NATIONAL INSTITUTE OF OCEANOGRAPHY WORMLEY, GODALMING, SURREY

The Response of a Resonant Target to an Acoustic Impulse

by
M. L. SOMERS, B.A.

N.I.O. Internal Report No. A 20

NATIONAL INSTITUTE OF OCEANOGRAPHY WORILEY, GODALMITIG, SURREY

THE RESPONSE OF A RESONANT TARGET TO AN ASOUSTIC TMPULSE
by
M. 4. SOMERS, B.A.
N.I.O. TNTERNAL REPORT NO. AZO

FEBRUARY 1964

COMTENTS

Page

1. Introduction
(a) General 1
(b) Method 1
2. (a) The Spectrum of the Thumper Pulse 1
(b) The Target 3
(c) The Energy absorbed by the Target 3
(d) The Echo 3
3. (a) Typical Values 4
(b) Discussion 4
(c) Conclusion 5
APPENDIX - Extension of the Complex Fourier Series to the 6 Fourier Transform

FIGURES - 1. Pressure-Time Plot of Thumper Pulse
2. Amplitude Spectrun of Half Sine Wave
3. Amplitude Spectrum of Symmetrical Sawtooth Wave

(2) General

It is the intention of this report to caloulate the masnitude of the echo received fron a fish bladder at a known depth when subjected to a sound wave of known character. The sound wave is the output of the NoI.O. modification to the Edgerton "Boomer" hereafter called the Thumper. For the purposes of the report the bladder is treated as a free spherical bubble.
(b) Method

A mathematical approximation to the Thumper output wave is constructed in a form suitable for analysis by Fourier methods or the Laplace transform. Thus the energy associated with any part of the spectrum crossing unit area parallel to the wavefront at the target can be calculated.

Next the acoustic cross-section of the target is examined as a function of frequency, and using the expression so found the total amount of energy absorbed by the target from the pulse may be round.

This energy is assumed to be re-radiated uniformly in all directions as a damped train of oscillations at the resonant frequency of the target. To find the initial amplitude of this wave the total energy output is calculated and this is equated to the enerey absorbed.

Section 2

(a) The Spectrum of the Thumper Pulse

Fig. 1 shows the pressure-tine curve of the Thumper pulse. The curve was traced from a photograph of the output of a non-directional hydrophone, the response of which fell off by 6 dB per octave below $200 \mathrm{c} / \mathrm{s}$.

The equation of the acoustic pressure can be written

$$
\begin{equation*}
P=P \circ f(t) \tag{1}
\end{equation*}
$$

Where $P=$ acoustic pressure at 1 metre f rom source at tine $t . \quad P_{0}=P e a k$ acoustic pressure at 1 metre and $f(t)$ gives the time variation of P.

The tota energy in a small band of angular frequency Δw centred on which passes through unit area ($1 \mathrm{sq.om}$.) at 1 metre is

$$
\begin{equation*}
\Delta F=\frac{P_{0}{ }^{2}}{2 p c}|F(W)|^{2} \Delta W \tag{2}
\end{equation*}
$$

where $p c=$ specific acoustic impedance of the medium and

$$
\begin{equation*}
F(w)=\int_{-\infty}^{\infty} e^{-j w t} f(t) d t \tag{3}
\end{equation*}
$$

which is the Fourier transform of $f(t)$.
The total energy in the pulse passing through unit area at 1 metre is

$$
\begin{equation*}
E=\frac{P_{0}^{2}}{2 p c} \int_{-\infty}^{\infty}|F(w)|^{2} W(w) d w \tag{4}
\end{equation*}
$$

and the energy absorbed by a terget, whose cross-section W is a function of W_{3} is

$$
\begin{equation*}
E_{W}=\frac{P_{0}{ }^{2}}{2 p C} \int_{-\infty}^{\infty}|F(w)|^{2} W(w) d w \tag{5}
\end{equation*}
$$

As a first model of the pulse let

$$
\left.\begin{array}{rlrl}
f(t) & =\cos k t & & \text { for }-\pi / 2 k<t<\pi / 2 k \tag{6}\\
& =0 & & \text { elsewhere }
\end{array}\right\}
$$

Then

$$
\begin{align*}
F(w) & =\int_{-\pi / 2 k}^{\pi / 2 k} \cos k t e^{-j w t} d t \\
& =\frac{k}{k^{2}-w^{2}}\left(e^{-j \frac{W \pi}{2 k}}+e^{j \frac{w \pi}{2 k}}\right) \\
F(w) & =\frac{2 k}{k^{2}-w^{2}} \cos \left(\frac{w \pi}{2 k}\right) \tag{7}
\end{align*}
$$

A plot of $F(w)$ (which is in this case real) for values of w from 0 to $2,5 \mathrm{k}$ is attached (Fig. 2).

Inspection of the actual pressure-time curve (Fig. 1) shows that this is a poor approximation, and a more realistic model would be

$$
\begin{align*}
f(t) & =t_{1} t_{1} & & 0<t<t_{1} \tag{8}\\
& =\frac{5 t_{1}-t}{t_{1}} & & t_{1}<t<3 t_{1} \\
& =\frac{t-t_{2}}{t_{2}-3 t_{1}} & & 3 t_{1}<t<t_{2} \\
& =0 & & \text { elsewhere }
\end{align*}\{
$$

Here it is easier to use Laplace transforms to find $F(v)$. The Laplace transform $F(s)$ of $f(t)$ is found, $j w$ is substituted for s and $|F(w)|^{2}$ is then the product of $F(j w)$ and its complex conjugate $F(-j w)$. The rules for finding Laplace transforms applicable to this case are as follows:
(1) If $f(t)=t \quad F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=\frac{1}{s^{2}}$.
(2) If $f(t)$ is defined only in the interval $t_{1}<t<t_{2}$ then

$$
\operatorname{If}(t)=F(s)\left(e^{-s t_{1}}-e^{-s t_{2}}\right)
$$

(3) If the transform of $f(t)$ is $F(s)$, that of $f(t-b)$ is $F(s) e^{-b s}$.
(4) The transform of a sum is the sum of the separate transforms. Further, t is restricted to valuos greator then zero. The transform of $f(t)$ can now be riritton out tora by tern as

$$
\left.\begin{array}{rlr}
F(s)= & \frac{1}{t_{1}} \cdot \frac{1}{s^{2}}\left(1-e^{-s t_{1}}\right) & \text { 1st segment } \\
& -\frac{\left(e^{-s t_{1}}-0^{-3 s t_{1}}\right)}{t_{1} s^{2}} e^{-2 s t_{1}} & \text { 2nd segment } \tag{9}\\
& +\frac{1}{s^{2}} \cdot \frac{1}{t_{2}-3 t_{1}}\left(e^{-3 s t_{1}}-e^{-s t_{2}}\right) e^{-s t_{2}} & 3 r d \text { segment }
\end{array}\right\}
$$

Putting jw for s and $t_{2}=n t_{1}$ where $n>3$ this becomes

$$
\begin{equation*}
F(j w)=\frac{-2 j}{w^{2} t_{1}}\left[e^{-j \frac{w t_{1}}{2}} \sin \left(\frac{w t_{1}}{2}\right)-e^{-4 j w t_{1}} \sin \left(w t_{1}\right)+e^{-\frac{3(n+1)}{2} j w t_{1}} \sin \left[\left(\frac{n-3}{2}\right) w t_{1}\right]\right] \tag{10}
\end{equation*}
$$

The computation is much simplified while retaining a fair approximation by putting $n=4$, which makes the pulse a symmetrical sawtooth. $F(w)$ then takes the real form

$$
\begin{equation*}
F(w)=\frac{2 t_{1}}{\left(w t_{1}\right)^{2}}\left[\sin w t_{1}-2 \sin \frac{w t_{1}}{2} \cos \frac{7 w t_{1}}{2}\right] \tag{11}
\end{equation*}
$$

and a plot of this function is attached (Fig. 3).

(b) The Target

This is a fish-bladder, which for the purposes of this report is treated as a free spherical bubble. Much work remains to be done on bubbles and the effects of shape and surrounding tissue, but some figures are available from "Principles and Applications of Underwater Sound" NRDC Div 6 Summary Technical Report (1946) pp 84-86.

Here it is seen that the acoustic cross-seotion of a spherical bubble is appreciable only in the region of its resonant frequency, and the ratio of the acoustic cross-section σ to the actuil projected area $1 / 4 \pi d^{2}$. at this frequency is about 700. Also the Q of the resonance is about $12-154^{\frac{1}{2}}$ Actually σ is approximately $\pi^{2} d^{2} Q^{2}$. The resonant frequency $f_{0}=\frac{04 p 2}{D^{2}}$ where f is in $\mathrm{Kc} / \mathrm{s}, \mathrm{d}$ is the diameter in inches, and P the pressure in feet of water.

(c) The Energy Absorbed by the Target

Striotly speaking this is given by equation (5) where $W=\sigma$, but in view of the strongly resonant nature of the target equation (2) can be used with little loss of accuracy.

Thus $\quad E_{T}=\frac{p_{0}{ }^{2}}{2 p C}|F(w)|^{2} \sigma \Delta w$
where $p_{0}=$ peak pressure at target $=P_{0} / r$ ($r=$ depth in metres)
$\mathrm{E}_{\mathrm{T}}=$ energy absorbed by target.
(d) The Echo
E_{T} as found in 2(c) is remadiated uniformly in all directions as a damped train of oscillations described by

$$
\begin{equation*}
p_{e}=p_{e}(0) e^{m t} \cos (w t+\phi) \tag{13}
\end{equation*}
$$

where $p_{e}=$ echo amplitude at hydrophone
$p_{e}(0)=$ initial amplitude at hydrophone.
Now the rate of energy transfer through unit area by an acoustic disturbance of pressure p is $p^{2} / \rho \mathrm{c}$ ergs/sec, so the total rate of transfer through a sphere of radius r, centred on the souroe is

$$
\frac{\partial E}{\partial t}=\frac{4 \pi r^{2}}{p c} p_{G}^{2}
$$

Thus the total energy is

$$
\begin{equation*}
E=\int_{0}^{\infty} \frac{4 \pi r^{2}}{\rho Q} p_{e}^{2} d t \tag{14}
\end{equation*}
$$

which with equation (13) becomes

$$
\begin{equation*}
E=\frac{4 \pi r^{2}}{\rho 0} p_{\theta}^{2}(0) \int_{0}^{\infty} e^{2 m t} \cos ^{2}(w t+\phi) d t \tag{15}
\end{equation*}
$$

ϕ is the starting phase of the wave at the radius r; and $n s$ the 0 is large, ϕ has negligible effect on the total energy. Accordingly integration of (15) is carried out with $\phi=0$ to give

$$
\begin{equation*}
E=\frac{4 \pi r^{2}}{\rho c}\left|p_{e}(0)\right|^{2} \times \frac{-1}{4 m}\left[1+\frac{m^{2}}{m^{2}+w^{2}}\right] \tag{16}
\end{equation*}
$$

For exponential damping $m=-\frac{f_{0} \pi}{Q}$ and $w=2 \pi f_{0}$
thus $\frac{m^{2}}{m^{2}+W^{2}}=\frac{1}{Q^{2}\left[4+\frac{1}{Q^{2}}\right]}$ and if $Q=15 \frac{m^{2}}{m^{2}+W^{2}} \approx 1 / 900 \ll 1$
This shows that ϕ has in fact a negligible effect on E, since if $\phi=\pi / 2$, $\cos (w t+\phi)=\sin w t$, and equation (16) would be unohanged except for the term in brackets which would be $\left[1-\frac{m^{2}}{\mathrm{~m}^{2}+\mathrm{w}^{2}}\right]$. Thus the integral $\int_{0}^{\infty} e^{2 m t} \cos ^{2}(w t+\phi) d t$ cannot lie outside the linits $\frac{-1}{4 m}\left[1 \pm \frac{m^{2}}{m^{2}+w^{2}}\right]$
so that the energy E is

$$
\begin{equation*}
E=-\frac{\pi r^{2}}{p c}\left|p_{e}(0)\right|^{2} \cdot \frac{1}{m} \quad \text { with } m=-\frac{f_{0} \pi}{Q} \tag{17}
\end{equation*}
$$

Having assumed that the energy absorbed is remradiated without loss the value of $p(0)$ can be obtained by equating the right hand sides of equations (12) and (17).

$$
\begin{equation*}
\left|p_{e}(0)\right|^{2} \frac{r^{2}}{p c} \frac{Q}{f_{0}}=\frac{p_{0}^{2}}{2 p c}|F(w)|^{2} \sigma \Delta w \tag{18}
\end{equation*}
$$

where the symbols have all been previously defined. And solved for $p_{e}(0)$, this reads

$$
\begin{equation*}
p_{0}(0)=\frac{p_{0}}{2 r}|F(w)| \frac{w}{Q} \sqrt{\frac{\sigma}{\pi}} \tag{19}
\end{equation*}
$$

Section 3

(a) Typioal Values

As an illustration of the echo likely to be received the following figures would be typioal. A fish of $2-3 \mathrm{lb}$ weight would have an air bladder about 4.5 cms in diameter. At a depth of 100 metres (about 50 fm) this wouid resonate at $500 \mathrm{c} / \mathrm{s}$. Thus

$$
r=10^{4} \mathrm{cms}, \quad d=4.5 \mathrm{cms}, \quad f_{0}=500, \quad w_{0}=2 \pi \times 500
$$

$p_{0}=\frac{P_{0}}{r \times 10^{-2}}$, where the best estimate of P_{0} is 2.5×10^{5} dynes $/ \mathrm{cm}^{2}$.
$t_{1}=0.3 \times 10^{-3}$ from Fig. 1 and
$|F(w)|=2 \times 2 t_{1}=1.2 \times 10^{-3}$ using Fig. 3
$Q=12$ and $\sigma / \gamma_{4} \pi d^{2}=700 \quad \therefore \sigma=\frac{700 \pi d^{2}}{4}$
Thus $p_{e}(0)=\frac{2.5 \times 10^{5} \times 1.2 \times 10^{-3}}{2 \times 10^{4} \times 10^{2}} \times \frac{10^{3} \pi}{12} \times \sqrt{\frac{700 \pi \times 4 \cdot 5^{2}}{4 \pi}}$

$$
=\frac{1 \cdot 5 \pi}{12} \times 10^{-4} \times \frac{4.5}{4} \times 10 \sqrt{7}
$$

$$
\begin{equation*}
p_{e}(0)=1.2 \text { aynes } / \mathrm{cm}^{2} \tag{20}
\end{equation*}
$$

(b) Discussion

Equation (20) shows that an appreciable echo is returned from a typical fish bladder provided that it behaves as a free spherical bubble. 1.2 dynes $/ \mathrm{cm}^{2}$ is roughly the RMS noise to be expected in Thumper work due to sea noise, ship noise and towing noise of the hydrophone and transducer. But owing to the large number of cycles in the echo it should be easily deteotable. However, the figure of 1.2 dynes $/ \mathrm{cm}^{2}$ may be an optinistic
estingte for the Pollowing rensons:
(a) The peole prosoure ot 4 notro moy be less thon 2.5×10^{5} dynos/on ${ }^{2}$.
(b) The effective cross-section of a bubble is not well known at frequencies below 1 or $2 \mathrm{Kc} / \mathrm{s}$.
(c) The body of the fish may reduce the efficiency of the absorption and re-radiation processes quite appreciably, And these are in any case unlikely to be perfectly efficient even for a bubble. Experimental work remains to be done on these last two roints.
It is interesting to see how $p_{e}(0)$ can be expected to vary with the parameters. Equation (19) can be re-written

$$
\begin{align*}
& p_{e}(0) \propto p_{0}|F(w)| \frac{1}{r} 2 \pi f_{0} \frac{1}{2} \pi^{3 / 2} \alpha Q \tag{21}\\
& \text { since } \sigma=\pi^{2} d^{2} Q^{2}
\end{align*}
$$

But $f_{0} \propto \frac{p^{\frac{1}{2}}}{d} \quad \begin{aligned} & P=\text { static pressure } \\ & \propto r\end{aligned}$
Hence

$$
\begin{aligned}
p_{e}(0) & \propto p_{0}|F(w)| \frac{1}{r} \frac{r^{\frac{1}{2}}}{\frac{1}{2}} \frac{1}{Q} Q \\
& \propto \frac{p_{0}|F(w)|}{r^{2}}=\frac{P_{0}}{r^{3 / 2}}|F(w)|
\end{aligned}
$$

This shows that provided $|F(w)|$ varies little in the frequency range of interest (as indeed it does), then $P_{e}(0)$ is not critically dependent on frequency. Furthermore it is independent of Q, though the detectability of the echo is not, if Q is less than about $6-10$.
(c) Conclusion

It seems possible that resonant reflection of sound impulses by fish bladders may be detectable in a wide band system, if several fish occur in a group, and reverberation and noise can be kept within fairly low limits. However, much quantitative work remains to be done.

APPENDIX

Extension of the Complex Fourier Series to the Fourier Transform

This is intended to bring out the physical signifioance of the amplitude transform of a single pulse by extending the more familiar complex Fourier series of a periodic wave form. The technique is to express a low duty cycle pulse train as a complex Fourier series, and examine this series as the duty cycle is reduced to a single puise.

Let $f(t)$ he the amplitude of a pulse (e.g. a sound wave) defined during the interval $-1 / 2<t<1 / 2$ and let $f(t)=f(t+I)$. $f(t)$ may be zero during most of the interval defined above.
$f(t)$ may be written as the complex Fourier series

$$
\begin{equation*}
f(t)=\sum_{k=-\infty}^{\infty} C_{k} \mathrm{e}^{j k w_{0} t} \tag{A1}
\end{equation*}
$$

where the coefficients are given by

$$
\begin{equation*}
C_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j k w o t} d t \text { and wo }=\frac{2 \pi}{T} \tag{A2}
\end{equation*}
$$

In the interval $-1 / 2<t<7 / 2$ the amplitude of the component of frequency nwo is C_{n}, and the power associated with this wave is $\frac{1}{2}\left[C_{n} C_{-n}\right]$. Thus the total energy of this harmonic in the interval T is

$$
E_{n W 0}=T / 2\left[C_{n} C_{-n}\right] \text { where } C_{n}, C_{-n} \text { are complex conjugates. }
$$

Thus the energy density (in the frequency plane) in the bandwidth $\left(f_{n+1}-f_{n}\right)$ is $E_{n w o}$ divided by the frequency sepanation of the harmonios

$$
\begin{align*}
J_{W_{0}} & =\frac{E_{n w_{0}} x 2 \pi}{(n+1) W_{0}-n w_{0}}=\frac{2 \pi T}{2 w_{0}}\left[C_{n} C_{-n}\right]=\frac{2 \pi T^{2}}{4 \pi}\left[C_{n} C_{-n}\right] \\
& =\frac{1}{2}\left\{\int_{-T / 2}^{T / 2} f(t) e^{-j \frac{n \pi t}{T}} d t \int_{-T / 2}^{T / 2} f(t) e^{j \frac{n \pi t}{T}} d t\right] \tag{A3}
\end{align*}
$$

It is the behaviour of this expression as $T \rightarrow \infty$ which is of interest. But $2 \pi / T$ hence as $T \rightarrow \infty$ wo $\rightarrow 0$ and unless $k \rightarrow \infty$ in such a way that kwo remains finite equation (AJ) merely gives the square of the area under the curve $f^{\prime}(t)$. So let kwo $=w$ so that (A3) becomes

$$
\begin{equation*}
J_{n w_{0}}=\operatorname{Iin}_{T \rightarrow \infty} J(T)=\operatorname{Lim}_{T \rightarrow \infty} \frac{1}{2}\left\{\int_{-T / 2}^{T / 2} f(t) e^{-j w t} d t \int_{-T / 2}^{T / 2} p(t) e^{j w t} d t\right\} \tag{4}
\end{equation*}
$$

As $f(t)=0$ outside the limits \pm To, where $2 T_{0}$ is the actual length of the pulse and is finite, the right hand side of (Λ_{4}) is independent of the value of T provided that $T>2 T_{0}$. This leads to the equation

$$
\begin{equation*}
J(w)=\frac{1}{2}\left\{\int_{-\infty}^{\infty} f(t) e^{-j w t} d t \int_{-\infty}^{\infty} f(t) e^{j w t} d t\right\} \tag{A5}
\end{equation*}
$$

But $\int_{-\infty}^{\infty} f(t) e^{-j w t} d t$ is just the Fourier transform $F(j w)$ of $f(t)$, and $\int_{-\infty}^{\infty} f(t) e^{j w t} d t$ is its complex conjugate $P(-j w)$.

Thus $\Delta E(w)=J(w) \Delta w=\frac{1}{2}|F(w)|^{2} \Delta w$

