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summi 

The problem of the diffraction of water waves lay a vertical circular 

cylinder has been formally solved by Havelock (ll)» In this note we use 

the solution to calculate the anplitude of the reflected waves in different 

directions and at different distances from the cylinder, for a number of 

different values of the ratio of the radius of the cylinder to ihe wavelength 

of the waves. 

The results are represented in Figures 1 to 8 and in Table 2, For small 

values of the radius, the amplitude at great distances is a minimum near 

^ = 60°; close to the cylinder there is a minimum near ̂  = 90° * 

For large values of the radius ikd I ) the anrplitude can be calculated 

by ray optical methods. It is found that t he limiting case is approached 

in an oscillatory fashion. 

The results are intended for use in estimating the effect of vertical 

piles on wave recorders nearby. 



1. Notation 

h = hei^t (crest to trou^) of incoming waves 

CT = 2. tT divided "by period of incoming waves 

k = 2 by length of incoming waves 

d = mean depth of water 

d. = radius of cylinder 

X ^ 2 ~ horizontal, vertical coordinates, with origin 0 at inter-

section of axis of cylinder with mean water level, (y ̂  in 

direction of incoming waves, Q -g vertically upwards 

jQ = horizontal polar coordinates, with 

2, Formal solution 

It is assumed that all terms proportional to the square of the wave 

height can be neglected, i.e. that the problem is linear. Also that viscosity 

and surface tension are negligible. Under these conditions the velocity 

potential (p must satisfy the field equation 

z: O 

and the boundary conditions 

0 , ^ f- ^ - Q Tdien 2 = O (^) 
A.: -

<) ^ 
O when 2 — fi (^) 

-N ' — LA. O T - n 

(see for exancple Raf, IV, Chapter 9)« The elevation ̂  of the free surface is 

given by 

Let tte surface elevation of the inooming waves (in the absence of the cylinder) 

be 

£ t I , . »• f ̂  X — ..T't ) 

^ ^ I 

/ 
k e " ' («) 

Then the corresponding velocity-potential is 



(2) 

3 c 0 S k k (2 4- cL) crt] 

2 fcr f<({ 
e 

which satisfies equations (1), (2) and (3) provided 

(7) 

^ k tci -nh kh 
(8) 

We novf write 

1 -T)'" + 

(9) 

, ('» ) ( i ) 
where y and 7^ are the velocity potential and surface elevation for the 

reflected waves. It is deer that g) must satisfy equations (1 (2) and (3) 

together T/ith 

d T 

{>') 
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(p — ^ Q when -r — ^ 00 

(10) 
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To convert to polar coordinates we use the identity 

i k TCos 0 
00 

e 

• n - I 

(see for example Ref, I, p» 32), so that equation (?) can be written 

^ ~iicr +" 2 1_ i"" (Kr) o o i M &j g 
' ' -J A a 

J {'r ) 
We choose for (b̂  the following form; 

- q k r 9 (0 

where the A ̂  are constant coefficients and 

e 



(5) 

(15) 

is a Hankel function of order , This is a suitable expansion since 

CCS m G co<h kil-hd) satisfies equations (1), (2) 

and (3)f and for large values of T' 

\ 1 ((k-r - <r6 + 

[rrk-rj 

(16) 

which represents a diverging wave. The boundary condition (4) at the cylinder 

can now be satisfied by taking 

A 
— 

JZ (Kg) 
(17) 

(where a dash denotes differentiation). 

This solves the problem. The surface elevation in the reflected waves is 

given by 

(r) 1 
3 7>t 

(-r) 

(18) 

and so the "relative amplitude" | ̂  ^ given by 

A g H g (kT-) cof m g 

where /\ ̂ (k(k)±s given by (17). 

3. Asymptotic values 

For large values of k Y we have 

to 
/-V 

(19) 

-i- y ^ ^ f i L COS m (20) 
»ir kr 

so that at distances large compared with a wavelength the reflected wave 



(4) 

dimishes like -T • 

Further, . when Is « ' / we have 

A ^ ( kix) ^ / rr (4 k,a) 

(kcx) ^ jr ik k o ) 
Z M 

hn f fn I 

so that for snail values of l<fiand large values of /<T, 

(T) 

7() 

2 TT 

kr 

\ 

(-5 ka) (/ — 2 COS 9) O (k<x) 

(21) 

(22) 

Thus when the radius of the qylinder is small we should e^eot the reflection 

at great distances to be least vAien 0 =• ̂ 6©°, This agrees with the result ob-

tained bj'- Rayleigh (Eaf * VII, vol. 2, p.309) for the similar problem of 

diffraction of plane sound waves by a thin circular cylinder. 

If, however, k ((and so ka <L< | ) we have 

and so 

1 

I 
K) 

V) 

( k f ) ^ k f ) 11 
tr 

(k-r) /-v 'i 
— N 

TT J 

(23) 

kY (24) 

Hence the reflected wave is proportional to t * near the cylinder, and is a 

minimum near • ^ = ±90° • 

4-» Computed values 

The series (19) and the asymptotic formula (20) were conputed for the 

following values of k y and 0 

ka = 0 .02, 0 .05, 0 .1 , 0 , 2 , 0,5, 1.0; 

r/a. = 1.0, 1.5, 2 .0 , 2 .5 , 3, 4, 5, 6 , 8 , 10; 

9 = 0 ° , 30°, 60°, 90° , 120^, 150®, 180°. 



(5) 

In some cases the confutations vrere carried out for larger values of T !(x. 

until the exact and the asymptotic expressions o.pproached sufficiently closely. 

Confutations have also been made by Mathur, Ref, VI, for values of K o, and 

k T equal to 3> 5> 7 and 10, and for some cylinders of shapes other than, 

circular. 

The series and the asynftotic formula are compared in Figures 1 and 2 for 

6 = 0° and 180°, It vdll be seen that the asynftotic value is approached more 

rapidly for larger values of k (X- , On the other hand for the smaller values 

of K A the expression (22*.) is a surprisingly good approximation. 

The general form of the reflected waves is sho-.in in Figures 3 to 7* for 

k CX = 0.05, 0.1, 0,2, 0,5 and 1,0, Contours of constant amplitude have been 

constructed by graphical inteif olation between the computed points, The 

minimum near ^ = 60° is especially marked in Figures 3, 4 and 5« 

The diagrams in Figures 3 to 7 extend to r/ix = 15. For greater values of 

' /ci the asymptotic formula (20) is sufficiently accurate. 

In Table 1 are tabulated the coefficients C ( t h e asymptotic 

formula for large knr , defined by 

(x) 1 
r<i) 

C fka B) (-r/fO (25) 

when ((a. = 0,05, 0,1, 0.2, 0,5, 1,2 and 5* For smaller values of k Ol , the 

simple formula (22) can be used. 

5, Very short waves 

For short waves (large values of jKCi ) the series (19) converges only 

sloTfly and in fact if the coefficients are replaced by their esynftotic 

values for large k,C{ the resulting series is not convergent. 

However, the limiting case of very short v/aves may be obtained by the use 

of ray optics. Thus in figure 9(b) A ̂  and 'represent two adjacent parallel 

rays striking the cylinder and reflected along BC and ^ * If the angle 

3o is () , then the angle between '̂ (̂ and 5'C'' is2^(9, and it is 

easily seen that BC and B'C ̂  intersect in a point X Tjhose distance from B 

is ^ I'L The amplitude of the reflected waves diminishes as though the 

waves originated in a source at X • Since the relative amplitude is unity 

at the cylinder, at C it is , where 
( 



(6) 

where ,BC=yO , Thus the curve of constant relative amplitude 'Vi is given 

ty 

yO ^ CL — *) 6 OS (^7) 

where ̂  is measured along a line through the point ( , &) ~ (ô  ̂  & 0 

in the direction 2 0* These contours have "been plotted in Figure 8, It 

will be seen that for values of 0 near 180° (̂ 'zu- 0^ these curves are not 

very different from those of figure 7 ( k.<A. ~ f ) . When & is near zero, i«e# 

directly behind the cylinder, there is of course a shadow, where the relative 

amplitude is taken to "be unity. 
/ 

Writing B in (26) ws have 

^ = ( t S ^ A (28) 

\ / 

Tfihich gives the relative amplitude along tW line immediately in front of the 

cylinder, for ka. ~ OO • Values of this function are given in Table 2. 

At great distances (i.e. 'r/a yy /) we have 

VI. (29) 

so that the coefficient C(oo^ It) the asymptotic expansion (25) is 

c 7f) = _L = 0 . 1 0 7 

V z 
(30) 

Prom Table 1 we see that the coefficient for kiQ, = 1,0 is 0,738, so that 

C ( CO^ Tt) is less than C ( I ̂  oo) , although for i(A ^ 1#0 C (l<a.y fr) 

had apparently been increasing mth /<ft» To investigate the behaviour of 

C (K(X ̂  it') as kot increases still further, C was calculated for 

k(k ~ 2*.9 and 5*0* It was found that 

C (1, r) = 0. 7 V 3 

L is ^W) — 0. bbl j 



(7) 

so ."̂hat C. (kcXjir) approaches its limit in an oscillatory fashion. 

This oscillation is not clearly apparent from equation (19), but a better 

idea of the behaviour of { ((a. & ) can be obtained from an equivalent 

expression due to Imai, Rsf« III, Imai showed that equation (19) holds for 

electromagnetic vra-ves in the presence of a circular cylinder fAien the magnetic 

vector is orianted parallel to its axis, and by means of contour integration 

replaced (l 9) by ̂ mother series» •vshich in our notation can be expressed as 

folloT/s* 

> 

— / 

l l ' T / 
4k ^ 

where 

i } k-f 
-h 

% i-cQSe.c^B\ 

+ ^ — - r - ^ 1 + 
QO 21 ka. ^/2. / 

'hit<ay^ e. 

B. 

s/n/a^TT ^ SI km' 
S =1 

^ i -h O (ka) ^ ^ 

(31) 

0>. ka { I ^ i e - ^ ( 1 ) 
»/3 

and the are the successive zeros of 

2̂ /j ^ y) 1/) (y) 

Thus for any given value of > letting kr tend to infinity we obtain 

3 ' 8 \ 
f +-

2. f 5 J 

+ (W e 2_-
Jir /z i / c 

si V, /S ; TT-

(32) 



(8) 

which is oscillatory v/ith respect to 

Since, however, nearly equals ka for large /<a.and small S , 

the infinite series in (3I) and (32) will converge very slowly whenever ' ̂  Ci 

equals a large integar, owing to the term sin TT in the denominator. In 

general, these formula do not seem to be any more convenient for purposes of 

computation than (19) and (20), 

For very large k(X and kf provided -v/cv. is also large, (32) gives 

Si 

C (ka, $) ^ ^ 
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TABLE 1 

Values of C (Act ^ 6 ) occuring in the asynrptotic formula (25) 

(9) 

0° 30'' 60° 90° 120° 150° 180° 

.05 ,070 .052 .000 .070 .141 .192 .216 X 10""̂  

.10 .199 .145 .000 .199 .397 .544 .595 X lO""" 

.20 .060 .045 .004 .054 .101 .151 .166 

.5 .232 ,201 .067 .197 .386 .526 .566 

.0 .511 . W .322 .506 ,668 ,728 .738 

TABLE 2 

Values of relative wave amplitude Ys. , given ty (26), for infinitesimal 
wavelength, and ^ = 180® 

"T- f CK. 

'VL 

T /a. 

TV 

1 

1,000 

6 

.302 

1.5 2 2.5 3 4 5 

707 .577 .500 .447 .378 .333 

8 10 15 20 50 100 

258 .229 .186 .160 .101 .071 
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RELATIVE AMPLITUDES OF REFLECTED WAVES DIRECTLY BEHIND CYLINDER 9 » 0 
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FIGURE 2 

RELATIVE AMPLITUDES OF REFLECTED WAVES DIRECTLY IN FRONT OF CYLINDER ( 0 - 1 8 0 ? ) 
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CURVES OF CONSTANT RELATIVE AMPLITUDE OF REFLECTED WAVES 
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CURVES OF CONSTANT RELATIVE AMPLITUDE OF REFLECTED WAVES 
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FIGURE 7. 
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CURVES OF CONSTANT RELATIVE AMPLITUDE OF REFLECTED WAVES L I M I T I N G CASE 

( K A " oo ) 
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