NATIONAL INSTITUTE OF OCEANOGRAPHY

WORMLEY, GODALMING, SURREY

The amplitude of waves
reflected from a vertical

circular cylinder
by

M. S. LONGUET-HIGGINS and D. E. CARTWRIGHT

N. I. O. InrerNAL REerorr No. A9

JULY 1957



THE AMPLITUDE OF WAVES

REFLECTED FROM A VERTICAL CIRCULAR CYLINDER

by

M.S. Longuet-Higgins and D.E'. Cartwright

National Institute of Oceanography

July 1957



CONTENTS

Notation

Formal solution
Asymptotic values
Computed values
Very short waves
References
Tables

Pigures

Page

T

o ® WM W

Nos. 1 -9



SUMMARY

The problem of the diffraction of water waves by a verticel circular
cylirder has been formelly solved by Havelock (II)s In this note we use
the solution to calculate the amplitude of the reflected waves in different
directions and at different distances from the cylinder, for a number of
different values of the ratio of the radius of the cylinder to the wavelength
of the waves.

The results are represented in Pigures 1 to 8 and in Table 2, For small
values of the radius, the amplitude at great distances is a minimum near
& = 60°; close to the cylinder there is a minimum near & = 90°.

For large values of the radius (fg »» { ) the amplitude cen be calculated
by ray optical methodse It is found that the limiting case is approached
in an oscillatory fashiona

The results are intended for use in estimating the effect of vertical

piles on wave recorders nearby.
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1. Notation
h
o

k
d

height (crest to trough) of incoming waves

f

H

2 71 divided by period of incoming waves

7 1rdivided by length of incoming waves

]

1

mean depth of water

i, = radius of cylinder
X, 7 = horigzontal, vertical coordinates, with origin O at inter-
section of axis of cylinder with mean water level, {7 x in
direction of incoming waves, {;  vertically upwards
% (9 = horizontal polar coordinates, with

¢

2. Pormsl solution

It is assumed that all terms proportionsl to the square of the wave
height can be neglected, i.c. that the problem is linear, 4lso that viscosity
and surface tension are negligible, Under these conditions the velocity

potential cﬁ must satisfy the field equation

N

V¢ = ¢ ~ (1)

and the boundary conditions

e "]
—l 4 g P _ ~  vwhen 2 = o (2)
S Y @z T "
-,
a . .
_-;--(—fé - when E = (3)
v F e o
3 ¢
— = o when = & (&)

(see for example Ref, .IV, Chapter 9)s The elevation \;:of the free surface is

given by

> fa gﬁ“\
- (5)
9\o¢€/ Z =0

Let tre surface elevation of the incoming waves (in the sbsence of the cylinder)

be

Then the corresponding velocity-potential is
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"= 3 b cash kiz +d) Gpé(k.x - o t) (7)
"y -
PR Losh f{ rf_ :

which satisfies equations (1), (2) and (3) provided

-
i

We now write

po= ¢

B (9)
'T} i /’Y‘)

) 4 ’)
where ?'Tf)( and "i’)( are the velocity potential and surface elevation for the

reflected waves. It is clesrthat Ij{}ﬁmst satisfy equations (1), (2) and (3)
together with
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(-’f‘ )@__} O When —y __9 oo (11 )

To convert to polar coordinates we use the identity

f’( e i —— :3? ) ‘
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(see for exeample Refe I, pe 32), so that equation (7) cen be written

h oo y
;L( ~gn (kv) + /.?L‘-m ; K’!) ,s).}mef Losh k(-z-l-é) ¢ ot
A‘T 0 f o cosh kd |
B (13)
We choose for (i)tﬂthe following forms:
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qu’xl((yJ-d) vl
cosh id =

[
where the f‘:\ h-}‘ are constant coefficients and
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HO (ke = T (ko) + 0 Y, (k) (15)

is a Hankel function of order tn. This is a suiteble expansion since

y . , .
H, (k™) cos m B cosh k{z+d) e
and (3), and for large velues of <

~to b atisfies equations (1), (2)

| . o
H:}(h) et fv{/w%é-?)z e'Q“’ # +"‘“""“"Z_H ™) (16)

which represents a diverging wave. The boundary condition (4) at the cylinder

can now be satisfied by taking

']
) |
T (ka) | )

Ap = ——
H,‘;" ( ka)

(where a dash denotes differentiation).

This solves the problems The surface elevation in the reflected waves is

given by
()
e ' (18)
3 oe
and so the "relative amplitude" ' gh-) / | cm l is given by
! %i) = Ao Ho (kT) + 2 ZAM " HM (k"’),<;05 m &
, .
(19)

where A M(ka) is given by (17).

3+ dAsymptotic values

For large values of [( Y we have

) N lkr = T o
Y (..f.«._)‘ e b (An‘# Z_ZAMCGS M 9) (20)
g kv : e ;

so that at distances large compared with a wavelength the reflected wave
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dimishes like =1 .7'

Purther, when k a. << | we have

Ao (ko) ~ ("i ka)l

i 2‘“ [.(21)
A, (ko) i (ake) ™ (yn [
mb m-t !
so that for smell values of kﬂ.and large values o:f‘b /(1*,
vc?) L
> I\ Ly &
[T | ~ () Ghal"(1-200s0) w0k,

Thus when the radius of the cylinder is small we should expect the reflection
st great distences to be least when B = ¥66°, This agrees with the result ob-
tained by Rayleigh (R2fs VII, vole 2, pe309) for the similer problem of
diffraction of pléne sound waves by a thin circular cylinder.

If, however, ke {(and so ko << ) we have

H (ke) ~ LU Log (4 k) |
i (23)

v 4 - _
Hzm (k'r) ~ :ﬂgg(mu)! (!{kﬂ") m
. .
and so
_ z;(’f-) a2 g - ., .
?‘\)Xm 2 (% ke) ’ﬁc-ﬁ(ik"")+t(§k~') ws 6|
" |
Ny gk&.) {Cos 9{ | |
kK~ o

#

Hence the reflected wave is proportional to « "' near the cylinder, and is a

minimum near - 8= +90°,

ks Computed values

The series (19) end the asymptotic formula (20) were computed for the
following values of kﬁ }’T*réxand e | ‘
k a
o

2

3]

0002, 0005, 001, 0.2, 005’ 100;

100, 1.5, 200, 2.5, 3, 4, 5, 6, 8, 10;

0°, 30°, 60°, 90°, 120%, 150°, 180°,
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In some cases the computations were carried out for larger values of #° / o
until the exact and the asymptotic expressiocas spproached sufficiently closely.
Computations have also been made by Mathur, Ref. VI, for values of K ¢ and

kv equal to 3y by, 7 and 10, and for some cylinders of shapes other than
circular, |

The series and the asymptotic formula are compared in Figures 1 and 2 for
§ = 0° and 180°, It will be seen that the asymptotic value is approached more
rapidly for larger values of Ko « On the ofher hend for the smeller values
of K & the e:@ressioﬁ (24) is = sur?risingly good approximation.

The general form of the reflected waves is shown 1n Figures 3 to 7, for
ko = 0,05, 041, 0,2, 0u5 and 1.0. Contours of constent smplitude have been
constructed by graphical interpolation between the computed pointse. The
minimum near § = 60° is especially merked in Figures 3, L and 5.

The d.egrams in Figures 3 to 7 extend to « /a, = 15, Por greater values of
/@ the asymptotic formula (20) is sufficiently accurate.

In Table 1 are tebulated the coefficients ( (ka, @) for the asymptotic

formule for large l("r s cefined by

= C(ka,B) (/Y (25)

when k(i: O0e05, 041y 042, 0s5, 1, 2 and 5, For smaller values of !(a_ s the
simple formls (22) cen be used.

5e Very short waves

For short waves (lorge values of K¢ ) the series (19) converges only
slowly end in fact if the coefficients Am are replaced by their ssymptotic
values for large kq the resulting series is not comvergent.

However, the limitin-g case of v;ery short waves may be obtained by the”use
of rey optics. Thus in Figure 9(B) A B and ,’"-}2 12 ' represent two adjacent parallcl
rays striking the cylinder and reflected along BLermd P '€’ . If the angle
2oB is ‘-3 19' , then the anglé betwoen B (eand B’{;" isléig,/‘and it is
easily seen that .BC and B'C’ intersect in a point X whose -distance from E
is “; w05 & ./ The amplitude of the reflected waves diminishes as though the
woves originated in e source at X . Since the relative amplitude is unity

at the cylinder, at { it is -~y , where

-~

]
CXY % 2r 00

T = ( P = ( i AV 26
B x [ * A CDn H’ } ( )
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where JC =p£ + Thus the curve of constent relative amplitude ™M 1is given

by

Pt = 8 @

where £ is meaéufed along a line through the poiht (‘1”, @) = {O-, - @’)
in the direction Z 91. Thésé contours have been plotted in Figure 8¢ It
will be seen that for values of © near 180° (@ ‘= O) these curvesbvare not
very different from thoge of Bigure 7 (k«:& = J}. When & is near Zero, i.eo>
directly behind the cylinder, there is of course a shadow, where the relative
amplitué.e is taken to be unity.

W .
Writing =0 p =z v~ in (26) we have

M = (-ﬁ-j’ )7 (28)

= 7

which gives the relative amplitude along the line immediately in front of the
cylinder, for ko, — 20 o« Values of this function are given'in Table 2.

At great distances (ises T/;a 3> /) we have

v e (24”)-”2 (29)

oo
so that the coefficient € ( >3, 77') in the asymptotic e.’@a.nsioﬁ (25) is

((00,77‘) = L - 0.707
| N2

(30)

From Tabie 1 we see that the coefficient for I{Q: 160 is 0,738, so that
C(oo, W) islessthan ( (], o0) , although for Ka €10  C (ka, )
had apperently been increasing with ka. To investigate the behaviour of

C (KOL, ‘n") as ka increases still further, { (/(Q)ﬂ') was éalculated for

Ko = 2,9 end 5,0, It was found that

Cl2,m = 0763 O

, (31)
C(5m = 0,669



(7

so that ( ( k("}.,TT) approaches its limit in en oscillatory fashion.

This oscillation is not ‘clecrly epperent from equation (19) but = better
idea of the behaviour of ( {((a, G) cen be obteined from an equivalent
expression due to Imai » Refe III. Imai showed that equation (19)holds for

electromagnetic waves in the presence of a circuler cylinder when the magnetic
vector is oriented parsllel to its axis, and by means of contour integration

replaced (19) by another series, which in our notation cen be expressed as

follows:
(v}t 2 5!1 - 1 . 6 ‘ .
_S»‘ — (5'719) .).1 {a. 5in 2 lf—ff."a.z(;;-;f'é’ i
g £Xd [~ = +
& ik
2
i wsecz%
+ +
. 00 ZiKo.5an 8
A ;ﬂ'/;l ™ ','7 f-.‘_ Wi s
(ka) ¢ e [ﬁs Lo TR ) b 1) | (1)
gy Sin BT 87 kr
h B = (342 Toy, (y,) iy
where 5 Y VES is'Y ([-F C’(ka) 3))

J‘/ (ys) + Iy, (4s)

g :ké({+§€’”’/3(35) "O( )‘”3

o

and the 35 are the successive zeros of

TZ/; (ij) — J—.l/3((j)

(gj, = 0,6855, Y4, = 390298, Yg ~ 77-(5._%) )

Thus for eny glven value of ko , letting KT tend to infinity we obtain

€ {ka , 9) (Sdm &)Li

 ka sin L ot
Zika sin - t+ coSec

e hrmetd).

% i/ V» i cos By (r-6)

oo
Mo

Si v [’.’75 {

(32)
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which is oscillatory with respect to Ka..

Since, however, ['55 nearly equals Ka f‘or'large f(cx and small § ,
the infinite series in (31) end (32) will converge very slowly whenever - }(a,
equals a large integer, owing to the term sin {33 T in the denominator. In
general, these formula do not seem to be any more convenient for purposes of
computation than (19) and (20).

For very large Ko end Ky provided ~-fo is sdlso lsrge, (32) gives

L 5in8)" (33)
C (ka, §) ~ (3.' Sm.{)
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Vealues of C(ka,,e)occuring in the asymptotic formula (25)

kel

«05
10
20
o5
1,0

Values of reletive wave amplitude W , given by (26),
wavelength, and & = 180°

TABLE 1

(9)

o° 300 60° 90° 120° 150° 180°
070 A52 «000 «070 .14 «192 o216 x 10
»199 o145 +000 +199 397 o5ly «595 x 10
060 OL5 <00k +054, <101 151 <166
0252 201 067 .197 « 386 «526 + 566
«511 «4NB 0322 «506 « 668 728 0738

TABLE 2

for infinitesimal

1

6

1000

« 302

1e5
707

«258

o577
10

»229

2¢5
« 560
15

«186

3

oLl

20

+160

L

378

50

. 101

5
0333
100

071
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FIGURE 4
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FIGURE 7.

CURVES OF = CONSTANT RELATIVE AMPLITUDE OF REFLECTED WAVES,

(ka = 10)
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OIRECTION OF
ADVANCING WAVES

FIGURE 9(A)

FIGURE 9 ®






