
INTERNAL DOCUMENT No. 319

The main runs and datasets of the
Fine Resolution Antarctic Model Project

(FRAM) Part III: The data extraction routines

f

¥

" • w f

^ Institute of
^ Oceanographic Sciences
~ Deacon Laboratory

T Hateley & B de Cuevas

1992

11 JLiL'f : 2 "
gSfaSkab;,' .L/

> '

i
t

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 319

The main runs and datasets of the
Fine Resolution Antarctic Model Project

(FRAM) Part III: The data extraction routines

T Hateley & B de Cuevas

1992

Wormley
Godaiming
Surrey GU8 SUB UK
Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

D O C U M E N T D A T A S H E E T

HASnEUETr "T. auadcLE CnJIiV7lS,]3Jl.
PUBMCATTON
IMTZT 1992

TTTLE

The main runs and datasets of the Fine Resolution Antarctic Model Project (FRAM).

Part III: The data extraction routines.

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 319,61pp.

(Unpublished manuscript)

The output of the Fine Resolution Antarctic Model was stored at regular intervals during

the model run and is available to researchers. This document describes the software

interface developed to allow user access to the data for analysis and display purposes.

NUMERICAL MODELLING

PROJECT - FRAM

Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 SUB. UK

Director. Colin Summerhayes DSc

Telephone Wormley (0428) 684141
TWez 8S8833 OCEANS G.
Facsimile (0428) 683066

Copies of this report are available from: The Library, PRICE

3 -

nONTENTS

INTRODUCTION

Page

4

DESCRIPTION OF THE ARCHIVE DATASET

THE EXTRACT PROGRAM

3.1 Introduction

3.2 Installation of the program

3.3 Input file

3.4 Output file

3.5 Running the program

7

7

8

8

9

FRAM USER INTERFACE SUBROUTINES

4.1 Introduction

4.2 Description of the subroutines

4.2.1 High level routine

4.2.2 Medium level routines

4.2.3 Low level routine

4.2.4 Input and output routines

4.3 Model depth array

4.4 COMMON blocks and variables

11

11

11

11

12

16

16

17

17

REFERENCES 21

APPENDICES 2 2 - 6 1

Appendix I Fortran listing of the Extract program 22

1 Program EXTRACT

2 Setup routines used by program EXTRACT

22

31

Appendix II Fortran listings of FRAM user interface subroutines 36

-4 -

1. INTRODUCTION

The Fine Resolution Antarctic Model Project (FRAM) is a Community Research Project of

the UK National Environmental Research Council, designed to set up, run and analyse the

results of a fine resolution primitive equation model of the Southern Ocean (The FRAM group,

1991). It forms part of the UK contribution to the World Ocean Circulation Experiment. The

model output was stored at regular intervals during the run and is available to researchers, This

document gives the basic information required to use the data. Section 2 gives a description of

the contents of the archive datasets. Section 3 describes the software interface developed to

allow user access to the plotting programs developed at lOSDL to display the FRAM data. These

programs are supplied with the data. Section 4 describes the subroutines which provide a user

interface to the data for extraction and analysis purposes. Listings of the subroiitines are given

in the Appendices.

2. DESCRIPTION OF THE ARCHIVE DATASET

The FEtAM archive datasets are stored on exabyte tapes at lOSDL and will shortly be

available from the British Oceanographic Data Centre (BODC), Bidston. Each dataset contains

data at one timestep in the model run.

A single 61e can be considered as a continuous string of 8-bit bytes. In the standard

format adopted for the FE(AM data, this Sle starts with a header section made up of ASCII

characters, followed by the main dataset written as binary images in the computer's floating

point data format. Integers are transformed to floating point before being archived. The format

used for the exabyte tapes is the 32-bit (4 bytes) IEEE floating point format which is used

internally by the Sun computers and many other mini-computers (eg, Silicon Graphics).

The information stored in the 61e is deGned in detail in the header, a copy of which

follows:

FE(AM Archive dataset. Format 1

Model constants

&PARM

IMT=722, JMT=221, KM=32, NT=2, LSEG=7, NISLE=3, LBC=2, MSI=2

&END

•5-

Arrangement of storage on tape

y^'abJename LengOi Z)escr^tzon in words

* ^

*** 1. Header ***

* ^ A * * * A A * * * A A * * * * * * * * *

Header 16000 bytes This header as ASCII characters

16000 bytes arranged as 200 lines of 80

characters

* * * * * * * * * * * * * A * * ' A * * * * * * * * * * * * * * * * * * A * A A * * ' A A * * A *

*** 2. KONTRdata ***

* A *

RTIT

TTSEC

AREA

VOLUME

Model timestep (integer converted to floating

point format).

Time in seconds from start of run.

Area of model ocean.

Volume of model ocean.

IN IMr*KM*NT LeVitus data for open (northern) boundary.

************************************A******A**

*** 3. FIELDS data

*

IMr*JMT Stream function at ITT-1.

p IMr*)MT Stream function at ITT.

HR IMT*]MT Inverse of depth.

PIDB nvrrgMT Rate of change of stream function at ITT-1,

FID IMT*JMT Rate of change of stream function at ITT.

USTAR IMT*)MT USTAR array used to calculate pressure 6.eld.

VSTAR]MT*]MT VSTAR array used to calculate pressure Seld.

PRESS IMT*]MT Pressure field.

FINS 2*LSEG*JMT+4*NISLE Indices converted to floating point.

* A * * * * A *

*** 4. Slabs ***

A A * A A * * * * * * * * * * * * * * * * A * * * A A * A A * ' *

There follow JMT Slabs each of which contain, in order, for the Jth row.

T IMT*KM*NT Tracer fields for the Jth slab.

U IMr*KM U velocity for the Jth slab.

V IMT*KM V velocity for the Jth slab.

* * * * * A 'A A ' * ' A A * A A * A * * * * * *

Sea-ice arrays included if IvISI = 2 ***

* * * * A 'A * A " * * * * * * * *

RNICE MT Number of ice levels converted to floating point.

SNOICE IlVlT*(MSI+6) Sea-ice anray.

*

*** End of sea ice arrays ***

*

FKMT MT KMT array converted to floating point.

WSX MT Wind stress in the x-direction.

*

*** For the JMT-2 and JMT-1 rows the following data is included for the open boundary ***

*** conditions. ***

* * * " *

IB IMT*KM*NT Tracer Gelds for ITT-1.

UB IMT̂ KM U velocity for ITT-1.

VB IMr*KM V velocity for ITT-1.

* l t *

*** End of additional data for JMT-2 and jMT-1 ***

*

FKMU MT KMU array converted to floating point.

WSY MT V\^d stress in the y-direction.

*

*** End of slab data ***

*

In the header, the length shown for each array also indicates how that array is stored

Thus if the length of array A is shown as IMT*KM then the array will be stored as A(IMT, KM). If

the archive dataset contains space for the arrays for the sea ice model, the parameter MSI will

have a value of 2, otherwise it will have a value of 0. If the model is stopped at an odd timestep,

the position of the arrays FKMT, WSX and FKMU, WSY in the archive dataset will be exchanged.

However, in practice this did not occur.

The USTAR, VSTAR and PRESS arrays win be zero everywhere if unset. The USTAR and

VSTAR arrays were calculated after day 3256 (8 years 11 months) of the model run. As is usual

with the Cox model, the u and v velocity fields stored in the archive data are the baroclinic part

of the full velocity Geld. The barotropic velocity may be obtained from the stream function and

7-

added to the baroclinic velocity to give the full horizontal velocity. Temperature refers to

potential temperature in the model data and throughout this document.

The Exabyte driver software at Rutherford Appleton Laboratory requires the data to be

packed in 16000 byte blocks. The last block is therefore padded with a dummy array of zeros.

3. THE EXTRACT PROGRAM

3.1 Introduction

The program, extract.f, has been written to provide a simple user interface to the data.

Using the program, horizontal or vertical (north-south or east-west) sections can be extracted

from the archive dataset in a form that can then be plotted by the FRAM plotting programs. The

horizontal sections to be extracted are referenced by the level number from the model. The

vertical sections are referenced by their longitude (±°E) or latitude value (+°S).

The program creates an output file which consists of a header, describing the data in

the Gle, followed by 'ASCOUT' encoded data. Each output Gle may contain data for several

sections. The output 61e is created in the current or working directory.

The program was written in Fortran 77 on a Sun 4 workstation under the UNIX operating

system. It assumes that the dataset has first been copied to disk. The approximate size of the

disk file is 96 Mbytes. A fiill listing of the program is given in Appendix I.

3.2 Installation of the program

The sotirce code for the program should be copied to sub-directory src of directory

fram_extract. The compiled program will be placed in sub-directory bin.

Change directory to fram_extract/src.

In the Gle extract.f, set the variable DEFDIR to the absolute pathname of the defatilt

directory to contain the FRAM datasets.

Type

make

followed by

make clean

These commands wiU compile the program and remove temporary Sles generated

during compilation.

Then to yoiir .login Ble, add the line:

setenv FRAM_EXTRACT "[i!ame of directory containg fram_extract]"

and to your .cshrc file, add the line:

alias extract '$FRAM_EXTRACr/firain_extract/bin/extract'

After you next login, this will enable the program 'extract' to be run from any directory,

creating the output files in the current (working) directory.

3.3 Input file

When the program is run it asks for the name of an input file containing the FRAM

archive data. The naming convention adopted for the FRAM archive datasets is fxyyyy.data,

where:

X = r for the main model run

s for the repeat run with sea ice and full surface forcing

= model day number of archive dataset.

3.4 Output file

The program creates an output file name. The naming convention adopted for this file is

cards, where:

X = a - salinity at constant latitude (longitude vs depth slices)

b - salinity at constant longitude (latitude vs depth slices)

c - salinity at constant depth (longitude vs latitude slices)

d - temperature at constant latitude

e - temperature at constant longitude

/ - temperature at constant depth

g - u-velocity at constant latitude

h - u-velocity at constant longitude

y - u-velocity at constant depth

y - v-velocity at constant latitude

k - v-velocity at constant longitude

j - v-velocity at constant depth

m -USTAR&eld

n - VSTAR Geld

o -pressure field

p - stream function

- 9

s - ice fraction (ie. % area of grid box covered by ice)

(- ice thickness

= model day number ofcuxdihredatasel: Qaaoie lasiryputfUeO.

Note: Each file may contain one or more slabs of data of the same type.

Example: 97 .caids contains horizontal slabs of salinity from the end of 6 years (day 2191).

3.5 Running the program

On entry to the program, the user is prompted for the name of the input FRAM archive

dataset and the type of data to be extracted. An output filename is created and the output

stream is initialised. A header is written to the output file describing the data the file will

contain. This information is needed by the FRAM plotting routines.

The user is prompted for the Seld variable (TRAC) and the type of section required

(DEFVAR). The program then reads in the appropriate masking array &om the archive dataset,

The masking array contains information about the location of land and submerged land. Data is

then extracted, transformed if necessary, and masked. The transformations are:

Salinity: output salinity = model salinity * 1000 + 35.

Velocity: output velocity = baroclinic velocity (from the slabs) + barotropic

velocity (from the stream function).

The data are converted to ASCOUT' format, in which each number is represented by 2 to 5

ASCn characters, and sent to the output 61e.

An example of the use of the extract program is given below. Prompts Arom the

program are in italics, and bold typeface is used to denote user input in the correct format. The

character # is used to enclose comments.

To run extract:

extract

FRAM Data Extraction Program

Direcfo/y /<CR> fo se7ecf deYaWf direcfo;y /Wafa/B-am^h/Wafa y

Enter name of input data file: 62191.data

1 0 -

TRAC

1. Stream Function

2. USTAR

3. ySTIAR

4. Pressure

5. Tbmperafure

6. Salinity

7 U Velocity

8. V Velocity

9. Ice Fraction

VO. Ice Thickness

Enter number of field required: 5

Note: If the Geld is 1 - 4 the output 61e name wiH be displayed on the screen and the data will

be extracted. The following is an example of the procedure for obtaining a tracer or velocity

section from the slabs. #

DEPVAR

A yejt'ca/ S'ecAbn (EW) - consfanf

2. yerfz'cay^cA'o;; -coizsfanUoagzYude

3. HojizonfaJ Secffon - consfa;](

Note: For E-W sections the latitude value (°S) is converted to the correct I value #

and for N-S sections the longitude value (±°E) is converted to the correct J value. #

Enfer number o/feJdrequinsd 1

M) o/s/abs : 1

a a b A Z/a(fmde = 70.0

oufpuf /Ue = J 97. cards

Note: A response of 0 to the TRAC or DEPVAR prompts will exit from the program.

11 -

4. USER INTEEFACE SUBROUTINES

4.1 Introduction

This section describes the software developed to provide an interface between the FRAM

archive datasets and the researcher. The software is based on routines developed for the NERC

Ocean Modelling group on the ULCC CRAY. Because of the problems with using the

BACKSPACE command with exabytes tapes and the relative slowness in reading the tapes, the

software assumes ihat the archive datasets have Grst been copied to disk.

Data can be accessed Brom the archive datasets using the h i ^ level routine MGSDAT, or

the lower level routines described below. The physical reading of the data is carried out by the

low level routine XREAD,

Certain COMMON blocks must be declared at the beginning of any program written to

access the archive datasets. GRIPAR contains the main model variables (eg. IMT, the number of

east-west grid points), and must be set up before calling any of the user routines. PLTTYP must

be set before calling the high level routine MGSDAT. It deBnes the data which MGSDAT is to

extract. lEBUFF and MGSCCR are used by low level routines. MGSCCR is set by medium level

routines and should be set by user programs calling the low level routine XREAD. TIME and

TSTEP are used by the output routine HEADERS and should be set up before calling this routine,

(TIME is set by a call to READ40).

A brief descnption of the user routines is given in section 4.2. Details of the COMMON

blocks and the definitions and values of the variables in them, are given in the following

section. Complete listings of the routines are in Appendix H.

4.2 Description of the subroutines

4.2.1 High level routine

This comprises a single call within a program to read 2-dimensional arrays of selected

variables. These can be stream function, pressure and the other 2-dimensional model arrays or

latitude, longitude or depth slices of the 3-dimensional tracer or velocity fields. Before calling

the routine, the variables in COMMON blocks GRIPAR and PLTTYP must be set correctly.

SUBROUTINE MGSDAT(A, B, C, HR. ZDZ)

ZDZ (KM) - on entry, this contains the ZDZ array as defined in the Cox model (vertical

position of bottom of levels).

A(IMT, JMT) - on exit, array for model data

12

B (IMT, JMT) - on exit, array for model data

C (IMT, JMT) - on exit, stream function data

HR{1MT,JMT) - on exit, this contains the reciprocal of total depth at U,V points

The actions carried out by the routine depend on the values set for the variables IDIR,

ITTT? andlNIIESCinC^CMVavIOr* block pijmnp. ITlfPEqpeciBesthe Geld recpicsxi and IDIR Oie

orientation of the section. IDIR is only valid for ITYP = 1 or 2.

ITYP = 0 subroutine reads the stream function into array C . IDIR should equal 0.

1 subroutine reads U into A, V into B, the stream function into C. and the reciprocal

depth field into HR.

2 subroutine reads temperature into A and salinity into B.

3 subroutine reads USTAR into A and VSTAR into B.

IDIR = 0 subroutine reads a honzontai section of data from depth level INDEX

1 subroutine reads an east-west section of data 6rom row INDEX. The Selds are stored

in A(IMT.KM) and B(IMTJ(M).

2 subroutine reads a north-south section of data from colum INDEX. The fields are

stored in AOMT,KM) andBQMT.KM).

INDEX defines the level, row or column required.

4.2.2 Medium level routines

These are designed for moving round and reading in parts of the fuH archive dataset in

an efficient manner. For example, to calculate the velocity field on density surfaces, one might

first call the routine to read the stream function and then move systematically through the slab

fields reading the required temperature, salinity and velocity data, calculating the density and

interpolating the velocity field in the process. By reading through the full dataset only once

, during even the most complex calculations, programs i:ising these routines can be more

efficient than programs which only use calls to the high level subroutine MGSDAT.

The routines need the integer constants in COMMON block GRIPAR to be set before they

are called. A number of them modify the position of the pointer MWORD which points to the

next word to be read from the file,

SUBROUTINE READ40)

This must only be called immediately after opening the archive dataset. It reads the variables

RETT, TTSEC, AREA, VOLUME from the dataset and puts ITT (integer value of RITT) into

COMMON block PLTTYP and TTSEC into COMMON block TIME.

- 13-

siiBBK t̂rrDyi-AacssTucn/CESECTr)

This moves the pointer MWORD to the beginning of the section of data defined by ISECT:

ISECT = 1 - start of header

2 - variable RTTT (ITT in floating point format)

3 - start of stream function

4 - start of HR array

5 -laaul: oflJSTVVflT/ErrAItcuncrys

6 - start of PRESS array

7 - start of slabs.

SUBROUTINE MGSRDS(C)

This moves the pointer MWORD to, and reads, the stream function.

O (IMT,]MT) - array for data.

SUBROUTINE MGSRDH(HR)

This moves the pointer MWORD to, and reads, the HR array.

HR(IMT, jMT) - array br data.

SUBROUTINE MGSRDP(A)

This moves the pointer MWORD to, and reads, the pressure array,

A(IMT, JMT) - array for data.

SUBROUTINE MGSRDU(A. B)

This moves the pointer MWORD to, and reads, the USTAR and VSTAR arrays,

A(IMT, JMT) - array for USTAR data

B(IMT, JMT) - array for VSTAR data.

SUBROUTINE MGFKMl (FKMP)

This reads the masking array for tracer points,

FKMP(IMT, JMT) - array for masking data.

SUBROUTINE MGFKM2(F3[M0)

This reads the masking array for velocity points.

FKMO(IMT, JMT) - array for masking data.

14-

S%JBIK:KJTINnE]V[G%3R[)0(;i,.D

This reads the data, for the surface level, from one of the 1-dimensional (MT) sea-ice model sub-

arrays (ie. ice fraction, ice thickness) in the current slab and places it into row J of the array

A(IMT, JMT). On entry MWORD should point to the first word of the sub-array, on exit it points to

the first word of the next sub-array.

A - array for data

J -Jth slab.

EKJEUaOUTTNE N[G%3RDl(/LJ,I&n]EX)

This reads the data for level INDEX, from one of the 2-dimensional (IMT*KM) sub-arrays in the

current dab (ie. T, U orV) and places it into row J of the array A(IMT, JMT). On entry MWOED

should point to the first word of the sub-array, on exit it points to the first word of the next sub-

array. By looping through the full set of slabs, this routine can be used to build up a horizontal

section at depth level INDEX.

A - array for data

J - Jth slab

INDEX - level

SUBROUTINE MGSRD2(A)

This reads a complete 2-dimensional (MT, KM) sub-array from the current slab into A(IMT, KM).

On entry MWORD should point to the first word of one of the 2-dimensional sub-arrays in the

current slab. On exit it points to the first word of the next sub-array.

A - array for data.

SUBROUTINE MGSRD3(A, J, I)

This reads the data for column I from one of the 2-dimensional (IMT, KM) sub-arrays in the

current slab and places it into column J of array AQMT, KM). On entry MWORD should point to

the first word of the sub-array. On exit it points to the first word of the next sub-array. By

looping through the full set of slabs, this routine can be used to build up a north-south section,

A - array for data

J - Jth slab

I - Ith column.

SUBROUTINE MGSRDF(A, J)

This reads the data for one of the 1-dimensional (IMT) sub-arrays from the current slab and

places it into row J of the array A(IMT, JMT). On entry MWORD shoiild point to the first word of

the sub-array. On exit it points to the first word of the next sub-array.

IS

A - array for data

J - Jth slab.

SUBROUTINE MGSSKl (K)

This skips over K 2-dimensional (MT, KM) sub-arrays, ie. K*IMT*KM words.

K - integer.

SUBROUTINE MGSSK2(K)

This skips over K 1-dimensional (IMT) sub-arrays, ie. K*IMT words,

K - integer.

SUBROUTINE MGSDZZ(DZ, DZZ, ZDZ, ZDZZ)

This is a usefiil routine which calculates the depth arrays DZZ, ZDZ and. ZDZZ from the DZ array.

Array ZDZ needs to be set up correctly for use by routines which calculate the barotropic

velocity,

DZ (KM) - array of level thicknesses

DZZ(KM+1) - vertical grid spacing between T,U,V points

ZDZ(KM) - vertical position of bottom of levels

ZDZZ (KM+I) - vertical position of T,U,V grid points.

4.2.3 Low level routine

This is the basic low level reading routine which is used by aE the above high and

medium level routines. It will usually not be called by a i:iser's program.

SUBROUTINE XREAD(A M, N, IFAIL)

This routine reads in N words of data and places them into array A. The pointer M is then

increased by N.

A - array for data

M - starting point of data (words)

N - number of words of data to be read in

IFAIL - returns non-zero if subroutine fails.

1 6 -

4.2.4 Input and output routines

These routines open the input and output files and write the header and data to the

output Sle.

DJFTL, IFTUIj

This opens the input 61e as an unformatted, direct access Sle with a block size of 16000 bytes. It

also initializes the pointers used by XREAD.

NUNTT - input stream

DIRN - directory containing the input data files

INFIL - name of input file

IFAIL - returns non-zero if subroutine fails.

SUBROUTINE OUTSTRQ^UNIT, OUTFIL, IFAEj)

This opens an output file and associates it with fortran stream NUNIT.

NUNTT - output stream

OUTFIL - output filename

IFAIL - returns non-zero if subroutine fails.

SUBROUniSIE OFILEN(TRAC, DEPVAR, OUTFIL, IFAIL)

This creates the output filename according to field variable TRAC and orientation variable

DEPVAR, following the convention described in section 3,4,

TRAC - 1. Stream Function

2. USTAR

3. VSTAR

4. Pressure

5. TempTerature

6. Salinity

7. U Velocity

8. V Velocity

9. Ice Fraction

10. Ice Thickness

DEPVAR - 1, East-west vertical section

2. North-south vertical section

3. Horizontal section

17

OU'l'JriL - output Glename

IFAIL - returns non-zero if subroutine fails.

SUBROUTINE HEADER2(NUNIT, TRAC, DEPVAR, 'CD', NAMRUN)

This routine writes the header on the output file.

NUNIT - output stream

TRAC - field variable (as above)

DEPVAR - orientation variable (as above)

'CD' - format

NAMRUN - comment line in header of output file.

SUBROUTINE ASCOUT(ARRAy, IDIM, ID, JD, VMASK, NCHAR, NOUT)

This will encode a section of an array as sets of 'NCHAR' printable characters, and write as a

formatted card-image dump (using ASCII characters 0-9;A-Z; a-z; Q: .,).

ARRAY - contains the data to be encoded

IDIM - declared first dimension of 2-dimensional array, ARRAY

ID - actual first dimension of data in ARRAY

JD - actual second dimension of data in ARRAY

VMASK - array containing the 4 masking values

NCHAR - number of characters encoding each data point (2-5)

NUNIT - output stream.

4.3 Model depth array

The thicknesses of the model levels are stored in the DZ array, which is used to calciilate

aU the depth parameters calculated by subroutine MGSDZZ. The thicknesses (cms) of the 32

levels used in FRAM are given by the following DATA statement:

DATADZ /20.7E2, 23.3 E2, 26.5 E2, 31.0 E2, 37.3 E2, 46.7 E2., 61.6 E2, 85.9E2,

121.E2, 156. E2, 180. E2, 195. E2, 205. E2, 211.E2, 215. E2, 219. E2,

221. E2, 223. E2, 225. E2, 226. E2, 227. E2, 228. E2, 229. E2, 230. E2,

230. E2, 231. E2, 231. E2, 232. E2, 232. E2, 233. E2, 233. E2, 233. E2 /

4.4 COMMON blocks and variables

The following COMMON blocks must be declared at the beginning of any user program.

COMMON /GRIPAR/ PSIDEG, DXDEG, PHIDEG, DYDEG, IMT, JMT, KM, NT, LSEG, NISLE,

- 1 8

LCYC, LBC, MSI

(]C)MMaN/pi;rnnp/i[Hit, rr̂ np, iNi)E[x,iTT, EoiNi

Ĉ CMVIMCyN/EBlJFF/ n2BlIF(40()0), IJSUfTF, hOBUFF, RINn', CyUNTT

COMMON /MGSCCR/ MWORD

COMMON /TSTEP/ NDHR, NDLAS, NDINC

COMMON /TIME/ TTSEC

COMMON /LVAIg/ TSLAB(8). IN

The variables in COMMON block GRIPAR are set at the beginning of the program. Their

definitions and values in the FRAM archive datasets are given in the following table:

Variable Value Definition

PSIDEG -0.5 The longitude (+ east) of the western boundary of the model.

DXDEG 0.5 The east-west grid spacing of the model

PHIDEG -79.0 The latitude (+ north) of the southern waU of the model.

DYDEG 0.25 The north-south grid spacing of the model.

IMT 722 The number of grid points in the east-west direction.

JMT 221 The number of grid points in the north-south direction.

KM 32 The number of vertical levels in the model.

NT 2 The number of tracer variables (temperature and salinity).

LSEG 7 The maximum number of sets of start and end indices for

vorticity.

NISLE 3 The number of islands.

LCYC 1 Non-zero for cyclic east-west boundary conditions.

IBC 2 The number of one dimensional arrays stored with each model

MSI

slab (excluding sea ice arrays),

0 or 2 The maximum number of ice layers in the sea ice model.

Equal to 0 if no sea ice arrays are present.

The variables in COMMON block PLTTYP are used in subroutine MGSDAT. They must be

set in {he user program. (ITT may be set by a call to READ4 immediately after opening the

archive dataset.)

Variable Definition

ITYP = 0 subroutine reads the stream function

1 subroutine reads U, V and the stream function.

19-

2 subroutine reads tracers.

3 subroutine reads USTAR and VSTAR .

IDIR = 0 subroutine reads a horizontal section of data from depth level INDEX

1 subroutine reads an east-west section of data from row INDEX

2 subroutine reads a north-south section of data from colum INDEX.

INDEX Constant I, J or K value of slab to be extracted.

n r IWo&aOmeaep.

IDM Declared I-dimension of array sent to subroutine ASCOUT. (IMT for E-W sections

and horizontal slabs, JMT for N-S sections).

The variables in COMMON block lEBUFF are set in subroutines INSTR, OUTSTR and used

in subroutine XREAD. They normally need not be set by the user.

l/knabZe De&uh'on

IEBUF(4000) Input buSer for 32-bit word ii^ut data.

LBUFF Position in the input Be of the Srst element of the current buSer.

MBUFF Length of buffer (MBUFF = 4000).

lUNIT Input stream.

OUNTT Output stream.

The variable in COMMON block MGSCCR is modiSed in a mimber of subroulines.lt

normally need not be set by the user.

MWORD Pointer to the next word to be read from the file..

The variables in COMMON block TSTEP are used in subroutine HEADER2. If this is to

be called, they should be set up by the user main program. In the FRAM archive datasets,

NDLAS always equals NDFIR (=ITT) and NDINC is zero. This is because only one timestep is

stored in each dataset.

l/^abZe DeAubbn

NDFIR Timestep of first slab in output file.

NDLAS Timestep of last slab in output file,

NDINC Incremental timestep between slabs in output 51e.

2 0 -

The variable in COMMON block TIME is set in subroutine READ4 and used in subroutine

OFILEN.

Vaiiahle Definition

TISEC Total elapsed time of model run in seconds.

21

REFERENCES

THE FRAM GROUP (WEBB, D.J. et al) 1991 An eddy-resolving model of the Sonthein Ocean.
EOS, Transactions of the American Geophysical Union. Vol 72 (15), 169-174.

22 -

APPENDIX I FORTRAN LISTINGS OF THE EXTRACT PROGRAM

1 PROGRAM EXTRACT

C Program to create a 'cutout' file of one of the output fields of
C the Fine Resolution Model, using a compressed data set.
C
C Version 4.0 12/05/92 T. Hateley, lOSDL.
C
0 DEFDIR - default directory for the input data files
C DIEN - directory used to open input file
C INFIL - full input Glename (including directory name)
C OUTFIL - output filename
C

COMMON/IEBUFF/IEBUF(4000), LBUFF, MBUFF, lUNTT, OUNIT
COMMON /PL'rrYP/IDIR.rrYP,INDEX,nT,IDIM
COMMON /GRIPAB/PSIDEG, DXDEG, PHIDEG, DYDEG,

& IMT. JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /TSTEP/ NDFIR,NDLAS,NDINC
COMMON/TIME/ TTSEC
DIMENSION FKMP(722, 221), FKM0(722.221)
INTEGER VALS(8)
REAL LAT(8), L0NG(8)
COMMON /LVALS/ TSLAB(8). IN
DIMENSION A(722,221), B(722,221), 0(722,221), HR(722,221)
DIMENSION DZ(32), DZZ(33), ZDZ(32), ZDZZ(33)
CHARACTER NAMRUN*SO
CHARACTER*9 DEPVAR
CHARACTER*! STRAC
CHARACTER'S 12 DEFDIR
CHARACTER'S 12 DIRN
CHARACTER* 1024 INFIL
CHARACTER*12 OUTFIL
REAL TDEP(722, 221), TL0NG(221,32)
REALVMASK(4)
REAL SLARR(722, 221)
DATA VMASK/10.ES,1I.E5,12,ES,13.ES/
EXTERNAL SSOUAR

C
RADIUS = 6370.ES
RADIAN = 57.29S78
PSIDEG = -0.5
PHIDEG = -79.0
DXDEG = 0.5
DYDEG = 0.25
IMT = 722
JMT = 221

23-

KM = 3 2
NT = 2
LSEG = 7
NISLE = 3
LBC = 2
MSI = 2

C
MTMl =IMT- 1
JMTMl =JMT- 1
]MIM2 =]Mr-2
JMTM2=JMT-2

C
DATADZ/ 20.7 E2, 23.3 E2, 26.5 E2, 31.0 E2, 37.3 E2,

& 46.7 E2, 61.6 E2, 85.9 E2, 121. E2, 156. E2,
& 180. E2, 195. E2, 205. E2, 211. E2, 215. E2,
& 219. E2, 221. E2, 223. E2, 225. E2, 226. E2,
& 227. E2, 228. E2. 229. E2, 230. E2, 230. E2,
& 231. E2, 231. E2, 232. E2, 232. E2, 233. E2,
& 233. E2, 233. E2 /

C
C defaijlt directory containing the input data Sles
C

DEFDIR = 7data/fram3a/data'
C

PRINT* ""
PRINT *, TRAM Data Extraction Programme."
PRINT "===============================' PRINT *,

C
C set the input file directory
C

CAlJj SETDIR(DEFDIR. DIRN)
C
C initialise the input stream
C

CALL INSTR(20, DIRN, INHL, IFAIL)
C
C read the 6rst 4 variables from the input 61e (INFIL)
0

CALLREAD40
C
C choose type of slices required
C

CALL SETUP(TRAC, DEPVAR, NAMRUN)
C
C set output filename
C

CALL OFILEN(TRAC, DEPVAR, OUTFIL, IFAIL)
0
C initialise the output stream
C

CAIjuOUTSrR(18, OUTFIL, IFAIL)

24

NDFIR = ITT
NDLAS = 1000000

C
C set DTTS and NDINC from ITT
C

IF (irr .LE. 19440 .OR. (ITT .GT. 28296 .AND. ITT .LE. 32688))THEN
NDINC = 720
DTTS =1200

ELSE
NDINC = 360
DTTS = 2400

ENDIF
C
C set level depths arrays
C

CALL MGSDZZ (DZ. DZZ, ZDZ, ZDZZ)
C
C write header for ascout cutout 61e
C

CALL HEADER2(18, TRAC, DEPVAR 'CD', NAMRUN)
C
C read in masking array
C

IF CrRAC(l:3) ZQ. 'STR') THEN
CALLMGSRDH^)

ELSE IF (TRAC(1:3) .EQ. 'TEM' .OR TRAC(1:3) .EO. 'SAL') THEN
CALLMGFKMl QKMP)

ELSE IF (TRAC(1:3) .EO. 'U V .OR. TRAC(1:3) .EO. 'VV .OR.
& TRAC(1:3) .EO. 'ICE') THEN

CALLMGFKM2 (FKMO)
ENDIF

C
C extract Stream Function, Pressure, USTAR, VSTAR
C

IF (TRAC(1:3) .EO. 'STR') THEN
0
C extract stream function
C

WRITE (18, 900) ' '
CALL MGSDAT(A. B, C, HR. ZDZ)
SCL= 1.E12
DO 101 = 2, IMTMl
DO 10J = 2, JMT

SLARR(I - 1. J - 1) = C(I, J) / SCL
IF ((HR(I J) JLT. 1. E-9) .AND.

& (HR(I-I, J) .LT. 1. E-9) .AND.
& (HR(I , J-1) .LT. 1. E-9) .AND.
& (HR(I-1, J-1) .LT. 1. E-9)) THEN

SLARR (I-l, J-1) = VMASK(l)
ENDIF

10 CONTINUE
WRITE(18, 910) TTSEC, DTTS

25

CALL ASCOUTCSLARR. IMT, IMTM2, jMTMl, VMASK, 2, 18)
GOTO 999

ELSE IF (TRAC(1:3) .EQ. "UST') THEN
C
C extract USTAR array
G

WRITE (18, 900) ' '
CALL MGSDAT(A, B, C, HR, ZDZ)
WRITE(18, 910) TTSEC, DTTS
CALL ASCOUT(A IMT, IMTM2, JMTMl, VMASK, 2, 18)
GOTO 999

C
ELSE IF (TRAC(1:3) .EO. VST') THEN

C
C extract VSTAR array
C

WRITE (18, 900) ' '
CALLMGSDAT(A B, C, HR, ZDZ)
WRITE(18, 910) TTSEC, DTTS
CALL ASCOUT(B, IMT, IMTM2, JMTMl, VMASK, 2, 18)
GOTO 999

C
ELSE IF (TRAC(1:3) .EQ. 'PRE') THEN

C
C extract PRESSURE array
C

WRITE (18, 900) ' '
CALL MGSDAT(A B, C. HR. ZDZ)
DO 20 I = 2, IMTMl
DO 20 J = 2, JMT

SLARR(I-1,J-1) = A(I,J)
20 CONTINUE

WRITE(18, 910) TTSEC, DTTS
CALL ASCOUT(SLARR, IMT, IMTM2, JMTMl, VMASK, 2, 18)
GOTO 999

ENDIF
C
C extract Temperature, Salinity, U Velocity, V Velocity
C if MSI .ne. 0) Ice Fraction, Ice Thickness
C

IF (DEPVAR (1:3) .EQ. "LAT) THEN
C
C extract E/W section along latitude line INDEX
C
C complete header for latitude slice
C

DO 250 IH = 1, IN
C
C convert latitude to J value
C

LAT(IH) = TSLAB(IH)
VALS(IH) = 4 * (80.0 - LAT(IH)) - 3

26-

250 CONTINUE
WRTTE (18, 920) (LAT(IH), IH = 1, IN)

C
IF (TRAC(1:3).EO,'TEM'.OR.TRAC(I:3).EO.'SAL') THEN

DO 290 IH= 1,IN
PRINT *, 'extracting slab IH
INDEX = VALS (IH)

C
C read in the data
C

CALL MGSDAT(A, B, C, HR, ZDZ)
C
C scale temperature and salinity fields and mask with FKMP array
C

DO 220 I = 2, HVITMl
DO 220 K= 1,KM

IF (INT(FKMP(I,INDEX)) .EQ. 0) THEN
SLARR (I-I,K) = VMASK(I)

E I ^ IF (INT(FKMP(I,INDEX)) .GE. K) THEN
IF (TRAC(r.l) .EO. T) THEN

SLARR (I-1,K)=A(I,K)
ELSE IF (TRAC(1:I) .EO- 'S') THEN

SLARR(I-1,K)= B(I,Bg * 1000
SLARR (I-1,K)=SLARR(I-1,K) + 35.

ENDIF
ELSE

SLAER (I-l, = VMASK(2)
ENDIF

220 CONTINUE
WRITE (18, 910) TrSEC,DTTS

C
C convert data to ASCOUT format and send to output stream
C

CALL ASCOUT(SLARR, IMT, IMTM2, KM, VMASK, 2, 18)
290 CONTINUE

C
ELSE IF (TRAC(1:3).E0.'U V.OR.TRAC(1:3).EO.'VV)THEN

DO 390IH= 1, IN
PRINT *, 'extracting slab ', IH
INDEX = VALS (IH)

C
C read in the data
C

CALL MGSDAT(A, B, C, HR, ZDZ)
C
C mask velocity fields with FKMQ array
C

DO 3201 = 2, IMIMI
DO 320 K= 1,KM

IF (INT(FKMO(I.INDEX)) ,E0. 0) THEN
SLARR (I-I, tp = VMASK (1)

E I ^ IF (INT(FKMO(I, INDEX)) .GE. K) THEN

27

Dr JSO. U") TT3E2J
EaLAiatC[-i.K)==.A(i, K)

ELSE IF(TRAC(1:1) .EQ. 'V)TPiEN
SLARR(1-1,K) =B(I,K)

ENDIF
EL5E

SLAER (I-l, tg = VMASK (2)
ENDIF

320 CONTINUE
WRITE (18, 910) TTSEC.DTTS

C
C convert data to ASCOUT format and send to output stream
C

GALL ASCOUT(SLARR. IMT, IMTM2, KM, VMASK, 2, 18)
390 CONTINUE

ENDIF
C

ELSE IF(DEPVAR(1:3) .EQ. 'LON") THEN
C
C extract N/S section along longitude line INDEX
C
C complete header for longitude slice
C

DO 400 IH = 1, IN
C
C convert longitude to I value
C

LONG(IH) = TSLAB(IH)
VALS(IH) = 2.0 * LONG(IH) + 2

400 CONTINUE
WRITE (18, 920) (LONG(IH), IH = 1, IN)

C

C
IF (TRAC(1:3).EO.'TEM'.OR.TRAC(1:3).EO.'SAL') TPIEN

DO 490 IH= 1,IN
PRINT *, 'extracting slab IH
INDEX = VALS(IH)

C
C read in the data
C

CALL MGSDAT(A, B, C, HR, ZDZ)
0
C scale temperature and salinity Selds and mask with FBIMP array
C

D 0 420J = 2,JMT
DO 420 K= 1,KM

IF (INT(FKMP(INDEX,J)) EQ. 0) THEN
TLONG G,K) ='VMASK(1)

ELSE IF (INT(FKMP(INDEX,J)) .GE. K) THEN
JK = (K-1)*JMT+J
IF (TRAC(1:1) EO- 'T') THEN

TLONG = A (]K,1)

28

ELSE IF (TRAC(I:I) EQ. 'S') THEN
TLONGG.K)=B(]K,1)*1000
TLONG G.K) =TLONGG,K) +35.

ENDIF
ELSE

TLONG 0,K) = VMASK(2)
ENDIF

420 CONTINUE
DO 440J = 2,JMT
D 0 440K= l.KM

SLARR G-1, K) = TU3NG G, K)
440 CONTINUE

WRITE (18, 910) TTSEC. DTTS
C
0 convert data to ASCOUT format and send to output stream
C

CALL ASC0UT(SLARR.IMT,JMTM1 ,KM,VMASK,2,18)
490 CONTINUE

C

c
ELSE IF (TRAC(1:3).E0.'U V.OR.TRAC(1:3).EO.'V V)THEN

DO 590 IH= 1,IN
PRINT *, 'extracting slab IH

INDEX = VALS(IH)
C
C read in the data
C

CALL MGSDAT(A. B, C, HR. ZDZ)
C
0 mask velocity fields with FBCMO array
C

DO 520 J = 2. jMIMl
DO 520 K= 1, KM

IF (TNT(FKMO(INDEX.J)) -EQ. 0) THEN
TLONG G.K)='VMASK(1)

ELSE IF (INT(FKMO(INDEX,J)) .GE. K) THEN
jK = (K-1)*JMT+J
IF (TRAC(1:1) .EO- TT) THEN

TLONGG.K)=AaK.l)
ELSE IF (TRAC(1:1) .EO. V) THEN

TLONGG.K)=BOK,1)
ENDIF

ELSE
TLONG C.KD = VMASK(2)

ENDIF
520 CONTINUE

DO 540J=2,jMTMl
DO 540K=1.KM

SLARR G-1,K) = TLONG G.K)
540 CONTINUE

WRITE (18, 910) TTSEC, DTTS
0

-29

C convert data to ASCOUT format and send to output stream
C

CALL ASC0UT(SLARR,IMT,JMTM2,KM,VMASK,2.18)
S90 CONTINUE

ENDIF
C

ELSE IF (DEFVAR(1:3) .EQ. "DEP") THEN
C
C extract horizontal section at level INDEX
C
C complete header for horizontal slice
C

IF (TRAC(I:3) .EQ. ICE") THEN
WRITE (18, 900) ' '

ELSE
DO 600 IH= I, IN

C
C convert level depth to K valiie
C

VAL8(IH) = INT(TSLAB(IH))
600 CONTINUE

WRITE(I8, 930) (VALS(IH), IH = I, IN)
ENDIF

C

C
IF (TRAC(I:3) .EO- 'TENT .OR TRAC(I:3) .EO. 'SAL') THEN

DO 690 IH = 1. IN
PRINT *, 'extracting slab ', IH
INDEX = VALS(IH)

C
C read in the data
C

GALL MGSDAT(A. B, C, HR ZDZ)
C
C scale temperature and salinity fields and mask with FKMP array
C

D0 620J = 2,JMT
D0 620I= l.IMT

IF (INT(FKMP(I,J)) .EO. 0) THEN
1DEP (I,J) = "VMASK (I)

ElgE IF (INT(FKMP(I,J)) .GE. INDEX) THEN
IF (TRAC(I:I) .EO. T) THEN

1DEP(I,J) = A(I,J)
ELSE IF (TRAC(1:1) .EQ. 'S') THEN

TDEP(I,J) = B(I,J) * 1000
TDEP(I,J) = TDEP(I,J) + 35

ENDIF
ELSE

TDEP (I,J) = VMASK (2)
ENDIF

620 CONTINUE
DO 640J=2,jMT

30 -

DO 6401= 2, IMTMl
SLARR(I-1,J-1) = TDEP(I,J)

640 CONTINUE
WRITE (18,910) TTSEC. DTTS

C
C convert data to ASCOUT format and send to output stream
C

CALL ASC0m'(SLARR,IMT.IMTM2,JMTMl .VMASK.2,18)
690 CONTINUE

C
ELSE IF (TRAC(1:3) .EO. "U V .OR. TRAC(1:3) .EQ. "VV) THEN

C
DO 790 IH= 1,IN

PRINT *, 'extracting slab IH
INDEX = VALS(IH)

C
C read in the data
C

CALL MGSDAT(A. B, C, HR. ZDZ)
0
C mask velocity fields with EKMO array

DO 720J = 2,JMrMl
DO 7201= 1, IMT

IF (INT(FKMO(IJ)) .EO. 0) THEN
TDEP (I,J) = VMASK(l)

ELSE IF (INT(FKMO(IJ)) .GE. INDEX) THEN
IF (TRAC(1:1) .EO. IT) THEN

TDEP(I,D=A(I.J)
ELSE IF (TRAC(1:1) .EQ. "V) THEN

TDEP(I,J) = B(I,J)
ENDIF

EI5E
TDEP (I,J) =VMASK(2)

ENDIF
720 CONTINUE

D0 740J=2,JMTM1
DO 740 I=2,IMTM1

SLARR(I-1,J-1)=TDEP(IJ)
740 CONTINUE

WRITE (18,910) TTSEC, DTTS
C
C convert data to ASCOUT format and send to output stream
C

CALL ASC0UT(SLARR.IMT,IMTM2,]MT1V[2,VMASK,2,18)
790 CONTINUE

C
ELSE IF (TRAC(1:3) .EQ. 'ICE' .AND. MSI .NE. 0) THEN

C
C extract horizontal section at the siirface - ice fraction, ice thickness
C
C read in the data

31 -

CALL MGSDAT(A. B, C. HR, ZDZ)
C
C mask ice fields with FKMQ array
C

DO 820 J = 2. JMT
DO 8201= 1, IMT

IF (INT(FKMO(IJ)) .EO. 0) THEN
TDEP (I,J) = VMASK (1)

ELSE IF (INT(FKMO(I.J)) GE. INDEX) THEN
IF (TRAC(1:5) .EO. TOE F^ THEN

TDEP(I,J) =A(I,J)
ELSE IF (TRAC(1:S) .EO. 'ICE T") THEN

TDEP(I,j)=B(I,J)
ENDIF

ELSE
TDEP(I,J) = VMASK (2)

ENDIF
820 CONTINUE

DO 840 J= 2, JMTMI
DO 840 1= 2, IMTMl

SLARR(I-1, J-1) = TDEP(I,J)
840 CONTINUE

WRITE (18.910) 1TSEC, DTTS
C
C convert data to ASCOUT format and send to output stream
0

CALL ASC0UT(SLARR,IMT,IMTM2,JMIM2.VMASK,2,18)
ENDIF

ENDIF
C

900 FORMAT (A50)
910 FORMAT ('FIRST TTSEC ',F12.0,' DTTS \F5.0)
920 FORMAT (8F8.3)
930 FORMAT (16IS)
999 STOP

END

SETUP ROUTINES IJSED BY PROGRAM EXTRACT

The variables in COMMON block LVALS are set in subroutine SETUP and used in the main

program.

TSLAB(8) Position of slabs to be extracted (latitude, longitude, level)
IN Number of levels to be extracted (maximium of 8).

32

2.1 SUBROUTINE SETDIR (DEFDm,DIKN)

C This routine sets the directory to search for the FRAM archive datasets.
C DEFDIR - defined default directory containing the archive datasets
C DIRN - directory to be used by the program.
C

CHARACTER*S12 DEFDIR
CHARACTER*512 DIRN
CHARACTER'S 12 TDIR
LOGICAL AROUND

C
PRINT *, 'Directory $<CR> to select default directory

& DEFDIR(:LNBLNK(DEFDIR)). '
READ (* '(A512)') TDIR
WRTTEC*, '(Al)') ' '

C
IF (LEN(TDIR(:LNBLNK(TDIR))) .EO. 0) THEN

DIRN = DEFDIR
ELSE

INOUIRE(FILE = TDIR. EXIST = AROUND)
IF (AROUND) THEN

DIRN = TDIR
ELSE

PRINT *, 'Caimot 8nd directory TDIR(:LNBLNK(TDIR))
STOP

ENDIF
ENDIF
RETURN
END

2.2 SUBROUTINE SETUP(TRAC, DEPVAR, NAMRUN)

C This is a control routine to set type and contents of slab(s) to be extracted from the
C dataset.
C TRAC -Geldvariable
C DEPVAR - orientation variable (longitude, latitude, depth)
C NAMRUN - comment line in header of output file.
C

CHARACTER NAMRUN*50
CHARACTERS DEPVAR
CHARACTER*1S TRAC
INTEGER ITRAC,IDEP
COAmON /PLTTYP/IDIR,ITYP,INDEX,ITT,IDIM
COMMON /LVALS/ TSLAB(8), IN

C

c
NAMRUN = ' FINE RESOLUTION MODEL

]TRAC = -1

DO 100 WHILE (ITRAC .LT. 0 .OR. ITRAC .GT. 10)
WRITE(* 910)

- 3 3 -

WRITE(*,
WRITE(*,
WRITE(*,

910) '
910)
910)

WRTTEC* 910)
910)
910)
910)
910)

WRITE(*
WRITEC*
WEITE(*:
WEITE(*,
WRTTEC*, 910)
WEnE(*, 910)
WEITE(*, 910)
WRrrE(* 910)

TRAC
1. Stream Function
2. USTAR
3. VSTAR
4. Pressure
5. Temperature
6. Salinity
7. U Velocity
8. V Velocity
9. Ice Fraction

10. Ice Thickness'

WRITE(*, '(A38, $') '
READ(*, '(12)') ITRAC

100 CONTINUE

Enter number of field required

IF (ITRAC .EQ. 0) THEN
STOP

ELSE IF (ITRAC .EQ. 1) THEN
TRAC = 'STREAM FUNCTION'
DEPVAR = 'STREAM'
IDIR = 0
ITYP = 0
TSLAB(l) = 0.0
IN = 1

ELSE IF (ITRAC .EO. 2) THEN
TRAC = 'USTAR'
DEPVAR = 'STREAM'
IDIR = 0
ITYP = 3
TSLAB(l) = 0.0
IN= I

ELSE IF (ITRAC .EQ. 3) THEN
TRAC = VSTAR'
DEPVAR = 'STREAM"
IDIR = 0
ITYP = 3
TSLAB(l) = 0.0
IN= 1

ELSE IF (ITRAC .EO. 4) THEN
TRAC = 'PRESSURE'
DEPVAR = 'STREAM'
IDIR = 0
ITYP = 4
TSLAB(l) = 0.0
IN= 1

ELSE IF (ITRAC .EO. 5) THEN
TRAC = "TEMPERATURE'
ITYP = 2

ELSE IF (ITRAC .EO. 6) THEN
TRAC = 'SALINITY'

c

- 3 4 -

ITYP = 2
ELSE IF (TTRAC EQ. 7) TEEN

TRAC = ' u v E L O c r r r
ITYP= 1

ELSE IF (ITRAC EQ. 8) THEN
TRAC = 'VVELOCITY'
ITYP = 1

ELSE IF (ITRAC EQ. 9) THEN
TRAC = ICE FRACTION'
DEPVAR = DEPTH'
IDIR = 0
rryp = s
TSLAB(l) = 0.0
IN = 1

ELSE IF (ITRAC EQ. 10) THEN
TRAC = 'ICE THICKNESS'
DEPVAR = 'DEPTH'
IDIR = 0
ITYP = 5
TSLAB(I) = 0.0
IN= 1

ENDIF

IF (TTRAC .GT. 4 JWID. ITRAC .LE. 8) THEN
IDEP = -1
DO 200 WHILE (IDEP .LT. 0 .OR. IDEP .GT. 3)

WRITE(*, 910)
WRITE(* 910) ' DEPVAR
WRITE(*, 9S0)

& ' 1. Vertical Section (E/W) - constant latitude '
WRITE(*, 950)

& ' 2. Vertical Section (N/S) - constant longitude'
WRITE(*, 950)

& ' 3. Horizontal Section - constant depth '
WRITE(*, 910)
WRrrE(*, '(A38, $)')

& ' Enter niimber of Geld required :'
READ(* '(II)') IDEP

200 CONTINUE

IF (IDEP .EO. 0) THEN
STOP

ELSE IF (IDEP .EQ. 1) THEN
DEPVAR = 'LATITUDE'
IDIR = 1

ELSE IF (IDEP EQ. 2) THEN
DEPVAR = 'LONGITUDE'
IDIR = 2

ELSE IF (IDEP .EQ. 3) THEN
DEPVAR = 'DEPTH'
IDIR= 0

ENDIF

35-

300 910)
WRTIEC*. '(A27, $)') ' No of slabs (MAX=8) : '
READ(*, '(II)') IN
IF (IN .LT. 0 .OR. IN .GT. 8) GOTO 300
WRITE (*, 910)
DO 400 I = 1, IN
IF (IDEP EO. 1) THEN

WRITE(* '(AlO, I1,A13, $)')
& ' Slab I, Latitude = '

READ(* '(F5.2)') TSLAB(I)
IF (TSLAB(I) .LT. E-4) TSLAB(I) = -TSLAB(I)

ELSE IF (IDEP .EQ. 2) THEN
WRITE(* '(AlO, I1,A14, $)')

& ' Slab I, Longitude = '
READ(*, '(F5.2)') TSLAB(I)
IF (TSLAB(I) .LT. E-4) TSLAB(I) = 360.0 + TSLAB(I)

ELSE IF (IDEP .EO. 3) THEN
WRITE(* '(AlO, II, AlO, $)')

& ' Slab ', I,'. Level = '
READ(*, '(12)') rrSLAB

TSLAB(I) = FLOAT(rrSLAB)
ENDIF

400 CONTINUE
ENDIF

910 FORMAT(A20)
930 F0RMAT(A16)
940 F0RMAT(A24)
950 F0RMAT(A47)
999 RETURN

END

36

APPENDIX n FORTRAN LISTINGS OF FRAM USER INTERFACE SUBROUTINES

1 High level routine

The variables in COMMON blocks GRIPAR and PLTTYP must be set before this routine is called
by a user program.

SUBROUTINE MGSDAT(A, B, C, HRR, ZDZ)

C Reads in slabs of data according to the variables IDIR, ITYP and INDEX.
C
C If IDIR = 0 - reads in a horizontal section of data
C from depth level INDEX

= 1 -]n3arL3incui]5aaa^VV(%Asewaic«i()fcLata,
C along the INDEX-th line of grid points
C = 2 - reads in a North-South section of data,
C along the INDEX-th line of grid points
C
C If ITYP = 0 - reads the stream function into C; A and B are unused,
C applicable only when IDIR = 0
C = 1 - reads U velocity into A, V velocity into B
C and stream function into C
C The inverse depth array is passed in HR
C The barotropic and baroclinic velocities are combined
C to give the tuU velocity
C = 2 - reads T into A, S into B; C not used
C = 3 - reads USTAR into A, VSTAR into B,
C and stream function into C
C IDIR not applicable.
C = 4 - reads the pressure Geld PRESS into A; B, C not used
C = 5 - reads the ice fraction into A, ice thickness into B;
C C not used
C

COMMON /PLTrYP/IDIR,ITYP,INDEX,ITT,IDIM
COIVIMON /GRIPAR/PSIDEG,DXDEG,PHIDEG,DYDEG,

& IMT, jMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
DIMENSIONA(1),B(1),C(1), HRR(IMT,jMT),ZDZ(KM)
DATA RADIAN,RADIUS/57.29578,6370.E5/

C
RAD = RADIAN / RADIUS
IDIM = IMT
JMTMl =jMT- 1
JMTM2=JMT-2

37

IF (ITYP .EO. 0 .OR. ITYP .EQ. 1) THEN
C
C read stream function
C

CAIjLMGSRDS(C)
IF (ITYP .EO. 0) THEN

RETURN
EIgEIF(ITYP.EO. 1)THEN

C
C read the inverse depth array
C

CAIjLMGSRDH(HR)
ENDIF
ELSE IF (ITYP .EO. 3)THEN

C
C read (USTAR, VSTAR) into (A B)
C

CAI2jMGSRDU(A, B)
RETURN

ELSE IF (ITYP .EO. 4) THEN
C
C read the pressure field
C

CALLMGSRDP(A)
RETURN

ENDIF
IF (k/ISI .EO. 0) THEN

LSI = 0
ELSE

LSI = MSI + 6 + 1
ENDIF

C
CALL MGSADV(7)
IF (IDIR .EO. 0) THEN

C
C ' Horizontal Section '
C

IF (ITYP .EO. 5) THEN
IF (MSI .NE. 0) THEN

C
C read (ice fraction, ice thicness) into (A B)
C

DO 100 J = 1,JMT
CALLMGSSKl(NT + 2)
CALLMGSSK2(1)
CALL MGSRDO(A J)
CALLMGSSK2(1)
CALLMGSRDO(B,J)
CALL MGSSK2(LSI - 4)
CALLMGSSK2(LBC)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

CALLMGSSKl(NT + 2)

38

ENDIF
CALLMGSSK2(LBC)

100 CONTINUE
ENDIF
RETURN

ELSE IF (ITYP .EO. 2) THEN
C
C read (T, S) at depth level INDEX into (A, B)
C

DO 200J=1.JMT
CALL MGSRD1 (A,J,INDEX)
CALL MGSRD 1 (B J,INDEX)
CALLMGSSKI(NT)
CALL MGSSK2(LBC + LSI)
IF G .EO. JMTM2 .OR J .EO. JMTMl) THEN

CAIZ,MGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

200 CONTINUE
RETURN

ELSE IF (ITYP EO. 1) THEN
C
C read (U, V) at depth level INDEX into (A, B)
C

DO 300J=1,JMT
CALLMGSSK1(NT)
CALL MGSRD I (AJ,INDEX)
CALL MGSRD 1 (B,J,INDEX)
CALL MGSSB[2(LBC + LSI)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

CALLMGSSK1(NT + 2)
ENDIF
CALLMGSSK2(LBC)

C
C Add in barotropic velocities
C

IFG .EO.JMT) GOTO 300
C S ^ = 1.0/COS((PHIDEG+G-1)*DYDEG)/RADIAN)
IMU = IMT-1
DO 350 I = 1, IMU

HRR= HRG,J)
IF (HRR .NE. 0.0) THEN
IF (1.0 + 1.0 / HRR .GE. ZDZ(INDEX)) THEN

U = G-i) * IMT + I
DIAGl = C(n+IMT+1)-C(g)
DIAG2 = C(n+IMT)-C(n+l)
W1 = -(DIAGH-DIAG2)*HRR*0.S*RAD/DYDEG
W2 = (DIAGl-DIAG2)*HRR*CSig'*0.S*RAD/DXDEG
U = G-1)*IMT+I
A(g) = A(U)+WI
B(g) = B(g)+w2

39

ENDIF
ENDIF

350 CONTINUE
300 CONTINUE

RETURN
ENDIF

ELSE IF (IDIR .EQ. 1) THEN
C
C ' East-West Section '
C

JJ = INDEX- I
IF 0 J'lE. 0) THEN

DO 400J= l.JJ
CALLMGSSKI(Nr4- 2)
CALL MGSSK2(LBC + LSI)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

400 CONTINUE
ENDIF

0
C Have now reached relevant data
C

IF (ITYP .EO. 2) THEN
C
C read (T, S) into (A, B)
C

CALL MGSRD2(A)
CALLMGSRD2(B)
CALLMGSSK1(NT)
CALL MGSSK2(mC + LSI)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

ELSE IF (ITYP .EO. I) THEN
C
C read (U, V) into (A, B)
C

CALLMGSSK1(NT)
CALLMGSRD2(A)
CALLMGSRD2(B)
CALL MGSSK2(LBC + LSI)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

C
C Add in barotropic velocities
C

J = INDEX

-40

IF (J .EO. JMT) GOTO 590
C S ^ = 1.0/COS((PHIDEG+G-1)*DYDEG)/RADIAN)
IMU = IMT-1
DO S00I=I,IMU

HRR=HR(I,J)
IF (HRR .EO. 0) GOTO 500
U = (I-1)*IMT+I
DIAGl = C(n+IMT+1)-C(n)
DIAG2 = C(?+IMT)-C(n+l)
W1 = -(DIAGI4-DIAG2)*HRR*0.5*RAD/DYDEG
W2 = (DIAGl-DIA.G2)*HRR*CSig*0.5*RAD/DXDEG
DO 550 K = 1, KM

IF (1.0 + 1.0/HRR.GE. ZDZ(K))THEN
IK= (K-1)*IMT+I
A(IK) = A(1K)+W1
B(1K) = B(IK)+W2

ENDIF
550 CONTINUE
500 CONTINUE

ENDIF
C

590 JI = INDEX + 1
IF (H .GT. JMT) RETURN
DO 600J=JJ,JIVIT

CALLMGSSKl(NT + 2)
CALL MGSSK2(LBC + IBI)
IF G .EO. JMTM2 .OR. J .EO. JMTMl) THEN

GAUjMGSSKl(NT + 2)
ENDIF

CALLMGSSK2([BC)
600 CONTINUE

RETURN
ELSE IF (IDIR .EO. 2) THEN

C
C ' North-South Section '
C

ID1M=JMT
IF (TTYP .EO. 2) THEN

C
C read (T, S) inio (A, B)
C

DO 700 J = l.JMT
CALL MGSRD3(A.J,INDEX)
CALL MGSRD3(BJ,INDEX)
CALLMGSSK1(NT)
CALL MGSSK2(LBC + LSI)
IF G .EO. JMTM2 .OR. J JEO- JMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

700 CONTINUE
RETURN

41

ELSEIF(rrYP.EO. 1)THEN
c
C read (U, V) into (A, B)
C

DO 800 J = 1,JMT
CALLMGSSK1(NT)
CALL MGSRD3(A J, INDEX)
CALL MGSRD3(B. J, INDEX)
CALL MGSSK2(LBC + LSI)
IF G EO.]MTM2 .OR. J .EQ. jMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSSK2(LBC)

C
C Add in barotropic velocities
C

I = INDEX
IF G .EO. JMT) GOTO 800
CSig = 1.0 / COS((PHIDEG+G-l)*D'yDEG)/RADIAN)
HRR = HRG, J)
IF (HRR .EO. 0.0) GOTO 800
H = 0.001 + 1.0 / HRR
g = G - 1)*IMT + I
DIAGl = e g + IMT + 1) - C(U)
DIAG2 = e g + IMT) - C(n 4- 1)
W1 = -(DIAG14-DIAG2) * HRR * 0.5 * RAD / DYDEG
W2 = (DIAG1-DIAG2) * HRR * CSRJ * 0.5 * RAD / DXDEG
DO 850 K= 1, KM
IF (H .GE. ZDZ(K)) THEN

JK= (K-1)*JMT+J
AGK) = AGK) + W1
BGK) = BOK) + W2

ENDIF
850 CONTINUE
800 CONTINUE

RETURN
ENDIF

ENDIF
END

42

2 Medium level routines

These routines need the integer constants in COMMON block GRIPAR to be set before they are
called by a user program.

SUBROUTINE REM540

C laeaKiiiiianrr, TTSaEC:, JIBEA,'VOIJJhdE from Oie niput Gle

c
COMMON /PLTI?PmiR,ITYP.INDEX,nT,IDIM
COMMON mME/ TTEEC
COMMON /MGSCCR/ MWORD
REALITEM(4)

C
CALL MGSADV(2)
CALL XREAD(ITEM, MWORD, 4, IFAIL)
RTIT = nEM(l)
rn'=iNT(RnT)
TTSEC = nEM(2)
RETURN
END

SUBROUTINE MGSADV(ISECT)

C Moves pointer 'MWORD' to start of section 'ISECT'
C
C ISECT = 1 Start of header
C =2StartofRrrr
C = 3 Start of stream function
C = 4 Start of HR
C = 5 Start of USTAR and VSTAR arrays
C = 6 Start of pressure array
C = 7 Start of slabs.
C
C Needs the variables in COMMON /GRIPAR/ to be set correctly.
C

DIMENSIONS?)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, I ^ G , NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

NWDS =]MT*JMT
NDICES = 2 * LSEG * JMT + 4 * NISLE
]j(l)== 1
L(2) = L(l) + 4000

43

L(3) = L(2) + 4 + IMT*KM*NT + NWDS
L(4) = L(3) + NWDS
L(S) = L(4) + NWDS * 3
L(6) = L(5) + NWDS * 2
L(7) = L(6) + NWDS + NDICES
JSECT=MAX(1 ,MIN(7,ISECT))
MWORD=L(ISECI3
RETURN
END

SUBROUTINE MGSRDS(A)

C Moves to and reads in the stream function,
C

DIMENSION A(l)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, IgEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

C
CALL MGSADV(3)
CALL XREAD(A, MWORD, IMT*JMT, IFAIL)
IF(IFAIL.NE.O)STOP
RETURN
END

SUBROUTINE MGSRDH(HR)

C Moves to and reads in the inverse depth array.
C

DIMENSION HR(1)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& MT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON/MGSCCR/MWORD

C
CALLMGSADV(4)
CALL XREAD(HR, MWORD, IMT*JMT, IFAIL)
IF (IFAIL .NE. 0) STOP
RETURN
END

SUBROUTINE MGSRDP(A)

C Moves to and reads in the pressure array.
C

DIMENSION A(l)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

c

-44 .

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI COMMON /MGSCCR/ MWORD

CALLMGSADV(6)

CALL XREAD(A, MWORD, IMT*JMT, IFAIL)
IF(IFAIL.NE.O)STOP
RETURN
END

SUBROUTINE MGSRDU(A,B)

C Moves to and reads in the USTAR and VSTAR arrays.
C

DIMENSION A(1),B(I)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

C
CAIL MGSADV(5)
CALL XREAD(A,MWORD,IMT*JMT,IFAIL)
IF(IFAILNE.O)STOP
CAIi XREAD(B,MWORD,IMT*JMT,IFAIL)
IF(IFAIL.NE.O)grOP
RETURN
END

SUBROUTINE MGFEM1(FEMP)

C Reads the FKMP array (masking data for the T, S points).
C

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, JMT, KM, m , LSEG, NISLE, LCYC, LBC, MSI

REAL FKMP(IMT, JMT)
C

JMTMl =JMT-1
JMTM2=JMT-2
IF (MSI .EO. 0) TEiEN

LSI = 0

LSI = MSI + 6 + 1
ENDIF

C
CAILMGSADV(7)
DO 100 J = 1,JMT

CALLMGSSKl(NT + 2)
CALLMGSSK2(LSI)
CALL MGSRDF(FKMP, J)
CALLMGSSK2(LBC- I)

45

IF G .EO. JMTM2 .OR. J .EQ. jMTMl) THEN
CALLMGSSKl(NT + 2)

ENDIF
CALLMGSSK2(LBC)

100 CONTINUE
C
C Set row JMT equal to row JMTM1 for northern boundary
C

DO 2001= l.IMTMl
FKMP(I, JMT) = FKMPP, JMIMl)

200 CONTINUE
C
C Set cyclic boundary conditions
C

DO 300 J = 1,JMT
I%VIP(1, J) =FKMP(IMrMl,J)
FKMP(IMT, J) = FKMP(2, j)

300 CONTINUE
RETURN
END

SUBROUTINE MGFKM2(FKM0)

C Reads the FKMQ array (masking data for the U,V points).
C

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, jMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

REAL FKMO(IMT, JMT)
0

JMTMl =JMT- 1
JMTM2 =JMT-2
IF (MSI .EQ. 0) THEN

LSI = 0
ELSE

LSI = MSI + 6 + 1
ENDIF

C
CALLMGSADV(7)
DO 100J= l.JMT

CALLMGSSKl(NT + 2)
CALL MGSSK2 (LSI)
CALL MGSSK2 (LBC)
IF d ,E0. jMTM2 .OR. J .EQ. JMTMl) THEN

CALLMGSSKl(NT + 2)
ENDIF
CALLMGSRDF(FKMO, j)
CALLMGSSK2(LBC-1)

100 CONTINUE
C
C Set row JMT equal to row JMTM 1 for northern boundary

46-

C
DO 2001= l .mflMl
FKMO(I, JMT) = FKMO(I, jMIMl)

200 CONTINUE
C
C Set cyclic boundary conditions
C

DO 300 J = l.jMT
FKMO(IMT, J) = FKM0(2, J)

300 CONTINUE
RETURN
END

SUBROUTINE MGSRDO(A, J)

C Reads in A(I,J), 1<I<IMT from surface level
C On entry
C MWORD should point to the first word of a 1-dimensional
C (IMT) sub-array in the Jth slab
C For example the start of the ice fraction Geld
C in the Jth slab.
C On exit
C MWORD points to the first word of the next sub-array.
C

DIMENSION A(l)
COMMON /GRIPAR/ XIDEG, DXDEG. YIDEG. DYDEG.

& IMT, JMT, KM NT, IgEG. NISLE. LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

C
M = MWORD
L = G - 1) *IMT+ 1
CALL XREAD(A(L), M, IMT, FAIL)
IF (FAIL .NE. 0) STOP
MWORD = IVIWORD + IMT
RETURN
END

SUBROUTINE MGSRD1(A, J, INDEX)

C Reads in A(I,J), 1 <I<1MT from depth level INDEX
C On entry
C MWORD should point to the Srst word of a 2-dimen8ional
C (IMT, JMT) sub-array in the Jth slab
C For example fhe start of the T Geld in the Jth slab.
C On exit
C MWORD points to the Brst word of the next silb-array.
C

DIMENSION A(l)

- 4 7 -

COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /MGSCCR/ MWORD

M = MWORD + IMT * (INDEX - 1)
L= G - 1) *IMT+ 1
CALL XREAD(A(L), M, IMT, FAIL)
IF (lEAIL .NE. 0) STOP
MWORD = MWORD + IMT * KM
RETURN
END

SUBROUTINE MGSRD2(A)

C Reads in A(I,K), I<I<IMT,1<K<KM
C On entry
C MWORD should point to the first word of a 2-diraensional
C (IMT, KM) sub-array in the Jth slab
C For example the start of the T field in the Jth slab
C On exit
C MWORD points to the first word of the next sub-array.
C

DIMENSION A(l)
COAmON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COIVMON /MGSCCR/ MWORD

C
CALL XREAD(A(I), MWORD, IMT*KM, IFAEj)
IF (IFAIL.NE.O) STOP
RETURN
END

SUBROUTINE MGSRD3(A, J, INDEX)

C Reads in A(J,K), 1<J<JMT , I<K<KM , I=INDEX
C On entry
C MWORD should point to the Grst word of a g-dimensional
C (JMT,KM) sub-array in the Jth slab
C On exit
C MWORD points to the first word of the next sub-array.
C

DIMENSION A(l)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

C
MI = MWORD + INDEX - 1
DO 100 K= 1, KM

48-

M = Ml + (K-1) * IMT
L = J+ (K:-1)*JMT
CALL XREAD(A(L), M, 1, IFAIL)
IF (FAIL .NE. 0) STOP

100 CONTINUE
MWORD = MWORD + IMT * KM
RETURN
END

SUBROUTINE MGSRDF(A, D

C Reads in a 1 -dimensional slab array of length IMT into row J
C of Ae array A(IMT, JMT)
C On entry :-
C MWORD should point to the first word of the 1-dimensional slab array
C On exit
C MWORD points to the first word of the next slab array.
C

DIMENSION A(l)
COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,

& IMT, JMT, KM, NT, LSEG, NISIE, LCYC, LBC, MSI
COMMON /MGSCCR/ MWORD

C
L = G-1) *IMT+ I
CALL XREAD(A(L),MWORD,IMT,]FAEj)
IF (IFAIL JME. 0) THEN

PRINT *, 'j = ', J
STOP

ENDIF
RETURN
END

SUBROUTINE MGSSEl (E)

C Skips over K 2-dimensional (IMT, KM) sub-arrays.
C ie. K * (IMT * KM) data values
C

COMMON /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /MGSCCR/ MWORD
C

MWORD = MWORD+ K* IMT*KM
RETURN
END

49

SUBROUTINE MGSSE2(E)

C Skips over K 1-dimensional (IMT) sub-arrays.
C ie. K * (MT) data values
C

CX3MM0N /GRIPAR/ XIDEG, DXDEG, YIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

COMMON /MGSCCR/ MWORD
C

MWORD = MWORD + K * IMT
RETURN
END

SUBROUTINE MGSDZZO)Z.DZZ^^m)

C Subroutine to calciiate depth parameters used.
C
C DZ - array of slab thicknesses
C DZZ - array; on exit contains the distances between
C vertical T,S points
C ZDZ - array; on exit contains the depth of each level bottom
C ZDZZ - array: on exit contains the depth of T,S grid points
C

COMMON /GRIPAR/PSIDEG, DXDEG, PHIDEG, DYDEG,
& IMT, JMT, KM, NT, LSEG, NISLE, LCYC, LBC, MSI

DIMENSION DZ(1) JDZZ(1),ZDZ(1),ZDZZ(1)
C

DZZ(1)=0.5*DZ(1)
ZDZ(1)=DZ(1)
ZDZZ(1)=DZZ(I)
DO 10 I=2,KM

DZZ(I)=0.S*(DZ(I-1)+DZ(I))
ZDZ(I)=ZDZ(I-l)+DZm
ZDZZ(I)=ZDZZ(I-1)+DZZ(I)

10 CONTINUE
DZZ(KM+1)=0.5*DZ(KM)
ZDZZ(KM+ 1)=ZDZZ(KM)+DZZ(KM+1)
RETURN
END

- so

3 Low level routine

This is the basic low level routine called by all the above high and medium level routines.

SUBROUTINE XREAD(A, M, N. IFAIL)

C Subroutine for reading data from FRAM archive files.
C A(N) - array into which the data is placed
C M - position in the file of the first variable to be read
C N - number of variables to be read
C If no fault occurs the subroutine returns with
(: lEfUIj set 10 0
C M - set to it's original value plus N
C
C The 32-bit input data is stored temparily in buffer 'EBUF'
C LBUFF is the position in the input file of the first element of the
(3 ciuT%%nt]oidfer
C MBUFF is the length of the buffer (4000)
C] lIJNnnris Oie tipiM stream
c

c%:HvnvK:w4JiEi3uiT:ai]3ui^3W]00),ij3in\F, AdEKJFF, CMjRmr
IbTTEKZER /lOSO, lEnSUfX/KHDO), IJSUFTr, nJNTT, OLMTT
DIMENSION EEBUF(6)
EQUIVALENCE (EEBUF(l), lEBUF(l))

C
IJBinTFl = LBIRTF
]BaEc;:= 1 + CM-1)/ &iBinFF
lJ3Un?= 1 4-A/EIUFF* OIOEC- 1)
IF QJBUnFl JfE.IJSUrrO THEIf

REjSi)(uiqrr = rinyrr, izEx: ==]ioEc:, lasE) = 995. ERii:= 9SH3)iEBtnr
ENDIF

c
D 0 100I=1JN
J = Ad + I -IJ3UITr
IF G .GT. MBUFF) THEN

IB]LC;==]I0LC3 t 1
READ(UNrr=IUNIT, REC=IREC, END=996. ERR=999) lEBUF

IfmiTF:= LBUFFH-IWBUnr
J = A4 + I-

ENDIF
/ICQ ==IE3U0?G)

100 CONTINUE
IFAIL=0
Id ==1^4-
RETURN

C
99SI%tQyT:\ ' (SiniRCyLrrDNI-lERElAI) -EXDI?. 1'

51

isaoNT'*:' *** inyrr = l U N r r , ' Ni/ N = ', iv
I,RIN"r:\ ' *** IJBJFTr == \IjBinFF, 'IJBIIFFI ==', IJBinFFl
FTOIfT*, ' :*** IfEC: = \ nZEC3, ' &4BIJFF= AdEIUFF
rF;uL = -i
RETURN

996FS;D4T ' *** Sl%BR{)irrnqE][REj%D-]EC)F. El'
PRINT *, ' *** UMT = lUNIT, ' M = ', M," N = ', N
]?RINT*\ ' *** ILBIHTF = \jLBimF, 'IJBUfTFl =
FTQNT*, ' lOEC;::', IRIZC, 'IVQSUFTr := \]VnSUFF
IFA]L = -1
RETURN

9EW3I3RnNnr*\' *** S%JBROirrDNE][RELSD- REjSDfjSDjUIOE. 1'
]33n\nr*\' *** tnyrr = l U N r r , '1^== = % N
PBQPfT ' *THr ijBurT?:: 'IJBUITrl =
PIQtjT *, ']%E(; = nZEC;, ' MBIOFF = MBimF
IF/UIj = -l
RETURN

999]MRINrr:\' 4r** EKJEiaOUTlNE)0RE71D- READ RAJIAJRI-. 2'
FTEDJT*,' *** inyiT = i i n N n " . ' = '.
pSaOXnTTt, ' IJSUfTF = LBIJFF, ' IJSUITFl == IJBUITFl
FgSDSnrTk ' *** BOEC; = nSEC , 'A/EWJFTF = MBIJFF
IFAIL = -1
RETURN
END

4 Input and output routines

These routines open the input and output files, name the output file and write the header and
(lata to &.

sron%R()trr[Kns]]%snrR(rTuifri\]]iBi*\iioFEL^iF'j&iL)

C Initialise the input stream.
C
C lUNTT - NUNIT = input stream
C DIRN = directory containing the input data files
C INFIL = name of input file
C

CXDA/â K)fJ/IE2MjrT ÎEI3UT%'K)00),IjBUITF, AdIKJFi: niNHT, OUiqTT
C%iARACn33M024 OKTL
C%i%RACTEB*512I%RN
(33ARAC%I2PS12nUGN
LOGICAL AROUND

C
fdBUFF = 4000

52

LBUFF = -3999
IUNIT = NUNIT

C
WRrrE(*, '(A32, Tl)') "Enter name of input data Gle :'
READ(*, "(AS12)') FILEN
WRITE(* "(Al)3 ' '

C
INFIL = DIRN(:LNBLNKpiRN)) // "/' // nLEN(:LNBLNK(F[LEN))
INOUIRE(FILE = INF[L(:LNBLNK(INHL)), EXIST = AROUND)
IF (AROUND) THEN

PRINT *, 'input me = ", INFIL(:LNBLNK(INFIL))

PRINT *. 'Cannot Gnd me ", INFIL(:LNBLNK(INFIL))
SICP
ENDIF

C
OPEN(UNn' = lUNTT, FORM = "UNFORMATTED",

& FEE = INFIL(1NBLNK(INF[L)), ACCESS = "DIRECT",
& RECL = 16000, STATUS = "OLD",
& lOSTAT = lOSTAT, ERR = 999)

C
REWIND lUNIT
IREC = 0
DO 1001= l.MBUFF

IEBUF(I) = 0
100 CONTINUE

IFAIL = 0
RETURN

C
999 PRINT*

& ' ERROR in opening input file
& INFIL(:LNBLNK(INFIL))

IFAIL= 1
STOP
END

C SUBROUTINE READHDO

C Read in header from the input file.
C

COMMON /MGSCCR/ MWORD
CHARACTER CTEM(16000)

C
CALLMGSADV(l)
CALL XREAD(CnEM, MWORD, 16000, IFAIL)
WRITE(* "(Al)") CTEM
RETURN
END

53-

SUBROUTINE OTJTSTR(NUNIT, OUTFIL, IFAIL)

C Initialise the output stream.
C
C OUNTT = NUNTT = output stream
C OUTFIL = name of output file
C

COMMON /IEBUrF/IEBUF(4000), LBUFF, MBUFF, lUNIT, OUNIT
CHARACTER *(*) OUTFIL
INTEGER IEBUF(4000).LBUFF,MBUFF,IUNIT, OUNIT

C
OUNn' = NUNIT
OPENCUNTT = OUNTT, FILE = OUTFIL,

& STATUS = "NEW, ERR = 999)
REWIND OUNIT
IFAIL = 0
RETURN

C
999 PRINT *, ' ERROR in opening output file OUTFIL

PRINT *, ' file may already exist'
IFAIL= 1
SIOP
END

SUBROUTINE OFILEN(TRAC, DEPVAR, OUTFIL, IFAIL)

C Creates an output filename for the cards file.
C

CHARACTER* 15 TRAC
CHARACTER*9 DEFVAR
CHARACTER* 12 OUTFEL
COMMON mME/ TTSEC
CHARACTER LETT*4. A*l, D*6, Tl, T2, T3, T4
REAL SECDAY, TTSEC, FACTOR, NDAY
INTEGER IFACTOR, ADAY, TDAY, EXNUM, J, I, INDAY
CHARACTER*! CVAR, FNAME(4)
INTEGER PVARl, PVAR2, PA

C
SECDAY = 86400.
NDAY = TTSEC / SECDAY
INDAY = INT^AY)
TDAY = INDAY

DATA A / T /
DATA D / ".cards" /

EXNUM = 1
J= 1
DO 100 I = 3, 0, -1

FACTOR = 10** I

54-

IFACTOR = INT(FACTOR)
ADAY = TDAY / IFACTOR
IF (ADAY .NE. 0) EXNUM = 0
IF (EXNUM .EQ. 0) THEN

FNAMEQ = CHAR(48 + ADAY)
J = J + 1
TDAY = TDAY - (ADAY * IFACTOR)

ENDIF
100 CONTINUE

C
T1 =FNAME(1)
T2 = FNAME(2)
T3 = FNAME(3)
T4 = ENAME(4)
LETT = T1 // T2 // T3 // T4

C
IF Cn(AC(l:3) .EQ. 'UST') THEN

CVAR = 'm'
ELSE IF (TRAC(1:3) .EQ. "VST) THEN

CVAR = 'n'
ELSE IF (TRAC(1:3) .EQ. 'PRE') THEN

CVAR = 'o'
ELSE IF (TRAC(1:3) .EQ. 'STR') THEN

CVAR = 'p'
ELSE IF (TRAC(1:S) .EQ. 'ICE F) THEN

CVAR = 's'
ELSE IF (TRAC(1:5) .EQ. 'ICE T') THEN

CVAR = 'f
ELSE

IF (TRAC(1:3) .EO. 'SAL') THEN
FVAR2 = 1

ELSE IF (TRAC(1:3) .EO. 'TEM') THEN
PVAR2 = 2

ELSE IF (TRAC(1:3) .EO. "U V) THEN
FVAR2 = 3

ELSE IF (TRAC(1:3) .EO. "V V) THEN
PVAR2 = 4

ENDIF

IF (DEPVAR(1:3) .EQ. 'LAT") THEN
PVARl=1

EI5E IF (DEPVAR(1:3) .EO. 'LON') THEN
PVARl = 2

ELSE IF (DEFVAR(1:3) .EO. 'DEP') THEN
PVARl = 3

ENDIF

PA = 3 * (PVAR2 - 1) + PVARl
CVAR = CHAR(96 + PA)

ENDIF

55

OUTFIL = A // CVAR // LETT // D
PRINT*, ' '
PRINT *, 'output me = OUTFIL PRINT *,
IFAIL = 0
RETURN
END

SUBROUTINE HEADER2(0P, TRAC, DEPVAR, OPFORM, NRUN)

C Subroutine to write headers to the output files.
0

COMMON /TSTEP/ NDFIR, NDLAS, NDINC
CHARACTERTRAC*(*), OPFORM*(*), NRUN*(*)
CHARACTER*9 DEPVAR, FR0M(3), INCR(3), T0(3), 0UAN(3)
INTEGER OP, N0P(3)

0
C Establish details for header
C

IF ((TRAC(I:3) .EO. 'STR') .OR. (TRAC(I:3) .EO. 'PRE')) THEN
OUAN(l) = -LONGITUDE'
0UAN(2) = ' LATITUDE'
FROM(l)= ' 0.
FR0M(2) = ' -78.875 '
INCR(1) = ' 0.5 '
INCR(2) = ' 0.25 '
T0(1) = ' 359.5
TO(2) = ' -24.125'
NOP(I) =720
N0P(2) =220

C
ELSE IF (TRAC(1:3) .EO. 'ICE') THEN

OUAN(l) = "LONGITUDE'
0UAN(2) = ' LATITUDE'
FR0M(1)= ' 0.
FROM(2) = ' -78.875 '
INCR(1)= ' 0.5 '
INCR(2) = ' 0.25 '
TO(I) = ' 359.5 '
T0(2) = ' -24.375 '
NOP(l) =720
N0P(2) =219

C
ELSE IF (TRAC(I:3) .EO. 'TEM' .OR. TRAC(1:3) .EO. 'SAL') THEN

IF (DEPVAR(1:3) .EO- 'LAT') THEN
OUAN(I) = "LONGITUDE'
0UAN(2) = ' DEPTH"
FROM(I) = ' 0. '
FR0M(2)= ' I
INCR(l) = ' 0.5 '
INCR(2)= ' I

-56

'rc)(l) = ' 2IS9.S '
T0@) = ' 32
NOPa) = 720
%rC)P(2) = 32

E]j8E:iF(E)EI?V7UR(l:3) JEC). TJOKT) THEDJ
= 'ijAjmruiDE:'

()IIAN(2) = ' IDEZPTH"
1130*4(1) = ' -78.Grr5
FB3M0)= ' 1
IKTCZRCl) = ' 0.25
INrC%t(2) = ' 1
T()(l) := ' -2<Li:3S'
TOGO = ' 32
%rC)P(l) = 220
RKZHPCa) = 32

ETfn::iF(DEPVAR(l:3) JEQ. 'D]EF")T&Q:}J
C)lLAN(l) = TjCWNGriUDir
C)UAIf(2) = ' IiATirrUIDE'

= ' 0.

FIlOhI(2) = ' -78.875
INCR(l) = ' 0.5
IKrC3R(2) = ' 0.25
TC)(1) = ' :159.5
T()(2) =: ' -gXLlZIS '
bfC)P(l) := 720
ArC%P(2) = 22K)

ENDIF

EDLSEIF (n&A(:(3:10) JSC). "VEnjOCmrT) THI3N
IF (DEPVAR(1:3) .EQ. 'lAT') TPIEN

OUAN(l) = 'LONGITUDE'
0UAN(2) = ' DEPTH"
FROM(l) = ' 0.25 '
FR0M(2) = ' 1
INCR(l) = ' 0.5 '
INCR(2)= ' 1
TO(I)= ' 359.75 '
T0(2) = ' 32
NOP(I) = 720
NOP(2)= 32

ELSE IF (DEPVAR(1:3) .EO. "LON) THEN
OUAN(l) = ' LATITUDE'
0UAN(2) = ' DEPTH"
FROM(l) = ' -78.750
FR0M(2)= " 1
INCR(I) = ' 0.25
INCR(2) = ' 1
T0(1) = ' -24.250
TO(2) = ' 32
NOP(l) =219
N0P(2) = 32

ELSE IF (PEPVAR(1:3) .EQ. "DEP') THEN

57

OUAN(l) = "LONGITUDE'
0UAN(2) = ' LATITUDE'
FROM(l)= ' 0.25 '
FROM(2) = ' -78.750 '
INCR(1)= ' 0.5 '
INC3R(2) = ' 0.25 '
TO(l) = ' 359.75 '
T0(2) = ' -24.250 '
NOP(l) =720
N0P(2) =219

ENDIF
END]?

0UAN(3)=' TIMESTEF
NOP(3)=l
WRITE (FR0M(3). '(19)') NDFIR
WRITE (INCR(3), '(19)') NDINC
WRITE (TO(3), '(19)') NDLAS
IF (DEPVAR(I:3) .EO. 'STR') THEN
WRTTE (OP, 5101) TRAC, OPFORM

ELSE
WRITE (OP, 5100) TRAC, DEPVAR, OPFORM

ENDIF
WRITE (OP, 5102) NRUN
WRITE (OP, 5103) (I, I = 1. 3)
WRITE (OP, 5104) (OUAN(I), 1 = 1 , 3)
WRITE (OP, 5105) (FROM(I), 1 = 1 , 3)
WRITE (OP, 5106) (INCR(I), 1 = 1 , 3)
WRITE (OP. 5107) (TO(I), 1 = 1 , 3)
WRITE (OP. 5108) (NOP(I), 1 = 1 . 3)

5100 FORMAT ('VARIABLE :',A15,2X,A9,T41,'F0RMAT :',A2)
5101 FORMAT ("VARIABLE :',A15,T41,'FORMAT :',A2)
5102 FORMAT (TVIODEL : FAF COMMENTS :",A50)
5103 FORMAT CINDEX",9X,':",3(" ",I1," :"))
5104 FORMAT ("OUANTITY ',6X,":",A9,':',A9,':',A9,':")
5105 FORMAT ('FROM ',6X,':',A9,':',A9,':',A9,':')
5106 FORMAT ('INCREMENr,6X,':',A9,':',A9,':',A9.':')
5107 FORMAT ('TO ',6X,':',A9.':',A9,':',A9,':')
5108 FORMAT ('NO.OF POINTS ',2X,':',I9,':',I9,':',I9,':')

RETURN
END

SUBROUTINE ASCOUT (ARRAY.IDIM.ID JD.VMASE^CHARJfOUT)

C Subroutine to encode a section of an array as sets of 'NCHAR'
C printable characetrs, and write as a formatted card-image dump.
C (Uses ASCn characetrs 0-9 , A-Z, a-z and brackets)
C
C ARRAY - 2-D array of values to b e converted

58

C IDIM - declared I-dimension of array in calling programme
C ID.jD - specify section of array to be converted
C VMASK - 4-element array whose values indicate 'masked' points.
C Such points are denoted by one of the 4 possible
C combinations of full stop and comma, padded out to NCHAR
C characters by repetition of the last character of the pair.
0 These values are ignored in finding max and mins for scaling,
C The VMASK values are normally much larger than other values
C NCHAR - Number of characters to be used to represent an array value
C NOUT - Fortran channel number of output dataset,
C
C Id./LBCMVE :%#tl987 (Rem±%mJ. (n#7n988)
C This version (internally declared character array) 14/12/1988
C Modified to allow for four types of masked point 07/02/1989
C
C Internal parameters:
C
C LRECL - Maximum length of data record to be output
C NASCC - Number of different ASCII characters used in
C representation of numbers (at unmasked points)
C NCMAX - Maximum number of characters which can be used
C to represent an array element.
C

INTEGER LRECL.NASCC,NCMAX
C

PARAMETER (LRECL=80, NASCC=64, NCMAX=5)
C
C Local variables
C

INTEGER ICODE(NCMAX),IDIM,ID,JD,NCHAR,NOUT,
& IJ,NNUMJC,INTEG,NCBUIT,LINIEN,MTYPE

REAL ARRAY(IDIM,JD),VMASK(4)
REAL FMIN,FMAX,RANGE,ARANG,SCALE
CHARACTER*! ASCARR(LRECL).LKUP(NASCC).CMASK(2),MASK:(NCMAX,4)
CHARACTER*(NASCC) CHAREP

C
EQUIVALENCE (CHAREP(l:l)Jja]P(l))

C
C Specify the NASCC characters to be used in the number
C representation, and the characters denoting masked points
C

CHAREP(1:10) = '0123456789'
CHAREP(11:36) = 'ABCDEFGHQKLMNOPORSTUVWXYZ'
CHAREP(37:62) = 'abcdefghijklimiopqrstuvwxyz' CHAREP(63:64) = 'Q'
CMASK(!)='.'
CMASK(2)=','

C
C Write out coding info in first data record
C (write warning to unit 6 if it won't fit)
C

IF (NASCC.GT.72) WRITE(6,50) NASCC
SO F0RMAT(/,2X,'**ASC0UT WARNING: OVERLENGTH CODING RECORD,',

59

& ' NASCC =',I3)
WRrrE(N0UT,'(I4,lX.2Al.lX,72Al)') NASCC.CMASK.(LKUP(I),I=1.NASCC)

C
C Check input value of NCHAR
C

IF (NCHAR.LT.2 .OR. NCHAR.GTIJCMAX) THEN
WRITE(6,100) NCHAR

100 F0RMAT(/,2X,'**ASC0UT WARNING: ROUTINE CALLED',
& 'WITH INCORRECT NCHAR =',I4)

RETURN
END IF

C
C Check input values of VMASK are all different,
C otherwise masking will be ambiguous
C

D0 110J=1,3
DO 110I=J+1,4

IF (VMASK(I).EO.VMASK(D) WRITE(6,120) I,J
110 CONTINUE
120 F0RMAT(/,2X.'**ASC0UT WARNING: VMASK(',I1.') =VMASK(',I1,')',

& /,2X. '**MASKING PRODUCED WILL BE AMBIGUOUS')
0
C Create the 4 types of MASK, including padding characters
C

DO 130 IC=1,NCHAR
MASK(IC.l) = CMASK(1)
MASK(IC,2) = CMASK(1)
MASK(IC,3) = CMASK(2)
MASK(IC,4) = CMASK(2)

130 CONTINUE
MASK(2,2) = CMASK(2)
MASK(2,3) = CMASK(l)

C
C Establish range of data and scaling for conversion
C (typical size of values assumed 0(10**5))
C

FMAX = -9999999.9
FMIN = 9999999.9
DO ISO 1=1,ID
DO 150J=1JD
DO 140MTYPE=1,4

IF (ARRAY(I,J).EO.VMASK(MTYPE)) GOTO 145
140 CONTINUE

FMIN = MIN(FMIN,ARRAY(I,J))
FMAX = MAX(FMAX,ARRAY(I,J))

145 CONTINUE
150 CONTINUE

IF (FMAX.LT.-99999.9 .OR. FMIN.GT.99999.9)
& WRITE(6,200) FMIN,FMAX

200 F0RMAT(/,2X,'**ASC0UT WARNING: LARGE +VE MINIMUM OR LARGE',
& ' -VE MAXIMUM VALUE',/,2X,'FMAX. FMIN = ', 1P,2E16.S)

C

60

NNUM = ID*JD
WRITE(NOUT,'(IP,2E20.12,4110)') F\m,FMAX,ID,JD,NNUM,NCHAR
ARANG = REAL(NASCC**NCHAR - 1)
RANGE = FMAX- FMIN
SCALE = ARANG/RANGE
IF (INT(SCALE).LT.l) WRnE(6,220) SCALE

220 FORMAT(/,2X,'**ASCOUT WARNING: SCALE = ',1P,E14.5)
C

IF ((RANGE*l.OE 10).LT.1.0E0) THEN
C

WRITE(NOUT,2SO)
2S0 FORMAT('**ASCOUT WARNING: FIELD APPROX. CONSTANT,',

& ' NOT CHARACTER CODED')
C

ELSE
C
C Scale array and encode as NCHAR printable characters
C

NCBUFF = 0
IF (NCHAR.E0.3) LINLEN=78
IF (NCHARNE.3) L[NLEN=80
DO S00J=1,JD
DO 500 I=1,ID

C
DO 350 MTYPE = 1,4

IF (ARRAY(I,J).EO.VMASK(MTYPE)) THEN
C TYPE MTYPE MASKED POINT; COPY FROM MASK(NCMAX Ĵ ITYPE)

DO 300 IC = 1,NCHAR
ASCARR(NCBUFF+IC) = MASK(IC,MTYPE)

300 CONTINUE
GOTO 450

END IF
350 CONTINUE

C
C Normal point; encode as NCHAR characters
C

INTEG=NINT((ARRAY(I,])-FMIN)*SCALE)
DO 400 IC=NCHAR,1,-1
ICODE(IC) = 1 + MOD(INTEG, NASCC)

ASCARR(NCBUFF+IC) = LB[UP(ICODE(IC))
INTEG = INTEG/NASCC

400 CONTINUE
450 CONTINUE

NCBUFF = NCBUFF + NCHAR
C

IF (NCBUFF.EO.LINLEN) THEN
C
C BufPer ASCARR fuE; write to
C channel NOUT (card-image format)
C

IF (NCHARNE.3) THEN
WRITE(NOUT,'(80A1)') (ASCARR(IC),IC=1,NCBUFF)

6 1 -

ELSE
WRrrE(NOUT,'(lX,7aAl.lX)') (ASCAER(IC),IC=1,NCBUFF3

END IF
NCBUFF = 0

END IF
C

500 CONTINUE
C
C Flush character buffer if not empty
C

IF (NCBUFF.NE.0) THEN
IF (NCHAR.NE.3) THEN

WRITE(NOUT,'(80A1)') (ASCARR(IC),IC=1,NCBUFF)
ELSE

WRITE(N0UT,'(1X.78A1.1X)') (ASCARR(IC).IC=1,NCBUFF)
END IF
NCBUFF = 0

END IF
END IF
RETURN
END

Brook Road, Wormley, Godalming
Surrey, GU8 SUB,
United Kingdom
Telephone + 44 (0) 428-684141
Facsimile + 44 (0) 428-683066
Telex 858833 OCEANS G A

Natural
Environment
Research
Council

