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Section 1 - TNTRODUCTION

(r) General

It is the intention of this report to calculate the magnitude of the
echo received from a fish bladder at a known depth when subjected to a
sound wave of known character, The sound wave is the output of the N,I.0,
modification to the Edgerton "Boomer" hereafter called the Thumper, For
the purposes of the report the bladder is treated as a free spherical bubble,

(b) Method

A mathematical approximation to the Thumper output wave is constructed
in a form suitable for analysis by Fourier methods or the Laplace transform,
Thus the energy associated with any part of the spectrum crossing unit area
parallel to the wavefront at the target can be calculated,

Next the acoustic cross=-section of the target is examined as a function
of frequency, and using the expression so found the total amount of energy
absorbad by the target from the pulse may be 'ound,

This energy is assumed to be re~radiated uniformly in all directions
as a damped train of oscillations at the resonant frequency of the target,
To £ind the initial amplitude of this wave the total energy output is
calculated and this is equated to the energy absorbed,

Sectlon %

(a) The Spectrum of the Thumper Pulse

Fig. 1 shows the pressure-time curve of the Thumper pulse, The curve
was traced from a photograph of the output of a non-directional hydrophone,
the response of which fell off by 6 dB per octave below 200 q/s.

The equation of the acoustic pressure can be written

P = Po f('t) (1)

where P = acoustic pressure at 1 metre from source at time t. Po = Peak
acoustic pressure at 1 metre and £(t) gives the time variation of P,

The total energy in a small band of angular frequency Aw centred on w
which passes through unit ares (1 sq. cm,) at 1 metre is

AE = g%z IF(w)i Dy (2)

where pc = specific acoustic impedance of the medium and
o U
F(w) :/ o o (4)at (3)
"o

which is the Fourier transform of £(t),

The total energzy in the pulse passing through unit area at 1 metre is

ch . fF(W)I 'W(W) dw )

and the energy absorbed by a target, whose cross-section W is a function
of w, is

Ey ch lﬂ(W)‘ W(w) aw (5)



As a first model of the pulse let

£(t)

i

cos kt for "2k < % < Wk 1

(6)

=0 elsewhere

T,
/2% .
/ﬁ cos kt e Jwb dt

72

Then

F(W)

i

= roT (e*j?E + ejZE)
s 5 (IT
Fw) = 1;;:;; cos (Zk (7)

A plot of F(w) (which is in this case real) for values of w from
0 to 2+5%k is attached (Fig. 2).

Inspection of the actual pressure-time curve (Fig, 1) shows that this
is & poor approximation, and a more realistic model would be

£(%) = ?/t1 0 <t < ty
- Qtt:;ﬁ £y <t < 3ty
T (&)
P 3ty <t < 2
=0 elsewhere

Here it is easier to use Laplace transforms to find Flw). The 2
Laplace transform F(s) of (%) is found, jw is substituted for s and {F(W)‘
is then the product of F(jw) and its complex conjugate F(=jw). The rules
for finding Laplace transforms applicable to this case are as follows:

(1) e £(%) =t F(s) = /,me”“*”’C £(t) at = é% .

(2) 1f £(%) is defined only in the interval t4 < t < tz then
Lr(t) = F(s) (o™= 73%2),
(3) If the transform of £(t) is F(s), that of £(+=1b) is F(s) LS

(4) The transform of a sum is the sum of the separate transforms,
Further, t is restricted to valucs greater than zero, The transforn of
£(t) can now be written out tern by tern os

F(s) = 57 .~£§ (1 - e~8t‘) 15t segnent
"S‘bq "38131 2
- ~Zstd e
- (e oy s%' ) o cB 2nd segment (9)
1 i ~38t4 ' ~5t2y =5tz
* 5% Too 36, (e e ) e 3rd segment

Putting jw for s and tz = nty where n > 3 this becomes

Tt g ‘ . V .
. -2 = Jrort W ~hiwhy =3(n41) jwkq _
F(gw) = %3% e Y sin(wﬁl) -8 1s:.n(wﬁ) + 8 sin[(gﬁé)wt1lw

(10)
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3

The computétion is much simplified while retaining a fair approximation

by putting n = L, which makes the pulse a symmetrical sawtooth, F(w) then
talzes the real form

2t | g I
F(w) = T@%ﬁja [%in whq = 2 sin WE‘ cos 72?;1 (11)

and a plot of this function is attached (Fig., 3).

(v) The Target

This is a fish~bladder, which for the purpcses of this report is treated
as a free spheriecal bubble, Much work remains to be done on bubbles and
the effects of shape and surrounding tissue, but some figures are available

from "Principles and Applications of Underwater Sound" NRDC Div 6 Summary
Technical Report (1946) pp 84-86,

Here it is seen that the acoustic cross-section of a spherical bubble
is appreciable only in the region of its resonant frequency, and the ratio
of the acoustic cross-section o to the actuul projected area 72Wd3‘aﬁ this
frequency is about 700, Also the Q eof the resonance is about 12~18 1
Actually o is approximately m2d®QZ, The resonant frequency fo = - Apz

where fo is in Ko/s, d is the diameter in inches, and P the pressurexin feet
of water,

(c) The Energy Absorbed by the Target

Strictly speaking this is given by equation (5) where W = o, but in view
of the strongly rescnant nature of the target equation (2) can be used with
1ittle logss of acouracy,

po.?. 2
Thus Ep = 55 |P(w) | otw (12)

where po = peak pressure at target = Po/r (r = depth in metres)
ET = energy absorbed by target.

(d) The Echo

E. as found in 2(c¢) is re-~radiated uniformly in all directions as a
darped traln of oscillations described by
Py = pe(o) o™ cos {wt + &) (13)
where p, = echo amplitude at hydrophone

Pe(0) = initial amplitude at hydrophone,

Now the rate of energy transfer through unit area by an acouvstic
disturbance of pressure p is p>/pc ergs/sec, so the total rate of transfer
through a sphere of radius r, centred on the source is

8B _ hmr® 2
5t = po P

Thus the total energy is

o 2
E = j’ kzz Pe? dt (1)
O

which with equation (13) becomes

2 [22]
o0 [ e
Q

¢ is the starting phase of the wave at the radius 1} and ag the Q is

large, ¢ has negligible effect on the total energy. Accordingly integration
of (15) is carried out with ¢ = o to give

l!%_ﬂ'rz oy & 2 . ;‘:‘i m? 16
B loe(o)] = hnx[} TR e (e)
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For exponential damping m = = i%ﬁ and w = 2nfo

2

2

2
thus =g and if Q = 15 2 ~ Yoo « 1

1
m® o+ w7 Rk o+ L, n? + w?

This shows that ¢ has in fact a negligible effect on E, since if ¢ = n/Z,
cos (wt + ¢) = sin wt, and equation‘(16% would be unchanged except for the

2
term in brackets which weuld be {} "'EFFEL§§5 . Thus the integral

o :
2mt - 2

]’ e cos®(wt + $)dt cannot lie outside the linits E;-[} b «Ewghwéw

o m ne o+ Wy

so that the energy E is

r2 2
E.—:.—z%é-‘}pe(o)l,% withm“%-"i (17)

Having assumed that the energy absorbed is re-radiated without loss the
value of p (o) can be obtained by equating the right hand sides of equations
(12) and (17).

2 2 2 2
[ pe (o) | %%:=%ﬂmme (18)

where the symbols have all been previously defined, And solved for Pe(O):
this reads

po(o) = B2 PG| § [§ (19)

§gction 3

(a) Typlical Values

As an illustration cf the echo likely to be received the following
figures would be typical. A fish of 2-3 1b weight would have an air bladder
abou*t L5 cms in diameter, At a depth of 100 metres (about 50 fm) this
woulid resonate at 500 q/st Thus

r =10% ems, d =Ae5cms, fo =500, wo = 27 x 500

Po = Eo =, , where the best estimate of Po 1s 2¢5 x 10° dynea/cm2
r x 10 at 1 metre,
tq = 0¢3 x 10 ° from Fig, 1 and

|F(w)| = 2 x 26y = 1+2 x 10”° using Fig, 3

42
Q =12 and q/y;ﬂdz =700 .. 0= 7007 4 )
=82 10° x 1.2 x 1077 10%T 7007 x Leh2
Thus Pe(o) = 2 x 108 x 402, b d 5 x =
o Aeom -t _ b5
=15 x 1077 x = x 1047
pe(0) = 12 dynes/cm® (20)

(b) Discussion

Equation (20) shows that an appreciable echo is returned from a typical
fish bladder provided that it behaves as a free spherical bubble,
1.2 dynes/cm® is roughly the RMS noise to be expected in Thumper work due to
sea noise, ship noise and towing noise of the hydrophone and transdu?er.
But owing to the large number of cycles in the echo it should be easily
detectable, However, the figure of 1.2 dynes/cn? may be an optindstic
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estinate for the following reasonss
(a) The peal: pressurc ot 4 notre moy be less than 25 x 10° dynga/cm2,

(b) The effective cross-section of a bubble is not well known at frequencies
below 1 or 2 Ke¢/s.

(¢c) The body of the fish may reduce the efficiency of the absorption and
re-radiation processes guite appreciably, And these are in any case
unlikely to be perfectly efficient even for a bubble, Experimental
work remains to be done on these last two 7oints,

It is interesting to see how pe(o) can be expected to vary with the
parameters, Equation (19) can be re-written

3
2(0) = polP(m)| L 20 £ 777 q (21)

since o = w2d?%*Q*

But fo « T P = static pressure
e I
Hence %
pp(0) wpolF(m)| 32 a0
o [F{w Pa
R 0l

This shows that provided |F(w)| varies 1little in the frequency range
of interest (as indeed it does), then p_ (o) is mnot critically dependent
on frequency, Furthermore it is independent of Q, though the detectabllity
of the echo is not, if Q is less than about 6-10,

(¢) Conclusion

It seems possible that resonant reflection of sound impulses by fish
bladders may be detectable in a wide band system, if several fish occur in
a group, and reverberation and noise can be kept within fairly low limits,
However, much quantitative work remains to be done.
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APPENDIX

Extension of the Complex Fourier 3Series to the Fourier Transform

This is intended to bring out the physical signifiocance of the amplitude
transform of a single pulse by extending the more familiar complex Fourier
series of a periodic wave form, The technique is to express a low duty
cycle pulse train as a complex Fourier series, and examine this series as
the duty cycle is reduced to a single pulse,

Let £(t) he the amglitude of a pulse (e.g. a sound wave) defined during
the interval ~/2< t < /2 and let £(t) = £(¢ + T), f(%) may be zero
during most of the interval defined above,

£(t) may be written as the complex Fourier series

o

£(t) = y 00 0T (a1)
k:;w
where the coefficilents are given by
7
2 .
C = /’ (%) o~ Mol ay ond we = 2X (A2)
kT T
'??2

In the interv&l-é%Z <t < 72 +the amplitude of the component of
frequency nwo is Cp, and the power associated with this wave is %[CnC-n].
Thus the total energy of this harmonic in the interval T is

T, ' .
Eo = /2 [cno_n} where O, C., are complex conjugates.

Thus the energy density (in the frequency plane) in the bandwidth
(fn+1 - fn) is Erwo divided by the frequency sepacation of the harmonics

B X 21 n 2
_ _Tnwig _ 2nT M‘ _ 2nT
Inwo = (n+1)wo = nwo ZWOi:énC“ . Lo Cnc~éw

i

L { f%f(t) I TE 4 f-%f(t) o3 B } (43)

m

~2 72

It is the behaviour of this expression as T => « whieh is of interest,
But 27/T hence as T ~> © wo => 0 and unless k => « in such a way that kwo
remains finite equation (A3) merely gives the square of the area under the
curve £(%)., So let kwo = w so that (A3) becomes

| | * 1 392 - Jwt ?;2 Jwt )
Ty = 1in J(w) = Iim 3 L f £(£) o 9" as f £(t) e’ dt } (Ak)

As £(%) = 0 outside the limits *To, where 2To is the actual length
of the pulse and is finite, the right hand side of (ML) is independent of
the value of T provided that T > 2To, This leads to the equation

[ “e(t) oI at } (15)

=

J(w) = { /, £(t) eI at

T o0 '
But / (%) o~ 9" 4% ig just the Fourier transform F(jw) of £(t), and

o0

o .
]‘ £(t) o9 4t 15 its complex conjugate F(=jw).
=0
2
Thus AE(w) = J(w) tw = S|F(w)| Aw (16)
and this is the expression used in the text,






