—

Tice

\\\\\\\\\ Institute of

= Oceanographic Sciences
== Deacon Laboratory

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 340

Sonic Buoy - Sonic Processor handbook

C H Clayson & R W Pascal

1994

Wormley

Godalming

Surrey GU8 5UB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR
CLAYSON, CH & PASCAL, RW

PUBLICATION

DATE
1864

TITLE

Sonic Buoy - Sonar Processor handbook.

REFERENCE

(Unpublished manuscript)

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 340, 6Spp.

ABSTRACT

monitoring via satellite telemetry.

The Sonic Processor was developed as part of the Sonic Buoy development program; it was based on
a similar shipbome system developed for analysis of the wind turbulence spectrum to give the wind

stress, using the dissipation technique.

Results from the shipbome system suffered from flow disturbance at the ultrasonic anemometer due
to the ship's structure, whereas the Sonic Buoy was designed for optimum exposure of the sensor,
resulting in lower scatter of the experimental results.

The Sonic Processor acquires 10 minute records of wind speed data at approximately 21 Hz and
spectrally analyses these in near real time. The processed spectra and parameterised data are saved
on an EPROM logger,; the parameterised data are also sent to the Formatter Processssor for

This document describes in detail the design and operation of the Sonic Processor and the associated
EPROM logger; it is intended to serve the combined purposes of documenting the design and acting
as a guide to operating the system and to recovering the data.

KEYWORDS

ISSUING ORGANISATION

Institute of Oceanographic Sciences
Deacon Laboratory

Wormley, Godalming

Surrey GUS8 5UB. UK.

Telephone Wormley (0428) 684141

Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066
Copies of this report are available from: The Library, PRICE £0.00

Index

1. INTRODUCTION

2. FUNCTIONAL DESCRIPTION

3. SOFTWARE

3.1 Overview

3.2 SETTIME - Application for Clock Synchronisation

3.3 FFTC2 - Application for Control of Sonic Data
Collection/Processing/Logging

3.4 RTCN.EXE - Application for updating System Clock from Real
Time Clock (RTC)

4. HERDWARE

4.1 General
4.2 Circuit Descriptions
4.2.1 DSPCARRY

4.2.2 SEROPT Rev. 2
4.2.3 EPROM Logger Controller and Memory boards

5. WIRING

5.1 Lid Connectors
5.2 Wiring from Lid to PCBs

5.3 Interboard Wiring
6. OPERATIONAL

6.1 Procedure for Setting the Time/Date

6.2 Procedure for Initialisation of the EPROM Logger
6.2.1 Getting Started
6.2.2 File Initialisation

6.3 Procedure for EPROM Logger Replay

6.3.1 Requirements
6.3.2 To Translate data to the PC

1. SPECIFICATION

7.1 Supplies

1.2 Power Consumption

10

13

13

13

14
14

15

15

15
15
17

21

21
23
23
24
24

24
24

26

26
26

1.3 Data Storage and Output
1.4 Sampling

1.5 Specification of Sensors
7.5.1 Anemometer
7.5.2 Compass

8. ACKNOWLEDGEMENTS

9. REFERENCES

APPENDICES

Appendix A The EPROM Logger Data Storage Format
Appendix B The Sonic Processor Serial Ouiput Message
Appendix C Source Code for SETTIME Application
Appendix D.1 Source Code for FFTC2 Application
Appendix D.2 Source Code RTCN.C

Appendix E Hardware
General Assembly
Parts List

Appendix F DSPCARRY - Carrier Board for ECAT/ECAT-X

Parts List

Circuit Diagram

Printed Circuit Board
Appendix G SEROPT - Anemometer RS232/422 interface and Opto-
isolators

Parts List

Circuit Diagram

Printed Circuit Board

26
26
21

21
21

21

21

28

28
29
30
33
54
57
57
58
59
59

60
61

-7-

1. INTRODUCTION

The Sonic Processor is designed to communicate with a Gill Ultrasonic anemometer, to
spectrally process 12,288 samples of anemometer data at quarter-hour intervals, and to output
a parameters message to the Formatter. The processor also outputs the spectrum and
parameters to the EPROM logger at quarter-hour intervals. The Sonic Processor is a complete
PC-based processing system, using DSP Designs Ltd. ECATTM and ECAT-XT™ boards,
mounted on a motherboard, DSPCARRY, plugging into an IOSDL 1802 microboard backplane.
Also plugged into this backplane are an interface board, SEROPT, and an IOSDL EPROM
logger, comprising a processor board and four memory boards. The system is mounted
within a tube which also contains the Formatter system.

2. FUNCTIONAL DESCRIPTION

The main functions of the Sonic Processor are as follows:

a) to control the operation of the anemometer and to receive data from it via an RS 422 link; this
is done using the ECAT COMI port with an RS232 to RS422 convertor on the SEROFT board. A
modified version of the Gill-supplied software application FASTCOM is used, with data being
stored on RAMDisk.
b) to spectrally process 12 sections of 1024 samples of the resultant wind speed. For each
section, the following processes are carried out.
the mean value of the resultant wind speed is first calculated and subtracted from the
samples.
a partial cosine data window is applied
a 512 point FFT function is used, with the 1024 samples entered as the real and
imaginary input values; the output is converted into a 256 line power spectrum which
is then corrected for windowing loss.
the spectrum is then multiplied by frequency5/ 3to give an ideally flat spectrum over
the equilibrium region and the mean log(power spectral density * frequencyS/ 3) is
calculated over the range 2 - 4 Hz; a least squares fit to the (log) spectrum is also
computed over this range.
mean values of the resultant wind speed, North, East and Vertical components of the
flow and velocity of sound are also computed over the 12288 samples
c) the spectrum is written to the EPROM logger, using the LPT1 parallel printer port with
handshake; the processed parameters are also written as detailed in the EPROM data format
description (Appendix A)
d) a standard format message (see Appendix B) is sent to the Formatter via the COM2 serial
port on the ECAT-X board

The above functions are achieved by the application FFTC2 EXE which is held in ROMDisk
drive A. The ROMDisk also holds DOS version 5.0, AUTOEXEC.BAT and CONFIG.SYS files,

8-

the drivers EMS230.5YS, RAMDRIVE.SYS and the applications FASTCOM.EXE, RTCN.EXE,
SETCLOCKEXE and SETTIME.EXE. The latter two applications are run before FFTC2 to allow
setting of the hardware Real Time Clock via the COM2 port; this is described in more detail in
the Software Section, below.

The EPROM logger consists of a slightly modified IOSDL microboard EPROM controller with
four EPROM memory boards. The memory boards are each fitted with 16 x 2 Mbit EPROMs,
giving a total capacity of 16 Mbytes. The use of the 2 Mbit EPROMs (instead of the usual 1
Mbit type) required that the most significant Board Select bit is used as the EPROM most
significant address bit. Thus the controller fills the lower half of each EPROM in boards 0 to 3
first and then fills the upper halves of the EPROMs by addressing boards 4 to 7. For full details

of the EPROM logger, see ref. 1.

3. SOFTWARE

3.1 Overview

The Sonic Processor software is embedded in the ECAT system in two x 256 kbyte EPROMs
(IC1 and 8) on the ECAT-X board. These are configured as a ROMDisk drive by use of an
appropriate BIOS in EPROM (IC12), combined with a ROMDisk driver ECROM.BIN in EPROM
(IC11) on the ECAT board. The ROMDisk (drive A:) EPROMs contain:

DOS version 5.0 - "hidden files" and COMMAND.COM
AUTOEXEC.BAT
CONFIG.SY S
EMS230.5YS
RAMDRIVE.SYS
(the C: drive is RAMDrive, note that this driver must match the DOS version used)
SETCLOCKEXE
SETTIME EXE
FFTC2.EXE
FASTCOM.EXE
RTCN.EXE
The process for preparing the EPROMs is described in ref. 2.

The DSP-supplied application SETCLOCK.EXE is run when the system has booted up; this
enables setting of the Real Time Clock. The application SETTIME.EXE is then run; this allows
synchronisation of the Sonic Processor clock with the clock of an external PC, running the
BASIC program SONTIM.BAS and with its COM1 port connected to the Sonic Processor COM2
port. This external PC is normally a battery-powered Husky Hunter 16 (running GWBASIC
under DOS).

After the completion of the application SETTIME, the application FFTC2.EXE is run; this is the
main data acquisition control program with the functions described above. It "spawns” two

-9-

other applications, FASTCOM.EXE and RTCN.EXE; the former is used to control the
anemometer and to acquire data from it; the latter is used to update the software clock from the
Real Time Clock just before midnight every day. The application FFTC2 remains running
continuously until terminated by a manual reset, or by a system failure. A system failure, such
as a processor crash or a failure to communicate with the anemometer, will result in the watch

dog timer rebooting the system.

3.2 SETTIME - Application for Clock Synchronisation

The application is built from the object file SETTIME.OB]; this is produced by compiling the 'C'
code SETTIME.C. The library SLIBCE.LIB is used when linking. A listing of the source code is
given in Appendix C.
When the application is run, the message "Date: DD/MM/YY Time: HH:mm:SSQ" is prepared,
where

YY is Year, e.g. (19)93

MM is Month (01 - 12)

DD is Day of the Month (01 - 31)

HH is Hour (00 - 23)

mm is Minute (00 - §9)

SS is Second (00 - 59)

and Q is a terminator. The date and time are derived from the system clock.
The application then outputs the Date/Time message via the COM2 port. (on the ECAT-X
board); the port is set up for 2400 baud (8 characters, 1 stop bit, no parity). The application
then waits for a Date/Time message terminated by a line feed (character 10) from the external
PC (if present). fnone is received within a set interval, the application times out. Otherwise,
the external PC's Date/Time message is decoded and used to set the ECAT's Real Time and

system clocks, using DOS DATE and TIME calls. The application then outputs a message in the
above format (using the received Date/Time) to the external PC via the COM2 port.

Note that the SETTIME application is only effective if the ECAT has been enabled by running
SETCLOCK on power up; the latter is supplied by DSP Design Ltd.

This version (1) of the application SETTIME is specific to the ECAT system, although a similar
application (but using the COM!1 port) has been produced for the DSP GCAT system.

-10-

3.3 FFTC?2 - Application for Control of Sonic Data Collection/Processing/Logging

The application is built from the object file FFTC4.0B]J, which is produced by compiling the 'C'
source code FFTC4.C The library MLIBC7.LIB is used when linking. The QuickC command
line for carrying out the above processes is:

qcl /AM /Zr [FPi8T fitc4.c /F 9000 mlibc7 lib
The FFTC4 EXE file is then renamed FFTC2 EXE. A listing of the source code is given in
Appendix D.
When the application is run, the following initialisation steps are carried out:
a hardware error handler is set up
the time zone is set to GMT
parameters for defining the FFT process are set up and calculated
housekeeping data for the logged data headers are set up
a continuous loop is then entered, in this loop, which is shown in schematic form in
figure 1, below:
the watch dog circuit is triggered
a wait state is entered until it is time for a new "record’, i.e. 0, 15, 30 or 45

minutes past the hour; this is effected by the function wait_start

when this occurs,
a string “julian" having the format <jjjhhmm> is created and the sample
number "sample” and quarter hour “gtr” variables are updated.

the mean wind speed variable and power spectruin array are reset to zero
the application FASTCOM is then spawned, using the command line:
fastcom testfile 1 1122881

i.e. <application name> <RAMDisk filename for raw data> <mode> <baud
rate> <number of samples to be collected> <number of analogue channels>

with RAMDisk filename set to testfile
mode set to 1 for Calibrated UVW and C output with 20.83 Hz
sampling rate
baud rate set to 1 for 4800 baud RS422 serial communications

number of samples to be collected set to 12288 (12 sections of 1024)

number of analogue channels set to 1 (for analogue compass input)

Loop Continuously

-11-

Wait for next
Start Time
(thO, hh:1 5, testfile
hh:30, hh:45) h
} Check and Convert
Log 12288 testfle Datato
Call FASTCOM 4-yﬁ samples to Resultant
RAMdisk Velocities
Subtract Mean and
Process Data as Apply Partial
12 Sections of o Cosine Window
1024 points
For Each Section i
Apply f 53 to
spectrum and Perform FFT
regression fit
over 2-4 Hz
l Convert to 256
line Power
Calculate Vector Spectrum and
Averages accumulate
estimates
Write Spectrum feggngpi EPROM Logger
land parameters to Parallel Port
EPROM Logger and
send parameters
Via COM2 POrt e F°"“at:f;f°""3
*J

Figure 1 Main Loop in FFTC2 for Data Acquisition/Processing

The application FASTCOM then establishes communications with the
anemometer, sets it to the required mode, baud rate and number of analogue
channels. The anemometer will initially be in the unprompted mode, whereby
it sends blocks of 20 samples of data (10 bytes per sample, 2 bytes each for U,
V, W, C and Compass) with a 2 byte record number header, i.e. 202 bytes

_12-

total, at intervals of rather less than 1 second. The anemometer is then set into
the “prompted" mode, whereby it will send the contents of its data buffer on
receipt of a transmit command; the transmit command is sent by FASTCOM at
intervals of (nominally) 1 second and, in practice, blocks of length 202, 212 or
222 bytes result, with the average length being 210.3 (10%20.83 + 2). Note
that, at changeover from unprompted to prompted mode and vice versa,

shorter blocks may result.

FASTCOM repeatedly requests data at 1 second intervals, checks that the
record numbers are consecutive, and writes the data to the RAMDisk file until
the correct number of samples has been acquired. It then resets the
anemometer to unprompted mode.

For further information on FASTCOM, see the Gill handbook, ref. 3.

When the data have been acquired, the other "accumulator” variables are
reset to zero and the data are analysed, as 12 sections of 1024 samples.

Each section is first checked and, if error free, converted to a resultant wind
speed array a[] by the function getdat. If an error is encountered, the data
are not used and the next section is checked. The first 512 values are entered
into the odd members of the array, i.e. a[l], a[3] . . a[1023], the next 512
values are entered into the even members of the array, i.e. a[0], a[2] . .
a[1022]. This function also accumulates sums of the East, North and Vertical
wind vectors, sin(buoy heading) and cos(buoy heading), derived using the
analogue channel compass reading.

The mean value of the a[] values for the section is then subtracted from each
a[] value by the function dcfilter and the mean is added to the mean wind
speed accumulator variable.

The data a[] are then windowed by a partial cosine window function, using the
function window.

The data are then converted to a spectrum, using the FFT function fourl. This
transforms 512 complex input points to 5§12 complex output values. The even
members of af] are the real components of the input values and the odd
members are the imaginary components. After the transform has been
executed, the complex output values are "unscrambled’ into 256 power
estimates which are placed into the array members a[1] to a[256]. These are
then added to the p[] power accumulator array values.

After this process has been repeated for all good sections of data, the power
estimates are corrected for window loss and normalised by dividing by the
number of good sections used. Likewise, the mean wind speed and vector
accumulator variables are divided by the number of good sections used. The
mean buoy heading is calculated from the sin(buoy heading) and cos(buoy
heading) accumulator values.

The power estimates are then converted to power spectral densities, which
are multiplied by frequencyS/ 3 | converted to log10 form and placed in the

array p[]. The 255 values p[2] to p[256] are referred to as the PSD (power

-13-

spectral density) values, although they are strictly the values of log]g(power
spectral density times frequencyS/ 3).

These values, together with housekeeping information and computed
parameters are then written to the string eprom, as described in Appendix A.

The parameters include the coefficients of a least squares fit to the PSDs
versus logig(frequency) between 2 and 4 Hz, these coefficients are returned

by the function regres.

The final length of the string eprom is 1920 bytes and these bytes are written
to the EPROM logger via the parallel LPT1 port as 15 blocks of 128 bytes,
using the logger LAV handshake line.

Finally, the parameters are sent to the Formatter via the COM2 port in the
message format described in Appendix B.

This concludes the operations within a single pass of the loop; control then returns to
the wait_start function which waits for the next record start time.

It is not possible to exit from the application, other than by a hardware reset.

3.4 RTCN.EXE - Application for updating System Clock from Real Time Clock (RTC)

This application is spawned by the main control program FFTC2 EXE during the waiting state
just before midnight (between the processing completion time and 23:58:59 hrs). The update
is inhibited if the system clock time is 23:58:ss, to prevent any inconsistent date and time values
from resulting. The call is as follows:

a'\RTCN.EXE 2

This calls RTCN in the ROMDISK (a: drive) with an argument of 2, so that the ECAT's system
clock is updated using the RTC's time/date.

The application source code is given in Appendix D.2. It uses BIOS calls (using software
interrupt Ox1la) to get the RTC time and date; the return values are decoded from BCD into
decimal and then used in DOS calls (using software interrupt 0x21) to set the system clock time
and date.

4. HARDWARE

4.1 General

The Sonic Processor unit is mounted off the Formatter assembly in the combined
Formatter/Sonic Processor housing, using a stage plate and four long aluminium pillars. The
backplane (mother) board is mounted on the stage plate using four short pillars. The small
watchdog timer board is mounted on the back of the backplane. The backplane has 7 card
slots for IOSDL microboards; it is a cut-down version of the FORMBACK design. The boards
are:

-14-

DSPCARRY - a carrier board for the ECAT and ECAT-X 'boards
SEROPT - the anemometer interface and opto-isolator circuit board
EPROM CONTROLLER
EPROM CARDS 1 -4

A general assembly drawing and parts list are given in Appendix E

4.2 Circuit Descriptions

4.2.1 DSPCARRY

This board is required mainly to allow mounting of the ECAT, with its piggy-back ECAT-X, in
the microboard slot. The board routes power to the ECAT]2 connector from the backplane. It
connects the ECAT COM1 port (on]2) and the ECAT-X COM2 port (on J3) to the backplane. It
connects the ECAT LPT1 port (on]J2) to a 20 way IDC connector PL5 for connection to the
EPROM logger. A reset signal for the EPROM logger is produced by differentiating the INIT-
printer control line. Finally it connects the ECAT speaker oufput to the backplane for triggering
the watchdog circuit.

The circuit diagram, PCB tracking and silk screen plots and a parts list are given in Appendix
F.

4.2.2 SEROPT Rev. 2

This board includes the RS232/RS422 interface for the anemometer, using a MAX232 convertor
with a 75176 line driver/receiver. The RS422 lines are protected by transient voltage
suppressors and zener diodes, although these would probably not provide protection in the
event of a lightning strike.

The board also includes a number of opto-isolators for the RS232 lines between units within the
buoy and between the modules and the external monitoring equipment. ICs 3, 4, 5, 7 and part
of IC6 isolate the Multimet, Sonic Processor COM2 and Formatter COM]1 serial outputs to the
monitoring equipment. Extemally suppled +5V is required to activate the isolated oufputs, so
that these are inactive during normal operation (monitoring cable disconnected). IC 6 (7660)
is used to generate a -5V supply from the external +5V supply.

ICs 8, 9, 18 and part of 10 isolate the Multimet and Sonic Processor COM2 serial outputs to the
Formatter COM4 and COMS ports; these are powered by the Formatter +5V supply. IC 18
(7660) is used to generate a -5V supply from the Formatter +5V supply.

ICs 11, 12, 17 and part of 15 isolate the anemometer RS232 Tx and Rx lines to the onboard raw
data logging system (referred to on the circuit diagram as “disk"); these are powered by the
+8V supply from the onboard raw logging system. IC 17 (7660) is used to generate a -5V
supply from the onboard raw logging system +5V supply.

ICs 13, 14, 19 and part of 15 isolate the anemometer RS232 Tx and Rx lines to the raw data
telemetry system (referred to on the circuit diagram as "radio"); these are powered by the +5V

-15-

supply from the onboard raw logging system. IC 19 (7660) is used to generate a -5V supply
from the onboard raw logging system +5V supply.

The serial inputs to the board, with the exception of the anemometer signals, are made via
Molex connectors. The serial outputs, again with the exception of the anemometer signals, are
made via IDC connectors.

The circuit diagram, PCB tracking and silk screen plots and a parts list are given in Appendix
C.

4.2.3 EPROM Logger Controller and Memory boards

For a complete description of the operation of these units, see the IOSDL EPROM logger
handbook, ref. 1.

5. WIRING

5.1 Lid Connectors

The Formatter shares a common housing with the Sonic Processor. Figure 2, below, shows the
layout of the eight Lemo lid connectors.

SEREES 3
FS1 METEOSAT 5 PIN

SERIES 3
@ @ FS2 | SONIC SENSOR 6 PIN

SERIES 3

@ FS3 MONITOR RES

SERIES 3
FS4 | RAWDATA OFP 8 PIN

SERIES 3
FS§ | MET SERIALIP 2 PIN

SERIES 3
@ @ FS6 SPARE 5 P
SERIES 3

@ |©

FS1 POWER 10 PIN
SERIES 3
Figure 2 Formatter/Sonic Processor Lid Fs8 ARCGOS 7 PIN

5.2 Wiring from Lid to PCBs

This includes:

a) SONIC SENSOR Lemo connector FS2 to Sonic Motherboard SK2 and to Power Lemo
Connector FS7

b) RAW DATA O/P Lemo commector FS4 to SEROPT board SK8

c) POWER Lemo connector FS7 to Sonic Motherboard and to Sonic Sensor Lemo
Connector FS2

-16-

d) MET SERIAL I/P Lemo connector FS5 to SEROPT board SK3

a) Lid Comnector FS2 (Lemo Series 3, 6 pin) to Sonic Motherboard SK2 (IDC10 free socket)
and to Lid Connector FS7 (LLemo Series 3, 10 pin)

FS2 Pin Function SK2 Pin FS7 Pin
1 Sensor Supply +V 6
2 Sensor Supply OV 5
3 Serial A 2
4 Serial B 1
5 Serial Ground 3
6 Screen/chassis 4

b) Lid Connector FS4 (Lemo Series 3, 8 pin) to Sonic Processor SEROPT board SK8 (IDC10
free socket)

FS54 Pin Function SK7 Pin

1 +5V GCAT Raw 1

Sonic Tx

Sonic Rx

0V GCAT Raw

Sonic Tx

Sonic Rx

2
3
4
+5V HF Raw 5
6
7
8

i ~Nlojoa]ls] w] N

+5V External I/P

¢) Lid Connector FST (Lemo Series 3, 10 pin) to Sonic Motherboard SK1 (Weidmuller-Klippon
4 way free socket) and to Lid Connector FS2 (Lemo Series 3, 6 pin)

FS7 Pin Function SK1 Pin FS2 Pin

1 ECATOV 1

ECAT +5V

EPROM Logger 0V

Cal BRI S

Sonic Sensor OV 2

2
3
4 EPROM Logger +15V
5
6

Sonic Sensor +15V 1

7-8 n/c

9-10 (Formatter Supplies)

d) Lid Connector FS5(L.emo Series 3, 2 pin) to SEROPT board SK3 (Molex 4 pin socket))

-17-

FS5 Pin Function SK3 Pin
1 Met OV 1
2 Multimet Serial /P 4

5.3 Interboard Wiring

This includes:
a) ECAT bus]2 to DSPCARRY board PL4 (power, COM1 and LPT1)
b) ECAT-X]3 to DSPCARRY board PL3 (COM2)
c) DSPCARRY board SK5 to EPROM Controller SK2 (LPT1)
d) EPROM Controller SK2 to EPROM Data Cards 1-4 SK1s(Address and board selects)
e) Sonic Motherboard SK1 to Formatter BMPPROC2 board SK1 (Formatter +5V)

a) ECAT bus connector]2 (100 way IDC) to DSPCARRY board P14 (80 way header) and PL2
(10 way header)

J2Pin Function PL4 Pin
1 upper STROBE- (CENTRONICS) 1
2 upper AUTOFD- (CENTRONICS) 2
3 upper DO (CENTRONICS) 3
4 upper ERROR- (CENTRONICS) 4
5 upper D1 (CENTRONICS) 5
6 upper INIT- (CENTRONICS) 6
7 upper D2 (CENTRONICS) 7
8 upper SLCTIN- (CENTRONICS) 8
9 upper D3 (CENTRONICS) 9
10 upper GND (CENTRONICS) 10
11 upper D4 (CENTRONICS) 11
12 upper CND (CENTRONICS) 12
13 upper D5 (CENTRONICS) 13
14 upper GND (CENTRONICS) 14
15 upper D6 (CENTRONICS) 15
16 upper CND (CENTRONICS) 16
17 upper DT (CENTRONICS) 17
18 upper GND (CENTRONICS) 18

-18-

J2 Pin Function P14 Pin
19 upper ACK- (CENTRONICS) 19
20 upper GND (CENTRONICS) 20
21 upper BUSY (CENTRONICS) 21
22 upper GND (CENTRONICS) 22
23 upper PE (CENTRONICS) 23
24 upper GND (CENTRONICS) 24
25 upper SELECT (CENTRONICS) 25
26 upper KCIK (KEYBOARD) 26
27 upper GND (KEYBOARD) 27
28 upper KDATA (KEYBOARD) 28
29 upper +5V (KEYBOARD) 29
30 upper RESET- (KEYBOARD) 30
31 upper GND (COM1) 3l
32 upper RI (COM1) 32
33 upper DTR (COM1) 33
34 upper CTs (COM1) 34
358 upper TxD (COM1) 35
36 upper RTS (COM1) 36
37 upper RxD (COM1) 37
38 upper DSR (COM1) 38
39 upper DCD (COM1) 39
40 upper CGND (VIDEO) 40
4] upper INTENSITY 41
42 upper CGND (VIDEO) 42
43 upper VID. OUT 43
44 upper RED 44
45 upper HSYNC 45
46 upper GREEN 46
47 upper VSYNC 47
48 upper BLUE 48
48 upper +5V SPKR 49
50 upper AUDIO SPKR 80

-1o-

b) ECAT-X COM2 Connector J3

way header)

J2 Pin Function PL2 Pin
1 lower GND, 0V(S) 1
2 lower GND, 0V(S) 2
3 lower GND, 0V(S) 3
4 lower GND, 0V(S) 4
5 lower +58V, +5V(S) 5
6 lower +5V, +5V(8S) 6
7 lower +5V, +5V(S) 7
8 lower +5V, +5V(S) 8

9-50 not used
(IDC10 free socket) to DSPCARRY board PL2 (10

J3 Pin Function PL2 Pin
1 DCD (COM2) 1
2 DSR (COM2) 2
3 RxD (COM2) 3
4 RTS (COM2) 4
5 TxD (COM2) 5
6 CTS (COM2) 6
7 DTR (COM2) 7
8 RI (COM2) 8
9 GND (COMz2) 9
10 GND (COM2) 10

c) DSPCARRY board SK5 (IDC20 free socket) to EPROM Controller SK2(IDC50 free socket)

SK5 Pin Function SK2 Pin
1 not used 1
2 not used 2
3 BUSY, BUSY-P 3
4 not used, 0DAV-P 4
5 ERROR-, LAV-P 5
6 ACK-, DATOK-P 6
7 not used 7
8 not used 8

-20-

SK5 Pin Function SK2 Pin
9 DO, DMDIO-P 9
10 D1, DMDI1-P 10
11 D2, DMDI2-P 11
12 D3, DMDI3-P 12
13 D4, DMDI4-P 13
14 D3, DMDIS-P 14
18 D§, DMDIS-P 18
16 D7, DMDI7-P 16
17 STROBE-, DMAP-P 17
18 not used 18
19 not used 19
20 CND, OV 20

d) EPROM Controller SK2 (IDCS50 free socket) to EPROM Data Cards SK1 (IDC34 free sockets)

(chained connections to each SK2 of 4 Data Cards)

SK2 Pin Function SK1 Pin
21 MAO-P 1
22 MAl-P 2
23 MA2-P 3
24 MA3-P 4
25 MA4-P 5
26 MAS-P 6
27 MAG6-P 7
28 MAT-P 8
29 MAB-P 8
30 MAS-P 10
31 MAIO-P 11
32 MALl-P 12
33 MAIl2-P 13
34 MAI13-P 14
35 MAIl4-P 15
36 MAI15-P 16
37 MAI18-P 17

21-

SK2 Pin Function SK1 Pin
38 MAILT-P 18
39 MAI18-P 19
40 MA19-P 20
41 MA20-P 21
42 BS1-N 22
43 BS2-N 23
44 BS3-N 24
45 BS4-N 25
48 BS5-N 26
47 BS6-N 21
48 BST-N 28
49 BS8-N 29
50 MA21-P 30

€) Sonic Motherboard SK1 (Weidmuller-Klippon 4-way free socket) to Formatter BMPPROC2
board SK1 (Weidmuller-Klippon 4-way free socket)

SK1 Pin Function SK1 Pin
3 +5V Formatter 3
4 OV Formatter 4
6. OPERATIONAL

The Sonic Processor and EPROM logger can be disconnected from the lid power connector by
unplugging the orange plug-in terminal block, if required, while powering up the Formatter.

6.1 Procedure for Setting the Time/Date

If it is necessary to correct the clock time by use of an external PC or Husky, running
SONTIM BAS, carry out the following steps:
disconnect the 10 way IDC ribbon cable connector from the ECAT-X J3 (COM2) - this
connects to the Formatter COMS port via the SEROPT board
plug the special ribbon cable, labelled “Husky to Sonic", into the Husky or PC 25 way
COMI1 port (use a 25 to 9 way adaptor if necessary) and into the ECAT-X J3 (COM2)
port

22~

Set the PC Date/Time and run the program SONTIM.BAS under GWBasic or QBasic
and wait for the "Ready” prompt - this involves the following steps for the Husky:

press the red PWR key to turn the machine on
at the C:\ prompt, enter DATE

- the machine then displays its current date which can be accepted, by pressing
RETURN, or modified by keying in a new date with the same format and then
pressing RETURN

enter TIME

- the machine then displays its current time which can be accepted, by pressing
RETURN, or modified by keying in a new time with the same format and then
pressing RETURN

enter GWBASIC

enter LOAD "SONTIM"

enter CLS

enter RUN

wait for "READY FOR DATA" to appear at the top of the screen

Apply power to the Sonic Processor; this will take about a minute to boot up. When the
SETTIME application runs on the ECAT, the message

Date: DD/MM/YY Time: HH:mm:SS
should appear on the PC/Husky display, where:
DD = Day of the month (0 - 31)
MM = Month (1 - 12)
YY = Year, e.g. (19)93
HH = Hour (00 - 23)
mm = Minutes (00 - 59)
SS = Seconds (00 - 58)
- the displayed values being for the initial ECAT Date/Time.

This should be followed shortly by another message of the same format, showing the
new time set in to the ECAT from a similar format message sent from the PC/Husky to
the ECAT. The ECAT will, after a short pause, run the FFTC2 application.

Remove the ribbon cable from the ECAT COM2 port J3 and reconnect the ribbon
cable from the DSPCARRY board.

Note that, in order to monitor the running of the FFTC2 application, it is necessary to connect
the COM1 port of a PC running a terminal application (e.g. KERMIT) at 2400 baud either
directly to the ECAT-X COM2 port J3 via a suitable cable, e.g. that labelled "Husky to Sonic", or
to the end cap MONITOR Lemo FS3. In the latter case, the connection is via an opto-isolator,
which requires +5V power via the monitoring cable. The opto-isolator is situated in the Sonic
Processor SEROPT board. The Sonic messages to the Formatter (format given in Appendix B)
can then be monitored; these should occur at about 12, 27, 42 and 87 minutes past the hour,

-23-

but will not be produced until the software has gone through a complete
acquisition/processing cycle.

6.2 Procedure for Initialisation of the EPROM Logger

In addition to setting up the Sonic Processor, it is necessary to set up the EPROM logger, i.e. to
open a new file for the data.

6.2.1 Getting Started

Equipment required :-
1) Dumb terminal or Computer with terminal emulation
- terminal configuration 2400 baud and no parity.

2) Serial cable, with switch to enable interactive mode communications on the EFROM
Logger.

Connect the EPROM Logger to the termina!l via the serial cable. Set the interactive switch on
the serial cable ON and push the reset switch on the EPROM Logger Processor Board. The
EPROM Logger's software will then enter into its interactive mode.

A Welcome message should appear on the terminal screen, followed by the current SETUP
information.
The SETUP conditions will indicate the following :-
BPR - Bits per record (MultiMet = 68, Sonic Processors = 128)
BOARDS - Number of completely filled memory boards installed (Buoy EL's = 4)
CHIPS - Number of chips on a partially filled board installed (normally = 0)

To modify the SETUP parameters, if required, use the MODIFY command (all commands must
be entered in UPPERCASE characters) as follows :-

For 4 full boards
4 BOARDS MODIFY <cr>

If there is a partially populated board (only one partially populated board is permissible and
must be the highest board number installed) the number of chips on the board must be

declared as follows :-
For 8 memory chips
8 CHIPS MODIFY <cr>

The system will check for any obvious errors in the input of BOARDS or CHIPS i.e. outside
technical limitations of the EPROM Logger.

-24-

6.2.2 File Initialisation
Before data is collected the EPROM Logger Directory File structure must be initialised. The
Directory commands are as follows :-

DIR <cr> Displays the directory structure.

INIT-AFT <cr> Removes the directory structure of any previous EPROM
Memory cards.

SEARCH <cr> Locates the Next Free EPROM Address.
OPEN <cr> Initial command to ‘open a new file'.
Prompits the user for keyboard entry for a filename <cr>.

The switch on the serial Cable should be returned to the non-interactive position, and the cable
disconnected from the EPROM Logger.

6.3 Procedure for EPROM Logger Replay

6.3.1 Requirements

Check that the Translation PC is available, and that an Eprom backplane with power supply is
connected to the PC. Make sure that there is a controller card which has been programmed for

4800 baud, to go with your memory cards.

6.3.2 To Translate data to the PC

a) Insert the EPROM Memory cards with the data to be translated into backplane, and
connect it via the ribbon cable, to the controller card

b) Switch on the Translation PC followed by the power to the EPROM Logger.

c) At the C> prompt change directories on the PC by typing 'CD \ DATATRANS' <cr>.
This will result in the prompt DATATRANS> appearing.

d) Type ELOG' <cr> to activate the EPROM L.ogger program.

e) This will ask you to
'press any key' when ready
In response to 'do you have a colour monitor' type Y.

In response to 'No. of bytes per record' enter 68 for Multimet or 128 for the SONIC
Processor.

-25-

f) You now enter into the Main menu of the program.
Select 1) and enter in a filename for the transferred data.
Select 3) to check Eprom logger communications.

Give a Reset on the controller card and this should generate the Setup information
of the logger. If it is not the controller card that recorded the data check that the
no. of Boards is correct, no. of extra Chips and that the no. of bytes per Record are

correct.

Reset the directory by typing 'INIT-AFT' <cr> and then make the Next Free
Address at the end of the data by typing 'SEARCH' <cr>. This may take quite a few
minutes to complete .

g) Now press 'Escape’ to return to the main menu.
Select 2) to start transfer
In response to 'do you want to start transfer’ type Y cr

Now type 'DUMP-IBM' <cr> then answer N cr to the question 'do you want to
dump all files'.

Press 'Escape’

h) you should now see the NO. GOOD REC incrementing and the Hard disc on the PC
in operation.

i) On completion of the transfer you will be returned back to the main menu.

j) If you chose, you can examine the Binary data file with option 4) but you must go
through the whole data set to exit the option , once started.

k) Select option B) to convert the Binary file to ASCII
Enter filename of binary data
Enter new filename for ASCII data
Now the no. of records processed should be displayed.

1) When conversion is complete select option 6) to EXIT the eprom program and
return to DOS.

-26-
1. SPECIFICATION

1.1 Supplies

The Sonic Processor requires a +5 Volt supply at ~ 360 mA
The EPROM logger requires a +15 Volt supply at ~ 28 mA

Both of these supplies are normally provided by DC to DC convertors in the DC-DC Convertor
Unit.

1.2 Power Consumption

The power consumption of the Sonic Processor, complete with EPROM logger, is typically 2.25
Watts. The consumption including the DC-DC convertors is typically 142 mA at a primary bus
supply voltage of +24 Volts, or 3.4 Watts, giving a conversion efficiency of about 66%. Note
that this figure does not include the sensor power consumption.

1.3 Data Storage and Output

The spectral data and calculated parameters are stored on the EPFROM logger in the format
described in Appendix A.

The calculated parameters are oufput to the Formatter via the COM2 serial RS232 port in the
format described in Appendix B.

1.4 Sampling

The anemometer transducers are fired in sequence at intervals of 1 mS; the complete set of
firings to give 6 transit times (3 axes * 2 directions) takes 6 mS. Eight sets of transit times are
averaged for each reading, giving a total sampling duration of 48 mS, so that the effective
sampling rate is 20.83 Hz. The anemometer is operated in mode 1, in which the internally
stored calibrations are applied by the anemometer processor giving a set of calibrated 16 bit
U, V, W and C values for each sample. The anemometer also acquires the analogue compass
reading, H, on its Analogue Input #1; the analogue input is sampled 10 times per second, but a
18 bit value is output with each set of velocity data. The Sonic Processor software acquires a
total of 12288 sets of U, V, W, C and H readings over a period of about 590 seconds (nearly 10
minutes) starting at each quarter-hour, i.e. at 00, 15, 30 and 45 minutes past each hour.

The U, V and W values, although transmitted as 16 bit binary (two's complement) have the
range -6000 to +6000 , in units of c/s; a value of -10000 is transmitted if an error (such as
blocking of the path) occurs.

The speed of sound, C, value has the range 0 to 18500, in units of 2 cmV/s, giving a full scale of
370 my/s; again a value of -10000 is transmitted if an error (such as blocking of a path) occurs.

-27-

The heading, H, value has the range 0 to 5000, in units of mV, although permissible values lie
within the range 2048 to 4096, as described in 7.5.2, below.

1.5 Specification of Sensors

7.58.1 Anemometer

The anemometer is a Gill Instruments 3 axis asymmetrical research anemometer, mounted on
the buoy mast ring with its "North" marking pointing in the direction of the buoy reference
North mark,. This results in the wind entering the sensed volume via the clear aperture when
the buoy's wind vane is successfully aligning the buoy reference mark into the wind.

The sensor is mounted on a two part base which both waterproofs the base of the anemometer
housing and allows two separate Lemo connectors to be used for the Power/Digital Signal and
Analogue Input connections. The base is held by a clamp welded to North side of the mast

ring.

7.5.2 Compass

The buoy heading sensor (Compass) is a Digicourse gimballed unit with 8 bit Gray coded
parallel oufput; the unit is housed in the main buoy canister, with a key way to ensure correct

alignment relative to the buoy North.

The compass is sampled at a rate of 1 Hz and the latched output is converted to binary. The
binary ouifput is sent, via opto-isolators, to the Multimet system for logging and is converted to
an analogue voltage in the range +2.048 Volts to +4.096 Volts for acquisition by the
anemometer. This gives a compass count ranging from 2048 to 4096 digits, which is
converted to an 8 bit value by taking (count - 2048) / 8. The compass and the above interface
circuits are housed in a cylindrical unit; this unit is fully described in the Compass Unit
documentation

8. ACKNOWLEDGEMENTS

The development of this equipment was funded by the MAFF Flood and Coastal Defence
Division under commission FD0603.

9. REFERENCES

1. Griffiths, G. and Lewis, A. 1988 IOSDL EPROM Logger Handbook, unpublished manuscript.
2. Pascal, RW. 1993 Romdisk for SONIC ECAT system, unpublished manuscript.

3. Gill nstruments Litd. 1992 Solent Research Ultrasonic Anemometer, Product Specification
Issue 4.1

28

APPENDICES

Appendix A The EPROM Logger Data Storage Format

The format consists of a spectrum header, followed by the mean wind speed reading and 258
estimates of the form log] g(PSD * freq5/ 3). These are followed by a parameters header and,

finally, the computed parameters, i.e.
Spectrum Header
jiihhmmFFTSpd<CR> (where jj is Julian Day, hh is hour, mm is minute of start)
mw.ws<CR> (where mw.ws is mean resultant wind speed)
then 255 lines, each with the format:
+h.est<CR> (where h.est are spectral estimates
for the 2nd to the 256th line)
Parameters Header
jiihhmmPSDSpd<CR> (where jjj is Julian Day, hh is hour, mm is minute of start)
IDID<CR> (Sonic Sensor ID)
001<CR> (Records per file)
F1.F1<CR> (Lower frequency for averaging range)
F2.F2<CR> (Upper frequency for averaging range)
1<CR> (Sonic Mode)
Computed Parameters
mw.ws<CR> (where mw.ws is mean resultant wind speed)
+nm.ws<CR> (where +nm.ws is mean wind speed from North)
+emws<CR> (where +em.ws is mean wind speed from East)
+vm.ws<CR> (where +vm.ws is mean wind speed upwards)
cme.an<CR> (where cme.an is mean speed of sound)
hea.dg<CR> (where hea.dg is mean buoy heading)
+p.sdpsd<CR> (where +p.sdpsd is mean PSD over range F1 to F2)
+a.lalal<CR> (where +a.lalal is least squares fit 'a’' coefficient)
+b.bbbbbe+bbb<CR> (where +b.bbbbbe+bbb is least squares fit b’ coefficient)
END<CR><IF><CR>

making a total of 1920 characters, which are transferred to the EPROM logger in 15 blocks of
128 bytes.

-20-

Appendix B The Sonic Processor Serial Ontpnt Message
The message is output at approximately 12, 27, 42 and 57 minutes past the hour via the COM2
port at 2400 baud, 8 data bits, 1 stop bit, no parity. The message format is:

S00YYMMDDHHmMmSS00+P.SDMW . WS+NM.WS+EM. WS+VM. WSCME.ANHHH+A. 1F+B.BBE
+BBBT

where
S00 is the message header
YY is Year, e.g. (19)93
MM is Month (01 - 12)
DD is Day of the Month (01 - 31)
HH is Hour (00 - 23)
mm is Minutes (00 - 59)
SSis Seconds (00 - 59)
00 is the Date/Time terminator
+P.SD is the mean PSD value
MW.WS is the mean Wind Speed in m/s
+NM.WS is the North Vector Average Wind Speed in m/s
+EM.WS is the East Vector Average Wind Speed in m/s
+VM.WS is the Vertical Vector Average Wind Speed in m/s
CME AN is the mean Speed of Sound in m/s
HHH is the mean Buoy Heading in degrees
+A.1F is the PSD vs Frequency regression fit a coefficient
+B.BBE+BBB is the PSD vs Frequency regression fit b coefficient in scientific notation
T is the message terminator

Totallength 7

-30-

Appendix C Source Code for SETTIME Application

[RFdkk ko kkdokkkkdkiokkkokk ki SETTIME, G sk bk kdedek ke kdedokok sk kok deiok ook

Execution of this program is included in the autoexec.bat file
for the sonic buoy sonic processor. It allows the dsp processor
clock to be optionally reset at boot up time. This is done by
connecting a PC running the GWBasic program "settime.bas" to
the COM2 port.

The DSP time is then set to the PC time.

If the PC is not connected, this program times out.

The autoexec then runs the sonic acg/processing prog fitc2.

Version 1

CHC September 1891

\‘k*******************‘k**'k*‘k***’k**************************************/

#include <stdio.h>
#include <dos.h>
#include <bios h>

main()

char rsout[45]; /* string sent via serial port */

char stbuf[35]; /* string buffer used for conversions */
long loop_ctr; /* used for time out */

struct dosdate_t date;
struct dostime_t time;

unsigned status, data;

int ch, ch_hit, port=1; /* port = 0 for COM1, =1 for COM2 */

/* initialise com?2 port, 2400 baud, 8bit data, no parity, 1 stop bit */
data = (COM_CHRS8 | _COM_STOP!1 | _COM_NOPARITY | _COM_2400);

_bios_serialcom(COM_INIT, port, data);

/* get calculated date/time and format into string rsout */

_dos_getdate{&date);
_dos_gettime(&time);

strepy(rsout, "Date: *);
itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, */);

itoa(date.month, stbuf, 10);
strcat(rsout, stbuf);

-31-

strcat(rsout, "/");

itoa(date.year - 1900, stbuf, 10);
strcat(rsout, stbuf);

strcat(rsout, ' Time: ");

itoa(time hour, stbuf, 10);
strcat(rsout, stbuf);

strcat(rsout, ":");

itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, ":");

itoa(time.second, stbuf, 10);

strcat(rsout, stbuf);

strecat(rsout, “Q");

/* end string with a "Q" and send it to the external PC */

printf(*Sending %s to COM%d\n", rsout, port + 1);
loop_ctr =0;

for (ch = 0; ch < strlen(rsout); ch++)

{
do

{
/* test until transmit buffer is empty, up to 100 tries */
status = 0x2000 & _bios_serialcom(COM_STATUS, port, 0);
loop_ctr++;
}
while ((status = 0x2000) && (loop_ctr < 100));

/* send character but abort program if port times out */
if(_bios_serialcom(_COM_SEND, port, rsout[ch]) > Ox7fff)

exit(0);

/* terminate for loop if port times out */
if ((status & 0x8000) == 0x8000)

{
printf("RS232 COM%d timed out\n", port + 1);

break;
}
}
ch=0;
loop_ctr=0;

/* Now get response date/time string sent by external PC, if connected */
do

/* get received characters and assemble into string, until LF detected,
- up to 10000 tries */

status = 0x100 & _bios_serialcom(COM_STATUS, port, 0);

if (status == 0x100) /* receive buifer contains character(s) */
/* get and print a received character */
ch_hit = Oxff & _bios_serialcom(_COM_RECEIVE, port, 0);
printf(*%c", ch_hit);

/* if character is a "D", reset string buffer pointer */

-32-

if (ch_hit == 68)
{
ch=0;

}
/* put character into string buffer */
stbuf[ch] = ch_hit;
ch++;

}

loop_ctr++;
}
while ((ch_hit {= 10) && (loop_ctr < 10000));

/* add a string terminator */
stbuf[ch] = 0;

/* print received string and load the date and time structures with received values */
printf(\n%s\n", stbuf);

date.month = 10 * (stbuf[5] - 48) + stbuf6] - 48;

date.day = 10 * (stbuff8] - 48) + stbuf[9] - 48;

date.year =1900 + 10 * (stbuf[13] - 48) + stbuf[14] - 48;

time.hour = 10 * (stbuf[21] - 48) + stbuf[22] - 48;

time.minute = 10 * (stbuf[24] - 48) + stbuff25] - 48;

time.second = 10 * (stbuf[27] - 48) + stbuf[28] - 48;

if (loop_ctr < 10000)

/* set the Sonic processor date */
if (_dos_setdate(&date) 1= 0)

printf("Error in date set\n");

/* set the Sonic processor time */
if (_dos_settime(&time) !=0)
{

printf('Error in time set\n");
}

/* Now assemble the received date/time into string rsout and send it back to the external PC as

confirmation */
strepy(rsout, "Date: *);

itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, */);

itoa(date.month, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, '/);

itoa(date.year - 1900, stbuf, 10);
strcat(rsout, stbuf);

strcat(rsout, * Time: *);
itoa(time.hour, stbuf, 10);
strcat(rsout, stbuf);
streat(rsout, ":*);
itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "*);

itoa(time.second, stbuf, 10);

-33-

strcat(rsout, stbuf);
strcat(rsout, "Q");

printf("Sending %s to COM%d\n", rsout, port + 1);

for (ch = 0; ch < strlen(rsout); ch++)

{
do

{
status = 0x2000 & _bios_serialcom(COM_STATUS, port, 0);
}

while (status = 0x2000);

_bios_serialcom(_COM_SEND, port, rsout[ch]);
if ((status & 0x8000) == 0x8000)
{

printf("RS232 COM%d timed out\n", port + 1);
break;
}
}
}

Appendix D.1 Source Code for FFTC2 Application

/**

Program FFTC4.C
Version 1.0 August 1993

Author CHC
Compile using command line:

acl /AM /Zr /FPi81T fitc4.c /F 9000 mlibe7 lib
Rename as FFTC2 EXE for use with standard autoexec

Sonic processing program: for use with Sonic Buoy, giving
PRN files to EPROM logger and COM2 port o/p to formatter.

Runs on ECAT+ECAT-X or on 286/386+maths co-processor
Install as FFTC2.EXE in ROMdisk together with FASTCOM.EXE
and SETTIME.EXE for ECAT configuration and RTCN.EXE for
DOS clock updating

VDU output can be removed by setting DISPLAY to 0

**/

#include <stdio.h>
#include <stdlib . h>
#include <math.h>
#include <time.h>
#include <conio.h>
#include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <process.h>
#include <dos.h>
#include<bios.h>
#include<malloc.h>

#define DISPLAY 1

-34.

#define RATE 20.83

#define SECTIONS 12 /* = number of sections to be FFI'd */

#define LINES 256 /* = half the effective no. of samples per section */
#defineR_TO_D 57.29578

#define pi 3.141592654

#define FREQ!1 2.0

#define FREQ?2 4.0

#define RAMFILE "c\\testfile"

/* filename for raw data in RAMdisk */

#pragma check_stack(on)
#pragma check_pointer(on)

typedef enum {FALSE, TRUE} boolean;

/***-k-k**-k*** Punction deClaIaﬁOIlS -k***********/
char * aform(int, int);
char * aform1(double, char *, double, double);
double dcfilter(int);
void fourl (int);
double fitconsts(int, int, int *, int *, int *, double *, double *);
int getdat(int, int, const char *, char *, double *, double *,

double *, double *, double *, double *, double *);
void far harderror_handler(unsigned, unsigned, unsigned far *);
double regres(int, double *, double *, double *, double *, double *, double *);
void send_rs232(char *, double, double, double, double, double,

double, double, double, double);

void waitl (void);
void wait2(void);
char * wait_start(int, int *, int *),
void window(int, double, double);

void show_errors(char *);
void wipe_line(int);

/**********Global Vaﬁables**********/

char dum_ch[1024]; /* added to stop far pointer errors in eprom write */
char eprom[2048];

char buffer[130];

char strval[25];

char message[85];

char julian[10];

char ser_no[12];

chartenv env;

FILE *fh;

double a[4 * LINES + 2], p[LINES + 2]; /* double necessary for precision */
double fu[LINES + 2]; /* fu[1 =F() in PKT FSprog */

int rows = 24;

unsigned char error_flag;

unsigned lastcomp = 0;

/*******************Start Of Majn*******************/
main()

char *ptr;
char **g = &ptr;

char samples[10];
char gilltime[40];

-35-

char subhead[40] = "Section: "
char fft_sec[10];

char head[40] = “Last Start";
char oi_comm[20];

char spec_file[25], spec_ffile[25], spec_{lfile[20], spec_{ifile[20];
char raw_filename[20];

char baud[5], son_mode[5];

char back up[30];

char sonic_id[6];

double al, a2, b;

double buoy_heading, c_mean, cos_mean, den, dfr, dummy, east_mean;
double fact, fm, fp, f1, 12, fr1, fr2;

double inv_freq, mean, north mean, psd, pl, p2;

double r, rmsl, scale_x, scale_y, sea, seb, sin_mean, sumw, vert_mean;

double yvalue[LINES + 2];

double psd_set[101];
double meanws_set[101];

int fit, gflag, good_reads, i, j, j2;

int mode = _VRESI6COLOR,;

int n, nans4, nrec = 2 * LINES;

int nr2, nr23, nr24, nspec = LINES, qtr, re, sample;

int xp, yp;
unsigned good_total, status;

[rRERRRRRTRRkkRkRRkkkRhh kR R START OF CODE#***ddkkrkdhidirkkikhhkhikhihiiik/

#if DISPLAY ==

{
system(“cls");
printf("Buoy Acquisition Program\n");

}
#endif
_harderr(harderror_handler); /* set up hardware error handling */

/* set timezone to GMT */
if (putenv(*TZ=CGMT") ==-1)

{
#if DISPLAY ==

{
printf("Error in setting TZ\n");
}

#endif

retun 0;

}
tzset();
[Fr*xxFErxx St up parameters for FFT, etc **##xxriik/

sumw = fitconsts(nrec, nspec, &nr2, &nr23, &nr24, &fm, &fp);
/* nr2 is total number of samples per section */

nans4 = nspec/4;
strepy(baud, "1"); /* 4800 baud */

-36-

strepy(sonic_id, "XXXX");
strcpy(son_mode, "1%);

inv_freq = (double) logl0((double) nrec / RATE);
/* Calculate frequencies for binning */

fu[l] =0.0;

for (i = 2;1 <=nspec; it++)

§u[1'] = 10.0 *log10((double) RATE * (i-1)/(2 * nspec));

ltoa((long) SECTIONS * (long) nr2, samples, 10);

#if DISPLAY ==
{
printf("End of setup\n™);
}
#endif
[FrkkkFxkxk*E gtart of continuous loop *#*xkk&kkkkk/
do
{
printf("\a"); /* Bell for Watchdog */
strepy(julian, wait_start(rows, &sample, &qtr));
printf("\a"); /* Bell for Watchdog */

strepy(message,™);

mean = 0.0;

for (i=1;i <=nspec; i++) /* Initialise p[] array */
{
pll =0,
}

[¥>>>>>>>> call fastcom.exe, datafile c:\testfile, mode 1, 4800 baud,
SECTIONS*nr2 samples, 1 analogue input >>>>>>>>%/

#if DISPLAY ==

wipe_line(rows);

printf(Record %d - getting %s samples from Sonic ~ (Wait)",
sample, samples);

}

#endif

if (spawnl(P_WAIT, "fastcom.exe", "fastcom.exe”,
RAMFILE, son_mode, baud, samples, "1", NULL) == -1)

{
#if DISPLAY ==

{
printf("Could not run FASTCOM - Fatal Error\n®);
}

#endif

exit(0);

}

#if DISPLAY ==

{

system("cls");

prinff("Samples acquired . . . Starting to Process");
}

#endif

-37-

wait1();

i S Start actual calcs Kkdkdokkkkkkkkkikkkkk]

good_reads = 0;

north mean=20.;

east mean=0.;

vert mean =0

¢ mean=20.;

sin_mean =0;

cos_mean =0,

for (fit = 1; fit <= SECTIONS; fit++)

/* Get data section, calc mean, apply window, do fit */
if (getdat(fit, nr2, RAMFILE, gilltime, &dummy, &north_mean,
&east_mean, &vert_mean, &c_mean, &sin_mean, &cos_mean) == 0)
{
#if DISPLAY ==
{
printf("#*);
}
#endif
good_reads++;
mean += dcfilter(nr2);
window(nrec, fm, fp);
fourl (nrec);

/* convert complex estimates to power */
a[1]=a[l] * a[1] + a[2] * a[2];

for (1 = 2; j <= nspec; j++)
J'(Z =j*2
afi] = a[j2] * a[j2] + afi2 - 1] * a[j2 - 1]
+ a[nr24 - j2] * a[nr24 - j2]
+ a[nr23 - j2] * a[nr23 - j2];
}

den = sumw * nr2; /* corrected sumw 11/02/92 */

/* accumulate power estimates */
for (i= 1,1 <=nspec; i++)

p[i] +=al[i];
if (a[i] <=0.)
q(#if DISPLAY ==
;yrintf(“Error a[%d] %e\n", i, a[i]);

#endif
afi]=0,;

else
{
a[i] = logl0(afil/den);
)
yvalue[i] = (double) afi];
}

/* effectively multiply spectrum by £45/3 (add log10(freq~5/3))

-38-

and convert to PSD by adding logl 0(1/estimate spectral width) */
for (i = 2; i<=nspec; i++) /*ie. 1=96->256 */

afi] += 1.66666667 *1logl0((i-1) * RATE / nrec) + inv_freq;
yvalue[i] = (double) a[il;
}

} /* end of if(getdat......) block */
else
f‘#—if DISPLAY ==
1(3rintf("\a"); /* data faulty */
#enc}ijf
}) /* end of fit loop */
fclose(th); /* close testfile after all sections read */

waitl();
if (good_reads == 0)
{

#if DISPLAY ==

{
_settextposition(rows / 2, 20);
printf("FATAL ERROR:- BAD DATA FROM SONICwn");

}
#endif
exit(0); /* abort from program - leads to re-boot */

}

/* Correct power estimates for windowing, etc */
den = sumw * nr2 * good_reads; /* corrected sumw 11/02/92 */
for (j = 1;j <= nspec; j++)

{
pli] /= den;
}

mean /= good_reads;
good._total = (unsigned) good_reads * nr2;

north_mean /= good_total;
east_mean /= good_total;
vert_mean /= good_total;
¢_mean /= good_total;
sin_mean /= good_total;
cos_mean /= good_total;
buoy_heading = 30 - R_TO_D * atan?(sin_mean, cos_mean);
if (buoy_heading < 0.)
{

buoy_heading += 360.;
if (buoy_heading > 360.)

{

buoy_heading -= 360.;

#if DISPLAY ==

-39-

_settextposition(rows, 10);
printf(")
)
#endif
waitl();
for (i = 2; 1 <= nspec; i++)
{
/* convert a[i] to PSD */
fact = pow((double) (i - 1) * RATE / nrec, 1.66666667) * nrec / RATE,
p[i] *=fact;
a[i] = loglO(p[i]);
yvaluefi] = afi];
}
#if DISPLAY ==]
{
printf("Preparing Spectrum for EPROM\n");
}
#Hendif
strepy(eprorm, julian);
streat(eprom, "FFTSpd\n");
if (sprintf(strval, "%05.2An", mean) != 6)
{
strepy(strval, "99.95\n");
}
strcat(eprom, strval);
for (i = 2;1 <= nspec; i++)
{
if (sprintf(strval, "%6+06.3f\n", yvalue[i]) 1= 7)
{
strepy(strval, "+8999.\n");
}

strcat(eprom, strval);

wait] ();

/* Fit regression line */
psd = regres(nrec, &r, &rmsl, &sea, &seb, &al, &b);

psd =log10(psd);

sea = loglO(fabs(sea));
seb = logl0(fabs(seb));
if(al >0.)

al =logl0(al);
)

-40-

else
a2 =al;
al =-9.99;
}

if (sprintf(strval, "%sPSDSpd\nt", julian) = 14)
{
strepy(strval, "jjjhhmmPSDSpd\n");
}
streat{eprom, strval);
if (sprintf(strval, "%s\n%.3d\n%08.2An%085.26n%s\n",
sonic_id, 1, FREQ1, FREQ2, son_mode) != 23)
{
strepy(strval, X3X\nRRR\nfl £1\nf2.f2\nM\n");
)

strcat(eprom, strval);
if (sprintf(strval, "%05.2An", mean) != 6)

{
strepy(strval, "99.9%\n");

strcat(eprom, strval);
if (sprintf(strval, "%+06.2fn", north mean) != 7)

{
strepy(strval, +99.99\n");

strcat(eprom, strval);
if (sprintf(strval, "%+06.2f\n", east_mean) |= 7)

strepy(strval, "+89.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+06.20n", vert_mean) != 7)
{

strepy(strval, *+99.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%06.2fn", c_mean) = 7)

{
strepy(strval, "999.9%\n");
)

strcat(eprom, strval);
if (sprintf(strval, "%06.2f\n", buoy_heading) |=7)

{
strepy(strval, "999.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+08.5n", psd) != 9)
{

strepy(strval, *+9.89999\n");
}

strcat(eprom, sirval);
if (sprintf(strval, "%+08.50n", al) I= 8)

{
strepy(strval, "+9.99999\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+13.5e\n", b) I= 14)

{
strepy(strval, "+9.99999e+99%\n");
}

strcat(eprom, strval);

-41-

strcat(eprom, "END\n\n");
#if DISPLAY ==

§or (1=0;1<1920;i++)
i{f(*(eprom +i)==0)
;n'ntf(“Error Y
}
#enc}ijf
if (strlen(eprom) |= 1920) /* 12.9 Mbytes for 70 days */
#if DISPLAY ==
;ﬁntf("Formatﬁng error in EPROM data\n");

}
#endif
exit(0);

else
{
#if DISPLAY ==
{
printf("Writing data to EPROM\n");
}
#endif
status = _bios_printer(_ PRINTER_STATUS, 0, 0);
printf(‘'Initial status %d\n", status); /* debug */
i=0;
while (((status & 0x08) >0) && (i < 20))

/* bit 3 is inverse of the logger LAV line -
Reset logger up to 20 times until LAV goes high */

status = _bios_printer(PRINTER_INIT, 0, 0);
waitl();
i+
}
#if DISPLAY ==
{
printf("Status %d Tries %d\n", status, i);
}
#endif
if (i < 20)
{
for (= 0;j < 19820;j += 128) /* 15 writes of 128 bytes */
{
#if DISPLAY ==
{
printf("%d ¥, j);

}
#endif
for n=0;n< 128; n++)

{
status = bios_printer(PRINTER_WRITE, 0,

(unsigned) * (eprom + j + n));
#if DISPLAY ==

{
printf(*%02x ", status);
}

42~

#endif
/* for (i= 0;1i < 5000; i++); */

}
/* wait2(); */
/* check status as an alternative to wait2() -
Wait for up to 2.5 sec for LAV (bit 3) to go high */
i=0;
status = _bios_printer(PRINTER STATUS, 0, 0);
while (((status & 0x08) >0) && (i <5))

{
status = _bios_printer(PRINTER STATUS, 0, 0);

waitl();
i++;
}

#if DISPLAY ==
{
printf("Status %d\n", status);
)

#endif

)

}
}
#if DISPLAY ==

{

[* system("cls"); */

_settextposition{rows - 3, 0);

printf("Mean WS=%5.2fm/s, PSD*f*5/3=%+5.2f (%d-%dHz), Fit=%+5.2f\
%+10.2e*x " mean, psd, (int) FREQI, (int) FREQ?Z, al, b);

_settextposition(rows - 2, 0);
printf(*(N=%+6.2f:E=%+6.2fV=%+6.2f: C=%6.2fm/s:Head=%5.1{)\n",
north_mean, east_mean, vert_mean, c_mean, buoy_heading);
printf("\nsending data to formatter\n®);
)
#endif
send_rs232(gilltime, psd, mean, north_mean, east_mean, vert_mean,
c_mean, buoy_heading, al, b);
#if DISPLAY ==
{
system(“cls");
)
#endif
)
while (TRUE); /* end of do loop */
/* _settextposition(rows - 1,0); */

exit(0);
} /* end of main function */

/**************** START OF FUNCTION DEF[NI‘I‘IONS **************'k/
[exkxikinix FFTCONSTS sets parameters for fit *#tkirit/

double fficonsts(int nrec, int nspec, int *nr2, int *nr23, int *nr24,
double *fm, double *ip)
{

ntj;
double sumw, w;
double alpha = 31.41592654/nrec;

-43-

*nr2 = nrec * 2;
*nr24 = *nr2 + 4;
Tr23 = *nr2 + 3;

*fm = nspec - .5;
*fp = 1/(nspec + .5);

sumw = 0.;
/* Calculate weights for partial cosine taper */
for (j = 1;j <= LINES; j++)
i(f(j <= nrec/10)
;.{surnw += 0.5 * pow(l. + cos(alpha * (LINES -j)), 2.);

else

{

sumw += 2,;
}
}

return sumw;

}

[rEdkkkrkwkxkx GETDAT loads data from diskfile **¥*¥¥xxkakk/
int getdat(int fft, int nr2, const char *ram_file, char *ch,
double *addr_dummy, double *addr north _mean,
double *addr east_mean, double *addr_vert mean,
double *addr_¢_mean, double *addr_ssum, double *addr_csum)
double avl, av2, av3, c, cr = cos(.5236), sr = sin(.5236), u, v, w, res;
double If ck=0.5*0.149 * 29491200;
/* = half path length (in m) * counting clock frequency */
int dec, sign;
inti, j, k, theta;
int dbufi[10];
/* In model, dbuff holds 10 bytes velocity: 4 off (msbyte, Isbyte) */
/* These are 100*u, 100*v, 100*w, 50*c in m/s, plus comp_rdg (0-5000) */
unsigned comp;
if(ft==1)
{
if ((fh = fopen(ram_file, "rb")) = 0)

/* read header Mode<sp> */
for (i=0;i<5;i++)

§getc (th);
if (féetc(ﬂ'l) I='1')
#if DISPLAY ==
§{3rintf("\a") ;

#Hendif

-44-

return(l); /* abort if not Mode 1 */
}
for (=0;i<8;it++) /* <If>Analog<sp> */
{
fgetc(th);

if (fgetc(fh) 1= '1")
{

return(1); /* abort if Analog Channels not 1 */
fgetc(fh); /* read the <If> */
i=0;
do

{
ch[i] = (char) fgetc(th);
i+,

}
while ((ch[i - 1] I= 0x0a) && (i < 40));

chf[i-1]1=0; /* replace LF with string terminator */
/* Resulting string is:
"Time hh:mm:ss Date mm/dd/yy” */
}
else
{
#if DISPLAY ==

wipe_line(rows);
printf("*Could not open file\n");

}
#endif
return(l);
} /* end of block for fit == 1 #/
/* for all values of fit */

for (j=-1;j<=0;j++)
for i=j+2;i<=nr2;i+=2)

{
/* get 3 * 2byte vel compts plus 1 * 2byte vel of sound plus 2byte comp */
for (k=0;k <= 9; k++)

{
dbuffik] = fgetc(th);
if (ferror(th) 1= 0)

{

return(2);

}

/* convert from motorola format to int format */
u=0.01* (int) (dbuff[1] + (dbuff[0] << 8));
v =0.01 * (int) (dbuff[3] + (dbuff[2] << 8));
w=0.01 * (int) (dbuff{5] + (dbuff[4] << 8));
c=0.02 * (int) (dbuff[7] + (dbuff[6] << 8));

-45-

if ((dbufff7] == 0xf0) && (dbuff[8] == 0xd8))
ietum(Z) ; /* path was blocked on 1 or more axes */
if ((13>60.) [l (u<-60) 11 (v>60)I1! w<-60)Il (w>60)I1l(w<-60))
ietum 3
/* compass 8 bit value = (sonic count - 2048) / 8
i.e. (sonic Isbyte / 8) + (sonic msbyte * 256 / 8) - 256 */

comp = (dbuff[9] >> 3) + (dbuff[8] << 5) - 256;
if (comp < 0)
{

comp = 0;

if (cgmp > 255)
f:omp = 258;

if ((i} > 1) && (abs(comp -lastcomp) > 64) && (abs(comp - lastcomp) < 192))
gomp =0;

lastcomp = comp; /* NB comp range 0-255 */

sr = sin(.5236 - 0.0245437 * cornp);
cr = cos(.5236 - 0.0245437 * comp);

addr north mean += (u cr + v * sr);

*addr_east mean += (v ¥ cr - u * sr);

*addr vert mean +=w;

/* above values are vector averaged north, east and vertical compts */

*addr ¢ _mean +=c¢;

*addr_ssum +=sr;
*addr_csum +=cr;

/* put resultant horiz vel. in array af] (start address a_ptr) */
/* a[i] = sqrt(u *u+ v *v);, removed w2 term for this vn */
afi] =sqgrtu*u+v*v+w*w), /* added w2 term for this vn */
/* printf("%5.3fn", afi]); */
/* end of iloop */
} /* end of j loop */

return(0);
}

/*returns O if ok
1 if failure to open file or header incorrect
2 if error during read
3 if data out of range
(also returns array of nr2 resultant wind speedsin af]) */

-46-

[rxsrxxrxksix DCFILTER removes mean from data **#&kikaksxs/

double dcfilter(int nr2)
{

inti;

double tot = 0,;

for (i=1;i<=nr2;i++)
tot += a[i];

}
tot = tot/nr2;
for (i=1;i<=nr2;i++)

a[i] -= tot;

retum tot;

}

[rwwdksxkkxkix WINDOW applies partial cosine data window **#¥#¥kkaikx/
void window(int nrec, double fm, double fp)

intj, j2, nr2 = 2 * nrec;
double alpha = 31.41592654/nrec, w;

for (j = 1;j <= nrec/2; j++)
{
if (j <= nrec/10)

{

j2=2%*j;

w = 0.5 * (1 + cos(alpha * (LINES -j)));
afj2] *=w;

afjiz - 11 *=w;

afnr2 -j2 + 1] *=w;

a[nr2 -j2 + 2] *=w,

/************ FOURI does fft Fkkkkkkkkikk/

void fourl (int nrec)

inti,j=1,], m,n=2 *nrec, s;
double tr, i, te, t, wpr, wpi, wr, wi, wi;

for(i=1;i<=n;i+=2)

{
if(>i)
{
tr = afj];
ti=afj+ 1];
afj] = afil;
afj+ 1] =afi+ 1];
afi] = tr;
afi + 1] = ti;

A7

m = (int) n/2;
while ((m >= 2) && (> m))
{

j-=m;
m/=2;

o)

J+=m;

}

1=2;
while (m>1)
{

s=2%*1
t=2*pif];

te = sin(.5*t);
wpr = -2 * te * te;
wpi = sin(t);
wr=1.;

wi=0,;

for(m=1,m<=],m+=2)

{

for (=m;i<=n;i+=8)
(.
j=i+1];

r=wr*afjj-wi*afj+1}
ti=wr*alj+ 1]+ wi*efj];
afj] = aff] - tr;
afj+1]=afi+1]-4;
afi] +=1r;
afi+ 1] +=t;
}
wt = wr,
Wr += Wr * wpr - wi * wpj;
wi+=wi * wpr + wt * wpi;
}

1=g5;

}

/************ REGRES fits regIeSSiUﬂ Iine kkkkkkkkkkik|

double regres(int nrec, double *r, double *rmsl, double *sea, double *seb,
double *al, double *b)

inti, il,i2, n;

double psd, xm, xn, ym, ynl;

/* have to use ynl as yn appears to be in the include files */

doublesx =0.,sy=0., sxx=0., sxy =0, syy = 0., ssg, ssb, ssr;

il = (int) (1 + (float) (FREQ1 * nrec/RATE));
i2 = (int) (1 + (float) (FREQ2Z * nrec/RATE));

psd=0,;

n=0;

for (1=1il;i <=1i2;i++)
{
psd += p(i];
n++;

}

_48-

psd /=n; /* mean PSD over range FREQ! to FREQ2 */

xm = fufl];

ym =p[l];
n-—;

for (=il + 1;1<=1i2;i++)

xn = fufi] - xm;

ynl = p[i] - ym;

SX = SX + Xn;

sy = sy + ynl,;

sxXx = sxx + xn * xn;
sXy = sxy +xn * ynl;
syy = syy +ynl * ynl;
}

SXX = SXX - (sx * sx) / (double) n;
SXy = XY - (sx * sy) / (double) n;
xm = xm + sx / (double) n;

Syy = §yy - (sy * sy) / (double) n;

*al = ym + sy / (double) n;
*b = sxy / sxx;

ssa = *al * *al * (double) n;
ssb = *b * sxy;

SSr = syy - ssb;

*al = *al - *b * xm;

*rmsl = ssr/ (double) (n - 2);

if (*rms1 < 0)
{
#if DISPLAY ==
{
printf("RMS negative (%oe)- is data OK?\n", *rmsl);

}
#endif
*msl =0,
*r=0;
*sea = 10000.;
*seb = 10000.;
}

else

{

*r = (double) (sxy / sqrt(sxx * syy));

*sea = (double) sqrt((double) *rmsl / (double) n);
*seb = (double) sqrt((double) *rms1 / sxx),

*rmsl = (double) sqrt((double) *rmsl);

return psd;

}

[rRddkdkkxrkxx WATT START waits for start of next process ##+ikkkkkdx/
char * wait_start(int rows, int * sample_no, int * qir)

{

char cur_time[10], julian[10], last_time[107;
div_t quarters;

int sample = 0;

time_t thow;

-49-

struct tm *gmt;
#if DISPLAY ==

_settextposition(rows,0);
printf(*Waiting for next Record Start . . . \n");
}
#Hendif
do
{
time(&tnow);
gmt = gmtime(&mow);
quarters = div(gmt->tm_min, 18);
_strtime(cur_time);
if (cur_time[7] |= last_time[7])
{

#if DISPLAY ==
{
_settextposition(rows, 46);
printf("Day %d: %s *, 1 + gmt->tm_yday, cur_time);
}
#endif

}
strepy(last_time, cur_time);

if ((quarters.quot == 3) && (gmt->tm_hour == 23)
&& (gmt->tm_min < §9) && (sample == 0))

{
/* reset the DOS clock just before midnight
(don't risk it if too close to midnight) */
if (spawnl(P_WAIT, "a:\\rtcn.exe", "a:\\rtcn.exe", "2", NULL) == -1)

iﬁf DISPLAY ==
é)ﬁntf("cquld not run RTCN\n");
#enc}iif
sample = 1; /* to prevent multiple setting */

}
)
while ((quartersrem =0) || (gmt->tm_sec!=0));

strepy(julian, aform((1 + gmt->tm_yday), 3));
strcat(julian, aform((gmt->tm_hour), 2));
strcat(julian, aform((gmt->tm_min), 2));

tnow /= 900;

/* current time in 1/4 hrs since 00:00:00 Jan 1, 1970 */
sample = (int) (tnow % (long) 100);

/* sample runs from 0 to 499 (cyclically) 1/4 hrly */

*sample_no = sample;
*qtr = quarters.quot;

return julian;
}

[FrFxxxRxRkxx WAIT] waits for 1/2 second **¥kkkkkiiks/
void waitl ()

clock t mow, tnext:

-50-

tnow = clock();
do
{
mext = clock();

}
while ((double)(tnext - tnow)/CLK_TCK <= 0.5);
}

[Frxxkxkdkikx . AFORM formats a number in specified format ****¥&xsdiax/
char * aform(inti var, int n_char)

{

char asc_var[4] = "000", temp[3];
int1 var,

f({var<=0)

asc_var[n_char] = "\0';
return asc_var;

}

else

{
1 var = (int) (1 + logl0((double) i_var) };
if (((n_char - 1_var) < 4) && ((n_char -1 var) >-1))

{
itoa(i_var, temp, 10);
strcpy(asc_var + n_char -1 var, temp);

}

return asc_var;

}
[rrxxkrsikxxx HARDERROR HANDLER handles hardware errors ****###asskis/

void far harderror_handler(unsigned deverror, unsigned errcode, unsigned far *devhdr)

char dletter, num[5];
error_flag=1,

if (strlen(message) > 40)
{

strcpy(message, ");

if ((deverror & 0x8000) ==0)
switch(deverror & 0xff)

case 0:
strcat(message, "Drive A "),
break;

case 1:
strcat(message, "Drive B ");
break;

case 2:
strcat(message, "Drive C");
break;

}
strcat(message, " ERROR:-");

-51-

itoa(errcode & Oxff, num, 10);
switch(errcode & 0xff)
{

case 0:
strcat(message, " Write Prot'd");
break;

case 2:
strcat(message, " Not Ready");
break;

case 9
strcat(message, " No Paper");
break;

case 10:
strcat(message, " Write Fault");
break;

case 12:
strcat(message, " Gen Failure");
break;

default:
strcat(message, " Code *);
strcat(message, num);

break;
}
switch(deverror & 0x0600)
{
case O:
strcat(message, "-MSDOS: *);
break;
case 0x0200:
strcat(message, "-FAT: ");
break:
case 0x0400:
strcat(message, "-Directory: *);
break;
case 0x0600:
strcat(message, "-Data Area: ");
break;
}
}
else

{
strcpy(message, “Non Disk /O Error:);
if((*(devhdr + 4) & 0x8000) == 0)

{

strcat(message, "Bad Image of FAT: *);
else

strcat(message, "Character Device: ");

}
/* printf("%s\n", message); */

hardretn(HARDERR IGNORE):;
}

[rrxdxdkwdrik CHECK_CACHE opens raw data copy file **###siaxik/
int check_cache(char *julian, char *raw_filename, FILE *f cache)

{

strepy(raw_filename, "fF");
strcat(raw_filename, julian);

-52-

strcat(raw_filename, "raw");

if ((f_cache = fopen(raw_filename, "w+")) == NULL)
{
#if DISPLAY ==

{
_settextposition(0, 0);
printf("***** COULD NOT OPEN RAW DATA FILE IN CACHE****¥\n");

}
#endif

return 0;
}

else

fclose(f_cache);
return 1;

}
}

void wipe_line(int row)
{
#if DISPLAY ==

_settextposition(row,1);
printf(* i
_settextposition(row,10);

}
#endif

}

[FrxxFixxrikk AFORMI formats with specified %spec and range *#****#*#¥ii/
char * aforml(double param, char * f str, double max, double min)

{
char buffer[15];
int ch;

if ((param > min) && (param < max))
sprintf(buffer, { str, param);
else

{
sprintf(buffer, {_str, 0);
}

return buffer;
}

[rwskwxxixsix SEND_RS232 sends data to formatter via COM2 *tikkiiions/

void send_rs232(char *gilltime, double psd, double mean,
double north mean, double east_mean, double vert_mean,
double c_mean, double buoy_heading, double al, double b)

{

char rsout[75];

char buffer[6];

unsigned status, data;

int ch;

/* initialise com?2 port, 2400 baud, 8bit data, no parity, 1 stop bit */

data = (_COM_CHR8 | _COM_STOP1 | _COM_NOPARITY | _COM_2400);

-53-

_bios_serialcom(COM_INIT, 1, data);

/* assemble message for formatter */

strcpy(rsout, "S00%;

if ((strespn(gillime, "T") == 0) && (strcspn(gilltime, 'D") == 14)
&& (strespn(gilltime, /M) == 21))
{
strepy(rsout + 3, gilltime + 25);
strepy(rsout + 5, gilltime + 19);
strepy(rsout + 7, gilltime + 22);
strepy(rsout + 9, gilltime + §);
strepy(rsout + 11, gilitime + 8);
strepy(rsout + 13, gilltime + 11);
strepy(rsout + 15, "00");
strepy(rsout + 17, aforml (psd, *%+05.2f, 10., -10.));
strepy(rsout + 22, aform1(mean, "%05.2f", 100., 0.));
strepy(rsout + 27, aform1 (north_mean, "%+06.2f", 100., -100.));
strepy(rsout + 33, aform1 (east_mean, "%+06.2f", 100., -100.));
strepy(rsout + 39, aform1(vert mean, "%+06.2f", 100., -100.));
strepy(rsout + 45, aform1(c_mean, "%06.2f", 1000., 0.));
strepy(rsout + 51, aform1 (buoy_heading, "%03.0f', 360., 0.));
strepy(rsout + 54, aforml(al, *6+05.2f, 10., -10.));

strepy(rsout + 59, aform1(b, "%+10.2E% 1., -1.));
/* must be capital E for messagecheck to accept it in newform */

strcat(rsout + 69, "T");
}

else

{

strcat(rsout, "90010100000000+0.0000.00+00.00+00.00T");

/* strcat(rsout, "90010100000000+0.0000.00+00.00+00.00+00.00000.00000\
+0.00+0.00E+000T™); */

}

for (ch = 0; ch < strlen(rsout); ch++)
{
do

{
status = 0x2000 & _bios_serialcom(COM_STATUS, 1, 0);

}
while (status = 0x2000);

status = _bios_serialcom(COM_SEND, 1, rsout{ch]);
if ((status & 0x8000) == 0x8000)

{

#if DISPLAY ==
{
printf('RS232 COM2 timed out\n");
}

#endif

break;
}

-B4-

JrxFKKdkkkkkk WATT2 waits for 2 seconds *rkskrkkxxdk/
void wait2(void)
clock_t tnow, thext;

tnow = clock();
do

{
tnext = clock();

}
while ((mext - mow) / CLK_TCK < 2);

[rRkdkkkkkkkkkkkkkkikk END OF FUNCTION DEFINITIONS wkkkkkkkkkkkkkikikkk]

Appendix D.2 Source Code RTCN.C

JrxFhRkkdkkkEkhkkkkkkdAARTCN, Chrrkdhdddihihhkhdhihd|

Program to read Real-Time-Clock time/date
(call with argv[1l] = 1, e.g. rticn 1)

or to update the DOS time with the RTC time
(call with argv[1] = 2, e.g. rtcn 2)

(useful to keep DOS clock drift low)*

or to update the RTC time with the DOS time
(call with argv[l] = 3, e.g.rtcn 3)

or to set in a fixed DOS time of 1000 ticks
(call with argv{l] = 4, e.g. ricn 4)

(useful for DSP processor after CLOCKSET)

NB the DOS TIME command reads the DOS time,
ie. the system time, but if you enter a

new time, instead of <return>, it sets both

RTC and DOS time to the entered time.

CHC 12th August 1993

******************************’k‘k************’k****/

#include <stdio.h>
#include<stdlib.h>
#include <dos.h>
#include<bios.h>

#define BIOS_INT Oxla
#define GET_RTC_TIME 0x02
#define SET RTC_TIME 0x03
#define GET_RTC_DATE 0x04
#define SET RTC_DATE 0x05

#define GET_DOS_CLOCK 0x00
#define SET DOS_CLOCK 0x01

#define DOS_INT 0x21
#define GET DOS_DATE 0x2a
#define SET DOS_DATE 0x2b

-B5-

#defne GET _DOS_TIME 0x2c¢
#define SET DOS_TIME 0x2d

main(int argc, char *argv{])

union REGS xr;

struct SREGS sr;

int hrs, mins, secs, century, year, month, day;
long clockcount = 1000L;

if (arge = 2)

{

printf("Argument missing: rtc <n>\n(n = 1 for read RTC time/date)\n"),
printf(*(n = 2 for updating DOS time/date with RTC time/date)\n");
printf("(n = 3 for updating RTC time/date with DOS time/date)\n");
printf(*(n = 4 for setting DOS time/date to 00:00 01/01/1993)\n"),
exit(0);

}
switch(*argv([1])
case '1" /* Get and Display RTC time and date */

{

xr.h.ah = GET RTC_TIME;

int86x(BIOS_INT, &x, &xr, &sr);

hrs = 10 * ((xr.h.ch & 0xf0) / 16) + (xr.h.ch & OxOf);
mins = 10 * ((xr.h.cl & 0xf0) / 16) + (xr.h.cl & OxOf);
secs = 10 * ((xr.h.dh & 0xf0) / 16) + (xr.h.dh & 0xOf);

printf("Time %.2d:%.2d:%.2d, Date ", hrs, mins, secs);

xr.h.ah = GET RTC_DATE;

int86x(BIOS_INT, 8xr, &xr, &s7);

century = 10 * ((oxr.h.ch & 0xf0) / 16} + (xr.h.ch & 0x0f);
year = 10 * ((xr.h.cl & 0xf0) / 16) + (xr.h.cl & 0x0f);

month = 10 * ((xr.h.dh & 0xf0) / 16) + (xr.h.dh & 0x0f);

day = 10 * ((xr.h.dl & 0xf0) / 16) + (xr.h.dl & 0x0f);
printf(*%.2d/%.2d/%.2d%.2d\n", day, month, century, year);

break;
}

case 2" /* Update System Clock with RTC time and date */

{
do

{
xrh.ah = GET RTC_TIME;
int86x(BIOS_INT, &xr, &xr, &sr);

}
while ((10 * ((xr.h.dh & 0xf0) / 16) + (xr.h.dh & 0x0f)) == 59);
hrs = 10 * ((xr.h.ch & 0xf0) / 16) + (xr.h.ch & 0x0f);
mins = 10 * ((xr.h.cl & 0xf0) / 16) + (xr.h.cl & 0x0f);
secs = 10 * ((xr.h.dh & 0xf0) / 16) + (xr.h.dh & 0x0f);

xr.h.ah = SET DOS_TIME;
xr.h.ch = hrs;
xr.h.cl = mins;
xr.h.dh = secs + 1;
xrhdl=0;
int86x(DOS_INT, &xx, &xr, &sr);
if(xrh.all=0)
{

printf(*%.2d %.2d %.2d\n", hrs, mins, secs);
}

-56-

xr.h.ah = GET RTC_DATE;

int86x(BIOS_INT, &x, &xr, &sr);

century = 10 * ((xr.h.ch & 0xf0) / 16) + (xr.h.ch & 0x0f);
year = 10 * ((xr.h.cl & 0xf0) / 16) + (xr.h.cl & 0x0f);
month = 10 * ((xr.h.dh & 0xf0) / 16) + (xr.h.dh & 0x0f);
day = 10 * ((xr.h.dl & 0xf0) / 18) + (xr.h.dl & 0x0f);

xr.h.ah = SET_DOS_DATE;

year += 100 * century;

xr.h.ch = year / 256;

xr.h.cl = year - 256 * (year / 256);
xr.h.dh = month;

xr.h.dl = day;

int86x(DOS_INT, &xx, &xr, &sT);

break;
}

case '3" /* Update RTC with System Clock time and date */

{

xr h.ah = GET DOS_TIME;
int86x(DOS_INT, &xr, &xr, &sr1);
hrs=xrh.ch;

mins = xr.h.cl;

secs = xr.h.dh;

xrh.ch=16* (hrs/ 10) + hrs - 10 * (hrs / 10);
xr.h.cl= 16 * (mins / 10) + mins - 10 * (mins / 10);
xrh.dh=16 * (secs/ 10) + secs - 10 * (secs / 10);
xr.h.ah = SET_RTC_TIME;

int86x(BIOS_INT, &xr, &xr, &sr);

xr.h.ah = GET _DOS_DATE;
int86x(DOS_INT, &xr, &xr, &sT);

year = 256 * xr.h.ch + xr.h.cl;
century = year / 100;

year -= (100 * century);
month = xr h.dh;

day = xr.h.d]

xr.h.ah = SET_RTC _DATE,;

xr.h.ch =16 * (century / 10) + century - 10 * (century / 10);
xrh.cl= 186 * (year/ 10) + year - 10 * (year / 10);

xrh.dh =16 * (month/ 10) + month - 10 * (month / 10);
xrhdl=16* (day/ 10) + day - 10 * (day/ 10);
int86x(BIOS_INT, &xr, &x, &sr);

break;
}

case '4" /* set DOS time/date to 00:00 01/01/1993 for test purposes */

{
_bios_timeofday(TIME_SETCLOCK, &clockcount);
_bios_timeofday(TIME._ GETCLOCXK, &clockcount);
printf(*Ticks %d\n", clockcount);
break;
}
}
return 0;
}

-87-

Appendix E Hardware

General Assembly

The assembly of the combined Sonic Processor/Formatter unit is shown in Figure E.1.

| End Cag

BMPPROC2
GCAT 2000
GCAT 3000

FlashCard
Stage Plate

AMPRO SSP
AMPRO SSP

Stage Plate

SEROPT
SsRCARRY —

EPROM Controller
4 x EPROM memory cards

Modified
FORMBACK
Motherboard

Ty e e T S Pl Ty

I
TR TTITTTTTTTTTNNNY Stage Plate

Figure E.1 Schematic of Formatter/Sonic Processor

-58-

Parts List

1 off C.5587-131 Formatter Tube Lid assembled with LEMO connectors and internal
interconnecting IDC cables as per wiring specification, section 5.2

1 off C.5587-19 Formatter Tube (as for Battery Housing)

3 off C.5597-135 Formatter Spacer-1 for mounting BMPPROC? off Lid

3 off C.5587-137 Formatter Spacer-3 for mounting stage plate

1 off C.5597-143 Formatter Disc-1 (stage plate)

3 off 6 mm Nuts and Locking Washers for stage plate

1 off BMPPROC? Board (assembled with components as per Formatter Handbook)
1 off GCAT 3000 unit

1 off GCAT 2000 unit

4 off C.5597-136 Formatter Spacer-2 for mounting I/O board stage plate

1 off YO board Mounting Plate to sketch “dsp serial chassis"

Assorted Fasteners for I/O board stage plate

2 off AMPRO Minimodule TM /SSP

1 off 64 way Bus Connecting Cable (IDC) with DIN41612 connectors

Assorted Spacers and Fasteners for mounting AMPRO boards (from AMPRO kit)

4 off C.5587-138 Formatter Spacer-4 for mounting Sonic Processor stage plate

1 off C.5597-144 Formatter Disc-2 (sonic processor stage plate)

Assorted Fasteners for above

4 off C.5597-138 Formatter Spacer-5 for mounting Sonic Processor backplane off stage plate
1 off Sonic Processor Backplane (modified FORMBACK), fitted with

7 off Edge Connectors/Card Guides

1 off Watchdog board

1 off SEROPT board

1 off DSPCARRY board

1 off ECAT board

1 off ECAT-X board

1 off EPROM Controller board

4 off EPROM memory boards fitted with 2 Mbit EPROMs

-50-

Appendix F DSPCARRY - Carrier Board for ECAT/ECAT-X

Parts Iist

ALPHABETICALLY ORDERED LIST OF PARTS WITH SILK REFERENCES AND DESCRIPTIONS

1 of PCB

2 off IDCI0

related parts *
* ~100mm length

* 1 off

*] off

1 off IDC20

related parts *
* 1 off

* ~100mm length

1 of IDCE0

1 off RCACON!
1 off RCACON2

1 off RMFW25#100K

1 off VN10KM

DSPCARRY

PL2, PL3

SK3

SK2

Motherboard manufactured to IOSDL
artwork DSPCARRY.ART

Mini DIP PCB Solder Transition
Farnell 145-065

10 way IDC cable (PL3 to SK3)

Farnell 171-10 1 foot

Female 10 way Socket Bump/Clip Pol'n
Farnell .152-718

Female 100 way Socket to mate with ECAT J2

Supplied complete with 2 off 50 way IDC cables by DSP Design Lid.

PLS

SK5

PL4

PL11
PL1
Rl

Right angle Male PCB mounting IDC header
Farnell .152-021

Female 20 way Socket Bumnp/Clip Pol'n
Farnell .152-721

20 way IDC cable (SK5 to EPROM Controller)
Farnell 171-20 1 foot

Mini DIP PCB Solder Transition

(connects to SK2 upper, above)

Farnell 145-071

gold plated edge connections

Resistor 1/2 W metal film
Farnell MFR4 100K

Low power MOSFET
Farnell VN10KM

PL1

Pl om——2TyD1

N

o= RxD1 . N
3 R7s1 STROBE~ e G—
% ‘i—” -:'!—-
——45VCS) ERROR - 5-emms —
w——OV(S) INIT- - D1 Fremem ERROR- o
”“";DCDI -t D2 %—_ —Z———m
e DSR1 +sveE) — —
o DTRL z D3 g DG g
1 ¥ a GND ;o D1 oy
g1l §||E Dl e D2 e
RCA Bus Connector - GND § GND 7w D3 -
12 D5 e O
13 GND e DS ~pw—
p— T — DE -
e VNIBKMYuy , GND :: 0 ::
—— TRLE D7 e STROBE - gmweme
s av(s) GND e o—
17 ACK~ oo y—
1 GND Gy GND ~—wn
— YEE = =
19
-___; avis) i :i Connects to EPROM Logger PL2
—— BV(S) Fwmm GND o
-_.3}. +5V(S) §— e
R e = =
PL1L 15V(5) e - g
A emmm——Typ2 — 5 -
o RxD?2 PL2 GND1 Sy
3 RIL1 gy
a— RTS2 Connects to ECAT T2 (lower) oTRy =
-—— 52 cTS1 _3‘,;‘_
> 5V(S) TxD1 Szwe
oL gv(5) RTS1 gy
1 RxD1 e
~““‘:DCDZ DSR1 yem=
em—-— DSR2 DCDY e
oman-—- B TR2 o —
18 ——
— RI2 o
— GND2 DCD2 5o [y
RCA Bus Connector ”*—;; DSR2 e [
RxD@ e 6
[]
" RTSZ 3w [Ty
= TuDZ2 7o [
--—l: CTS2 wmem e
DTRZ - 58
—
17 RIZ g ——
™ GND2 g Pl
AR oesn]
is PL3 Connects to ECAT J2 (upper)
—22 Connects to ECAT-X I3 (COM2)
21
2 2

INSTITUTE OF OCEANDGRAPHIC SCIENCES,
DEACON LABORATORY ,BROOK ROAD,WORMLEY.
GODALMING ,SURREY ,GUB SUB.ENGLAND .

FILENAME

DSPCARRY .DGM

CARRIER BOARD FOR DSP SBC TO FIT RCA CARD FRAME

SHEET 10F 1
ISSUE REV. 1
DATE

18-86-91

09

-61-

OUTLINE OF ECAT BOARD

DSPCARRY .ART

e e o REV. 1 26-B6-91
o *oceee
o Tioeeee
° ®
® 4 .L
< ceeecccc0cescecccssccccoe
cxboooooooaooooooooooogoooo
®% oo ¢ y
®
o ° e ¢
safesed
o
o RI
o E:::ﬂ’
] o b
1. °® *3 |)
o0 TT7d T1d

-64-

Appendix G SEROPT - Anemometer R5232/422 interface and Opto-isolators

Parts Tist

ALPHABETICALLY ORDERED LIST OF PARTS WITH SILK REFERENCES AND DESCRIPTIONS

9 off IN4148

2 off IN53#1N5343B

1 off 75176

4 off 7660

4 off CD40106

3 off CFKC2#2N2F

15 off CTANT#10uF

S off H11L1

3 off IDC10

related parts *
* 3 off

1 off MAX232

3 off MOLEX4

D1,D10, D11, D2,
D3, D4, D5,D8, D9
Dg, DT

IC2

1C7, 17,18, 18

I1C6, 10, 15, 16

Cl0, Cl11, Cl12

Cl, C13, Cl4, Cl15,

Cls6, Cl17, Cl18, C2,

C3, C4, C5, C8, C1,

Cs8, C9

I1C3, IC4, 1C5, IC8,

IC9,IC11,IC12,

IC13,IC14

PL6, PL7, PL8

5K6, SK7, SK8

IC1

PL3, P14, PL8

Small Signal Diode
Farnell IN4148

Zener Diode

Farnell IN5343B

Line Driver/Receiver
Farnell SN75LBC176P.
CMOS Voltage Convertor
Farnell ICL7660CPA-MAX
Schmitt Buffer

Farnell CD40106BCN
Capacitor Polycarbonate
Farnell 147-667

Capacitor Tantalum

Farnell 100-906

Optocoupler, Schmitt Trigger output
Farmell H11L1

Right angle Male PCB mounting IDC header
Farnell .152-018

Female 10 way Socket Bump/Clip Pol'n
Farnell .152-718

CMOS Dual Transmitter/Receiver
Farnell MAX232

90° Square Pin Header with friction lock

related parts *
* 3 off

1 of NPN-BC109
1 of RCACONI1
1 off RCACON2Z2

1 off RMFW25#100K

11 off RMFW25#1K0

9 off RMFW25#1K8

2 off RMFW25#22R

1 off RMFW25#4KT

1 off RMFW25#NOT-U

3 off VI18ZAAI

SK3, SK4, SK5

TRI

PL11
PL1
R6

RI10,R11, R12, R13,
R14, R25, R26, R27,
R28,R8, RO

R1,R2, R21, R22,
R23,R24,R3, R4, R5
R16,R17

R7

R185
R18,R18, R20

-65-

Farnell 146-693

Crimp Terminal Housing (Polarised)
Farnell 143-094 + inserts 143-116
Low Power Bipolar Transistor
Farnell BC109-SGS

(gold plated edge connections)
(gold plated edge connections)
Resistor 1/2 W metal film

Farnell MFR4 100K

Resistor 1/2 W metal film

Farnell MFR4 1K0

Resistor 1/2 W metal film
Farnell MFR4 1X8
Resistor 1/2 W metal film
Farnell MFR4 22R
Resistor 1/2 W metal film
Farnell MFR4 4K7

not used

Metal Oxide Varistor
Farnell V18ZA1

RX

SONIC COM2 TX

p22 ew——QVFfarmtter TS
——— ot ter
e GRS +SvVaanic
——e SR . ;
——
Ram 3 Hers | Tog— E
a—— d “ o WY AR [
ranrhTan 8 2o | i 12] LI SERIAL -8
—— ORI T ! [i=-¥} 400 w2 I
oy 8 L 2- S w2 R o RIS RIS
——— 50N 1Cgnd = ARl s I g 1 [
ww———— SN ICer J— T Uoe” = 4 | - . SERIAL-A
L -3t W VAL @ b R g 7 . w
e (B Ty e X i ity 12 E o8 o7 !-'E 3o § e
e—— g VFarmat tar RE HIE F iH:
—
——SE RS oVaonla
ser2 BVyonia l i
om——ERY o -
wm——— 8¢ ron | tor 2 B Fe
- R €O T]
e EARTH -
w— Y w00 {C n Lav +Vd vk
e JERTAL -A a 2 mn
i wme——SERIAL -8 [v 2 couases . 2lls
I seRy w < countes
PL1 a—— Rt 3 IR ™ I s
—ETond X z 1c8 o1 WE v
~anS H €3 " rys 3 3 +8vdiak ‘o1s
7 —Vformtter N conntas H FYAY en
am——— 8 Fo rmat ter PLL beted - o
SONICer on > Bvaanla N 88
—— - L Yo sERz | Qvmn »» < cosgsen
— 1 - 1c8 L 41N o N 4BVl ak e
= BONICgnd YA o Rz ana
+YFg It tar HIH 1] ES +8¥radio gy BVdak—e.
(i LY cownien [t ciz -
— [s v o & - +8Vradis
—— T . FARA Faur +IN -avminltor #Vaan la o
oVformtter —— Y oy o (115} v oy
- o= PRt Tgnd Ha P = . "= t:: 3w
—» ﬂuuc— : 5 X C18 LT
—— we—or BVl €13 el
o——— RSEE FC- ~ Yo SVmnitar yan bo: d conpime
—— 167 1] P N 3
—— o 'R e
— W¥mon ttor | 8 - 2
o 118
——Vy0n I te O
om——— 45 ¥3anic P——— +4VFarmat ter WWaan la!
——
- xTs - coyn1es couatan couR1Es
w—— T - b ki3 coun1o8
A Sm———RX — JIN o 5 sen —iDG
-1n 5 va IDC 1618 1618 116
PL2 H S e sers
P 8 CoLz1En cwus1es counian
s b u[l]g couates —
I lg>c oy Tcio Tcss Tc18
3 - —
: 8 - 1cie HBVfarmtter] —w— COAD108 IV L)
i T8 poge coyntes oL u
avfarmatter
b o a 10 1c18 Tc18
o @oad o Roed- b Rued- coyntes countes coupion
- G+ - (%2 C+ i
o LY . NLE 1 ot “G¥rudla =L -8vd 7k
T R e TE e R n o e
11 3]
BVFormatter Wrad la svdiak ~U¥Farmat ter v iak evrudlo
NAME SHEET e
INSTITUTE OF OCEANDGRAPHIC SCIENCES. DEACON LABORATORY. |FILE SONIC BUOY - OPTOISOLATORS AND SONIC R5232/422 INTERFACE TssUE | meve
BROOK ROAD . WORMLEY, GODALMING., SURREY GUB SUB, ENGLAND | sewart.oam DATE 2906 83

_99..

cs ICy Ice
R19 ¢y cs l:] D D5
CZD D B +
3
@ R15
@ U LU —
c12 R18 ICL7 Rik R13
ey 1ce
R21 ci8 17
1 Ic1s
o8] R25 R2E
R22 IC1)
1
Icip
osl 1 Ic12
R23 LI
L 1 IC16
D10] R
-~ I1C13
D11]] ICIL ICi8
R27 R28
D IC19 e FE
c1 ::1 ::1 SEROPT.ART
) Ci5" REV. 2 B2/87/1993

D7

[+

RE8 R9 R10

——

PLB
RAW

R4

c7

PL7
To FORM

Cc9

IC7 D

e
Ic8 Ri
—
e
3 RbL. PL3
[:_——105 MMET
RS
e —
ICH bz
—
R2 SON
——
ICL
D3
o pLS[
FORM
e S —

Lg

