
^ Institute of
K Oceanographic Sciences

Deacon Laboratory

INTERNJIL DOCUMENT No. 342

SWALES Sonic Buoy - meteorological
data report

C H Clayson

1994

Natural Environment Research Council

INSTITUTE OF OCEANOGRJIPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 342

SWALES Sonic Buoy - meteorological
data report

C H Clayson

1994

Wonnley
Godabning
Surrey GU8 5UB UK
Td+44-(0)428 684141
Td0x 858833 OCEANS G
Telefax +44-(0}428 683066

v" 1

: ' - A - c ^ ; ^

f v ^ r 1.

K a . » , % ^
^ J-:?

u. f

^ "4%^^

ĵ VY,
(*,&

t "V i

j ^ .
i ! - /

"7 AA
<wv

'Hi I
»W" C"* .l/f**' T/k

..,<W...._*_,...%'&
> 1

NTf

Yv'w
' ' ' / , . *

^ I"

? v s r ^ %"

' i t V .s'>

,4^
îĵ '̂ Ai Jvw ,- Ji. w ' \ 't' /

" # ' 4 ' ' * v r *
. W , , —

K) %
^ %c <4 ' f r V** *.

iw/e

^ % # # % * : % , : n . s ^

D O C U M E N T D A T A S H E E T

AUTHOR PUBLICATION
DATE

CLAYSON, C H 1994

TITLE

SWALES Sonic Buoy - meteorological data report.

REFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 342, 42pp.
(Unpublished manuscript)

During the SWALES experiment in the autumn of 1993, the Sonic Buoy was deployed twice as part
of an array of moored instrumentation. On the Sonic Buoy, meteorological data were acquired by
the Formatter Processor from the Sonic and Multimet Processors' output data streams. These data
were combined and logged as 10 minute means on the Formatter Flashcard memory, a selection of
the data was also telemetered in near real time via the polar orbiting ARGOS and geostationary
METEOSAT satellite data collection systems.

This data report briefly describes the processes employed in acquisition of the data. It then
describes the processes for the recovery of the data from the various source media, the quality
control procedures applied and, finally, the resulting output data files.

Appendices include comprehensive details of the software developed for the above processes and of
the formats used for the input and output data.

KEYWORDS

Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 BUB. UK Telephone Wormley (0428) 684141

Telex 858833 OCEANS G.
Director Colin Suiumerhayes DSc Facsimile (0428) 683066

Copies of this report are available torn: The Library, PRICE £0.00

-5-

Index

SWALES SONIC BVOY - METEOROLOGICAL DATA REPORT 7

Equipment 7

Data Sources and Processing 7
ARGOSData 8
Meteosat Data 9
PCMCIA Hash Card Data 9

Data Quality Checking 11
Hgures 2,3 13
Figures 4,5 14
Figures 6,7 15
Figures 8,9 16
Figures 10,11 17
Figures 12,13 18
Figure 14 19
Figures 15,16 20
Figures 17,18 21

Summary of Data Produced 22
Raw Data Files 22
CricketGraph Data 22

Data Time Stamping 22

Acknowledgements 23

References 23

APPENDIX A SOFTWARE LISTINGS 24

A.1ARGSONFILE 24

A.2 SORT REGS 28

A.3METEOSORT 30

A.4 4MT01M.C 33

A.5 FORMDECODE 35

A.6 SONDIRN 37

APPENDIX B DATA FORMATS 39

Appendix B.l Raw Data Rles 39

Appendix B.2 ARGSONflLE and SORT REGS Output Files 43

Appendix B.3 CricketGraph Data 43

- 6 -

SWALES Sonic Buoy - Meteorological Data Report

Equipment

The Formatter operation is fully described in ref. 1. The Formatter consists of a single board
PC-compatible processing system, with 4 additional serial ports, a 4 Mbyte PCMCIA, series 1
Flash EEPROM card and software embedded in EPROM.

Briefly, the Formatter asynchronously accepts quarter-hourly processed data messages from
the Sonic Processor and one-minute-mean data messages from the Multimet Processor. Upon
receipt of a Sonic message, or on the quarter-hour if no Sonic message is received, the
Formatter averages the Multimet data lying within a 10 minute window corresponding to the
Sonic data acquisition period (having corrected the received message time stamps for clock
drift relative to its own real time clock).

The Formatter then converts Sonic data to a concise binary format, with parity checks, for

transmission via the ARGOS polar-orbiting satellite system; the ARGOS data is sent cyclicaly

as 4 X 32 byte messages, comprising 5 hours of Sonic data.

The Formatter also converts Sonic and averaged Multimet data, converted to engineering
units, to a 288 byte ASCII format message for transmission via the Meteosat geostationary
satellite at hourly intervals.

The 128 bytes of ARGOS data and the 288 bytes of Meteosat data were written to a Flash
EEPROM data card at cjuarter-hourly intervals as a back up. The Formatter data were
originally envisaged mainly as a real time source of quick-look data, with the secondary
function of providing back up of an abbreviated data set by telemetry and a separate storage
medium. Due to the failure of the Multimet EPROM logger on both deployments, this back up
became invaluable as a source of Met data, but this necessitated the expenditure of
considerable additional effort to produce the required form of data products.

Data Sources and Processing

For an overall view of the data sources and processing, see Figure 1. The Sonic Buoy was
deployed for two separate periods:

Day 293.59 (1st deployed) to Day 315 (recovered inverted)

Day 326.60 (re-deployed) to Day 355 (recovered from rocks)

During the 1st deployment, the buoy overturned at day 313.58. During the 2nd deployment,
the buoy systems progressively failed due to battery exhaustion from approximately day
338.53.

- 8 -

Sonic Buoy
Formatter

flRGOS
'Satel l i te

Link

Meteosat
Satell ite Link

f PCMCIA f
f Flash Card I

CLS RRGOS
Toulouse
Database

Sort using
SORTRECS

[plot quality
control (QC)

data]

ESOC
Darmstadt

Replay to Raui
Data File using
Thincard Driue

uia PSS ne twork

/ Session Dump /
1 ->DSFI Iea t I
v. V

Meteosat Satell i te Link

Decode using
RRGSONFILE

lOSDL Receiuing
Station

f Rauj PC File f

I"" L i
f Indiuidual J
1 message 1
V f i les V

Split to 4 K 1
Mbyte files

i
[plot quality
control (QC)

data]

. I M G

.2MG

.4MG

Extract
Meteosat data,

apply QC

f CG File: 1st f
I Deploy- I
V ment CG V

f CG File: 2nd
I Deploy-
V ment CG [

Hgure 1 Data Sources and processing

ARGOSData

During the deployments, data were received from the Sonic Buoy via the ARC OS system,

which was regularly interrogated during the ejqjeriment to allow checks on both buoy position

and data quality. The ARGOS messages, downloaded from the CLS ARGOS computer at
Toulouse via the Public Switched System were decoded and sorted by the QuickBasic
applications ARGSONFILE and SORT REGS (Appendices A. 1, A. 2). The former decoded all
Sonic Buoy ARGOS messages within an ARGOS dump into wind data; the latter sorted the data
into chronological order, selecting the best choice from duplicated data, and produced
chronologically ordered tabular files of the parameters PSD, MWS, Ht-A, Vertical MWS and N2.
Pile formats are given in Appendix B.

The ARGOS data naturally terminated with the capsize of the buoy in the first deployment and
with exhaustion of the batteries in the second deployment.

Meteosat Data

Due to a battery charger failure, Meteosat telemetry was not possible during the first
deployment. During the second deployment, the buoy messages were transmitted via a
transponder on Meteosat to the European Space Operations Cenfre at Darmstadt. They were
then retransmitted via Meteosat (interleaved with the WEFAX transmissions) and received by a
local Meteosat DCS message recovery unit (MRU) at lOSDL, Wormley. The MRU decoded the
DCS transmissions and filtered out the Sonic Buoy messages; these were then passed via
RS232 to a Macintosh Classic running the compiled application LOGSWl APL

The Macintosh further decoded the messages and stored them in daily numbered folders,
which were transferred at intervals to Macintosh IIvx for examination and further processing.
A OuickBasic program METEO SORT (Appendix A.3) was written to combine the individual
messages into day files and to produce a report file, flagging errors, since the messages were
not error free. Manual editing was used to correct the message files for the flagged errors (or
to substitute 999 default data, if appropriate); the program METEO SORT was then re-run to
produce an error free tabular file suitable for importation into CricketGraph.

PCMCIA Hash Card Data

The complete data set was recovered from the 4 Mbyte Rash Memory Card after each
deployment. The card contents were dumped to a PC disk file, using a Databook TWnCard
drive and associated software. The resulting 4 Mbyte file was then split into 4 x 1 Mbyte files
by the C program 4MT01M.C (Appendix A.4) to allow easier handling and transfer to other
machines; the resulting PC files were named FORMSWAL.IMG, F0RMSWAL.2MG,
FORMSWAL.3MG, F0RMSWAL.4MG

The directory information in the first 256 kbytes of the card memory gave the Formatter
date/time and memory location for the start of each 128 + 288 byte "record". Since the 128
byte ARGOS data was duplicated (with the exception of the N2 values) over a number of the
288 byte Meteosat data sets in the records, attention was focussed primarily on processing the
Meteosat data. However, the QuickBasic program FORMDECODE (Appendix A.5) was
written to decode the Flash file ARGOS data into a similar format to that produced by
ARGSONFILE, but incorporating the Meteosat ASCII data. This gave additional useful

- 1 0 -

diagnostic information when it was necessary to correct for timing errors of the Sonic
Processor during the second deployment.

The required data products were tabular ASCII files of all the quarter-hourly data, for the two
deployments. The Meteosat header data includes a Julian day number, J]J. It also contains the
most recent four cjuarter-hourly sets of the Sonic and Multimet data

i.e. 00,+PSD,MWS,+NWS,+EWS,+VWS,+F_A,+ATl,+AT2,+STl,+ST2,YWS,YDR<CR>

plus a housekeeping line of data containing;

BAT,HDG,HSD,+TMET,+TSON<CR>

where 0 0 = Ouarter-hours since midnight (range 00 - 96)

+PSD = 100 * loglO(Power Spectral Density * f^S/S

MWS = 10 * (Mean Wind Speed in m/s)

NWS = 10 * (North Mean component of Wind Speed in m/s)

EWS = 10 * (East Mean component of Wind Speed in m/s)

VWS = 10 * (Vertical Mean component of Wind Speed in m/s)

F_A = 100 * Coefident 'a', for linear regression fit of PSD vs logl0(fi-equency)

(over the frequency range 2 - 4 Hz, PSD = a + b .logl 0(firequency))

ATI = 10 * (Mean Air Temperature fi-om sensor 1 in °C)

AT2 = 10 * (Mean Air Temperature fi-om sensor 2 in °C)

STl = 10 * (Mean Sea Temperature firom sensor 1 in ^C)

STl = 10 * (Mean Sea Temperature fi-om sensor 2 in °C)

YWS = 10 * (Mean Young AO 1 Wind Speed in m/s)

YDR = Mean Young AOl VWnd Direction in degrees.

BAT =10* Mean Battery Voltageon the 24V bus

HDG = Mean Buoy Heading in degrees magnetic

HSD = Standard Deviation of Heading in degrees

+TMET = Time difference between Multimet and Formatter Real Time Clocks

(+ve for Multimet clock ahead of Formatter clock)

+TSON = Time difference between Sonic and Formatter Real Time Clocks

(+ve for Sonic clock ahead of Formatter clock)

<CR> = Carriage Return

The Julian day number and Ouarter normally originate from the Sonic Processor but, in the
absence of a Sonic message, originates firom the Formatter clock. Latch up of the C0M3 port
interrupt occasionally resulted in loss of Sonic messages, resulting in a temporary reversion to
Formatter date/time; fortuitously, this assisted in correction for timing errors of the Sonic
Processor during the second deployment.

The production of a tabular data set for the first buoy deployment was relatively
straightforward. The ARGOS (binary) data were stripped out of the Flash files, together with

-li-

the redundant part of the header. For each remaining Meteosat "record" the housekeeping
data were then appended to the most recent set of the four quarter-hourly sets of Some and
Multimet data. The other three sets were stripped out. leaving two lines per record of the
format:

jn<GR>

00.+PSD,MWS,+NWS,+EWS,+VWS,+F_A,+ATl ,+AT2,+STl ,+ST2,YWS,YDR,BAT,HD

G,HSD,+TMEr.+TSON<CR>

A simple program then converted these data to a tabular file with lines of the format:

jn.M<tab>+P.SD<tab>MW.S<tab>+NW.S<tab>+EWS<tab>+VW.S<tab>+F._A<tab>
+AT. 1 <tal)>+AT.2<tab>+ST. 1 <tab>+ST.2<tab>YW.S<tab>YDR<tab>BA.T<tab>HDG
<tab>HSD<tab>+TMET<tab>+TSON<CR>

as described in Appendix B.3

The production of a tabular data set for the second buoy deployment was made more difficult
by jumps in the Sonic Processor clock; these occurred at a Sonic Processor clock time of just
before midnight due to incorrect functioning of the RTCN.EXE application in the Sonic software.
This application was intended to reset the system clock (computed time) from the Real Time
Clock just before midnight each day. However, on a number of occasions, the operation of
the application caused an incorrect time to be set in, resulting in a time slip as indicated by
+TSON.

The time slip +TSON (in minutes) was used in conjunction with the (Formatter clock) quarter-
hours from the ARGOS data to correct the Sonic date and quarter-hours in the Meteosat data.
Otherwise, the method used to exti'act the data into tabular form was similar to that used for the
first deployment data.

Due to latch up of the Sonic UART interrupt on a few occasions, some Sonic data were missing
from the FlashCard data; after the Sonic Processor EPROM logger data had been processed to
tabular parameter files by SONPARAMS.BAS (see ref. 2), it was possible to paste the missing
data from these files into the CricketGraph data. At the same time, it was possible to correct
some minor timing errors. This resulted in the files 1st Deplyment CG final and 2nd
Deployment CG final.

Data Quality Checking

The tabular data sets were separately imported into CricketGraph; they were then edited to
remove duplicated sonic data arising from the COM3 latch-up problem mentioned above.
Values of F_A of-9.99 were left unaltered; this value occurs when the least scpiares fit of PSD
against frequency gives a negative intercept.

The value of Young Direction is normally zero in the first deployment, due to an incorrect
channel allocation to the Young 2 wind direction channel in the Multimet message (Young 2
was connected to the Buoy Motion Package and bqI to Multimet). However, it is interesting to
note that Young Direction shows non-zero values after the buoy overturned. The channel
allocation feult was corrected for the second deployment.

- 1 2 -

In order to give a wind direction for the first deployment, the (relative wind direction 4- 180°),
referred to as Sonic Heading, was calculated from the Sonic -J-NWS and -f-EWS values, using
the QuickBasic application SONDIRN (Appendix A.6). The 180° was added to make the
direction comparable to the Young Direction for the second deployment, the Young sensors
being aligned at 180° to the Sonic North, to prevent the 360°/0° discontinuity problem.
Quadrant direction averaging was not incorporated in the Multimet Wind Direction channels,
although it was used for Buoy Heading. Examination of the calculated relative wind direction,
figure 2, showed the buoy North to be heading into the wind for the majority of the
deployment; exceptions were during speUs of low wind and were probably due to
combinations of wind and tidal aligning moments. It may be considered desirable to omit
Sonic data for such instances. In contrast, during the second deployment (figure 3), the buoy
did not maintain such good alignment with the wind; this was probably due in part to the
stronger tidal currents, but may also have been due to the modified mooring. Again, it may be
considered desirable to omit Sonic data when the relative wind direction was more than about
±90°.

The wind direction relative to magnetic North, "VWnd Direction (to)", was calculated from Sonic
Heading + Buoy (magnetic) Heading; figures 4 and 5 show Sonic MWS and \%id Direction (to)
for the two deployments. Examination of the data shows quite large cyclical variations in Wind
Direction (to), especially during the second deployment; these are correlated to periods of
high values of Heading Standard Deviation (figures 17, 18). Due to a misinterpretation,
quadrant heading averaging in the Formatter was carried out on the basis of the Multimet data
being in degrees (0 - 359) and not in digital units (0 - 255). This results in incorrect averaging
when the 360°/0° discontinuity occurs. However, it would appear from inspection of the data
that this is flagged by very large values of Heading Standard Deviation (100 degrees or more).
The above-mentioned cases of cyclical variations in Wind Direction (to) occurred with
maximum Heading Standard Deviation values of about 10 degrees and with Buoy Heading
nowhere near the 360°/0° discontinuity. Examination of the data shows that the Buoy Heading
swung through a greater angle than Sonic Direction. This could be due to magnetic materials
within the buoy canister/hull. Sonic Direction is generally close to Young Heading and is
considered to be correct. To resolve this anomaly, it would be necessary to do a compass
calibration with the buoy in its full working configuration.

Air and Sea Temperatures were plotted; the plot for the first deployment (figure 6) clearly
shows the capsize, after which the air temperatures were underwater and may give a good
measure of sea temperature at a depth of about 1.5 metres. The sea temperature sensors
could not be expected to measure air temperature correctly after the capsize. The plot fer the
second deployment (figure 7) shows an interesting transient oscillatory sea temperature
change starting at day 329.5

Plots of the differences between the sensor pairs (figures 8-11) show that ATI was reading on
average between 0.2 and 0.3 ° C higher than AT2 whOst STl was reading on average
approximately 0.2 °C lower than ST2 during the first deployment and&1°C higher than ST2
during the second deployment. Any possiblecorrelation between the temperature differences
and meteorological conditions has yet to be demonstrated.

Scatter plots (figures 12 and 13) of Young wind speed (YWS) against Sonic wind speed (MWS)
showed low scatter, with slopes of 1.037 and 1.025, for the two deployments.

-13-

Flgure 2. Sonic Direction vs. Day for 1st Deployment

O)
c
a

X

o
c
o
to

Q I I I I I I I I

293 296 299 302 305

Day

308 311 314

Figure 3. Sonic Direction vs. Day for 2nd Deployment

326 329 332 335 338 341 344 347

Day

-14-

Figure 4. Sonic MWS and Wind Direction (to)
vs. Day for 1st Deployment

40 I ' I I I I I

E

CO

s

360

270

H 180 Wind Direction (to)

MWS

H -180

H -270

-360

c
o
o p

•a
c

293 296 299 302 305 308 311 314

Day

Figure 5. Sonic MWS and Wind Direction (to)
vs. Day for 2nd Deployment

M
E

</)
5

Wind Direction (to)

•180

-270

c
o
u
a

TJ
C

326 329 332 335 338 341 344 3 4 /
-360

-IS-

o
w
0)

£ D) 0)
TS

W

2
o
a.
E fl>

CO 0>
CO

•u
c
CO

Figure 6. Air and Sea Temperatures
vs. Day for 1st Deployment

293 296 299 302 305 308 31 1 314

Day

Figure 7. Air and Sea Temperatures
vs. Day for 2nd Deployment

/

\
347

- 1 6 -

Figure 8. Air Temperature Differences
vs. Day for 1st Deployment

AT1-AT2

I I I K _

0.0

Q I I t I I I I I I I I I I I I I I I I I I I .Q 5
293 296 299 302 305 308 311 314

Day

Figure 9. Air Temperature Differences
vs. Day for 2nd Deployment

1 5 — I — I — r — I — I I I — r — I — r — I — p - T -

I -
<

AT1-AT2 2.0

1.5

CM
t-

1.0 <

H <

0.5

0.0

Q I I I I I 1 1 I I I I I I I I I I I I k _ J 1 I _ Q 5

326 329 332 335 338 341 344 347 '

Day

-17-

Figure 10. Sea Temperature difference
vs. Day for 1st Deployment

10 -

</)

ST1

ST1-ST2

2.5

2.0

1.5

CM

1.0

U)

0.5

293 296 299 302 305 308 311 314

Day

Figure 11. Sea Temperature Difference
vs. Day for 2nd Deployment

15 —i—I—I—I—I—I—I—I—I—I—I—I—I—'—I—I—>—I—'—r—I 2.5

C O

ST1

ST1-ST2

2.0

1.5

<v
H

1.0 «

C O

0.5

0.0

5 ' • ' • • ' t i l l I I 1 1 I I I — I I I I I . 0 . 5

326 329 332 335 338 341 344 347

Day

- 1 8 -

Figure 12. Young WS vs. Sonic MWS
for 1st Deployment

O)
5
O)
c
3
o >

y = 1.9853e-2 + 1.0374X H^2 = 0.996

1 0

MWS (m/s)

(0
5
O)
c
3
O >

Figure 13. Young WS vs. Sonic WS
for 2nd Deployment

y = 6.2113e-2 + 1.0247x R^2 = 0.997

1 0

MWS (m/s)

-19-

Figure 14. Young and Sonic Wind Direction
Differences vs. Day for 2nd Deployment

O)
c
5
CO
e>

X

c
o

(/)

Sonic Heading

Young Dir - Sonic Dir

600

-180

-270 -

- 3 0 0

c
o

</)

a
O)
c
3
O >

-360 • ' ' ' '—' ' '—' ' • ' '—• ' • • '—'—k_L .300
326 329 332 335 338 341 344 347

Day

- 2 0 -

Figure 15. Sonic Vertical WS/IWWS and Direction
vs. Day for 1st Deployment

360 I—I—I—I—I—I—I—I—I—I—I—I—I—I—r-n—I—I—I—I—I— 0.4

O)
c
(0
u
Z

c
o

(A
-90

-180

-270

Sonic Heading

Vert WS/IVIWS

360 —'—'—'—'—'—'—' I ' ' I • •—I I ' I I—I—J _o •]
293 296 299 302 305 308 311 3 1 4 *

D a y

Figure 16. Sonic VWS/MWS and Direction
vs. Day for 2nd Deployment

360

270

180

CJ)
c
5 <a
a>

c
o

(A

-180

-270

-360 ' ' • ' '

r—l 0.4

Sonic Heading

Vert WS/MWS

326 329 332 335 338 341 344 3 4 /

D a y

-0.1

- 2 1 -

Figure 17. Calculated Wind Direction (to)
and r.m.s. heading vs. Day for 1st Deployment

200

0)
c

TJ
0)

o
"U
(A

E

D)
C

S
CQ

O =

720

630

100

-100

-200

c
o
o 0)

•u
c

293 296 299 302 305 308 311 314

Day

Figure 18. Calculated Wind Direction (to)
and r.m.s. heading vs. Day for 2nd Deployment

200

O c

•o
a>
o
"O

w
E

Ui c
s
(5
O

X

100

i I I I I i I j I I I -|—I 1—I '—:—I 720

-100

- 2 0 0
. I I I I •

630

540

450

360

270

180

90

0

c
o
u »

•o
c

Heading rms

Corr WD (to)

326 329 332 335 338 341 344 3 4 /

- 2 2 -

Hgure 14 shows the difference between the relative wind directions as measured by the Sonic
and Young sensors during the second deployment; Sonic Direction is also shown for reference.
This shows the errors in the Young directions where direction passed through the 360°/0°
discontinuity, due to the lack of quadrant direction averaging in the Multimet wind direction
processing.

Prom the ratio of Vertical WS (VWS) to MWS, a measure of Sonic sensor vertical axis alignment
can be achieved. Double axis plots ofVWS/MWS and Sonic Direction (figures 15, 16) showed
an average VWS/MWS of approximately 0.02 (corresponding to about 1° error in alignment),
with some correlation of the two variables. The correlation was particularly noticeable for the
second deployment data, when larger deviations from buoy alignment with the wind direcion
occurred. This suggests that the sensor axis was about 5° from vertical in the buoy East-West
plane; this could have occurred due to a static or wind-induced list of the buoy, the sensor
alignment on the mast was unlikely to have been more than about 1° from vertical.

Summary of Data Produced

Raw Data Hies

The raw PCMCIA Hash Card data are in three binary files

FORMSWAL. IMG Directory and 1st deployment to day 306.2500

FORMSWAL.2MG remainder of 1st deployment and most of 2nd

FORMSWAL.3MG end of 2nd deployment (not useful due to low batteries)

The fourth file, FORMSWAL.4MG, was not retained as the data aH lies within the first three files

CricketGraph Data

1st Deployment CG final Day 293.0000 - Day 314.0313

2nd Deployment CG final Day 325.5521 - Day 338.7083

Data Time Stamping

The Multimet Real Time Clock, being a battery backed up hardware clock unaffected by
interrupt conflicts and being known to have a history of good stability, was the best on-board
clock. It was checked on day 356 after the final recovery and found to have lost 197 seconds
over the 31 days since it was previously set up on day 325.

Timing checks of the Multimet Real Time Clock and of the Sonic Processor system clock
relative to the Formatter clock are included in the Meteosat data (+TMET and +TSON); these
have +ve sign if fast relative to the Formatter.

-23-

During the first deployment, the initial values of +TMET and +TSON on day 293 were 0 and +1
minutes and, just prior to the capsize on day 313, the final values were +2 and +1 minutes.
Assuming a linear drift of the Multimet clock, it would have been 127 seconds slow on day 313.
From this one can deduce that, on day 313, the Formatter clock was 4 (± 1) minutes slow and
the Sonic Processor clock was 3 (± 1) minutes slow.

During the second deployment, the initial values of +TMET and +TSON on day 325 were 0 and
+1 minutes and on day 338, prior to battery failure, the values were +1 and -5406 minutes; the
latter figure resulted from the progressive clock jumps due to the RTCN application.
Assuming a linear drift of the Multimet clock, it would have been 53 seconds slow on day 338.
From this one can deduce that, on day 338, the Formatter clock was 2 minutes slow. This
demonstrates consistency in the Formatter drift rates of approximately -12 (± 3) seconds/day
for the first deployment and -9 (± 2) seconds/day for the second deployment.

In producing the tabular (CricketGraph) data file for the first deployment, the time stamps
given in 'Day" were simply derived from the Sonic message time stamps which were, in turn,
derived fi-om the FASTCOM RAMdisk file data header, i.e. the Sonic data acquisition start time
from the Sonic Processor system clock. Thus one could apply a Unear time correction varying
from +1 minute to +3 minutes over the period day 293 to day 313; this has not been applied, as
it was considered barely significant.

In producing the tabular (CricketGraph) data file for the second deployment, the time stamps
given in 'Day' were derived from a combination of the Sonic message time stamps and the
Formatter clock time stamps. The result of this is that there may be occasional time errors of
up to ± 5 minutes in individual records but, overall, the time correction, if applied, should be
from +1 minute to +2 minutes over the period day 325 to day 338; again this has not been
applied, as it was considered barely significant.

Acknowledgements

The SWALES data set was the result of the concerted efforts of many, including the lOSDL
Centre for Ocean Technology Development members of the Met Team, the lOSDL Moorings
Team and the JRC members of the Met Team. The ejqjerimental work was funded by the
MAFF Flood and Coastal Defence Division under commission FD0603; analysis of the data wiU
be under commission FD0601.

References

1. Qayson, C.H. 1994, Sonic Buoy Formatter Handbook, lOSDL Internal Document

2. Qayson, C.H. and Pascal, R.W. 1994, SWALES Sonic Buoy - Sonic Anemometer Specti'al and
Raw Data Report, lOSDL Internal Document

-24-

APPENDIX A SOFTWARE LISTINGS

A.1ARCSONHLE

REM QuickBasic program to decode ARGOS Dispose File data
REM copied from Telnet into engineering data
REM
REM Use program SORT REGS to further process into final data
REM
REM Author GHC Date 21-09-1993

DIMb$(8)
DIMw(32)
DIM day%(5), hrs%(5). imns%(5), mdays%(12)
DIMpsd(5), mws(5)
DIMfita(5).va(5)

ON ERROR GOTO Handler 'for opening new output file

REM load days of month array (used to find Julian day)
FORn% = 1 TO 12:READ mdays%(n%):NEXT
DATAO, 31, 28,31, 30, 31,30, 31, 31,30,31, 30

INPUTEnter filename for input data:";®
OPEN # FOR INPUT AS #1
Outfile:
cflag% = 0
INPUTEnter filename for oulput data:*;g$
10 FILES g$ ' results in error if not existing already, handled by Handler
IFcflag% = OTHEN

INPUT "This file exists. Append data";r$
IF (r$ = "n") OR (r$ = "N") THEN GOTO Outfile

END IF
OPEN g$ FOR APPEND AS #2

REM process the whole file
WHILE NOT EOF(l)
REM First check for start line and correct PTT
Readheader:
IFEOF(l) THEN END
LINE INPUT#1, h$

IF (LEFT$(h$, 11) <> "00296 05060") THEN GOTO Readheader

GLS
PRINT "PTT: ";MIDCh, 7, 5);
REM start line will be over 30 chars if it contains a fix
IF LEN(h$) < 30 THEN fixflag% = 0 ELSE fixflag% = 1

REM there wiU be nlines%-l of data, 8 lines per frame
nlines% = VAL(MID$(h$, 14, 2)):nframes% = (nlines% - l)/8
PRINT" Lines :";nlines%;" Prames:";nframes%

IFfixflag%= 1 THEN
fixtime$= MID$(h$, 24, 19)
lat$=MID$(h$, 45, 6):long$=MrD$(h$, 53, 7)
PRINT "Fix date/timefixtime$

-25-

PRINT "Latitude:*; lat$;" Longditude;"; long$
END IF

REM now get the data, decoding each frame individually into 5 records
REM note that acqtime$ is the time of reception of an individual frame

FORframe% = 1 TO nframes%
FORm%= 1T0 8

INPUT#1. b$(m%)
IFm%= lTHENacqtime$=MID$(b$(m%), 1, 19):PRINTacqtime$

FORn% = 1 TO 4
REM 1st line is decimal, others are hex
IF(m%> 1)THEN

b$(m%) = RIGHT$(b$(m%), 41)
p% = I+13*(n%-l):n$=MID$(b$(m%). p%, 2)
nl% = ASC(LEFT$(n$,l))
IF (nl% < 58) THENnl% = nl% - 48 ELSE nl% = nl% - 55
n2% = ASC{RIGHT$(n$, 1))
IF (n2% < 58) THEN n2% = n2% - 48 ELSE n2% = n2% - 55
w(4 * (m% - 1) + n%) = 16* nl% + n2%

ELSE
b$(m%) = RIGHT$(b$(m%), 42)
p% = l+13*(n% - l)m$=MID$(b$(m%), p%, 3)
w(4 * (m% - 1) + n%) = VAL(n$)

END IF
NEXTn%

NEXTm%

REM w(l) to w(32) now contain the 32 bytes of the frame
REM first calculate the acquisition date/thne information
ayear% = VAL(LEFr$(acqtime$, 4))
aday% = VAL(MID$(acqtiine$, 9, 2))
amonth% = VAL(MID$(acqtime$, 6, 2))
ahr% = VAL(MID$(acqtime$, 12, 2))
ainin% = VAL(MID$(acqtime$, 15, 2))
asec% = VAL(MID$(acc^ime$, 18, 2))
ahr = ahr% + amin%/60 + asec%/3600

jday% = 0
FOR n% = 1 TO amonth%

jday% = jday% + mdays%(n%)
IF (n% = 3) AND (INT(ayear%/4) = 0) THEN jday% = jday% + 1

NEXT
jday% = jday% + aday%

PRINT "Acquisition Day:"; jday%;" Time in hrs:";
PRINT USING "##.###"; ahr

REM now decode the frame into the 5 records of
REM starttime (hrs%.mins%), PSD, MWS, Ht_A, V_MWS, N2
REM inserting 999 type values where parity errors are detected

FORrec%= 1T0 5
n% = 6 * rec%
word& = w(n% - 5) 'word& is the quarter-hours since midnight
bits% = 8: GOSUB Paiitycheck
IF word& < 99 THEN

hrs%(rec%) = INT(word&/4)
mins%(rec%) = 15*(word& - 4*hrs%(rec%))

ELSE
hrs%(rec%) = 99:mins%(rec%) = 99

END IF

- 2 6 -

word& = w(n% - 4)*4 + (w(n% - 3) AND 192)/64 'PSD
bits% =10: GOSUB Paiitycheck
IF word&< 9999 THEN

psd(rec%) = .01*word& - 6
ELSE

psd(rec%) = -9.99
END IF

word& = (w(n% - 3) AND 63)* 16 + (w(n% - 2) AND 240)/16 'MWS
bits% = 10: GOSUB Paiitycheck
IF word&< 9999 THEN

inws(rec%) = .l*word&
ELSE

mws(rec%) = 99.9
END IF

word& = (w(n% - 2)AND 15)*64 + (w(n% - 1)AND 252)/4 'FIT_A
bits% = 10: GOSUB Paritycheck
IF word& < 9999 THEN

fita(rec%) = .01*word& - 6
ELSE

fita(rec%) = -9.99
END IF

word& = (w(n% -1) AND 3)*256 + w(n%) V_MWS
bits% =10: GOSUB Paritycheck
IFword&< 9999 THEN

vin(rec%) = .02*(word& - 256)
ELSE

vm(rec%) = +9.99
END IF

NEXTrec%

word& = w(31) * 256 + w(32) '16 bit word for N2 values
bits% =16: GOSUB Paritycheck
IF (word& < 99999&) THEN

n% = 4096
FOR rec% = 1 TO 5

n2(rec%) = INT(word& / n%) AND 7
n% = nWB

NEXT
ELSE

FORrec% = 1 TO 5
n2(rec%) = 9

NEXT
END IF

PRINT -DAY HH:MM +P.SD MW.S +F.IT +V.MW N"

REM impute the data day number from the acq day and the record time
FORrec%= 1 TO 5

rhr = hrs%(rec%) + mins%(rec%)/60
IFABS(ahr-rhr) > 6 THEN

day%(rec%) = jday% -1
IF day%(rec%) = 0 THEN day%(rec%) = 365

ELSE
day%(rec%) = jday%

END IF

REM print to screen in format DAY HH:MM +PSD MW.S +F.IT +V.MW N
REM julian day, hours and minutes of data start time + parameters
REM PSD MWS nt_A. Vert _MWS and N2

-27-

REM
REM print data to output file in format
REM

pA.YREC<T>pAyACO<T>IA.TITU<T>LON.GDIT<T>+P.SD<T>MW.S<T>+F.IT<T>+V.MW
<T>N<CR>

REM where <T> is a TAB character and <CR> is Carriage Return

PRINT USING "### ";day%(rec%);
PRINT USING "##:";hrs%(rec%);
PRINT USING "## ";mins%(rec%);

IF (hrs%(rec%) < 99) AND (mins%(rec%) < 99) THEN
PRINT #2, USING "###.####";day%(rec%) + hrs%(rec%)/24 + mins%(rec%)/1440;

ELSE
PRINT#2,"999,9999";

END IF
PRINT#2,CHR$(9);

IF (fixflag% = 1) THEN
PRINT #2, USING "###.####";jday% + ahr%/24 +aniin%/1440 + asec%/86400&;
PRINT#2,CHR$(9);
PRINT #2, lat$;CHR$(9);long$;CHR$(9);

ELSE
PRINT #2."999.9999";CHR$(9);"99.999";CHR$(9);"999.999";CHR$(9);

END IF

PRINT USING "+#.## ";psd(rec%);
PRINT #2, USING "+#.##";psd(rec%);
PRINT#2,CHR$(9);

PRINT USING "##.#mws(rec%);
PRINT #2, USING "##.#";mws(rec%);
PRINT#2,CHR$(9);

PRINT USING "+#.## ";fita(rec%);
PRINT #2. USING •+#.##";fita(rec%);
PRINTW2.CHR$(9);

PRINT USING "+#.## ";vm(rec%);
PRINT #2, USING "+#.##",•vm(rec%);
PRINT#2,CHR$(9);

PRINT USING n2(rec%)
PRINT #2, USING n2(rec%)

NEXTrec%
NEXTfirame%
WEND

CLOSE#l
CLOSE#2
END

REM Subroutines
Paritycheck:

R ^ checks for even parity
p% = 0:b& = 1
FORbit%= ITObits%

IF (word& AND b&) THEN p% = p% XOR 1
b& = b&*2

NEXT

IFp% = OTHEN
word& = word& AND (2''(bits% - 1) -1)

- 2 8 -

ELSEIF bits% = 8 THEN
word& = 99

ELSEIF bits% = 10 THEN
word& = 9999

END IF
IF p% = 0 AND bits% = 16 THEN word& = 99999&
REM at present error in n2 parity bit

RETURN

Handler:
IF(ERL= 10) AND (ERR =53)THEN

OPEN g$ FOR OUTPUT AS #2
cflag% = 1
CLOSE#2

END IF
RESUME NEXT

A.2SORTRECS

REM QuickBasic Program SORT REGS
REM - this sorts Sonic Buoy ARGOS data (which has already been
REM decoded from DS format by the program ARGSONPILE)
REM into chronological order and selects the best
REM (lowest weighted error) message if duplicates exist.
REM
REM Produces a file suitable for import into CricketGraph
REM
REM Author CHG Date 23-09-1993

REM Can process a file contaioningup to 1000 messages
DIM day(lOOO), flag%(l000) ,indx%(1000)

ON ERROR GOTO Handler 'for opening new output file

INPUT "Enter name of file to be sorted:";®
OPEN ® FOR INPUT AS # 1
Outfile:
cflag% = 0
INPUT "Enter filename for output data:";g$
10 FILES g$ ' results in error if not existing already, handled by Handler
IFcflag% = OTHEN

INPUT "This file exists. Append data";r$
IF (r$ = "n") OR (r$ = "N") THEN GOTO Outfile

END IF
OPEN g$ FOR APPEND AS #2

FORn% = 1 TO 1000:flag%(l%) = 0:NEXT

REM First find the number of messages,]in%,
REM and allot a weighted error flag%0 to each message
1% = 1
WHILE NOT EOF(l)

Getline:
LINE INPUT#1, h$
IFLEFT$(h$,8) = "999.9999" THEN

day(l%) =VAL(LEFr$0i$,8))
fla^o(l%)=15:1%=1%+1
GOTO Getline

END IF
daya%)=VAL(LEFr$(h$,8))

-29-

IFMro$(h$,10,l) = "g-'THENflagyoOo/o) = flag%0%) + 1 'no fix
IF Mro$(h$.35,1) = "9" THEN fiag%(l%) = fiag%(l%) + 4 'no psd
IF] V n D $ (h $. 4 1 , 1) = "9" THEN flag%(l%) = flag%a%) + 4 'no mws
IF MID$(h$,46,1) = "9" THEN fiag%(l%) = flag%(l%) + 3 'no fit^a
IF MID$(h$,52,1)=='9" THEN flag%a%) = fiag%(l%) + 2 'no v_mws
IF MID$(h$.57,1) = "9" THEN fiag%(I%) = flag%0%) + 1 'no n2
!%=!%+1

WEND
CLOSE#l

n% = 1% - 1:]in%=n%
PRINT T i e contains ";]in%;'' lines of data"

REM Now sort into chronological order by producing an index table
REM Method firom Press, Flannery et al. "The Art of Scientific Computing"
FOR j% = 1 TO n%:indx%(j%) = j%:NEXT
IF(n%= 1)THENEND
1% = n%/2 + 1
ir% = n%

WHILEOr%> 1)
IF (1% > 1) THEN

indxt% = indx%(l%)
q = day(indxt%)

ELSE
indxt% = indx%(ir%)
q = day(indxt%)
indx%(ir%) = indx%(l)
ir% = ir%-l
IF (ir% = 1) THEN indx%(l) = indxt%

END IF
i% = l%:j% = 2*1%
WHILE (i% <= ir%)

IF (j% < ir%) AND (day(indx%G%)) < day(indx%Q%+l))) THEN j% = j%+l
IF (q < day(indx%(j%))) THEN

indx%(i%) = indx%Q%)
i%=j%

ELSE
j% = ir% + 1

END IF
WEND

indx%(i%) = indxt%
WEND

REM Now use the index table to identify groups messages having
REM the same day/time and to select the one in each group with
REM the lowest weighted error flag
REM This message is then written to the output file in the
REM correct format for use in CricketGraph, etc.

OPENf$AS#lLEN=58
HELD# 1, 8 AS day$, 1 AS t$,8 AS aqd$, 1 AS t$,6 AS lat$, 1 AS tS,7 AS long$, 1 AS t$,5 AS psd$, 1
AS t$,4 AS mws$, 1 AS t$,5 AS fita$, 1 AS t$,5 AS vmws$, 1 AS t$, 1 AS n2$. 1 AS cr$
lastday$ = s t f l a g % = 0
FORn%= lT01in%

dayn = day(indx%(n%))
IF (n% = 1) THEN

lastday = dayn
nl% = n%

ELSE
IF (dayn <> lastday) THEN

-30-

n2% = n% - 1
best% = 100
PRINT n% - nl%;" dupUcateCs)"
FORp% = nl% TO n2%

IF flag%(indx%(p%)) < best% THEN
best% = flag%(indx%(p%))
bestp% = p%

END IF
NEXT
GET#1, indx%(bestp%)
PRINT day$;" ";aqd$;" '';lat$;" ";long$:" ";psd$:" ";mws$;" ";fita$;" ";vmws$;" °:n2$
PRINT#2,

day$;am$(9);aqd$;CHR$(9);lat$;Cm$(9);long$;C:eR$(9);psd$;CHR$(9);mw^
HR$(9);vmws$;CHR$(9);n2$

lastday = dayn
nl% = n%

END IF
END IF
lastday$ = day$

NEXTn%
CLOSE#l
CLOSE#2

END

Handler;
IF(ERL= 10) AND (ERR =53)THEN

OPEN g$ FOR OUTPUT AS #2
cflag% = 1
CLOSE#2

END IF
RESUME NEXT

A.3 METEO SORT

REM OuickBasic program METEOSORT
REM - sorts Meteosat Sonic Buoy data
REM in a day folder and produces an error file

REM Use the error file to show errors
REM then edit them and re-run this prog

REM 07-10-93
REMCHC

ON ERROR GOTO Handler

DIM1$(4)
DIMvar(4,22)
DIMflag%(5)

REM open output file (Sorted)
INPUT "Enter day nurriber (Julian) to be analysed";d$
{$ = "Wooig8-CHC:CHC-mac:Swales:meteo-° + d$ + Sorted"
g$ = "Wooig8-CHC:CHC-mac:Swales:meteo-" + d$ + ":Errors"
OPEN f$ FOR OUTPUT AS #2
OPEN g$ FOR OUTPUT AS #3

REM process all the files in the folder "meteo-" + d$
FORhh% = 0TO23

hh$ = STR$(hh%)

-31-

IF (hh% < 10) THEN MID$(hh$, 1,1) = "0" ELSE hli$ = RIGHT$(hli$,2)
® = "WooigS-CHCiCHC-mac: Swales meteo-" + d$ + h h $
OPEN f$ FOR INPUT AS # 1

REM get the ESA header line
LINE INPUT #l ,h$
IF (LEFT$(h$,4) = "\M /") THEN

h$ = LKJrT$(h$,40) ' the useful part of the ESA header
PRINT h$
jday% = VAL(MID$(h$, 24, 3)): hr% = VAL(MID$(h$, 28, 2))

ELSE
jday% = 999:hr% = 99

END IF

REM get the lOS header lines (BOl, etc.)
ld% = 0
FORl%= 1 TO 3

LINEINPUT#l,h$
PRINT h$
IF (INSTR(h$.> 0) THEN ld% = l%:P/o = 3

NEXT
IF (VAL(h$) = jday%) THEN

PRINT "Header Format OK"
ELSE

PRINT "Header Format Faulty!"
PRINT#3, hh%;" Header Format Faulty*

END IF
W (ld% > 0) THEN

PRINT "Missing line, re-reading 1st ";ld%
PRINT#3, hh%;" Missing line(s)"
CL0SE#1
OPEN FOR INPUT AS # 1
FORl%= lT01d%

LINE INPUT # l ,h$
NEXT

END IF

REM the next 4 lines should be quarter-hourly data
try% = 0
FOR qhr% = 1 TO 4

var(qhr%, 1) = jday% + hr% / 24!: var(qhr%,2) = hr%
LINE INPUT* 1, l$(qhr%)
IF (INSrR(l$(qhr%),",") = 0) AND (try% < 4) THEN

qhr% = 0:try% = try% + 1
PRINT "Excess/feul^ header line"

GOTO Retry
END IF
PRINT l$(qhr%)
sum% = 0
FORch%= 1T0 59

IF (MID0(qhr%), ch%, 1) = ",") THEN sum% = sum% + 1
NEXT

IF (sum% = 12) THEN
flag%(qhr%) = 0: cpos% = 0
FORpar% = 1 TO 13

CALL CheckNext(qhr%, par%)
NEXT
REM PRINT

ELSE
PRINT "Line too corrupted to analyse"
PRINT#3, hh%;" Line ";qhr%;" corrupted"

-32-

flag%(qlir%) = -9999
END IF
var(qhr%,21) = flag%(qhr%)
Ret^:

NEXT qhr%

REM now get the housekeeping data line
LINE MPUIWl, hskeep$
PRINT hskeep$
flag%(5) = 0: cpos% = 0
FORpar% = 1 TO 5

CALL CheckHskeep(par%)
NEXT

REM finally save to CricketGraph format output file
FORqhr%= 1T0 4

var(qhr%,22) = flag%(5)
FORpar% = 1 TO 22

PRINT#2, var(qhr%. par%);CHR$(9);
NEXT
PRINT#2,""

REM continue with next input file
NEXT

CLOSE #1

Missing:
NEXThh%

CLOSE#2
CLOSE#3
END

SUB CbeckNext(l%, par%) STATIC
SHARED 1$(), varQ, cpos%, flag%0

!$(!%) = 1$(I%) + CHR$(10)
IF (par% = 13) THENtS = CHR$(10) ELSE t$ =

parlen% = 4:den% = 10
IF (par% =1) THENparlen% = 2:den% = 4
IF (par% = 3) OR (par% = 12) OR (par% = 13) THENparlen% = 3
IF (par% = 2) OR (par% = 7) THEN den% = 100
IF (par% = 13) THEN den% = 1
cposl% = INSTR(cpos% + 1,1$(1%), t$)
REM PRINT epos 1%;"
IF ((cposl% - cpos%) = (parlen% +1)) THEN

var(l%, par% + 2) = VAL(MID$(1$(1%), cpos% + 1, parlen%)) / den%
ELSE

var(l%, par% + 2) = 'VAL(SrRING$(parlen%, "9"))
flag%(l%) = flag%(l%) + 2'^(par% - 1)

END IF
cpos% = cposl%

END SUB

SUB CheckHskeep(par%) STATIC
SHARED hskeep$, var(), cpos%, flag%

hskeep$ = hskeep$ + CHR$(10)
IF (par% = 5) THEN t$ = CHR$(10) ELSE t$ =

parlen% = 3:den% = 1
IF (par% = 1) THEN den% =10

-33-

IF (par% = 4) OR {par% = 5) THENparlen% = 5
cposl% = INSTR(cpos% + 1, hskeep$, t$)
REM PRINT epos 1%;"
IF {(cposl% - cpos%) = (parlen% +1)) TEiEN

FORl% = 1 TO 4
var(l%, par% +15)= VAL(MID$(hskeep$, cpos% + 1, parlen%)) / den%

NEXT
ELSE

F0R1%= 1T0 4
var(l%, par% + 15) = VAL(STRING$(parlen%, "9"))

NEXT
flag%(5) = flag%(5) + 2'^(par% -1)

END IF
cpos% = cposl%

END SUB

Handler:
Number = ERR
IF (Number =53) THEN

IF (RIGHT$(f$, 1) <> "d") THEN
PRINT "Hourhh$; ° not found"
PRINT#3,Hour ";hh$;" not found"
CLOSE #1
RESUME Missing

ELSE
PRINT "Cannot open output file"
CLOSE #2
END

END IF
ELSE

PRINT "ErrorNumber
INPUT "Press Enter to exit";r$
CL0SE#1
CLOSE#2
CLOSE#3
END

END IF

JL4 4MT01M.C

/* Source Code of 4MT01M.C
for converting a 4 Mbyte flashcard file c:\thincard\test
(produced by reading card on thincard drive with batch file T.BAT)
to 4 separate 1 Mbyte files in current directory */

#include<stdio.h>
#include<std]ib.h>
#include<conio.h>

main()
{

FILE*fin;

FEE * fout;

intc;

longn;

if ((fin = fopen("c:\\thincard\\test", W)) != NULL)
{

-34-

if ((fout = fopen("test.lmg", Vb+")) != NULL)
{
printf("Converting 1st Mbyte\n");
for (n = 0; n< 1048576L; n++) /* copy 1st meg to testfile */

{
c = fgetc(fin);

{
45utc(c, fout);
}

}
printfCTransfer OK\n");
}

else
{
piintf("Failed to open O/P Pile\n");
}

fclose(fout);
printf(%ess a key to continue\n");
getchO;
/* copy 2nd meg to test.2mg */

if ((fout = fopen("test.2mg", "wb+")) != NULL)
{
printf("Convertmg 2nd Mbyte\n");
for (n = 0; n < 1048576L; n++)

{
c = fgetc(fin);
§3utc(c, fout);
}

printfCTransfer OK\n");
}

else
{
printf(Tailed to open O/P Pile\n°);
}

fclose(fout);
printf("Press a key to continue\n");

getchO;

/* copy 3rd meg to test.3mg */

if ((fout = fopen("test.3mg", "wb+")) 1= NULL)
{
printf("Converting 3rd MbyteXn");
for (n = 0; n < 1048576L; n++)

{
c = fgetc(fin);
|3utc(c, fout);
}

printfCTransfer OK\n");
}

else
{
printf(Tailed to open O/P Pile\n");
}

fclose(fout);
piintf("Press a key to continue\n");
getchO;

/* copy 4th meg to test.4mg */

if ((fout = fopen("test.4mg^, Vb+")) != NULL)
{

-35-

else

printf("Converting 4th Mbyte\n");
for (n = 0; n < 1048576L; n++)

{
c = fgetc(fin);
^utc(c, fout);
}

printfCTransfer OK\n");
}

{
printf("Failed to open O/P PileXn");
}

fclose(fout);

}
else

{
printf(Tailed to open I/P Pile\n");
}

return 0;
}

A.5 FORMDECODE

REM OuickBasic Program FORMDECODE
REM for decoding the ARGOS database binary parts
REM of a Formatter file
REMCHC 24-01-94

DIM W(32), qtrs%(5).PSD(5),MWS(5),FITA(5),VM(5)
OPEN"Wooig8-CHC:CeC-mac:Swales:FORMSWAL.M2" AS #1 LEN = 416
OPEN "Wooig8-CHC:CHC-mac:Swales;decoded2" FOR OUTPUT AS #2
FIELD #1, 128ASarg$, 288ASmet$
GEr#i.i
db%=l
WHILE NOT EOF(l)

PRINT db%
GET# 1 .db%:db%=db%+1

REM next bit taken from argsonfile
FOR frame% = 1 TO 4

FORm% = 1 TO 32
W(m%) = ASC(MID$(arg$,32*(frame%-l) + m%,l))

NEXTm%

REM w(l) to w(32) now contain the 32 bytes of the frame

REM now decode the frame into the 5 records of
REM starttime (quarters), PSD, MWS, Fit_A, V_MWS, N2
REM inserting 999 type values where parity errors are detected

FORREC% = 1 TO 5
n% = 6*REC%
word& = W(n% - 5) 'word& is the quarter-hours since midnight
bits% = 8: GOSUB Paritycheck
IFword& < 99 THEN

qtrs%(REC%) = word&
ELSE

qtrs%CREC%) = 99

-36-

ENDEF

word& = W(n% - 4)*4 + (W(n% - 3) AND 192)764 TSD
bits% =10; GOSUB Paritycheck
IF word& < 9999 THEN

PSD(REC%) = .01*word& - 6
ELSE

PSD(REC%) = -9.99
END IF

word& = (W(n% - 3) AND 63)* 16 + (W(n% - 2) AND 240)716 "MWS
bits% =10; GOSUB Paritycheck
IF word&< 9999 THEN

MWS(REC%) = .l*word&
ELSE

MWS(REC%) = 99.9
END IF

word& = (W(n% - 2)AND 15)*64 + (W(n% - 1)AND 252)74 "FTT̂ A
bits% =10; GOSUB Paritycheck
IF word&< 9999 THEN

FITA(REC%) = .01*word& - 6
ELSE

F!TACREC%) = -9.99
END IF

word& = (W(n% - 1) AND 3)*256 + W(n%) V_MWS
bits% =10; GOSUB Paritycheck
IFword& < 9999 THEN

VM(REC%) = .02*(word& - 256)
ELSE

VM(REC%) = +9.99
END IF

NEXTREC%

word& = W(31) * 256 + W(32) '16 bit word for N2 values
bits% =16; GOSUB Paritycheck
IF (word& < 999996) THEN

n% = 4096
FORREC% = 1 TO 5

n2(REC%) = lNT(word& 7 n%) AND 7
n% = n%78

NEXT
ELSE

FORREC% = 1 TO 5
n2(REC%) = 9

NEXT
END IF
FORREC% = 1 TO 5

PRINT
#2,qtrs%(REC%);^";PSD(REC%);^^MWS(REC%):7;FITA(REC%);\^VM(REC%);7;n2(REC^^

NEXT

NEXT6-ame%
PRINT#2,met$

WEND

CLOSE #1

END

REM Subroutines

-37-

Paritycheck:
REM checks for even parity
p% = 0;b& = 1
FORbit%= 1 TObits%

IF (word& AND b&) THENp% = p% XOR 1
b& = b&*2

NEXT

IFp% = OTHEN
word& = word& AND (2'^(bits% - 1) - 1)

ELSEIFbits% = 8 THEN
word& = 99

ELSEEF bits% = 10 THEN
word& = 9999

END IF
IF p% = 0 AND bits% = 16 THEN word& = 99999&
REM at present error in n2 parity bit

RETURN

A.6 SONDIRN

REM QuickBasic Pro^am SONDIRN.BAS
REM to calculate sonic wind direction from vectors
REM using tabular data file as input
REM 180 deg added to directions to match Young
REMchc 15/2/94

OPEN "Wooig8-CHC:CHC-mac;Swales:Fomiatter:lst deployment: 1st deployment CG copy*
FOR INPUT AS #1
OPEN "Wooig8-CHC;CHC-mac:Swales;Fonnatter:lst deployment; 1st deployment CG mod"
FOR OUTPUT AS #2
REM Day PSD MWS (m/s) North WS (m/s) East WS (m/s) VertWS(m/s) Ht-A ATI

AT2
REM STl ST2 Young WS (m/s) Young Direction Battery Voltage Heading

Heading rms
REM Tmet Tson AT1-AT2 ST1-ST2

1%=0; radtodeg = 180/3.14159
WHILE NOT EOF(l)

INPUT# 1 ,day$,psd$,mws$,norths,east$,vert$,fita$, at 1 $, at2$
Ê IPUT# 1 .St 1 $,st2$.yws$,yd$,bat$,hdg$.hrrns$
INPUT#1 ,tmet$,tson$,atci$,std$
1% = 1% + 1
REM PRINT day$,psd$,mws$,east$, north$,vert$;"
PRINT 1%, day$

e = VAL(east$): n = VAL(north$)
REM PRINT e, n;":";

IF (n <> 0) THEN
th = radtodeg * ATN(e / n)

ELSE
IF (e > 0) THEN th = 270 ELSE th = 90
PRINTW2,th

END IF

lFn>0THEN
th = th+ 180
PRINT#2,th

END IF

-38-

IFe<OANDn<OTHEN
th = th
PRINT#2,th

END IF
IFe> 0ANDn<0THEN

th = 360 + th
PRINT#2,th

END IF
REM PRINT th
REM INPUT r$

WEND

CLOSE#l
CL0SE#2

-39-

APPENDZXB DATA FORMATS

Appendix B.l Raw Data Files

The first 256 kbytes of FORMSWAL. IMG consist of consecutive directory entries; these are
each 32 bytes in length, starting from location 0, with the following format:

vjjjhhmmbg|]nnv2J]%vlv3v400000

where

v i sa marker character

jjj is the Formatter clcck Julian Day number (0 - 365)

hh is the Formatter clock hours (0 - 23)

mm is the Formatter clock minutes (0 - 59)

b is the FlashCard Start Block (0 - 63)

ff is the FlashCard OfEset (0 - 65535)

H is the record length (0 - 65535)

nn is the record number (0 - 65535)

v2 is the Sonic MWS expressed as div((int) (10 * sonic_mws + 0.5), 512) .rem

HJ is Sonic Processor message Julian Day number

vl is the PSD expressed as div((int) (100 * (6 + psd) - 0.5), 512).rem

v3 is the Ht_a expressed as div((int) (100 * (6 + fit_a) - 0.5), 512).rem

v4 is the Vertical WS expressed as drv((int) (50 * vert_mean + 256.5), 512).rem

00000 are five null characters.

The remaining 768 kbytes of FORMSWAL. IMG, starting at location 262144, consist of
consecutive ARGOS and Meteosat messages (128 and 288 bytes, respectively)

An example of the ARGOS message contents is given below as 4 frames of 32 bytes in hex
ASCn format.

A36CE0EF14E890E5409E98E71169C0C6ACE812E340AE4CE893628096A0E8F7FF

145A207DECED95DF809E2EF19661409E40E817E340AE66EF18E5A0BEAAE9C7EF

9965E0B67AEraA69E0DEC8E41BE820B690ED9CEA80CF02E91D6740CEB2EAC7FF

1E6760BECAEFBF6B60DEA8EBA06B60DEE2E9216D60E712F222EAA0DEDEF1C7FF

The 32 bytes of a frame are in a highly packed format, which contains five quarter-hourly sets
of values of PSD, MWS. Fit A and Vertical MWS; thus a satellite pass will normally acquire all
four frames, i.e. twenty quarter-hourly sets, or 5 hours of data.

-40-

We shall denote the five quarter-hourly sets in a fi-ame by suffices a - e

Each quarter-hourly set of data in a message contains:

0 time of data acquisition period start in quarter-hours since midnight

(this has the range 0 to 95, which can be expressed as a 7 bit binary number

bits OO (Isb) to 06 (msb), with an added even parity bit PQ)

PSD log 10 (Power Spectral Density * f 5 / 3

(this is converted to a 9 bit binary value OOOh to IFFh,

bits PSDO (Isb) to PSD8 (msb), with added parity bit PPSD,

by taking the remainder of [(100 * (6 + PSD) - 0.5) divided by 512].

This gives a nominal range of-6.00 to -0.89, for OOOh to IFFh,

although secondary ranges, such as -0.88 to +4.23, exist)

MWS Mean Wind Speed

(this is converted to a 9 bit binary value OOOh to IFFh,

bits MWSO (Isb) to MWS8 (msb), with added parity bit PMWS,

by taking the remainder of [(10 * MWS + 0.5) divided by 512]

This gives the nominal range of 0.0 to 51.1 m/s, for OOOh to IFFh,

although secondary ranges, such as 51.2 to 102.3, exist)

Ht_A Coefficient 'a', for linear regression fit of PSD vs loglO(fi-equency)

over the frequency range 2 - 4 Hz, PSD = a + b.loglO(frequency)

(this is converted to a 9 bit binary value OOOh to IFFh,

bits Fit_AO (Isb) to Fit_A8 (msb), with added parity bit PEit_A, as for PSD)

V_M Vertical Mean Wind Speed

(this is converted to a 9 bit binary value OOOh to IFFh,

bits V_MO (Isb) to V)M8 (msb), with added parity bit PV_M,

by taking the remainder of [(50 * V_M + 256.5) divided by 512]

This gives a nominal range of-5.12 to +5.11, for OOOh to IFFh,

although secondary ranges, such as +5.12 to +15.34, exist)

A quarter-hourly set of the above parameters amounts to 48 bits (6 bytes), so that 5 sets
amount to 30 bytes, bytes 1 to 30, leaving 2 bytes in the frame firee for additional data. These
two bytes are used to convey the number of Multimet messages successfully used in the
averaging process over the Sonic acquisition period, N2. However, since N2 has the range 0
to 10 (4 bit binary), we can not fit five x 4 bits into 2 bytes and we have to subtract 3 fi-om the
N2 values, setting negative values to 0. i.e. the resulting (N2-3) range is 0 to 7 (3 bit binary),
leaving one bit free for an even parity check for the two bytes.

Bytes 31 and 32 are packed with the (N2-3) values as foUows:

-41-

The data fonnat is summarised in tabular form below, showing each byte as one line with the
most significant bit to the left, from bytel to byte32;

POa 06a OSa 04a 03a 02a Ola OOa
PPSDa PSDSa PSD7a PSD6a PSDSa PSD4a PSD3a PSD2a
PSD la PSDOa PMWBa MWSSa MWS7a MWS6a MWSSa MWS4a
MWS3a MWS2a MWSla MWSOa PHt Aa Ht A8a Ht A7a Ht A6a
Ht A5a Ht A4a Ht A3a Ht A2a Ht Ala Rt AOa PV Ma V M8a
V M7a V M6a V MSa V M4a V M3a V M2a V Mia V MOa
POb 06b 05b 04b 03b 02b 01b OOb
PPSDb PSDBb PSD7b PSD6b PSD5b PSD4b PSD3b PSD2b
PSD lb PSDOb PMWSb MWS8b MWS7b MWS6b MWSSb MWS4b
MWS3b MWS2b MWSlb MWSOb PHt Ab Ht A8b Ht A7b Ht A6b
Ht A5b Ht A4b Ht A3b Ht A2b Ht Alb Ht AOb PV Mb V M8b
V M7b V M6b V M5b V M4b V M3b V M2b V Mlb V MOb
POc 06c OSc 04c 03c 02c 01c OOc
PPSDc PSDBc PSD7c PSD6c PSDSc PSD4c PSD3c PSD2c
PSDlc PSDOc PMWSc MWS8C MWS7c MWS6C MWS5c MWS4c
MWS3c MWS2c MWSlc MWSOc PHt Ac Ht ABc Ht A7c Ht A6c
Ht A5c Ht A4c Ht A3c Ht A2c Ht Ale Rt AOc PV Mc V M8c
V M7c V M6c V M5c V M4c V M3c V M2c V Mlc V MOc
POd 06d 05d 04d 03d 02d Old OOd
PPSDd PSD8d PSD7d PSD6d PSD5d PSD4d PSD3d PSD2d
PSDld PSDOd PMWSd MWS8d MWS7d MWS6d MWSSd MWS4d
MWS3d MWS2d MWSld MWSOd PHt Ad Ht ASd Ht Kid Ht A6d
Ht ASd Ht A4d Ht A3d Rt A2d Rt Aid Ht AOd PV Md V MSd
V M7d V M6d V MSd V M4d V M3d V M2d V Mid V MOd
POe 06e OSe 04e 03e 02e Ole OOe
PPSDe PSDSe PSD7e PSD6e PSD5e PSD4e PSD3e PSD2e
PSDle PSDOe PMWSe MWS8e MWS7e MWS6e MWS5e MWS4e
MWS3e MWS2e MWSle MWSOe PHt Ae Ht A8e Ht A7e Ht A6e
Ht A5e Ht A4e Ht A3e Ht A2e Ht Ale Rt AOe PV Me V MSe
V M7e V M6e V M5e V M4e V M3e V M2e V Mle V MOe
PN2a-e N22a N21a N20a N22b N21b N20b N22c
N21c N20c N22d N21d N20d N22e N21e N20e

Table B. 1 Bit Map of 32 Byte ARGOS F^^me

An example of the Meteosat message contents (288 bytes) is given below:

B01<CR><LF>

5100S<CR><LF>

2S6<CR><LF>

32,-170,013,-001,+001,-005,-159,+126,+125,+l 17,+ 120,009,010<CR><LF>

33,-162,014,+002,+005,-003,-147,+ 132,+128,+ 118,4-121,010,009<CR><LF>

34,-173,013,+000,+001,-003,-160,+136,+134,+ 119,+122,010,010<CR><LF>

35,-164,014,-005,-003,-005,-146,+ 137,+136,+ 120,+123,011,011<CR><LF>

231,122,000,-0000,+0001<CR><LF><CR> <LF>

The format of this message is quite simple; the first three lines are, respectively, the buoy ID,
the niminal latitude (51° North) and longditude (005° West) and the Julian Day number (256).

-42-

The next four lines include a combination of Sonic and Multimet data in the format:

QO,+PSD,MWS,N_M,E_M.V_M,FtA.,ATl ,AT2,ST1 ,ST2.YW1 ,YD 1

where QO = Quarter-hours since midnight (range 00 - 96)

+PSD = 100 * loglO(Power Spectral Density * f^S/S

MWS = 10 * (Mean Wind Speed in m/s)

N_M = 10 * (North Mean component of Wind Speed in m/s)

E_M = 10 * (East Mean component of Wind Speed in m/s)

V_M = 10 * (Vertical Mean component ofWind Speed in m/s)

RA = 100 * CoefEdent 'a', for linear regression fit of PSD vs loglO(firec[uency)

(over the firequency range 2 - 4 Hz, PSD = a + b.loglO(frequency))

ATI = 10 * (Mean Air Temperature from sensor 1 in ^C)

AT2 = 10 * (Mean Air Temperature fi-om sensor 2 in °C)

STl = 10 * (Mean Sea Temperature from sensor 1 in °C)

STl = 10 * (Mean Sea Temperature from sensor 2in°C)

YWl = 10* (Mean Young AO 1 Wind Speed in m/s)

YD 1 = Mean Young AQ1 Wind Direction in degrees.

The final line includes housekeeping data in the format:

BBB,HHH,HSD,+TMEr,+TSON

where

EBB = 10 * Mean Battery Voltageon the 24V bus

HHH = Mean Buoy Heading in degrees magnetic

HSD = Standard Deviation of Heading in degrees

+TMET = Time difference between Multimet and Formatter Real Time Clocks

(+ve for Multimet clock ahead of Formatter clock)

+TSON = Time difference between Sonic and Formatter Real Time Clocks

(+ve for Sonic clock ahead of Formatter clock)

