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Abstract

We study the interactions between a nematic liquid crystal disclination and the surface of
the half-space which bounds it. When strong anchoring conditions are applied on the bound-
ary, we show how the biaxial core of the disclination affects the repulsive force that tends to
drive the disclination away from the surface. If we replace the strong boundary conditions
with an anchoring potential, the surface-disclination interaction depends on the surface ex-
trapolation length. In particular, we show that the nematic may expel the disclination if the
anchoring strength is below a critical value.

1 Introduction

A confined nematic liquid crystal is forced to display point or line singularities whenever the
boundary conditions imposed on it are topologically nontrivial [24, 19, 5]. In particular, topologi-
cally stable line defects (commonly named disclinations) arise whenever the director n rotates an
odd multiple of π when we follow its continuous variation around the line. They are made possible
by the n ↔ −n symmetry that characterizes the nematic. The mere existence of disclinations
induces a paradox in the Frank variational theory of nematic liquid crystals [17], since any director
field representing a topologically stable disclination apparently possesses an infinite free-energy.

One way to avoid the divergence in the free-energy is to excise from the system a small volume
including the singularity, and then derive the static and dynamic properties of the disclinations
by taking the limit as the excised volume goes to zero [9]. Nevertheless, the complete physical
description of small regions around the singularities requires an extension of Frank-Oseen-Zocher
theory [28, 36, 17], obtained by replacing the director order parameter with the tensor of second-
order moments of the local probability distribution of nematic molecules [12, 14]. As a first
generalization of the classical theory, it has been shown that the structure and dynamical properties
of point [30] and line [31, 20] defects are deeply influenced by the reduction of the degree of
orientation, even if one assumes that the nematic remains everywhere uniaxial, and that it becomes
isotropic on the defect. Furthermore, numerical and theoretical studies [23, 35, 6, 25, 26] of the
core structure have proved that inside the core of a disclination the nematic not only decreases
its degree of orientation, but it actually abandons the uniaxial phase, by becoming biaxial in a
small, but finite, region surrounding the defect. Recently, tremendous interest in the structure
and properties of liquid crystal disclinations has arisen, partly because they can be thought of as
laboratory analogues of cosmological structures [11, 8], partly because despite their experimental
visibility they are nevertheless extremely complex to describe.

When we consider a nematic disclination confined in a half-space where strong anchoring
conditions are applied, the classical limit procedure described above (first applied by Eshelby [15])
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yields a repulsive force simply proportional to the inverse of the distance between the line defect
and the surface. On the other hand, in a recent investigation the usual strong anchoring conditions
are replaced by an absolutely free boundary, where no anchoring is applied [34]. In this case the
disclination is attracted towards the surface, and eventually expelled from the system.

In this paper we study the interaction between a + 1

2
disclination and a planar surface, when

either strong or weak anchoring conditions are imposed at the bounding surface, using the internal
Landau-de Gennes potential to analyze the biaxial structure of the core of the disclination. In the
former case, we find that if the disclination is sufficiently far away from the surface, the core radius
tends to a constant, and the core structure gives no essential contribute to the repulsive force, so
that we retrieve the classical results obtained in the limit of a vanishing core. Nevertheless, when
the disclination approaches the surface, we find that the core radius shrinks, and the repulsive
force increases, doubling its value with respect to the classical prediction.

Furthermore, when a weak anchoring potential is applied to the nematic, we show that the
interaction between the surface and the disclination suffers deep modifications. If the anchoring is
strong enough, the force is still repulsive at all distances, although it remains bounded even when
the disclination approaches the surface. If however we decrease the anchoring strength, a critical
distance rcr appears, such that the force is repulsive if the surface-disclination distance is greater
than rcr, while it becomes attractive below rcr. The results obtained in [34] (attractive force at
all distances) remain valid in the limiting case of vanishing anchoring at the boundary.

The paper is organized as follows. In Section 2 we describe the model and the free-energy
functional we use. Section 3 is devoted to the strong anchoring limit; the surface-disclination force
and the core structure will be analyzed therein. In Section 4 we replace the strong anchoring
conditions by a weak anchoring potential and we analyze the qualitative changes suffered by the
surface-disclination force. Finally, in Section 5 we discuss the results obtained.

2 The model

Let us consider a nematic liquid crystal confined in the half-space B = {P = O + x ex + y ey +
z ez : x ≥ 0} with a + 1

2
line defect, parallel to the z-direction and passing through the point

P◦ = O+r ex. In this section we introduce the free-energy functional and the boundary conditions
that we will use to determine a quasi-equilibrium configuration for any given value of the distance
r between the disclination and the boundary of the nematic.

2.1 Nematic order tensor

We describe the local configuration of the nematic liquid crystal by means of the symmetric
traceless tensor Q of second order moments of the local distribution of molecular orientations [12].
The local physical properties are linked to the degree of symmetry of Q. The nematic is biaxial

where the three eigenvalues of the order tensor are all different; it is uniaxial if two eigenvalues
coincide; finally, it locally melts, and becomes isotropic, if Q is proportional to the identity tensor
I. When the nematic is uniaxial, Q can be written as

Q = s

(

n ⊗ n − 1

3
I

)

,

where s ∈
[

− 1

2
, 1
]

is the degree of orientation [14] and the unit vector n is the director . In
particular s, and thus Q, vanishes if the nematic is isotropic.

We need to describe a + 1

2
disclination parallel to the z-direction. The symmetry of B suggests

to focus on distributions Q independent of z with ez as one of the eigenvalues

Q = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λz ez ⊗ ez , (2.1)
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where
{

e1(x, y) = cosϕ(x, y) ex + sinϕ(x, y) ey

e2(x, y) = − sinϕ(x, y) ex + cosϕ(x, y) ey
and λz(x, y) = −λ1(x, y) − λ2(x, y) ∀(x, y),

so that we will simply refer our configurations to the half-plane B0 := B ∩ {z = 0}.

2.2 Free energy functional

We determine the equilibrium configuration of the nematic liquid crystal by minimizing the bulk
free-energy functional

Fb

[

Q
]

:=

∫

B0

(

fel
(

Q,∇Q
)

+ fLdG(Q)
)

da , (2.2)

subject to strong boundary conditions or completed with an anchoring energy functional, as we
describe below. Using the 1-constant approximation for the elastic part of the free-energy density
and the usual expression for the Landau-de Gennes potential [12], the bulk free-energy functional
(2.2) can be written as

Fb

[

Q
]

:=

∫

B0

(κ

2

∣

∣∇Q
∣

∣

2
+ a trQ2 − b trQ3 + c trQ4

)

da , (2.3)

where κ is an elastic constant and, in the nematic phase, a < 0, while b, c > 0. We remark that a
more detailed study of the problem, or the treatment of nematic materials with quite different splay,
twist and bend moduli, requires a more specific expression for the elastic potential1. Furthermore,
numerical simulations [35, 18] prove that the z-symmetry of the equilibrium configurations is
broken when the elastic moduli are assumed different. Thus, our symmetrical setting is strictly
related to the 1-constant approximation assumed in (2.3).

If Q is everywhere uniaxial, with constant degree of orientation s ≡ s0, the Landau-de Gennes
potential simply contributes with an additive constant, and the whole free energy functional (2.3)
reduces to the classical 1-constant approximation to Frank’s free energy functional [17]

FFr

[

n
]

:= κ s20

∫

B0

∣

∣∇n
∣

∣

2
da = κ s20

∫

B0

∣

∣∇ϕ
∣

∣

2
da . (2.4)

It was first noted by Lyutsyukov [22] that the order-tensor description of nematic liquid crystals
avoids the free-energy divergence, since S

4 has no defect in d = 3, whereas P
2 does. Thus, on some

length scale the P
2 defect would relax to the S

4 non-defect. To analyze this relaxation, Lyutsyukov
made use of a constraint which has been widely used subsequently [29, 3, 7]. To introduce it, we
recall that the parameter b in (2.3) is usually much smaller than both |a| and c . In fact, b is
responsible for the isotropic-nematic transition being first order, but it is well-known [12] that this
transition is only weakly first order. Thus (see [7] for details) we can impose on Q the constraint

trQ2 = 2
(

λ2

1 + λ1λ2 + λ2

2

)

≡ −a
c

=:
2

3
s20 , (2.5)

where s0 ∈ (0, 1] represents the degree of orientation preferred in the bulk. The constraint (2.5)
automatically minimizes the second- and fourth-order terms in the Landau-de Gennes potential,
so that they will be henceforth dropped from the bulk free energy. Recent numerical simulations
[1] confirm the validity of the constraint (2.5) in the regime T � TNI, while it gives only qual-
itative understanding of the results close to the nematic-isotropic transition, where a vanishes.

1See [21] for the more general rotationally-invariant elastic potential quadratic in the gradient of the order tensor
and at most quadratic in Q
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To implement (2.5) we introduce a scalar parameter u(x, y) [7], in terms of which we write the
eigenvalues of Q as:

λ1 = −s0
3

(

u−
√

3 − 3u2

)

, λ2 = −s0
3

(

u+
√

3 − 3u2

)

, λz =
2

3
s0 u ; (2.6)

u may attain all the values in [−1, 1]; in particular, when u = − 1

2
the nematic is uniaxial with

degree of orientation s0 and director e1, while when u = −1 the nematic is uniaxial with degree
of orientation −s0 and director ez.

To sum up, we are left with just two parameters to identify the order tensor Q : the angle ϕ
characterizing the eigendirections, and the scalar u, in terms of which all the eigenvalues can be
determined.

2.3 Anchoring

We will assume that a homeotropic uniaxial anchoring is applied on the nematic at its boundary
∂B0 = B0 ∩ {x = 0}. Thus, when studying strong anchoring effects, we will enforce the boundary
condition

Q(0, y) = Q0 := s0

(

ex ⊗ ex − 1

3
I

)

for all y ∈ R , (2.7)

that, in terms of ϕ and u, is equivalent to require that

ϕ(0, y) = π and u(0, y) = −1

2
for all y ∈ R . (2.8)

By contrast, the study of weak anchoring effects requires a relaxation of the boundary condition
(2.7) by inserting in the free energy functional the anchoring energy

Fs[Q] :=
w

2

∫

∂B0

tr
[

(Q − Q0)
2
]

d` . (2.9)

Expression (2.9) for the anchoring energy is the most sensible generalization [27] to the order
tensor of the classical Rapini-Papoular anchoring energy [33]. Indeed, if we insert in (2.9) both
Q0 as in (2.7) and a uniaxial order tensor Q = s0

(

n ⊗ n − 1

3
I
)

, we obtain

FRP[n] = w s20

∫

∂B0

(

1 −
(

n · ex
)2
)

d` .

Finally, in order to enforce a + 1

2
disclination at the point P◦, we restrict our attention to angular

configurations ϕ(x, y) satisfying the topological property

∫

γ

∣

∣

∣

∣

dϕ

d`

∣

∣

∣

∣

d` = π (2.10)

around any closed curve γ, having natural parameter ` and enclosing the point P◦ in B0. Condi-
tion (2.10) ensures that the planar eigenvectors of Q complete a half-turn when we follow their
continuous variation along γ [5].

2.4 Classical minimizer and beyond

In the classical Frank theory, which we can easily retrieve in our formulation by enforcing u ≡ − 1

2
,

the Euler-Lagrange equation associated with the functional FFr in (2.4) simply reduces to the
Laplace equation in the plane. The minimizing fields ϕ are thus the harmonic functions which
satisfy suitable boundary conditions [9]. In particular, by using an image method, it is possible to
construct explicitly an harmonic function ϕ satisfying both (2.8) and (2.10): let P◦ = O+ r ex be

4



x

y

∂B0

rr

ϑπ−ϑ

ϑ−ϑ∗

ϑ∗

P◦P ∗
◦

P

ρ

ϕ

B0

Figure 1: Geometry of the + 1

2
line defect near a planar boundary, parallel to the disclination.

a point belonging to the disclination, and let P ∗
◦ = O−r ex be its mirror image with respect to the

boundary ∂B0 (see Figure 1). Furthermore, for any point P , we introduce the angle ϑ determined
by (P − P◦) and ex, and the angle ϑ∗ determined by (P − P ∗

◦ ) and ex; then, a harmonic function
satisfying both (2.8) and (2.10) is given by

ϕ(x, y) =
1

2

(

π + ϑ(x, y) + ϑ∗(x, y)
)

. (2.11)

The well-known problem with the classical minimizer (2.11) is that it yields an infinite energy
for any value of r. Nevertheless, it is possible to exclude from B0 a small disc Dε of radius ε,
centered at P◦. The energy of the configuration (2.11) and thus the force acting on the disclination
can then be computed. Finally one takes the ε → 0 limit of the force. As a result, one finds that
[15, 10]

F =
κπ

2r
ex ∀r > 0 . (2.12)

To go beyond Frank’s theory, we still keep the expression (2.11) for ϕ, but we relax the
assumption u ≡ − 1

2
. This permit the nematic to decrease its degree of orientation, or even

become biaxial. We expect the nematic to leave its most ordered state mainly close to the defect.
We therefore parametrize the points in the plane by means of the angle ϑ introduced above, and
their distance ρ from P◦ (or, still better, by means of the dimensionless distance t := ρ/r):

(P −O) = r(1 + t cosϑ) ex + r t sinϑ ey .

We then assume that u depends on t, but not on ϑ. When we want to enforce strong anchoring
conditions on ∂B0, we must require the nematic to be uniaxial there. (The director orientation is
automatically orthogonal to the surface as a result of (2.11)). This amounts to requiring u(t) ≡ − 1

2

for all t ≥ 1, which means that we assume that the minimizing distribution differs from the classical
minimizer only inside a circle of radius r, centered at P◦.

If we introduce (2.6) and (2.11) in (2.1), and then the order tensor in (2.3), we obtain for the
free-energy the expression

Fb[u] =
κ s20
3

∫ T

0

t dt

∫

cosϑ≥−1/t

dϑ

[

u′2

1 − u2
+

1 − u2

t2
1 + 2t cosϑ+ t2

1 + t cosϑ+ 1

4
t2

+
r2

ξ2
(

1 − u
(

4u2 − 3
))

]

, (2.13)
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where ξ :=

√

3κ

2bs0
is the nematic coherence length, T := R/r, where R is the dimension of the

sample (which we will assume to be much greater than any other length that comes into play),
and a constant has been added to the Landau-de Gennes potential in order to keep energies finite.

3 Strong anchoring

In this section we study the properties of the minimizers of the functional (2.13), subject to the
condition u(t) ≡ − 1

2
for all t ≥ 1. Performing the integral in the angular variable in (2.13), we

obtain

Fb[u] =
2π

3
κs20

∫ 1

0

[

t u′2

1 − u2
+

1 − u2

t
(

1 − t2

4

) +
r2

ξ2
t
(

1 − u
(

4u2 − 3
))

]

dt

+
2

3
κs20

∫ T

1

[

3(t2 − 2)

t(t2 − 4)
arctan

(

t− 2

t+ 2

√

t+ 1

t− 1

)

+
3

2t
arcos

(

−1

t

)

]

dt

=
2π

3
κs20

∫ 1

0

[

t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(

1 − u
(

4u2 − 3
))

]

dt

t

+ πκs20 lg
R

r
+ c1 κs

2

0 + O
( r

R

)

,

(3.1)

where c1 :=

∫ ∞

1

[

2(t2 − 2)

t(t2 − 4)
arctan

(

t− 2

t+ 2

√

t+ 1

t− 1

)

+
1

t
arcos

(

−1

t

)

− π

t

]

dt = −1.31474 . . . .

3.1 Repulsive force on the disclination

The Euler-Lagrange equation associated with the functional (3.1) is

d

dt

(

2 t u′

1 − u2

)

=
2 t u′2 u

(1 − u2)2
− 2u

t
(

1 − t2

4

) +
r2

ξ2
t
(

3 − 12u2
)

(3.2)

together with the boundary conditions u(1) = − 1

2
, u′(0) = 0. It can be numerically solved using a

relaxation method and yields the minimizing distribution for any value of r. Then, differentiating
the resulting minimal free-energy with respect to r, we obtain the quasi-static elastic force acting
on the disclination:

F = −dFmin

dr
ex . (3.3)

We remark that (3.3) is valid only as long as backflow effects can be neglected, that is, only when
the translational degrees of freedom do not influence the rotation of the nematic molecules. In fact,
the force acting on the disclination is exactly given by (3.3) in the limit of vanishing macroscopic
velocities [10], so that we will often refer to the force (3.3) as a quasi-static force.

Before embarking upon an analysis of the numerical results, we focus on two asymptotic limits
which can be studied analytically.

• When r � ξ (large distance limit), the r2/ξ2 term dominates in (3.1). Therefore, and in
order to make the coefficient of r2/ξ2 as small as possible, the solution of (3.2) remains
almost constantly equal to − 1

2
for all values of t & ξ/r . Taking into account that the first

two terms in the functional depending on u are scale-invariant under the transformation
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t 7→ αt, while the third scales as α2, we then find

∫ 1

0

[

t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(

1 − u
(

4u2 − 3
))

]

dt

t

'
∫

ξ
r

0

[

t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(

1 − u
(

4u2 − 3
))

]

dt

t
+

∫ 1

ξ
r

[

1 − 1

4

1 − t2

4

]

dt

t

=

∫ 1

0

[

t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+ t2
(

1 − u
(

4u2 − 3
))

]

dt

t
+

3

8
log

4r2 − ξ2

3ξ2
.

Thus, in this limit,

Fmin ' π

2
κs20 log

R

rξ
+ Fcore + const.+ O

(

ξ2

r2

)

+ O
( r

R

)

, (3.4)

where Fcore denotes the elastic energy stored in the region t ∈ [0, 1] when r ' ξ. Using (3.4)
we retrieve the classical result

F =
πκs20
2r

ex

(

1 + O
(

ξ2

r2

)

+ O
( r

R

)

)

. (3.5)

Physically, the fact that u becomes noticeably different from − 1

2
only in the region t ∈

[

0, ξr
]

(that is, ρ ∈ [0, ξ]) implies that the dimension of the core tends to a finite value (closely
related to the nematic coherence length) when the disclination is sufficiently far away from
the surface. We emphasize that (3.5) is in perfect agreement with the classical result (2.12)
if we neglect terms O

(

ξ2/r2
)

, that is, if we neglect the core radius.

• By contrast, when r � ξ (short distance limit), the term containing r2/ξ2 in (3.1) can be
neglected, and u leaves its bulk value − 1

2
in the whole interval t ∈ [0, 1] (that is, ρ ∈ [0, r]).

Consequently, we have

Fmin ' πκs20 log
R

r
+ Fcore + const.+ O

(

r2

ξ2

)

+ O
( r

R

)

,

from which we find

F =
πκs20
r

ex

(

1 + O
(

r2

ξ2

)

+ O
( r

R

)

)

,

so that the coefficient of r−1 in the repulsive force doubles at short distances.

Figure 2 illustrates the behaviour of the repulsive force acting on the disclination as a function
of the distance r from the boundary. The numerical results confirm the analytical limits described
above, and give an estimate of the distance from the surface at which the intensity of the repulsive
force matches the intensity computed from the classical model: when r & 3ξ the classical model
can be applied without any serious error.

3.2 Core structure

The degree of orientation of a nematic liquid crystal always decreases close to a defect line.
Furthermore, in [35, 6] it has been proved that the nematic becomes biaxial inside the core of
a disclination. The defect can be thought of as the region where the nematic is uniaxial with a
negative degree of orientation, and is surrounded by a closed surface where one of the eigenvalues
of the order tensor vanishes. Figure 3a, which exhibits the spatial variation of the eigenvalues of
Q obtained through a numerical solution of (3.2), confirms this prediction.
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0 1 2 3

1.0

1.5

2.0

r/ξ

F
(

πκs20
2r

)

Figure 2: Intensity of the quasi-static force acting on a disclination placed at a distance r from a
boundary where strong anchoring is applied.

We can generalize the definition of degree of orientation to biaxial order tensors [4] as

s(λ1, λ2, λ3) :=

(

27

2

3
∏

i=1

λi

)

1

3

.

Then, s is positive in the bulk but negative inside the defect core. Furthermore, Figure 3b shows
that this transition is extremely sharp. It is thus physically as well as mathematically meaningful
to define the core radius ρ0 as the distance from the disclination at which one of the eigenvalues,
and thus the degree of orientation, vanishes.

Figure 4 analyzes how the core radius depends on the distance of the disclination from the
surface. In particular, it confirms the asymptotic analysis performed in §3.1. When the disclination
approaches the surface, the core reduces its radius, scaling as r when this latter vanishes (see Figure
4b). By contrast, when the defect moves inside the bulk, the core radius tends to a constant value

(see Figure 4a). Furthermore, it is interesting to note that lim
r→0

ρ0

r
= 0.475... and lim

r→∞

ρ0

ξ
= 0.445...,

so that the core radius tends to assume a value which is almost exactly a given fraction (slightly
smaller than 1

2
) of the smaller length of the problem, be it r or ξ.

4 Weak anchoring

To study weak anchoring effects, we proceed as follows. First, we add to the free-energy functional
the anchoring energy (2.9). Then, we modify the geometrical setting of Figure 1 by introducing
the anchoring length ξa, similar to the cutoff length used in [16]. We assume (see Figure 5) that
the configuration of a nematic subject to weak anchoring coincides with the configuration the same
nematic would assume were strong anchoring conditions applied not at its surface ∂B0, but rather
at a distance ξa outside from the sample. Consequently, when ξa increases, the elastic energy will
in general decrease, since the nematic is allowed to abandon its homeotropic state at ∂B0, but
at the same time the anchoring energy (2.9) will increase. Then, for any r and any value of the
surface extrapolation length, defined as ζ := κ/w [12], we determine the optimal configuration by
minimizing with respect to ξa the complete free energy functional F := Fb + Fs. In general, the
two surface lengths ξa and ζ do not coincide [32], though they are closely related, as we describe
below.
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ξ
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2
ξ

- 2

3
s0

- 1

3
s0

0

1

3
s0
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3
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λ2

λz

(a)

0 ρ0
ξ
2

ξ 3

2
ξ

-s0

0

s0

ρ

s

(b)

Figure 3: Structure of the core of a disclination. Fig. 3a shows the variation of the eigenvalues of
the order tensor as a function of the distance from the center of the core, while Fig. 3b analyzes
the behaviour of the degree of orientation. In both graphs, the disclination is placed at a distance
r = 3ξ away from the surface.

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

r/ξ

ρ0

ξ

(a)

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

r/ξ

ρ0

r

(b)

Figure 4: Core radius of a disclination line as a function of its distance from the surface. Fig. 4a
shows that ρ0 vanishes when the disclination approaches the surface, and tends to a constant value
when the defect plunges into the bulk; Fig. 4b shows that ρ0 = O(r) when r → 0.
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x
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rξar + ξa

ϑπ−ϑ

ϑ−ψ

ψ

P◦P ∗
◦

P

ρ

∂B0

B0

ϕ

Figure 5: Geometrical setting for the modelling of a line disclination in a nematic liquid crystal
with weak anchoring conditions applied at its surface.

This parametrization allows also for the description of the expulsion of the defect from the
sample, since now r is not forced to be positive. The only requirement to be imposed on the
distance is that ra := r + ξa must be positive, so that r may become negative (thus representing
an expelled defect) provided that the optimum ξa is great enough.

When we insert the order tensors (2.7) and (2.1), with eigenvalues and eigenvectors given by
(2.6) and (2.11), in the anchoring energy (2.9), we obtain:

Fs =
2

3
κs20

ra
ζ

∫ 1

r̃

t√
t2 − r̃2

[

2 + u−
√

3 − 3u2
(

t2 + 2r̃ − 2r̃2
)

t
√
t2 + 4 − 4r̃

]

dt

+ κs20
ra
ζ

∫ R
ra

1

t√
t2 − r̃2

[

1 − t2 + 2r̃ − 2r̃2

t
√
t2 + 4 − 4r̃

]

dt ,

(4.1)

where r̃ := r/ra, while the bulk energy (2.3) becomes:

Fb =
2π

3
κs20

∫ r̃

0

[

t u′2

1 − u2
+

1 − u2

t
(

1 − t2

4

) +
r2a
ξ2

t
(

1 − u
(

4u2 − 3
))

]

dt

+
2

3
κs20

∫ 1

r̃

[

t u′2

1 − u2
+
r2a
ξ2

t
(

1 − u
(

4u2 − 3
))

]

arcos

(

− r̃
t

)

dt

+
8

9
κs20

∫ 1

r̃

(

1 − u2
)

[

3(t2 − 2)

t(t2 − 4)
arctan

(

t− 2

t+ 2

√

t+ r̃

t− r̃

)

+
3

2t
arcos

(

− r̃
t

)

]

dt

+
2

3
κs20

∫ R
ra

1

[

3(t2 − 2)

t(t2 − 4)
arctan

(

t− 2

t+ 2

√

t+ r̃

t− r̃

)

+
3

2t
arcos

(

− r̃
t

)

]

dt .

(4.2)

4.1 Asymptotic regimes

Again, we will first analyze the functionals (4.1) and (4.2) in the asymptotic regimes representing
a disclination very far from or very close to the surface. Then, a complete picture, based on
numerical computations, will follow.

4.1.1 Large distance limit r � ξ, ξa, ζ

The bulk free-energy Fb can be computed as the free-energy corresponding to a defect placed at
a distance ra from the surface minus the free-energy stored in the strip x ∈ [−ξa, 0), which lies

10



outside the system. Furthermore, the structure parameter u can be assumed to be constantly
equal to − 1

2
in this strip, being in this limit the core region very far from the surface. Thus we

obtain

Fb =
π

2
κs20 log

R

raξ
+ const.+ O

(

ξ2

r2

)

+ O
( r

R

)

− 3κs20
ξa
r

∫ ∞

1

√
t2 − 1

t3
dt+ O

(

ξ2a
r2

)

= Fstr − 5π

4
κs20

ξa
r

+ O
(

ξ2a
r2

)

+ O
(

ξ2

r2

)

+ O
( r

R

)

,

where Fstr denotes the free energy obtained in the strong anchoring case. Analogously, we obtain
for the anchoring energy

Fs = 2κs20
ξ2a
rζ

∫ ∞

1

√
t2 − 1

t3
dt+ O

(

ξ3a
r2ζ

)

=
π

2
κs20

ξ2a
rζ

+ O
(

ξ3a
r2ζ

)

,

and thus

F = Fstr +
π

2
κs20

(

−5

2

ξa
r

+
ξ2a
rζ

)

+ O
(

ξ2a
r2

)

+ O
(

ξ2

r2

)

+ O
( r

R

)

. (4.3)

The dominant part in the functional (4.3) is minimized when

ξa =
5

4
ζ , (4.4)

and its minimum value is

Fmin ' Fstr − 25π

32
κs20

ζ

r
, (4.5)

from which we obtain

F (r) = −dFmin

dr
= Fstr − 25π

32
κ s20

ζ

r2
+ o

(

r−2
)

, (4.6)

where Fstr is the value of the quasi-static force when strong anchoring conditions are applied.
Equation (4.6) shows that the correction to the quasi-static force tends to decrease its absolute
value. Nevertheless, in this limit this correction is O

(

r−2
)

, and thus negligible if compared to Fstr

itself, which is O
(

r−1
)

as (3.5) shows.

4.1.2 Short distance limit r � ξ, ξa, ζ

To analyze this case, we begin by estimating the value at which the anchoring length ξa tends
when r → 0. In this case, the dominant contribution in (4.2) arises from the last integral, so that

Fb = πκs20 log
R

ξa
+ O

(

ξa
R

)

+ O
(

ξ2a
ξ2

)

,

since the last integrand in (4.2) behaves as 3π/(2t) when t � 1. For the anchoring energy we
obtain:

Fs = ws20 ξa

[

2

3

∫ 1

0

(

2 + u−
√

3 − 3u2 t√
t2 + 4

)

dt+

∫ R
ξa

1

(

1 − t√
t2 + 4

)

dt

]

= c2 ws
2

0 ξa + O
(

ξa
R

)

,

(4.7)

where c2 :=
2

3

∫ 1

0

(

2 + u−
√

3 − 3u2 t√
t2 + 4

)

dt+
√

5 − 1 . Thus,

F = κs20

(

π log
R

ξa
+ c2

ξa
ζ

)

+ O
(

ξa
R

)

+ O
(

ξ2a
ξ2

)

,
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which is minimized when
ξa =

π

c2
ζ ,

so that we again retrieve that the anchoring length scales with the surface extrapolation length,
at least as long as this latter is small enough when compared to the nematic coherence length.

Now, in order to estimate the quasi-static force on the disclination when it reaches the surface,
we must determine the leading terms in r (when r → 0) to (4.1) and (4.2). For the sake of brevity,
we skip here the lengthy details of this computation, and we directly give the results:

Fb = Fb

∣

∣

r=0
+

(

c3 + c4
ξ2a
ξ2

)

κs20
r

ξa
+ O

(

r2

ξ2a + ξ2

)

,

with c3 :=
2

3

∫ 1

0

(

tu′2

1 − u2
+

4(1 − u2)(1 + t2)

t(4 + t2)

)

dt

t
+

1

2
− 2π +

3

2
arctan 2, and

c4 :=

∫ 1

0

(

1 − u(4u2 − 3)
)

dt.

On the other hand,

Fs = Fs

∣

∣

r=0
− c5ws

2

0r + O
(

r2

ξa

)

,

with c5 := log
(

2 +
√

5
)

+
2

5

√
5 − c2 − 8

3

√
3

∫ 1

0

√

1 − u2
(t2 + 2) dt

t(t2 + 4)3/2
.

The quasi-static force on a disclination placed exactly at the surface is thus

F (0) = −
(

c3 + c4
ξ2a
ξ2

)

κs20
ξa

+ c5ws
2

0 =
κs20
ζ

[

(

c5 − c2c3
π

)

− πc4
c2

ζ2

ξ2

]

. (4.8)

The term (c5 − c2c3/π) must clearly be (and turns out to be) positive, since the quasi-static
force on the disclination must be repulsive and unbounded in the strong anchoring limit ζ → 0.
Nevertheless, what it is really interesting is that both c4 and c2 are positive. The former, which
measures the internal energy stored in the core, is so because we added a constant to the Landau-
de Gennes potential in (2.13) precisely to set the preferred degree of orientation as its zero-level.
The latter measures the anchoring energy, apart from a multiplication factor (see (4.7)), and thus
it is positive definite by construction (see (2.9)). Thus, the term within square brackets in (4.8)
may change sign when the ratio ζ/ξ becomes great enough, so that the boundary force on the
disclination may become attractive when the anchoring is sufficiently weak.

4.2 Anchoring length

Figure 6 illustrates how ξa depends on r for different values of the surface extrapolation length. The
anchoring length increases when the defect approaches the surface, and it is almost proportional
to the surface extrapolation length. This latter effect is enhanced when the ratio ζ/ξ becomes
great enough (we recall ζ is typically greater than ξ [2], in some cases even by more than one
order of magnitude [13]). Furthermore, Figure 6 confirms the long-distance analytical prediction
(4.4), and shows that when ζ becomes of the order of or greater than ξ, (4.4) remains valid at all
distances r ≥ 0.

4.3 Expulsion of the defect

Figure 7 shows the fundamental qualitative changes that the weak anchoring induces in the quasi-
static force acting on a disclination. In it, positive values of F denote repulsion from the surface,
while negative values indicate attraction. As long as ζ . ξ, the force remains always repulsive, and
it monotonically increases when the disclination approaches the surface, even if it tends to a finite
limit when r → 0. Furthermore, as we already noticed from (4.5), the long-distance behaviour of
the quasi-static force does not depend on the anchoring strength.
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Figure 6: Dependence of the anchoring length ξa on the distance between the disclination and the
surface for the values of the surface extrapolation length indicated therein.

By contrast, and confirming (4.8), Figure 7 shows that when ζ increases (that is, the anchoring
strength decreases) the quasi-static force may first lose its monotonicity, reaching its maximum
when the line defect is at a finite distance from the surface. If the anchoring strength decreases
further, the surface-disclination force becomes attractive at short-distances, that is, the sample
tries to expel the disclination if it comes sufficiently close to the surface.

Figure 8a illustrates in detail the behaviour of F (0) as a function of ζ . The almost linear
shape of the curve confirms (4.8). The critical value of the surface extrapolation length at which
the surface force changes sign and the expulsion process may arise is given by ζcr = .7974ξ.

Figure 8b shows the ζ-dependence of the critical distance rcr at which the quasi-static force
vanishes. The surface-disclination interaction is attractive when r < rcr and repulsive at greater
distances. It is worth noting that when ζ crosses ζcr, rcr jumps abruptly from 0 to a value close
to 0.13ξ. Furthermore, the dashed line shows that rcr = O(ζ) when this latter diverges, so that in
the weak anchoring limit we retrieve [34] that the quasi-static force on the disclination becomes
attractive at all distances.

We remark that rcr is always an unstable equilibrium distance for the disclination. The line
defect is driven towards the bulk as long as it remains at a distance r > rcr. Nevertheless, if it
crosses the critical distance from the surface, it is pushed outwards and eventually expelled from
the sample.

5 Concluding remarks

We have studied the quasi-static force that a bounding surface induces on a nematic disclination.
More precisely, we have treated in detail the case of a single + 1

2
defect. However, the methods

presented here can also be used to study the boundary interactions of disclinations of greater
topological charges or the interactions between two or more defect lines. Our main outcomes are
the following.

• When strong anchoring is enforced, the inclusion of a finite biaxial core in the description
of the disclination increases the repulsive force that drives the disclination away from the
surface. Nevertheless, this strengthening of the repulsive force is a short-range effect, that
can be felt only when the distance between the disclination and the surface is of the order
of the nematic coherence length.
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Figure 7: Quasi-static force acting on a disclination line placed at a distance r from a surface
where weak anchoring has been applied. From top to bottom, the graphs refer to the following
values of the ratio between the surface extrapolation length ζ and ξ: .05, .5, 1, 1.25, 2.5, 5, and
10.
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Figure 8: (a) Force on a disclination laying on the surface of a nematic liquid crystal as a function
of the ratio between the nematic coherence length and ξ and surface extrapolation length ζ .
Positive values of F (0) imply that the disclination is pushed towards the nematic bulk, while
negative values denote an expulsion of the disclination.
(b) Critical value of the distance from the surface at which the quasi-static force on the disclination
vanishes, in units of ξ (solid line) and ζ (dashed line). Both graphs are shown as a function of the
ratio ξ/ζ .
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• The core radius is almost constant (and closely related to the nematic coherence length) as
long the disclination is sufficiently apart from the external surface; otherwise, it scales with
the distance from the boundary.

• If we replace the strong anchoring conditions with a weak anchoring energy, a critical distance
rcr arises as soon as the the surface extrapolation length ζ becomes greater than the nematic
coherence length. The surface-disclination interaction is now attractive for r < rcr, but it
remains repulsive when r < rcr.

• The critical distance rcr is proportional to ζ when this latter diverges. To be more precise,
and considering that physically reasonable values for ζ lie in the range 10−9 ÷ 10−6m., that
is ζ = 1 ÷ 102ξ, we obtain from the dashed line in Figure 8b the estimate rcr = .13ζ.
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