
^ ^ 6

Institute of
Oceanographic Sciences
Deacon Laboratory

INTERNAL DOCUMENT No. 340

Sonic Buoy - Sonic Processor handbook

CHClayson & RWPascal

1994

Natural Envizonment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 340

Sonic Buoy - Sonic Processor handbook

CHClayson & RW Pascal

1 % 4

Wonnley
Godalming
Surrey GU8 SUB UK
Tel+44-(0)428 684141
T^ex 858833 OCEANS G
Tdefax +44-(0)428 683066

•̂ ft; *'.«

' S . ' T ' ' " ^

C y ' A*"-) v̂V

i ; ' ' '

M - T l . "

.• ' . ' ^ - ' — V • .:-:.>».•••,••.'*••>-• •. -lUft tf!

44? T*/^ *™WL%. WySM#%k

^ f*

aa«A'±w
>». "A <••->

jkv y*

"
i) f i fofe

P"-" , k ' %
' j j d f* < »:*2 '+ . jz n i ' ,r<rr '

% 6 ' \ - -

^ ^ ̂ v< iv ^ ^ ' V ^

m m a

' ' 4 ; , , , 4 , , Wk

D O C U M E N T D A T A S H E E T

CLAYSON, C H & PASCAL, R W

PUBLICATION

DATE
1994

Sonic Buoy - Sonar Processor handbook.

REFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 340, 69pp,
(Unpublished manuscript)

The Sonic Processor was developed as part of the Sonic Buoy development program; it was based on
a similar shipbome system developed for analysis of the wind turbulence spectrum to give the wind
stress, using the dissipation technique.

Results from the shipbome system suffered from flow disturbance at the ultrasonic anemometer due
to the ship's structure, whereas the Sonic Buoy was designed for optimum exposure of the sensor,
resulting in lower scatter of the experimental results.

The Sonic Processor acquires 10 minute records of wind speed data at approximately 21 Hz and
spectrally analyses these in near real time. The processed spectra and parameterised data are saved
on an EPROM logger; the parameterised data are also sent to the Formatter Processssor for
monitoring via satellite telemetry.

This document describes in detail the design and operation of the Sonic Processor and the associated
EPROM logger; it is intended to serve the combined purposes of documenting the design and acting
as a guide to operating the system and to recovering the data.

KEYWORDS

ISSUING ORGANISATION

Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalitiing
Surrey GU8 SUB. UK. Telephone Wormley (0428) 684141

Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Copies of this report are available from: The Library, PRICE £Q QQ

-5-

Index

1. INTRODUCTION 7

2. FDNCTIONJiL DESCRIPTION 7

3. SOFTWARE 8

3.1 Overview 8

3.2 SETFIME - Application for Clock Synchronisation 9

3.3 FFTC2 - Application for Control of Sonic Data
Collection/Processing/Logging 10

3.4 RTCN.EXE - Application for updating System Clock from Real

Time Clock (RTC) 13

4. HARDWARE 13

4.1 General 13
4.2 Circuit Descriptions 14

4.2.1 DSPCARRY 14
4.2.2SEROPTRev. 2 14
4.2.3 EPROM Logger Controller and Memory boards 15

5. WIRING 15

5.1 Lid Connectors 15

5.2 Wiring from Lid to PCBs 15

5.3 Interboard Wiring 17

6. OPERATIONAL 21

6.1 Procedure for Setting the Time/Date 21

6.2 Procedure for Initialisation of the EPROM Logger 23
6.2.1 Getting Started 23
6.2.2 Pile Initialisation 24

6.3 Procedure for EPROM Logger Replay 24
6.3.1 Requirements 24
6.3.2 To Translate data to the PC 24

7. SPECIFICATION 26

7.1 Supplies 26

7.2 Power Consumption 26

- 6 -

7.3 Data Storage and Output 26

7.4 Sampling 26

7.5 Specification of Sensors 27
7.5.1 Anemometer 27
7.5.2 Compass 27

8. ACKNOWLEDGEMENTS 27

9. REFERENCES 27

APPENDICES 28

Appendix A The EPROM Logger Data Storage Format 28

Appendix B The Sonic Processor Serial Output Message 29

Appendix C Source Code for S E m M E Application 30

Appendix D. l Source Code for FFTC2 Application 33

Appendix D.2 Source Code RTCN.C 54

Appendix E Hardware 57
General Assembly 57
Parts last 58

Appendix F DSPCARRY - Carrier Board for ECAT/ECAT-X 59
Parts list 59
Circuit Diagram 60
Printed Circuit Board 61

Appendix G SEROPT - Anemometer RS232/422 interface and Opto-
isolators 64

Parts list 64
Circuit Diagram 66
Printed Circuit Board 67

1. INTRODUCTION

The Sonic Processor is designed to communicate with a Gill Ultrasonic anemometer, to

spectrally process 12,288 samples of anemometer data at quarter-hour intervals, and to output

a parameters message to the Formatter. The processor also outputs the spectrum and

parameters to the EPROM logger at quarter-hour intervals. The Sonic Processor is a complete

PC-based processing system, using DSP Designs Ltd. ECAT™ and ECAT-X™ boards,

mounted on a motherboard, DSPCARRY, plugging into an lOSDL 1802 microboard baclqjlane.

Also plugged into this baclqjlane are an interface board, SEROPT, and an lOSDL EPROM

logger, comprising a processor board and four memory boards. The system is mounted

within a tube which also contains the Formatter system.

2. FUNCTIONAL DESCRIPTION

The main functions of the Sonic Processor are as follows:

a) to control the operation of the anemometer and to receive data from it via an RS 422 link; this

is done using the ECAT COMl port with an RS232 to RS422 convertor on the SEROPT board. A

modified version of the Gill-supplied software application FASTCOM is used, with data being

stored on RAMDisk.

b) to spectrally process 12 sections of 1024 samples of the resultant wind speed. For each

section, the following processes are carried out.

the mean value of the resultant wind speed is first calculated and subtracted from the

samples.

a partial cosine data window is applied

a 512 point FFT function is used, with the 1024 samples entered as the real and

imaginary input values; the output is converted into a 256 line power spectrum which

is then corrected for windowing loss.

the spectrum is then multiplied by frequency^/^ {g give an ideally flat spectrum over

the equilibrium region and the mean log(power spectral density * frequency^^^) is

calculated over the range 2 - 4 Hz; a least squares fit to the (log) spectrum is also

computed over this range.

mean values of the resultant wind speed, North, East and Vertical components of the

flow and velocity of sound are also computed over the 12288 samples

c) the spectrum is written to the EPROM logger, using the LPTl parallel printer port with

handshake; the processed parameters are also written as detailed in the EPROM data format

description (Appendix A)

d) a standard format message (see Appendix B) is sent to the Formatter via the COM2 serial

port on the ECAT-X board

The above functions are achieved by the application FFrC2.EXE which is held in ROMDisk

drive A. The ROMDisk also holds DOS version 5.0, AUTOEXEC.BAT and CONFIG.SYS files.

- 8 -

the drivers EMS230.SYS, RAMDRIVE.SYS and the applications FASTCOM.EXE, RTCN.EXE,

SETCajOCK.EXE and SETHME-EXE. The latter two applications are run before FFTC2 to allow

setting of the hardware Real Time Clock via the COM2 port; this is described in more detail in

the Software Section, below.

The EPROM logger consists of a slightly modified lOSDL microboard EPROM controller with

four EPROM memory boards. The memory boards are each fitted with 16x2 Mbit EPROMs,

giving a total capacity of 16 Mbytes. The use of the 2 Mbit EPROMs (instead of the usual 1

Mbit type) required that the most significant Board Select bit is used as the EPROM most

significant address bit. Thus the controller fills the lower half of each EPROM in boards 0 to 3

first and then fills the upper halves of the EPROMs by addressing boards 4 to 7. For full details

of the EPROM logger, see ref 1.

3. SOFTWARE

3.1 Overview

The Sonic Processor software is embedded in the ECAT system in two x 256 kbyte EPROMs

(ICl and 8) on the ECAT-X board. These are configured as a ROMDisk drive by use of an

appropriate BIOS in EPROM (IC12), combined with a ROMDisk driver ECROM.BIN in EPROM

(ICl 1) on the ECAT board. The ROMDisk (drive A) EPROMs contain:

DOS version 5.0 - "hidden files" and COMMAND.COM

AUTOEXEC.BAT

CONHG.SYS

EMS230.SYS

RAMDRIVE.SYS

(the C: drive is RAMDrive, note that this driver must match the DOS version used)

SErCLOCK.EXE

SETTIME.EXE

FFTC2.EXE

FASTCOM.EXE

RTCN.EXE

The process for preparing the EPROMs is described in ref. 2.

The DSP-supplied application SETCIX)CK.EXE is run when the system has booted up; this

enables setting of the Real Time Clock. The application St"l"l'lME.EXE is then run; this allows

synchronisation of the Sonic Processor clock with the clock of an external PC, running the

BASIC program SONTIM.BAS and with its COMl port connected to the Sonic Processor COM2

port. This external PC is normally a battery-powered Husky Hunter 16 (running GWBASIC

under DOS).

After the completion of the application SETITME, the application FFrC2.EXE is run; this is the

main data accpiisition control program with the functions described above. It "spawns" two

-9-

other applications, FASTCOM.EXE and RTCN.EXE; the former is used to control the

anemometer and to acquire data from it; the latter is used to update the software clock from the

Real Time Clock just before midnight every day. The application FFTC2 remains running

continuously until terminated by a manual reset, or by a system failure. A system failure, such

as a processor crash or a failure to communicate with the anemometer, will result in the watch

dog timer rebooting the system.

3.2 SETTIME - Application for Clock Synchronisation

The application is built from the object file SETTIME.OBJ; this is produced by compiling the ' C

code SETITME.C. The library SLIBCE.LIB is used when linking. A listing of the source code is

given in Appendix C.

When the application is run, the message "Date: DD/MM/YY Time; HH:mm:SSO" is prepared,

where

YY is Year, e.g. (19)93

MM is Month (01 - 12)

DD is Day of the Month (01 - 31)

HH is Hour (00-23)

mm is Minute (00 - 59)

SS is Second (00-59)

and 0 is a terminator. The date and time are derived from the system clock.

The application then outputs the Date/Time message via the C0M2 port, (on the ECAT-X

board); the port is set up for 2400 baud (8 characters, 1 stop bit, no parity). The application

then waits for a Date/Time message terminated by a line feed (character 10) from the external

PC (if present). If none is received within a set interval, the application times out. Otherwise,

the external PC's Date/Time message is decoded and used to set the ECAT's Real Time and

system clocks, using DOS DATE and TIME calls. The application then outputs a message in the

above format (using the received Date/Time) to the external PC via the C0M2 port.

Note that the SETTIME application is only effective if the ECAT has been enabled by running

SETCLOCK on power up; the latter is supplied by DSP Design Ltd.

This version (1) of the application SEl'l'lME is specific to the ECAT system, although a similar

application (but using the COMl port) has been produced for the DSP GCAT system.

- 1 0 -

3.3 ITTC2 - Application for Control of Sonic Data Collection/Processing/Logging

The application is built from the object file FFTC4.0BJ, which is produced by compiling the ' C

source code FFTC4.C The library MTrTRCY.LIB is used when linking. The QuickC command

line for carrying out the above processes is:

qcl /AM /Zr /FPi87 fftc4.c /F 9000 mlLbc7.1ib

The FFrC4.EXE file is then renamed FFTC2.EXE. A listing of the source code is given in

Appendix D.

When the application is run, the following initialisation steps are carried out:

a hardware error handler is set up

the time zone is set to GMT

parameters for defining the EFT process are set up and calculated

housekeeping data for the logged data headers are set up

a continuous loop is then entered, in this loop, which is shown in schematic form in

figure 1, below:

the watch dog circuit is triggered

a wait state is entered until it is time for a new "record", i.e. 0, 15, 30 or 45

minutes past the hour; this is effected b y the function wait_start

when this occurs,

a string "julian" having the format <jjjhhmm> is created and the sample

number "sample" and quarter hour "qtr" variables are updated.

the mean wind speed variable and power spectrum array are reset to zero

the application FASTCOM is then spawned, using the command line:

fastcom testfile 1 1 12288 1

i.e. <application name> <RAMDisk filename for raw data> <mode> <baud

rate> <number of samples to be collected> <number of analogue channe]s>

with RAMDisk filename set to testfile

mode set to 1 for Calibrated UVW and C output with 20.83 Hz

sampling rate

baud rate set to 1 for 4800 baud RS422 serial communications

number of samples to be collected set to 12288 (12 sections of 1024)

number of analogue channels set to 1 (for analogue compass input)

- 1 1 -

For Each Section

EPROM Logger
Parallel Port

Formatter C0M3
Port

Loop Continuously

Log 12288
samples to

RAMdisk
Call FASTCOM

Wait for next
Start Time

(hh:00, hh:15,
hh:30, hh:45)

Calculate Vector
Averages

Apply f to
spectrum and
regression fit

over 2-4 Hz

Perform FFT

Check and Convert
testfile Data to

Resultant
Velocities

Subtract Mean and
Apply Partial
Cosine Window

Process Data as
12 Sections of

1024 points

Convert to 256
line Power

Spectrum and
accumulate
estimates

Write Spectrum
and parameters to
EPROM Logger and
send parameters

via COM2 Port

Hgure 1 Main Loop in FFTCB for Data Acquisition/Processing

The application FASTCOM then establishes communications with the

anemometer, sets it to the required mode, baud rate and number of analogue

channels. The anemometer will initially be in the unprompted mode, whereby

it sends blocks of 20 samples of data (10 bytes per sample, 2 bytes each for U,

V, W, C and Compass) with a 2 byte record number header, i.e. 202 bytes

- 1 2 -

total, at intervals of rather less than 1 second. The anemometer is then set into

the "prompted" mode, whereby it will send the contents of its data buffer on

receipt of a transmit command; the transmit command is sent by FASTCOM at

intervals of (nominally) 1 second and, in practice, blocks of length 202, 212 or

222 bytes result, with the average length being 210.3 (10*20.83 + 2). Note

that, at changeover from unprompted to prompted mode and vice versa,

shorter blocks may result.

FASTCOM repeatedly requests data at 1 second intervals, checks that the

record numbers are consecutive, and writes the data to the RAMDisk file until

the correct number of samples has been acquired. It then resets the

anemometer to unprompted mode.

For further information on FASTCOM, see the GiU handbook, ref. 3.

When the data have been acquired, the other "accumulator" variables are

reset to zero and the data are analysed, as 12 sections of 1024 samples.

Each section is first checked and, if error free, converted to a resultant wind

speed array a[] by the function getdat. If an error is encountered, the data

are not used and the next section is checked. The first 512 values are entered

into the odd members of the array, i.e. a[l], a[3] . . a[1023], the next 512

values are entered into the even members of the array, i.e. a[0], a[2] . .

a[1022]. This function also accumulates sums of the East, North and Vertical

wind vectors, sin(buoy heading) and cos (buoy heading), derived using the

analogue channel compass reading.

The mean value of the a[] values for the section is then subtracted from each

a[] value by the function dcGlter and the mean is added to the mean wind

speed accumulator variable.

The data a[] are then windowed by a partial cosine window function, using the

function window.

The data are then converted to a spectrum, using the EFT function fowl. This

fransforms 512 complex input points to 512 complex output values. The even

members of a[] are the real components of the input values and the odd

members are the imaginary components. After the transform has been

executed, the complex output values are "unscrambled" into 256 power

estimates which are placed into the array members a[l] to a[256]. These are

then added to the p[] power accumulator array values.

After this process has been repeated for all good sections of data, the power

estimates are corrected for window loss and normalised by dividing by the

number of good sections used. Likewise, the mean wind speed and vector

accumulator variables are divided by the number of good sections used. The

mean buoy heading is calculated from the sin(buoy heading) and cos (buoy

heading) accumulator values.

The power estimates are then converted to power spectral densities, which

are multiplied by frecjuency^^^ _ converted to logio 6)rm and placed in the

array p[]. The 255 values p[2] to p[256] are referred to as the PSD (power

-13-

spectral density) values, although they are strictly the values of logio (power

spectral density times frequency®''^).

These values, together with housekeeping information and computed

parameters are then written to the string eprom, as described in Appendix A.

The parameters include the coefficients of a least squares fit to the PSDs

versus logio(firec[uency) between 2 and 4 Hz, these coefficients are returned

by the function regres.

The final length of the string eprom is 1920 bytes and these bytes are written

to the EPROM logger via the parallel LPTl port as 15 blocks of 128 bytes,

using the logger LAV handshake line.

Finally, the parameters are sent to the Formatter via the COM2 port in the

message format described in Appendix B.

This concludes the operations within a single pass of the loop; control then returns to

the wait_start function which waits for the next record start time.

It is not possible to exit fi'om the application, other than by a hardware reset.

3.4 RTCN.EICE - Application for updating System Clock from Real Time Clock (RTC)

This application is spawned by the main control program FFTC2.EXE during the waiting state

just before midnight (between the processing completion time and 23:58:59 his). The update

is inhibited if the system clock time is 23:S9:ss, to prevent any inconsistent date and time values

firom resulting. The call is as follows:

a:VRTCN.EXE 2

This calls RTCNin the ROMDISK (a: drive) with an argument of 2, so that the ECAT's system

clock is updated using the RTC's time/date.

The application source code is given in Appendix D.2. It uses BIOS calls (using software

interrupt Ox la) to get the RTC time and date; the return values are decoded firom BCD into

decimal and then used in DOS calls (using software interrupt 0x21) to set the system clock time

and date.

4. HABDWARE

4.1 General

The Sonic Processor unit is mounted off the Formatter assembly in the combined

Formatter/Sonic Processor housing, using a stage plate and four long aluminium pillars. The

backplane (mother) board is mounted on the stage plate using four short pillars. The small

watchdog timer board is mounted on the back of the baclsplane. The backplane has 7 card

slots for lOSDL microboards; it is a cut-down version of the FORMBACK design. The boards

are:

-14-

DSPCARRY - a carrier board for the ECAT and ECAT-X boards

SEROPT - the anemometer interface and opto-isolator circuit board

EPROM CONTROLLER

EPROM CARDS 1 - 4

A general assembly drawing and parts list are given in Appendix E

4.2 Circuit Descriptions

4.2.1 DSPCARRY

This board is required mainly to allow mounting of the ECAT, with its piggy-back ECAT-X, in

the microboard slot. The board routes power to the ECAT J2 connector from the backplane. It

connects the ECAT COMl port (on J2) and the ECAT-X C0M2 port (on J3) to the backplane. It

connects the ECAT LPTl port (on J2) to a 20 way IDC connector PL5 for connection to the

EPROM logger. A reset signal for the EPROM logger is produced by differentiating the INIT-

printer control line. Finally it connects the ECAT speaker output to the backplane for triggering

the watchdog circuit.

The circuit diagram, PCB tracking and silk screen plots and a parts list are given in Appendix

F.

4.2.2 SEROPT Rev. 2

This board includes the RS232/RS422 interface for the anemometer, using a MAX232 convertor

with a 75176 line driver/receiver. The RS422 lines are protected by transient voltage

suppressors and zener diodes, although these would probably not provide protection in the

event of a lightning strike.

The board also includes a number of opto-isolators for the RS232 lines between units within the

buoy and between the modules and the external monitoring equipment. ICs 3, 4, 5, 7 and part

of ICS isolate the Multimet, Sonic Processor COM2 and Formatter COMl serial outputs to the

monitoring equipment. Externally supplied +5Vis required to activate the isolated outputs, so

that these are inactive during normal operation (monitoring cable disconnected). IC 6 (7660)

is used to generate a -5V supply from the external +5V supply.

ICs 8, 9, 18 and part of 10 isolate the Multimet and Sonic Processor COM2 serial outputs to the

Formatter COM4 and COM3 ports; these are powered by the Formatter +5V supply. IC 18

(7660) is used to generate a -5V supply from the Formatter +5V supply.

ICs 11, 12, 17 and part of 15 isolate the anemometer RS232 Tx and Rx lines to the onboard raw

data logging system (referred to on the circuit diagram as "disk"); these are powered by the

+5V supply from the onboard raw logging system. IC 17 (7660) is used to generate a -5V

supply from the onboard raw logging system +5V supply.

ICs 13, 14, 19 and part of 15 isolate the anemometer RS232 Tx and Rx lines to the raw data

telemetry system (referred to on the circuit diagram as "radio"); these are powered by the +5V

-15-

supply from the onboard raw logging system. IC 19 (7660) is used to generate a -5V supply

from the onboard raw logging system +5V supply.

The serial inputs to the board, with the exception of the anemometer signals, are made via

Molex connectors. The serial outputs, again with the exception of the anemometer signals, are

made via IDC connectors.

The circuit diagram, PCS tracking and silk screen plots and a parts list are given in Appendix

G.

4.2.3 EPROM Logger ConfroUer and Memory boards

For a complete description of the operation of these units, see the lOSDL EPROM logger

handbook, ref 1.

5. WIRING

5.1 Lid Connectors

The Formatter shares a common housing with the Sonic Processor. Hgure 2, below, shows the

layout of the eight Lemo M connectors.

Figure 2 Formatter/Sonic Processor l id

FB 1 METEOSAT SERIES 3
SPIN

FS2 SONIC SENSOR SERIES 3
SPIN

FS3 MONITOR SERIES 3
SPIN

FS4 RAW DATA O/P SERIES 3
SPIN

FS5 MET SERIAL I/P SERIES 3
2 PIN

FS6 SPARE SERIES 3
SPIN

FS7 POWER SERIES 3
10 PIN

FS8 ARGOS SERIES 3
7 PIN

5.2 Wiling from Lid to PCBs

This includes:

a) SONIC SENSOR Lemo connector FS2 to Sonic Motherboard SK2 and to Power Lemo
Connector FS7

b) RAW DATA O/P Lemo connector FS4 to SEROPT board SK8

c) POWER Lemo connector FS7 to Sonic Motherboard and to Sonic Sensor Lemo
Connector FS2

- 1 6 -

d) MET SERIAL I/P Lemo connector FS5 to SEROPT board SK3

a) Lid Connector FS2 (Lemo Series 3, 6 pin) to Sonic Motherboard SK2 (EDCIO free socket)

and to Lid Connector FB7 (Lemo Series 3, 10 pin)

ES2Pin Function SK2Pin FSTPin

1 Sensor Supply +V 6

2 Sensor Supply OV 5

3 Serial A 2

4 Serial B 1

5 Serial Ground 3

6 Screen/chassis 4

b) l id Connector FS4 (Lemo Series 3, 8 pin) to Sonic Processor SEROPT board SK8 (IDCIO

free socket)

FS4Pin Function SK7Pin

1 +5VGCATRaw 1

2 Sonic Tx 2

3 Sonic Rx 3

4 OVGCATRaw 4

5 +5VHFRaw 5

6 Sonic Tx 6

7 Sonic Rx 7

8 +5V External I/P 8

c) Lid Connector FB7 (Lemo Series 3, 10 pin) to Sonic Motherboard SKI (WeidmuUer-Klippon

4 way free socket) and to l id Connector FS2 (Lemo Series 3, 6 pin)

FS7Pin Function SKI Pin FSgPin

1 ECATOV 1

2 ECAT+5V 2

3 EPROM Logger OV 3

4 EPROM Logger +15V 4

5 Sonic Sensor OV 2

6 Sonic Sensor + 15V 1

7-8 n/c

9-10 (Formatter Supplies)

d) Lid Connector FS5(Lemo Series 3, 2 pin) to SEROPT board SK3 (Molex 4 pin socket))

-17-

FBSPin Function SK3Pin

1 MetOV 1

2 Multimet Serial I/P 4

5.3 Interboard Wiring

This includes:

a) ECAT bus J2 to DSPCARRY board PL4 (power, COMl and LPTl)

b) ECAT-X J3 to DSPCARRY board PL3 (C0M2)

c) DSPCARRY board SK5 to EPROM ControHer SK2 (LPTl)

d) EPROM Controller SK2 to EPROM Data Cards 1-4 SKI s (Address and board selects)

e) Sonic Motherboard SKI to Formatter BMPPROC2 board SKI (Formatter +5V)

a) ECAT bus connector J2 (100 way IDC) to DSPCARRY board PL4 (50 way header) and PL2

(10 way header)

J2Pin Function PWPin

1 upper STROBE- (CENTRONICS) 1

2 upper AUTOFD- (CENTRONICS) 2

3 upper DO (CENTRONICS) 3

4 upper ERROR- (CENTRONICS) 4

5 upper D1 (CENTRONICS) 5

6 upper INTT- (CENTRONICS) 6

7 upper D2 (CENTRONICS) 7

8 upper SLCriN- (CENTRONICS) 8

9 upper D3 (CENTRONICS) 9

10 upper GND (CENTRONICS) 10

11 upper D4 (CENTRONICS) 11

12 upper GND (CENTRONICS) 12

13 upper D5 (CENTRONICS) 13

14 upper GND (CENTRONICS) 14

15 upper D6 (CENTRONICS) IS

16 upper GND (CENTRONICS) 16

17 upper D7 (CENTRONICS) 17

18 upper GND (CENTRONICS) 18

- 1 8 -

J2Pm Function PL4Pm

19 upper 19

20 upper GND (CENTRONICS) 20

21 upper BUSY (CENTRONICS) 21

22 upper GND (CENTRONICS) 22

23 upper PE (CENTRONICS) 23

24 upper GND (CENTRONICS) 24

25 upper SELECT (CENTRONICS) 25

26 upper KCLK (KEYBOARD) 26

27 upper GND (KEYBOARD) 27

28 upper KDATA (KEYBOARD) 28

29 upper +5V (KEYBOARD) 29

30 upper RESET- (KEYBOARD) 30

31 upper GND (COMl) 31

32 upper RI (COMl) 32

33 upper DTR(COMl) 33

34 upper CIS (COMl) 34

35 upper TxD (COMl) 35

36 upper KTS (COMl) 36

37 upper RxD (COMl) 37

38 upper DSR(COMl) 38

39 upper DCD (COMl) 39

40 upper GND (VIDEO) 40

41 upper INTENSITY 41

42 upper GND (VIDEO) 42

43 upper VXD. OUT 43

44 upper RED 44

45 upper HSYNC 4S

46 upper GREEN 46

47 upper VSYNC 47

48 upper BLUE 48

49 upper +5VSPKR 49

50 upper AUDIO SPKR SO

-19-

J2Pin Rmction PL2Pm

1 lower GND, OV{S) 1

2 lower GND, OV(S) 2

3 lower GND, OV(S) 3

4 lower GND. OV(S) 4

5 lower +5V, +5V(S) 5

6 lower +5V. +5V(S) 6

7 lower +5V, +5V(S) 7

8 lower +5V, +5V(S) 8

9-50 not used

b) ECAT-X COM2 Connector J3 (IDCIO free socket) to DSPCARRY board PL2 (10 way header)

J3Pin Rmction PL2Pin

1 DCD (COM2) 1

2 DSR(C0M2) 2

3 RxD (COM2) 3

4 RTS (C0M2) 4

5 TxD (C0M2) 5

6 CrS (COM2) 6

7 DTR (C0M2) 7

8 RI(COM2) 8

9 GND (C0M2) 9

10 GND (COM2) 10

3oard SK5 (IDC20 free socket) to EPROM Controller SK2(IDC50 free

SK5Pin Function SKZPin

1 not used 1

2 not used 2

3 BUSY. BUSY-P 3

4 not used, ODAV-P 4

5 ERROR-. LAV-P S

6 ACK-, DATOK-P 6

7 not used 7

8 not used 8

- 2 0 -

SKSPin Function SK2Pin

g DO, DMDIO-P 9

10 Dl, DMDIl-P 10

11 D2, DMDI2-P 11

12 D3, DMDI3-P 12

13 D4, DMDI4-P 13

14 D5, DMDI5-P 14

15 D6, DMDI6-P 15

16 D7, DMDI7-P 16

17 STROBE-, DMAP-P 17

18 not used 18

19 not used 19

20 GND.OV 20

d) EPROM Controller SK2 (E)C50 free socket) to EPROM Data Cards SKI (IDC34 free sockets)

(chained connections to each SK2 of 4 Data Cards)

SK2Pin Function SKI Pin

21 MAO-P 1

22 MAl-P 2

23 MA2-P 3

24 MA3-P 4

25 MA4-P 5

26 MA5-P 6

27 MA6-P 7

28 MA7-P 8

29 MA8-P 9

30 MA9-P 10

31 MAIO-P 11

32 MAll-P 12

33 MA12-P 13

34 MA13-P 14

35 MA14-P 15

36 MA15-P 16

37 MA16-P 17

- 2 1 -

SK2Pin Function SKI Pin

38 MA17-P 18

39 MA18-P 19

40 MA19-P 20

41 MA20-P 21

42 BSl-N 22

43 BS2-N 23

44 BS3-N 24

45 BS4-N 25

46 BSS-N 26

47 BS6-N 27

48 BS7-N 28

49 BS8-N 29

50 MA21-P 30

e) Sonic Motherboard SKI (Weidmuller-Klippon 4-way free socket) to Formatter BMPPR0C2

board SKI (WeidmiiUer-Klippon 4-way free socket)

SKI Pin Function SKI Pin

3 +5V Formatter 3

4 OV Formatter 4

6. OPERATIONAL

The Sonic Processor and EPROM logger can be disconnected from the lid power connector by

unplugging the orange plug-in terminal block, if recjuired, while powering up the Formatter.

6.1 Procedure for Setting the Time/Date

If it is necessary to correct the clock time by use of an external PC or Husky, running

SONTIM.BAS, carry out the following steps:

disconnect the 10 way IDC ribbon cable connector from the ECAT-X J3 (COM2) - this

connects to the Formatter COM6 port via the SEROPT board

plug the special ribbon cable, labelled "Husky to Sonic", into the Husky or PC 25 way

COMl port (use a 25 to 9 way adaptor if necessary) and into the ECAT-X J3 (C0M2)

port

- 2 2 -

Set the PC Date/Time and run the program SONTIM.BAS under GWBasic or OBasic

and wait for the "Ready" prompt - this involves the following steps for the Husky:

press the red PWR key to turn the machine on

at the C:\ prompt, enter DATE

- the machine then displays its current date which can b e accepted, by pressing

RETURN, or modified by keying in a new date with the same format and then

pressing RETURN

enter TDvlE

- the machine then displays its current time which can be accepted, by pressing

RETURN, or modified by keying in a new time with the same format and then

pressing RETURN

enter GWBASIC

enter LOAD "SONTIM"

enter CLS

enter RUN

wait for "READY FOR DATA" to appear at the top of the screen

Apply power to the Sonic Processor; this will take about a minute to boot up. When the

SflTlME application runs on the ECAT, the message

Date: DD/MM/YY Time: HH:mm:SS

should appear on the PC/Husky display, where:

DD = Day of the month (0-31)

MM = Month (1 - 12)

YY = Year, e.g. (19)93

HH = Hour (00 - 23)

mm = Minutes (00 - 59)

SS = Seconds (00 - 59)

- the displayed values being for the initial ECAT Date/Time.

This should be followed shortly by another message of the same format, showing the

new time set in to the ECAT from a similar format message sent from the PC/Husky to

the ECAT. The ECAT will, after a short pause, run the FFTC2 application.

Remove the ribbon cable from the ECAT C0M2 port J3 and reconnect the ribbon

cable from the DSPCARRY board.

Note that, in order to monitor the running of the EFTC2 application, it is necessary to connect

the COMl port of a PC running a terminal application (e.g. KERMIT) at 2400 baud either

directiy to the ECAT-X C0M2 port J3 via a suitable cable, e.g. that labelled "Husky to Sonic", or

to the end cap MONITOR Lemo FS3. In the latter case, tiie connection is via an opto-isolator,

which requires +5V power via the monitoring cable. The opto-isolator is situated in the Sonic

Processor SEROPT board. The Sonic messages to the Formatter (format given in Appendix B)

can then be monitored; these should occur at about 12, 27, 42 and 57 minutes past the hour.

-23-

but will not b e produced until the software has gone through a complete
accjuisition/processing cycle.

6.2 Proeediure for Initialisation of the EPROM Logger

In addition to setting up the Sonic Processor, it is necessary to set up the EPROM logger, i.e. to

open a new file for the data.

6.2.1 Getting Started

Equipment required

1) Dumb terminal or Computer with terminal emulation

- terminal configuration 2400 baud and no parity.

2) Serial cable, with switch to enable interactive mode communications on the EPROM

Logger.

Connect the EPROM Logger to the terminal via the serial cable. Set the interactive switch on

the serial cable ON and push the reset switch on the EPROM Logger Processor Board. The

EPROM Logger's software will then enter into its interactive mode.

A Welcome message should appear on the terminal screen, followed by the current SETUP

information.

The SETUP conditions will indicate the following

BPR - Bits per record (MultiMet = 68, Sonic Processors = 128)

BOARDS - Number of completely filled memory boards installed (Buoy EL's = 4)

CHIPS - Number of chips on a partially filled board installed (normally = 0)

To modify the SETUP parameters, if required, use the MODIFY command (aH commands must

be entered in UPPERCASE characters) as follows

For 4 full boards

4 BOARDS MODIFY <cr>

If there is a partially populated board (only one partially populated board is permissible and

must be the highest board number installed) the number of chips on the board must be

declared as follows :-

For 8 memory chips

8 CHIPS MODIFY <cr>

The system wiU check for any obvious errors in the input of BOARDS or CHIPS i.e. outside
technical limitations of the EPROM Logger.

-24-

6.2.2 Hie Initialisation

Before data is collected the EPROM Logger Directory Hie structure must be initialised. The

Directory commands are as follows

DIE <cr> Displays the directory structure.

INIT-AFr <cr> Removes the directory structure of any previous EPROM

Memory cards.

SEARCH <cr> Locates the Next Free EPROM Address.

OPEN <cr> Initial command to 'open a new file'.

Prompts the user for keyboard entry for a filename <cr>.

The switch on the serial Cable should be returned to the non-interactive position, and the cable

disconnected fi-om the EPROM Logger,

6.3 Procednze for EPROM Logger Replay

6.3.1 Requirements

Check that the Translation PC is available, and that an Eprom baclqjlane with power supply is

connected to the PC. Make sure that there is a controller card which has been programmed for

4800 baud, to go with your memory cards.

6.3.2 To Translate data to the PC

a) Insert the EPROM Memory cards with the data to be translated into backplane, and

connect it via the ribbon cable, to the controller card

b) Switch on the Translation PC followed by the power to the EPROM Logger.

c) At the C> prompt change directories on the PC by typing 'CD \ DATATRANS' <cr>.

This will result in the prompt DATATRANS> appearing.

d) Type 'ELOG' <cr> to activate the EPROM Logger program.

e) This will ask you to

'press any key' when ready

In response to 'do you have a colour monitor' type Y.

In response to 'No. of bytes per record' enter 68 for Multimet or 128 for the SONIC

Processor.

-25-

Q You now enter into the Main menu of the program.

Select 1) and enter in a filename for the transferred data.

Select 3) to check Eprom logger communications.

Give a Reset on the controller card and this should generate the Setup information

of the logger. If it is not the controller card that recorded the data check that the

no. of Boards is correct, no. of extra Chips and that the no. of bytes per Record are

correct.

Reset the directory by typing 'INIT-AFT' <cr> and then make the Next Free

Address at the end of the data by typing 'SEARCH' <cr>. This may take quite a few

minutes to complete.

g) Now press 'Escape' to return to the main menu.

Select 2) to start transfer

In response to 'do you want to start transfer' type Y cr

Now type 'DUMP-IBM' <cr> then answer N cr to the question 'do you want to

dump aH files'.

Press 'Escape'

h) you should now see the NO. GOOD REC incrementing and the Hard disc on the PC

in operation.

i) On completion of the transfer you wiU be returned back to the main menu.

j) If you chose, you can examine the Binary data file with option 4) but you must go

through the whole data set to exit the option, once started.

k) Select option 6) to convert the Binary file to ASCII

Enter filename of binary data

Enter new filename for ASCII data

Now the no. of records processed should be displayed.

1) When conversion is complete select option 6) to EXIT the eprom program and

return to DOS.

- 2 6 -

Z. SPECIFICATION

7.1 Supplies

The Sonic Processor requires a +5 Volt supply at ~ 360 mA

The EPROM logger requires a +15 Volt supply at ~ 28 mA

Both of these supplies are normally provided by DC to DC converters in the DC-DC Converter

Unit.

Z.2 Power Consumption

The power consumption of the Sonic Processor, complete with EPROM logger, is typically 2.25

Watts. The consumption including the DC-DC converters is typically 142 mA at a primary bus

supply voltage of +24 Volts, or 3.4 Watts, giving a conversion efficiency of about 66%. Note

that this figure does not include the sensor power consumption.

7.3 Data Storage and Output

The spectral data and calculated parameters are stored on the EPROM logger in the format

described in Appendix A

The calculated parameters are output to the Formatter via the COM2 serial RS232 port in the

format described in Appendix B.

7.4 Sampling

The anemometer transducers are fired in sequence at intervals of 1 mS; the complete set of

firings to give 6 transit times (3 axes * 2 directions) takes 6 mS. Eight sets of transit times are

averaged for each reading, giving a total sampling duration of 48 mS, so that the effective

sampling rate is 20.83 Hz. The anemometer is operated in mode 1, in which the internally

stored calibrations are applied by the anemometer processor giving a set of calibrated 16 bit

U, V, W and C values for each sample. The anemometer also acquires the analogue compass

reading, H, on its Analogue Input #1; the analogue input is sampled 10 times per second, but a

16 bit value is output with each set of velocity data. The Sonic Processor software acquires a

total of 12288 sets of U, V, W, C and H readings over a period of about 590 seconds (nearly 10

minutes) starting at each quarter-hour, i.e. at 00, 15, 30 and 45 minutes past each hour.

The U, V and W values, although transmitted as 16 bit binary (two's complement) have the

range -6000 to +6000 , in units of cm/s; a value of -10000 is transmitted if an error (such as

blocking of the path) occurs.

The speed of sound, C, value has the range 0 to 18500, in units of 2 cm/s, giving a full scale of

370 m/s; again a value of -10000 is transmitted if an error (such as blocking of a path) occurs.

-27-

The heading, H, value has the range 0 to 5000, in units of mV, although permissible values He

within the range 2048 to 4096, as described in 7.5.2, below.

7.5 Specification of Sensors

7.5.1 Anemometer

The anemometer is a Gill Instruments 3 axis asymmetrical research anemometer, mounted on

the buoy mast ring with its "North" marking pointing in the direction of the buoy reference

North mark,. This results in the wind entering the sensed volume via the clear aperture when

the buoy's wind vane is successfully aligning the buoy reference mark into the wind.

The sensor is mounted on a two part base which both waterproofs the base of the anemometer

housing and allows two separate Lemo connectors to be used for the Power/Digital Signal and

Analogue Input connections. The base is held by a clamp welded to North side of the mast

ring.

7.5.2 Compass

The buoy heading sensor (Compass) is a Digicourse gimballed unit with 8 bit Gray coded

parallel output; the unit is housed in the main buoy canister, with a key way to ensure correct

alignment relative to the buoy North.

The compass is sampled at a rate of 1 Hz and the latched output is converted to binary. The

binary output is sent, via opto-isolators, to the Multimet system for logging and is converted to

an analocfue voltage in the range +2.048 Volts to +4.096 Volts for acquisition by the

anemometer. This gives a compass count ranging from 2048 to 4096 digits, which is

converted to an 8 bit value by taking (count - 2048) / 8. The compass and the above interface

circuits are housed in a cylindrical unit; this unit is fuUy described in the Compass Unit

documentation

8. ACKNOWLEDGEMENTS

The development of this equipment was funded by the MAFF Flood and Coastal Defence

Division under commission FD0603.

9. REFERENCES

1. Griffiths, G. and Lewis, A. 1988 lOSDL EPROM Logger Handbook, unpublished manuscript.

2. Pascal, R.W. 1993 Romdisk for SONIC ECAT system, unpublished manuscript.

3. Gill Instruments Ltd. 1992 Solent Research Ultrasonic Anemometer, Product Specification
Issue 4.1

- 2 8 -

APPENDICES

Appendix A The EPROM Logger Data Storage Format

The format consists of a spectrum header, followed by the mean wind speed reading and 255

estimates of the form logio(PSD * freq^^^). These are followed by a parameters header and,

finally, the computed parameters, i.e.

Spectrum Header

jjjhhmmFFTSpd<CR> (where jjj is Julian Day, hh is hour, mm is minute of start)

mw.ws<CR> (where mw.ws is mean resultant wind speed)

then 255 lines, each with the format:

+h.est<CR> (where h.est are spectral estimates

for the 2nd to the 256th line)

Parameters Header

jjjhhmmPSDSpd<CR> (where jjj is Julian Day, hh is hour, mm is minute of start)

IDID<CR> (Sonic Sensor ED)

001 < CR> (Records per file)

F1 .F1 <CR> (Lower firequency for averaging range)

F2.F2<CR> (Upper fi'equency for averaging range)

1 < CR> (Sonic Mode)

Computed Parameters

mw.ws<CR> (where mw.ws is mean resultant wind speed)

+nm.ws<CR> (where +nm.ws is mean wind speed from North)

+em.ws<CR> (where +em.ws is mean wind speed from East)

+vm.ws<CR> (where +vm.ws is mean wind speed upwards)

cme.an<CR> (where cme.an is mean speed of sound)

hea.dg<CR> (where hea.dg is mean buoy heading)

+p.sdpsd<CR> (where +p.sdpsd is mean PSD over range F1 to F2)

+a.lalal<CR> (where +a . la la l is least squares fit 'a' coefficient)

+b.bbbbbe+bbb<CR> (where +b.bbbbbe+bbb is least squares fit 'b' coefficient)

END<CR><LF><CR>

making a total of 1920 characters, which are transferred to the EPROM logger in 15 blocls of

128 bytes.

-29-

Appendix B The Sonic Processor Serial Ontpnt Message

The message is output at approximately 12, 27, 42 and 57 minutes past the hour via the COM2

port at 2400 baud, 8 data bits, 1 stop bit, no parity. The message format is:

SOOYYMMDDHHmmSSOO+P.SDMW.WS+]SlM.WS+EM.WS+VM.WSaVlEJ^^

+BBBT

where

SOO is the message header

YY is Year, e.g. (19)93

MM is Month (01 - 12)

DD is Day of the Month (01-31)

HH is Hour (00 - 23)

mm is Minutes (00 - 59)

SS is Seconds (00 - 59)

00 is the Date/Time terminator

+P.SD is the mean PSD value

MW.WS is the mean Wind Speed in mJs

+NM.WS is the North Vector Average Wind Speed in m/s

+EM.WS is the East Vector Average Wind Speed in m/s

+VM.WS is the Vertical Vector Average Wind Speed in m/s

CME.AN is the mean Speed of Sound in m/s

HHH is the mean Buoy Heading in degrees

+A. IF is the PSD vs Frequency regression fit a coefBcient

+B.BBE+BBB is the PSD vs Frequency regression fit b coefficient in scientific notation

T is the message terminator

Total length 70 bvtes

-30-

vSppendix C Source Code for SE & i i M E Application

/•A"A A A •kirk*****-k**-k-k-k-k**-k-k1s-k-kk**p,jy\- \ y |\/fp; (-;***

Execution of this program is included in the autoexec .bat file
for the sonic buoy sonic processor. It allows the dsp processor
clock to be optionally reset at boot up time. This is done by
connecting a PC running the GWBasic program "settime.bas" to
the COM2 port.
The DSP time is then set to the PC time.
If the PC is not connected, this program times out.
The autoexec then runs the sonic acq/processingprogfftc2.

Version 1

CHC September 1991

#include <stdio.h>
#include <dos.h>
#include <bios.h>

mainO
{

char rsout[45]; /* string sent via serial port */

char stbuf[35]; /* string buffer used for conversions */

long loop_ctr; /* used for time out */

struct dosdate_t date;

struct dostime_t time;

unsigned status, data;

int ch, ch_hit, port= 1; /* port = 0 for COMl, = 1 for COM2 */

/* initialise com2 port, 2400 baud, 8bit data, no parity, 1 stop bit */

data = LCOM_CHR8 I _COM_STOPl I _COM_NOPARnY I _COM_2400);

_bios_serialcom(_COM_INIT, port, data);

/* get calculated date/time and format into string rsout */

_dos_getdate(&date);

_dos_gettime(&time);

strcpy(rsout, 'Date:");

itoa(date.day, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, T);
itoa(date.month, stbuf, 10);
strcat(rsout, stbuf);

-31-

strcat(rsout,

itoa(date.year - 1900, stbuf, 10);

strcat(rsout, stbuf);

strcat(rsout," Time:");

itoa(time.hour, stbuf, 10);
strcat(rsout, stiauf);
strcat(rsout,":");
itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout,":");

itoa(time.second, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout, "O");
/* end string wifh a "O" and send it to the external PC */

printfCSending %s to COM%d\n", rsout, port +1);
loop_ctr = 0;

for (ch = 0; ch < strlen(rsout); ch++)
{
do

{
/* test until transmit buffer is empty, up to 100 tries */
status = 0x2000 & _bios_serialcom(_COM_STATUS, port, 0);
loop_ctr++;
}

while ((status != 0x2000) && (loop_ctr < 100));

/* send character but abort program if port times out */
if(_bios_serialcom(_COM_SEND, port, rsout[ch]) > 0x7ffi)

{
exit(0);
}

/* terminate for loop if port times out */
if ((status & 0x8000) == 0x8000)

{
printf('RS232 COM%d timed out\n", port +1);
break;
}

}

ch=0;
loop_ctr = 0;

/* Now get response date/time string sent by external PC, if connected */
do

{
/* get received characters and assemble into string, until IP detected,
- up to 10000 tries */
status = 0x100 &_bios_serialcom(_COM_STATUS, port, 0);

if (status == 0x100) /* receive buffer contains character(s) */
{
/* get and print a received character */
ch_hit = Oxff &_bios_serialcom(_COM_RECEIVE, port, 0);
prLntf("%c", ch_hit);

/* if character is a "D", reset string buffer pointer */

-32-

if(ch_hit== 68)
{
ch = 0;
}

/* put character into string buffer */
stbuf[ch] = ch_hit;
ch++;
}

loop_ctr++;
}

while ((ch_hit != 10) && (loop_ctr < 10000));

/* add a string terminator */
stbuf[ch] = 0;

/* print received string and load the date and time structures with received values */
printfOn%s\n", stbuf);
date.month = 1 0 * (^ u f [5] -48) + stbuf[6] -48;
date.day =10*(stbuf[8] -48) + s1buf[9] -48;
date.year =1900 + 10* (stbuf[13] -48) + stbuf[14] -48;
time.hour =10*(stbuf[21] -48) + stbuf[22] -48;
time.minute = 1 0 * (stbuf[24] -48) + stbuf[25] - 48;
time.second =10*(stbuf[27] -48) + stbufi28] -48;

if (loop_ctr < 10000)
{
/* set the Sonic processor date */
if (_dos_setdate(&date) != 0)

{
printf("Error in date set\n");
}

/* set the Sonic processor time */
if (_dos_settime(&time) != 0)

{
printfCError in time set\n");
}

/* Now assemble the received date/time into string rsout and send it back to the external PC as
confirmation */

strcpy(rsout, "Date:");

itoa(date.day, stbuf, 10);
strcat(rsout. stbuQ;
strcat(rsout, T);

itoa(date.month, stbuf. 10);
strcat(rsout, stbuE);
strcat(rsout, "Hi

itoa(date.year - 1900, stbuf, 10);

strcat(rsout, stbuf);

strcat(rsout," Time:");

itoa(time.hour, stbuf, 10);
strcat(rsout, stlDuf);
strcat(rsout,":");
itoa(time.minute, stbuf, 10);
strcat(rsout, stbuf);
strcat(rsout,":");

itoa(time.second, stbuf, 10);

-33-

strcat(rsout, stbuf);

strcat(rsout, "0");

printf("Sending %s to COM%d\n", rsout, port +1);

for (ch = 0;ch<strlen(rsout); ch++)
{
do

{
status = 0x2000 & _bios_serialcom(_COM_STATUS, port, 0);
}

while (status != 0x2000);

_bios_serialcom(_COM_SEND, port, rsout[ch]);
if ((status & 0x8000) == 0x8000)

{
printf("RS232 COM%d timed out\n", port +1);
break;
}

}

Appendix D.l Soiuce Code for FFTC2 Application

/ * ' *

Program FFTC4.C
Version 1.0 August 1993

Author CeC
Compile using command line:

qcl /AM /Zr /FPi87 fftc4.c /F 9000 m]ibc7.]ib
Rename as EFTC2.EXE for use with standard autoexec

Sonic processing program: for use with Sonic Buoy, giving
•PRN files to EPROM logger and C0M2 port o/p to formatter.

Runs on ECAT+ECAT-X or on 286/386+maths co-processor
Install as FFTC2.EXE in ROMdisk together with FASTCOM.EXE
and SETnME.EXE for ECAT configuration and RTCN.EXE for
DOS clock updating

VDU output can be removed by setting DISPLAY to 0

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <como.h>
#include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <process.h>
#include <dos.h>
#include<bios.h>
#include<maloc.h>

#define DISPLAY 1

#define RATE
#define SECTIONS
#define LINES
#define R_TO_D
#define pi
#define FREQl
#define FRE02

20.83
12
256
57.29578
3.141592654
2.0

4.0

SdefineRAMFHiE "oWtestffle"
/* filename for raw data in RAMdisk */

#pragma check_stack(on)
#pragma checkjpointer(on)

-34-

/* = number of sections to b e FFT'd */
/* = half the effective no. of samples per section */

typedef enum {FALSE, TRUE} boolean;

/*********** Function declarations ************/
char * aform(int, int);
char * aforml(double, char *, double, double);
double dcfilter(int);
void four 1 (int);
double fflconsts(int, int, int *, int *, int *, double *, double *);
int getdat(int, int, const char *, char *, double *, double *,

double *, double *, double *, double *, double *);
void far harderror_handler (unsigned, unsigned, unsigned far *);
double regres(int, double *, double *, double *, double *, double *, double *);
void send_rs232(char *, double, double, double, double, double,

double, double, double, double);
void wait 1 (void);
void wait2(void);
char * wait_start(int, int *, int *);
void window(int, double, double);

void show_errors (char *);
void wipe_line(int);

/* added to stop far pointer errors in eprom write */
Variables**********/

char dum_ch[l 024];
char eprom[2048];
charbuffer[130];
char strval[25];
char message[85];
charjulian[10];
char ser_no[12];

chartenv env;
FILE*fh;
double a[4 * LINES + 2], p[LINES + 2]; /* double necessary for precision */
double fupJNES + 2]; /* fu[] = FQ in PKT FSprog */
int rows = 24;
unsigned char error_flag;
unsigned lastcomp = 0;

mainO
{

char *ptr;
char **g = &ptr;

char samples[10];
char giUtime[40];

-35-

char subhead[40] = "Section:
char £R:_sec[10];
char head[40] = "Last Start";
char oi_comin[20];

char spec_file[25], spec_£Ble[25], spec_flfile[20], spec_fflfile[20];
char raw_filename[20];
charbaud[5], son_mode[5];
char back_up[30];
char sonic_id[6];

double al, a2, b;

double buoyjieading, c_mean, cos_mean, den, dfr, dummy, east_mean;
double fact, fin, fl, f2, frl, fir2;
double inv_freq, mean, norfe_mean, psd, pi , p2;
double r, rmsl, scale_x, scale_y, sea, seb, sin_mean, sumw, vertjnean;

double yvaluefLMES + 2];

double psd_set[101];
double meanws_set[l 01];

int fft, gflag, good_reads, i, j, j2;
int mode = _VRES16COLOR;
int n, nans4, nrec = 2 * LINES;
int nr2, nr23, nr24, nspec = LINES, qtr, re, sample;

intxp, yp;

unsigned goodjotal, status;

QP CODE********************************/

#if DISPLAY == 1
{

systemCcls");
printfCBuoy Acquisition Program\n");
}

#endif

_harderr (harderror_handler); /* set up hardware error handling */

/* set timezone to GMT */
if (putenv(TK=GMr) == -1)

{
#if DISPLAY == 1

{
printf("Error in setting TZXn");
}

#endif
return 0;
}

tzsetO;

• Set up parameters for FFT, etc **********/

sumw = fftconsts(nrec. nspec, &nr2, &nr23, &nr24, &fin, &%));
/* nr2 is total nurnber of samples per section */

nans4 = nspec/4;
strcpy(baud, ° 1"); /* 4800 baud */

-36-

strcpy(sonic_id, "XXXX");
strcpy(soii_mode, "1");

inv_freq = (double) loglO((double) nrec / RATE);
/* Calculate frequencies for binning */
fu[l] = 0.0;
for (i = 2; i <= nspec; i++)

{
fu[i] = 10.0 * loglO((double) RATE * (i-l)/(2 * nspec));
}

ltoa((long) SECTIONS * (long) nr2, samples, 10);

#if DISPLAY == 1
{

printfCEnd of setup\n");
}

#endif

/************ start of continuous loop ************/
do

{
printf('\a''); /* Bell for Watchdog */
strcpyOulian, wait_start(rows, &sample, &qtr));
printf("\a"); /* Bell for Watchdog */

strcpy(message,'"');

mean = 0.0;
for (i = 1; i <= nspec; i++) /* Initialise p[] array */

{
P[i] = 0.;
}

/ * » » » » call fastcom.exe, datafile c:\testfile, mode 1, 4800 baud,
SECTI0NS*nr2 samples, 1 analogue input » » » » * /

#if DISPLAY == 1
{

wipe_line(rows);
printf(Tlecord %d - getting %s samples from Sonic (Wait)",

sample, samples);
}

#endif

if (spawnl(P_WAIT, "fastcom.exe*, "fastcom.exe",
RAMFTLE, sonjtnode, baud, samples, "1", NULL) == -1)

{
#if DISPLAY == 1

{

printf("Could not run FASTCOM - Fatal Error\n");
}

#endif
exit(O);
}

#if DISPLAY == 1
{

sy^em("cls");
printf("Samples acquired. . . Starting to Process");
}

#endif

-37-

waitlO;

/******************** Start actual calcs ********************/

good_reads = 0;
north_mean = 0.;
east_mean = 0.;
vert_mean = 0.;
c_mean = 0.;
sin_mean = 0.;
cos_mean = 0.;

for (fft = 1; ffi <= SECTIONS; ffi++)
{
/* Get data section, calc mean, apply window, do fft */
if (getdat(fft, nr2, RAMHLE, gilltime, &dummy, &nortli_mean,

&east_mean, &vert_mean, &c_mean, &sin_mean, &cos_mean) == 0)
{
#if DISPLAY == 1

{

printf("#");
}

#endif
good_reads++;
mean += dcfilter(nr2);
window(nrec, fin, §3);
fourl(nrec);

/* convert complex estimates to power */
a[l] = a [l]*a[l] + a[2]*a[2];

for (j = 2; j <= nspec;]++)
{
j2=j*2 :
aQ] = a02] * aQZ] + a|j2 - 1] * a[j2 - 1]

+ a[nr24 - j2] * a[nr24 - j2]
+ a[nr23 - j2] * a[nr23 - j2];

}

den = sumw * nr2; /* corrected sumw 11/02/92 */

/* accumulate power estimates */
for (i = 1; i <= nspec; i++)

{
p[i] 4-= a[i];

if (a[i] <= 0.)
{
#if DISPLAY == 1

{

printfCError a[%d] %e\n", i, a[i]);
)

#endif
a[i] = 0.;
}

else
{
a[i] = loglO(a[i]/den);
}

yvaluep] = (double) a[i];
}

/* effectively multiply spectrum by f 5/3 (addlogl0(freq'^5/3))

-38-

and convert to PSD by adding loglO(l/estimate spectral width) */
for (i = 2; i<=nspec; i++) /* i.e. i=96->256 */

{
a[i] += 1.66666667 * loglO((i-l) * RATE /nrec) + inv_freq;
yvalue[i] = (double) a[i];
}

} /* end of if(getdat) block */
else

{
#if DISPLAY = = 1

{

pruitf('\a"); /* data faulty */
}

#endif
}

} /*endoffEtloop */

fclose(fh); /* close testfile after aU sections read */
wait 10;

if (good_reads == 0)
{
#if DISPLAY = = 1

{

_settex^osition(rows / 2, 20);
printf("FATAL ERROR:- BAD DATA FROM SONIC\n");
}

#endif
exit(O); /* abort from program - leads to re-boot */
}

/* Correct power estimates for windowing, etc */

den = sumw * nr2 * good_reads; /* corrected sumw 11/02/92 */

for 0 = 1; j <= nspec; j++)
{
pO] /= den;
}

mean /= good_reads;

good_total = (unsigned) good_reads * nr2;

north_mean /= good_total;
east_mean /= good_total;
vert_mean /= good_total;
c_mean /= good_total;
sin_mean /= good_total;
cos_mean /= good_total;
buoy_heading = 30 - R_TO_D * atan2(sin_mean, cos_mean);
if (buoy_headmg < 0.)

{
buoy_heading += 360.;
}

if (buoy_heading > 360.)
{
buoy_heading -= 360.;
}

#if DISPLAY == 1

-39-

{
_settexlposition(rows, 10);
printfC ");

#endif
waitlQ;

for (i = 2; i <= nspec; i++)
{
/* convert a[i] to PSD */
fact = pow((double) (i -1) * RATE / nrec, 1.66666667) * nrec / RATE;
p[i] *= fact;
a[i] = loglO(p[i]);
yvaluep] = a[i];
}

#if DISPLAY == 1
{

prmtf("Preparmg Spectrum for EPROM\n");
}

#endif
strcpy(eprom, Julian);
strcat(eprom, "FFTSpd\n");
if (sprintf(strval, "%05.2ftn", mean) != 6)

{
strcpy(strval, "99.99\n");
}

strcat(eprom, strval);

for (i = 2; i <= nspec; i++)
{
if (sprintf(strval. "%+06.3fai", yvaluep]) != 7)

{
strcpy(strval, "+9999.\n");
}

strcat(eprom, strval);
}

wait 10;

/* Pit regression line */
psd = regres(nrec, &r, &rmsl, &sea, &seb, &al, &b);

psd = loglO(psd);
sea = loglO(fabs(sea));
seb = loglO(fabs(seb));

if(al >0.)
{
al = loglO(al);
}

-40-

else
{
a2 = al;
al = -9.99;
}

if (sprintf(strval, "%sPSDSpd\n", julian) != 14)
{
strcpy(strval, ')jjhhinrnPSDSpd\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%s\n%.3d\n%05.2M%05.2M%s\n",

sonicjd, 1, EREOl, FRE02, son_mode) != 23)
{
strcpy(8trval, "XXXX\nRRR\nflil\nf2i2\nM\n"):
}

strcat(eprom, strval);
if (sprintf(strval, "%05.2f\n", mean) != 6)

{
strcpy(strval, "99.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+06.2M', north_mean) != 7)

{
strcpy(strval, "+99.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+06.2ftn", east_mean) != 7)

{
strcpy(strval, "+99.99\n");
}

strcat(eprom, strval);
if(sprintf(strval, "%+06.2ftn", vert_meaii) != 7)

{
strcpy(strval, "+99.99^');
}

strcat(eprom, strval);
if (sprintf(strval, "%06.2fui", c_mean) != 7)

{
strcpy(strval, "999.99\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%06.2ftn", buoy_heading) != 7)

{
strcpy(strval, "999.99\n°);
}

strcat(eprom, strval);
if (sprintf(strval, "%+08.5ftn", psd) != 9)

{
strcpy(strval, °+9.99999\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+08.5ftn", al) != 9)

{
strcpy(strval, "+9.99999\n");
}

strcat(eprom, strval);
if (sprintf(strval, "%+13.5e\n", b) != 14)

{
strcpy(strval, "+9.99999e+999\n");
}

strcat(eprom, strval);

-41-

strcat(eprom, "EMD\n\n");
#if DISPLAY == 1

{

for (i = 0; i < 1920; i++)
{
if (*(eprom + i) == 0)

{
piintf("Error ");
}

}
}

#endif

if (strlen(eprom) != 1920) /* 12.9 Mbytes for 70 days */
{
#if DISPLAY == 1

{

priiitf(Tonnatting error in EPROM data\n");
}

#endif
exit(O);
}

else
{
#if DISPLAY == 1

{

printfCWriting data to EPROM\n");
}

#endif
status = 3ios_printer(J'RINTER_STATlIS, 0, 0);
printf(°Initial status %d\n". status); /* debug */
1 = 0;
while (((status & 0x08) > 0) && (i < 20))
/* bit 3 is inverse of the logger LAV line -

Reset logger up to 20 times until LAV goes high */
{
status = _bios_printer(_PRINTER_INIT. 0, 0);
wait 10;
i++;
}

#if DISPLAY == 1
{

printf("Status %d Tries %d\n", status, i);
}

#endif

j f (i < 2 0)
{
for (i = 0; j < 1920; j += 128) /* 15 writes of 128 bytes */

{
#if DISPLAY == 1

{

printf("%dj);
}

#endif
for (n = 0; n < 128; n++)

{
status =_biosjprinter(_PRIMER_WRITE, 0,

(unsigned) * (eprom + j + n));
#if DISPLAY == 1

{

printf("%02xstatus);
}

}
}

-42"

#endif
/* for (i = 0; i < 5000; i++); */
}

/* wait20; *!
/* check status as an alternative to wait20 -
Wait for up to 2.5 sec for LAV (bit 3) to go high */
i = 0;
status = _bios_j3rinter(_PR[NTER_STATUS, 0, 0);
while (((status & 0x08) > 0) && (i < 5))

{
status = _bios_printer(_PRINTER_STATUS, 0, 0);
waitlQ;
i++;
}

#if DISPLAY == 1
{

printf("Status %d\n", status);
}

#endif
}

#if DISPLAY == 1
{

/* system(°cls"); */
_settextposition(rows - 3, 0);
printfCMean WS=%5.2fin/s, PSD*f'"5/3=%+5.2f (%d-%dHz), Ht=%+5.2f \

%+10.2e*x mean, psd, (int) FREQl, (int) FRE02, al, b);

_settex1position(rows - 2, 0);
printf(°(N=%+6.2f;E=%+6.2fiV=%+6.2f:C=%6.2fin/s:Head=%5.1f)\n°,

north_mean, east_mean, vert_mean, c_mean, buoy_heading);

printf("\nsending data to fonnatter\n");
}

#endif

send_rs232(gilltune, psd, mean, north_mean, east_mean, vert_mean,
c_mean, buoyjieading, al, b);

#if DISPLAY == 1
{

system("c]s"):
}

#endif
}

while (TRUE); /* end of do loop */

/* _settex^osition(rows -1,0); */

exit(O);

} /* end of main function */

/**************** START OF FUNCTION DEFINITIONS ***************/

/************ FFTCONSTS sets parameters for fit ************/

double fitconsts(int nrec, int nspec, int *nr2, int *nr23, int *nr24,
double *fm, double *^)

{
intj;
double sumw, w;
double alpha = 31.41592654/nrec;

-43-

*nr2 = nrec * 2;
*nr24 = *m2 + 4;
*nr23 = *nr2 + 3;

*&n = nspec - .5;

= l/(nspec + .5);

sumw = 0.;

/* Calculate weights for partial cosine taper */

for (j = 1; j <= UNES; j++)
{
if (j <= nrec/10)

{
sumw += 0.5 * pow(l. 4- cos (alpha * (LINES - j)), 2.);
}

else
{
sumw+= 2.;
}

}

return sumw;
}

/ * * * * * * * * * * * * g E T D A T loads data from diskfile ************/

int getdat(int fft, int nr2, const char *ram_file, char *ch,
double *addr_dummy, double *addr_north_mean,
double *addr_east_mean, double *addr_vert_mean,
double *addr_c_mean, double *addr_ssum, double *addr_csum)

{
double avl, av2, av3, c, cr = cos(.5236), sr = sin(.5236), u, v, w, res;
double lf_ck = 0.5 * 0.149* 29491200;
/* = half path length (in m) * counting clock frequency */

int dec, sign;

int i, j, k, theta;
intdbuff[10];
/* In model, dbuff holds 10 bytes velocity: 4 off (msbyte,lsbyte) */
/* These are 100*u, 100*v, 100*w, 50*c in m/s, plus comp_rdg (0-5000) */

unsigned comp;

if (fft== 1)
{
if ((fh = fopen(ram_file, "rb")) != 0)

{
/* read header Mode<sp> */
for (i = 0; i < 5; i++)

{
fgetc(fh);
}

if (fgetc(fh) != ' ! ')
{
#if DISPLAY == 1

{

printf(°\a");
}

#endif

-44-

retum(l);
} /* abort if not Mode 1 */

for (i = 0; i < 8; i++)
{

fgetc(fh);
}

if (fgetc(fli) != '1')
{
retuin(l);
}

fgetc(fh);

i=0;
do

/* <lfi>Analog<sp> */

/* abort if Analog Channels not 1 */

/* read the <lf> */

{
ch[i] = (char) fgetc(fh);
i++;
}

while ((ch[i -1] != OxOa) && (i < 40));

else

ch[i-l] = 0;
/* Resulting string is:

"Time hh:mm:ss Date mm/dd/yy" */

}

/* replace IF with string terminator */

{
#if DISPLAY == 1

{

wipe_]ine(rows);
printf("Could not open file\n");
}

#endif
retum(l);
}

/* end of block for fit == 1 */

/* for aU values of fft */

for 0 = -1; j <= 0; j ++)
{
for (i = j+2; i <= nr2; i += 2)

{
/* get 3 * 2byte vel compts plus 1 * 2byte vel of sound plus 2byte comp */
for (k = 0; k <= 9; k++)

{
dbufE|k] = fgetc(fh);
if (ferror(fli) != 0)

{
retum(2);
}

}

/* convert from motorola format to int format */
u = 0.01 * (int) (dbuff[l] + (dbuff[0] « 8));
V = 0.01 * (int) (dbuff[3] + (dbuff[2] « 8));
w = 0.01 * (int) (dbuf^S] + (dbuff[4] « 8));
c = 0.02 * (int) (dbuffl^ + (dbuff[6] « 8));

-45-

if ((cibufE[7] == OxfD) && (di)uff[8] == 0xd8))
{
retum(2); /* path was blocked on 1 or more axes */
}

if ((u >60.) I I (u < -60.) M (v > 60.) I I (v < -60.) 11 (w > 60.) I I (w < -60.))
{
return (3);
}

/* compass 8 bit value = (sonic count - 2048) / 8
i.e. (sonic Isbyte / 8) + (sonic msbyte * 256 / 8) - 256 */

comp = (dbufilS] » 3) + (dbuff[8] « 5) - 256;
if (comp < 0)

{
comp = 0;
}

if (comp > 255)
{
comp = 255;
}

if ((i > 1) && (abs(comp -lastcomp) > 64) && (abs(comp - lastcomp) < 192))
(
comp = 0;
}

lastcomp = comp; /* MB comp range 0-255 */

sr = sin(.5236 - 0.0245437 * comp);
cr = cos(.5236 - 0.0245437 * comp);

*addr_north_mean += (u * cr + v * sr);
*addr_east_mean += (v * cr - u * sr);
*addr_vert_mean += w;
/* above values are vector averaged north, east and vertical compts */

*addr_c_mean += c;

*addr_ssum += sr;
*addr_csum += cr;

/* put resultant horiz vel. in array a[] (start address a__ptr) */
/* a[i] = sqrt(u * u + v * v); removed w^2 term for this vn */
a[i] = sqrt(u * u + v * v + w * w); /* added w^2 term for this vn */
/*printfr%5.3ftn". a[i]); */
} /* end of i loop */

} /* end of j loop */

retum(0);
}

/* returns 0 if ok
1 if failure to open file or header incorrect
2 if error during read
3 if data out of range

(also returns array of nr2 resultant wind speeds in a[]) */

-46-

/************ DCFTLTER removes mean from data ************/

double dcfilter(int nr2)
{

inti;
double tot = 0.;

for (i = 1; i <= nr2; i ++)
{
tot += a[i];
}

tot = tot/nr2;
for (i = 1; i <= nr2; i ++)

{
a[i] -= tot;
}

return tot;
}

/************ WINDOW applies partial cosine data window ************/

void window(int nrec, double frn, double %))
{
int i, j2, nr2 = 2 * nrec;
doiible alpha = 31.41592654/nrec, w;

for 0' = 1; j <= nrec/2; j++)
{
iE(j <= nrec/10)

{
j2 = 2*j;
w = 0.5 * (1 + cos(alpha * (LINES - j)));
a02] *= w;
a[]2 - 1] *= w;
a[nr2 - j2 + 1] *= w;
a[nr2 - j2 + 2] *= w;
}

y************ FOURI does fft ************/

void four 1 (int nrec)
{
int i, j = 1,1, m, n = 2 * nrec, s;
double tr, ti, te, t, wpr, wpi, wr, wi, wt;

for (i = 1; i <= n; i += 2)
{
if(]>i)

{
tr = aO];
ti = aO + 1];
a[j] = a[i];
a[j + 1] = a[i + 1];
a[i] = tr;
a[i + 1] = ti;
}

-47-

m = (int) n/2;

while ((m >= 2) && Q > m))
{
j -= m;
m / = 2;
}

j += m;
}

1=2;
while (n > 1)

{
s = 2 * 1;
t = 2 * pi/1;
te = sin(.5*t);
wpr = -2 * te * te;
wpi = sin(t);
wr = 1.;
wi = 0.;

for (m = 1; m <= 1; m += 2)
{
for (i = m; i <= n; i += s)

{
j = 1 + 1;
tr = wr * a[j] - wi * a[j + 1];
ti = wr*a[j + l] + wi* ajj];
aO] = ap] - tr;
a[] + 1] = a[i + 1] - ti;
a[i] += tr;
a[i + 1] += ti;
}

wt = wr;
wr += wr * wpr - wi * wpi;
wi += wi * wpr + wt * wpi;
}

l = s;

}

/************ REGRES fits regression line ************/

double regres(int nrec. double *r, double *rmsl, double *sea, double *seb,
double *al, double *b)

{
inti, il,i2, n;
double psd, xm, xn, ym, ynl;
/* have to use ynl as yn appears to be in the include files */

double sx = 0., sy = 0., sxx = 0., sxy = 0., syy = 0., ssa, ssb, ssr;

11 = (int) (1 + (float) (EREQl * nrec/RATE));
12 = (int) (1 + (float) (FRE02 * nrec/RATE));
psd = 0.;
n = 0;
for (i = il; i <= i2; i++)

{
psd += p[i];
n++;
}

-48-

psd /= n; /* mean PSD over range EREQ1 to FRE02 */

xm = fu[l];
ym = p[l];
n - ;

for (i = il + 1; i <= i2; i++)
{
xn = - xm;
ynl =p[i] -ym;
sx = sx + xn;
sy = sy + ynl;
sxx = sxx + xn * xn;
sxy = sxy + xn *ynl;
syy = syy + ynl * ynl;
}

sxx = sxx - (sx * sx) / (double) n;
sxy = sxy - (sx * sy) / (double) n;
xm = xm + sx / (double) n;
syy = syy - (sy * sy) / (double) n;

*al = ym + sy / (double) n;
*b = sxy / sxx;
ssa = *al * *al * (double) n;
ssb = *b * sxy;
ssr = syy - ssb;
*al = *al -*b*xm;
*rmsl = ssr / (double) (n - 2);

if (*rmsl < 0.)
{
#if DISPLAY == 1

{

printf("RMS negative (%e)- is data OK?\n". *rmsl);
}

#endif
*rmsl = 0.;
*r = 0.;
*sea = 10000.;
*seb = 10000.;
}

else
{
*r = (double) (sxy / sqrt(sxx * syy));
*sea = (double) sqrt((double) *rmsl / (double) n);
*seb = (double) s<^((double) *rmsl / sxx);
*rmsl = (double) sqrt((double) *rmsl);
}

return psd;
}

/************ WArr_CTART waits for start of next process ************/
char * wait_start(int rows, int * sample_no, int * qtr)
{
char cur_time[10], ju]ian[10], last_time[10];
div_t quarters;
int sample = 0;
time_t tnow;

-49-

struct tm *gint;

#if DISPLAY == 1
{

_settextposition(rows,0);
printf(°Waiting for next Record Start. . . \n");
}

#endif
do

{
time(&tnow);
gmt = gmtime(&tnow);
quarters = div(gint->tm_min, 15);
_strtime(cur_time);
if (cur_time[7] != last_time[7])

{
#if DISPLAY == 1

{

_settextposition(rows, 46);
printfCDay %d: %s 1 + gmt->tm_yday, cur_time);
}

#endif
}

strcpy(lastjime, cur_time);

if ((quarters.quot == 3) && (gmt->tm_hour == 23)
&& (gmt->tm_min < 59) && (sample == 0))

{
/* reset the DOS clock just before midnight

(don't risk it if too close to midnight) */
if (spawnl(P_WArr, °a:\\rtcn.exe", "a:\\rtcn,exe", "2", NULL) == -1)

{
#if DISPLAY == 1

{

printf("Could not run RTCNNn");
)

#endif
}

sample = 1; /* to prevent multiple setting */
}

while ((quarters-rem != 0) M (gmt->tm_sec != 0)) ;

strcpy(Julian, aform((l + gmt->tm_yday), 3));
strcat(juJian, aform((gmt->tm_hour). 2));
strcat(ju]ian, aform((gmt->tiii_min), 2));

tnow /= 900;
/* current time in 1/4 hrs since 00:00:00 Jan 1, 1970 */
sample = (int) (tnow % (long) 100);
/* sample runs from 0 to 499 (cyclically) 1/4 hrly */

*sample_no = sample;
*qtir = quarters.quot;

return juJian;
}

/************ WArri waits for 1/2 second ************/

void wait 1()
{
clock_t tnow, tiiext;

-50-

tnow = clockQ;

do
{
tnext = clockO;
}

while ((double)(tnext - tnow)/CIiK_TCK <= 0.5);
}

/************ a F O R M formats a mmiber in specified format ************/

char * aform(int i_var, int n_char)
{
char asc_var[4] = "000", temp [3];
int l_var;
if (i_var <= 0)

{
asc_var[n_char] = '\0';
return ascjvar;
}

else
{
l_var = (int) (1 + loglO((double) i_var));
if (((n_char - l_var) < 4) && ((n_char - l_var) > -1))

{
itoa(i_var, temp, 10);
strcpy(asc_var + n_char - l_var, temp);
}

}
return asc_var;
}

/ * * * * * * * * * * * * h A R D E R R O R _ H A N D I iE R handles hardware errors *************/

void far harderror_handler(unsigned deverror, unsigned errcode, unsigned far *devhdr)
{

char dletter, num[S];
error_flag= 1;

if (strlen(message) > 40)
{
strcpy(message,"");
}

if ((deverror & 0x8000) == 0)
{
switch(deverror & 0x8)

{
case 0:

strcat(message, 'Drive A");
break;

case 1:
strcat(message, "Drive B");
break;

case 2:
strcat(message, Drive C");
break;

}

strcat(message," ERROR:-");

-51-

itoa(errcode & Oxff, num, 10);
switch(errcode & Oxfi)

{
case 0;

strcat(message," Write Prot'd");
break;

case 2:
strcat(message," Not Ready");
break;

case 9;
strcat(message," No Paper");
break;

case 10:
strcat(message," Write Fault");
break;

case 12:
strcat(message," Gen Failure");
break;

default:
strcat(message," Code");
strcat(message, num);
break;

}
switch(deverror & 0x0600)

{
case 0:

strcat(message, "-MSDOS:");
break;

case 0x0200:
strcat(message, "-FAT:");
break;

case 0x0400:
strcat(message, "-Directory:");
break;

case 0x0600:
strcat(message, "-Data Area:");
break;

}
}

else
{
strcpy(message, "Non Disk I/O Error:");
if((*(devhdr + 4) & 0x8000) == 0)

{
strcat(message, "Bad Image of FAT:");
}

else
{
strcat(message, "Character Device:");
}

}
/* printfC%s\n", message); */

_hardretn(_HARDERR_IGNORE);
}

CHECK_CACHE opens raw data copy file ************/
int check_cache(char *ju]iaii, char *raw_filename, FILE *f_cache)

strcpy(raw_filename, "f:F");
strcat(raw_filename, Julian);

-52-

strcat(raw_fQename, ".raw");

if ((f_cache = fopen(raw_filename, "w+")) == NULL)
{
#if DISPLAY == 1

{

_settextposition(0, 0);
printf("*****COULD NOT OPEN RAW DATA FILE IN CACHE*****\n");
}

#endif
return 0;
}

else
{
fclose(f_cache);
return 1;
}

}

void wipe_]ine(int row)
{
#if DISPLAY == 1

{

_settexlposition(row, 1);
piintec
_settextposition(row, 10);
}

#endif
}

/************ AFORMl formats with specdfied %spec and range'
char * aforml (double param, char * f_str, double max, double min)
{

char buffer[15];
intch;

if ((param > min) && (param < max))
{
sprintf(buffer, f_str, param);
}

else
{
sprintf(buffer, f_str, 0);
}

return buffer;
}

/************ SEND_RS232 sends data to formatter via C0M2 ************/

void send_rs232(char *giLltime, double psd, double mean,
double north_mean, double east_mean, double vert_mean,
double c_mean, double buoy_heading, double al, double b)

{
char rsout[75];
char buffer [6];
unsigned status, data;
int ch;
/* initialise com2 port, 2400 baud, 8bit data, no parity, 1 stop bit */
data= CCOM_CHR8 I _COM_STOPl I _COM_NOPARITY I _COM_2400);

-53-

_bios_serialcom(_COM_INrr, 1, data);

/* assemble message for formatter */
strcpy(rsout, "SOO");
if ((strcspn(gilltime, "T) == 0) && (strcspn(gilltime, "D") == 14)

&& (strcspn(gilltime, 7") == 21))
{
strcpy(rsout + 3, giUtime + 25);
strcpy(rsout + 5. giUtime +19);
strcpy(rsout + 7, giUtime + 22);
strcpy(rsout + 9, gilltime + 5);
strcpy(rsout +11, gilltime + 8);
strcpy(rsout + 13, gilltime + 11);

strcpy(rsout +15, "00");

strcpy(rsout + 17, aforml(psd, "%+05.2f, 10., -10.));

strcpy(rsout + 22, afoiml (mean, "%05.2f, 100., 0.));

strcpy(rsout + 27, aforml(north_mean, "%+06.2f, 100., -100.));

strcpy(rsout + 33, aforml(east_mean, "%+06.2f, 100., -100.));

strcpy(rsout + 39, aforml(vert_mean, "%+06.2f, 100., -100.));

strcpy(rsout + 45, aforml(c_meaii, "%06.2f, 1000., 0.));

strcpy(rsout + 51, aforml(buoy_heading, "%03.0f', 360., 0.));

strcpy(rsout + 54, afonnl(al, "%+05.2f, 10., -10.));

strcpy(rsout + 59, afonnl(b, "%+10.2E", L, -1.));
/* must be capital E for messagecheck to accept it in newform */

strcat(rsout + 69, 'T');
}

else
{
strcat(rsout, "90010100000000+0.0000,00+00.00+00.001");
/* strcat(rsout, "90010100000000+0.0000.00+00.00+00.00+00.00000.00000\

+0.00+0.00E+000T"); */
}

for (ch = 0; ch < strlen(rsout); ch++)
{
do

{
status = 0x2000 & _bios_serialcomC_COM_STATUS, 1,0);
}

while (status != 0x2000);

status = _bios_serialcom(_COM_SElSlD, 1, rsout[ch]);
if ((status & 0x8000) == 0x8000)

{
#if DISPLAY == 1

{

printf("RS232 COM2 timed out\n");
}

#endif

break;
}

-54-

}

}

/************ vVAPrZ waits for 2 seconds ************/

void wait2(void)
{
clock_t tnow, tnext;

tnow = clockQ;
do

{
tnext = clockQ;
}

while ((tnext - tnow) / CLK_TCK < 2);
}

/******************** EfsjD OF FUNCTION DEFENITIONS ********************/

Appendix D.2 Source Code RTCN.C

/ * * * * * * *

Program to read Real-Time-Qock time/date
(caU with argv[l] = 1, e.g. rtcn 1)

or to update the DOS time with the RTC time
(can with argv[l] = 2, e.g. rtcn 2)

(useful to keep DOS clock drift low)*
or to update the RTC time with the DOS time

(call with argv[l] = 3, e.g. rtcn 3)
or to set in a fixed DOS time of 1000 ticks

(caU with argv[l] = 4, e.g. rtcn 4)
(useful for DSP processor after CLOCKSET)

NB the DOS TIME command reads the DOS time,
i.e. the system time, but if you enter a
new time, instead of <retum>, it sets both
RTC and DOS time to the entered time.

CHC 12th August 1993

#include <stdio.h>
#include<stdlib.h>
#include <dos.h>
#include<bios.h>

#define BIOS_INT 0x1 a
#define GET_RTC_TIME 0x02
#define SET_RTC_TIME 0x03
#define GET_RTC_DATE 0x04
#define SEr_RTC_DATE 0x05

#define GET_DOS_CLOCKOxOO
#define SET_DOS_GLOCK0x01

#define DOS_INT 0x21
#define GET_DOS_DATE 0x2a
#define SET DOS DATE Ox2b

-55-

#define GEr_DOS_TIME 0x2c
#define SEr_DOS_TIME 0x2d

main(mt argc, char *argv[])
{
union REGS xr;
struct SREGS sr;
inthrs, mins, sees, century, year, month, day;
long clockcount = lOOOL;

if (argc != 2)
{
printf("Argument missing: rtc <n>\n(n = 1 for read RTC tune/date)\n");
printf("(n = 2 for updating DOS time/date with RTC time/date)\n");
printf(°(n = 3 for updating RTC time/date with DOS time/date)\n'^;
printfC(n = 4 for setting DOS time/date to 00:00 01/01/1993)\ri");
exit(0);
}

switch(*argv[l])
{
case '1': /* Get and Display RTC time and date */

{
xr.h.ah = GET_RTC_TIME;
int86xCBIOS_INT, &xr, &xr, &sr);
hrs = 1 0 * ((xr.h.ch & Oxfi)) /16) + (xr.h.ch & OxOQ;
mins = 10 * ((xr.h.cl & OxfO) /16) + (xr.h.cl & OxOQ;
sees = 10 * ((xr.h.dh & Oxffi) / 16) + (xr.h.dh & OxOf);

printfCTime %.2d;%.2d:%.2d. Date", hrs, mins, sees);

xr.h.ah = GET_RTC_DATE;
int86x(BIOS_INT, &xr, &xr, &sr);
century = 10 * ((xr.h.ch & OxfO) /16) + (xr.h.ch & OxOQ;
year = 10 * ((xr h cl & OxfO) / 16) + (xr.h.cl & OxOQ;
month = 10 * ((xr.h.dh & Oxfl)) /16) + (xr.h.dh & OxOQ;
day = 10 * ((xr.h.dl & 0x0) /16) + (xr.h.dl & OxOf);
piintfC%.2d/%.2d/%.2d%.2d\n", day, month, century, year);

break;
}

case '2': /* Update System Clock with RTC time and date */
{
do

{
xr.h.ah = GET_RTC_TIME;
int86x(BIOS_INT, &xr, &xr, &sr);
}

while ((10 * ((xr.h.dh & 0x0) / 16) + (xr.h.dh & OxOQ) == 59);
hrs = 10 * ((xr.h.ch & Oxfi)) / 16) + (xr.h.ch & OxOf);
mins = 10 * ((xr.h.cl & OxfO) / 16) + (xr.h.cl & OxOQ;
sees = 10 * ((xr.h.dh & OxfO) /16) + (xr.h.dh & OxOf);

xr.h.ah = SET_DOS_TIME;
xr.h.ch = hrs;
xr.h.cl = mins;
xr.h.dh = sees + 1;
xr.h.dl = 0;
int86x(D0S_INT, &xr, &xr, &sr);
if (xr.h.al != 0)

{
pnntf("%.2d %.2d %.2d\n", hrs, mins, sees);
}

-56-

xr.h.ah = GET_RTC_DATE;
int86x(BIOS_INT, &xr, &xr, &sr);
century = 1 0 * ((xr.h.ch & OxfO) / 16) + (xr.h.ch & OxOQ;
year = 1 0 * ((xr.h.cl & OxfiO) / 16) + (xr.h.cl & OxOQ;
month = 1 0 * ((xr.h.dh & OxfO) /16) + (xr.h.dh & OxOf);
day = 1 0 * ((xr.h.dl & OxfO) /16) + (xr.h.dl & OxOf);

xr.h.ah = SET_DOS_DATE;
year +=100* century;
xr.h.ch = year / 256;
xr.h.cl = year - 256 * (year / 256);
xr.h.dh = month;
xr.h.dl = day;
int86xpOS_INT, &xr, &xr, &sr);

break;
}

case '3': /* Update RTC with System Clock time and date */
{
xr.h.ah = GET_DOS_TIME;
int86x(DOS_INT, &xr, &xr, &sr);
hrs = xr.h.ch;
mins = xr.h.cl;
sees = xr.h.dh;

xr.h.ch = 1 6 * (hrs /10) + hrs -10 * (hrs / 10);
xr.h.cl = 1 6 * (mins / 10) + mins - 10 * (mins /10);
xr.h.dh = 1 6 * (sees / 10) + sees -10 * (sees / 10);
xr.h.ah = SET_RTC_TIME;
int86x(BIOS_INT, &xr, &xr, &sr);

xr.h.ah = GET_DOS_DATE;
int86xpOS_INT, &xr, &xr, &sr);

year = 256 * xr.h.ch + xr.h.el;
century = year / 100;
year -= (100 * century);
month = xr.h.dh;
day = xr.h.dl;

xr.h.ah = SET_RTC_DATE;
xr.h.eh = 1 6 * (century/ 10) + century-10 * (century /10);
xr.h.cl = 1 6 * (year / 10) + year - 10 * (year / 10);
xr.h.dh = 1 6 * (month / 10) + month - 10 * (month /10);
xr.h.dl = 1 6 * (d a y / 10) + d a y - 1 0 * (day/ 10);
int86x(BIOS_INT, &xr, &xr, &sr);

break;
}

case '4': /* set DOS time/date to 00:00 01/01/1993 for test purposes */
{
_bios_timeofday(_TIME_SErCLOCK. &cloekeount);
_bios_timeofday(_TIME_GETCLOCK, &cloekcount);
printf("Ticks %d\n", clockcount);
break;
)

}
return 0;
}

-57-

AppendixE Hardware

General Assembly

The assembly of the combined Sonic Processor/Formatter unit is shown in Figure E. 1.

] End Cap

1

GCAT 2000
GCAT 3000
FlashCard
Stage Plate

AMPRO SSP

AMPRO SSP

Stage Plate

Modified
FORMBACK
Motherboard

Stage Plate

Figure E.I Schematic of Formatter/Sonic Processor

-58-

Parts list

1 off C.5597-131 Formatter Tube Lid assembled with LEMO connectors and internal

interconnecting IDC cables as per wiring specification, section 5.2

1 off C.5597-19 Formatter Tube (as for Battery Housing)

3 off C.5597-135 Formatter Spacer-1 for mounting BMPPR0C2 off lid

3 off C.5597-137 Formatter Spacer-3 for mounting stage plate

1 off C.5597-143 Formatter Disc-1 (stage plate)

3 off 6 mm Nuts and Locking Washers for stage plate

1 off BMPPROC2 Board (assembled with components as per Formatter Handbook)

1 off GCAT 3000 unit

1 off GCAT 2000 unit

4 off C.5597-136 Formatter Spacer-2 for mounting I/O board stage plate

1 off I/O board Mounting Plate to sketch "dsp serial chassis"

Assorted Fasteners for I/O board stage plate

2 off AMPRO Minimodule™ /SSP

1 off 64 way Bus Connecting Cable (IDC) with DIN41612 connectors

Assorted Spacers and Fasteners for mounting AMPRO boards (from AMPRO kit)

4 off C.5597-138 Formatter Spacer-4 for mounting Sonic Processor stage plate

1 off C.5597-144 Formatter Disc-2 (sonic processor stage plate)

Assorted Fasteners for above

4 off C.5597-139 Formatter Spacer-5 for mounting Sonic Processor backplane offstage plate

1 off Sonic Processor Backplane (modified FORMBACK), fitted with

7 off Edge Connectors/Card Guides

1 off Watchdog board

l o B S B K K T b o a d

1 off DSPCARRY board

1 off ECAT board

1 off ECAT-X board

1 off EPROM Controller board

4 off EPROM memory boards fitted with 2 Mbit EPROMs

-59-

Appendix F DSPCASRT - Carrier Board for ECAT/ECAT-X

Parts list

ALPHABETICALLY ORDERED LIST OF PARTS WITH SILK REFERENCES AND DESCRIPTIONS

1offPCB

2offIDC10

related parts *

* ~100imn length

* 1 off

* l o g

1 offlDCZO

related parts *

* 1 off

* ~ 100mm length

1 offlDCSO

DSPCARRY

PL2, PL3

SK3

SK2

Motherboard manufactured to lOSDL

artwork DSPCARRY.ART

Mini DIP PCB Solder Transition

FameU 145-065

10 way IDC cable (PL3 to SK3)

Famell 171-10 1 foot

Female 10 way Socket Bump/Clip Pol'n

FameU .152-718

Female 100 way Socket to mate with ECATJ2

Supplied complete with 2 off 50 way IDC cables by DSP Design Ltd.

PL5

SK5

PL4

1 offRCACONl

1 offRCACON2

1 offRMFW25#100K

1 offVNlOKM

PLll

PLl

R1

TRl

Right angle Male PCB mounting IDC header

FameU. 152-021

Female 20 way Socket Bump/CUp Pol'n

FameU .152-721

20 way IDC cable (SK5 to EPROM ControUer)

FameU 171-20 1 foot

Mini DIP PCB Solder Transition

(connects to SK2 upper, above)

FameU 145-071

gold plated edge connections

Resistor 1/2 W metal film

FameU MFR4 lOOK

Low power MOSFET

FameU VNIOKM

PLl

RCA Bus Connector

RCA Bus Connector

TxDl

RxDl

RTSl

CTSl

+5V(S)
00

ERROR
D1 0VCS) INIT-

DCDl

+5V(|)

DTRl

VNIBKM

0V(S>

0V(S) BUSY
BVCS)
0V(S)
BVCS)

+5V(S)
+5V(S) p22

P L i i +5V(S)
+5V(S)

TxDZ
PLZ

Connects to ECAT J2 (lower)
DTRl

+5V(S) TxDl
RTSl BVCS)

DC02 OSRl
DCDl

DCD2 GN02

DTRg

6NDZ ̂

Connects to ECAT-X 13 (CDM2)

BUSY

ERROR-
ACK-

00
01
02
03
Ok.
05
06
07

STROBE-

GND
PL5

Connects to EPROM Logger PL2

s

Connects to ECAT J2 Cupper)

INSTITUTE OF OCEANOGRAPHIC SCIENCES.
DEACON LABORATORY.BROOK ROAD.WORMLEY.
GODALMING.SURREY.GU8 SUB.ENGLAND.

FILENAME

DSPCARRY.DGK
CARRIER BOARD FOR DSP SBC TO FIT RCA CARD FRAME

SHEET
ISSUE
DATE

1 OF 1

REV. I

19-0B-91

r
P

L5

o
u

t
l

i
n

e
o

f
e

c
a

t
b

o
a

r
d

•

•

•
 .

X
I

•:

P
L2

•
 •

•
 •

#

t

#

m

•

•

•

P
L

•
11

•
u

a.

#
#

P
L%

•
 •

•
•

#

«

70

m

o
<

in

•

"
0 o >

no

^
cn

^

I (S

>

O
l

X
I

cL

I

•
 •

8

c
o

m
p

o
n

e
n

t
s

i
d

e

Illllllllll

1x1
O
ro
10
LU
Q
1_
o
ru

;
%

-E9-

-64-

AppendUx G SEROPT - Anemometer 115232/422 interface and Opto-isolators

Parts list

ALPHABETICALLY ORDERED LIST OF PARTS WITH SILK REFERENCES AND DESCRIPTIONS

9o@lN4148 D1,D10,D11,D2,

D3, D4, D5, D8. D9

2 off 1N53#1N5343B D6, D7

1 off 75176

4 off 7660

4offCD40106

IC2

IC7, 17, 18, 19

ICG, 10, IS, 16

3 off CFKC2#2N2F CIO, C l l , C12

15offCrANT#lCpF

9of fHl lLl

3offIDC10

related parts *

*3off

1 offMAX232

3 off MOLEX4

01, 013, 014, CIS,

C16, C17, C18, C2,

C3, C4, CS, C6, C7,

08, 09

103,104, ICS, 108,

109,1011,1012,

1013,1014

PL6, PL7, PLB

SK6, SK7, SK8

101

PL3, PL4, PLS

Small Signal Diode

FameU 1N4148

Zener Diode

FameU 1N5343B

Line Driver/Receiver

FameU SN7SLB0176P.

CMOS Voltage Converter

FameU ICL7660CPA-MAX

Schmitt Buffer

FameU CD40106BCN

Capacitor Polycarbonate

FameU 147-667

Capacitor Tantalum

FameU 100-906

Optocoupler, Schmitt Trigger output

FameU HI ILl

Right angle Male PCB mounting IDC header

FameE. 152-018

Female 10 way Socket Bump/Clip Pol'n

FameU .152-718

CMOS Dual Transmitter/Receiver

FameU MAX232

90° Square Pin Header with friction lock

-65-

related parts *

*3ofiF

11 offRMFW25#lK0

9 oflfRMFW25#lK8

2 off RMFW25#22R

SE3, SK4, SKS

1 offNPN-BClOe TRl

1 off RCACONl PLl 1

1 offRCACON2 PLl

1 offRMFW25#100K R6

RIO, R11,R12, R13,

R14, R25, R26, R27,

R28, R8, R9

R1,R2.R21,R22,

R23, R24, R3, R4, R5

R16, R17

1 offRMFW25#4K7 R7

1 offRMFW2S#NOT-U R15

3 offVlSZAAl R18, R19. R20

FameU 146-693

Crimp Terminal Housing (Polarised)

Famell 143-094 + inserts 143-116

Low Power Bipolar Transistor

FameU BC109-SGS

(gold plated edge connections)

(gold plated edge connections)

Resistor 1/2 W metal film

FameU MFR4 lOOK

Resistor 1/2 W metal film

FamenMFR4 IKO

Resistor 1/2 W metal film

FameU MFR4 IKS

Resistor 1/2 W metal film

FameU MFR4 22R

Resistor 1/2 W metal film

FameU MFR4 4K7

not used

Metal Oxide Varistor

FameU VI8ZA1

50NIC C0M2 TX
—BVfariBatt«r
—+<5 Vfo mat t#r

-fOUnMgnd
- M K m T B T

-MNKgmd
-SONIC Mr
— M i e X f l n d

—BVfarmott̂ r

8ERUL-e
SERIAL-A

•tflVion\c

Gl-S TZ

K/ r"

BVian lo BVvon|q
HVmn Itor
Wvmon ltd

5ERIAL-0 CDb«tt8

1 ^
Bvforiiwtt*
+@VFormqtt#r CDUIBB QuNICMr

fl/rmn Itqr
oOmCqna

-aVmanlta
PQRrKTgnd

+5vtxielo

RX-CZ3
SVfflan Iter

•aVfanfiatt̂ r
8v«an l«

CD̂ lflQ
-#xy

COUBIBB CDbfllBB

countas
COUtCB
l!>o

COM IN
BVfarnnttir

BVfortnattir -a Vfa rmat t#r

INSTITUTE OF OCEANOGRAPHIC SCIENCES, DEACON LABORATORY,

BROOK ROAD, WORhLEY, GODALMING, SURREY GU8 SUB, ENGLAND

FILENAME
SONIC BUOY - OPTO ISOLATORS AND SONIC RS232/î 22 INTERFACE

SHEET

4 ^

§

C5 ICl

lA.l R19 Cll
C3

C2

C10
R18

R20
r

R7

cu.

IC2

C6

C12l IRIS

RB

I1R17

R21

pel _J
R22

C18

i c r ?
Rllf R13

R15

ICB

DB .07 PLB
RAW

+ +

091

R23

o i a r

R2M-

Dll

D

<1

I C l i

IC12

IC13

ICII4-

IC15

ICIB

C17

R25 R26

ICIB

RB R9 Ri0
Rll

R12

R27 R2B
IC19 c i t

ICIB

C13

Z.22 CI

CIB CIS
SERQPT.ART

REV. 2 0 2 / 0 7 / 1 9 9 3

PL 7
To FORM

C9

C7

ICB

IC3

ICS

ICit-

IC5

IC7

D1
CB

PLB
MON

R1

05

R5

02

R2

03

R3

PL3
J MMET

PLif
SON

PL5
]FORM

