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Abstract

The frequency equation of Timoshenko beam theory factorises for hinged–hinged end conditions, leading to a first and

second spectrum of natural frequencies; the latter is largely inaccurate and can be isolated and disregarded. For the

majority of other end conditions, when the frequency equation does not factorise, one may think in terms of pseudo-

second spectrum contributions arising when evanescent waves become propagating above the cut-off frequency

oco ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAG=rI

p
, and it is conjectured that these may have a corrupting effect on the frequency predictions. Comparisons

with measured and simulated frequencies lead to the conclusion that Timoshenko predictions above the cut-off frequency

should be disregarded for those end conditions for which the frequency equation does not factorise.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known [1] that the transcendental (or an equivalent algebraic) frequency equation of Timoshenko
beam theory (TBT) factorises for hinged–hinged end conditions. This allows one to think in terms of a first
and second spectrum of natural frequencies, or first and second branches of a wave propagation dispersion
diagram. It has been shown recently [2] that the transcendental frequency equation also factorises for
guided–guided and guided–hinged conditions; these new end combinations can be regarded as portions of a
multi-span hinged–hinged beam. Below the second spectrum cut-off frequency given by oco ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAG=rI

p
,

TBT predicts both propagating (TBT1) waves, and evanescent (TBT2) waves associated with the hyperbolic
spatial functions. Above the cut-off frequency, these hyperbolic functions become trigonometric [3], implying
propagation along the structure or, equivalently, the possibility of standing waves at these second spectrum
frequencies.

For hinged–hinged end conditions, or equivalently a beam of infinite length, TBT predictions may be
compared with those from exact elastodynamic theory, when the accuracy of the first spectrum is beyond
reproach. In Ref. [2] comparison was made between ‘‘exact’’ plane stress predictions for a standing wave in a
short hinged–hinged beam of thin rectangular cross-section. The agreement between the TBT1 predictions and
the exact lower branch asymmetric mode was within the range �0:4% to+0.54% for the first 20 modes of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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vibration when using the shear coefficient k ¼ 5 1þ nð Þ= 6þ 5nð Þ. Experimental support for this value of the
coefficient at long wavelength has also been provided by Méndez-Sánchez et al. [4].

As wavelength tends to zero, exact elasticity theory predicts wave propagation at the Rayleigh surface wave
velocity (RSWV), cR, which may be determined from the appropriate root of the equation

2�
c2R
c2s

� �2

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2R
c2s

� �
1�

1� 2n
2 1� nð Þ

c2R
c2s

� �s
. (1)

TBT1 can be adapted to agree with this, by noting that as wavelength l-0, the TBT1 phase velocity
prediction becomes cp ¼ cs

ffiffiffi
k
p

and requiring that this be equal to the RSWV leads to the requirement [5]

2� kRð Þ
2
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kRð Þ 1�

1� 2n
2 1� nð Þ

kR

� �s
; 0okRo1. (2)

If one employed a shear coefficient more appropriate for longer wavelength, such as k ¼ 5 1þ nð Þ= 6þ 5nð Þ for
the plane stress rectangle, the error in the limit of zero wavelength can be expressed in terms of these long- and
short-wavelength shear coefficients as

ffiffiffiffiffiffiffiffiffiffiffi
k=kR

p
� 1

� �
� 100%. For Poisson’s ratio n ¼ 0.25, one has

kR ¼ 0.8453, and k ¼ 0.8621 for the plane stress rectangle, and using the long-wavelength value would lead
to an overestimate of the RSWV by about 1%. Employing a shear coefficient more appropriate for plane
strain conditions, k ¼ 5/(6�n), would give an overestimate of the RSWV of about 1.5%. Thus one may
surmise that a TBT1 prediction can be within 2%, say, of the exact elastodynamic theory across the entire
range of wavelengths.

In contrast, the validity of the second spectrum frequency predictions (TBT2) has been called into question
on the basis of two studies. In Ref. [6] comparison was made between the phase velocity predictions from the
exact Pochhammer–Chree (PC) theory for wave propagation in an infinite rod of circular cross-section, and
the equivalent TBT predictions; excellent agreement was found for the lowest flexural mode and TBT1, using
the shear coefficient k ¼ 6(1+n)2/(7+12n+4n2). However, no consistent agreement could be found for TBT2;
at long wavelength, the TBT2 prediction was close to the second flexural mode of PC theory, as one would
wish, but at shorter wavelength TBT2 agreed more closely with the second extensional mode of PC theory.
Similarly in Ref. [2], for the thin rectangular cross-section, the TBT2 prediction did not provide consistent
agreement with any single mode of vibration; at long wavelength it was very close to the second exact
asymmetric mode (as one would wish), but as wavelength shortens it became closer to the second symmetric
(extensional) mode, then the third asymmetric mode. In both studies it was concluded that the second
spectrum predictions of Timoshenko beam theory should be disregarded.

Beside the three special beam end combinations noted above, in general the transcendental frequency
equation does not factorise. This is true for the free–free case, which is the easiest beam end condition to
achieve experimentally. Again, above the same cut-off frequency, Chan et al [3] have argued that previously
hyperbolic (evanescent) spatial functions become trigonometric, implying disturbance propagation along the
structure; here, these are described as pseudo-second spectrum contributions. For the hinged–hinged case, the
second spectrum could be readily identified, and disregarded. However, for the free–free case, this is not
possible; indeed, the pseudo-second spectrum contributions are necessary to maintain the required conditions
of zero bending moment and shearing force at the free ends. Now, if the second spectrum predictions are
largely inaccurate for the hinged–hinged case, as seen in Ref. [2], there seems no good reason why the pseudo-
second spectrum contributions should be accurate for the free–free; however, if they are necessary, and cannot
be disregarded, they may have the effect of corrupting the TBT predictions above the cut-off frequency. This
possibility is consistent with Hutchinson’s conclusion [7] that ‘‘The cut-off frequency y appears to be a
reasonable choice for an upper bound y on the Timoshenko solution.’’ This conclusion is clearly not true for
the hinged–hinged numerical example considered in Ref. [2]: the cut-off (n ¼ 0) frequency for TBT2 was
65 851 rad/s and only the lowest four TBT1 predictions were smaller than this value. The highest (n ¼ 20)
TBT1 mode considered had a frequency some five and a half times greater than the cut-off frequency, but the
difference between the TBT1 and the exact elastodynamic plane stress frequency predictions was only 0.54%.

If the above ideas regarding a corrupting effect of pseudo-second spectrum contributions were to be correct,
one would conclude that frequency predictions from TBT above the cut-off frequency should be disregarded
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as unreliable for those end conditions for which the transcendental frequency equation does not factorise. The
purpose of the present work was to test this hypothesis.

For a short free–free beam of near-square cross-section, the Timoshenko frequency predictions are
compared with experimental observations, commercial finite element (ANSYS) predictions and predictions
from a resonant ultrasound spectroscopy (RUS) technique. RUS was proposed first by Demarest [8], and has
become a standard method for the determination of elastic constants (see recent review by Leisure and Willis
[9]). It is essentially a best-fit between measured and computed Rayleigh–Ritz upper bound natural frequencies
of a specimen. For the free-cube (rectangular parallelepiped) the latter employs products of (orthogonal)
Legendre polynomials in the three coordinate directions as basis functions. The experimental set-up consists of
the beam specimen suspended and excited by two carbon-fibre loops, which are attached to two piezoelectric
transducers, and is described fully in Ref. [10]. Resonant frequencies are found by sweeping the frequency
range of interest with a network analyser. Even very weak resonances can be detected by this method, since the
noise level of the network analyser is about �140 dBm (1mW reference level).

2. Specimen measurements, finite element analysis, and TBT predictions

A short aluminium alloy beam of near-square cross-section was machined, and found to have dimensions:
length L ¼ 40.0470.02mm, breadth b ¼ 10.0970.01mm, depth d ¼ 10.0470.02mm; the beam had mass
m ¼ 11.43 g which implies a density r ¼ 2817.9111 kgm�3. The elastic moduli were found by a best-fit
between the 16 lowest measured bending frequencies (Table 1)—eight in the more flexible (f) and eight in the
more stiff (s) plane—and the RUS simulations, leading to Young’s modulus E ¼ 72.66611GPa, shear
modulus G ¼ 27.17481GPa and hence Poisson’s ratio n ¼ E/(2G)�1 ¼ 0.337012. These values of the elastic
constants were used in the subsequent finite element analysis performed using ANSYS. The beam was
modelled using 20-node brick elements (SOLID95) with the (approximate) element size defined as one-tenth
that of the breadth; this leads to 10� 10 elements to define the cross-section, with the length of the beam
divided into 40 elements. The TBT predictions were found using the frequency equation for a free–free beam,
as given by Levinson and Cooke [1], with shear coefficient k ¼ 5(1+n)/(6+5n); this was constructed as a
Table 1

Measured and predicted natural frequencies (Hz) for a short free–free aluminium beam

n Measured ANSYS RUS TBT Comments

1 27359.6f 27417.6f (+0.21%) 27417.5f (+0.21%) 27407.1f (+0.17%) s4f for all

27423.8s 27515.6s (+0.33%) 27515.5s (+0.33%) 27505.3s (+0.30%)

2 60862.0f 60882.0f (+0.03%) 60881.5f (+0.03%) 60851.1f (�0.02%) s4f for all

61098.3s 61022.0s (�0.12%) 61021.5s (�0.13%) 60992.1s (�0.17%)

3 97609.5f 97734.4f (+0.13%) 97732.5f (+0.13%) 97796.0f (+0.19%) s4f for all

97852.4s 97881.5s (+0.03%) 97879.7s (+0.03%) 97945.4s (+0.09%)

4 131494f 131658f (+0.12%) 131654f (+0.12%) 132277f (+0.60%) s4f for all

131732s 131675s (�0.04%) 131671s (�0.05%) 132308s (+0.44%)

5 161352s 161390s (+0.02%) 161383s (+0.02%) 163547s (+1.36%) f4s for all

161538f 161517f (�0.01%) 161511f (�0.02%) 163661f (+1.31%)

6 165183s 164887s (�0.18%) 164884s (�0.18%) 169108s (+2.38%) f4s for all

165598f 165398f (�0.12%) 165394f (�0.12%) 169634f (+2.44%)

7 194863f 194933f (+0.04%) 194922f (+0.03%) 202352f (+3.84%) f4s for TBT

194973s 195032s (+0.03%) 195022s (+0.03%) 202115s (+3.66%) s4f for ANSYS, RUS, and measured

8 195869s 195977s (+0.06%) 195966s (+0.05%) 203319s (+3.80%) f4s for all

195908f 196097f (+0.10%) 196086f (+0.09%) 203518f (+3.88%)

9 213501 213505f (+0.00%) 241202f (+12.97%) f4s for TBT

213635 213707s (+0.03%) 241067s (+12.84%) s4f for RUS

10/11 220556 220002f (�0.25%) 247954f (+12.42%) f4s for TBT

220702 220247f (�0.21%) 281542f (+27.57%) s4f for RUS

221010 220984s (�0.01%) 247782s (+12.11%)

221092 221459s (+1.17%) 281408s (+27.28%)

Percentage differences between the predicted and the measured values are shown in parentheses.
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frequency function, y, using MATLAB. For frequencies below the cut-off, zero values of y were found using
the FZERO command within MATLAB; above the cut-off frequency, the function y is complex, and the
FMINS command was used to find a minimum (zero) value of the absolute value of y. The cut-off frequencies
are calculated as fco,f ¼ 159047Hz for vibration in the more flexible plane, which is greater than
fco,s ¼ 158259Hz for vibration in the stiffer plane.

3. Results and discussion

The beam cross-section is almost square, so one expects natural frequencies to occur as near equal pairs;
these are denoted in Table 1 by the same mode number n, but qualified as s and f, according to whether
vibration takes place within the stiff or flexible plane, respectively.

First note that the ANSYS prediction is always slightly greater than the RUS, but agreement is near perfect;
typically, the difference (not shown in Table 1) is less than 0.006%. Thus one may regard the ANSYS and
RUS predictions as a unity, and henceforth these are referred to as the simulated frequencies. These simulated
frequencies are at times greater, and at times smaller than the measured frequencies, as one would expect from
a best-fit analysis for the elastic constants. Best-fit will minimise the absolute differences between the measured
and simulated frequencies, so it is no surprise that the largest percentage difference should occur for the
fundamental (n ¼ 1) modes. Overall, agreement between the measured and simulated frequencies is excellent
for all of the modes shown in Table 1. It is clear that the simulated values are quite capable of providing
excellent agreement above the cut-off frequencies; indeed, short beams or cubes are typical RUS samples
and the simulated frequencies can be as accurate 70.2% for the first fifty modes of vibration (see Fig. 3 of
Ref. [9]). In contrast, agreement between the TBT predictions, and the measured and simulated frequencies,
is excellent for frequencies below cut-off, that is, nr4 in Table 1. Above the cut-off frequencies, TBT
predictions are increasingly greater than both the measured and simulated values. Thus for n ¼ 8, the TBT
prediction is nearly 4% greater than the measured value, which is approaching the limit of what might be
considered acceptable as an engineering approximation (typically 5%, say), while the simulated values are
just some 0.1% greater. For higher modes, n48, the TBT predictions greatly exceed the measured and
simulated frequencies.

The question of when to disregard the TBT predictions is now answered according to the accuracy one
requires. The results presented in Table 1 are quite consistent with Hutchinson’s conclusion that the cut-off
frequency is a reasonable choice. Thus for modes n ¼ 1 to 5 (the latter slightly exceed the cut-off frequency)
the TBT predictions are within about �0.2% and +1.4% of the measured and simulated frequencies, while
for nZ6 the simulated frequencies are still in very good agreement with the measured, but the TBT predictions
are increasingly inaccurate.

The following points are also noted:
1.
 For the first four mode pairs, n ¼ 1 to 4 in Table 1, it is seen that the natural frequency in the stiff plane is
slightly greater than in the flexible plane, as one would expect; this is so for the measured, simulated and
TBT frequencies. However, this is not always the case for frequencies above the cut-off, that is for n45: all
of the TBT, and some of the measured, RUS and ANSYS frequencies are now greater in the flexible plane.
This counter-intuitive feature appears not to have been reported previously. Of course, our definition of
flexible and stiff is based upon the magnitude of the bending stiffness EI and in turn the second moment of
area, I, in the two planes. This is consistent with the Euler–Bernoulli frequency predictions
f EB ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p .
2pð Þ, with kL ¼ 4.7300, 7.8532, etc. for free–free end conditions, and TBT regarded

as an improvement for these predominantly bending frequencies. On the other hand, the second moment of
area also appears in the denominator of the expression for the (pure shear) cut-off frequency
f co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAG=rI

p .
2pð Þ; in turn, the cut-off frequency is greater in the more flexible plane, and vice versa.

The dichotomy arises because the second moment of area is a measure of both bending stiffness and
rotatory inertia: a large value increases predominantly bending frequencies but decreases predominantly
shear frequencies. T his suggests that all TBT modes of vibration above the cut-off frequency are
dominated by shear, while the measured and simulated frequencies are consistent with some predominantly
shear and some predominantly bending modes.
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2.
 The 16 natural frequencies listed in Table 1 are those for which the ANSYS animations confirm the flexural
nature of the mode; not shown are a further 11 natural frequencies within the frequency range covered in
Table 1. Five of these are torsional, three extensional (or longitudinal), and two are for warping modes. One
of the warping modes is evanescent, and is characterised by large axial displacements (reminiscent of that
produced by a bi-moment) at the ends of the beam, which decay rapidly in magnitude as one moves toward
the centre; its frequency is 165 450Hz, which is greater than the two cut-off frequencies of TBT. One mode
has displacements that are largely independent of the axial coordinate, with a shearing (lozenging) of the
near-square cross-section into a diamond. None of the mode shapes bears any resemblance to the thickness-
shear (independent of axial coordinate) mode, which is the TBT cut-off mode. Indeed it may be shown that
free–free end conditions for TBT (zero shearing force and moment) are not consistent with the thickness-
shear mode, which has a finite shearing force that does not vary along the length of the beam. Moreover,
the exact linear elastodynamic theory requires zero traction on both the surface generators and the ends of
the beam, and the thickness-shear mode [11] satisfies only the former; thus one should not expect the
ANSYS simulations to show such a mode for free–free end conditions.
3.
 ANSYS predictions are not shown for frequencies greater than 200 kHz, as it becomes increasingly difficult
to justify describing any of the abundance of vibration modes as bending or flexural, at least from the
ANSYS animations. In turn, it is reasonable to question whether the measured frequencies are indeed truly
flexural in their character. The procedure adopted to discriminate flexural modes involved the axial rotation
of the specimen beam within the carbon-fibre loops; flexural modes were identified as those for which the
intensity of the resonance changed from the stiff to the more flexible plane, and vice versa. However, this
becomes increasingly difficult for the higher modes, and the measured frequencies are labelled only for
nr8.

Last, the authors accept that the present investigation is limited in its scope, and would encourage other
researchers to conduct similar investigations so that a definitive view on the valid range of Timoshenko beam
theory can be agreed; to this end, the ANSYS and MATLAB files are available from the corresponding author
for scrutiny, and possible development.
4. Conclusions

A comparison has been made of the natural frequencies of bending vibration of a short free–free aluminium
alloy beam, in order to test the valid frequency range of Timoshenko beam theory (TBT). Below the cut-off
frequency, there is excellent agreement between the measured frequencies, and those predicted by TBT, finite
element analysis (ANSYS) and a resonant ultrasound spectroscopy (RUS) technique. Above the cut-off
frequency, there continues to be good agreement between the measured and simulated (ANSYS and RUS)
frequencies, but the TBT predictions becomes increasing inaccurate. This is consistent with Hutchinson’s
conclusion [7] that ‘‘The cut-off frequency y appears to be a reasonable choice for an upper bound y on the
Timoshenko solution.’’ On the other hand, Stephen [2] has shown that first spectrum TBT predictions for a
hinged–hinged beam are very accurate at frequencies well in excess of the cut-off frequency, while second
spectrum predictions are accurate only at long wavelengths and, in general, should be disregarded. From the
present work, it is concluded that TBT frequency predictions above the cut-off frequency should be
disregarded as unreliable for all those end conditions for which the transcendental frequency equation does
not factorise, as second spectrum contributions cannot be isolated and then disregarded.
References

[1] M. Levinson, D.W. Cooke, On the two frequency spectra of Timoshenko beams, Journal of Sound and Vibration 84 (1982) 319–326.

[2] N.G. Stephen, The second spectrum of Timoshenko beam theory—Further assessment, Journal of Sound and Vibration 292 (2006)

372–389.

[3] K.T. Chan, X.Q. Wang, R.M.C. So, S.R. Reid, Superposed standing waves in a Timoshenko beam, Proceedings of the Royal Society

A 458 (2002) 83–108.



ARTICLE IN PRESS
N.G. Stephen, S. Puchegger / Journal of Sound and Vibration 297 (2006) 1082–1087 1087
[4] R.A. Méndez-Sánchez, A. Morales, J. Flores, Experimental check on the accuracy of Timoshenko’s beam theory, Journal of Sound

and Vibration 279 (2005) 508–512.

[5] R.D. Mindlin, Influence of rotatory inertia and shear on the flexural motions of isotropic elastic plates, Journal of Applied Mechanics.

18 (1951) 31–38 (ASME Transactions vol. 73)

[6] N.G. Stephen, The second frequency spectrum of Timoshenko beams, Journal of Sound and Vibration 80 (1982) 578–582.

[7] J.R. Hutchinson, Transverse vibrations of beams, exact versus approximate solutions, Journal of Applied Mechanics 48 (1981)

923–928.

[8] H.H. Demarest, Cube-resonance method to determine the elastic constants of solids, Journal of the Acoustical Society of America 49

(1971) 768–775.

[9] R.G. Leisure, F.A. Willis, Resonant ultrasound spectroscopy, Journal of Physics: Condensed Matter 9 (1997) 6001–6029.

[10] W. Lins, G. Kaindl, H. Peterlik, K. Kromp, A novel resonant beam technique to determine the elastic moduli in dependence on

orientation and temperature up to 2000 1C, Review of Scientific Instruments 70 (1999) 3052–3058.

[11] R.D. Mindlin, H. Deresiewicz, Timoshenko’s shear coefficient for flexural vibration of beams, Proceedings of the Second U.S.

National Congress of Applied Mechanics, Vol. 4, 1954, pp. 175–178.


	On the valid frequency range of Timoshenko beam theory
	Introduction
	Specimen measurements, finite element analysis, and TBT predictions
	Results and discussion
	Conclusions
	References


