Trials on the Drag of a Streamlined Body and its Towing Cable
(Feltham 3.11.61)

BY

A. S. LAUGHTON

N.I.O. INTERNAL REPORT No. A14A

NOVEMBER 1961
TRIALS ON THE DRAG OF A STREAMLINED BODY

AND ITS TOWING CABLE

(Completed 3.11.61)

by

A.S. Laughton

National Institute of Oceanography
INTRODUCTION

THE TRIALS
THE STREAMLINED FISH
THE TOWING CABLE AND FAIRING
SUBSIDIARY TOWING TRIALS
CALIBRATION OF GAUGES AND OTHER EXPERIMENTAL MEASUREMENTS
EXPERIMENTAL RESULTS
REDUCTION OF RESULTS
 DRAG OF THE FISH
 DRAG ON CABLE AND FAIRING
 DRAG ON CABLE AND FAIRING ON STREAMLINED LEADS
COMPARISON OF FAIRING WITH 4" AND 12" SPACED CLIPS
COMPARISON OF FAIRING WITH 4" SPACED CLIPS AND NO FAIRING
CONCLUSIONS

APPENDIX 1

APPENDIX 2

TABLES

Table I - Experimental data
Table II - Drag characteristics of streamlined fish
Table III - Drag characteristics of 14 ft of cable and fairing on streamlined fish

FIGURES

Fig. 1 and 2 Elevation, plan and section
Fig. 3 Circuit for fish parameters
Fig. 4 Synthetic rubber fairing
Fig. 5 Spar inclination calibration a^o
Fig. 6 Body inclination calibration β^o
Fig. 7 Towing angles and tension
Fig. 8 Drag and drag coefficient of streamlined fish
Fig. 9 Forces on towing cable
Fig. 10 Profiles of fish towing cable
Fig. 11 Drag and drag coefficient of faired cable on fish tow
Fig. 12 α^o, γ^o vs. v^2 for cable on lead
Fig. 13 α^o, γ^o vs. δ for cable on lead
Fig. 14 Profiles of streamlined lead tow
Fig. 15 γ^o vs. v^2 for various cables on lead
Fig. 16 Tension vs. v^2 for 0.580" cable on lead
Fig. 17 Comparative forces for wire angle calculation
Fig. 18 Profiles of echo sounder fish tow (observed)
Introduction

Various acoustic devices used at sea are required to be towed beneath the ship while it is underway. In order to reduce fatigue in the towing cable and drag on both cable and transducer, it is necessary to streamline them with fairings. The present study is to determine the drag forces and stability of a fibreglass streamlined body containing an echo-sounder transducer (or equivalent weight) and of various configurations of moulded rubber fairings clipped onto the towing cable.

The trials were prompted by the observation of the towed transducer of the precision echo-sounder on H.M.S. "Owen" which was found to ride much nearer the surface than was predicted. The overall drag forces were several times those calculated assuming reasonable drag coefficients. The addition of extra weight to the fish did not appreciably alter its depth and it appeared that much of the drag was due to the cable.

The trials

A fibre glass fish, towing cables and fairings were towed at the Ship Hydrodynamics Laboratory, Feltham, on November 3rd 1961. Runs were made in the ½ mile tank at speeds between 10 and 25 ft/sec (6 and 15 kts). The depth of the tank was 25 ft.

The streamlined fish

The fish consists of an aluminium framework on which are mounted a 16 kc/s M8 transducer and lead weights. The fairing and fins are of fibreglass constructed by SARO. The dimensions and shape of the fish are shown in Fig. 1. The position of towing point and centre of gravity are shown in Fig. 2.

Weight of fish in air = 532 lb.
Weight of fish in water = 406 lb.

The fish was balanced in air to be approximately horizontal. It was then balanced to be horizontal ± 1° by suspending in water in the river at Godalming.

The fish was instrumented for the trials for the following measurements:

(a) Depth \(d \) (Bourdon tube with 2kΩ potentiometer),
(b) Angle \(\theta \) of towing spar from vertical (Pendulum on circular 5000 potentiometer),
(c) Angle \(\phi \) of body from horizontal (Pendulum on circular 5000 potentiometer).

These were continuously monitored by the circuit shown in Fig. 3.

The towing cable and fairings

The fish was towed on 15 ft of STC armoured four-core cable (26/30) covered with HDI polythene and with OD = 0.270".

A synthetic rubber fairing (as, Fig. 4) was attached to the cable by \(\frac{3}{4} \)" wide clips every 4" and was free to rotate.

Weight of fairing and wire in air = 15 lb.
Weight of fairing and wire in water = 12 lb.

Subsidiary towing trials

Simultaneous with the towing trials of the fish, streamlined leads (weight = 50 lb) were towed.

(a) One lead on very short wire just below surface,
(b) One lead on varying lengths of BF single core armoured cable.
Calibration of gauges and other experimental measurements

The depth gauge was calibrated in terms of depth to the towing point while lowering the fish into the tank.

The potentiometer giving the angle of spar (\(\alpha\)) was calibrated at the N.I.O. before trials, at Peltham after the trials and at H.I.O. after trials and the curve is shown in Fig. 5. The earlier calibrations showed doubts about the range 0 - 10° and were inconsistent with trials, due presumably to friction in the pendulum. The latest calibration has been used for the determinations of \(\alpha\).

The potentiometer giving the angle of body (\(\beta\)) was calibrated twice and the curve is shown in Fig. 6.

The angles of entry (\(\gamma\)) of the wires into the water were measured directly.

The tension (\(T\) lb) of the fish towing cable was measured by a spring balance at the top of the tow.

Experimental results

The experimental results are tabulated in Table I. A preliminary run at 20 and then 25 ft/sec produced too much spray and only rough measurements could be made. Thereafter nine runs were made at approximately 15, 16, 18 and 20 ft/sec.

Runs (1) - (3). Chiefly for fish tow and for zero length measurements of angle of tow of streamlined lead.

Run (4). Comparison of fairings with 4" and 12" clip spacings with 11 ft tow.

Runs (5) - (7). Comparison of above fairings with 5 ft tow at higher speeds.

Runs (8) - (9). Comparison of fairing with 4" clips and no fairing.

It was noticed that the fish showed a continual tendency to ride to starboard increasing to about 2 to 3 ft displacement at 20 ft/sec.

The streamlined leads showed a very strong tendency to ride to port sometimes as much as 10 ft. At higher speeds the fairing on entering the water at higher angles planed over the surface.

Reduction of results

Drag of the fish

Mean values of the towing angles and tensions of the fish tow are given in Table II and Fig. 7.

Let \(\bar{W}\) = weight of fish in water in lb.

\[D = \text{horizontal drag in lb}, \]

then \(\tan \alpha = \frac{D}{\bar{W}} \) \hspace{1cm} (1)

If \(C_D\) = drag coefficient of fish

\[A = \text{area of cross section} = 2\times \text{sq. ft}, \]

\[\rho = \text{density of water} = 62.4 \text{ lb per cu. ft}, \]

\[v = \text{velocity of tow in ft/sec}, \]

then \(D = \frac{C_D \rho v^2}{2} \text{ lbs.} \) \hspace{1cm} (2)

hence \(C_D = \frac{2W \tan \alpha}{\rho A v^2} \) \hspace{1cm} (3)
Values D and C_p are listed in Table II, and illustrated in Fig. 8.

The drag to weight ratio of the fish at 20 ft/sec

\[\frac{D}{W} = \frac{76}{406} = 0.19. \]

Drag on cable and fairing

Assume that the drag forces on the cable and fairing can be represented by forces on an equal length of straight cable at an angle ϕ to the vertical where $\phi = \frac{\theta + \gamma}{2}$ (cf. Fig. 9).

Approximate cable profiles are shown in Fig. 10.

Let $d_v = \text{transverse drag on cable and fairing in lb}$, $d_l = \text{longitudinal drag on cable and fairing in lb}$, $w = \text{weight in water of cable and fairing in lb}$, $T_0 = \text{tension at top of cable in lb}$, $T_1 = \text{tension at bottom of cable} = W \cos \phi$ in lb.

Resolving along cable

\[d_l = (T_0 - T_1) \cos \left(\frac{\theta - \gamma}{2} \right) - w \cos \left(\frac{\theta + \gamma}{2} \right). \]

Resolving perpendicular to the cable

\[d_v = (T_0 + T_1) \sin \left(\frac{\theta - \gamma}{2} \right) + w \sin \left(\frac{\theta + \gamma}{2} \right). \]

The main contribution to longitudinal drag is indicated by the difference between tensions at the top and bottom.

The main contribution to transverse drag is indicated by the difference between wire angles at the top and bottom.

Let $C_d = \text{drag coefficient of cable and fairing}$, $r = \text{radius of cable} = 0.035" = 0.0089$ ft, and $L = \text{length of cable} = 14$ ft.

Then $d_v = \frac{C_d}{2} \cdot \frac{2r}{6} \cdot v^2 \cdot \cos^2 \phi$.

Therefore $C_d = \frac{rv^2 \cos^2 \left(\frac{\theta + \gamma}{2} \right)}{d_v}$.

Values of d_v, d_l, and C_d are listed in Table III and illustrated in Fig. 11.

The transverse drag to weight ratio of the cable and fairing at 20 ft/sec is $\frac{d_v}{w} = \frac{166}{12} = 13.8$, giving an asymptotic angle of 86° from the vertical.

Drag of cable and fairing on streamlined leads

In Fig. 12 the angles of entry of the top of the tow into the water are plotted against different velocities for various lengths of tow.

In Fig. 13 the same angles are plotted against length of tow for different velocities.

Since the shape of the wire for a given speed is determined only by what is below it, then it is possible to construct curves of the wire shapes from the above graphs by reading the angle of tow for a given immersed length. The angles have been read at 5 ft intervals from the smoothed curves in Figs. 12 and 13, and the 5 ft sections plotted end to end in Fig. 14. The wire angle at the bottom is controlled entirely by the drag and weight of the streamlined body and if the curves were continued to an infinite cable length, then an angle is reached at the top asymptotically
which is controlled entirely by the drag and weight per unit length of the cable. The length of the transition zone is dependent on the relative drag/weight of the fish compared with that of the cable.

For comparison with the cable and fairing in the towed fish, the drag and drag coefficient was calculated for that part of the tow where the angle was not too great. For this, the lower ten feet of the tow at 10 ft/sec was used where $\alpha = 8^\circ$, $\gamma = 27^\circ$.

No measurements were made of cable tension. Hence the top tension was calculated from $T_0 = T_c + W + d_c$, where the value of d_c was obtained from the fish towing cable (Fig. 12).

For 10 ft of cable and fairing, at 10 ft/sec

- $d_c = 18$ lb,
- $d_c = 24$ lb,
- $C_d = 1.0$.

Comparison of fairing with 4" and 12" spaced clips

Four runs were made for direct comparisons between the two fairings, one with 11 ft of cable at 10 ft/sec and three with 5 ft of cable at 10, 15, 18 ft/sec. Table I shows that at the low angle of entry, there was no significant difference, but that at higher angles on longer tows, the 12" spaced fairing was significantly worse, the transverse drag being about 20% higher.

Comparison of fairing with 4" spaced clips and no fairing

With 5 ft tow, the drag on the unfaired cable was significantly less than on the fairled. With 20 ft there was no significant difference.

Conclusions

The drag coefficient of the streamlined fish (0.1) was approximately equal to that predicted and therefore was satisfactory. The fish showed no signs of instability at speeds up to 25 ft/sec (15 kts) although it showed a tendency to go to one side.

The drag coefficient of the cable and fairing on both tows (1.5 - 2.5 and 1.0) is considerably higher than expected. Since the drag coefficient of an unfaired cylinder is 1.1, this means that the effective area presented to the flow is greater than that of the cable itself, due possibly to the fairing not streaming straight astern of the cable. The observations of both towed bodies riding out to one side or the other confirm an asymmetry that might arise from the same cause. Looking down the fairing to the fish, one could see it ballooning out not only seaward but also to one side, showing that the side-forces originated in the fairing and not in the body towed.

At 20 ft/sec, the lateral displacement of the fish was about 3 ft in 14 ft length, i.e., lateral deflection of about 21°. If the cable tension is 530 lb, the lateral force must be approximately 110 lb. This drag is comparable to the fore and aft drag of the fish which results in an observable angle of deflection of the towing spar. No such lateral deflection was observed on the spar and therefore this must originate mostly in the cable and fairing. The lateral curvature of the cable confirms this.

A possible explanation of this lateral drag is that the fore and aft curvature of the fairing imposed by the curvature of the wire resulted in an instability of the fairing which made it go to one side. However when this deflecting force is calculated using measured elastic constants of the fairing, it is insufficient to
make any measurable effect when the radius of curvature is of the order of 40 ft.

The most plausible explanation is that an asymmetry has been produced in the fairing partly in the moulded cross section, partly by distortion of the clips while rivetting and partly by the asymmetry of the rivets. This asymmetry has produced an increased fore and aft drag and also a lateral drag.

The ratio of the drag to weight of the cable and fairing is \(\frac{7}{\pi} \) times that of the fish. Ideally the two values should be equal. By suitable redesign of the fairing it may be possible to reduce the drag coefficient from 1.5 to 0.1, i.e. by a factor of 15. A further reduction in the drag to weight ratio of the cable may be achieved by increasing the weight in water by about a factor of 5, i.e. to 60 lb for 14 ft.

These changes in the fairing would mean that the asymptotic angle for the towing cable would be approximately that of the fish spar and hence unlimited increase of depth could be achieved by increase of cable length.
Following the conclusions reached in the body of this paper and because cable failure in the field of the 0.312" diameter cable, further trials were made in a tank at the National Physical Laboratory on the drag of new and larger cable with and without a rubber fairing.

A lead streamlined body (identical to that used in the subsidiary trials at Feltham) was towed on 8 feet of cable at speeds between 13.5 and 20.3 ft/sec (8 and 12 kts). Measurements were made of:

(a) angle of entry of cable into the water (\(\theta^\circ\))

(b) tension of cable at the top (lb)

The cable was a four-core armoured cable specially designed by Standard Telephones and Cables for towing the echo-sounder fish. (Spec. E/32).

\(\text{OD} = 0.580"\)

\(\text{Breaking strain} = 4.5\text{ tons}\)

\(\text{Surface of slightly rippled P.V.C.}\)

Weight in air = 0.34 lb/ft²

The fairing was nearly triangular in section tapering from 0.45" near the cable to zero at 2.25". It was of medium soft rubber and was internally reinforced with a nylon cord down the leading edge. It was clipped close to the cable every 4" with 3/4" wide pre-formed clips, rivetted from alternate sides in order to avoid asymmetry. The corners on the leading edge of the fairing were bevelled in order to reduce possible turbulence.

<table>
<thead>
<tr>
<th>(v) (ft/sec)</th>
<th>(v^2) (ft/sec)²</th>
<th>(\theta) (deg)</th>
<th>(T) (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>13.5</td>
<td>182</td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>15.5</td>
<td>232</td>
<td>39</td>
<td>65</td>
</tr>
<tr>
<td>16.5</td>
<td>285</td>
<td>44</td>
<td>69</td>
</tr>
<tr>
<td>16.5</td>
<td>285</td>
<td>42</td>
<td>67</td>
</tr>
<tr>
<td>18.6</td>
<td>33.6</td>
<td>47</td>
<td>69</td>
</tr>
<tr>
<td>20.3</td>
<td>413</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20.3</td>
<td>413</td>
<td>49</td>
<td>75</td>
</tr>
</tbody>
</table>

(1) Streamlined lead, 8 ft of cable and fairing (7.5 ft in water).

(2) Streamlined lead and 8 ft of cable (7.5 ft in water) with no fairing.

\(\text{(N.B. The cable vibrated continually during the runs without fairing.\)}}\)
Fig. 15 shows the angles of entry γ plotted against v^2 for the 0.58" cable with and without fairing, and for the 0.312" cable with synthetic rubber fairing reduced to 7.5 ft immersed length using the data of Figs 12 and 13. The angle α for zero length is plotted, the data being from Fig. 12.

Fig. 16 shows the tension T plotted against v^2.

From page 3 the transverse drag on the cable and fairing for small angles is given by

$$d_t = (T_0 + T_f) \sin \left(\frac{\gamma - \xi}{2}\right) + w \sin \left(\frac{\alpha - \xi}{2}\right)$$

and the drag coefficient c_d by

$$c_d = \frac{d_t}{\rho v^2 \cos^2 \left(\frac{\alpha - \xi}{2}\right)}$$

The drag and drag coefficients were calculated for the cable and fairing and the cable alone for a speed of 10 ft/sec for which the angle γ is not too great.

Assuming $w = 3$ lb,

$T_0 = 50$ lb,

$\xi = 7.5$ ft,

$r = \frac{0.58}{2 \times 7.5} = 0.034$ ft,

then at $v = 10$ ft/sec:

Paired cable $d_t = 15$ lb, $\frac{d_t}{T} = 2.0$ lb/ft, $c_d = 0.35$.

Unfaired cable $d_t = 27.6$ lb, $\frac{d_t}{T} = 4.0$ lb/ft, $c_d = 0.70$.

The assumption that γ is small is hardly justified for the unfaired cable at 10 ft/sec ($\gamma = 37^\circ$). Therefore in order to verify the drag coefficient for an unfaired cable at near normal incidence a point was taken from the graph at $v^2 = 20$ where the curve is almost linear and the drag coefficient was calculated. However since there are no experimental points in this region the check is only rough.

At $v = 4.5$ ft/sec, for unfaired cable, $c_d = 1.0$. This compares favourably with theoretical value (1.1).

The convergence of γ for faired and unfaired cables at higher velocities results from the rapid increase of longitudinal drag of the faired cable as the angle γ increases compared with that of the unfaired cable.

The towing characteristics of the echo-sounder fish on 40 ft of the faired 0.58" cable can be calculated from the above data.

Fig. 17 shows the forces acting on the two tows at speeds of $v^2 = 200$ and 400 (ft/sec)2. On the short tow with the streamlined lead at $v^2 = 200$ (ft/sec)2 we have

$$d_y = 65 \cos 36 - 47 - 3 = 14 \text{ lb},$$

$$d_x = 65 \sin 36 - 11 = 27 \text{ lb}.$$

Assuming that the mean shape of the long tow with the fish at $v^2 = 400$ (ft/sec)2 is approximately the same as the short tow, then

$$D_y = \left(\frac{L}{T}\right)^2 d_y = 140 \text{ lb},$$

$$D_x = \left(\frac{L}{T}\right)^2 d_x = 290 \text{ lb}.$$
Hence $T_2 = 520$ lb and $y = 44^\circ$: the value of y justifies the assumption of similarity of mean shape. It therefore appears that the fairlead 0.530" cable is suitable for use with the echo-sounder fish at 20 ft/sec (≈ 12 kts).
Appendix 2

Towing characteristics of Fibre glass P.R.S. fish with 30/32 cable
(Measurements on R.R.S. "Discovery II" January - March 1962)

Weight of fish in air with Bio transducer = 578 lb
Weight of towing point above sea level = 7 ft.
Length of 30/32 cable (paddling ring to paddling ring) = 40 ft.
Extra distance to top swivel end to transducer = 1 ft.
(Cable length during latter part of cruise = 38 ft).

Cable and fairing as described in Appendix 1

Measurements made at different speeds:

1. Mean horizontal distance between towing point and point of entry of cable into water
2. Mean horizontal distance between towing point and body of fish obtained by viewing from vertically above (fish in clear water)
3. Depth of fish below sea level obtained directly from difference between depth of water below fish (in shallow water) and depth below sea level determined by difference of 1st and 2nd multiple echoes. These were done with a cable length of 38 ft (10.3.62).
4. Angle of towing spar on top of fish was obtained from tank trial data. (Fig. 7)

Observed data

<table>
<thead>
<tr>
<th>Speed (kts)</th>
<th>Speed (ft/sec)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(\theta)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>12.7</td>
<td>4.5</td>
<td>15.5</td>
<td>45°</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>15.2</td>
<td>7</td>
<td>22</td>
<td>65°</td>
<td>-</td>
</tr>
<tr>
<td>10.25</td>
<td>17.3</td>
<td>7</td>
<td>23.5</td>
<td>80°</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0°</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.8</td>
<td>1.0</td>
<td>-</td>
<td>1.5°</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>10.2</td>
<td>2.7</td>
<td>-</td>
<td>30°</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>13.5</td>
<td>4.5</td>
<td>-</td>
<td>52°</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>16.9</td>
<td>6.7</td>
<td>-</td>
<td>75°</td>
<td>25</td>
</tr>
</tbody>
</table>

Smoothed values (\(e = 39 \) ft)

<table>
<thead>
<tr>
<th>Speed (kts)</th>
<th>Speed (ft/sec)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0°</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>2.0</td>
<td>0.5°</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>6.0</td>
<td>1.5°</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>2.7</td>
<td>12.0</td>
<td>3.0°</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>4.2</td>
<td>17.5</td>
<td>5.2°</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>7.1</td>
<td>23.5</td>
<td>7.5°</td>
<td>25</td>
</tr>
</tbody>
</table>

Depth of fish correction

<table>
<thead>
<tr>
<th>Speed (kts)</th>
<th>(D_{FS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+5</td>
</tr>
<tr>
<td>2</td>
<td>+5</td>
</tr>
<tr>
<td>4</td>
<td>+5</td>
</tr>
<tr>
<td>6</td>
<td>+5</td>
</tr>
<tr>
<td>8</td>
<td>+5</td>
</tr>
<tr>
<td>10</td>
<td>+6</td>
</tr>
</tbody>
</table>

The table above was drawn using the data \(s_1 \), \(s_2 \), and \(\alpha \) and the towing length of 39 ft overall. The depth of fish was measured from those profiles. The differences between these values and those observed from multiple echoes are within the experimental error.
<table>
<thead>
<tr>
<th>Run</th>
<th>Speed ft/sec</th>
<th>α μm</th>
<th>β μm</th>
<th>γ deg.</th>
<th>T lb.</th>
<th>Pairing (1)</th>
<th>y deg.</th>
<th>l ft.</th>
<th>Pairing (2)</th>
<th>y deg.</th>
<th>l ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep</td>
<td>25</td>
<td>20</td>
<td>22</td>
<td>-</td>
<td>620</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>0</td>
<td>448</td>
<td>0</td>
<td>23.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10.2</td>
<td>11</td>
<td>20</td>
<td>15</td>
<td>440</td>
<td>0</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>23.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>15.1</td>
<td>14</td>
<td>21</td>
<td>25</td>
<td>476</td>
<td>-75</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6.5</td>
<td>18</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>10.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20.1</td>
<td>17</td>
<td>20.5</td>
<td>30</td>
<td>530</td>
<td>70</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>11.3</td>
<td>0</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.1</td>
<td>11</td>
<td>19</td>
<td>12.5</td>
<td>-</td>
<td>26</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>18.5</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.1</td>
<td>10.5</td>
<td>19</td>
<td>13</td>
<td>438</td>
<td>23</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15.0</td>
<td>14.5</td>
<td>20.5</td>
<td>26</td>
<td>478</td>
<td>35</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.7</td>
<td>15.5</td>
<td>21.5</td>
<td>28</td>
<td>504</td>
<td>43</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15.0</td>
<td>14</td>
<td>20.5</td>
<td>23</td>
<td>475</td>
<td>35</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>0</td>
<td>410</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10.1</td>
<td>11</td>
<td>21</td>
<td>13</td>
<td>440</td>
<td>44</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I - Experimental data
Table II - Drag characteristics of streamlined fish

<table>
<thead>
<tr>
<th>(\text{ft/sec})</th>
<th>(\text{ft/seo)}^2)</th>
<th>(\alpha \text{ deg})</th>
<th>(\beta \text{ deg})</th>
<th>(\gamma \text{ deg})</th>
<th>(\text{T lb})</th>
<th>(\text{D lb})</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>3.0</td>
<td>1.0</td>
<td>13</td>
<td>440</td>
<td>21</td>
<td>0.11</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>6.5</td>
<td>1.5</td>
<td>24</td>
<td>478</td>
<td>46</td>
<td>0.10</td>
</tr>
<tr>
<td>17.7</td>
<td>314</td>
<td>8.0</td>
<td>2.0</td>
<td>28</td>
<td>502</td>
<td>57</td>
<td>0.11</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>10.0</td>
<td>2.5</td>
<td>30</td>
<td>530</td>
<td>72</td>
<td>0.09</td>
</tr>
<tr>
<td>25</td>
<td>625</td>
<td>13.5</td>
<td>3.0</td>
<td>-</td>
<td>620</td>
<td>98</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table III - Drag characteristics of 14 ft of cable and fairing on streamlined fish

<table>
<thead>
<tr>
<th>(\text{ft/sec})</th>
<th>(\text{ft/seo)}^2)</th>
<th>(\text{d}_c \text{ lb})</th>
<th>(\text{d}_f \text{ lb})</th>
<th>(\phi \text{ lb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>22</td>
<td>76</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>58</td>
<td>136</td>
<td>2.1</td>
</tr>
<tr>
<td>17.7</td>
<td>314</td>
<td>82</td>
<td>162</td>
<td>1.8</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>114</td>
<td>166</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Elevation

Plan

Section

Fig 1 and 2
Fig. 3. Circuit for fish parameters

Fig. 4. Synthetic rubber fishing
Fig 5. Spar inclination calibration α°
- Lab. cal.n_1 2.1 x 1.61
- Field cal.n_2 3.1 x 1.61
- Lab. cal.n_3 6.1 x 1.61

Fig 6. Body inclination calibration β°
- Lab. cal.n_1 2.1 x 1.61
- Field cal.n_2 3.1 x 1.61
Fig. 7. Towing angles and tension.
Fig. 8. Drag and drag coefficient of streamlined fish.
Fig. 9 Forces on towing cable

Fig. 10 Profile of fish towing cable
Fig. 11. Drag and drag coefficient of hinged cable on fish tow.
Fig. 12. α^0, y^0 vs. v^2 for cable on head.

Fig. 13. α^0, y^0 vs. l for cable on head.
Fig. 14. Profiles of streamlined lead town.
Fig. 15. γ^0 vs. U^2 for various cables on bead

Fig. 16. Tension vs. U^2 for 580° cable on bead.
Fig. 17. Comparative forces for curve angle calculation.
Fig 18