0
returns with Z flag set if OK

****************** AAA * * * A ***
Program_Zeros PROG

PZl:

PZ2:

mov

mov

inc
cmp
jz
call
mov
mov
mov
call
call
mov
call
mov
cmp
jnz
inc
cmp
jnz

mov
call

cmp
jnz

call
xor

bx, 0 ; point to start of EEPROM

cx, 0

cx
cx, 26
P_Error_Z
Setup_Program
al, 0
es:[bx], al
ax, 10
Delay
Program_Verify
ax, 6
Delay
al, es:[bx]
al,0
PZ2
bx
bl,0
PZl

al,"Z"
Print_Letter

bh, 0
PZl

Read_Cmd
ax, ax

; cx is PLSCNT in data sheet

; tried enough times?
; yes - fail

; set up for programming
; get byte to program
; write data to EEPROM

; wait lOus
; issue program verify command

; wait 6us
; read data from EEPROM
; compare with source
; jump if data not correct
; next memory address
; done whole block
; nop - loop

; gone aH the way around?
; no - loop

; issue read command
; set Z flag to show success

53

P Error Z:

ret

inc

ret
Prograin_Zeros

cx

ENDP

; clear Z flag to show failure

Read_Cmd

issues read command to EEPROM

************************************ Th*r***
Read_Cmd PROC

ax
al, CMD_READ
es:[bx], al ; issue command
ax

Read Cmd

push
mov
mov
pop
ret
ENDP

Identify

Identify

PROC
push
mov
mov
pop
ret
ENDP

ax
al, CMD_IDENTIFY
es:[bx], al ; issue command
ax

**
Erase

issues erase command to EEPROM
**

Erase

Erase

PROC
push
mov
mov
pop
ret
ENDP

ax
al, CMD_ERASE
es:[bx], al ; issue command
ax

EraseJVerify

issues erase verify command to EEPROM
bx must contain address

* * * * * * A ' A

EraseJVeiify PROC
push
mov
mov
pop
ret

Erase_Verify ENDP

ax
al, CMD_ERASE_VER1FY
es:[bx], al ; issue command
ax

54

A * * * * * * * * * * * * * * * A A A * A' A'A' A' A 'A

Setup_Prograin

issues setup program command to EEPROM

*

Setup_Program PROG
push ax

mov al, CMD_SErUP_PROGRAM
mov es:[bx], al ; issue command
pop ax
ret

Setup_Program ENDP

**
ProgramJVerify

issues program verify command to EEPROM
**

ProgramJVerify PROG
push ax
mov al, GMD_PROGRAM_VERIFY
mov es:[bx], al ; issue command
pop ax
ret

ProgramJVerify ENDP

**

Delay

ax contains the number of microseconds to delay
II! very crude - uses program loop

********************* *** ** ************ ******* ***** ************ ******* *****

Delay PROC
cmp ax, 0 ; count = 0?
jz DLl ; yes - exit
nop
nop
nop
nop
dec ax
jmp Delay

DLl:
ret

Delay ENDP

*

VPP_ON

turns on VPP

55

* * * * * * * A' A A A A' A A A A * A A A A A A A A A A A A A A A A A 'A 'A A A A A A A A A A A A A * * * * * * A ' A ' A A A A A ' A A A A A A A A A A A ' A ' A

VPP_ON PROC
push ax
push bx
push dx

; cli
call Enable_CSUTIL ; enable PS4 to be CSUTIL pin

; access Utility Register to turn on VPP

mov dx, VPP_ON_PORT ; turn on VPP
out dx, al ; data is ignored

; sti

mov ax, 50000
call Delay ; wait SOms for VEE to turn on
call Disable_CSUTIL ; disable CSUTIL

pop dx
pop bx
pop ax
ret

VPP ON ENDP

*

VPP_OEF

turns of VPP

*

VPP OFF PROC
push
push
push

cli
call

ax
bx
dx

Enable_CSUTIL

; access Utility Register to turn on VPP

VPP OFF

mov
out
sti

call
pop
pop
pop
ret
ENDP

dx,VPP_OFF_PORr
dx, al

Disable_CSUnL
dx
bx
ax

; enable PS4 to be CSUTIL pin

; turn off VPP
; data is ignored

; disable CSUTIL

*

progsupply_on

turns on VPP (for external calls)
**

_progsupply_on PROC

56

push
mov
push
push
push
push
push
push
push
push
push

bp
bp, sp
ax
bx
cx
dx
si
di
ss
ds
es

: save registers being used

cli
call Enable CSUTIL

; access Utility Register to turn on YPP

mov
out
sti

mov
caU
caU

dx, VPP_ON_PORT
dx, al

ax, 50000
Delay
Disable CSUTDJ

; enable PS4 to be CSUTIL pin

; turn on VPP
; data is ignored

; wait SOms for VEE to turn on
; disable CSUTIL

pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

_progsupply_on

es
ds
ss
di
si
dx
cx
bx
ax
sp,bp
bp

ENDP

*

progsupply_off

turns of VPP (for external calls)
**

_progsupply_off PROC

pijsh
mov
push
push
push
push
push
push
push
push
push

bp
bp, sp
ax
bx
cx
dx
si
di
ss
ds
es

; save registers being used

57

; cli
call Enable_CSUTIL

; access Utility Register to turn on VPP

mov
out
sti

caU

dx, VPP_OFF_PORT
dx, al

Disable CSUHL

; enable PS4 to be CSUTIL pin

; turn off VPP
; data is ignored

; disable CSUTIL

pop
pop
pop
pop
pop
pop
pop
pop
pop
mov
pop
ret

_progsupply_off

es
ds
ss
di
si
dx
cx
bx
ax
sp.bp
bp

ENDP

*

Enable_CSUTIL

enable access to Utility Register by setting PS4 pin
to be an active low chip select

**

Enable CSUTIL

: Is bits of address

PROC
mov bb, PS4_ALOW
mov bl, SET_CREG
mov al, CSUTIL_BASE and (m
mov ah, GEr_SET_CREG
int Ifh ; caU Superstate code
mov ah, PS4_ALOW
mov al, CSUTIL_BASE and OffH
LFEAT ax

mov bh, PS4_AHIGH
mov bl, SEILCa^G
mov al, (CSUTIL_BASE and 300h)/256 ; MS address
or al, WRITE_16 ; add other bits
mov ah. GEr_SEr_CREG
int Ifh ; call Superstate code
mov ah,PS4_AHIGH
mov al, (CSUTIL_BASE and 300H)/256
or al,WRITE_16
LFEAT ax

mov bh,PS4 SELECTOR
mov bl, SET GREG
mov al, SELECT CS LOW ; active low CS
mov ah, GET SET GREG
int Ifh ; call Superstate code
mov ah,PS4 SELECTOR
mov al, SELECT CS LOW

58

LFEAT ax

ret
Enable CSUTIL ENDP

*

Disable_CSUTIL

now disable access to Utility Register incase software crashes
and writes to it

**^

Di3able_CSUTIL PROC
mov bh, PS4_SELECTOR
mov bl, SET_CREG
mov al, SE][JECT_INPUT ; set to input - pulup
mov ah, GET_SET_CREG ; resistor holds it high
int Ifh ; call Superstate code
m o v ah, PS4_SELECTOR
m o v al, SELECr_INPUT
LFEAT ax

ret
Disable_CSUTIL ENDP

*

Check_Key_Press

uses MS_DOS interrupt to check for a key
zero flag is set if no key pressed

**

Check_key_press PROC
push ax
push dx

mov ah, 06h ; console input call
mov dl, Offh ; input
int 21 h : see if key is pressed

; zero flag is set if no key was pressed
pop dx
pop ax
ret

Check_key_press ENDP

*

Print_message

uses MS_DOS interrupt to print message
ds:dx points to message

:*:***************
Print_Message PROC

push ds
push ax

mov ax, cs

59

mov ds, ax ; ds=cs to point to text

mov ah, 9h ; string output
int 21h ; DOS call

pop ax
pop ds
ret

Print_Message ENDP

*

Print_Letter

uses MS_DOS interrupt to print letter in AL
**

Print_Letter PROC
push ax
push dx
mov dl, al

mov ah, 2h ; character output
int 21h ; DOS call

pop dx
pop ax
ret

Print_Iietter ENDP
**

_card_detect

uses STFEAT to read SDATA OA for PCMCIA interface status
**

card_detect PROC

push bp
mov bp, sp

push bx
push cx
push dx ; save registers being used
push si
push di
push ss
push ds
push es

STFEAT al, Oah

pop es
pop ds
pop ss
pop di
pop si
pop dx
pop cx
pop bx

60

mov
pop
ret

card detect ENDP

sp.bp
bp

_baiikswitch_disable

disables Bank Switching

_bankswitch_disable

push
push
push

cli

mov
mov
mov
mov
int
mov
mov
LFEAT

P R O G

ax
bx
ds

bh, Och ; CREG for bank switch enable
bl, SET_CREG
al, 0 ; value to reset enable
ah, GEr_SET_CREG
Ifh
ah, Och
al, 0
ax

; call Superstate code

; sti

pop
pop
pop
ret

bankswitch disable

ds
bx
ax

ENDP

TEXT ends

end

61

APPENDIX C GENERAL ASSEMBLY

Figure 3.

COM1 Keyboard

SKH8 SKH1

SK H7

FlashCard
and

GCATs

Reset PB

Raw logger
Power Supply

C0NV1

BMPPR0C2
Motherboard

Radio Modem
Power Supply

C0NV2
to Radio

Modem WDOGSEL

PL/SK1 PL/SK2

Power &
Tx/Rx In

C.l Parts List

1 offDiecastBox

1 off Motherboard BMPPROC2

1 off 3 way bulkhead connector GR 1

RS Ckjmponents Ltd. 506-930

see Appendix D

Lemo Series 3, ERA 303 CNL

62

2 off 8 way bulkhead connector GR2, GR3

4 off 12 mm M3 spacers

1 off chassis (mounting plate)

Lemo Series 3, ERA 308 CNL

RS Components Ltd. 222-402

make to suit (no drawing)

APPENDIX D BMPPROC2

D. 1 Motherboard for GCAT and AMPRO Min imodn les l^

The board circuit diagram and component layout are shown in Figures 4 and 5, respectively.

Modifications to the standard circuit are listed below:

D1 is replaced by a link and D2 is omitted

+9V and -9V Supplies are omitted

VWnd Sensor (frequency to voltage converter) Circuit is omitted

Analogue reference Circuits are omitted

Analogue Filter/MPX Bus connector is omitted

An additional convertor for the Radio Modem supply (CONV2) is mounted on the
board as shown in figure 3.

Int#mo I Baitsrg

FLOPPY DRIVE

P3,- BCATieee EXT BUS
H3

lOCHCK-Pla

rv>-v—iZm
LL

RDATA-+IN < ton
BND- +-

i±t gS8 H N/C

- IN 5 -OUT

STEP CONVi
WATCmOG INDICATOR

+1N 40UT

K g a s PL2
E x i a m a l Supplg DRVl-

PRYi- IRE5ET
I /O BUS

GCATzeei
SERIAL/PARALLEL BUS

8ND

SU

IWHRPY

„ ,BND
+IN +OUT

BACKLIGHT
BHD

BgBgBBBggg
cow«# g e

C0NV3
P!# Mi

W W Hz TWIO-H O CBA VIDEO
HQR SYNC CDW29 DACKi XTALl

BND-

K 3 K:3

Hind S«n«or (f rom L#mo)

PL3
VERT SYNC OS

W H OS DOTl/IMTENSlfy TRIO-P
&

I 5
CTC 09

IB Hz)
WATCHDOG CIRCUIT

o
t o MX*

NEEDS TO BE FLIPPED ON PCB
(ODD/EVEN PINS INTERCHANGED) CDW3B CDW3a NEEDS TO BE FLIPPED ON PCS

(ODD/EVEN PINS INTERCHANGED

GW —
GND-

+5Vr*f
•Z.SVrof—

BND-
GNO-

te.SVraf ANALOGUE
P i DAC» FILTER/»fX BUS

PI
+Z.5V

BND BNO
FREQUENCY-VOLTAGE CONVERTDR

IC2

m
ConnBoiion t o Sanaor Intmrfocm Board

+9V
GMD
-9V

+2.5VT«f GNO 6N0
P32b P32b

NEEDS TO BE FLIPPED ON PCB
(ODD/EVEN PINS INTERCHANGED)

BACKLIGHT — P I G
PL5

I
td

i
8

a

s

INSTITUTE OF OCEANOGRAPHIC SCIENCES. DEACON LABORATORY.

BROOK ROAD. WORMLEY. GODALMING. SURREY GUB SUB. ENGLAND

FILENAME

Brt>PR0C2.OGM
Sonic Buoy Motion Package Processor Board

SHEET
ISSUE
DATE

C0NV2

WDOG

C3 Ck
C0NV3

• DZ

C12 Cll

B RS

i t P** fl
GCAT3000+2000

C19C1B

•
C15 C16

m u B L M
• • • • • • • • I

GCAT BUS

C8

TRIG-N

TRIG-P

W)OG SEL

I* Ria

CONVl

a

ro
cn
td

i
0

I
I
f

O)

65

D.2 Parts List

Alphabetically ordered List of Parts with SiUc References and Descriptions

1 ogPCB BMPPROC2

2offCrANT#15U CI, C2,

2 off CMKS2#0U47 CI. C23

loffCrANT#22U C8

2 off CFKC2#220P C21, C22

2 off CMKS2#0U1 C24, C25

1 offDC24-5S

1 offDC24-12S

1 off 1N4148

1 offlDClO

1 offD9SKT-RT

1 offIDC40

1 offCD4025

CONVl

CONV2

1 offLED-0.2-RED D3

D4

HI

H4

H6

1 offDMSPIN-RT H7

IC7

Motherboard manufactured to lOSDL

artwork BMPPROC2.ART

Capacitor Tantalum 35V

FameU 100-907

Capacitor Polycarbonate

FameU 143-684

Capacitor Tantalum 25V

FameU 100-892

Capacitor Polycarbonate

FameU 147-661

Capacitor Polycarbonate

FameU 143-680

24V i/p to 5V@ 2A o/p DC-DC Converter

KRP Power Source UK, LPD 10/33 - 5S2000A

24Vi/p to 12V@ 0.8A o/p DC-DC Converter

KRP Power Source UK, LPD 24-12S800A

Red LED

FameU 213-664

SmaU Signal Diode

FameU 1N4148

Male PCB mounting IDC header

FameU 145-057

90° PCB-mounting 9 way D Socket

FameU 150-738

Socket Double Row 40 way 0.1"

part of an M20-9833206

PCB-mounting DIN 5 way Socket

FameU 148-505

Triple 3 i/p NOR gate

FameU CD4025BCN

66

1 offCD4060

1 ogGCAT64CON

2 o£fIDC34

1 ogIDC34

1 offIRF#4U7H

2offPCCON4

related parts *

*2o@

1 off470uF/16V

5 offRMFW25#100K

1 offRMFW25#lM0

1 ogSPDTBIASED

2 off TP

1 offVNlOKM

1offPATCHS

ICS

J1

J2J3

J6

LI

PL1,PL2

Oscillator/Divider

FameU CD4060BCN

Socket Double Row 64 way 0.1"

M20-9833206

Socket Double Row 34 way 0.1"

M20-9833706

Male PCB mounting IDC header

Famell .609-3427

R.F. Choke

Famell 177-508

Top Entry PCB Header - Open End 4 way

FameU 151-985

SK1,SK2

R19

Free Plug 4 way

Famen 151-969

Cx (between PL2 1 &2) FameU 294-457

R16, R17, R18. R20, R21 Resistor 1/4W Metal Film

Resistor 1/4W Metal Film

FameU SFR25 IM

Resistor 1/4W Metal Film

FameU SFR25 470R

Push Button Switch Miniature

FameU 150-543

pads for patching Watchdog i/p

Low Power MOSFET

FameU VNIOKM

Pin Header Straight Double Row 10 way

part of FameU 148-195

RESET

TRIG-N, TRIG-P

TRl

WDOGSEL

APPENDIX E FORM&T OF PCMCIA DIRECTORY END DATA FILES

The PCMCIA filing system is a non-standard system developed in the absence (at the time) of a
commercially available filing system for Flash EPROM PCMCIA cards. The Directory Area
begins at relative address 0 and occupies the first 256 kbytes. The Data Area occupies the
remainder of the 4 Mbytes.

67

Each directory entry consists of 32 bytes, which consist of a date/time stamp, data start address
and length information; remaining bytes are used for additional information, in this case for a
duplicate of the first 16 bytes. The format is shown below:

yjjjhhmmbfiOlrrOvjjjhhmmbfOlrrO

where:
V = start character

jjj = (decimal) Julian day number (range 1 to 366)

hh = (decimal) hours (range 00 to 23) (date/time of directory entryl

mm = (decimal) minutes (range 00 to 59)

b = (binary) block number (range 0 to 63)

(card space consists of 64 blocks, each of 64k bytes, numbered 0 to 63)

ff = (binary) ofeet relative to the above block in bytes (range 0 to 65535)

11 = (binary) file length in bytes (range 0 to 65535)

rr = (binary) record number (range 0 to 65535)

0 = terminating character

In the above definitions, 'b' and 'fF both refer to the relative start address of the file,

e.g. b = 6, ff = 3060 refer to a relative start address of (6- 1)* 65536 + 3060 = 330740.

The data area starts at block 4, ofeet 0 and ends at block 63, offset 65535.

Each FASTCOM-format file begins with a 44 character header of the following format:

Mode<SP> 1 <LF>Analog<SP> 1 <]T>Time<SP>hh:mm:ss<SP>Date<SP>dd/nn/yy<IiF>

where:

bh = (decimal) hours (range 00 to 23)

mm = (decimal) minutes (range 00 to 59)

ss = (decimal) seconds (range 00 to 59)

dd = : (decimal) day of the month (range 00 to 31)

nn = (decimal) month (range 1 to 12)

yy = (decimal) year (range 00 to 99, year = 19yy)

This header is followed by anemometer raw data, consisting of (file length - 44) /10 samples;
each sample consists of 5 x (2 byte binary numbers), which represent U, V, W, C, H (three
components of wind speed, velocity of sound and buoy heading).

Due to the change from unprompted data to prompted data, it is found that the block of data
received by the Raw Data Logger after the Prompted and the first Transmit Block commands is
garbled; this is, therefore, discarded. The length of file may not, therefore, amount to exactly
44 + 12288 bytes.

