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Seotion 1 - INTRODUCTION 

(a) General 

It is the intention of this report to calculate the magnitude of the 
echo received, from a fish bladder at a known depth when subjected to a 
sound wave of known character. The sound wave is the output of the N.I.O* 
modification to the Edgerton "Boomer" hereafter called the Thumper, For 
the purposes of the report the bladder is treated as a free spherical bubble, 

(b) Method 

A mathematical approximation to the Thumper output wave is constructed 
in a form suitable for analysis by Fourier methods or the Laplace transform, 
Thua the energy associated with any part of the spectrum crossing unit area 
parallel to the wavefront at the target can be calculated. 

Next the acoustic cross-section of the target is examined as a funotion 
of frequency, and using the expression so found the total amount of energy 
absorbed by the target from the pulse may be found. 

This energy is assumed to be re-radiated uniformly in all directions 
as a damped train of oscillations at the resonant frequency of the target. 
To find the initial amplitude of this wave the total energy output is 
calculated and this is equated to the energy absorbed. 

Section 2 

(a) The Spectrum of the Thumper Pulse 

Fig. 1 shows the pressure-time curve of the Thumper pulse. The curve 
was traced from a photograph of the output of a non-directional hydrophone, 
the response of which fell off by 6 dB per octave below 200 c/s. 

The equation of the acoustic pressure can be written 

P = Po f(t) (1) 

where P = acoustic pressure at 1 metre from source at time t, Po = Peak 
acoustic pressure at 1 metre and f(t) gives the time variation of P, 

The total energy in a small band of angular frequency Aw centred on * 
which passes through unit area (1 sq.on.) at 1 metre la 

AE = 2^% |F(n)|*Aw (2) 

where po = specific acoustic Impedance of the medium and 

F(*) = f e"^^^f(t)dt (3) 
J "Wgo 

which Is the Fourier transform of f(t). 

The total energy In the pulse passing through unit area at 1 metre Is 

E = Po^ f 
2pc 

F(w)| W(w) dw (4) 

Anri, the energy absorbed by a target, whose cross-section W is a function 
of 7̂  la 

c 2 f 00 z 
Ew = ̂  / |P(w) I W(w) dw (5) 
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As a first model of the pulse let 

f(t) = 008 kt for ^/2k < t < %k: 

= 0 elsewhere 
(6) 

Then 
1% 

p(w) = / 008 kt e dt 

Ir .WF ,Wn 
= (G-J2E + e^ZE) 
k -w \ 

F(m) = ^ COS (gZj (?) 
kB-m* 

A' plot of p(w) (which is in this case real) for values of w from 
0 to 2\5k is attached (?ig. 2). 

Inspection of the actual pressure-time curve (Fig, 1) shows that this 
is a poor approximation, and a more realistic model would be 

f(t) = ̂ /tf 0 < t < ti ) 

(8) 

ti < t < 3ti 

3ti < t < tz 

= 0 elsewhere 

Here it is easier to use Laplace transforms to find F(w), The 
Laplace transform p(s) of f(t) is found, jw is substituted for s and |F(w) 
is then the product of F(jw) and its complex conjugate F(-jw). The rules 
for finding Laplace transforms applicable to this case are as follows: 

(1) If f(t) = t Pfs) = f e f(t) dt = . 
J 0 

(2) If f(t) is defined only in tho interval ti < t < ta then 

Lf(t) = ]?(s) (e-sti-

(3) If the transform of f(t) is ̂ (s), that of f(t-'b) is P(s) e . 

(4) The transform of a sum is the sum of the separate transforms. 
Further, t is rostrioted to v&luos gre&tor thAn a&ro. The tranafora of 
f(t) can now be written out torn by torn as 

Ffs) = (1 - Ist segment 

(o-st' - 0-^°*') -Zet, 
ti S2 ® 

2nd segment l (g) 

+ . z—3?%- e"^** 3rd segment 

Putting jw for s and t2 = nt, where n > 3 this becomes 

.wti 
F(3w) = e~'^"^3in sin (ivti) + e \in [(^)wti] 

2 

(10) 
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The oomputatlon I3 much simplified while retaining a fair approjcimation 
hy putting n = 4^ vAiich makes the pulse a symmetrioal sawtooth, P(w) then 
takes the real form 

2tj_ 
sin vrki - 2 sin oos (11) 

and a plot of this function is attached (Pig, 3), 

(b) The Target 

This is a fish-bladder, which for the purposes of this report is treated 
as a free spherical bubble. Much work remains to be done on bubbles and 
the effects of shape and surrounding tissue, but some figures are available 
from "Principles and Applications of Undei^ter Sound" NRDC Div 6 Summary 
Technical Report (1946) pp 84^86, 

Here it is aeen that the acoustic cross-section of a spherical bubble 
is appreciable only in the region of its resonant frequency, and the ratio 
of the acoustic cross-section cr to the actual projected area at this 
frequency is about 700, Also the Q of the resonance is about 12-15,^ 
Actually cr is approximately Tr̂ d̂ Q̂ . The resonant frequency fo = /.PgzL 
where fa is in Kc/s, d is the diameter in inches, and P the pressure in feet 
of water. 

(c) The Energy Absorbed by the Target 

Strictly speaking this is given by equation (5) where W = cr, but in view 
of the strongly resonant nature of the target equation (2) can be used with 
little loss of accuracy. 

2 2 
Thus ^ = 2 ^ |F(w)| oAw (12) 

where po = peak pressure at target = Po/r (r = depth in metres) 
= energy absorbed by target, 

(d) The Echo 

E^ as found in 2(0) is re-radiated uniformly in all directions as a 
damped train of oscillations described by 

Pg = Pg(o) cos (wt + ̂ 0 (13) 

where p^ = echo amplitude at hydrophone 
Pg(o) = initial amplitude at hydrophone. 

Now the rate of energy transfer tlirou^ unit area by an aooustio 
disturbance of pressure p is p̂ /f>o ergs/sec, so the total rate of transfer 
throu^ a sphere of radius r, centred on the source is 

8E g 
9t " pc G 

Thus the total energy is 

E = j"J ̂  Pe" (1^) 

which with equation (13) becomes 

E = p 2(o) f e^^ oo8^(wt + dt (15) 
po L 

^ is the starting phase of the wave at the radius r; and no tl* 0 is 
large, has negligible effect on the total energy. Accordingly integration 
of (15) is carried gut with # = o to give 
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For exponential damping m f oir and w = 2irfo 

thua m 
m* + 

and if Q = 15 
Q s i r r o m + w 

1 
/^O <1 

This shows that has in faot a ne^igible effect on E, since if ̂  = i]/2, 
00s (wt + <̂ ) = sin wt, ani equation (16) would be unchanged except for the 

term in brackets which wauld be 

2mt 

m 
m" + w 

Thus the integral 

e oos (wt + ̂ )dt cannot lie outside the limits r 1 i m 
m* + w^ 

so that the energy E is 

E = , # k W l ' - ^ m with m foir 
Q (17) 

Having assumed that the energy absorbed is re-radiated without loss the 
value of p (0) can be obtained by equating the ri^t hand sides of equations 
(12) and (17) . 

.2 -2 

- 2pc 

2 s 
£2«- IF (w} I o" Aw (18) 

where the symbols have all been previously defined. And solved for Pg(o), 
this reads 

Pe(o) = 2F |F(w)| 2 (19) 

Section 3 

(a) Typical Values 

As an illustration cf the eoho likely to be received the following 
figures' would be typical. A fish of 2-) lb weight would have an air bladder 
about 4-.5 oms in diameter. At a depth of 100 metres (about 50 fm) this 
would resonate at 500 c/s* Thus 

Po 

10 cms, 

Po 

d = 4*5 cms. fo = 500, Wo 2;; z 500 

where the best estimte of Po is 2*5 x 10̂  dynes/cm^ 
at 1 metre. r X 10"' ' 

ti = 0*3 z 10"^ from Pig. 1 and 

|p(w)I = 2 X 2ti = 1'2 X 10 * using Fig, 3 

12 and o/y.wd'' = 700 _ 700? a* 
or = 

X Thus Pe(o) = 2-5 X 10= % 1-2 % 1° 

= % 1 0 ~ ' X X IO1/7 

Pe(o) =1*2 dynes/om 

lO^n 
2 X 10* X 102. - 12 

4'5 

700? X 
4-n 

(20) 

(b) Discussion 

Equation (20) shows that an appreciable eoho is returned from a -typical 
fish bladder provided that it behaves as a free spherical bubble, 
1.2 dynes/cm^ is roughly the m s noise to be expected in Thumper work due to 
sea noise, ship noise and towing noise of the hydrophone and transducer. 
But owing to the large number of cycles in the eoho it should be easily 
deteotable. However, the figure of 1*2 dynes/om^ maybe an optiolatio 
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eatioote for the following reasons: 

(i) The poal: proooura o.t 1 notro mr.y 1:6 less than 2*5 z 10^ dynos/on^. 

(b) The effeotlve cross-section of a bubble is not well known at frequencies 
below 1 or 2 Kq/s. 

(c) The body of the fish may reduce the efficiency of the absorption and. 
re-rad.iation processes quite appreciably. And these are in any case 
unlikely to be perfectly efficient even for a bubble. Experimental 
work remains to be done on these last two joints. 

It is interesting to see how Pe(o) can be expected to vary with the 
parameters. Equation (1$) can be re-written 

Pe(o) «: Po|F(w) I p 2nfo ̂  TT̂ 'd Q (21) 

since f 

But f 0 oc "Y" P = static pressure 
oe r 

Hence . & . 
Pe(o) «: Po I^W I p % g ̂  Q 

.HoJzjyi . Po 
r? r72 

This shows that provided |F(w) | varies little in the frequency range 
of interest (as indeed it does), then PQ(o) Is iiot critically dependent 
on frequency. Furthermore it is independent of Q, though the detectabillty 
of the echo is not, if Q is less than about 6-10, 

(c) Conclusion 

It seems possible that resonant reflection of sound impulses by fish 
bladders may be detectable in a wide band system, if several fish occur in 
a group, and reverberation and noise can be kept within fairly low limits. 
However, much quantitative work remains to be done. 
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APPEimilX 

Eztmnslon of the Gonrplex Fourier Series to the Fourier Transform 

This is intended to bring out the physioal signifioanoe of the anqplitude 
transform of a single pulse by extending the more familiar oomplez Fourier 
series of a periodic wave form, The technique is to express a low duty 
cyole pulse train as a oonqplex Fourier series, and examine this series as 
the duty cyole is reduced to a single pulse. 

Let f(t) he the amplitude of a pulse (e.g, a sound wave) defined during 
the iziterval -/2 < t < yZ and let f(t) = f(t + l), f(t) may be zero 
during most of the interval defined above, 

f (t) may be written as the complex Fourier series 

00 

f(t) = CkE jkwot 

k =• —00 

where the coefficients are given by 

h 
= 5 f(t) e "jkwot dt and wo = 

27r 
T 

72 

In the interval -^2 < t < 72 the amplitude of the component of 

(A1 ) 

(A2) 

frequency nwo is Gn, and the power associated with this wave is 
Thus the total energy of this harmonic in the interval T is 

m 
= /2 [Gn̂ _nJ Ti'here G^, are complex conjugates. 

nwq 

Thus the energy density (in the frequency plane) in the bandwidth 
(f^ - f^) is divided by the frequency sepai^tion of the harmonics 

'nwo 
^̂ nwo ̂  
(n+i)wo - nwo 

gmT 
2wo 

G G _ 
2mT'' 

= •" '1 C G n -n 4^ n -n 

r f /z . ;)irt 
= 4 / f(t) r ' • r dt 

. nmt 
f(t) e^ T dt 

72 

(A3) 

It is the behaviour of this expression as T -> oo whleh is of interest. 
But 2ii/T hence as T "> w wo -> 0 and unless k -> «, in such a way that kwo 
remains finite equation (A^) merely gives the square of the area under the 
curve f(t). 8o let kwo = w so that (A)) becomes 

Tjin J(u) = Lin g 
T —> 00 T —> CO 'l.-T, 

^f(t) 0-j^dt r f(t) ej^ 

?2 ""?2 

dt (A4) 

As f(t) = 0 outside the limits ITo, where 2To is the actual length 
of the pulse and is finite, the rl^t hand side of (A4) is Independent of 
the value of T provided that T > 2T(,. This leads to the equation 

J(w) = & f(t) e dt f(t) 
,jwt dt (A5) 

But f f(t) e " ^ dt is just the Fourier transform F(jw) of f(t), and 
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f(t) e^'^ dt is its complex conjugate F(-jw). 

Thus 6B(w) = J(w) Aw = '&|F(w) | Aw 

and this is the expression used in the text. 

(A6) 
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