S

\\\\\\\ Institute of

= Oceanographic Sciences

—

—— Deacon Laboratory

INTERNAL DOCUMENT No. 319

The main runs and datasets of the
Fine Resolution Antarctic Model Project
(FRAM) Part III: The data extraction routines

T Hateley & B de Cuevas
1992

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 319

The main runs and datasets of the
Fine Resolution Antarctic Model Project
(FRAM) Part III: The data extraction routines

T Hateley & B de Cuevas
1992

Wormley

Godalming

Surrey GU8 5UB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
HATELEY, T. and dE CUEVAS, B.A. DATE 1992

TITLE
The main runs and datasets of the Fine Resolution Antarctic Model Project (FRAM).
PartIII : The data extraction routines.

REFERENCE
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 319, 61pp.

(Unpublished manuscript)

ABSTRACT

The output of the Fine Resolution Antarctic Model was stored at regular intervals during
the model run and is available to researchers. This document describes the software

interface developed to allow user access to the data for analysis and display purposes.

KEYWORDS
NUMERICAL MODELLING
PROJECT - FRAM

[SSUING ORGANISATION

Institute of Oceanographic Sciences
Deacon Laboratory
Wormiey, Godalming

Surrey GUS8 5UB. UK. Telephone Wormley (0428) 684141
Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Copies of this report are available from: The Library, PRICE

INTRODUCTION

DESCRIPTION OF THE ARCHIVE DATASET

THE EXTRACT PROGRAM

3.1 Introduction

3.2 Installation of the program
3.3 Input file

3.4 Output file

3.8 Running the program

FRAM USER INTERFACE SUBROUTINES

4.1 Introduction

4.2 Description of the subroutines
4.2.1 High level routine
4.2.2 Medium level routines
4.2.3 Low level routine

4.2.4 Input and output routines

4.3 Model depth array
4.4 COMMON blocks and variables

REFERENCES

APPENDICES

Appendix I Fortran listing of the Extract program

Program EXTRACT
Setup routines used by program EXTRACT

AppendixII Fortran listings of FRAM user interface subroutines

Page

W 0w o N =

11

11
11
11
12
185
16
17
17

21

22 - 61

22

22
31

36

1. INTRODUCTION

The Fine Resoclution Antarctic Model Project (FRAM) is a Community Research Project of
the UK National Environmental Research Council, designed to set up, run and analyse the
results of a fine resolution primitive equation model of the Southern Ocean (The FRAM group,
1891). It forms part of the UK contribution to the World Ocean Circulation Experiment. The
model output was stored at regular intervals during the run and is available to researchers. This
document gives the basic information required to use the data. Section 2 gives a description of
the contents of the archive datasets. Section 3 describes the software interface developed to
allow user access to the plotting programs developed at IOSDL to display the FRAM data. These
programs are supplied with the data. Section 4 describes the subroutines which provide a user
interface to the data for extraction and analysis purposes. Listings of the subroutines are given

in the Appendices.

2. DESCRIPTION OF THE ARCHIVE DATASET

The FRAM archive datasets are stored on exabyte tapes at IOSDL and will shortly be
available from the British Oceanographic Data Centre (BODC), Bidston. Each dataset contains
data at one timestep in the moedel run.

A single file can be considered as a continuous string of 8-bit bytes. In the standard
format adopted for the FRAM data, this file starts with a header section made up of ASCI
characters, followed by the main dataset written as binary images in the computer's floating
point data format. Integers are transformed to floating point before being archived. The format
used for the exabyte tapes is the 32-bit (4 bytes) IEEE floating point format which is used
imternally by the Sun computers and many other mini-computers (eg. Silicon Graphics).

The information stored in the file is defined in detail in the header, a copy of which

follows:

FRAM Archive dataset. Format 1
Model constants

&PARM
IMT=1722,]MT=221, KM=32, NT=2, LSEG=1, NISLE=3, LBC=2, MSI=2
&END

Arrangement of storage on tape

Variable name Length Description in words
kkhFhhkhhhkhhhhrhkhhdhhhrkhhkhhhhhikhhhhkrhhhkhkhkhhkhhhhhhkhkhdhhhhihkikkdrhhkhkhhkkhkhhhkihhkhkhikx

***% 1, Header et

kkkkkkkkhkkkkikhkkkhhkhhkhkhiokkhhhkhkhhkhhhkdhhhkhhhhkhhhkhkhkkkkhkhhkhkkkhhhhhkkhkhhikhkhrkhkhkkkkkhk
Header 16000 bytes This header as ASCII characters
16000 bytes arranged as 200 lines of 80
characters

kkkkkkhhhkkhkhkkhhhkkhhhkhkhhdihhihhhrrrrnihhkhkhikhkkhhhhkfkhkikdkhhhkkikhrkkhkkhhkhkkhkkhhkkhxkhhrkk

*%% 2 KONTR data *hk

khkkhhhkkhkkhhkhhkhkhhhkhkhhrhhhhkhhhixhhhhihkhhhhhhhkhhhrrrihhdohhrrrrrhhhhrdhhrkhhhkdhihrxihiss

RITT 1 Model timestep (integer converted to floating

point format).

TISEC 1 Time in seconds from start of run.

AREA 1 Area of model ocean.

VOLUME 1 Volume of model ocean.

™ IMT*KMVI*NT Levitus data for open (northern) boundary.

kkxkkdikkkkdhikkhkhkkrkkhkkhkkhkhkhhhkhhhhhhhkhhhkhhhhhkhhrkhhkhhkrhhhhkhhhhhhrhhhrhkhrorrkdhhrirhrs

*kk

**% 3, FIELDS data

kkhkhkhkkhhkhkkhhhkhkhhhkhhkhhhhhhhhkrihkhikhhkhkhhikhikhihkhhkhhhhkhkhhkkkhhhhrhhhhkhikhhkhkhxkhhhksx

%) IMT*MT Stream function at ITT-1.

P IMT*MT Stream function at ITT.

HR IMT*MT Inverse of depth.

PIDB IMT*MT Rate of change of stream function at ITT-1.
PID IMT*IMT Rate of change of stream function at ITT.
USTAR IMT*MT USTAR array used to calculate pressure field.
VSTAR IMT*MT VSTAR array used to calculate pressure field.
PRESS IMT*MT Pressure field.

FINS 2*LSEG*IMT+4*NISLE Indices converted to floating point.

F*hkkkkkhdhkhkkkhhkhkkhkkhkkhkhhhhkhhhhhhhkhhkhhhhkhhhhkhhhhhhrkrhhhkrhhhhhhhhdhhhrhhhhhhrhhhikirs

*** 4 Slabs HxK
R o e s R s e e e e s e e e e S R D e R T S T s P S S S T T L v e bt 2 e
There follow JMT Slabs each of which contain, in order, for the Jth row.

T IMT*KMV*NT Tracer fields for the Jth slab.

u IMT*KM U velocity for the Jth slab.

Vv IMT*KM V velocity for the Jth slab.

KkkkEkkkxkkhkkkkkrkkkhkhkhkikhkhhhkhhhkhkhkhhhkhkhhhkhhhhkihhhhhkhhhhkhhhkhhhhhhhhkhhhkhhkhkhhhrkkkkkk

Sea-ice arrays included if MSI = 2 *kk
dekokkkkkkkkkkkkkkkkkkkkkdkkkkhkkkkkkkkkkkkhkkhkkkkhkhkkhikkkhkkhhhkhkkihkkrrxkkkkhkikkikkk
RNICE MmT Number of ice levels converted to floating point.
SNQICE IMT*QVISI+6) Sea-ice array.

khkkhkkhhkhhkhkhhkkhkhkhkhkhkhkhhkhhhhkhhhkhhhhhkkhhhkhkkhkkhhhkkkhkhhhkhkkkhkdkhkhkhhhhhkkhkkhhkhihkkkiik

*** End of sea ice arrays X

kkkdokkkhkhkkkdhkkikkhkkkkikkhkkkkhkkkihkkhkkkhhihhhdkhkkhhkihdkkkhhhhihkhkhkhhkhhkhkkkrkkkkikkkk

FKMT MT KMT array converted to floating point.

WSX MT Wind stress in the x-direction.
*khkhkhkhhkkhhhhhkhhkhhhkhhhkhhkhhkhhhhhkhhhhhhhhhhhhhhhhhhhhbhhhhhhirhhhbhhhkhbhhhhhhhhhihkhkhhhiihik
*** For the [MT-2 and JMT-1 rows the following data is included for the open boundary FEF

*** conditions. Fokk

KhEhkkkkkhkkhkkkhkhkkihhrhkhkhkhkhhhrhkkhhhhhhhhkhkhhkkbhkihhkhhkhkhkkikhrhhkkhhhhhkhkkikkikkikk

B IMT*KM*NT Tracer fields for ITT-1.

UB IMT*KM U velocity for ITT-1.

VB MT*KM V velocity for ITT-1.
dkkdokkkhkkkhkkkkikkkkhkkrhkkkhkkhkkkkhkhhhkhkhkhikhkkhkhkhkkkhkhhkhkhkhkhkhkhhkkhhkhkkhhkhkhrkkhrkkkikkik
*** End of additional data for]MT-2 and JMT-1 ok x
dkkkkkkkikkkhhkhkkhkhkkkhkhhkhkhhkhhkhhkhhkhkkhkhhhhhhkhhkkhhkhkhhhhkhkhkhhkhkkhhkhhikhhkhkhrhkhkkkihrkhhkikk
FKMU MT KMU array converted to floating point.

WSY MT Wind stress in the y-direction.

kkkkkkkhkhhkhhhhkhkhkhhkkhhkhkkdkkkkhhhkkkkhkhihhkkkkhkkhhhkhkhkkkhihkhhkhhkhkhkkhhhkhkhhkkhis

*** End of slab data ok

o g e e s R R S S e S S e e S S e T e S e e et e P T e R e e T e e e S e e e T T L T e e e et

In the header, the length shown for each array also indicates how that array is stored.
Thus if the length of array A is shown as IMT*KM then the array will be stored as A(IMT, KM). If
the archive dataset contains space for the arrays for the sea ice model, the parameter MSI will
have a value of 2, otherwise it will have a value of 0. If the model is stopped at an odd timestep,
the position of the arrays FKMT, WSX and FKMU, WSY in the archive dataset will be exchanged.
However, in practice this did not occur.

The USTAR, VSTAR and PRESS arrays will be zero everywhere if unset. The USTAR and
VSTAR arrays were calculated after day 3256 (8 years 11 months) of the model run. As is usual
with the Cox model, the u and v velocity fields stored in the archive data are the baroclinic part

of the full velocity field. The barotropic velocity may be obtained from the stream function and

added to the baroclinic velocity to give the full horizontal velocity. Temperature refers to
potential temperature in the model data and throughout this document.

The Exabyte driver software at Rutherford Appleton Laboratory requires the data to be
packed in 16000 byte blocks. The last block is therefore padded with a dummy array of zeros.

3. THE EXTRACT PROGRAM
3.1 Introduction

The program, extract.f, has been written to provide a simple user interface to the data.
Using the prograr, horizontal or vertical (north-south or east-west) sections can be extracted
from the archive dataset in a form that can then be plotted by the FRAM plotting programs. The
horizontal sections 10 be extracted are referenced by the level number from the model. The
vertical sections are referenced by their longitude (+°E) or latitude value (+°8S).

The program creates an output file which consists of a header, describing the data in
the file, followed by 'ASCOUT' encoded data. Each output file may contain data for several
sections. The output file is created in the current or working directory.

The program was written in Fortran 77 on a Sun 4 workstation under the UNIX operating
system. It assumes that the dataset has first been copied te disk. The approximate size of the
disk file is 96 Mbytes. A full listing of the program is given in Appendix I

3.2 Installation of the program

The source cede for the program should be copied to sub-directory src of directory
fram extract. The compiled program will be placed in sub-directory bin.

Change directory to fram_extract/src. ,

In the file extract.t, set the variable DEFDIR to the absolute pathname of the default
directory to contain the FRAM datasets.

Type
make

followed by

make clean

These commands will compile the program and remove temporary files generated
during cormpilation.
Then to your .login file, add the line:

setenv FRAM_EXTRACT "[name of directory containg fram_extract]"
and to your .cshrc file, add the line:
alias extract 'SFRAM_EXTRACT/fram exiract/bin/extract’

After you next login, this will enable the program 'extract’ to be num from any directory,

creating the output files in the current (working) directory.

3.3 Input file

When the program is run it asks for the name of an input file containing the FRAM

archive data. The naming convention adopted for the FRAM archive datasets is xyyyy.data,

where:
x = r for the main model run
s for the repeat run with sea ice and full surface forcing
yyyy = model day number of archive dataset.

3.4 Output file

The program creates an cutput file name. The naming convention adopted for this file is
xyyyy.cards, where:

b = - salinity at constant latitude (longitude vs depth slices)
- salinity at constant longitude (latitude vs depth slices)
- salinity at constant depth (longitude vs latitude slices)

- temperature at constant latitude

a
b

c

d

e - temperature at constant longitude
[-temperature at constant depth

g - u-velocity at constant lafitude

h - u-velocity at constant longitude

- u-velocity at constant depth

L

- v-velocity at constant latitude

~—,

k - v-velocity at constant longitude
1 -v-velocity at constant depth

m - USTAR field

n - VSTAR field

o -pressure field

p - stream function

s -ice fraction (ie. % area of grid box covered by ice)
t - ice thickness
yyyy = model day number of archive dataset (same as input file).

Note: Each file may contain one or more slabs of data of the same type.

Example: fc2191.cards contains horizontal slabs of salinity from the end of 6 years (day 2191).

3.8 Running the program

On entry to the program, the user is prompted for the name of the input FRAM archive
dataset and the type of data to be exiracted. An output filename is created and the output
stream is initialised. A header is written to the output file describing the data the file will
contain. This information is needed by the FRAM plotting routines.

The user is prompted for the field variable (TRAC) and the type of section required
(DEPVAR). The program then reads in the appropriate masking array from the archive dataset.
The masking array contains information about the location of land and submerged land. Data is
then extracted, transformed if necessary, and masked. The transformations are:

Salinity: output salinity = model salinity * 1000 + 35.

Velocity: output velocity = baroclinic velocity (from the slabs) + barotropic

velocity (from the stream function).
The data are converted to 'ASCOUT" format, in which each number is represented by 2 t0 8
ASCII characters, and sent to the output file.

An example of the use of the extract program is given below. Prompits from the

program are in italics, and bold typeface is used to denote user input in the correct format. The

character # is used to enclose comments.

To run extract:

extract

FRAM Data Extraction Program

Directory [<CR> to select default directory /data/framib/data |

Enter name of input data file : fr2191.data

Input file = /data/framlb/data/fr2191.data

-10-

TRAC
Stream Function
USTAR
VSTAR
Pressure
Temperature
Salinity
U Velocity
V Velocity

© o N D G oA W b~

Ice Fraction
Ice Thickness

—
o

Enter number of field required: 5

Note: If the field is 1 - 4 the output file name will be displayed on the screen and the data will
be extracted. The following is an example of the procedure for obtaining a tracer or velocity

section from the slabs. #

DEPVAR
1. Vertical Section (E/W) - constant latitude
2. Vertical Section (N/S) - constant longitude

3. Horizontal Section - constant depth
Note: For E-W sections the latitude value (OS) is converted to the correct I value
and for N-S sections the longitude value (toE) is converted to the correct] value.

Enter number of field required 1

No of slabs (MAX=8):1

Slab 1. Latitude = 70.0

output file = fa2l91.cards

extracting slab 1

Note: A respomnse of 0 to the TRAC or DEPVAR prompts will exit from the program.

-11-

4, USER INTERFACE SUBROUTINES
4.1 Introduction

This section describes the software developed to provide an interface between the FRAM
archive datasets and the researcher. The software is based on routines developed for the NERC
Ocean Moedelling group on the ULCC CRAY. Because of the problems with using the
BACKSPACE command with exabytes tapes and the relative slowness in reading the tapes, the
software assumes that the archive datasets have first been copied to disk.

Data can be accessed from the archive datasets using the high level routine MGSDAT, or
the lower level routines described below. The physical reading of the data is carried out by the
low level routine XREAD.

Certain COMMON blocks must be declared at the beginning of any program written to
access the archive datasets. GRIPAR contains the main model variables (eg. IMT, the mumber of
east-west grid points), and must be set up before calling any of the user routines. PLTTYP must
be set before calling the high level routine MGSDAT. It defines the data which MGSDAT is to
extract. IEBUFF and MGSCCR are used by low level routines. MGSCCR is set by medium level
routines and should be set by user programs calling the low level routine XREAD. TIME and
TSTEP are used by the output routine HEADERZ and should be set up before calling this routine.
(TIME is set by a call to READ4()).

A brief description of the user routines is given in section 4.2. Details of the COMMON
blocks and the definitions and values of the variables in them, are given in the following

section. Complete listings of the routines are in Appendix II.

4.2 Description of the subroutines
4.2.1 Highlevelroutine

This comprises a single call within a program to read 2-dimensional arrays of selected
variables. These can be stream function, pressure and the other 2-dimensional model arrays or
latitude, longitude or depth slices of the 3-dimensional tracer or velocity fields. Before calling
the routine, the variables in COMMON blocks GRIPAR and PLTTYP must be set correctly.

SUBROUTINE MGSDAT(A, B, C, HR, ZDZ)

ZDZ KM) - on entry, this contains the ZDZ array as defined in the Cox model (vertical
position of bottom of levels).

A(IMT, JMT) - on exit, array for model data

-12-

B (T, MT) - on exit, array for model data
C (IMT, JMT) - on exit, stream function data
HRIMT,MT) - on exit, this contains the reciprocal of total depth at U,V points

The actions carried out by the routine depend on the values set for the variables IDIR,
ITYP and INDEX in COMMON block PLTTYP. ITYP specifies the field required and IDIR the
orientation of the section. IDIR is only valid for ITYP =1 or 2.

ITYP= 0 subroutine reads the stream function into array C . IDIR should equél 0.
1 subroutine reads U into A, V into B, the stream function into C. and the reciprocal
depth field into HR
subroutine reads temperature into A and salinity into B.
subroutine reads USTAR into A and VSTAR into B.
subroutine reads a horizontal section of data from depth level INDEX

O W N

subroutine reads an east-west section of data from row INDEX. The fields are stored
in AMMT,KM) and B(IMT KM).
2 subroutine reads a north-south section of data from colum INDEX. The fields are
stored in A(JMT KM) and BJMT,KM).
INDEX defines the level, row or column required.

o

4.2.2 Medium level routines

These are designed for moving round and reading in parts of the full archive dataset in
an efficient manner. For example, to calculate the velocity field on density surfaces, one might
first call the routine to read the stream function and then move systematically through the slab
fields reading the required temperature, salinity and velocity data, calculating the density and
interpolating the velocity field in the process. By reading through the full dataset only once
,during even the most complex calculations, programs using these routines can be more
efficient than programs which only use calls to the high level subroutine MGSDAT.

The routines need the integer constants in COMMON block GRIPAR to be set before they
are called. A number of them modify the position of the pointer MWORD which points to the

next word to be read from the file.

SUBROUTINE READ4())

This must only be called immediately after opening the archive dataset. It reads the variables
RITT, TTSEC, AREA, VOLUME from the dataset and puts ITT (integer value of RITT) into
COMMON block PLTTYP and TTSEC into COMMON block TIME.

-13-

SUBROUTINE MGSADV(ISECT)
This moves the pointer MWORD to the beginning of the section of data defined by ISECT:
ISECT = 1 -startofheader |

2 - variable RITT (ITT in floating point format)

3 - start of stream function

4 - start of HR array

5 - start of USTAR, VSTAR arrays

8 - start of PRESS array

1 - start of slabs.

SUBROUTINE MGSRDS(C)
This moves the pointer MWORD to, and reads, the stream hunction.

C (OVT, IMT) - array for data.

SUBROUTINE MGSRDH(HR)
This moves the pointer MWORD to, and reads, the HR array.
HR(MT,]MT) - array for data.

SUBROUTINE MGSRDP(A)
This moves the pointer MWORD 1o, and reads, the pressure array.
A(IMT,]MT) - array for data.

SUBROUTINE MGSRDU(A, B)
This moves the pointer MWORD to, and reads, the USTAR and VSTAR arrays.
A(IMT,]MT) - array for USTAR data
B(IMT, JMT) - array for VSTAR data.

SUBROUTINE MGFKMI (FKMP)
This reads the masking array for tracer points.
FKMP(IMT, IMT) - array for masking data.

SUBROUTINE MGFKM2(FKMQ)
This reads the masking array for velocity points.
FKMQ@MT, IMT) - array for masking data.

-1l4-

SUBROUTINE MGSRDO(A,)

This reads the data, for the surface level, from one of the 1-dimensional (IMT) sea-ice model sub-
arrays (ie. ice fraction, ice thickness) in the current slab and places it into row J of the array
AMT,]MT). On entry MWORD should point to the first word of the sub-array, on exit it points to
the first word of the next sub-array. \

A - array for data

J - Jth slab.

SUBROUTINE MGSRD1 (A,], INDEX)

This reads the data for level INDEX, from one of the 2-dimensional IMT*KM) sub-arrays in the
current slab (ie. T, U or V) and places it into row] of the array A@MT,]MT). On entry MWORD
should point to the first word of the sub-array, on exit it points to the first word of the next sub-
array. By looping through the full set of slabs, this routine can be used to build up a horizontal
section at depth level INDEX.

A - array for data

J-Jthslab

INDEX - level

SUBROUTINE MGSRD2(A)

This reads a complete 2-dimensional (IMT, KM) sub-array from the current slab into AIMT, KM).
On entry MWORD should point to the first word of one of the 2-dimensional sub-arrays in the
current slab. On exit it points to the first word of the next sub-array.

A - array for data.

SUBROUTINE MGSRD3(A,],)

This reads the data for column I from one of the 2-dimensional (IMT, KM) sub-arrays in the
current slab and places it mto colummm] of array A(MT, KM). On entry MWORD should point to
the first word of the sub-array. On exit it points to the first word of the next sub-array. By
looping through the full set of slabs, this routine can be used to build up a north-south section.
A - array for data

J - Jth slab

I - Ith column.

SUBROUTINE MGSRDF(A, J)

This reads the data for one of the 1-dimensional (IMT) sub-arrays from the current slab and
places it into row] of the array A(IMT, JMT). On entry MWORD should point to the first word of
the sub-array. On exit it points to the first word of the next sub-array.

-15-

A - array for data
] - Jth slab.

SUBROUTINE MGSSK1(X)
This skips over K 2-dimensional (IMT, KM) sub-arrays, ie. K*IMT*KM words.

X - integer.

SUBROUTINE MGSSK2(XK)
This skips over X 1-dimensional (IMT) sub-arrays, ie. K*IMT words.

X - nteger.

SUBRQUTINE MGSDZZ({DZ, DZZ, ZDZ, 7ZDZ7)

This is a useful routine which calculates the depth arrays DZZ, ZDZ and ZDZZ from the DZ array.
Array ZDZ needs to be set up correctly for use by routines which calculate the barotropic
veloctty.

DZ (KM) - array of level thicknesses

DZZKM+1) - vertical grid spacing between T, U,V points

ZDZEKM) - vertical positicn of bottom of levels

ZDZZ KM+1) - vertical position of T,U,V grid points.

4.2.3 Lowlevel routine

This is the basic low level reading routine which is used by all the above high and

medium level routines. It will usually not be called by a user's program.

SUBROUTINE XREAD(A, M, N, IFAIL)
This routine reads in N words of data and places them into array A. The pointer M is then

increased by N.

A - array for data
M - starting point of data (words)
N - number of words of data to be read in

IFAIL - refurns non-zero if subroutine fails.

-16-

4.2.4 Input and output routines

These routines open the input and output files and write the header and data to the -

output file.

SUBROUTINE INSTR(NUNIT, DIRN, INFIL, IFATL)

This opens the input file as an unformatted, direct access file with a block size of 16000 bytes. It
also initializes the pointers used by XREAD.

NUNIT - input stream

DIRN - directory containing the input data files
INFIL - name of input file
IFAIL - returns non-zero if subroutine fails.

SUBROUTINE QUTSTRINUNIT, OUTFLL, IFALL)

This opens an output file and associates it with fortran stream NUNIT.
NUNIT - output stream

OUTFIL - output filename

IFAIL - retums non-zero if subroutine fails.

SUBROUTINE OFILEN(TRAC, DEPVAR, OUTFL, IFAIL)
This creates the output filename according to field variable TRAC and orientation variable
DEPVAR, following the convention described in section 3.4.
TRAC -1. Stream Function

2. USTAR
3. VSTAR
4, Pressure
5. TempTerature
6. Salinity
7. U Velocity
8. V Velocity
8. Ice Fraction

10. Ice Thickness
DEPVAR - 1. East-west vertical section

2. North-south vertical section

3. Horizontal section

-17-

OUTFIL - output filename
FAIL - returns non-zero if subroutine fails.

SUBROUTINE HEADER2(NUNIT, TRAC, DEPVAR, 'CD', NAMRUN)
This routine writes the header on the output file.

NUNIT - output stream

TRAC - field variable (as above)

DEPVAR - orientation variable (as above)

‘CD' - format

NAMRUN - comment line in header of output file.

SUBROUTINE ASCOUT(ARRAY, IDIV, ID, D, VMASK, NCHAR, NOUT)
This will encode a section of an array as sets of NCHAR' printable characters, and write as a

formatted card-image dump (using ASCII characters 0-9;A-Z; a-z; (); ..).

ARRAY - contains the data to be encoded

DM - declared first dimension of 2-dimensional array, ARRAY
D - actual first dimension of data in ARRAY

jin} - actual second dimension of data in ARRAY

VMASK - array containing the 4 masking values
NCHAR - number of characters encoding each data point (2-5)
NUNIT - output strearm.

4.3 Model depth array

The thicknesses of the model levels are stored in the DZ array, which is used to calculate
all the depth parameters calculated by subroutine MGSDZZ. The thicknesses (cms) of the 32
levels used in FRAM are given by the following DATA stafement:
DATADZ /20.7E2 233E2, 265E2 31.0E2 37.3E2 46.7TE2, 61.6 EZ 8509 EZ,
121. E2, 156. E2, 180.EZ2, 188. E2, 205. E2, 211. E2, 215. EZ, 218. EZ,
221. E2, 223. E2, 225. E2, 226. E2, 227. E2, 228. E2, 229. E2, 230. E2,
230. E2, 231. E2, 231. E2, 232. E2, 232. E2, 233. E2, 233. E2, 233. E2 /

4.4 COMMON blocks and variables

The following COMMON blocks must be declared at the beginning of any user program.

COMMON /GRIPAR/ PSIDEG, DXDEG, PHIDEG, DYDEG, IMT,]MT, KM, NT, LSEG, NISLE,

-18-

LCYC, IBC, MSI
COMMON /PLTTYP/ IDIR, ITYP, INDEX, ITT, DIM
COMMON /IEBUFF/ IEBUF(4000), LBUFF, MBUFF, IUNIT, OUNIT
COMMON /MGSCCR/ MWORD
COMMON /TSTEP/ NDFIR, NDLAS, NDINC
COMMON /TIME/ TTSEC
COMMON /LVALS/ TSLAR(8), IN

The variables in COMMON block GRIPAR are set at the beginning of the program. Their
definitions and values in the FRAM archive datasets are given inn the following table:

Variable Value Definition

PSIDEG -0.5 The longitude (+ east) of the western boundary of the model.

DXDEG 0.5 The east-west grid spacing of the model.

PHIDEG -79.0 The latitude (+ north) of the southern wall of the model.

DYDEG 0.25 The north-south grid spacing of the model.

MT 122 The number of grid points in the east-west direction.

T 221 The number of grid points in the north-south direction.

KM 32 The number of vertical levels in the model.

NT 2 The number of tracer variables (temperature and salinity).

LSEG 7 The maximum number of sets of start and end indices for
vorticity.

NISLE 3 The number of islands.

LCYC 1 Non-zero for cyclic east-west boundary conditions.

1BC 2 The number of one dimensional arrays stored with each model

slab (excluding sea ice arrays).
MSI Qorza The maximum nurnber of ice layers in the sea ice model

Equal to 0 if no sea ice arrays are present.

The variables n COMMON block PLTTYP are used in subroutine MGSDAT. They must be
set in the user program. (ITT may be set by a call to READ4 immediately after opening the

archive dataset.)

Variable Definition

ITYP= 0 subroutine reads the stream function
1 subroutine reads U, V and the stream function.

-19-

subroutine reads tracers.

3 subroutine reads USTAR and VSTAR .
DR = 0 subroutine reads a horizontal section of data from depth level INDEX
1 subroutine reads an east-west section of data from row INDEX
2 subroutine reads a north-south section of data from colum INDEX.
INDEX Constant I,] or K value of slab to be extracted.
T Model timestep.
DM Declared I-dimension of array sent to subroutine ASCOUT. (IMT for E-W sections

and horizontal slabs, MT for N-S sections).

The variables in COMMON block IEBUFF are set in subroutines INSTR, OUTSTR and used
in subroutine XREAD. They normally need not be set by the user.

Vanable Definition

[EBUF(4000) Input buffer for 32-bit word mput data.

LBUFF Position in the input file of the first element of the current buffer.
MBUFF Length of buffer (MBUFF = 4000).

IUNIT | Input stream.

OUNIT Output stream.

The variable in COMMON block MGSCCR is modified in a number of subroutines. It

normally need not be set by the user.

Vanable Defintion

MWORD Pointer to the next word 1o be read from the file..

The variables in COMMON block TSTEP are used in subroutine HEADERZ. If this is to
be called, they should be set up by the user main program. In the FRAM archive datasets,
NDLAS always equals NDFIR (=ITT) and NDINC is zero. This is because ornly one timestep is

stored in each dataset.

Variable Definition
NDFIR Timestep of first slab in output file.
NDLAS Timestep of last slab in output file.

NDINC Incremental timestep between slabs in output file.

-20 -

The variable in COMMON block TIME is set in subroutine READ4 and used in subroutine
OFILEN.

Vanable Definition

TTSEC Total elapsed time of model run in seconds.

-21-

REFERENCES

THE FRAM GROUP (WEBB, DJ. et al) 1991 An eddy-resolving model of the Southern Ocean.
EOS, Transactions of the American Ceophysical Union. Vol 72 (15), 169-174.

- 22 -

APPENDIX I FORTRAN LISTINGS OF THE EXTRACT PROGRAM

aaaaaaaoaaaaQ

PROGRAM EXTRACT

Program to create a ‘cutout’ file of one of the output fields of
the Fine Resolution Model, using a compressed data set.

Version 4.0 12/05/92 T. Hateley, IOSDL.

DEFDIR - default directory for the input data files
DIRN - directory used to open input file

INFIL - full input filename (including directory name)
OUTFLL - ocutput filename

COMMON /IEBUFF/IEBUF(4000), LBUFF, MBUEF, IUNIT, OUNIT

COMMON /PLTTYP/IDIR ITYP,INDEX, ITT,IDIM

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /TSTEP/ NDFIR,NDLAS NDINC

COMMON /TIME/ TTSEC

DIMENSION FKMP(722, 221), FKMQ(722,221)

INTEGER VALS(8)

REAL LAT(8), LONG(8)

COMMON /LVALS/ TSLAB(8), IN

DIMENSION A(722,221), B(722,221), C(722,221), HR(722,221)

DIMENSION DZ(32), DZZ(33), ZDZ(32), ZDZZ(33)

CHARACTER NAMRUN*50

CHARACTER*9 DEPVAR

CHARACTER*15 TRAC

CHARACTER*512 DEFDIR

CHARACTER*512 DIRN

CHARACTER*1024 INFIL

CHARACTER*12 OUTFIL

REAL TDEP(722, 221), TLONG(221,32)

REAL VMASK(4)

REAL SLARR(722, 221)

DATA VMASK/10.E5,11.E5,12.E5,13.E5/

EXTERNAL SSQUAR

RADIUS = 6370.ES
RADIAN = 57.29578

PSIDEG = -0.5
PHIDEG = -79.0
DXDEG = 0.5
DYDEG = 0.25
IMT = 722

MT = 221

QQQ QQQ QQQ QQQ QQQ

QaaQ

KM =32

NT = 2

LSEG = 17

NISLE = 3

LBC = 2

MsSI = 2

IMTMI = IMT- 1

JMTML = JMT- 1

IMTM2 = IMT - 2

JMTM2 = JMT - 2

DATA DZ / 20.7 E2,
& 46.7 E2,
& 180. E2,
& 219. E2,
& 227. E2,
& 231. E2,
& 233. E2,

_23-

23.3 E2, 26.58E2, 31.0E2 37.3E2,

61.6 E2, 85.8E2, 121.E2, 186. E3,
195. E2, 205. E2, 211.E2, 215. E2,
221. E2, 223. E2, 228. E2, 226. E2,
228. E2, 229.E2, 230. E2, 230. EZ,
231. E2, 232. E2, 232.E2, 233.E2,
233. E2 /

default directory containing the input data files

DEFDIR = '/data/fram3a/data’

PRINT *, ™

PRINT *, "FRAM Data Extraction Programme.”

PRINT *, "======ooososooomoms=cs=oo=ooo====" PRINT * ™

set the input file directory

CALL SETDIR(DEFDIR, DIRN)

initialise the input stream

CALL INSTR(20, DIRN, INFIL, [FATL)

read the first 4 variables from the input file (INFIL)

CALL READ4()

choose type of slices required

CALL SETUP(TRAC, DEPVAR, NAMRUN)

set output filename

CALL OFILEN(TRAC, DEPVAR, OUTFIL, IFAIL)

initialise the output stream

CALL QUTSTR(18, OUTFIL, [FALL)

Qa0

QaQ aQQaQ

QQaaQ

QQQ

QaQ

10

24 -

NDFIR =ITT
NDLAS = 1000000

set DTTS and NDINC from ITT

IF dTT LE. 19440 .OR. (ITT .GT. 28296 .AND. ITT .LE. 32688))THEN

NDINC = 720

DTTS = 1200
ELSE

NDINC = 360

DTTS = 2400
ENDIF

set level depths arrays

CALLMGSDZZ (DZ, D27, ZDZ, ZDZZ)

write header for ascout cutout file

CALL HEADERZ2(18, TRAC, DEPVAR, 'CD', NAMRUN)
read in masking array

IF (TRAC(1:3) .EQ. 'STR') THEN
CALL MGSRDH(HR)

ELSE IF (TRAC(1:3) .EQ. 'TEM' .OR, TRAC(1:3) .EQ. 'SAL') THEN
CALL MGFKM]1 (FKMP)

ELSE IF (TRAC(1:3) .EQ. 'U V' .OR. TRAC(1:3) .EQ. 'V V' .OR.

& TRAC(1:3) .EQ. ICE") THEN

CALL MCFKM2 (FKMQ)
ENDIF

extract Stream Function, Pressure, USTAR, VSTAR
IF (TRAC(1:3) EQ. 'STR') THEN
extract stream function

WRITE (18, 900) ' '
CALL MGSDAT(A, B, C, HR, ZDZ)
SCL = 1. E12
DO 101 =2, IMTML1
DO 10] = 2, JMT
SLARR(- 1,]- 1) = C() / SCL
IF (HRQ ,]) LT. 1. E-9) .AND.
(HR(-1,]) LT. 1. E-9) .AND.
(HRA |, J-1) LT. 1. E-9) .AND.
(HR@-1, J-1) LT. 1. E-9)) THEN
SLARR (I-1, J-1) = VMASK(1)
ENDIF
CONTINUE
WRITE(18, 910) TTSEC, DTTS

R o o

ONONON®! QaaaQ QQQ QaQ

ONONONON]

QQaQ

20

- 25 -

CALL ASCOUT(SLARR, IMT, IMTM2,]MTM1, VMASK, 2, 18)
GOTO 999
ELSE IF (TRAC(1:3) .EQ. 'UST") THEN

extract USTAR array

WRITE (18, 900) ' *
CALL MGSDAT(A, B, C, HR, ZDZ)

WRITE(18, 910) TTSEC, DTTS

CALL ASCOUT(A, IMT, IMTM2, MTM 1, VMASK, 2, 18)
GOTO 999

ELSE IF (TRAC(1:3) .EQ. 'VST") THEN
extract VSTAR array

WRITE (18, 900) '

CALL MGSDAT(A, B, C, HR, ZDZ)

WRITE(18, 910) TTSEC, DTTS

CALL ASCOUT(B, IMT, IMTM2, IMTM1, VMASK, 2, 18)
GOTO 999

ELSE IF (TRAC(1:3) .EQ. 'PRE") THEN
extract PRESSURE array

WRITE (18, 900) * '
CALL MGSDAT(A, B, C, HR, ZDZ)
DO 201 = 2, IMTML
DO 20 = 2, MT
SLARR(I-1, J-1) = A(L,])
CONTINUE
WRITE(18, 910) TTSEC, DTTS
CALL ASCOUT(SLARR, IMT, IMTM2, JMTMI1, VMASK, 2, 18)
GOTO 999
ENDIF

extract Temperature, Salinity, U Velocity, V Velocity
if MSI .ne. 0) Ice Fraction, Ice Thickness

IF (DEPVAR (1:3) .EQ. 'LAT") THEN
extract E/W section along latitude line INDEX
complete header for latitude slice
DO250H =1, IN
convert latitude to] value

LAT(IH) = TSLAB(IH)
VALS(IH) = 4 * (80.0 - LAT(IH)) - 3

QaQaQ

QQaQ

QaaQ

-26-

250 CONTINUE
WRITE (18, 920) LAT@H), IH =1, IN)

IF (TRAC(1:3).EQ.' TEM"ORTRAC(1:3) EQ."SAL")y THEN
DO20H=1IN
PRINT *, 'extracting slab ', IH
INDEX = VALS (IH)

read in the data

CALL MGSDAT(A, B, C, HR, ZDZ)

scale temperature and salinity fields and mask with FKMP array

DO 2201 = 2, IMTM1
DO 220K = 1, KM
IF (INTFKMP(L,INDEX)) .EQ. 0) THEN
SLARR (-1 K) = VMASK(1)
ELSE IF (INT(FKMP(L,INDEX)) .GE. K) THEN
IF (TRAC(1:1) EQ. 'T') THEN
SLARR (I-1 K)=A(LX)
ELSE IF (TRAC(1:1) .EQ. 'S') THEN
SLARR(I-1 X)= B(IX) * 1000
SLARR (I-1, K)=SLARR(-1 K) + 35.
ENDIF
ELSE
SLARR (I-1, K) = VMASK(2)
ENDIF
220 CONTINUE
WRITE (18, 910) TTSEC,DTTS

convert data to ASCOUT format and send to output stream

CALL ASCOUT(SLARR, IMT, IMTMZ2, KM, VMASK, 2, 18)
290 CONTINUE

ELSE IF (TRAC(1:3).EQ.'U V.ORTRAC(1:3). EQ.'V V)THEN
DO30MH=1IN
PRINT *, ‘extracting slab ', IH
INDEX = VALS (IH)

read in the data
CALL MGSDAT(A, B, C, HR, ZDZ)
mask velocity fields with FKMQ array
DO 3201=2, IMIM1
DO 320K =1,KM
IF AINTEKMQ(LINDEX)) .EQ. 0) THEN

SLARR (I-1, X) = VMASK (1)
ELSE IF (INTFKMQ(L, INDEX)) .CE. K) THEN

27 -

IF (TRAC(1:1) .EQ. 'U") THEN
SLARR(I-1, K) = A K)
ELSE IF(TRAC(1:1) EQ. 'V')THEN
SLARR(-1,K) =B K
ENDIF
ELSE
SLARR (I-1, K) = VMASK (2)
ENDIF
320 CONTINUE
WRITE (18, 910) TTSEC,DTTS
C
C convert data to ASCOUT format and send to output stream
cC
CALL ASCOUT(SLARR, IMT, IMTM2, KM, VMASK, 2, 18)
390 CONTINUE

ENDIF

C
ELSE IF(DEPVAR(1:3) .EQ. 'LON") THEN

C
C extract N/S section along longitude line INDEX
C
C complete header for longitude slice
C

DO400H =1, IN
C
C convert longitude to [value
C

LONG(IH) = TSLAB(TH)
VALS(H) = 2.0 * LONG(H) + 2
400 CONTINUE
WRITE (18, 920) (LONG(IH), H = 1, IN)

C
IF (TRAC(1:3).EQ."TEM'OR.TRAC(1:3).EQ.'SAL") THEN
C
DO4S0H=1IN

PRINT *, 'extracting slab ', IH

INDEX = VALS(IH)
C
C read in the data
C

CALL MGSDAT(A, B, C, HR, ZDZ)
C
C scale temperature and salinity fields and mask with FKMP array
C

DO 420] = 2,]MT
DO 420K = 1, KM
IF (INT(FKMP(INDEX.])) .EQ. 0) THEN
TLONG (X) = VMASK(1)
ELSE IF (INT(FKMP(INDEX,])) .GE. K) THEN
JK = K-1)*]MT+]
IF (TRAC(1:1) EQ. 'T') THEN
TLONG (.K) = A (K.1)

-28-

ELSE IF (TRAC(1:1) .EQ. 'S") THEN
TLONG(J.X)=B(K,1)*1000
TLONG(J K)=TLONG({JK)+35.
ENDIF
ELSE
TLONG (JK) = VMASK(2)
ENDIF
420 CONTINUE
DO 440 =2, MT
DO 440K =1 KM
SLARR (-1, K) = TLONG (J, K)
440 CONTINUE
WRITE (18, 910) TTSEC, DTTS
C
C convert data to ASCOUT format and send to output stream
C
CALL ASCOUT(SLARR,IMT,JMTM1 KM,VMASK,2,18)
490 CONTINUE
C
ELSE IF (TRAC(1:3). EQ.'U V.OR.TRAC(1:3).EQ.'V V)THEN
C
DOSBSOH=1IN
PRINT *, 'extracting slab ', [H
INDEX = VALS(IH)

C read in the data
CALL MGSDAT(A, B, C, HR, ZDZ)
C mask velocity fields with FKMQ array

DO 520] = 2,]MTM1
DO 520K = 1, KM
IF (INT(FKMQQNDEX,]) .EQ. 0) THEN
TLONG (JK) = VMASK(1)
ELSE IF (INTFKMQ(INDEX.])) .GE. K)
JK = (K-1)*]MT+] ‘
IF (TRAC(1:1) EQ. 'U") THEN
TLONG(,K)=A(K.1)
ELSE IF (TRAC(L:1) EQ. V') THEN
TLONG(K)=B(K,1)
ENDIF
ELSE
TLONG (JX) = VMASK(2)
ENDIF
520 CONTINUE
DO 540 [=2,]MTM1
DO 540 K=1 KM
SLARR (-1 X) = TLONG (K)
540 CONTINUE
WRITE (18, 910) TTSEC, DTTS

590

Q

ONONONONO]

800

QaQ

620

-29 -

convert data to ASCOUT format and send to output stream

CALL ASCOUT(SLARR,IMT,JMTM2,KM,VMASK, 2,18)
CONTINUE
ENDIF

ELSE IF (DEPVAR(1:3) .EQ. 'DEP") THEN
extract horizontal section at level INDEX
complete header for horizontal slice

IF (TRAC(1:3) .EQ. 'ICE') THEN
WRITE (18, 900) '

ELSE
DO 600 IH = 1, IN

convert level depth to X value

VALS(H) = INT(TSLAB(TH))
CONTINUE
WRITE(18, 930) (VALS(IH), IH = 1, IN)
ENDIF

IF (TRAC(1:3) .EQ. 'TEM' .CR, TRAC(1:3) .EQ. 'SAL") THEN

DO690IH=1,IN
PRINT *, 'extracting slab ', IH
INDEX = VALS(IH)

read in the data
CALL MGSDAT(A, B, C, HR, ZDZ)
scale temperature and salinity fields and mask with FKMP array

DO 620] = 2,]MT
DO 6201 =1, IMT
IF (INT(FKMP(L])) .EQ. 0) THEN
TDEP (I]) = VMASK (1)
ELSE IF (INTEKMP(L])) .GE. INDEX) THEN

IF (TRAC(1:1) .EQ. 'T") THEN
TDEP(L]) = A(L))

ELSE IF (TRAC(1:1) EQ.'S') THEN
TDEP(L,]) = BQL]) * 1000
TDEP(L]) = TDEP(]) + 35

ENDIF

ELSE
TDEP (I]) = VMASK (2)
ENDIF
CONTINUE
DO 640 J= 2,]MT

QQaQ

Q

ONONONS!

640

890

720

740

790

- 30 -

DO 640 I= 2, IMTM1
SLARR(-1,]-1) = TDEP(,])

CONTINUE

WRITE (18,910) TTSEC, DTTS

convert data to ASCOUT format and send to output stream

CALL ASCOUT(SLARR,IMT,IMTM2,]MTM1,VMASK,2,18)
CONTINUE

ELSE IF (TRAC(1:3) .EQ. U V' .CR. TRAC(1:3) .EQ. 'VV') THEN

DO790H-=1IN
PRINT *, 'extracting slab ', IH
INDEX = VALS(H)

read in the data
CALL MGSDAT(A, B, C, HR, ZDZ)
mask velocity fields with FKMQ array

DO 720] = 2, [MTM1
DO 7201= 1, IMT
IF (INTEKMO(Q,])) .EQ. 0) THEN
TDEP (I]) = VMASK(1)
ELSE IF INTFKMQ(L])) .GE. INDEX) THEN
IF (TRAC(1:1) .EQ. 'U") THEN
TDEP (1) = A (L))
ELSE IF (TRAC(1:1) .EQ. 'V') THEN
TDEP(L]) = B(L))
ENDIF
ELSE
TDEP (1]) = VMASK(2)
ENDIF
CONTINUE
DO 740 J=2,]MTM1
DO 740 1=2,IMTM1
SLARR(L-1 J-1)=TDEP(])
CONTINUE
WRITE (18,910) TTSEC, DTTS

convert data to ASCOUT format and send to output stream

CALL ASCOUT(SLARR,IMT,IMTM2,]MTM2,VMASK, 2,18)
CONTINUE

EISE IF (TRAC(1:3) EQ.'ICE' .AND. MSI .NE. 0) THEN
extract horizontal section at the surface - ice fraction, ice thickness

read in the data

-31-

CALL MGSDAT(A, B, C, HR, ZDZ)
C mask ice fields with FKMQ array

DO 820] = 2, MT
DO 8201 =1, IMT
F (INTEFKMO(L]) EQ. 0) THEN
TDEP (I]) = VMASK (1)
ELSE IF (INTFKMQ(L))) .GE. INDEX) THEN
IF (TRAC(1:5) .EQ. 'ICE F') THEN
TDEP() = A(L J)
ELSE IF (TRAC(1:5) .EQ. 'ICE T) THEN
TDEP(L J) = B(,])
ENDIF
ELSE
TDEP(L]) = VMASK (2)
ENDIF
820 CONTINUE
DO 840 J= 2, MTM1
DO 840 I= 2, IMTM1
SLARR(-1, J-1) = TDEP(L])
840 CONTINUE
WRITE (18,910) TTSEC, DTTS

C
C convert data to ASCQOUT format and send to cutput stream
C
CALL ASCOUT(SLARR,IMT,IMTM2,]MTM2,VMASK,2,18)
ENDIF
ENDIF
C

900 FORMAT (A50)
910 FORMAT (‘FIRST TTSEC 'F12.0,' DTTS 'F5.0)

920 FORMAT (8F8.3)
930 FORMAT (1615)
999 STOP

END

2 SETUP ROUTINES USED BY PROGRAM EXTRACT

The variables in COMMON block LVALS are set in subroutine SETUP and used in the main

program.
Variable. Definition
TSLAB(8) Position of slabs to be extracted (latitude, longitude, level)

IN Number of levels to be extracted (maximium of 8).

ONONONO]

OHONONONONS!

-32-

SUBROUTINE SETDIR (DEFDIR,DIRN)

This routine sets the directory to search for the FRAM archive datasets.
DEFDIR - defined default directory containing the archive datasets
DIRN - directory to be used by the program.

CHARACTER*512 DEFDIR
CHARACTER*512 DIRN
CHARACTER*512 TDIR
LOGICAL ARCUND

PRINT *, 'Directory $<CR> to select default directory ',
& DEFDIR(.LNBLNK(DEFDIR)), ' 2"

READ (*, '(512)") TDIR

WRITE(*, '(ADY '

IF (LEN(TDIR(LNBLNK(TDIR))) EQ. 0) THEN
DIRN = DEFDIR
ELSE
INQUIRE(FILE = TDIR, EXIST = AROUND)
IF (AROUND) THEN
DIRN = TDIR
ELSE
PRINT *, ‘Cannot find directory ', TDIR(LNBLNK(TDIR))
STOP
ENDIF
ENDIF
RETURN
END

SUBROUTINE SETUP(TRAC, DEPVAR, NAMRUN)

This is a control routine to set type and contents of slab(s) 10 be extracted from the

dataset.

TRAC - field variable :
DEPVAR - orientation variable (longitude, latitude, depth)
NAMRUN - comment line in header of output file.

CHARACTER NAMRUN*50
CHARACTER*9 DEPVAR

CHARACTER*15 TRAC

INTEGER ITRAC, IDEP

COMMON /PLTTYP/IDIR,ITYP,INDEX,ITT,IDIM
COMMON /LVALS/ TSLAB(8), IN

NAMRUN = ' FINE RESOLUTION MODEL '
ITRAC =-1

DO 100 WHILE (ITRAC LT. 0 .OR. ITRAC .GT. 10)
WRITE(*, 910)

C

-33-

WRITE(*, 910) ' TRAC '
WRITE(*, 910) 1. Stream Function '
WRITE(*, 910) 2. USTAR '
WRITE(*, 910) 3. VSTAR '
WRITE(*, 910) ' 4. Pressure '
WRITE(*, 910) * 5. Temperature
WRITE(*, 910) ' 6. Salinity '
WRITE(*, 910) * 7. U Velocity '
WRITE(*, 910) ' 8. V Velocity '
WRITE(*, 910) ° 9. Ice Fraction '
WRITE(*, 910) ' 10. Ice Thickness'
WRITE(*, 910)
WRITE(*, '(A38, $') ' Enter number of field required : '
READ(*, '(12)") ITRAC

100 CONTINUE

IF (ITRAC EQ. 0) THEN
STOP

ELSE IF (TRAC .EQ. 1) THEN
TRAC = 'STREAM FUNCTION
DEPVAR = ‘STREAM'

IDIR = 0
ITYP = 0

TSLAB(1) = 0.0

IN=1

ELSE IF (ITRAC .EQ. 2) THEN
TRAC = 'USTAR'

DEPVAR = 'STREAM'
DIR = 0

ITYP = 3

TSLAB(1) = 0.0

IN=1

ELSE IF (ITRAC .EQ. 3) THEN
TRAC = 'VSTAR'
DEPVAR = 'STREAM'
IDIR = 0

ITYP = 3

TSLAB(1) = 0.0

IN=1

ELSE IF (ITRAC EQ. 4) THEN
TRAC = 'PRESSURE'
DEPVAR = 'STREAM'
DIR = 0

ITYP =4

TSLAB(1) = 0.0

IN=1

ELSE IF (ITRAC .EQ. 5) THEN
TRAC = 'TEMPERATURE'
ITYP =2

ELSE IF (ITRAC EQ. 6) THEN
TRAC = 'SALINITY

-34-

ITYP = 2
ELSE IF (ITRAC EQ. 7) THEN
TRAC = 'U VELOCITY'
ITYP =1
ELSE IF (ITRAC .EQ. 8) THEN
TRAC = 'V VELOCITY'
ITYP=1
ELSE IF (ITRAC .EQ. 9) THEN
TRAC = 'ICE FRACTION'
DEPVAR = 'DEPTH'
DR =0
ITYP = 5
TSLAB(1) = 0.0
IN=1
ELSE IF (ITRAC EQ. 10) THEN
TRAC = 'ICE THICKNESS'
DEPVAR = ‘DEPTH'
IDIR =0
ITYP = 5
TSLAB(1) = 0.0
IN=1
ENDIF

IF (ITRAC .GT. 4 .AND. ITRAC LE. 8) THEN
IDEP =-1
DO 200 WHILE (IDEP LT. 0 .OR. IDEP .GT. 3)
WRITE(*, 910)
WRITE(*, 910) ' DEPVAR '
WRITE(*, 950)
& ‘1. Vertical Section (E/W) - constant latitude '
WRITE(*, 950)
& ' 2. Vertical Section (N/S) - constant longitude'
WRITE(*, 950)
& '3 Horizontal Section - constant depth
WRITE(*, 910)
WRITE(, '(A38, $)Y)
& Enter number of field required : '
READ(*, '(11)") IDEP
200 CONTINUE
C
IF (IDEP .EQ. 0) THEN
STOP
ELSE IF (IDEP .EQ. 1) THEN
DEPVAR = 'LATITUDE'
DR =1
ELSE IF (IDEP .EQ. 2) THEN
DEPVAR = 'LONGITUDE'
DIR=2
ELSE IF (IDEP .EQ. 3) THEN
DEPVAR = 'DEPTH'
IPR=0
ENDIF

-35-

300 WRITE(*, 910)
WRITE(*, '(A27, §)) ' No of slabs (MAX=8) : '
READ(*, '(I1)") IN
IF (IN .LT. 0 .OR. IN .GT. 8) GOTO 300
WRITE (*, 910)

DO 4001=1,IN
IF (IDEP EQ. 1) THEN
WRITE(*, '(A10, I1, A13, §)")
& ' Slab' L' Latitude ="
READ(*, '(F5.2)") TSLAB()
IF (TSLAB(l) LT. E-4) TSLAB(I) = -TSLAB(])
ELSE IF (IDEP EQ. 2) THEN
WRITE(*, '(Al0, I1, Al4, $))
& ' Slab‘, I, . Longitude =
READ(*, '(F5.2)") TSLAB(D)
TF (TSLAB(I) .LT. E-4) TSLAB(I) = 360.0 + TSLAB()
ELSE IF (IDEP EQ. 3) THEN
WRITE(*, '(A10, 11, A10, §)")
& ' Slab' 1 ' Level="
READ(*, '(12)") ITSLAB
TSLAB() = FLOAT(ITSLAB)
ENDIF
400 CONTINUE
ENDIF

910 FORMAT(A20)

930 FORMAT(A18)

940 FORMAT(A24)

950 FORMAT(A47)

999 RETURN

END

-36-

APPENDIXII FORTRAN LISTINGS OF FRAM USER INTERFACE SUBROUTINES

1 High level routine

The variables in COMMON blocks GRIPAR and PLTTYP must be set before this routine is called
by a user program.

SUBROUTINE MGSDAT(A, B, C, HRR, ZDZ)
Reads in slabs of data according to the variables IDIR, ITYP and INDEX.

IfIDIR = 0 - reads in a horizontal section of data
from depth level INDEX
= 1 - reads in an East-West section of data,
along the INDEX-th line of grid points
= 2 - reads in a North-South section of data,
along the INDEX-th line of grid points

0 - reads the stream function into C; A and B are unused,
applicable only when IDIR = 0
=1 - reads U velocity into A, V. velocity into B
and stream function into C
The inverse depth array is passed in HR
The barotropic and baroclinic velocities are combined
to give the tull velocity
2 -reads T into A, S into B; C not used
= 3 - reads USTAR into A, VSTAR into B,
and stream function into C
IDIR not applicable.
= 4 - reads the pressure field PRESS into A; B, C not used
= 5 - reads the ice fraction into A, ice thickness into B;
C not used

IITYP

CRoNoNORoNoNONONeNoReNoNeNeNeoNoNeNoNoNo NN NN

COMMON /PLTTYP/IDIR,ITYP,INDEX,ITT,IDIM
COMMON /GRIPAR/PSIDEG,DXDEG,PHIDEG, DYDEG,
& IMT,]MT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
DIMENSION A(1),B(1),C(1), HRR@MT JMT),ZDZ(KM)
DATA RADIAN,RADIUS/57.29578,6370.E5/

RAD = RADIAN / RADIUS
IDIM = IMT
TMTMI = MT - 1
JMTM2 = JMT - 2

QQQ QO ONONO]

QaaQ

QaaQ

aaaQ

-37-

IF ITYP .EQ. 0 .OR ITYP .EQ. 1) THEN
read streamn function

CALL MGSRDS(C)

IF (ITYP EQ. 0) THEN
RETURN

ELSE IF (ITYP EQ. 1) THEN

read the inverse depth array

CALL MGSRDH(HR)
ENDIF
ELSE IF (ITYP .EQ. 3)THEN

read (USTAR, VSTAR) into (A, B)

CALL MGSRDU(A, B)
RETURN
ELSEIF (ITYP EQ. 4) THEN

read the pressure field

CALL MGSRDP(A)
RETURN
ENDIF
IF (MSI .EQ. 0) THEN
LSI = 0
ELSE
LSI = MSI + 6 + 1
ENDIF

CALL MGSADV(T)
IF (DIR .EQ. 0) THEN

' Horizontal Section

IF (ITYP .EQ. 5) THEN
IF (MSI NE. 0) THEN

read (ice fraction, ice thicness) into (A, B)

DO 100] = 1,]MT
CALL MGSSKI(NT + 2)
CALL MGSSK2(1)
CALL MGSRDO(A,)
CALL MGSSK2(1)
CALL MGSRDO(, J)
CALL MGSSK2(LSI - 4)
CALL MGSSK2(LBC)
IF (EQ.]MTM2 .OR.] .EQ.]MTM1) THEN
CALL MGSSK1(NT + 2)

-38 -

ENDIF
CALL MGSSK2(LBC)
100 CONTINUE
ENDIF
RETURN
ELSE IF (ITYP .EQ. 2) THEN

C read (T, S) at depth level INDEX into (A, B)

DO 200 J=1, MT
CALL MGSRD1(A J,INDEX)
CALL MGSRD1 (B], INDEX)
CALL MGSSK1 (NT)
CALL MGSSK2(LBC + LSI)
IF (] .EQ.]MTM2 .CR.] EQ.]MTM1) THEN
CALL MGSSK1(NT + 2)
ENDIF
CALL MGSSK2(LBC)
200 CONTINUE
RETURN
ELSE IF (ITYP EQ. 1) THEN

C read (U, V) at depth level INDEX into (A, B)

DO 300 J=1, MT
CALL MGSSK1(NT)
CALL MGSRD1(A,],INDEX)
CALL MGSRDI (B],INDEX)
CALL MGSSK2(LBC + LSI)
IF (EQ.]MTM2 .OR.] EQ. JMTM1) THEN
CALL MGSSK1(NT + 2)
ENDIF
CALL MGSSK2(LBC)

Add in barotropic velocities

QOQ

IF ¢ .EQ. JMT) GOTO 300
CSR] = 1. O/COS((PHIDEG+(]~1)*DYDEG)/RADIAN)
IMU = IMT-1
DO 3501 =1, MU

HRR= HR(1])

IF (HRR .NE. 0.0) THEN

IF (1.0 + 1.0/ HRR .GE. ZDZ(INDEX)) THEN

J=(-1)*IMT + 1
DIAC] = CM+IMT+1)-C(]
DIAG2 = C(+IMT)-C([+1)
W1 = -(DIAG1+DIAG2)*HRR*0.5*RAD/DYDEG
W2 = (DIAG1-DIAG2)*HRR*CSR]*0.5*RAD/DXDEG
[= (-1)*IMT+I
AQ)) = A@)+W1
B()) = BID+W2

QaaaQ

QaQ

QQQ

QO

ONONS]

-39 -

ENDIF
ENDIF
380 CONTINUE
300 CONTINUE
RETURN
ENDIF
ELSE IF (IDIR .EQ. 1) THEN

' East-West Section *

1] = INDEX - 1
IF (] .NE. 0) THEN
DO 400]=1,]
CALL MGSSK1(NT + 2)
CALL MGSSK2(LBC + LSI)
IF (] .EQ.]MTM2 .OR.] EQ. JMTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALL MGSSK2(LBC)
400 CONTINUE
ENDIF

Have now reached relevant data
IF (ITYP .EQ. 2) THEN
read (T, S) into (A, B)

CALL MGSRD2(A)
CALL MGSRD2(B)
CALL MGSSK1(NT)
CALL MGSSK2(LBC + LSI)
IF (EQ.]MTM2 .OR.] .EQ.]MTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALL MGSSK2(LBC)
ELSE IF (ITYP EQ. 1) THEN

read (U, V) into (A, B)

CALL MGSSK1(NT)

CALL MGSRD2(A)

CALL MGSRD2(B)

CALL MGSSK2(LBC + LSI)

IF § EQ. MTM2 .OR.] .EQ. MTM1) THEN
CALL MGSSKI(NT + 2)

ENDIF

CALL MGSSK2(LBC)

Add i barotropic velocities

J = INDEX

QaaQ

aQaaaQ

-40 -

IF § .EQ. MT) GOTO 590
CSR] = 1.0/COS((PHIDEG+(J-1)*DYDEG)/RADIAN)
IMU = IMT-1
DO 500I=1, MU
HRR= HR(])
IF (HRR .EQ. 0) GOTO 500
I = (§-1)*IMT+I
DIAGI = CO+IMT+1)-CT)
DIAGZ = C@+IMT)-C@+1)
W1 = -(DIAG1+DIAG2)*HRR*0.5*RAD/DYDEG
W2 = (DIAG1-DIAG2)*HRR*CSR]*0.5*RAD/DXDEG
DO B50K=1 KM
IF (1.0 + 1.0/ HRR .CE. ZDZ(X)) THEN
K= K-1)*IMT+I
A(K) = A(K)+W1
B(K) = BK)+W2
ENDIF
550 CONTINUE
500 CONTINUE
ENDIF

390 JJ = INDEX + 1
IF (J .GT. JMT) RETURN
DO 600] = JJ,]MT
CALL MGSSKI(NT + 2)
CALL MGSSK2(LBC + LSI)
IF § EQ.]MTM2 .CR.] EQ.]MTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALL MGSSK2(LBC)
600 CONTINUE
RETURN
ELSE IF (DIR EQ. 2) THEN

' North-South Section '

DDIM=]MT
IF (ITYP EQ. 2) THEN

read (T, S) into (&, B)

DO 700] = 1, JMT
CALL MGSRD3(A,J,INDEX)
CALL MGSRD3(B], INDEX)
CALL MGSSK1(NT)
CALL MGSSK2(LBC + LSI)
F (J EQ. MTM2 .OR.] EQ. JMTM1) THEN

CALL MGSSKI(NT + 2)

ENDIF
CALL MGSSK2(LBC)

700 CONTINUE

RETURN

-4] -

EISEIF ITYP EQ. 1) THEN
read (U, V) into (A, B)

DO 800] = 1, JMT
CALL MGSSK1(NT)
CALL MGSRD3(A, J, INDEX)
CALL MGSRD3(B,], INDEX)
CALL MGSSK2(LBC + LSI)
IF (] .EQ.]MTM2 .OR.] EQ. [MTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALL MGSSK2(LBC)

Add in barotropic velocities

I =INDEX

IF J .EQ.]MT) GOTO 800

CSRJ] = 1.0/ COS((PHIDEG+(J-1)*DYDEG)/RADIAN)

HRR = HR(L,])

IF (HRR .EQ. 0.0) GOTO 800

H=0.001 + 1.0/ HRR

J=0-1D)*MT +1

DIAGI=CO+IMT+ 1)-C)

DIAG2=C+MT)Y-CH+1D

W1 = -(DIAG1+DIAG?2) * HRR * 0.5 * RAD / DYDEG

W2 = (DIAGI-DIAG2Z) * HRR * CSR] * 0.5 * RAD / DXDEG

DO 850K=1,KM

IF (H .CE. ZDZ(X)) THEN
JK=K-1)*]MT +]
A(K) = A(K) + W1
B(UK) = B(K) + W2

ENDIF

850 CONTINUE
800 CONTINUE
RETURN
ENDIF
ENDIF
END

- 42 -

2 Medium level routines

These routines need the integer constants in COMMON block GRIPAR 1o be set before they are
called by a user program.

SUBROUTINE READ4()
C Read in RITT, TTSEC, AREA, VOLUME from the input file

COMMON /PLTTYP/IDIR, ITYP,INDEX,ITT,IDIM
COMMON /TIME/ TTSEC

COMMON /MGSCCR/ MWORD

REAL ITEM(4)

CALL MGSADV(2)
CALL XREAD(ITEM, MWORD, 4, IFALL)
RITT = ITEM(1)

ITT = INTRITT)

TTSEC = ITEM(2)

RETURN

END

SUBROUTINE MGSADV(ISECT)

Moves pointer MWORD' to start of section 'ISECT"

ISECT =1 Start of header
= 2 Start of RITT
= 3 Start of stream function
= 4 Start of HR
= 5 Start of USTAR and VSTAR arrays
= 6 Start of pressure array
= T Start of slabs.

Needs the variables in COMMON /GRIPAR/ to be set correctly.

aaaaaoaaaaaaaQ

DIMENSION L(7)
COMMON /GRIPAR/ X1DEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

NWDS = IMT * JMT
NDICES = 2 * LSEG * JMT + 4 * NISLE
L) =1

L(2) = L(1) + 4000

-43-

L(3) = L(2) + 4 + IMT*KM*NT + NWDS
L(4) = L(3) + NWDS

L(8) = L(4) + NWDS * 3

L(6) = L(5) + NWDS * 2

L(T) = L(6) + NWDS + NDICES
JSECT=MAX (1 MIN(7,ISECT))
MWORD=L(SECT)

RETURN

END

SUBROUTINE MGSRDS(A)
Moves to and reads in the stream function.

DIMENSION A(1)

COMMON /GRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /MGSCCR/ MWCORD

CALL MGSADV(3)
CALL XREAD(A, MWORD, IMT*JMT, [FAIL)
[F(IFAIL.NE.0)STOP

RETURN

END

SUBROUTINE MGSRDH(HR)
Moves to and reads in the inverse depth array.

DIMENSION HR(1)
COMMON /GRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

CALL MGSADV(4)
CALL XREAD(HR, MWORD, IMT*]MT, IFALL)
IF (IFALL .NE. 0) STOP

RETURN

END

SUBROUTINE MGSRDP(A)
Moves to and reads in the pressure array.

DIMENSION A(1)
COMMON /GRIPAR/ X1DEG, DXDEG, YIDEG, DYDEG,

- 44 -

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI COMMON /MGSCCR/ MWORD

CALL MGSADV(6)
CALL XREAD(A, MWORD, IMT*MT, [FAIL)
[F(IFALL.NE.0)STOP

RETURN

END

SUBROUTINE MGSRDU(A,B)
Moves to and reads in the USTAR and VSTAR arrays.

DIMENSION A(1).B(1)
COMMON /GRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

CALL MGSADV(5)
CALL XREAD (A, MWORD, IMT#MT,[FAILL)
[F(FAIL.NE.0)STOP

CALL XREAD(B,MWORD,IMT*JMT,[FAIL)
IF(IFAIL.NE.0)STOP

RETURN

END

SUBROUTINE MGFKIM 1(FKMP)
Reads the FKMP array (masking data for the T,S points).

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

REAL FKMP(IMT, JMT)

JMTMI =JMT- 1
JMTM2 = JMT -2

IF (MSI .EQ. 0) THEN
LSI =0

ELSE

LSI = MSI + 6 + 1
ENDIF

CALL MGSADV(7)
DO 100] = 1, JMT
CALL MGSSKI(NT + 2)
CALL MGSSK2(LS])
CALL MGSRDF(FKMP,)
CALL MGSSK2(LBC - 1)

- 45 -

IF (EQ. MTM2 OR.] .EQ.]MTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALL MGSSK2(LBC)
100 CONTINUE

C Set row]MT equal to row]MTM1 for northern boundary

DO200I=1, IMITM1
FKMP(L, JMT) = FKMP(I,]MTM1)
200 CONTINUE
C
C Set cyclic boundary conditicns

DO 3007 = 1,]MT
FKMP(1, J) = FKMP(IMTM], J)
FKMP(IMT,]) = FKMP(2,)

300 CONTINUE

RETURN

END

SUBROUTINE MGFKM2(FKMOQ)

C Reads the FKMQ array (masking data for the U,V points).

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, IMT, KM, NT, LSEGC, NISLE, LCYC, LBC, MSI
REAL FKMQ(MT,]MT)

MTML1 =MT- 1
MTM2 = JMT - 2

IF MSI EQ. 0) THEN
ISI=0

ELSE
ISI=MSI+6+1
ENDIF

CALL MGSADV(T)
DO 100] =1, MT
CALL MGSSKI(NT + 2)
CALL MGSSK2(LST)
CALL MGSSK2(LBC)
IF J EQ. MTM2 .OR.] EQ. MTM1) THEN
CALL MGSSKI(NT + 2)
ENDIF
CALLMGSRDFTFKMQ,)
CALL MGSSK2(ILBC - 1)
100 CONTINUE
C
C Set row JMT equal to row JMTM!1 for northern boundary

C
C
C

CHONCHONONONONONY]

CHONONONONONON]

- 46 -

DO 200I=1, IMIM1
FKMQ(I,]MT) = FKMQ(,]MTM1D)

200 CONTINUE

Set cyclic boundary conditions

DO300] =1, IMT
FKMQ@MT,]) = FKMQ(2,)

300 CONTINUE

RETURN
END

SUBROUTINE MGSRDO(A, J)

Reads in A(L]), 1<I<IMT from surface level
On entry :-
MWORD should point to the first word of a 1-dimensional
(IMT) sub-array in the Jth slab
For example the start of the ice fraction field
in the Jth slab.
On exit -
MWORD points to the first word of the next sub-array.

DIMENSION A(1)
COMMON /GRIPAR/ X1DEG, DXDEG, YIDEG, DYDEG,

& IMT,]MT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /MGSCCER/ MWORD

M = MWORD
L=(-1)*IMT +1

CALL XREAD(A(L), M, IMT, [FAIL)
IF (IFALL .NE. 0) STOP

MWORD = MWORD + IMT
RETURN

END

SUBROUTINE MGSRD1(A,], INDEX)

Reads in A(l)]), 1<I<IMT from depth level INDEX
On entry :~
MWORD should point to the first word of a 2-dimensional
(IMT, JMT) sub-array in the Jth slab
For example the start of the T field in the Jth slab.
On exit :-
MWORD points to the first word of the next sub-array.

DIMENSION A(l)

aaoaoaoaaoaQ

aaaaaaaaQ

- 47 -

COMMON /CGRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

M = MWORD + IMT * (INDEX - 1)
L=(-1)*IMT +1

CALL XREAD(A(L), M, IMT, TFAIL)
IF (IFAIL .NE. 0) STOP
MWORD = MWORD + IMT * KM
RETURN

END

SUBROUTINE MGSRD2(A)

Reads in A(LK), 1<I<IMT, 1<K<KM
On entry -

MWORD should point to the first word of a 2-dimensional

(IMT, KM) sub-array in the Jth slab
For example the start of the T field in the Jth slab
Cn exit :-
MWORD points to the first word of the next sub-array.

DIMENSION A(1)
COMMON /GRIPAR/ X1DEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR MWORD

CALL XREAD(A(1), MWORD, IMT*KM, IFALL)
IF (IFAIL.NE.O) STOP

RETURN

END

SUBROUTINE MGSRD3(A4,], INDEX)

Reads in AJXK), 1<J<]MT, 1<K<KM , [=INDEX
On entry :-

MWORD should point to the first word of a 2-dimensional

(MT KM) sub-array in the Jth slab
On exit :-
MWORD points to the first word of the next sub-array.

DIMENSION A(l)
COMMON /CRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR MWORD

M1 = MWORD + INDEX - 1
DO 100K =1, KM

ONONORONONONQ!

-48-

M =Ml + (K-1) * IMT
L=]+ (K1) * MT
CALL XREAD(A(L), M, 1, [FALL)
IF (IFAIL .NE. 0) STOP
100 CONTINUE

MWORD = MWORD + IMT * KM

RETURN

END

SUBROUTINE MGSRDF(A,])

Reads in a 1-dimensional slab array of length IMT into row J

of the array A(IMT, IMT)

On entry :-

MWORD should point to the first word of the 1-dimensional slab array
On exit :-

MWORD points to the first word of the next slab array.

DIMENSION A(1)
COMMON /GRIPAR/ X1DEG, DXDEG, YIDEG, DYDEG,

& IMT,]MT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

L=(-1)*IMT + 1
CALL XREAD(A(L), MWORD, IMT,IFAIL)
IF (FAIL NE. 0) THEN

PRINT *, % =",]

STOP
ENDIF
RETURN
END

SUBROUTINE MGSSK1(X)

Skips over K 2-dimensional (IMT, KM) sub-arrays.
ie. X* (IMT * KM) data values

COMMON /GRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON MGSCCR/ MWORD

MWORD = MWORD + K * IMT * KM
RETURN
END

SNONONONONORONG]

-49 -

SUBROUTINE MGSSK2(K)

Skips over K 1-dimensional (IMT) sub-arrays.
ie, X * (IMT) data values

COMMON /GRIPAR/ X1DEG, DXDEG, Y1DEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

MWORD = MWORD + K * IMT
RETURN
END

SUBROUTINE MGSDZZ(DZ,DZZ.ZDZ,ZDZZ)

Subroutine to calculate depth pararneters used.

DZ - array of slab thicknesses

DZZ - array; on exit contains the distances between

vertical T,S points

ZDZ - array; on exit contains the depth of each level bottom
ZDZ7Z - array; on exit contains the depth of T,S grid points

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
DIMENSION DZ(1) DZZ(1),ZDZ(1),ZDZZ(1)

DZZ(1)=0.5*DZ(1)
7DZ(1)=DZ(1)
ZDZZ(1)=DZZ(1)

DO 10 [=2XM
DZZ(D)=0.5*(DZ(I-1)+DZ (D)
ZDZ(N)=ZDZ(J-1)+DZ ()
7DZZ(D)=7ZDZZ(1-1)+DZZ()

10 CONTINUE

DZZKM+1)=0.5*DZKM)

7DZZ(KM+1)=ZDZZ(KM)+DZZKM-+1)

RETURN

END

-850 -

3 Low level routine

This is the basic low level routine called by all the above high and medium level routines.

SUBROUTINE XREAD(A, M, N, IFAIL)

Subroutine for reading data from FRAM archive files.
A(N) - array into which the data is placed

M - position in the file of the first variable to be read
N - number of variables to be read

If no fault occurs the subroutine returns with

FAIL setto 0O

M - setto it's original value plus N

The 32-bit input data is stored temparily in buffer 'TEBUF
LBUFF is the position in the input file of the first element of the
current buffer

MBUFF is the length of the buffer (4000)

IUNIT is the input stream

ONONONONONONONORCNCHNONONONS!

COMMON /IEBUFF/IEBUF(4000), LBUFF, MBUFF, IUNIT, OUNIT
INTEGER M, N, A(N), IEBUF(4000), LBUFF, IUNIT, OUNIT
DIMENSION EEBUF(8)

EQUIVALENCE (EEBUF(1), IEBUF(1))

LBUFF] = LBUFF
IREC = 1 + (M - 1) / MBUFF

LBUFF = 1 + MBUFF * (IREC - 1)

[F (LBUFF1 .NE. LBUFF) THEN.

READ(UNIT = IUNIT, REC = IREC, END = 995, ERR = 998) IEBUF
ENDIF

DO1I00I=1,N
J=M+1-LBUFF
IF (J .GT. MBUFF) THEN
IREC=IREC + 1
READ(UNIT=IUNIT, REC=IREC, END=096, ERR=999) IEBUF
LBUFF = LBUFF + MBUFF
J=M+1-LBUFF
ENDIF
A() = IEBUF())
100 CONTINUE
[FAIL=0
M=M+N
RETURN
C
995 PRINT *, ' *** SUBROUTINE XREAD - EQCF. 1

-51 -

PRINT *,' *** UNIT =" IUNIT, M='"M'N="N
PRINT *, ' *** LBUFF = ', LBUFF, ' LBUFF1 ="', LBUFF1
PRINT *, ' *** REC ="', [REC, ' MBUFF = ', MBUFF

FAIL = -1
RETURN
C
056 PRINT *, ' *** SUBROUTINE XREAD - ECF. 2
PRINT *, ' *** UNIT ="' IUNIT, M='M/N="N
PRINT *, ' *** [BUFF = ', LBUFF, ' LBUFF1 =", LBUFF1
PRINT *, * *** REC =', IREC, ' MBUFF = ', MBUFF
IFAIL = -1
RETURN
C
008 PRINT *,' *** SUBROUTINE XREAD - READ FAILURE. 1
PRINT *, ' *%* UNIT =" IUNIT, M='M'N="'"N
PRINT *, ' *** [BUFF ="', LBUFF, ' LBUFF1 ="', IBUFF!
PRINT *, ' *** REC ="', IREC, ' MBUFF = ', MBUFF
IFAIL = -1
RETURN
C
890 PRINT *,' *%% SUBROUTINE XREAD - READ FAILURE. 2'
PRINT *, ' *** UNIT =", IUNIT, M ="'M'N="N
PRINT *, ' *** IBUFF ="', LBUFF, ' LBUFF1 ="', LBUFF1
PRINT *, * *** REC ="', IREC, ' MBUFF ="', MBUFF
[FAIL = -1
RETURN
END
4 Input and output routines

These routines open the input and output files, name the output file and write the header and
data to it.

SUBROUTINE INSTR(NUNIT, DIRN, INFIL, IFAIL) ‘L
Initialise the input stream.

C
C
C IUNIT = NUNIT = input stream

C DIRN = directory containing the input data files
C

C

INFTL name of input file

COMMON /IEBUFF/IEBUF(4000), LBUFF, MBUFF, IUNIT, OUNIT
CHARACTER*1024 INFIL

CHARACTER*512 DIRN

CHARACTER*512 FILEN

LOGICAL AROUND

MBUFF = 4000

- B2 -

LBUFF = -3599
[UNIT = NUNIT

WRITE(*, '(A32, 00)") 'Enter name of input data file : *
READ(*, '(A512)") FILEN
WRITE(*, '(A1)) '

INFIL = DIRN(:LNBLNK(DIRN)) // */* // FILEN(:LNBLNK(FILEN))
INQUIRE(FILE = INFIL(:LNBLNK(INFIL)), EXIST = AROUND)
IF (AROUND) THEN
PRINT *, ‘input file = ', INFIL(LNBLNK(INFIL))
ELSE
PRINT *, 'Cammot find file ', INFIL(: LNBLNK(INFIL))
STOP
ENDIF

OPEN(UNIT = IUNIT, FORM = ‘UNFORMATTED",
& FILE = INFIL(LNBLNK(INFIL)), ACCESS = 'DIRECT",
& RECL = 16000, STATUS = 'OLD!,
& IOSTAT = IOSTAT, ERR = 999)
C
REWIND IUNIT
IREC = 0
DO 1001 = 1, MBUFF
[EBUF(D) = 0
100 CONTINUE
[FAIL = 0
RETURN

999 PRINT *,
& '—— ERROCR in opening input file ',
& INFIL(LNBLNK(INFIL))
IFAIL =1
STCP
END

C SUBROUTINE READHD()

C Read in header from the input file.
C
COMMON /MGSCCR MWORD
CHARACTER CTEM(16000)
C
CALL MGSADV(1)

CALL XREAD(CTEM, MWORD, 16000, IFALL)
WRITE(*, '(Al)") CTEM

RETURN

END

aaaaaQ

-53-

SUBROUTINE OUTSTR(NUNIT, OUTFIL, IFAIL)

Initialise the output stream.

OUNIT = NUNIT = output stream
OUTFIL = name of cuiput file

COMMON /IEBUFF/IEBUF(4000), LBUFF, MBUFF, IUNIT, OUNIT
CHARACTER *(*) OUTFIL
INTEGER [EBUF(4000), LBUEF, MBUFF, IUNIT, OUNIT

OUNIT = NUNIT

OPEN(UNIT = OUNIT, FILE = OUTTIL,
& STATUS = NEW', ERR = 999)

REWIND OUNIT

IFAIL =0

RETURN

999 PRINT *, '--— ERROR in opening output file ', OUTFIL
PRINT *, '—~— file may already exist "'
FAIL =1
STCP
END

SUBROUTINE OFILEN(TRAC, DEPVAR, OUTFIL, [FAIL)
Creates an output filename for the cards file.

CHARACTER*15 TRAC
CHARACTER*9 DEPVAR

CHARACTER*12 OUTFIL

COMMON /TIME/ TTSEC

CHARACTER LETT#4, A*1, D*6, T1, T2, T3, T4

REAL SECDAY, TTSEC, FACTOR, NDAY

INTEGER [FACTOR, ADAY, TDAY, EXNUM, J, I, INDAY
CHARACTER*1 CVAR, FNAME(4)

INTEGER PVARI, PVAR2, PA

SECDAY = 86400C.

NDAY = TTSEC / SECDAY
INDAY = INT(NDAY)
TDAY = INDAY

DATAA/ "/
DATA D /".cards"/

EXNUM = 1
7=1

DO 1001=3,0,-1
FACTOR = 10 **

_54-

IFACTOR = INTFACTOR)
ADAY = TDAY / IFACTOR
IF (ADAY NE. 0) EXNUM =0
IF (EXNUM .EQ. 0) THEN
FNAME(]) = CHAR(48 + ADAY)
J=7+1
TDAY = TDAY - (ADAY * [FACTCR)
ENDIF
100 CONTINUE
C
T1 =FNAME(1)
T2 = FNAME(2)
T3 = FNAME(3)
T4 = FNAME(4)
LETT =Tl //T2// T3 // T4

IF (TRAC(1:3) .EQ. 'UST") THEN
CVAR = 'm'

ELSE IF (TRAC(1:3) .EQ. 'VST") THEN
CVAR = 'n’

ELSE IF (TRAC(1:3) .EQ. 'PRE') THEN
CVAR = 'o'

ELSE TF (TRAC(1:3) EQ. 'STR") THEN
CVAR = 'p'

ELSE IF (TRAC(1:5) .EQ. 'ICE F') THEN
CVAR = 's'

ELSE IF (TRAC(1:5) .EQ. 'ICE T") THEN
CVAR = 't

ELSE

IF (TRAC(1:3) .EQ. 'SAL') THEN
PVAR2 = 1

ELSE IF (TRAC(1:3) .EQ. 'TEM') THEN
PVAR2 = 2

ELSE IF (TRAC(1:3) .EQ. 'U V") THEN
PVAR2 = 3

ELSE IF (TRAC(1:3) .EQ. 'V V") THEN
PVAR2 = 4

ENDIF

IF (DEPVAR(1:3) .EQ. 'LAT') THEN
PVAR] = 1

ELSE IF (DEPVAR(1:3) EQ. 'LON') THEN
PVARI = 2

ELSE IF (DEPVAR(1:3) .EQ. 'DEP") THEN
PVARI = 3

ENDIF

PA = 3 * (PVAR2 - 1) + PVARI
CVAR = CHAR(96 + PA)
ENDIF

QQaQ

- 55 -

OUTFIL = A // CVAR // LETT /I D

PRINT *, '

PRINT *, 'output file = ', OUTFIL PRINT *, '
FAL =0

RETURN

END

SUBROUTINE HEADER2(OP, TRAC, DEPVAR, OPFORM, NRUN)

Subroutine to write headers to the output files.

COMMON /TSTEP/ NDFIR, NDLAS, NDINC
CHARACTER TRAC*(*), OPFORM*(*), NRUN* (*)
CHARACTER*9 DEPVAR, FROM(3), INCR(3), TO(3), QUAN(3)
INTEGER OP, NOP(3)

Establish details for header
IF ((TRAC(1:3) .EQ. 'STR") .OR. (TRAC(1:3) .EQ. 'PRE")) THEN

QUAN(1) = LONGITUDE'
QUAN(2) =' LATITUDE'

FROM(l)="' 0.
FROM(2) = ' -78.875"
INCR()= ' 05 '
INCR@) = ' 0.25
TO(l) = ' 3595
TOE) = ' -24125°
NOP(1) =720

NOP(2) = 220

ELSE IF (TRAC(1:3) .EQ. 'ICE") THEN
QUAN(1) = "LONGITUDE'
QUAN(2) ="' LATITUDE'

FROM(l)="' 0.
FROM(2) = ' -78.875"
INCR()= ' 05
INCR@2)= ' 025 °
TO(1) = ' 3595
TOE) = ' -24315°
NOP(1) = 720

NOP(2) =219

ELSE IF (TRAC(1:3) EQ. 'TEM' .OR. TRAC(1:3) .EQ. 'SAL') THEN
IF (DEPVAR(1:3) .EQ. 'LAT') THEN
QUAN(1) = ‘LONGITUDE'

QUAN(2) =' DEPTH'
FROM(1) = * 0.
FROM(2) = 1
INCR(l) = 05

INCR(2) = ° 1

- 586 -

TO(1) = ' 3595
TO@ = ‘' 32
NOP(1) = 720
NOP(2) = 32

ELSE IF (DEPVAR(1:3) .EQ. 'LON") THEN
QUAN(1) = ' LATITUDE'

QUAN(2) = DEPTH'
FROM(l) = ' -78.875"
FROM(@) = ' 1 '
INCR()= ' 025 °
INCR@) = ' 1 '
TO(l) = ' -24.125°
TO@R) = ' 32
NOP(1) = 220

NOP(2) = 32

ELSE IF (DEPVAR(1:3) .EQ. 'DEP") THEN
QUAN(]) = 'LONGITUDE'
QUAN(2) = ' LATITUDE'

FROM(l)="' 0. '
FROM(2) = ' -78.875"
INCR()= ' 05 '
INCR(2)= ' 025 °
TO(1)= ' 3595
TO@@) = ' -24.125'
NOP(1) = 720

NOP(2) = 220

ENDIF

ELSE IF (TRAC(3:10) .EQ. 'VELOCITY") THEN
IF (DEPVAR(1:3) EQ. 'LAT") THEN
QUAN(1) = 'LONGITUDE'

QUAN(2) =' DEPTH
FROM(l)= ' 025
FROM(2) = ' 1 '
INCR()= ' 05
INCR2)= ' 1 '
TO(l)= ' 389.75 '
TO@)= ' 32 '
NOP(1) = 720

NOP(2) = 32

ELSE IF (DEPVAR(1:3) EQ. LON") THEN
QUAN(1) = ' LATITUDE'

QUAN(2) =' DEPTH'
FROM(l) = * -78.750"
FROM@2) ="' 1
INCR(1)= ' 025
INCR@)= ' 1 '
TO() = * -24.250"
TO@)= ' 32
NOP(1) =218

NOP(2) = 32

ELSE IF (DEPVAR(1:3) .EQ. 'DEP') THEN

aaoaaaQ

- BT -

QUAN(1) = 'LONGITUDE'
QUAN(2) =' LATITUDE'

FROM(1) = ' 0.25
FROM(2) = ' -78.150
INCR(l)= ' 05
INCR(2)= ' 025
TO)= ' 359.75 '
TO@) = ' -24.250 °
NOP(1) =720
NOP(2) = 219

ENDIF

ENDIF

QUAN(3)=' TIMESTEP'
NOP(@3)=1
WRITE (FROM(3), '(19)") NDFIR
WRITE (INCR(3), '(19)") NDINC
WRITE (TO(3), '(19)") NDLAS
IF (DEPVAR(1:3) EQ. 'STR') THEN
WRITE (OP, 5101) TRAC, OPFORM
ELSE
WRITE (OP, 5100) TRAC, DEPVAR, OPFORM
ENDIF
WRITE (OP, 5102) NRUN
WRITE (OP, 5103) I, I = 1, 3)
WRITE (OP, 5104) (QUAN(), I =1, 3)
WRITE (OP, 5105) FROM(), I = 1, 3)
WRITE (OP, 5106) (INCR(), I = 1, 3)
WRITE (OP, 5107) (TO(D), 1= 1, 3)
WRITE (OP, 5108) (NOP(D), I = 1, 3)

5100 FORMAT (‘VARIABLE :',A15,2X,A9,T41, FORMAT : A2)
5101 FORMAT ('VARIABLE :'A15,T41, FORMAT :'A2)

5102 FORMAT (MODEL : FAF ~ COMMENTS :',A50)

5103 FORMAT (INDEX '9X,:.3(1.)

5104 FORMAT ('QUANTITY ',6X,"'A9,"" A9,"" A9,"")

5105 FORMAT (FROM '6X." A9, A9, A9,"")

5106 FORMAT (INCREMENT'6X,"'A9,"" A9,""A9,"")

5107 FORMAT ('TO "6X,"",A9,"",A9,"" A9,
5108 FORMAT ('‘NO.OF POINTS '2X,""19,""19,""19,"")
RETURN
END

SUBROUTINE ASCOUT (ARRAY,IDIM,ID,]D,VMASK,NCHAR,NOUT)
Subroutine to encode a section of an array as sets of 'NCHAR'
printable characetrs, and write as a formatted card-image dump.

(Uses ASCII characetrs 0-9 , A-Z, a-z and brackets)

ARRAY - 2-D array of values to be converted

CHoNoNONONONONONONONO N NN NoNOReNoNONeNoNONe!

Q

QQaQ

Q

QaQaQ

ORONONG]

-58-

IDIM - declared I-dimension of array in calling programmme

ID,]D - specify section of array to be converted

VMASK - 4-element array whose values indicate ‘masked’ points.

Such points are denoted by one of the 4 possible

combinations of full stop and cornma, padded out to NCHAR
characters by repetition of the last character of the pair.

These values are ignored in finding max and mins for scaling.

The VMASK values are normally much larger than other values
NCHAR - Number of characters to be used to represent an array value
NOUT - Fortran channel number of output dataset.

M. A. ROWE Sept. 1987 (Rewritten J. R. BLUNDELL 07/07/1988)
This version (internally declared character array) 14/12/1988
Modified to allow for four types of masked point 07/02/1589

Internal parameters:

ILRECL - Maximum length of data record to be output

NASCC - Number of different ASCI characters used in
representation of numbers (at unmasked points)

NCMAX - Maximum number of characters which can be used
10 represent an array element.

INTEGER IRECL NASCC NCMAX

PARAMETER (LRECL=80, NASCC=64, NCMAX=5)

Local variables

INTEGER ICODE(NCMAX),IDIM,ID,]D,NCHAR NOUT,
& IJNNUM,IC INTEG NCBUFF,LINLEN,MTYPE

REAL ARRAY(IDIM,]D), VMASK(4)
REAL FMIN FMAX, RANGE, ARANG, SCALE

CHARACTER*1 ASCARR(LRECL),LKUP(NASCC),CMASK(2) MASK(INCMAX, 4)

CHARACTER*(NASCC) CHAREP
EQUIVALENCE (CHAREP(1:1),LKUP(1))

Specify the NASCC characters to be used in the number
representation, and the characters denoting rmasked points

CHAREP(1:10) = '0123456789"

CHAREP(11:36) = 'ABCDEFGHIKLMNOPQRSTUVWXYZ'
CHAREP(37:62) = 'abcdefghijkimnopqrstuvwxyz' CHAREP(63:64) = '()'
CMASK(1)=""
CMASK(2)=""

Write out coding info in first data record
{write warning to unit 6 if it won't fit)

IF (NASCC.GT.72) WRITE(6,50) NASCC

50 FORMAT(/,2X,"**ASCOUT WARNING: OVERLENGTH CODING RECORD,',

QQaQ

QaaaQ

aQaaQ

-59-

& * NASCC ='13)
WRITENOUT,'(14,1X.2A1,1X,72A1)") NASCC,CMASK, LKUP(1},I=1 NASCC)

Check input value of NCHAR

IF (NCHARLT.2 .OR. NCHAR.GT.NCMAX) THEN
WRITE(6,100) NCHAR
100 FORMAT(/,2X,"**ASCOUT WARNING: ROUTINE CALLED',
& ''WITH INCORRECT NCHAR ='14)
RETURN
ENDIF

Check input values of VMASK are all different,
otherwise masking will be ambiguous

DO 110]=1,3
DO 110 I=]+1,4
IF (VMASK().EQ.VMASK(])) WRITE(6,120) 1]
110 CONTINUE
120 FORMAT(/,2X,"**ASCOUT WARNING: VMASK('I1,") = VMASK(,I1,Y",
& 12X, "**MASKING PRODUCED WILL BE AMBIGUOUS')

Create the 4 types of MASK, including padding characters

DO 130 IC=1NCHAR
MASK(IC,1) = CMASK(1)
MASK(C,2) = CMASK(1)
MASK(IC,3) = CMASK(2)
MASK(IC,4) = CMASK(2)

130 CONTINUE
MASK(2,2) = CMASK(2)
MASK(2,3) = CMASK(1)

Establish range of data and scaling for conversion
(typical size of values assumed O(10**5))

FMAX = -9999999.9
FMIN = 9999999.9
DO 150 I=1,ID
DO 150 J=1,]D
DO 140 MTYPE=1,4
IF (ARRAY(L]).EQ.VMASKMTYPE)) GOTO 145
140 CONTINUE
FMIN = MIN(FMIN,ARRAY(L]))
FMAX = MAX(FMAX,ARRAY(L]))
145 CONTINUE
150 CONTINUE
IF (FMAX.LT.-99999.9 .OR. FMIN.GT.99999.9)
& WRITE(6,200) FMIN,FMAX
200 FORMAT(/2X,**ASCOUT WARNING: LARGE +VE MINIMUM OR LARGE,
& '-VE MAXIMUM VALUE'/,2X,'FMAX, FMIN = ',1P,2E16.5)

C

C

cC

Q

QaaaaQ

-60 -

NNUM = ID*]D
WRITEQNOUT,'(1P,2E20.12,4110)") FMIN,FMAX, ID,JD,NNUM,NCHAR
ARANG = REAL(NASCC**NCHAR - 1)
RANGE = FMAX - FMIN
SCALE = ARANG/RANGE
IF (INT(SCALE).LT.1) WRITE(6,220) SCALE

220 FORMAT(/,2X,"**ASCOUT WARNING: SCALE = ',1P,E14.5)

IF ((RANGE*1.0E10) LT.1.0EQ) THEN

WRITE(NOUT, 250)
250 FORMAT(**ASCOUT WARNING: FIELD APPROX. CONSTANT,',
& 'NOT CHARACTER CODED)

EISE
Scale array and encode as NCHAR printable characters

NCBUFF = 0

IF (NCHAREQ.3) LINLEN=78
TF (NCHARNE.3) LINLEN=80
DO 500 J=1,D

DO 500 I=1,D

DO 350 MTYPE = 1,4
IF (ARRAY(L,]).EQ.VMASK(MTYPE)) THEN
TYPE MTYPE MASKED POINT; COPY FROM MASK(NCMAX, MTYPE)
DO 300 IC = 1 NCHAR
ASCARR(NCBUFF+IC) = MASK(IC,MTYPE)
300 CONTINUE
GOTO 450
END IF
350 CONTINUE

Normal point; encode as NCHAR characters

INTEG = NINT((ARRAY(L,J)-FMIN)*SCALE)
DO 400 IC=NCHAR,1,-1
ICODE(IC) = 1 + MOD(INTEG, NASCC)
ASCARR(NCBUFF+IC) = LKUP(ICODE(IC))
INTEG = INTEG/NASCC
400 CONTINUE
450 CONTINUE
NCBUFF = NCBUFF + NCHAR

IF (NCBUFF.EQ LINLEN) THEN

Buffer ASCARR full; write to
channel NOUT (card-image format)

IF (NCHARNE.3) THEN
WRITE(NOUT,'(80A1)") (ASCARR(IC),IC=1 NCBUFF)

-8l -

ELSE
WRITEQNOUT,(1X,78A1,1X)") (ASCARR(IC),IC=1,NCBUFF)
END IF
NCBUFF = 0
END IF
C
500 CONTINUE

C
C Flush character buffer if not empty
C

IF (NCBUFF.NE.O) THEN
IF (NCHARNE.3) THEN
WRITE(NOUT,'(80A1)") (ASCARR(IC),IC=1 NCBUFT)
ELSE
WRITENOUT,'(1X,78A1,1X)") (ASCARR(IC),IC=1 NCBUFT)
END IF
NCBUFF = 0
ENDIF
ENDIF
RETURN
END

Brook Road, Wormley, Godalming
Surrey, GU8 5UB,

United Kingdom

Telephone +44 (0) 428-684141
Facsimile +44 (0) 428-683066
Telex 858833 OCEANS G

Natural
Environment
Research
Council

