\\\\“\\ Institute of

Fiee

W22\ Oceanographic Sciences

R —

== Deacon Laboratory

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 342

SWALES Sonic Buoy - meteorological
data report

C H Clayson

1994

Wormley

Godalming

Surrey GU8 SUB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR

CLAYSON, CH

PUBLICATION

DATE
1894

TITLE

SWALES Sonic Buoy - meteorological data report.

REFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 342, 42pp.

(Unpublished manuscript)

ABSTRACT

During the SWALES experiment in the autumn of 1993, the Sonic Buoy was deployed twice as part
of an array of moored instrumentation. On the Sonic Buoy, meteorological data were acquired by
the Formatter Processor from the Sonic and Multimet Processors' output data streams. These data
were combined and logged as 10 minute means on the Formatter Flashcard memory; a selection of
the data was also telemetered in near real time via the polar orbiting ARGOS and geostationary

METEOSAT satellite data collection systems.

This data report briefly describes the processes employed in acquisition of the data. It then
describes the processes for the recovery of the data from the various source media, the quality

control procedures applied and, finally, the resulting output data files.

Appendices include comprehensive details of the software developed for the above processes and of

the formats used for the input and output data.

KEYWORDS

ISSUING ORGANISATION
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GUS8 5UB. UK.

Telephone Wormley (0428) 684141

. Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066
Copies of this report are available from: The Library, PRICE £0.00

Index

SWALES SONIC BUOY - METEOROLOGICAL DATA REPORT

Equipment

Data Sources and Processing
BARGOS Data
Meteosat Data
PCMCIA Flash Card Data

Data Quality Checking
Figures 2, 3
Figures 4,5
Figures 6,7
Figures 8,9
Figures 10,11
Figures 12,13
Figure 14
Figures 15,16
Figures 17,18

Summary of Data Produced
Raw Data Files
CricketGraph Data

Data Time Stamping

Acknowledgements

References

APPENDIX A SOFTWARE LISTINGS

A.1 ARGSONFILE
A.2 SORT RECS

A.3 METEO SORT
A.44MTOIM.C

A.5 FORMDECODE
A.6 SONDIRN

APPENDIX B DATA FORMATS

Appendix B.1 Raw Data Files

Appendix B.2 ARGSONFILE and SORT RECS Output Files

Appendix B.3 CricketGraph Data

24

24
28
30
33
35
31

39

39
413
413

SWALES Sonic Buoy - Meteorological Data Report

Equipment

The Formatter operation is fully described in ref.1. The Formatter consists of a single board
PC-compatible processing system, with 4 additional serial ports, a 4 Mbyte PCMCIA series 1
Flash EEPROM card and software embedded in EPROM.

Briefly, the Formatter asynchronously accepts quarter-hourly processed data messages from
the Sonic Processor and one-minute-mean data messages from the Multimet Processor. Upon
receipt of a Sonic message, or on the quarter-hour if no Sonic message is received, the
Formatter averages the Multimet data lying within a 10 minute window corresponding to the
Sonic data acquisition period (having corrected the received message time stamps for clock

drift relative to its own real time clock).

The Formatter then converts Sonic data to a concise binary format, with parity checks, for
transmission via the ARGOS polar-orbiting satellite system; the ARGOS data is sent cyclically
as 4 x 32 byte messages, comprising 5 hours of Sonic data.

The Formatter also converts Sonic and averaged Multimet data, converted to engineering
units, to a 288 byte ASCII format message for transmission via the Meteosat geostationary
satellite at hourly intervals.

The 128 bytes of ARGOS data and the 288 bytes of Meteosat data were written to a Flash
EEPROM data card at quarter-hourly intervals as a back up. The Formatter data were
originally envisaged mainly as a real time source of quick-look data, with the secondary
function of providing back up of an abbreviated data set by telemetry and a separate storage
medium. Due to the failure of the Multimet EPROM logger on both deployments, this back up
became invaluable as a source of Met data, but this necessitated the expenditure of
considerable additional effort to produce the required form of data products.

Data Souxces and Processing

For an overall view of the data sources and processing, see Figure 1. The Sonic Buoy was
deployed for two separate periods:

Day 293.59 (1stdeployed) to Day 315 (recovered inverted)
Day 326.60 (re-deployed) to Day 355 (recovered from rocks)

During the 1st deployment, the buoy overturned at day 313.58. During the 2nd deployment,
the buoy systems progressively failed due to battery exhaustion from approximately day
338.53.

Sonic Buoy
Formatter
% PCMCIA
Flash Card
Meteosat Files
Satellite Link
CLS ARGOS Replay to Raw
ESOC ! .
Toulouse Darmstadt Data File using
Database Thincard Drive

pia PSS network

Session Dump
-> DS File at
JRC

Becode using
RRGSONFILE

Sort using
SORT RECS

I

[plot quality
contra! (QC)
datal

Metensat Satellite Link

10SDL Receiving
Station

Raw PC File

TEST

ﬁ""""’“a' Splitto4 x 1
message }
\ files Mbgte files
A
[plot quality
control (QC)
datal
Extract
Meteosat data,
apply qC

CG File: 1st
Deploy-
ment CG

CG File: 2nd
Deploy-
ment C6

Figure 1 Data Sources and processing

BARGOS Data

During the deployments, data were received from the Sonic Buoy via the ARGOS system,
which was regularly interrogated during the experiment to allow checks on both buoy position

-9-

and data quality. The ARGOS messages, downloaded from the CLS ARGOS computer at
Toulouse via the Public Switched System were decoded and sorted by the QuickBasic
applications ARGSONFILE and SORT RECS (Appendices A.1, A.2). The former decoded all
Sonic Buoy ARGOS messages within an ARGOS dump into wind data; the latter sorted the data
into chronological order, selecting the best choice from duplicated data, and produced
chronologically ordered tabular files of the parameters PSD, MWS, Fit-A, Vertical MWS and N2.
File formats are given in Appendix B.

The ARGOS data naturally terminated with the capsize of the buoy in the first deployment and
with exhaustion of the batteries in the second deployment.

Meteosat Data

Due to a battery charger failure, Meteosat telemetry was not possible during the first
deployment. During the second deployment, the buoy messages were transmitted via a
transponder on Meteosat to the European Space Operations Centre at Darmstadt. They were
then retransmitted via Meteosat (interleaved with the WEFAX transmissions) and received by a
local Meteosat DCS message recovery unit (MRU) at IOSDL, Wormley. The MRU decoded the
DCS transmissions and filtered out the Sonic Buoy messages; these were then passed via
RS232 to a Macintosh Classic running the compiled application LOGSW1 APL

The Macintosh further decoded the messages and stored them in daily numbered folders,
which were transferred at intervals to Macintosh IIvx for examination and further processing.
A QuickBasic program METEO SORT (Appendix A.3) was written to combine the individual
messages into day files and to produce a report file, lagging errors, since the messages were
not error free. Manual editing was used to correct the message files for the flagged errors (or
to substitute 999 default data, if appropriate); the program METEO SORT was then re-run to
produce an error free tabular file suitable for importation into CricketGraph.

PCMCIA Flash Card Data

The complete data set was recovered from the 4 Mbyte Flash Memory Card afier each
deployment. The card contents were dumped to a PC disk file, using a Databook ThinCard
drive and associated software. The resulting 4 Mbyte file was then split into 4 x 1 Mbyte files
by the C program 4MTO1M.C (Appendix A.4) to allow easier handling and transfer to other
machines; the resulting PC files were named FORMSWAL.IMG, FORMSWAL.ZMG,

FORMSWAL.3MG, FORMSWAL.4MG

The directory information in the first 256 kbytes of the card memory gave the Formatter
date/time and memory location for the start of each 128 + 288 byte "record”. Since the 128
byte ARGOS data was duplicated (with the exception of the N2 values) over a number of the
288 byte Meteosat data sets in the records, attention was focussed primarily on processing the
Meteosat data. However, the QuickBasic program FORMDECODE (Appendix A.5) was
written to decode the Flash file ARGOS data into a similar format to that produced by
ARGSONFILE, but incorporating the Meteosat ASCII data. This gave additional useful

~-10-

diagnostic information when it was necessary to correct for timing errors of the Sonic
Processor during the second deployment.

The required data products were tabular ASCII files of all the quarter-hourly data, for the two
deployments. The Meteosat header data includes a Julian day number, J]]. It also contains the
most recent four quarter-hourly sets of the Sonic and Multimet data

ie. QQ,+PSDMWS,+NWS,+EWS,+VWS,+F_A,+AT1,+AT2,+ST1,+ST2, YWS,YDR<CR>
plus a housekeeping line of data containing:
BAT HDG,HSD,+TMET,+TSON<CR>
where QQ = Quarter-hours since midnight (range 00 - 86)
+PSD = 100 * log10(Power Spectral Density * £45/3
MWS = 10 * (Mean Wind Speed in m/s)
NWS = 10 * (North Mean component of Wind Speed in m/s)
EWS = 10 * (East Mean component of Wind Speed in m/s)
VWS = 10 * (Vertical Mean component of Wind Speed in m/s)
F_A =100 * Coefficient 'a', for linear regression fit of PSD vs loglO(frequency)
(over the frequency range 2 - 4 Hz, PSD = a + b.logl0(frequency))
ATI] = 10 * (Mean Air Temperature from sensor 1in °C)
AT2 = 10 * (Mean Air Temperature from sensor 2 in °C)
ST1 = 10 * (Mean Sea Temperature from sensor 1 in °C)
ST1 = 10 * (Mean Sea Temperature from sensor 2 in °C)
YWS = 10 * (Mean Young AQ! Wind Speed in m/s)
YDR = Mean Young AQ1 Wind Direction in degrees.
BAT = 10 * Mean Battery Voltageon the 24V bus
HDG = Mean Buoy Heading in degrees magnetic
HSD = Standard Deviation of Heading in degrees
+TMET = Time difference between Multimet and Formatter Real Time Clocks
(+ve for Multimet clock ahead of Formatter clock)
+TSON = Time difference between Sonic and Formatter Real Time Clocks
(+ve for Sonic clock ahead of Formatter clock)
<CR> = Carriage Return

The Julian day number and Quarter normally originate from the Sonic Processor but, in the
absence of a Sonic message, originates from the Formatter clock. Latch up of the COM3 port
interrupt occasionally resulted in loss of Sonic messages, resulting in a temporary reversion to
Formatter date/time; fortuitously, this assisted in correction for timing errors of the Sonic
Processor during the second deployment.

The production of a tabular data set for the first buoy deployment was relatively
straightforward. The ARGOS (binary) data were stripped out of the Flash files, together with

-11-

the redundant part of the header. For each remaining Meteosat "record” the housekeeping
data were then appended to the most recent set of the four quarter-hourly sets of Sonic and
Multimet data. The other three sets were stripped out, leaving two lines per record of the
format:

JIJ<CR>
QQ,+PSD,MWS,+NWS,+EWS,+VWS,+F_A,+AT1,+AT2,+ST1,+8T2,YWS,YDR,BAT HD
G HSD,+TMET,+TSON<CR>

A simple program then converted these data to a tabular file with lines of the format:

I JII<tab>+P.SD<tab>MW.S<tab>+NW.S<tab>+EWS<tab>+VW.S<tab>+F._A<tab>
+AT. 1 <tab>+AT 2<tab>+8T.1 <tab>+ST.2<tab>YW.S<tab>YDR<tab>BA.T<tab>HDG
<tab>HSD<tab>+TMET<tab>+TSON<CR>

as described in Appendix B.3

The production of a tabular data set for the second buoy deployment was made more difficult
by jumps in the Sonic Processor clock; these occurred at a Sonic Processor clock time of just
before midnight due to incorrect functioning of the RTCN.EXE application in the Sonic software.
This application was intended to reset the system clock (computed time) from the Real Time
Clock just before midnight each day. However, on a number of occasions, the operation of
the application caused an incorrect time to be set in, resulting in a time slip as indicated by
+TSON.

The time slip +TSON (in minutes) was used in conjunction with the (Formatter clock) quarter-
hours from the ARGOS data to correct the Sonic date and quarter-hours in the Meteosat data.
Otherwise, the method used to extract the data into tabular form was similar to that used for the

first deployment data.

Due to latch up of the Sonic UART interrupt on a few occasions, some Sonic data were missing
from the FlashCard data; after the Sonic Processor EPROM logger data had been processed to
tabular parameter files by SONPARAMS BAS (see ref. 2), it was possible to paste the missing
data from these files into the CricketGraph data. At the same time, it was possible to correct
some minor timing errors. This resulted in the files 1st Deplyment CG final and 2nd
Deployment CG final.

Data Quality Checking

The tabular data sets were separately imported into CricketGraph; they were then edited to
remove duplicated sonic data arising from the COM3 latch-up problem mentioned above.
Values of F_A of -8.99 were left unaltered; this value occurs when the least squares fit of PSD
against frequency gives a negative intercept.

The value of Young Direction is normally zero in the first deployment, due to an incorrect
channel allocation to the Young 2 wind direction channe] in the Multimet message (Young 2
was connected to the Buoy Motion Package and not to Multimet). However, it is interesting to
note that Young Direction shows non-zero values after the buoy overturned. The channel
allocation fault was corrected for the second deployment.

-12-

In order to give a wind direction for the first deployment, the (relative wind direction + 180°),
referred to as Sonic Heading, was calculated from the Sonic +NWS and +EWS values, using
the QuickBasic application SONDIRN (Appendix A.6). The 180° was added to make the
direction comparable to the Young Direction for the second deployment, the Young sensors
being aligned at 180° to the Sonic North, to prevent the 360°/0° discontinuity problem.
Quadrant direction averaging was not incorporated in the Multimet Wind Direction channels,
although it was used for Buoy Heading. Examination of the calculated relative wind direction,
figure 2, showed the buoy North to be heading into the wind for the majority of the
deployment; exceptions were during spells of low wind and were probably due to
combinations of wind and tidal aligning moments. It may be considered desirable to omit
Sonic data for such instances. In contrast, during the second deployment (figure 3), the buoy
did not maintain such good alignment with the wind; this was probably due in part to the
stronger tidal currents, but may also have been due to the modified mooring. Again, it may be
considered desirable to omit Sonic data when the relative wind direction was more than about
+90°.

The wind direction relative to magnetic North, “Wind Direction (to)", was calculated from Sonic
Heading + Buoy (magnetic) Heading; figures 4 and § show Sonic MWS and Wind Direction (to)
for the two deployments. Examination of the data shows quite large cyclical variations in Wind
Direction (t0), especially during the second deployment; these are correlated to periods of
high values of Heading Standard Deviation (figures 17, 18). Due to a misinterpretation,
gquadrant heading averaging in the Formatter was carried out on the basis of the Multimet data
being in degrees (0 - 359) and not in digital units (0 - 255). This results in incorrect averaging
when the 360°/0° discontinuity occurs. However, it would appear from inspection of the data
that this is flagged by very large values of Heading Standard Deviation (100 degrees or more).
The above-mentioned cases of cyclical variations in Wind Direction (to) occurred with
maximum Heading Standard Deviation values of about 10 degrees and with Buoy Heading
nowhere near the 360°/0° discontinuity. Examination of the data shows that the Buoy Heading
swung through a greater angle than Sonic Direction. This could be due to magnetic materials
within the buoy canister/hull. Sonic Direction is generally close to Young Heading and is
considered to be correct. To resolve this anomaly, it would be necessary to do a compass
calibration with the buoy in its full working configuration.

Air and Sea Temperatures were plotted; the plot for the first deployment (figure 6) clearly
shows the capsize, after which the air temperatures were underwater and may give a good
measure of sea temperature at a depth of about 1.5 metres. The sea temperature sensors
could not be expected to measure air temperature correctly after the capsize. The plot for the
second deployment (figure 7) shows an interesting transient oscillatory sea temperature
change starting at day 3298.5

Plots of the differences between the sensor pairs (figures 8 - 11) show that AT1 was reading on
average between 0.2 and 0.3 ©C higher than AT2 whilst ST1 was reading on average
approximately 0.2 ©C lower than ST2 during the first deployment and 0.1 ©C higher than ST2
during the second deployment. Any possiblecorrelation between the temperature differences
and meteorological conditions has yet to be demonstrated.

Scatter plots (figures 12 and 13) of Young wind speed (YWS) against Sonic wind speed (MWS)
showed low scatter, with slopes of 1.037 and 1.025, for the two deployments.

-13-

Figure 2. Sonic Direction vs. Day for 1st Deployment

360 —r—r——r—————

270 F

180

Sonic Heading
<

©
o

1 " 1 1 M " 1 2 1 1 A A i

O 2 2 1 i
293 296 299 302 305 308 311 314

Day

Figure 3. Sonic Direction vs. Day for 2nd Depioyment

360 AN S S LN L A

270 F

180 !

Sonic Heading

80

1 " i 1 2 3 i 3 1 i " " 1

0 2 i i 2 i 1
326 329 332 335 338 341 344 347

Day

(m/s)

Mws

(m/s)

MwWSs

-14-

Figure 4. Sonic MWS and Wind
vs. Day for 1st Deployment

Direction (to)

30 H Wind Direction (to)

20

f ' @wwt?'

— 360
270
i - 180

i 990

< -90
-180

-270

-360

293 296 299 302 305 308

Day

Figure 5. Sonic MWS and Wind
vs. Day for 2nd Deployment

311 314

Direction (to)

40 =

Tl

30 NE

wsnarsne
LT TT T TT PP TP e ey
sesassoavuran
nerneaas:
.
20809050 00 RpPPTE———
e e n AN ERANT s
r

20 |

10 B

MWS

Wind Direction (to)

———— 360
- 270

-1 180

-1 -180

-1 -270

el -360

326 329 332 335 338 341

344 34/

Wind Direction (to)

Wind Direction (to)

Air and Sea Temperatures (degrees C)

Air and Sea Temperatures (degrees C)

15

—
(o]

wn

15

—h
o

-15-

Figure 6. Air and Sea Temperatures
vs. Day for 1st Deployment

293 296 299 302 305 308 311

Day

Figure 7. Air and Sea Temperatures
vs. Day for 2nd Deployment

314

326 329 332 335 338 341 344

347

AT1

-16-

Figure 8. Air Temperature Differences
vs. Day for 1st Deployment
15 7T 77T

—_— AT1
................... AT1-AT2

2.5

sk: 11.. ’ o E0.5
Pt

et

Mitews
11U
L]

I

O PYRIT IR DT ST THE N VRN W NNOT TS S (U SRS SO T TN TR A T -0.5
293 296 299 302 305 308 311 314

Day

Figure ‘9. Air Temperature Differences
vs. Day for 2nd Deployment
———————————— 2.5

15

— AT
................... AT1-AT2

2 i 2ol 2 FUNUNCEEES S SR SOR RO S] -0.5
326 329 332 335 338 341 344 347

AT1-AT2

AT1-AT2

ST1

Figure 10. Sea

-17-

Temperature difference

vs. Day for 1st Deployment
15 T LI | T 1 T T i 2.5
ST1]
.................... ST1-8T2 20
[1.5
— 10 | -1 1.0
w -
e -
Jos
E[o.o
5 P .l i PR | 1 i 2 -0.5
293 296 299 302 305 308 311 314
Day
Figure 11. Sea Temperature Difference
vs. Day for 2nd Deployment
15 LI | T ™1 i L | i .2.5
20
ST1
.................... ST1-ST2 <115
10 | -1 1.0
Jos
: 0.0
5..l.l.l--|..l.l._0.5
326 329 332 335 338 341 344 347

Day

ST1-8T2

ST1-ST2

Young WS (m/s)

Young WS (mi/s)

-18-

Figure 12. Young WS vs. Sonic MWS
for 1st Deployment

20
y = 1.9853e-2 + 1.0374x RA2 = 0.996
10 - 4
'.'.'s
0 T
0 10 20
MWS (m/s)
- Figure 13. Young WS vs. Sonic WS
for 2nd Deployment
20
y = 6.2113e-2 + 1.0247x RA2 = 0.997
0 T
0 10 20

MWS (m/s)

-19-

Figure 14. Young and Sonic Wind Direction
Differences vs. Day for 2nd Deployment

360 [T T——T T T—T———T 600

270
!

180
~- 300

-0

Sonic Heading
O
Young Dir - Sonic Dir

-180 |

Sonic Heading
P—— Young Dir - Sonic Dir

-270

_360--|-.l..l..l--|..l.-_300
326 329 332 335 338 341 344 347

Day

-20-

Figure 15. Sonic Vertical WS/MWS and Direction
vs. Day for 1st Deployment

360 | — 0.4
270]
40.3
180 y
o 90 f 1 »
£ 792 =
s Sonic Heading ’ =
o 1 @
T [0 : . T — Vert WS/MWS 3
L0 . .
g : £
a op . S
: , Y i
N “LF A o
-180 {TY Uy *“‘-’ﬁﬁ?‘%‘ﬂ\# c
-270 H .
L]
-360 s I ¢ + 1 4+ b2 a1 g gt 2 o1 o -0.1
293 296 299 302 305 308 311 314
Day
Figure 16. Sonic VWS/MWS and Direction
vs. Day for 2nd Deployment
360 T, T r T rrfrfrfr - rrroor" 0.4
270
' Ho3
180 ‘
2 1oz 2
z OF Sonic Heading =
° | ' .
|5 o1 ¢
»] S
400
PORIS DY WA TN JUNY TN SN ENUNY SUURE TN GNUE SN SO S S

-360 HEE ST IS S | -0.1
326 329 332 335 338 341 344 34¢

Day

Heading rms (dotted line)

Heading rms (dotted line)

21-

Figure 17. Calculated Wind Direction (to)
and r.m.s. heading vs. Day for 1st Deployment

200 et 720

t

H 630

100 |-] i 4| 1 540

H 450

-t hothi 360

=270
-100 - 180
L -1 90
\ -

_200..l..l..l.-l-.l-.l..o
293 296 299 302 305 308 311 314

Day

Figure 18. Calculated Wind Direction (to)
and r.m.s. heading vs. Day for 2nd Deployment

200 [T 720
. u Jeso0
100 H - 540
- 450
3 3 K 3 -E .2 i.: b

0 Ty SR S YO AN 5 L 360
F 270
-100 H - 180
-1 90

_200 PR SN REE FUN BEETEE PUN LI NS S TUNN T DU TR S S] 0

326 329 332 335 338 341 344 34y

Wind Direction (to)

Wind Directian (to)

Heading rms
Corr WD (to)

22-

Figure 14 shows the difference between the relative wind directions as measured by the Sonic
and Young sensors during the second deployment; Sonic Direction is also shown for reference.
This shows the errors in the Young directions where direction passed through the 360°/0°
discontinuity, due to the lack of quadrant direction averaging in the Multimet wind direction

processing.

From the ratio of Vertical WS (VWS) to MWS, a measure of Sonic sensor vertical axis alignment
can be achieved. Double axis plots of VWS/MWS and Sonic Direction (figures 15, 16) showed
an average VWS/MWS of approximately 0.02 (corresponding to about 1© error in alignment),
with some correlation of the two variables. The correlation was particularly noticeable for the
second deployment data, when larger deviations from buoy alignment with the wind direcion
occurred. This suggests that the sensor axis was about 5° from vertical in the buoy East-West
plane; this could have occurred due to a static or wind-induced list of the buoy, the sensor
alignment on the mast was unlikely to have been more than about 1° from vertical.

Summary of Data Produced

Raw Data Files

The raw PCMCIA Flash Card data are in three binary files
FORMSWAL.IMG Directory and 1st deployment to day 306.2500
FORMSWAL.2MG remainder of 1st deployment and most of 2nd
FORMSWAL.3MG end of 2nd deployment (not useful due to low batteries)

The fourth file, FORMSWAL.4MG, was not retained as the data all lies within the first three files

CricketGraph Data

Ist Deployment CG final Day 293.0000 - Day 314.0313
2nd Deployment CG final Day 325.5521 - Day 338.7083

Data Time Stamping

The Multimet Real Time Clock, being a battery backed up hardware clock unaffected by
interrupt conflicts and being known to have a history of good stability, was the best on-board
clock. It was checked on day 356 after the final recovery and found to have lost 197 seconds

over the 31 days since it was previously set up on day 325.

Timing checks of the Multimet Real Time Clock and of the Sonic Processor system clock
relative to the Formatter clock are included in the Meteosat data (+TMET and +TSON); these
have +ve sign if fast relative to the Formatter.

-23-

During the first deployment, the initial values of +TMET and +TSON on day 293 were 0 and +1
minutes and, just prior to the capsize on day 313, the final values were +2 and +1 minutes.
Assuming a linear drift of the Multimet clock, it would have been 127 seconds slow on day 313.
From this one can deduce that, on day 313, the Formatter clock was 4 (+ 1) minutes slow and
the Sonic Processor clock was 3 (= 1) minutes slow.

During the second deployment, the initial values of +TMET and +TSON on day 325 were 0 and
+1 minutes and on day 338, prior to battery failure, the values were +1 and -5406 minutes; the
latter figure resulted from the progressive clock jumps due to the RTCN application.
Assuming a linear drift of the Multimet clock, it would have been 53 seconds slow on day 338.
From this one can deduce that, on day 338, the Formatter clock was 2 minutes slow. This
demonstrates consistency in the Formatter drift rates of approximately -12 (+ 3) seconds/day
for the first deployment and -9 (+ 2) seconds/day for the second deployment.

In producing the tabular (CricketGraph) data file for the first deployment, the time stamps
given in 'Day’ were simply derived from the Sonic message time stamps which were, in turn,
derived from the FASTCOM RAMdisk file data header, i.e. the Sonic data acquisition start time
from the Sonic Processor system clock. Thus one could apply a linear time correction varying
from +1 minute to +3 minutes over the period day 293 to day 313; this has not been applied, as
it was considered barely significant.

In producing the tabular (CricketGraph) data file for the second deployment, the time stamps
given in 'Day' were derived from a combination of the Sonic message time stamps and the
Formatter clock time stamps. The result of this is that there may be occasional time errors of
up to + B minutes in individual records but, overall, the time correction, if applied, should be
from +1 minute to +2 minutes over the period day 325 to day 338; again this has not been
applied, as it was considered barely significant.

Acknowledgements

The SWALES data set was the result of the concerted efforts of many, including the IOSDL
Centre for Ocean Technology Development members of the Met Team, the IOSDL Moorings
Team and the JRC members of the Met Team. The experimental work was funded by the
MATFF Flood and Coastal Defence Division under commission FD0603; analysis of the data will
be under commission FD0O601.

References

1. Clayson, C.H. 1994, Sonic Buoy Formatter Handbook, IOSDL Internal Document

2. Clayson, C.H. and Pascal, RW. 1994, SWALES Sonic Buoy - Sonic Anemometer Spectral and
Raw Data Report, IOSDL Internal Document

24-

APPENDIX A SOFTWARE LISTINGS

A.1 ARGSONTFILE

REM QuickBasic program to decode ARGOS Dispose File data
REM copied from Telnet into engineering data

REM

REM Use program SORT RECS to further process into final data
REM

REM Author CHC Date 21-09-1993

DIM b$(8)

DIM w(32)

DIM day%(8), hrs%(5), mins%(5), mdays%(12)
DIM psd(5), mws(5)

DIM fita(5),va(5)

ON ERROR GOTO Handler ‘'for opening new output file

REM load days of month array (used to find Julian day)
FOR n% = 1 TO 12:READ mdays%(n%):NEXT
DATAOQ, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30

INPUT Enter filename for input data:";f$
OPEN £$ FOR INPUT AS #1
Qutfile:
cflag’ =0
INPUT"Enter filename for output data:";g$
I0FILES g$ 'results in error if not existing already, handled by Handler
IF cflag% = 0 THEN

INPUT "This file exists. Append data“;r$

IF (r$ ="n") OR (r$ = "N") THEN GOTO Outfile

F

OPEN g$ FOR APPEND AS #2

REM process the whole file

WHILE NOT EOF(1)

REM First check for start line and correct PTT
Readheader:

IF EOF(1) THEN END

LINE INPUT#1, h$
IF (LEFT$(h$,11) <> "00296 05060") THEN GOTO Readheader

CLS
PRINT "PTT: "“MID$(h$, 7, 5);

REM start line will be over 30 chars if it contains a fix
IF LEN(h$) < 30 THEN fixflag% = 0 ELSE fixflag% = 1

REM there will be nlines%-1 of data, 8 lines per frame
nlines% = VALMID$(h$, 14, 2)):nframes% = (nlines% - 1)/8
PRINT ¥ Lines:":nlines%;" Frames:"nframes%

IF fixflag% = 1 THEN
fixtime$= MID$(h$, 24, 19)
lat§=MID$(h$, 45, 6):long$=MID$(h$, 53, 7)
PRINT "Fix date/ime " fixtime$

-25-

PRINT *Latitude"; 1at$; * Longditude:"; long$
ENDIF

REM now get the data, decoding each frame individually into 5 records
REM note that acqtime$ is the time of reception of an individual frame

FOR frame% = 1 TO nframes%
FORm%=1TOS8
INPUT#1, b$(m%)
IF m% = 1 THEN acqtime$= MID$(b$(m%), 1, 19):PRINT acgtime$
FORn% =1TO 4

REM lst line is decimal, others are hex

IF (m% > 1) THEN
b$(m%) = RIGHT$(b$(m%), 41)
p% = 1+13*(1%-1)n$=MID$ (L $(m%), p%, 2)
nl% = ASC(LEFT$(n$,1))
IF n1% < 58) THEN n1% =nl% - 48 ELSEnl1% =nl% - 85
n2% = ASC(RIGHT$(nS$, 1))
IF (n2% < 58) THEN n2% = n2% - 48 ELSE n2% = n2% - §5
w4 *({m%-1)+n%)=16*nl%+n2%

EISE
b$(m?%) = RIGHT$(b$(m%), 42)
p% = 1+13*(n% - 1)m$=MID$(Db$(m%), p%, 3)
w(d * (m% - 1) + n%) = VAL(n$)

ENDIF

NEXT n%
NEXT m%

REM w(1) to w(32) now contain the 32 bytes of the frame
REM first calculate the acquisition date/time information
ayear% = VAL(LEFT$(acqtime$, 4))

aday% = VAL(MID$(acqtime$, 9, 2))

amonth% = VAL(MID$(acqtime$, 6, 2))

ahr% = VAL(MID$(acqtime$, 12, 2))

amin% = VALMID$(acqtime$, 15, 2))

asec% = VAL(MID$(acatime$, 18, 2))

ahr = ahr% + amin%/60 + asec%/3600

jday% =0
FOR n% = 1 TO amonth%
jday% = jday% + mdays%n%)
IF (n% = 3) AND (INT(ayear%/4) = 0) THEN jday% = jday% + 1
NEXT
jday% = jday% + aday%

PRINT "Acquisition Day:"; jday%;" Time in hrs:";
PRINT USING "## ###"; ahr

REM now decode the frame into the 5 records of
REM starttime (hrs%,mins%), PSD, MWS, Fit A, V_.MWS, N2
REM inserting 999 type values where parity errors are detected

FORrec%=1TOS5

n% =6 *rec%
word& = w(n%- 8) 'word& is the quarter-hours since midnight
bits% = 8: GOSUB Paritycheck
IF word& < 99 THEN

hrs%(rec%) = INT(word&/4)

mins%(rec%) = 15*(word& - 4*hrs%(rec%s))
ELSE

hrs%(rec%) = 99:mins%(rec%) = 89

IF

-26-

word& = w(n% - 4)*4 + (w(n% - 3) AND 192)/64 'PSD
bits% = 10: GOSUB Paritycheck
IF word& < 9999 THEN
psd(rec%) = .01*word& - 6
ELSE
psd(rec%) =-9.99
ENDIF

word& = (w(n% - 3) AND 63)*16 + (w(n% - 2) AND 240)/16 'MWS
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
mws(rec%) = .1*word&
ELSE

mws(rec%) = 99.9

word& = (w(n% - 2)AND 15)*64 + (w(n% - 1)AND 252)/4 'FIT_A
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
fita(rec%) = .01*word& - 6
ELSE
fita(rec%) = -9.99
ENDIF

word& = (w(n% - 1) AND 3)*256 + w(n%) V_MWS
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
vm(rec%) = .02*(word& - 256)
ELSE
vm(rec%) = +9.99
ENDIF
NEXT rec%

word& = w(31) * 256 + w(32) '16 bit word for N2 values
bits% = 16: GOSUB Paritycheck
IF (word& < 99999&) THEN
n% = 4096
FORrec% =1TO S
n2(rec%) = INT(word& / n%) AND 7
n% = n%/8
NEXT
ELSE
FORrec% =1TOS
n2(rec%) =9
NEXT
END IF

PRINT "DAY HH:MM +P.SD MW.S +F.IT +V.MW N"

REM impute the data day number from the acq day and the record time
FORrec% =1TOS
rhr = hrs%(rec%) + mins%(rec%)/60
IF ABS(ahr - rhr) > 6 THEN
day%(rec%) = jday% - 1
IF day%(rec%) = 0 THEN day%(rec%) = 365
SE

day%(rec%) = jday%
END IF
REM print to screen in format DAY HH:MM +PSD MW.S +F.IT +V.MW N

REM julian day, hours and minutes of data start time + parameters
REM PSD MWS Fit_A, Vert_ MWS and N2

27~

REM

REM print data to output file in format

REM
JDA.YREC<T>JDA.YACQ<T>LA.TITU<T>LON.GDIT<T>+P.SD<T>MW .S<T>+F.IT<T>+V.MW
<T>N<CR>

REM where <T> is a TAB character and <CR> is Carriage Return

PRINT USING "### ",day%(rec%n);
PRINT USING "##:";hrs%(rec%a);
PRINT USING "## “;mins%(rec%),

IF (hrs%(rec%) < 99) AND (mins%(rec%) < 99) THEN
PRINT #2, USING “### #####"day¥% (rec%) + hrs%(rec%)/24 + mins%(rec%)/1440;
ELSE
PRINT#2,"999.9999";
END IF
PRINT#2, CHR$(9);

IF (fixflag% = 1) THEN
PRINT #2, USING "### ####"jday¥% + ahr%/24 +amin%/1440 + asec%/86400&;
PRINT#2,CHR$(9);

PRINT #2, lat$;CHR$(9);long$; CHR$(9);

ELSE
PRINT #2,999.9999" CHR$(9);"99.999", CHR$(9);"999.999"; CHRS$(9);

END IF

PRINT USING “-+#.## “;psd(rec%);
PRINT #2, USING "“+# ##")psd(rec%s);
PRINT#2,CHRS$(9);

PRINT USING "##.# “; mws(rec%);
PRINT #2, USING *## #";mws(rec%);
PRINT#2,CHR$(9);

PRINT USING “+#.## " fita(rec%s);
PRINT #2, USING "+# ##" fita(rec%);
PRINT#2,CHRS$(9);

PRINT USING "+#.## ",vm(rec%c);
PRINT #2, USING "+#.##",vin(rec%);
PRINT#2,CHRS(2);

PRINT USING "#"; n2(rec%)
PRINT #2, USING "#"; n2(rec%s)
NEXT rec%
NEXT frame%
WEND

CLOSE#1
CLOSE#2
END

REM Subroutines
Paritycheck:
REM checks for even parity
p% =0b& =1
FOR bit% = 1 TO bits%
IF (word& AND b&) THEN p% = p% XOR 1
b& = b&*2
NEXT

IF p% = 0 THEN
word& = word& AND (2" (bits% - 1) - 1)

-28-

ELSEIF bits% = 8 THEN
word& = 99
ELSETF bits% = 10 THEN
word& = 9899
ENDIF
IF p% = 0 AND bits% = 16 THEN word& = 99999&
REM at present error in n2 parity bit
RETURN

Handler:

IF (ERL = 10) AND (ERR = 53) THEN
OPEN g$ FOR OUTPUT AS #2
cflag¥e =1
CLOSE#2

ENDIF

RESUME NEXT

A.2 SORT RECS

REM QuickBasic Program SORT RECS

REM - this sorts Sonic Buoy ARGOS data (which has already been
REM decoded from DS format by the program ARGSONFILE)
REM into chronological order and selects the best

REM (lowest weighted error) message if duplicates exist.

REM Produces a file suitable for import into CricketGraph
REM
REM Author CHC Date 23-09-1993

REM Can process a file contaioning up to 1000 messages
DIM day(1000), flag%(1000),indx%(1000)

ONERROR GOTO Handler ‘'for opening new output file

INPUT "Enter name of file to be sorted:",{$
OPEN £$ FOR INPUT AS #1

Qutfile:

cflag% =0

INPUT "Enter filename for output data:";g$

10FILES g$ 'resulls in error if not existing already, handled by Handler

IF cflag% = 0 THEN

INPUT "This file exists. Append data";r$

IF (r$ = "n") OR (r$ = *"N") THEN GOTO Outfile
ENDIF
OPEN g% FOR APPEND AS #2

FORn% = 1 TO 1000:flag%(1%) = 0:NEXT

REM First find the number of messages, lin%,
REM and allot a weighted error flag%() to each message
%=1
WHILE NOT EOF(1)
Getline:
LINE INPUT#1, h$
IF LEFT$(h$,8) = “999.9999" THEN
day(1%) = VAL({LEFT$(h$,8))
flag%(1%)=15: 1%=1%+1
CGOTO Getline
END IF
day(1%)=VAL(LEFT$(h$,8))

-20-

IF MID$(h$,10,1) = "9" THEN flag%(1%) = flag%(1%) + 1 'no fix
IF MID$(h$,35,1) = "9" THEN fiag%(1%) = flag%(1%) + 4 'no psd
IF MID$(h$,41,1) = *6" THEN flag%(1%) = flag%(1%) + 4 'no mws
IF MID$(h$,46,1) = *9" THEN flag%(1%) = flag%(1%) + 3 'mo fit a
IF MID$(h$,52,1) = *9" THEN flag%(1%) = flag%(1%) + 2 'nov_mws
IF MID$(h$,57,1) = “9" THEN flag%(1%) = flag%(1%) + 1 'no n2
1%=1%+1

WEND

CLOSE#1

n% =1% - 1: lin%=n%
PRINT “File contains “lin%;" lines of data"

REM Now sort into chronological order by producing an index table
REM Method from Press, Flannery et al. "The Art of Scientific Computing”
FOR j% = 1 TO n%:indx%(j%) = j%:NEXT

IF (n% = 1) THEN END

% =n%/2+ 1

ir% =n%

WHILE (ir% > 1)
IF (% > 1) THEN
1% =1%-1
indxt% = indx%(%)
a = day(indxt%)
£

indxt% = indx%(ir%)
g = day(indxt%)
indx%(ir%) = indx%(1)

ir% = ir%-1
IF (ir% = 1) THEN indx%(1) = indxt%
END IF

1% = 1%:% = 2%1%
WHILE (% <= ir%)
IF (% < ir%) AND (day(indx%(j%)) < day(indx%(%+1))) THEN j% = j%+1
IF (q < day(indx%(j%))) THEN
indx% (%) = indx%(%)
% = %
% =% + i%
ELSE
% =ir%+ 1
END IF
WEND
indx%(i%) = indxt%
WEND

REM Now use the index table to identify groups messages having
REM the same day/time and to select the one in each group with
REM the lowest weighted error flag

REM This message is then written to the output file in the

REM correct format for use in CricketGraph, etc.

OPEN f$ AS #1 LEN=58
FIELD#1, 8 AS day$,1 ASt$,8 AS agd$,1 AS t$,6 AS 1at$,1 AS1$,7 AS long$,1 ASt$,5 AS psd$,1
AS 3,4 ASmws$,]1 ASt$,5 AS fita$,1 AS t$,5 AS vinws$,1 ASt$,1 ASn2$,1 AS cr$
lastday$ = ": stflag% = 0
FORNn% =1 TO lin%
dayn = day(indx%(n%))
IF (n% = 1) THEN
lastday = dayn
nl% =n%
ELSE
IF (dayn <> lastday) THEN

-30-

n2%=n%-1
best% = 100
PRINT n% - n1%;" duplicate(s)"
FOR p% =nl1% TO n2%
IF flag%(indx%(p%)) < best% THEN
best¥% = flag%(indx%(p%))
bestp% = p%
ENDIF
NEXT
CET#]1, indx%(bestp%)
PRINT day$;" “aqd$;" "1at$;" "long$;" ";psd$;” ""mws$;" “fita;" ";,vmws$;" “n2$
PRINT#2,
day$;CHR$(9);aqd$;CHRS$(9);1at$; CHR$(9);long$; CHR$(9);psd$; CHR$(9) ;mws$; CHR$(9) fita$;C
HR$(9);vmws$;CHR$(9);n2$
lastday = dayn
nl% =n%
END IF
ENDIF
lastday$ = day$
NEXT n%
CLOSE#1
CLOSE#2

END

Handler:

IF (ERL = 10) AND (ERR = 53) THEN
OPEN g$ FOR OUTPUT AS #2
cflaghe =1
CLOSE#2

ENDIF

RESUME NEXT

A.3 METEO SORT

REM QuickBasic program METEOSORT
REM - sorts Meteosat Sonic Buoy data
REM in a day folder and produces an error file

REM Use the error file to show errors
REM then edit them and re-run this prog

REM 07-10-93
REM CHC

ON ERROR GOTO Handler

DIM 13(4)
DIM var(4,22)
DIM flag%(5)

REM open output file (Sorted)

INPUT "Enter day number (Julian) to be analysed",d$

f$ = "Wooig8-CHC.CHC-mac:Swales:meteo-" + d$ + ":Sorted"
g% = "Wooig8-CHC:CHC-mac:Swales:meteo-" + d$ + “:Errors"
OPEN £$ FOR OUTPUT AS #2

OPEN g$ FOR OUTPUT AS #3

REM process all the files in the folder "meteo-" + d$
FOR hh% = 0 TO 23
hh$ = STR$(hh%)

-31-

IF (hh% < 10) THEN MID$(hh$,1,1) = “0* ELSE hh$ = RIGHT$(hh$,2)
£$ = "Wooig8-CHC:CHC-mac:Swales:meteo-* + d$ + "+ hh$
OPEN £ FOR INPUT AS #1

REM get the ESA header line
LINE INPUT #1, h$
IF (LEFT$(h$,4) = "M /") THEN
h$ = LEFT$(h$,40) 'the useful part of the ESA header
PRINT h$
jday% = VALMID$(hS, 24, 3)): hr% = VALMID$(hS, 28, 2))
ELSE

jday% = 899:hr% = 989
END IF

REM get the IOS header lines (BO1, etc.)
1d% =0
FORI%=1TO 3

LINE INPUT#1, h$

PRINT h$

IF INSTR(hS, *,") > 0) THEN 1d% =1%1% = 3
NEXT
IF (VAL(h$) = jday%) THEN

PRINT "Header Format OK"
ELSE

PRINT "Header Format Faulty!"

PRINT#3, hh%; " Header Format Faulty”
ENDIF
IF (1a% > 0) THEN

PRINT *Missing line, re-reading 1st *1d%

PRINT#3, hh%,; " Missing line(s)"

CLOSE#1

OPEN £8 FOR INPUT AS #1

FOR1% =1TO1d%

LINE INPUT #1, h$

NEXT

ENDIF

REM the next 4 lines should be quarter-hourly data
try% =0
FORghr% =1TO 4
var(ghr%,1) = jday% + hr% / 241: var(qhr%.2) = hr%
LINE INPUT#1, 1$(qhr%)
IF (INSTR($(qhr%), *,") = 0) AND (try% < 4) THEN
ghr%e = Otry%e =try%e + 1
PRINT "Excess/faulty header line”

GOTO Retry
ENDIF
PRINT 18(ghr%)
sum% =0
FORch% =1 TO 59
IF MID$(1$(qhr%), ch%, 1) ="") THEN sum% = sum% + 1
NEXT

IF (sum% = 12) THEN
flag%(ghr%) = 0: cpos% = 0
FOR par% =1TO 13
CALL CheckNext(ghr%, par%)
NEXT
REM PRINT
ELSE
PRINT "Line too corrupted to analyse”
PRINT#3, hh%,; " Line *;,qhr%; * corrupted”

-32-

flag%({qhr%) = -9999
END IF
var(ghr%,21) = flag%(ghr%)
Retry:
NEXT ghr%

REM now get the housekeeping data line
LINE INPUT#1, hskeep$
PRINT hskeep$
flag%(8) = 0: cpos% =0
FORpar% =1TO 5
CALL CheckHskeep(par%)
NEXT

REM finally save to CricketGraph format output file
FORghr%e=1TO4
var(ghr%,22) = flag%(5)
FOR par% = 1TO 22
PRINT#2, var(qhr%, par%); CHR$(9);
NEXT
PRINT#2, ™

REM continue with next input file
NEXT

CLOSE #1

Missing:
NEXT hh%

CLOSE#2
CLOSE#3
END

SUB CheckNext(1%, par%) STATIC
SHARED 1$(), var(), cpos%, flag%()
1$(1%) = 1$(1%) + CHR$(10)
IF (par% = 13) THEN t$ = CHR$(10) ELSEt§ ="

parlen% = 4:den% = 10
IF (par% = 1) THEN parlen% = 2:den% = 4
IF (par% = 3) OR (par% = 12) OR (par% = 13) THEN parlen% = 3
IF (par% = 2) OR (par% = 7) THEN den% = 100
IF (par% = 13) THEN den% =1
cposl1% = INSTR(cpos% + 1, 13(1%), t$)
REM PRINT cpos1%;"*;
IF ((cpos1% - cpos%) = (parlen% + 1)) THEN
var(1%, par% + 2) = VAL(MID$(1$(1%), cpos% + 1, parlen%)) / den%
ELSE
var(1%, par% + 2) = VAL(STRING$(parlen%, "9%))
flag% (%) = flag%(1%) + 2" (par% - 1)
ENDIF

cpos% = cposl%
END SUB

SUB CheckHskeep(par%) STATIC
SHARED hskeep$, var(), cpos%, flag%
hskeep$ = hskeep$ + CHR$(10)
IF (par% = 5) THEN t$ = CHR$(10) ELSE t§ =""

parlen% = 3:den% = 1
IF (par% = 1) THEN den% = 10

-33-

IF (par% = 4) OR (par% = 5) THEN parlen% = 5
cposl% = INSTR(cpos% + 1, hskeep$, t§)
REM PRINT cpos1%;"";
IF ((cpos1% - cpos%) = (parlen% + 1)) THEN
FORI%=1TO 4
var(1%, par% + 15) = VAL(MID$(hskeep$, cpos% + 1, parlen®)) / den%
EXT

ELSE
FORI% =1TO 4
var(%, par% + 15) = VAL(STRING$(parlen%, "9")
NEXT
flag¥%(5) = flag%(5) + 2~ (par% - 1)
END IF

cpos% = cposl%
END SUB

Handler:
Number = ERR
IF (Number = 53) THEN
IF (RIGHTS($, 1) <> "d") THEN
PRINT *Hour “; hh$; " not found"
PRINT#3,"Hour *hh$; * not found"
CLOSE #1
RESUME Missing
ELSE
PRINT "Cannot open output file"
CLOSE #2
END
ENDIF
ELSE
PRINT “Error *; Number
INPUT “Press Enter to exit";x$
CLOSE#1
CLOSE#?2
CLOSE#3
END
END IF

A.4 sMTOIM.C

/* Source Code of AMTOIM.C

for converting a 4 Mbyte flashcard file c:\thincard\test

(produced by reading card on thincard drive with batch file T.BAT)
to 4 separate 1 Mbyte files in current directory */

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>

main()

{

FILE * fin;
FILE * fout;

int c;
longn;

if ((fin = fopen("c:\\thincard\\test", *rb")) != NULL)
{

-34-

if ((fout = fopen(‘test. lmg®*, “‘wb+")) |= NULL)

printf("Converting 1st Mbyte\n");
for (n = 0; n < 1048576L; n++)

{
¢ = fgetc(fin);
{

fputc(c, fout);

}
printf("Transfer OK\n");
}
else
{
printf("Failed to open O/P File\n");

fclose(fout);

printf("Press a key to continue\n*);
getch();

/* copy 2nd meq to test.2mg */

if ((fout = fopen(“test.2mg”, *wb+")) |= NULL)

printf(*Converting 2nd Mbyte\n");
for (n = 0; n < 1048576L; n++)

{
¢ = fgetc(fin);
fputc(c, fout);

}

printf("Transfer OK\n");

}
else

{

printf(*Failed to open O/P File\n");
fclose(fout);
printf("Press a key to continue\n");
getch();
/* copy 3rd meqg to test.3mg */
if ((fout = fopen(“test.3mg”, *wb+")) I= NULL)

printf("Converting 3rd Mbyte\n");
for (n = 0; n < 10485786L; n++)

{
¢ = fgetc(fin),
fputc(c, fout);

)

printf("Transfer OK\n");

}
else

{

printf(*Failed to open O/P File\n"),
fclose(fout);
printf("Press a key to continue\n");
getch();
/* copy 4th meq to test.4mg */

if ((fout = fopen(“test.4mg”, ‘wb+")) |= NULL)
{

/* copy 1st meg to testfile */

-35-
printf("Converting 4th Mbyte\n");
for (n = 0; n < 1048576L; n++)

f: = fgetc(fin);
fpute(c, fout);

pﬂnt}:f(‘Transfer OK\n");
else }
i)rintf("Faﬂed to open O/P File\n");
fclose(fout);
else}

{
printf(‘Failed to open I/P File\n");
}

return 0;
}

A.5 FORMDECODE

REM QuickBasic Program FORMDECODE

REM for decoding the ARGOS database binary parts
REM of a Formatter file

REM CHC 24-01-94

DIM W(32), atrs%(5),PSD(8), MWS(5),FITA(5),VM(5)
OPEN "Wooig8-CHC:CHC-mac:SwalessFORMSWAL.M2" AS #1 LEN = 416
OPEN "Wooig8-CHC:CHC-mac:Swales:decoded2” FOR OUTPUT AS #2
FIELD #1, 128 AS arg$, 288 AS met$
GET#1,1
db%=1
WHILE NOT EOF(1)
PRINT db%
GET#1,db%:db%=db%+1

REM next bit taken from argsonfile
FOR frame% =1 TO 4
FORm% =1TO 32
W(m%) = ASC(MID$(arg$,32*(frame%-1) + m%,1))
NEXT m%

REM w(1) to w(32) now contain the 32 bytes of the frame

REM now decode the frame into the 5 records of
REM starttime (quarters), PSD, MWS, Fit A, V. MWS, N2
REM inserting 999 type values where parity errors are detected

FORREC%=1TOS
n% =6 * REC%
word& = W(n% -5) ‘'word&is the quarter-hours since midnight
bits% = 8: GOSUB Paritycheck
IF word& < 99 THEN
aqirs%(REC%) = word&
E

atrs%(REC%) = 99

-36-

ENDIF

word& = W(n% - 4)*4 + (W(n% - 3) AND 192)/64 'PSD
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
PSD(REC%) = .01*word&- 6
ELSE
PSDREC%) = -9.99
END IF

wordé& = (W(n% - 3) AND 63)*16 + (W(n% - 2) AND 240)/16 "MWS
bits% = 10: GOSUB Paritycheck
IF word& < 9998 THEN
MWS(RECY) = .1*word&
ELSE
MWS(REC%) = 89.9
ENDIF

word& = (W(n% - 2)AND 15)%64 + (W(n% - 1)AND 252)/4 'FIT A
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
FITA(REC%) = .01*word& - 6
ELSE

FITARECY%) = -9.99
IF

word& = (W(n% - 1) AND 3)*286 + W(n%) V_MWS
bits% = 10: GOSUB Paritycheck

IF word& < 9999 THEN
VM(REC%) = .02*(word& - 256)
ELSE
VM(REC%) = +9.99
END IF
NEXT REC%

word& = W(31) * 256 + W(32) '16 bit word for N2 values
bits% = 16: GOSUB Paritycheck
IF (word& < 99899&) THEN
n% = 4096
FORREC%=1TOS§
n2(REC%) = INT(wordé& / n%) AND 7
n% = n%/8

NEXT
ELSE
FORREC% =1TO 5
n2(REC%) = 9
END IF
FORREC% = 1TO 5
PRINT

#2,qtrs%(REC%);",";PSD(REC%),",; MWS(REC%)," " FITA(REC%);"";VM(REC%);","n2(REC%)
NEXT

NEXT frame%
PRINT#2 ,met$

WEND
CLOSE #1

END
REM Subroutines

-37-

Paritycheck:
REM checks for even parity
p% =0b&=1
FOR bit% = 1 TO bits%
IF (word& AND b&) THEN p% = p% XOR 1
b& = b&*2
NEXT

IF p% = 0 THEN
word& = word& AND (2~ (bits% - 1) - 1)
ELSEIF bits% = 8 THEN
wordé& = 99
ELSEIF bits% = 10 THEN
wordé& = 8989
ENDIF
IF p% = 0 AND bits% = 18 THEN word& = 98999&
REM at present error in n2 parity bit
RETURN

A.6 SONDIRN

REM QuickBasic Program SONDIRN.BAS

REM to calculate sonic wind direction from vectors
REM using tabular data file as input

REM 180 deg added to directions to match Young
REM chc 15/2/94

OPEN "Wooig8-CHC:CHC-mac:Swales:Formatter:1st deployment:1st deployment CG copy”

FOR INPUT AS #1

OPEN *WooigB8-CHC:CHC-mac:Swales:Formatter:1st deployment: 1st deployment CG mod"

FOR OUTPUT AS #2

REMDay PSD MWS (mv/s) North WS (m/s) East WS (m/s) VertWS (m/s) Fit-A ATl
AT2

REMST1I ST2 Young WS (mm/s) Young Direction = Battery Voltage Heading
Heading rms

REM Tmet Tson ATI-AT2 ST1-ST2

1%=0: radtodeg = 180/3.14159

WHILE NOT EOF(1)
INPUT#1,day$,psd$,mws$,north$, east$,vert$ fita$,at1 $,at2$
INPUT#1,st1$,st2%,yws$,yd$ bat$,hdg$ hrms$
INPUT#1 tmet$,tson$,atd$,std$
1%=1%+1
REM PRINT day$,psd$,mws$,east$, north$,verts;" ;
PRINT 1%, day$

e = VAl{east$): n = VAL(north$)
REM PRINT e, n;*:"

IF (n <> 0) THEN
th = radtodeg * ATN(e /n)

ELSE
IF (e > 0) THEN th = 270 ELSE th = 80
PRINT#2, th

END IF

IFn> 0 THEN
th=th + 180
PRINT#2, th

END IF

[Fe < 0 AND n < 0 THEN
th=th
PRINT#2, th

END IF

IFe> 0ANDn < 0 THEN
th =360+ th
PRINT#2, th

ENDIF

REM PRINT th

REM INPUT r$

WEND

CLOSE#1
CLOSE#2

-38-

-30-

APPENDIX B DATA FORMATS

Appendix B.1 Raw Data Files
The first 256 kbytes of FORMSWAL.IMG consist of consecutive directory entries; these are
each 32 bytes in length, starting from location 0, with the following format:
vijjhhmmbfllnnv2][jv1v3v400000
where
v is a marker character
jij is the Formatter clcck Julian Day number (0 - 365)
hh is the Formatter clock hours (0 - 23)
mm is the Formatter clock minutes (0 - 59)
b is the FlashCard Start Block (0 - 63)
ff is the FlashCard Offset (0 - 65535)
1is the record length (0 - 65535)
nn is the record number (0 - 65535)
v2 is the Sonic MWS expressed as div((int) (10 * sonic_ mws + 0.5), 312).rem
JI] is Sonic Processor message Julian Day number
v1 is the PSD expressed as div{(int) (100 * (6 + psd) - 0.5), 512).rem
v3 is the Fit_a expressed as div((int) (100 * (6 + fit_a) - 0.5), 812).rem
v4 is the Vertical WS expressed as div((int) (50 * vert_mean + 256.5), 512). rem
00000 are five null characters.

The remaining 768 kbytes of FORMSWAL.IMG, starting at location 262144, consist of
consecutive ARGOS and Meteosat messages (128 and 288 bytes, respectively)

An example of the ARGOS message contents is given below as 4 frames of 32 bytes in hex
ASCI format.

A36CEQEF14E8S0ES409E98ET1169COC6ACEB12E340AE4CEB93628096 AOESFTFF
145A207DECEDS5DFB09EZEF19661408E40E81 TE340AEG6EF1 8ESAQBEAAESCTFF
9965E0B6TAEFOAG9EODECSE4 1 BE820B6S0EDSCEAB0CF02E91D6740CEB2EACTFF
1E6760BECAEFSF6B60DEASEBAOSBE0DEE2ES216D60ET 1 2F222EAAO0DEDEF1 CTFF

The 32 bytes of a frame are in a highly packed format, which contains five quarter-hourly sets
of values of PSD, MWS, Fit A and Vertical MWS; thus a satellite pass will normally acquire all
four frames, i.e. twenty quarter-hourly sets, or 5 hours of data.

-40-

We shall denote the five quarter-hourly sets in a frame by suffices a - e

Each quarter-hourly set of data in a message contains:

Q time of data acquisition period start in quarter-hours since midnight
(this has the range 0 to 95, which can be expressed as a 7 bit binary number
bits QO (Isb) to Q6 (msb), with an added even parity bit PQ)

PSD logl0(Power Spectral Density * £45/3
(this is converted to a 9 bit binary value 000h to 1FFh,
bits PSDO (Isb) to PSD8 (msb), with added parity bit PPSD,
by taking the remainder of [(100 * (6 + PSD) - 0.5) divided by 512].
This gives a nominal range of -6.00 to -0.89, for 000h to 1FFh,
although secondary ranges, such as -0.88 to +4.23, exist)

MWS Mean Wind Speed
(this is converted to a 9 bit binary value 000h to 1FFh,
bits MWSO0 (Isb) to MWS8 (msb), with added parity bit PMWS,
by taking the remainder of [(10 * MWS + 0.5) divided by 512]

This gives the nominal range of 0.0 to 51.1 m/s, for 000h to 1FFh,
although secondary ranges, such as 51.2 to 102.3, exist)

Fit A Coefficient 'a', for linear regression fit of PSD vs logl0(frequency)

over the frequency range 2 - 4 Hz, PSD = a + b.logl0(frequency)

(this is converted to a 9 bit binary value 000h to 1FFh,

bits Fit_AO (Isb) to Fit AB (msb), with added parity bit PFit_A, as for PSD)
V.M Vertical Mean Wind Speed

(this is converted to a 9 bit binary value 000h to 1FFh,

bits V_MO (Isb) to V)MB (msb), with added parity bit PV_M,

by taking the remainder of [(80 * V_M + 256.5) divided by 512]

This gives a nominal range of -5.12 to +5.11, for 000h to 1FFh,

although secondary ranges, such as +5.12 to +15.34, exist)

A quarter-hourly set of the above parameters amounts to 48 bits (6 bytes), so that 5 sets
amount to 30 bytes, bytes 1 to 30, leaving 2 bytes in the frame free for additional data. These
two bytes are used to convey the number of Multimet messages successfully used in the
averaging process over the Sonic acquisition period, N2. However, since N2 has the range 0
to 10 (4 bit binary), we can not fit five x 4 bits into 2 bytes and we have to subtract 3 from the
N2 values, setting negative values to 0. i.e. the resulting (N2-3) range is 0 to 7 (3 bit binary),
leaving one bit free for an even parity check for the two bytes.

Bytes 31 and 32 are packed with the (N2-3) values as follows:

The data format is summarised in tabular form below, showing each byte as one line with the

41-

most significant bit to the left, from bytel to byte32:

| PQa Qba Q8a Q4a Q3a Q2a 1 Qla Q0a
PPSDa PSD8a PSD7a PSD6a PSDS5a PSD4a PSD3a PSD2a
PSDla PSD0Oa PMWSa | MWS8a | MWS7a | MWsS6a | MWSBa | MWS4a
MWS3a | MWS2a [MWSla |MWS0a | PFit Aa | Fit ABa | Fit A7a | Fit A6a
Fit ABa | Fit Ada [Fit A3a | Fit A2a | Fit Ala |Fit A0a |PVMa |V M8a
VMJa |VM6a |VMSa |VM4a |VM3a |VMa |VMla |V Moa
| POb Q6b QSb Q4b Q3b Q2b Qlb Q0b
PPSDb PSD8b PSDT7b PSD6b PSDSb PSD4b PSD3b PSD2b
PSD1b PSDOb PMWSb | MWS8b | MWS7b | MWS6b | MWS5b | MWS4b
MWS3b_ | MWS2b | MWS1b [MWS0Ob | PFit Ab | Fit A8b | Fit A7b [Fit A6b
Fit ASb |Fit A4b |Fit AGb |Fit A2b |Fit Alb |Fit AOb [PV Mb |V M8b
VMIb |VM6b |VMSb |VM4b |VM3 |VM2b |VMlb |V MOb
PQc Qéc QSc Q4c Q3c Q2c Qlc Q0c
PPSDc PSD8c PSD7c PSD6c PSDS&c PSD4c PSD3c PSD2c
PSDlc PSDOc PMWSc | MWS8c | MWS7c | MWS6c | MWS5c | MWS4c
MWS3c_ | MWS2c | MWSIlc | MWSOc | PFit Ac | Fit A8c | Fit A7c | Fit A6c
Fit ASc | Fit Adc | Fit A3c | Fit A2c | Fit Alc |Fit AOc_|PV Mc |V M8c
VMic |VM6 (VM JVMic |VMic |VMk |VMlc |V MOc
| PQd Q6d Q5d Q4d Q3d Q2d Qld Q0d
PPSDd PSD8d PSD7d PSDéd PSD5d | PSD4d PSD3d PSD2d
PSD1d PSDOd PMWSd | MwsSed | MWS7d | MWS6d | MWSSd | MWS4d
MWS3d | MWS2d [MWSId |MWS0d | PFit Ad |Fit A8d | Fit A7d | Fit A6d
Fit ABd | Fit A4d | Fit A3d |Fit A2d | Fit Ald |Fit AOd |PV.Md |V Msd
VMId |VMed |VMEd |vMid |VMd |VMad |V Mid |V Mod
| PQe Qbe QSe Qde Q3e QZe Qle QOe
PPSDe PSD8e PSD7e PSD6e PSDSe PSD4e PSD3e PSD2e
PSDle PSDOe PMWSe |MWS8e |MWS7e |[MWS6e |MWSSe | MWs4e
MWS3e |MWS2e |MWSle |MWSOe |PFit Ae |Fit ABe |Fit A7e |Fit ABe
Fit ASe |Fit Ade |Fit A3e |Fit A%e |Fit Ale |Fit Ae |PV Me [V Ms8e
VMle |VMBe |VMBe |VMie [VMe |VMee |VMe |V Me
PN2a-e | N22a N2la N20a N22b N21b N20b N22¢c
N2lc N20c N22d N2ld N20d N22e N2le N20e

Table B.1 Bit Map of 32 Byte ARGOS Frame

An example of the Meteosat message contents (288 bytes) is given below:

BOI1<CR><LF>

51005<CR><LF>

256<CR><LF>

32,-170,013,-001,+001,-005,-159,+126,+125,+117,+120,009,010<CR><LF>
33,-162,014,+002,+005,-003,-147,+132,+128,+118,+121,010,009<CR><LF>
34,-173,013,+000,+001,-003,-160,+136,+134,+119,+122,010,010<CR><LF>
35,-164,014,-005,-003,-005,-146,+137,+136,+120,+123,011,01 1 <CR><LF>
231,122,000,-0000,+0001<CR><LF><CR><LF>

The format of this message is quite simple; the first three lines are, respectively, the buoy ID,
the niminal latitude (51° North) and longditude (005° West) and the Julian Day number (256).

49

The next four lines include a combination of Sonic and Multimet data in the format:

where

QQ+PSDMWSN ME MV_MFAATI] AT2,8T1,8T2, YW1,YDI1

QQ = Quarter-hours since midnight (range 00 - 96)

+PSD = 100 * logl0(Power Spectral Density * £45/3

MWS = 10 * (Mean Wind Speed in m/s)

N_M = 10 * (North Mean component of Wind Speed in n/s)

E_M = 10 * (East Mean component of Wind Speed in m/s)

V_M = 10 * (Vertical Mean component of Wind Speed in m/s)

FtA = 100 * Coefficient 'a', for linear regression fit of PSD vs loglO(frequency)
(over the frequency range 2 - 4 Hz, PSD = a + b.loglO(frequency))

AT1 = 10 * (Mean Air Temperature from sensor 1 in ©C)

AT2 = 10 * (Mean Air Temperature from sensor 2 in ©C)

ST1 = 10 * (Mean Sea Temperature from sensor 1 in ©C)

ST1 = 10 * (Mean Sea Temperature from sensor 2 in ©C)

YW1 = 10 * (Mean Young AQ1 Wind Speed in m/s)

YD1 = Mean Young AQ1 Wind Direction in degrees.

The final line includes housekeeping data in the format:

where

BBB,HHH HSD,+TMET,+TSON

BBB = 10 * Mean Battery Voltageon the 24V bus

HHH = Mean Buoy Heading in degrees magnetic

HSD = Standard Deviation of Heading in degrees

+TMET = Time difference between Multimet and Formatter Real Time Clocks
(+ve for Multimet clock ahead of Formatter clock)

+TSON = Time difference between Sonic and Formatter Real Time Clocks

(+ve for Sonic clock ahead of Formatter clock)

