FiLe..

N\ Institute of
.\\;\\;_ Oceanographic Sciences

= Deacon Laboratory

INTERNAL DOCUMENT No. 323

The Equation of State algorithms used by
the OCCAM model

A C Coward
1993

Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 323

The Equation of State algorithms used by
the OCCAM model

A C Coward

1993

Wormley

Godalming

Surrey GU8 5UB UK

Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
COWARD, A.C. DATE 1883
TITLE
The Equation of State algorithms used by the OCCAM model.
REFERENCE
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 323, 46pp.
(Unpublished manuscript)
ABSTRACT
The Ocean Circulation and Climate Advanced Modelling project (OCCAM) is an
NERC Community Project which forms part of the UK contribution to the World Ocean
Circulation Experiment (WOCE).
The aim of OCCAM Core Project 7 is to develop a global ocean model which will form
the central 'test-bed’ for algorithms developed by associated projects.
This document details the Equation of State algorithm which will be used to calculate
density from potential temperature and salinity values derived by the numerical model.
KEYWORDS
NUMERICAL MODELLING
PROJECT - OCCAM
ISSUING ORGANISATION
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GUS 5UB. UK. Telephone Wormley (0428) 684141
Telex 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Coplies of this report are available from: The Library, I0SDL. PRICE £0.00

CONTENTS
1. INTRODUCTION
1.1 Earlier work
2. THE GFDL SCHEME
3. THE OCCAM SCHEME
REFERENCES
APPENDICES

Appendix I denscoef.F
Appendix Il state.F

Appendix Il dncoefh

Page

10-46

10

43

46

1. INTRODUCTION

An important part of the Ocean Circulation and Climate Advanced Modelling project
(OCCAM) is the development of a global ocean model. The final form of the model is, as yet,
undecided but it will certainly require an accurate and computationally efficient method of
calculating demnsity from temperature and salinity values. Within a Bryan-Cox-Semitner ocean
general circulation model (Bryan 1969, Semmer 1974, Cox 1984) such calculations are done at
least three times for each grid node within the model. Precise methods require many hundreds
of floating point calculations to derive each value. However, Webb (1992) has examined the
available equations of state and compared the use of polynominal approximations with more
complex schemes.

Following the recommendations of Webb (1992), the Cox polynominal equation of state
will be used in the OCCAM model but the coefficients will be calculated using an improved
method. This improved method uses the UNESCO equation of state (EOS80), (Fofonoff and
Millard (1983), UNESCO (1981) and Gill (1982)) and accurate methods for converting model
depth to pressure and in sifu temperature to potential temperature.

To be precise, a FORTRANTT program has been adapted to calculate the coefficients of a
third order polynominal in potential temperature (°C) and salinity (parts per part) such that the
polynominal will return values for density fitted to a least squares criterion. A different set of

coefficients is derived for each model level.

1.1 Earlier work

This work uses as a starting point the subroutines and utility program supplied with the
GFDL Modular Ocean Model (MOM) version 1 (Pacanowskd, Dixon and Rosati (1990)). The
equation of state supplied with the MOM code (state.F) employs the Cox polynominal
approximation to the UNESCO equation of state as standard. A utility program, denscoefF, is

also supplied which will calculate the nine coefficients for each model level and construct the
data statements to be included in state.F. The nine coefficients, B;,.Bg. are employed

within the model to calculate the density anomaly (relative to a reference density, pg) using

the polynominal equation:

(P - Po,k) = ﬁl,k(f - fo,k) +Boi (S - So,k) +ﬁ3,k(f —lok)2

+ B (t=1,4) (5=, + Bsy (S = 5oz)2 "

3 2
+ Bex t=t,4) + Brg =1, 1) (S=5,4)

+ Bsx (f —tok)2 (S - SO,k) + Bk (S —So.k)3

where t, i, S, i and 1, i are Teference’ values for each level k.

2. The GFDL scheme

The program denscoef F calculates the values for t, so, pgand By, Bg in the

following manner:

For each level:

1. Ranges of mn sifu t and s values are set for each model level. The current settings are
shown in table 1 (page 8).

2. The ranges are divided into 2 x kx in sifu temperature values and kx salinity values,
where kx is a parameter set within the program (currently kx=5).

3. Either the Knudsen equation of state or the UNESCO equation of state is then used to
calculate the density at each of the 2 x kx x kx points within the domam. The depth in
metres of the level is used to approximate pressure for these calculations.

4. Each denstity is converted to a G, value.

5. Each in sifu temperature is converted to a potential temperature (th) value using the
Fofonoff and Froese (1988) equation.

8. The mean temperature (t;) and salinity (s,) are calculated and the G, (tot) value for
seawater with these properties is calculated as in step 3.

1. The mean In sifu temperature is converted to potential temperature (t,) and t,, s, and tot
are subtracted from each of the corresponding th, s and ¢ values.

8. A least squares procedure is then used to derive the nine polynominal coefficients as
shown in equation 1.

9. The coefficients are then rescaled so that they are valid when used with salinity values
given in model units. Model units are: (N.S.U.-35.)/1000., so this step involves
subtracting 0.035 from the value of s, and multiplying each coefficient by 108 for each
power of s.

10. At the same stage the coefficients are rescaled so that density values in g/cm?® are

calculated instead of 6, Ifp is measured in g/cm® then ¢, = 1000 x (p - 1). Since the

right hand side of the polynominal is, at this stage, (O - O,), the rescaling is achieved
by multiplying each coefficient by 103,

11 The values of t,, s, and the nine coefficients are written out in data statements to a file,
dncoefh. This file will be included in state.F by the C preprocessing stage at
compilation. The values of 0, are also written to dncoef.h within FORTRAN comment
statements.

12. State.F may now be fed values of potential temperature (°C) and salinity in model units

and will return the deviation in g/cm?® from the reference density for the relevant level.

3. The OCCAM scheme

The prograrn, denscoef.F has been changed in order to incorporate the recommenda-
tions of Webb (1992). The changes have been made m the style recommended by the original
authors and all the original features of the program have been retained in the form of '#ifdef’
preprocessor constructions. The currently recommended method is now the default but the
previous default options may be recovered using the 'gidl_den' compile-time option. Several
enhancements have been made for the current work.

Firstly, the linear scheme used to convert model depth to pressure has been replaced by
a more accurate scheme using an iterative inverse of the algorithm due to Saunders (1981).

Secondly, the in sifu to potential temperature conversion is carried out by direct
integration using the Bryden equation for the adiabatic lapse rate (Bryden 1973) and a pressure

increment of 1 decibar.
Thirdly, the curve-fitting procedure has been improved. As described above the

polynominal approximation fixes the density at (t,,S,) to be p,. Removing this constraint and
making p,, one of the unknown coefficients gives a better overall fit at the expense of
introducing a small error at the central point. The reference density is not used in the main
ocean model so the routine, state.F can be used without medification.

Finally, in the OCCAM version, the output procedure has been modified to write all
relevant data into data statements within the include file. This includes two new arrays, z0 and
rho0, each dimensioned with km elements. z0 contains the depth in centimetres and rho0O
contains the new reference density of the relevant model level. These new arrays are not used in
state.F within the Cox/MOM code but are required by any other applications which require the

actual density value. The introduction of these arrays requires a minor modification to state.I’ :

the line:
common /cstate/ to(km), so(km), ckm,9)
should be changed to:
common /cstate/ to(km), sokm), c(km,9), z0(km), rhoO(km).

The new OQCCAM version of denscoefF, is listed in Appendix [. In a SUNOS UNIX

environment this can be compiled by the command;
f77 -o eqgstat denscoef.F
On other systems it may be necessary to explicitly invoke the C-preprocesor. For example:

cc -P denscoef.F
mv denscoef.i denscoef.f

f77 -0 eqgstat denscoef.f

produces the same result. Similarly, use the following command in a SUNOS environment to

compile the original GFDL default options:
f77 -D gfdl_den -0 egstat denscoef.F

A listing of state.F is given in Appendix III and the format of the dncoefh file, which is

produced by denscoef F and included in state.F at compilation, is shown in Appendix IL

Table 1

k depth tmin tmax smin smax
1 10.35e2 -2.000 29.000 28.5000 37.0000
2 32.35e2 -2.000 29.000 28.5000 37.0000
3 57.28e2 -2.000 29.000 28.5000 37.0000
4 86.00e2 -2.000 29.000 28.5000 37.0000
5 120.18e2 -2.000 29.000 28.5000 37.0000
6 162.15e2 -2.000 29.000 28.5000 37.0000
7 216.30e2 -2.000 29.000 28.5000 37.0000
8 280.08e2 -2.000 18.000 33.7000 36.6000
9 3583.80e2 -2.000 19.000 33.7000 36.6000
10 532.00e2 -2.000 14.000 34.0000 35.8000
11 700.00e2 -2.000 14.000 34.0000 35.8000
12 887.50e2 -2.000 11.000 34.1000 35.7000
13 1087.50e2 -1.000 §.000 34.2000 35.3000
14 1295.50e2 -1.000 7.000 34.4000 35.1000
18 1508.50e2 -1.000 7.000 34.5000 35.1000
16 1725.50e2 -1.000 7.000 34.5000 35.1000
17 1945.50e2 -1.000 7.000 34.5000 35.0000
18 2167.50e2 -1.000 7.000 34.6000 35.0000
19 2391.50e2 -1.000 7.000 34.6000 35.0000
20 2617.00e2 -1.000 7.000 34.6000 35.0000
21 2843.50e2 -1.000 7.000 34.6000 35.0000
22 3071.00e2 -1.000 7.000 34.6000 35.0000
23 3299.50e2 -1.000 7.00b 34.6000 35.0000
24 3829.00e2 -1.000 7.000 34.6000 35.0000
25 3759.00e2 -1.000 7.000 34.6000 35.0000
26 3989.50e2 -1.000 7.000 34.6000 35.0000
27 4220.50e2 -1.000 7.000 34.6000 35.0000
28 4452.00e2 -1.000 7.000 34.6000 35.0000
29 4684.00e2 -1.000 7.000 34.6000 35.0000
30 4916.50e2 0.000 7.000 34.6000 35.0000
31 5149.50e2 0.000 7.000 34,6000 35.0000
32 5382.50e2 0.000 7.000 34.6000 35.0000

REFERENCES

BRYDEN, HL. 1973 New polynomials for thermal expansion, adiabatic temperature gradient and *
potential temperature of sea water.
Deep Sea Research, 20, p 401-408.

FOFONOFF, N.P. & FROESE, C. 1958 As shown in FOFONOFF, N.P. 1962 The Sea: Vol. 1.
(E4. M. Hill) Interscience, New York, pl7.

FOFONOFF, N.P. & MILLARD, R.C. Jnr. 1983 Alogrithms for computation of fundamental properties of

seawater.
UNESCO Technical Papers in Marine Science, 44, 53pp.

GILL, AE. 1982 Atmosphere-Ocean dynamics.
Academic Press, New York, 662pp.

PACANOWSKI, R.C.,DIXON K., & ROSATI, A. 1990 The GFDL Modular Ocean Model Users Guide,

version 1.0.
GFDL Group Techinical Report No. 2.

SAUNDERS, P. M, 1981 Practical Conversion of Pressure to Depth.
Joumal of Physical Oceanography, 11 (4), p 573-574.

UNESCO. 1981 Tenth report of the joint panel on oceanographic tables and standards.
UNESCO Technical Papers in Marine Science, 36, 25pp.

WEBB, D.J. 1992 The equation of state algorithms used by the FRAM model.
Institute of Oceanographic Sciences Deacon Laboratory, Internial Document No. 313, 34pp.

- 10 -

APPENDIX I:

dengcocef.F

Qa0 0 0 0 0 0 00

¢}

aaao0a00a0000a000000n0a00a0a000aa000an0aaaqana

subroutine egstat
program egstat

due to the simple UNIX linker, only one main program may be in the
directory at one time. To run this program, wipe out the

the subroutine call & uncomment the program egstat line. all other
main programs must be either removed from the directory or
commented out alsol!

note: this is not a problem if "makefiles® are used for compiling

& linking.

calculate coefficients for "MOM" density computations

This program calculates the 9 or 10 coefficients of a third
order polynomial approximation to the equation of state for sea
water.

The program yields coefficients that will compute density as a
function of temperature, and salinity, at predetermined depths,
as used in the subroutine "state" of the GFDL ocean model.

More specifically, the densities calculated from the ploynomial
formula are in the form of sigma anomalies. The method is taken
from that described by Bryan & Cox (1972).

By default, the program uses the equation of state set by the
Joint Panel on Oceanographic Tables & Standards (UNESCO, 1981)
an described by Gill (1982). An option exists to use the older
Knudsen-Ekman equation of state, as described by Fofonoff (1962),
if the user prefers.

Subroutine "lsgsl2" performs the iterative least-squares
polynomial fitting for the overdetermined system. The algorithm
is outlined by Hanson and Lawson (1969), and the code looks as if
it has not been altered since that time.

references:

Bryan, K. & M. Cox. 1972 An approximate equation of state for
numerical models of ocean circulation.
J. Phys. Oceanogr., 2, 510-514, 1972.

Qa0 a0 a0

OO()OOOOOOOOQOGOOOOOOOOOOOQOOOOOOOQOOO

- 11 -

Fofonoff, N. 1962 The Sea: Vol 1, (ed. M. Hill).
Interscience, New York, pp 3-30.

Gill, A. 1982. Atmosphere-Ocean Dynamics: International
Geophysical Series No. 30.

Academic Press, London, pp 599-600.

Hanson, R., & C. Lawson. 1969 Extensions and applications of
the Householder algorithm for solving linear least squares
problems. Math. Comput., 23, pp 787-812.

UNESCO. 1981 10th report of the joint panel on oceanographic
tables and standards.

UNESCO Tech. Papers in Marine Sci. No. 36, Paris.

ifdef options:

Default: use the "reference equation of state®" as in Webb (1992)
Ref: Webb, D.J. 1992 "The equation of state algorithms used by
the FRAM model®. Institute of Oceanographic Sciences Internal

Document No. 313.

“gdfl_den*

Revert to the original "GFDL" scheme as supplied with MOM version
1.0, released December 1591.

"knudsen™"

To over-ride the default of using the UNESCO equation of state
and to instead employ the Knudsen-Ekman formula.

"insitu®

If the user desires the polynomial approximations to calculate
density as a function of in situ temperature, salinity, and depth,
then the ifdef option "insitu®" must be defined. Otherwise, the
default assumption is that potential temperatures will be used (as

in the ocean model code).

"extras®"

If the user wishes to have a detailed report of the inputs and
results of the curve fitting processeé written to the standard
output unit (stdout), then the ifdef option "extras" should be
defined. The default is for a rather short summary to be written.

inputs:

The user needs only to specify the number of model levels "km"
and the model layer thicknesses [cm] "dzt(l..km)". This
information can be entered below via the same "dzt" data statement
contained in the "thick.h" file used in the compilation of the
GFDL ocean model. The parameter “km" and constants "cO", "cl*,
"c2'" and "p5" can be set by including the "param.h" file from the

model as well.

- 12 -

c
o o e
c

#include "param.h”

c

dimension dzt (km)

parameter (kx = 5, kxx = 2*kx, kk = kx*kxx,
#ifdef gfdl_den

$ " kcolm=9)
#else
$ kcolm=10)
#endif
parameter (krdim = kk+4*kcolm, ksdim = kk+8*kcolm)
c
dimension a(kk,kcolm),sigma(kk),sigman(kk),c(kk, kcolm), x(kcolm),
$ sb(ksdim), r(krdim)
dimension tmin(km), smin(km), tmax(km), smax(km),
S z(km), dd(km), ss(km), ab(kcolm+4,km), ts(33,4),
$ ta(kxx), sa(kxx), tp(kk), sp(kk), th(kk)
c
real realz
c
double precision mpercm
data mpercm / 1.0d4-2 /
c
#include "thick.h”
c
¢ enter bounds for polynomial fit: at 33 levels from sfc to 8000 m.
c ts(k,1l)=lower bnd of t at z=(k-1)*250 meters
c ts(k,2)=upper bnd of t o
c ts(k,3)=lower bnd of s "
c ts(k,4)=upper bnd of s "
c
c The user should review the appropriateness of the "ts" values set
c below, and modify them if the intended modelling application could
c be expected to yield temperature and salinity values outside of
c the "ts" ranges set by default.
c

data (ts(k,1),k=1,33) / 4*-2.0, 15%*-1.0, 14*0.0 /
data (ts(k,2),k=1,33) / 29.0, 19.0, 14.0, 11.0, 9.0, 28*7.0 /
data (ts(k,3),k=1,33) / 28.5, 33.7, 34.0, 34.1, 34.2, 34.4,

s 2%34.5, 15%*34.6, 10%*34.7 / ,
data (ts(k,4),k=1,33) / 37.0, 36.6, 35.8, 35.7, 35.3, 2*%35.1,
s 26%35.0 /

- 13 -

#ifndef gfdl_den
data xlat/30.0/

o} xlat = Reference latitude used by the depth-to-pressure
c function: FNPZ.
#endif

z model levels (midpoint of model layers)
tmin, tmax, smin, smax = minimum and maximum in situ temperature

and salinity values which define the ranges to be used
when computing the polynomials at each model level

dd, ds = increment between temperature and salinity values at
each model level to be used in constructing array of
temperature, salinity and density for curve fitting

ta, sa = in situ temperature and salinity values available for
constructing array of data for curve fitting at each
model level

tp, sp = in situ temperature and salinity values constructed from
all combinations of ta & sa

th = potential temperature values associated with "tp" at a
given level and salinity

tl, s1, totl, thl = level mean insitu temp., salinity, density,
and potential temp. used in polynomial fitting

tot = density (in sigma units) calculate from tl and sl at a
given model level

sigma = insitu densities (in sigma units) calculated from "tp"
and "sp" values

sigman = insitu density anomalies at a given level (formed by

subracting "tot" from sigma)

tanom, sanom = temperature and salinity anomalies used in loading
array "a" for use in lsgsl2 curve fitting

X = the 10 polynomial coefficients. This includes a constant
for the polynominal which means that the polynominal is
not constrained to pass through totl at (thl,sl). This
constant is subtracted from the level reference density
after the least-squares procedure. The polynominal used
by state and statec is thus unchanged but should be a
better fit than that given by the original procedure.

OOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOO

r, sb = used only in 1sgsl2
C::::::::==:‘.====::::’::::::::::::::::::::::::::::::2:::::::::::::::::::::
c
c calculate depths of levels from dzt (converting dzt from cm

to meters) - the maximum allowable depth is 8000 meters

z(1l)= p5 * dzt(1l) * mpercm
do 100 k=2, km
z(k) = z(k-1) + p5 * (dzt(k)+dzt(k-1)) * mpercm

100 continue

- 14 -

set the temperature and salinity ranges to be used for each model
level when performing the polynomial fitting

a o a o

do 200 k=1,km
realz = z(k)/250.0

i = ifix (realz) + 1
tmin(k) = ts(i,1)
tmax (k) = ts(i,2)
smin(k) = ts(i,3)
smax (k) = ts(i,4)

200 continue

c
write out model depths and ranges of temperatures & salinities over

c
c which the polynomial approximations are computed.
c

write (stdout,9060)
write (stdout,9061) (z(i),tmin(i),tmax(i),smin(i),smax(i),i=1,km)
write (stdout,9062)

c
c set temperature and salinity increments to be used in creating
c curve fitting array at each level (twice as many temperature values
c than salinity values)
c
fkx = kx
do 300 k=1,km
dd(k) = (tmax(k)-tmin(k)) / (c2*fkx-cl)
ss({k) = (smax(k)-smin(k)) / (fkx-cl)
300 continue
c
c loop over all model levels
c
do 400 k=1,km
write(6, '{(a,1i3,8)"') ‘'Start level: ',k
. ,
do 340 i=1,kxx
fi = 1
ta(i) = tmin(k) + (fi-cl)*dd(k)
sa(i) = smin(k) + (fi-cl)*ss(k)
340 continue
c

load the "kxx" cominations of the 2*"kx" insitu temp. and "kx*

c
c salinity values into "tp* and "sp*
c

do 360 i=1,kxx
do 350 j=1,kx
ka = kx*1 + j - kx
tp(ka) = ta(i)
sp(ka) = sa(j)
350 continue

- 15 -

360 continue
c

tl = c0

sl = c0

tot = <0

thl = <0

fkk = kk
c
c calculate insitu density *“sigma" for each t,s combintion at
c this depth "d"
c

do 370 ka=1,kk
#ifndef gfdl_den
¢ Convert depth to pressure accurately
d=fnpz(z(k),xlat)

#else
d = z(k)

#endif

= sp(ka)

= tp(ka)
c
#ifdef knudsen
c "knuekm" returns density (in sigma units) from insitu temperature,

c salinity, & depth (pressure) using the Knudsen-Ekman formula

c
call knuekm(t,s,d,densit)

c
sigma(ka) = densit

#else

c "unesco" returns density (kg per m**3) from insitu temperature,

c salinity, & depth (pressure) using the UNESCO equation of state

c
call unesco(t,s,d,densit)
c
sigma(ka) = densit - 1.0d3 ‘
#ifdef gfdl_den
$ + 2.5d-2
¢ (Note original denscoef.F added 2.5d-2 here to convert to "old" sigma)
#endif
#endif
c
c "potem" returns potential temp. from from insitu temperature,

c salinity, & depth (pressure)

c

#ifdef gfdl_den
call potem(t,s,d, theta)

#else

c ..so does "tadiab" but more accurately
theta = tadiab(t,s,d,0.0d0,1.0d0)

#endif

- 16 -

c
th(ka) = theta
tl = t1 + tp(ka)
sl = sl + sp(ka)
tot = tot + sigma(ka)
thl = thl + th(ka)

370 continue

c

form layer averages "tl", *sl1*, *thl", and "totl", and compute

c
c reference density "tot" from "tl" and "sl" at this depth *d"
c

tl t1l/fkk

sl sl/fkk

thl = thl/fkk

totl = tot/fkk
#ifdef knudsen

il

c
c “knuekm" returns density from insitu temp., salinity, & depth
c (pressure) using the Knudsen-Ekman formula
c
call knuekm (tl, sl, d, densit)
c
tot = densit
#else
c
c "unesco" returns density from insitu temp., salinity, & depth
c (pressure) using the UNESCO equation of state
c

call unesco (tl, sl1, d, densit)
tot = densit - 1.0d3

#ifdef gfdl_den
$ + 2.5d-2

¢ (Note original denscoef.F added 2.5d-2 here to convert to "old" sigma)
#endif

#endif

c

#ifdef extras

¢

c
c define "extras" for voluminous printout of calculation info.

c

write (stdout, ' (a49)"')

$ ' insitu temperatures used in polynomial fit & avg'
write (stdout, 9071) kk, (tp(ka),ka=1,kk)
write (stdout, 9072) tl, k
write (stdout, ' (ad40)"')

$ ' salinities used in polynomial fit & avg'
write (stdout, 9071) kk, (sp(ka),ka=1,kk)
write (stdout, 9072) sl1, k
write (stdout, '{(ab3)")

- 17 -

$ ' densities (sigma units) used in polynomial fit & avg"®
write (stdout, 9071) kk, (sigma(ka),ka=1,kk)
write (stdout, 9072) totl, k
write (stdout, '(a54)')

$ ' density calculated from level avg insitu t & salinity’
write (stdout, 9072) tot, k
write (stdout, ' (ab2)')

$ ' potential temperatures used in polynomial fit & avg’
write (stdout, 9071) kk, (th(ka),ka=1,kk)
write (stdout, 9072) thl, k

#ifdef insitu

write (stdout, ' (ad47)"')

$§ ' >> insitu temps were used in polynomial fit <<*
#else
write (stdout, ' (ab0)?')
$ ' >> potential temps were used in polynomial fit <<!
#endif
c
#endif

#ifndef insitu
c
¢ define insitu if using insitu temperatures (removes this line)
c
tl = thl
c
#endif
c
c begin locading "ab" array with level averages

c
ab(1l,k) = z(k)
ab{(2,k) = tot
ab(3,k) = tl
ab(4,k) = sl

c

do 380 ka=1,kk
#ifndef insitu
c
¢ define insitu (removes this line) if using insitu temperatures
c
tp(ka) = th(ka)
#endif

c
create anomalies for temperature, salinity & density and

c
c load work array "a" with the anomalies and their products
c

tanom tp(ka) - tl
sanom = sp(ka) - sl
sigman(ka) = sigma(ka) - tot

- 18 -

a(ka,l) = tanom
a(ka,2) = sanom
a(ka,3) = tanom * tanom
a(ka,4) = tanom * sanom
a(ka,5) = sanom * sanom
a(ka,6) = a(ka,3) * tanom
a(ka,7) = a(ka,5) * tanom
a(ka,8) = a(ka,3) * sanom
a(ka,9) = a(ka,5) * sanom
#ifndef gfdl_den
a(ka,10)= cl
#endif
380 continue
c
c set the arguments used in call to "lsgsl2"
c ndim = first dimension of array a
c nrow =number of rows of array a
c ncol = number of columns of array a
c in = option number of 1lsgsl2
c itmax = number of iterations
c
ndim = 50
nrow = kk
ncol = kcolm
in = 1
itmax = 4
c
it = 0
ieq = 2
irank = 0
eps = 1.0e-7
nhdim = kcolm
c
c LSQL2 is a Jet Propulsion Laboratory subroutine that computes the
c least squares fit in an iterative mannér for overdetermined systems.
c Find vector x such that ax-sigman is minimised.
c
call 1sgsl2 (ndim, a, nrow, ncol, sigman, x, irank, in, itmax,
S it, ieq, enorm, eps, nhdim, h, <, r, sb)
c

#ifdef extras
write (stdout, 9081) k, (x(i),i=1,kcolm)
write (stdout, 9082) tot
write (stdout, 9062)
c
#endif
do 390 i=1,ncol
ab(i+d,k) = x(i)

390 continue

- 19 -

write(6, '(a,i3)') ' End of level: ',k
400 continue

c
nn = ncol + 4
write (stdout, 9091)
write (stdout, 9092) ((ab(i,j),i=1,nn),j=1,km)
write (stdout, 9093)
c
write data statements to unit 50 ==> “dncoef.h*
c
open (50,file='dncoef.h')
c
write(50,9501)
c
¢ Now rescale the coefficients so that the polynominal can be used with
¢ model salinities (i.e. adjust s0 & multiply coefficients of g by
c 1000) and rescale so that density is given in g/cm3 instead of
c sigma_t (i.e. divide all coefficients by 1000). E.g. Coefficient of
c (t-t0)*{(s-s50)**2 will be multiplied by: 0.001*1.*1000.**2=1000.
c

do 500 k=1,km
¢ convert sig0 to g/cm3 and subtract constant:

ab(2,k) = 1.e-3 * ab(2,k)
#ifndef gfdl_den
g - (L.e-3 * ab(1l4,k)) + 1.
#endif
¢ rescale so to model units:
ab(4,k) = 1.e-3 * ab(4,k) - 0.035
¢ adjust coefficients:
1. (t-to):
ab(5,k) = 1.e-3 * ab(5,k)
c 2. {t-to)**2:
ab(7,k) = 1.e-3 * ab(7,k)
c 3. (t-to)**3: ‘
ab(10,k) = 1.e-3 * ab(10,k)

c 4. (s-so)**2:
ab(9,k) = 1l.e+3 * ab(9,k)

c 5. {(t-to)*(s-50)**2:

ab(11l,k) = 1.e+3 * ab(1ll,k)
c 6. (s-so)**3:
ab(13,k) = 1l.e+6 * ab(13,k)
c 7. scaling factors eguate to unity for all other coefficients
c
500 continue

#ifdef gfdl_den

C

- 20 -

c write out "to" & "so" data statements

do 600 nx=3,4
if (nx .eg. 3) write(50,9502)
if (nx .eqg. 4) write(50,9503)

n =20

do 590 ii=1,99
is = n+l
ie = n+5

if (ie .lt. km) then
write(50,9510) (ab(nx,i),i=is,ie)

n = ie
else
ie = km

n = ie-is+1

if (n .eq. 1) write(50,9511) (ab(nx,i),i=is,ie)
if (n .eq. 2) write(50,9512) (ab(nx,i),i=is, ie)
if (n .eqg. 3) write(50,9513) (ab(nx,i),i=is, ie)
if (n .eq. 4) write(50,9514) (ab(nx,i),i=is,ie)
if (n .eg. 5) write(50,9515) (ab(nx,i),i=is,ie)

goto 600
endif
590 continue
600 continue
#endif
c

¢ write out data statement for each level
c (20, rho0, to, so & 9 coefficients)
do 700 k=1,km
#ifdef gfdl_den
write(50,9521) k
#else
write(50,9521) k,k,k,k,k
write(50,9524) (ab(i,k),i=1,4)
#endif
write(50,9522) (ab(i,k),i=5,8)
write(50,9522) (ab(i,k),i=9,12)
write(50,9523) ab(13,k)
700 continue

write (50,9531)

write (50,9532) (i, z(i),tmin(i),tmax(i),smin(i),smax(i),i=1,km)

write (50,9533)
do 800 k=1,km
ab(2,k) = ab(2,k) * 1.e3
#ifndef gfdl_den
$ - 1l.e3
#endif

- 21 -

800 continue
write (50,9534) (ab(2,k),k=1,km)
write (50,9535)

close (50)
<
[L T e e e e e e e et
c
stop
c
9060 format(///6x,'level tmin tmax smin smax', /)

5061 format(5x,£f5.0,4£10.3)
9062 format(///)

9091 format(//,
$' calculating coefficients for "mom" density computations'/

S z sig0 t s x1 x2 ',
$'x3 x4 x5 X6 x7 x8"',
$! x9',/)

#ifdef gfdl_den
9092 format(//,f5.0,£f8.4,£f5.1,£6.2,%el12.5)

#else
9092 format(//,12(ell.5,1x))
#endif
9093 format(//,
§' === a new "dncoef.h” has been created by this program === ')

#ifdef extras

9071 format(/' kk = # of pts going into interpltn =',1i4,/
$ (1x,5e14.7))

9072 format(5x,' avg =',eld.7,' for level ',i4,/)

#ifdef gfdl_den

9081 format(' model level ',i3,': before scaling (x(i),i=1,9)="/
S 1x,5e14.7,/,1xX,4e14.7)

#else

9081 format (' model level ',1i3,': before scaling (x(i),i=1,10)='/
S 1x,5e14.7,/,1x,5e14.7) '

#endif

9082 format (' reference sigma, about which density anomalies are ‘',
S ‘computed'/1x,el4d.7)

#endif

<

#ifdef gfdl_den

9501 format ('c=====z==z===z===z==z====== include file "dncoef.h"',

$ ' ======s======s==s=========='/'c'/'c'/,

s 'c normalized temperatures, salinities and',

$ ' coefficients'/‘c generated by program "egstat" '

s .
$

'which fits 3rd order polynomials'/'c to the equation ',
'of state for each model level.'/'c')

#else

9501 format (‘=== =s======—==========

- 22 -

include file "dncoef.h"',

§ ' =========================='/'c'/‘'c'/,
S ‘c normalized temperatures, salinities and coefficients'/
S ‘c generated by program "egstat' which fits 3rd order '/
$ ‘'c polynomials to the equation of state for each model ‘',
$ ‘level.'/'ct/
S ‘'c The polynominal returns density deviations in g/cm**3 !,
g ‘from '/
S ‘'c "rhoO" for each level. The polynominal is in powers of'/
S ‘c (t~to) and (s-so), where t is potential temperature, '/
$ ‘'c measured in degrees C and s is salinity measured in '/
S ‘'c model units. The arrays rho0 and z0, where z0 contains'/
s ‘'c the depth in centimetres of each level, are stored for '/
S ‘'c reference.'/'c!)
#endif
9502 format (6x, 'data to /',67x,19)
9503 format (6x, 'data so /',67x,19)
9510 format(5x,'$',8x,5(£10.7,"',"'))
9511 format(5x,'$',8x,£10.7,'/',/'c")
9512 format(5x,'$',8x,£10.7,',',£10.7,/"',/'c")
9513 format(5x,'$',8x,2(£f10.7,','),£10.7,'/*,/'c")
9514 format(5x,'$',8x,3(f10.7,',*"),£f10.7,'/*,/'c")
9515 format(5x,'$',8x,4(f10.7,*,"),£10.7,'/*,/'c")
#ifdef gfdl_den
9521 format (6x, 'data (c(',i2,',n),n=1,9)/")
#else
9521 format (6x,'data z0(',i2,'), rhoO(',i2,'), to(',1i2,'), so(',i2,")"
+ ', (e(',12,',n),n=1,9)/")
#endif
9522 format(5x,'$',9x%x,4(el3.7,7,"'))
9523 format(5x,'$',9x,el3.7,'/',/,'c")
#ifndef gfdl_den
9524 format(5x,'$',9x,£10.5,'E02,"',2(£13.7,"',"'),el3.7,',")
#endif ‘
9531 format('c the above coefficients were calculated using program ',
S 'Yegstat"’',
#ifdef gfdl_den
S /'c compiled with the "gfdl_den" option and',
#endif
#ifdef knudsen
S /'c employing the Knudsen-Ekman equation of state.',
#else
S /'c employing the UNESCO equation of state.',
#endif
S /'c They are valid for the following depths and’,
S * T and S ranges'

$ /'c

lrt'7/

'k',tl1l4, ‘depth',t27, ‘tmin', t37,

- 23 -

S ‘tmax',t52, 'smin',t62, 'smax"')
9532 format('c',t5,1i3,t12,£7.2,'e2',t25,£7.3,t35,£7.3,t50, f7.4,
$ t60,£7.4)
9533 format('c'/
$ 'c the 3rd order polynomial will return density ',
S ‘departures [gm/cm**3] as'/
S 'c a function of',
#ifdef insitu
S ' insitu ',
#else
s ' potential ',
#endif
S ‘temperature [deg C] & salinity [model units]'/
$ et/
S ‘e k level reference densities (in sigma units):')

9534 format('c *',8f£8.4)
9535 format('c')

c
end
c
" subroutine knuekm (t, s, d, rho)
C oo oo T T L S S S S T T T T T N T T T T T T T T T T S L T N N T I S N T S T T oSS oSSR
c this subroutine calculates the density of seawater using the
c Knudsen-Ekman equation of state.
c
c input [units]:
c in-situ temperature (t): [degrees centigrade]
c salinity (s): [per mil]
c depth (d): [meters of depth, to approximate pressure]
c output [units]:
c density (rho): sigma units
c
c reference:
c Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience,
c New York, 1962, pp 3-30. '
c
o e
c
implicit double precision (a-h,o-2z)
c
o T T T T e S S S
c
£2 = t*t
t3 = t2*t
s2 = s*s
s3 = s2*s
£l = -1.0d40 * (t - 3.98d0)**2 * (t + 2.83d2) /

5 (5.0357d2*(t + 6.726d1))

- 24 -

£2 = £3%1.0843d-6 - t£2*9.8185d4-5 + t£*4.7864-3
£3 = £3*1.6670d-8 - t2*8.16404-7 + t*1.8034-5
fs = 83*%6.76786136d-6 - s2*4.8249614d-4 + s%*8.148765774-1
c
sigma= fl + (fs + 3.8954144-2)*
S (1.040 - £f2 + f£3*(fs - 2.25845864-1))
c
a= d*1.0d-4*(1.055d2 + t*9.5040 - t2*1.58d-1 - 4*t*1.5d4-4) -
S (2.27d2 + t£*2.833d1 - t2*5.51d-1 + t3%4.04-3)
bl = (fs - 2.81324d1)*1.4-1
b2 = bl * bl
b = -bl* (1.473d2 - t*2.72d0 + t2*4.04-2 - 4*1.0d4-4*
S (3.24d1 - 0.87d0*t + 2.0d-2*t2))
b =Db + b2*¥(4.5d40 -~ 1.0d-1*t - d*1.0d-4*(1.8d0 - 6.0d-2*t))
co = 4.886d3/(1.040 + 1.83d-5*4d)
c
alpha = d*1.0d-6*(co + a + b)
c
rho = (sigma + alpha)/(1.d0 - 1.0d-3*alpha)
c
return
end

subroutine 1lsgsl2
1(ndim,a,d,w,b,x, irank, in, itmax, it, ieq, enorm, epsl

2,nhdim,h,aa,r,s)

this routine is a modification of lsgsol. march, 1968. r. hanson.

linear least squares solution

this routine finds x such that the euclidean length of

(*) ax-b is a minimum.

here a has k rows and n columns, while b is a column vector with

k components.

an orthogonal matrix g is found so that ga is zero below the main
diagonal.

suppose that rank (a)=r

an orthogonal matrix s is found such that

gas=t 1s an r x n upper triangular matrix whose last n-r columns
are zero.

the system tz=c (¢ the first r components of gb) is then

solved. with w=sz, the solution may be expressed

as x = w + sy, where w is the solution of (*) of minimum euclid-

ean length and y is any solution to (gas)y=ty=0.

iterative improvements are calculated using residuals and
the above procedures with b replaced by b-ax, where x is an

a0 a0 a0 000000000000 000a0aa0aa0naaa

approximate solution.

9] a0 o0 a0 a0 0000000000000

a0 a0 a0 a0 00000

- 25 -

implicit double precision (a-h,o-2z)

double precision sj,dp,up,bp,aj
logical erm
integer d4d,w

in=1 for first entry.
a is decomposed and saved. ax-b is solved.

in = 2 for subsequent entries with a new vector b.
in=3 to restore a from the previous entry.
in=4 to continue the iterative improvement for this system.
in = 5 to calculate solutions to ax=0, then store in the array h.
in = 6 do not store a in aa. obtain t = gas, where t is
min(k,n) x min(k,n) and upper triangular. now return.do not obtain
a solution.
no scaling or column interchanges are performed.
in = 7 same as with in = 6 except that soln. of min. length

is placed into x. no iterative refinement. now return.
column interchanges are performed. no scaling is performed.
in = 8 set addresses. now return.

options for computing a matrix product vy*h or h*y are
available with the use of the entry points myh and mhy.
use of these options in these entry points allow a great saving in

storage required.

dimension a(ndim,ndim),b(l),aa(d,w),s(1l), x(1),h(nhdim,nhdim),r (1)
d
w
k=4
n=w

it

depth of matrix.
width of matrix.

()

erm=.true.

if 1t=0 on entry, the possible error message will be suppressed.

if (it.eq.0) erm=.false.

ieq = 2 if column scaling by least max. column length is

to be performed.

ieg = 1 if scaling of all components is to be done with

the scalar max(abs(aij))/k*n.

ieq = 3 if column scaling as with in =2 will be retained in

rank deficient cases.

o a a0

10

20
30

40

- 26 -

the array s must contain at least max(k,n) + 4n + 4min(k,n) cells
the array r must contain k+4n s.p. cells.

data eps2/1.4d-16/
the last card controls desired relative accuracy.

epsl controls (eps) rank.

isw=1

1l=min0(k,n)
m=max0 (k, n)

jl=m

j2=n+j1

j3=j2+n

j4=73+1

j5=74+1

j6=35+1

3j7=76+1

j8=37+n

39=38+n

Im=1

if (irank.ge.l.and.irank.le.l) lm=irank
if (in.eq.6) 1lm=1
if (in.eqg.8) return

return after setting addresses when in=8.
go to (10,360,810,390,830,10,10), in
equilibrate columns of a (1)-(2).

(1)

continue

save data when in = 1.

if (in.gt.5) go to 30
do 20 j=1,n

do 20 i=1,k
aa(i,j)=a(i,J)
continue

if (ieg.eq.l) go to 60
do 50 j=1,n

am=0.e0

do 40 i=1,k

am= max(am,abs{a(i,j)))

s{m+n+1) -s(m+2n) contains scaling for output wvariables.

a a0 o o a a0 o 0

O a0 0 0

50

60

70

80

90

100

110

120

n2=j2+7j

if (in.eq.6) am=1.d0
s(n2)=1.d0/am

do 50 i=1,k
a(i,j)=a(i,j)*sn2)
go to 100

am=0.d0

do 70 j=1,n

do 70 i=1,k

am= max(am,abs(a(i,j)))
am=am/float (k*n)

if (in.eq.6) am=1.d0
do 80 j=1,n

n2=32+j
s(n2)=1.d0/am

do 90 j=1,n

n2=42+j

do 90 i=1,k
a(i,j)=a(i,j)*s(n2)

compute column lengths with d.p. sums finally rounded to s.p.

(2)

do 110 j=1,n
n7=37+3
n2=j32+j
s(n7)=s(n2)

s(m+1l)-s(m+ n) contains variable permutations.

- 27

set permutation to identity.

do 120 j=1,n
nl=j1+j
s(nl)=j

begin elimination on the matrix a with orthogonal matrices

ip=pivot row

do 250 ip=1,1m

dp=0.d0

km=ip

do 140 j=ip,n
£3=0.40

a0 0 0 0000

130

140

150

160

170

180

180

- 28 -

do 130 i=ip.,k
sj=sj+a(i,j)**2
continue

if (dp.gt.sj) go to 140
dp=sj

km=j

if (in.eg.6) go to 160
continue

maximize (sigma)**2 by column interchange.

supress column interchanges when in=6.

exchange columns if necessary.

if (km.eq.ip) go to 160
do 150 i=1,k

al=a(i,ip)
a(i,ip)=a(i,km)
a(i,km)=al

record permutation and exchange squares of column lengths.

nl=jl+km

al=s(nl)

n2=jl+ip

s(nl)=s(n2)

s(n2)=al

n7=77+km

n8=j7+1ip

al=s(n7)

s(n7)=s(n8)

s(n8)=al

if (ip.eg.l) go to 180
al=0.d0

ipml=ip-1

do 170 i=1,ipml
al=al+a(i,ip)**2

continue

if (al.gt.0.d0) go to 190
if (dp.gt.0.d40) go to 200

test for rank deficiency.
if (dsgrt(dp/al).gt.epsl) go to 200

if (in.eg.6) go to 200
ii=ip-1

O a a0 a 0

- 29 -

if (erm) write (6,1140) irank,epsl,ii,ii
irank=ip-1

erm=.false.

go to 260

(epsl) rank is deficient.
200 sp=dsgrt (dp)
begin front elimination on column ip.
sp=sgroot (sigma**2) .
bp=1.d0/ (dp+sp*abs (a(ip, ip)))
store beta in s(3n+l)-s(3n+l).

if (ip.eg.k) bp=0.d0
n3=k+2*n+ip
r(n3)=bp
up=dsign(dble(sp)+abs(a(ip, ip)),dble(a(ip, ip)))
if (ip.ge.k) go to 250
ippl=ip+1
if (ip.ge.n) go to 240
do 230 j=ippl,n
£3j=0.40
do 210 i=ippl,k

210 sj=sj+a(i,j)*a(i,ip)
sj=sj+up*al(ip,j)
sj=bp*sj

sj=yj now

do 220 i=ippl,k
220 a(i,j)=a(i,j)-a(i,ip) *s]
230 a(ip,j)=a(ip,j)-sj*up
240 a(ip,ip)=-sign(sp,a(ip,ip))

nd=k+3*n+ip
r(nd)=up
250 continue
irank=1m
260 irpl=irank+l
irml=irank-1
if (irank.eq.0.or.irank.eqg.n) go to 360
if (ieg.eg.3) go to 290

begin back processing for rank deficiency case

if irank is less than n.

- 30 -

do 280 j=1,n
n2=j2+j

n7=37+3
l=min0 (j, irank)

unscale columns for rank deficient matrices when ieqg.ne.3.

do 270 i=1,1

270 a(i,j)=a(i,j)/s(n7)
s(n7)=1.40

280 s(n2)=1.d40

290 ip=irank

300 s9=0.40
do 310 j=irpl,n
sj=sj+a(ip,j) **2

310 continue
sj=sj+a({ip, ip)**2
aj=dsgrt(sj)
up=dsign(aj+abs(a(ip,ip)),dble(a(ip, ip)))

ip th element of u vector calculated.
bp=1.d0/ (sj+abs(a(ip,ip)) *aj)
bp = 2/length of u squared.
ipml=ip-1
if (ipml.le.0) go to 340
do 330 i=1,ipml
dp=a(i, ip) *up
do 320 j=irpl,n
dp=dp+a(i,j)*a(ip,J)
320 continue
dp=dp/ (sj+abs(a(ip, ip)) *aj)
calc. {(aj,u), where aj=jth row of a
a(i,ip)=a(i,ip)-up*dp
modify array a.
do 330 j=irpl,n
330 a(i,j)=a(i,j)-a(ip,3j)*dp

340 a(ip,ip)=-dsign(aj,dble(a(ip,ip)))

calc. modified pivot.

- 31 -

save beta and ip th element of u vector in r array.

né=k+ip
n7=k+n+ip
r(n6)=bp
r(n7)=up

test for end of back processing.

if (ip-1) 360,360,350
350 ip=ip-1
go to 300
360 if (in.eq.6) return
do 370 j=1,k
370 r(3j)=b(3)
it=0

set initial x vector to zero.

do 380 j=1,n
380 x(3)=0.40
if (irank.eq.0) go to 690

apply g to rt. hand side.

390 do 430 ip=1,irank
nd=k+3*n+ip
sj=r(n4) *r(ip)
ippl=ip+1
if (ippl.gt.k) go to 410
do 400 i=ippl,k
400 sj=sj+a(i,ip)*r(i)
410 n3=k+2*n+ip
bp=r (n3)
if (ippl.gt.k) go to 430
do 420 i=ippl,k
420 r(i)=r(i)-bp*a(i,ip)*sj
430 r(ip)=r(ip)-bp*r(n4d) *sj
do 440 j=1,irank
440 s(j)=r(3)
enorm=0.d0
if (irpl.gt.k) go to 510
do 450 j=irpl.,k
450 enorm=enorm+xr(j)**2
enorm=sqgrt (enorm)
go to 510
460 do 480 j=1,n

a o o n

O QO a

470

480

490

500

510

520

530

540

550

560

53=0.40

nl=j1+j

ip=s(nl)

do 470 i=1,k
sj=si+r(i)*aal(i, ip)

apply at to rt. hand side.
apply scaling.

n7=j2+ip

nl=k+n+j
r(nl)=sj*s(n7)

nl=k+n
s(l)=r(nl+1l)/a(l,1)
if (n.eqg.1l) go to 510
do 500 j=2,n

nl=j-1

£3=0.40

do 490 i=1,nl
sj=sj+a(i,j)*s(i)
n2=k+j+n
s(3)=(r(n2)-sj)/al(3i.3)

entry to continue iterating.

components of gb

s{irank)=s{(irank)/a(irank, i
if (irml.eqg.0) go to 540

do 530 j=1,irml

nl=irank-j

n2=nl+1

si=0.

do 520 i=n2,irank
sj=sj+a(nl,i)*s (1)
s(nl)=(s(nl)-sj)/a(nl,nl)

z calculated. compute x =

if (irank.eg.n) go to 590
do 550 j=irpl,n
s(j)=0.40

do 580 i=1,irank
n7=k+n+i

sj=r(n7)*s(1i)

do 560 j=irpl.n
sj=sj+a(i,j)*s(3)
continue

né=k+i

- 32 -

solves tz

rank)

SZ.

Cc

lst irank

do 570 j=irpl,n
570 s(j)=s(j)-a(i,j)*r(né)*sj
580 s(i)=s(i)-r(n6)*r(n7)*sj

increment for x of minimal length calculated.

590 do 600 i=1,n
600 x(i)=x(i)+s (1)
if (in.eg.7) go to 750

calc. sup norm of increment and residuals

topl=0.d0
do 610 j=1,n
n2=37+j
610 topl= max(topl,abs(s(j))*s(n2))
do 630 i=1,k
53=0.40
do 620 j=1,n
nl=j1+7j
ip=s(nl)
n7=j2+ip
620 sj=sj+aa(i,ip)*x(3j)*s(n7)
630 r(i)=b(i)-sj
if (itmax.le.0) go to 750

calc. sup norm of x.

top=0.d0
do 640 j=1,n
n2=37+7j
640 top= max(top,abs(x(j))*s(n2))

compare relative change in x with tolerance eps

if (topl-top*eps2) 690,650,650
650 if (it-itmax) 660,680,680
660 it=it+1

if (it.eqg.l) go to 670

if (topl.gt..25%top2) go to 690
670 top2=topl

go to (390,460), isw
680 it=0
690 s3=0.d0

do 700 j=1,k

sj=sj+r(j)**2
700 continue

enorm=dsgrt(sj)

a a0 0 a0 0

710

720

730

740

750

760

770

780

790

800

- 34 -

if (irank.eg.n.and.isw.eqg.l) go to 710
go to 730
enml=enorm

save X array.

do 720 j=1,n
nl=k+j
r(nl)=x(3)
isw=2

it=0

go to 460

choose best solution

if (irank.lt.n) go to 750

if (enorm.le.enml) go to 750
do 740 j=1,n

nl=k+j

x(j)=r(nl)

enorm=enml

norm of ax - b located in the cell enorm

rearrange variables.

do 760 j=1,n

nl=jl+j
s(j)=s(nl)
do 790 j=1,n
do 770 i=3j,n
ip=s(i)

if (j.eqg.ip) go to 780
continue
s{i)=s(3)
s(3) =7
si=x(3)
x(3)=x(1)
x(i)=s]

scale variables.

do 800 j=1,n
n2=j2+j
x(3)=x(3)*s(n2)
return

810

820

830

840

850

860

870

880

890
900

- 35 -

restore a.

do 820 j=1,n
n2=j2+7j

do 820 i=1,k
a(i,j)=aa(i,j)
return

generate solutions to the homogeneous equation ax

if (irank.eqg.n) return
ns=n-irank

do 840 i=1,n

do 840 j=1,ns
h(i,j)=0.4d0

do 850 j=1,ns
n2=irank+j
h(n2,3j)=1.d0

if (irank.eq.0) return
do 870 j=1,irank

do 870 i=1,ns

n7=k+n+j
sj=r(n7)*h(j, 1)

do 860 kl=irpl,n
sj=sj+h(kl,i)*a(j, kl)
né=k+7j

bp=r(né6)
dp=bp*r(n7) *sj

al=dp

a2=dp-al
h(j,i)=h(3,1)-(al+2.*a2)
do 870 kl=irpl,n
dp=bp*a(j,kl)*s]

al=dp

ra2=dp-al

h(kl,i)=h(kl,i)-(al+2.*a2)

rearrange rows of solution matrix.

do 880 j=1,n

nl=jl+j

s(j)=s(nl)

do 910 j=1,n

do 890 i=j,n

ip=s (i)

if (j.eg.ip) go to 900
continue

s(i)=s(3)

0.

Q Q

a0 0 0 0000000000 a0

QO O

910

1140

- 36 -

s(3)=3

do 910 kl=1,ns

al=h(j, k1)

h(j,k1l)=h(i, k1)

h(i,kl)=al

return

format (/'warning. irank has been set to',i4,' Dbut(',6lpel0.3,1
rank is',i4,'. 1irank is now taken as ', i4)

end

subroutine potem (t, s, p, theta)

this subroutine calculates potential temperature as a function

of in-situ temperature, salinity, and pressure.

input [units]:
in-situ temperature (t): [degrees centigrade]
salinity (s): [per mil]
pressure (p): [decibars, approx. as meters of depth]
output [units]:
potential temperature (theta): [degrees centigrade]

references:
based on Fofonoff and Froese (1958) as shown in
Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience,
New York, 1962, page 17, table iv.

")

bl = -1.60d4-5*p

b2 = 1.0144-5*p*t
t2 = t*t

£3 = t2*t

b3 = -1.27d-7*p*t2
b4 = 2.74-9%p*t3

b5 = 1.322d-6*p*s
bé = -2.62d-8*p*s*t
s2 = s*s

p2 = p*p

b7 = 4.1d-9*p*s2

b8 = 9.144-9*p2

Jol*} = -2.77d-10*p2*t

k10 = 9.5d-13*p2*t2

a0 a0 000000000 Qa0aa0

- 37 -

bll = -1.557d4-13*p2*p

potmp = bl+b2+b3+b4+b5+b6+b7+b8+b9+b10+bll
theta = t-potmp

return

end

subroutine unesco (t, s, pin, rho)

this subroutine calculates the density of seawater using the
standard equation of state recommended by unesco(1981).

input [units]:

in-situ temperature (t): [degrees centigrade]

salinity (s): [practical salinity units]
_pressure (pin): [decibars, approx. as meters of depth]
output [units]:

density (rho): kilograms per cubic meter

references:

Gill, A. 1982 Atmosphere-Ocean Dynamics: International
Geophysical Series No. 30. Academic Press, London, pp 599-600.
UNESCO. 1981 10th report of the joint panel on oceanographic
tables and standards.
UNESCO Tech. Papers in Marine Sci. No. 36, Paris.

implicit double precision (a-h,o-2z)

clp5 = 1.5d0

convert from depth [m] (decibars) to bars

p = pin * 1.04-1

w = 9.9984259442 + 6.793952d-2*t - 9.095290d-3*t**2

$ + 1.001685d-4*t**3 - 1.120083d-6*t**4 + 6.536332d-9*t**5
rsto = rw + (8.24493d-1 - 4.0899d-3*t + 7.6438d4-5*t**2

$ - 8.2467d-7*t**3 + 5.3875d-9*t**4) * s

$ + (-5.72466d-3 + 1.0227d-4*t - 1.6546d-6*t**2) * s**clpb
S + 4.83144-4 * s**2

xkw = 1.965221d4 + 1.484206d2*t - 2.3271054d0*t**2 +

$ 1.360477d-2*t**3 - 5.155288d-5*t**4

- 38 -

c
xksto = xkw + (5.46746d4d1 - 6.03459d-1*t + 1.09987d-2*t**2
S - 6.16704-5*t**3) * s
S + (7.944d-2 + 1.6483d-2*t - 5.3009d-4*t**2) * g**clps
c
xkstp = xksto + (3.239908d0 + 1.43713d-3*t + 1.16092d-4*t=**2
$ - 5.779054-7*t**3) * p
s + (2.2838d-3 - 1.0981d-5*t - 1.6078d-6*t**2) * p * g
S + 1.91075d-4 * p * s**clp5
S + (8.50935d-5 - 6.12293d-6*t + 5.2787d-8*t**2) * p**)
$ + (-9.9348d-7 + 2.08164-8*t + 9.1697d-10*t**2) * px*2 * g
c
rho = rsto / (1.0d0 - p/xkstp)
c
return
end

#ifndef gfdl_den
function fnpz(z,xlat)
implicit double precision (a-h,o-2z)
parameter (mloop=30,mconv=5,eps=1d-6)

c
¢ function to calculate pressure in decibars from depth in metres using
¢ an iterative inverse of saunders algorithm (function fnpz). iterates
¢ until the error is zero, a limit cycle is detected of ‘mloop’
¢ iterations reached. error exit if error > eps. array pa used to
c¢ detect a limit cycle.
c
¢ check value fnpz = 10302.423165 - cray 64-bit
c = 10302.4231650052 - leee 64-bit.
c
dimension pa (mconv)
c
Pp =2z
ia = 0

do 20 i=1,30
zz = fnzp(p,xlat)
¢ zZero error
if(z.eg.zz)goto 50
ee = Z2 - ZZ
ea = abs(ee)
c save new best value
if(ia.eqg.0.or.ea.lt.ep)then

ia =1
ep = ea
pa(ia) = p

¢ look for limit cycle
elseif(ea.eq.ep)then
do 40 j=1,1ia

40

- 39 -

if(p.eg.pa{j))goto 50
continue
if(ia.lt.mconv)then
ia = ia + 1
pa(ia) = p
endif

endif

¢ correct p and loop

a0 00 0000000000

[O TN

P =Dp + ee

20 continue

if (ea.gt.eps)then

print *,'subroutine fnpz. iteration has not converged after',

& ' 30 iterations’

print *, 'object depth =',z

print *,'latest p = ',p,"'. corresponding z = ',zz

print *, 'minimum error = ',ea

print *, 'number of corresponding ps =',ia

print *, 'pa array', (pa(k),k=1,ia)

stop

endif

p = pa(ia)
50 fnpz =p

return

end

function to transform pressure to depth using the method of

function fnzp(pin,xlat)
implicit double precision (a-h,o-2z)

p.m.saunders, 1981. journal of physical oceanography, 11, 573-574.
input: pin = pressure in decibars ("oceanographic® pressure
equals absolute pressure minus one atmosphere).
xlat= latitude in degrees.
output: fnzp = depth in metres.

che

for

1.

9712.478325455

H

ck value: fnzp

i

: pin=10000.0, xlat=30.0.

data in/0/
save in

calculate constants

- cray 64-bit
9712.4783254538, - ieee 64-bit.

a0 00 a0

¢}

- 40 -

if(in.eqg.0)then
in = 1
pi = 3.14159265440
radian = pi/18040
gl = 9.780318d0

g2 = 9.7803184d0%(5.3024d-3 - 5.9d-6%4.0e0)
g3 = -9.780318d0*5.9d-6 * 4.040

al = specific volume at (t=0,s=35,p=0) times 10**5

rk = constant coeficient

ra = term proportional to p

rb = term proportional to p**2
s = 35.0d0
clp5 = 1.5d0
al = 1d5/(9.99842594d2 + 8.24493d-1*s

& - 5.72466d-3%s**clp5 + 4.8314d4-4%s**2)
rk = 1.965221d4 + 5.46746d1l*s + 7.944d-2%s**clpb
ra = 3.239908d0 + 2.2838d-3*s + 1.91075d-4*s**clp5
rb = 8.50935d-5 - 9.9348d-7*s
dd = sqgrt(ra*ra - 4.04d0*rk*rb)
cl = 0.540/rb
c2 = ra/rk
c3 = rb/rk
cd = ra/(2.0d0*rb*dd)
c5 = 2.040*rb/(ra - dd)
c6 = 2.0d40*rb/(ra + dd)
.c7 = 0.5d40%2.226d-6
endif
c 2. calculate gravity

x sin(radian*xlat) **2
gs (g3*x + g2)*x + gl

convert from pressure in decibars to bafs
p = pin*1.0d-1

H

3. 1integrate specific volume

rl = al*(p - cl*log((c3*p + c2)*p+1.0d40) + cd*log((1.040 + c5*p)
& /(1.040 + c6*p)))
fnzp = rl/(gs + <¢7*pin)

return
end

function tadiab(tt,ss,pl,pl,dpp)
implicit double precision (a-h,o-z)

aa o0 a0a0a0a00000000000a000000a0a0a0a

10

- 41 -

subroutine to calculate the final temperature of water moved
adiabatically from an initial temperature tt, salinity ss and

pressure p0, to a final pressure pl.

the integral equation is solved by direct integration with a pressﬁre
increment dpp - using the bryden equation for the adiabatic lapse

rate (subrouitne atg).

= initial temperature in degrees centigrade.
s = salinity in nsu.
pO0= initial pressure in decibars.
pl= final pressure in decibars.
dpp=pressure step.
tadiab = final temperature in degrees centigrade.

pressures are "oceanographic" pressures, equal to absolute pressures

minus one atmosphere.
tests with dpp values ranging from 1 to 128 decibars showed the most

accurate results were obtained with dpp equal to 1.

check value: tadiab = 43.26663196648 - cray 64-bit
= 43.266631967051, - leee 64-bit.

for: t=40.0, £=40.0, p0=0.0, pl=10000.0, dpp=1.0.

if(p0.1t.0.0d0 .or. p0.gt.20000.0d0
& .or.pl.1t.0.0d0 .or. pl.gt.20000.0d40)then
print *,' subroutine tadiab stopping - pressures out of range'
print *,' pressures p0 and pl = ',p0,pl
print *,' allowed range has min of 0.0, max of 20,000°
stop
endif

dp = sign(dpp,pl-p0)

p =p0

t = tt

tbh = t - atg(p0,t,ss)*dp

il

ta = tb + 2.0d0*atg(p,t,ss)*dp

p =p + dp
th = t
t = ta

test = (p - pl)*(p - dp - pl)
if(test.gt.0d0)goto 10

tadiab = ((pl - p + dp)*t + (p - pl)*tb)/dp
return

end

a0 0 a0 0000000000000

- 42 -

function atg(p,t,s)
implicit double precision (a-h,o-2z)

adiabatic temperature gradient deg c¢ per decibar
ref: bryden,h., 1973, deep-sea res., 20, 401-408

units:
pressure P decibars
temperature t deg celcius (ipts-68)
salinity s (pss-78)
adiabatic atg degrees celcius per decibar

pressure 1is "oceanographic" pressure equal to absoclute pressure

minus one atmosphere.

3.2559758 - cray 64-bit
. 3.2559758000000d-04 deg c/dbar - ieee 64-bit.
for: p=10000.0, t=40.0, s=40.0.

1

check value: atg

ds = s-35d0

(((-2.1687d-16*t + 1.8676d~-14)*t - 4.6206d-13)*p

+ ((2.7759d-12*%t - 1.1351d-10)*ds + ((-5.4481d-14*t

+ 8.733d-12)*t - 6.7795d4-10)*t + 1.8741d4-8))*p

+ (-4.2393d-8*t + 1.8932d-6) *ds

+ ((6.6228d-10*t - 6.836d-8)*t + 8.5258d-6)*t + 3.58034d-5

i

atg

gRoR R R

return
end

#endif

- 43 -

APPENDIX II

state.F

subroutine state (t, s, rho)
#ifdef multitasking
cfpp$ noconcur r

#endif

c

(o e e e]
c

c state computes one row of normalized densities by using a 3rd

c order polynomial fit to the knudsen formula, for each level

c subtract normalizing constants from temperature and salinity

c and compute polynomial approximation of knudsen density.

c

c note.. for precision purposes, there is a depth dependent

c constant subtracted from the density returned by this routine.
c so... this routine should be used only for horizontal gradients
c of density.

c

c inputs:

c

c = the input row of temperatures

c = the input row of salinities (units: (ppt-35)/1000)

c

c output:

c

c rho = normalized densities ‘

c

o - Y s T T e
c

c

#include "param.h"
c
dimension t{imt,km), s{imt,km), rho(imt, km)
common /cstate/ to(km), so(km), c(km,9), zO0(km), rhoO (km)
c
#include "dncoef.h"
c
c

- 44 -

dens (tq, sq, k) = (c(k,1) + (c(k,4) + c(k,7)*sq) *sq +
$ (c(k,3) + c(k,8)*sqg + c(k,6)*tqg) *tqg) *tg +
S (c(k,2) + (c(k,5) + c(k,9)*=sqg) *sq) *sg

do 100 k=1,km
do 90 i=1,imt
rho(i,k) = dens (t(i,k)-to(k), s(i,k)-so(k), k)
90 continue
100 continue

c
return
c
c
c
c
entry statec (t, s, rho, ind)
c
Cr oo o oSS S oo oS S oS SN S S T N S S T S S T S S T L S S T N T T T T I NN TSNS T oSS oS ==
c
c statec computes, for one row, the normalized densities by using
c a- 3rd order polynomial fit to the knudsen formula. For
c purposes of checking vertical stability between adjacent
c levels, the reference depth for pressure dependence in
c the knudsen formula must be held constant. that level is
c determined by "ind".
c
c inputs:
- .
c t = the input row of temperatures
c s = the input row of salinities (units: (ppt-35)/1000)
c ind = 1 for comparing levels 1 to 2, 3 to 4, etc.
c (coefficients for the lower of the 2 levels are used)
c 2 for comparing levels 2 to 3, 4 to 5, etc.
c (coefficients for the lower of the 2 levels are used)
c
c output:
c
c rho = normalized densities
c
o S e e e e e e e e

Q

190
200

290
300

99 format (/'

- 45

if (ind .1t. 1 .or. ind .gt. 2)
write (stderr,$9)
stop 'l statec!
endif
do 200 1=1,km,2
if (ind .eq. 1) then
k = min(1+1,km)
else
k=1
endif
do 190 i=1,imt
rho(i,l) = dens (t(i,1l)-to(k),
continue
continue

do 300 1=2,km,2
if (ind .eq.
k=1
else
k =
endif
do 290 i=1,imt
rho(i,1l) = dens (t(i,1l)-to(k),

continue

1) then

min(1+1, km)

continue
return
error => bad *ind"

end

in statec:

then

s(i,1l)-so(k),

s(i,1)-so(k),

k)

k)

ind =',110)

- 46 -

APPENDIX III:

dncoef.h

The include file dncoef.h now appears in the following form:
Cosmo=mooomosTosoomm—momsT include f]_le "dncoef.h" o e e e el

normalized temperatures, salinities and coefficients
generated by program "egstat” which fits 3rd order
polynomials to the equation of state for each model level.

The polynominal returns density deviations in g/cm**3 from
“rho0" for each level. The polynominal is in powers of
(t~-to) and (s-so), where t is potential temperature,
measured in degrees C and s is salinity measured in

model units. The arrays rho0 and z0, where z0 contains

the depth in centimetres of each level, are stored for

reference.

a0 0 a0 a0 00000000

data z0(1), rhoO(1), to(1), so(1), (c(1,n),n=1,9)/

s 10.35000E02, 1.0245946, 13.4986130,-.2250000E-02,
S -.2017008E~03,0.7730203E+00,-.4930029E-05,-.2021526E-02,
S 0.1678596E+00,0.3608601E-07,0.3776118E-02,0.3602963E-04,
S 0.1609481E+01/

c
data z0(2), rho0(2), to{ 2), sol(2), (c{(2,n),n=1,9)/
s 32.35000E02, 1.0246937, 13.4956607,-.2250000E-02,
S ~.2021070E~03,0.7728720E+00,-.4923108E-05,-.2019249E-02,
S 0.1681032E+00,0.3601443E-07,0.3770950E-02,0.3599568E-04,
S 0.1609324E+01/

c

c

data z0(32), rho0(32), to(32), so(32), (c(32,n),n=1,9)/
5382.50000E02, 1.0518755, 2.9330675,-.2000000E-03,
~.2294241E-03,0.7561387E+00, -.3894801E-05, -.2015824E-02,
0.2060329E+00,0.3214992E-07,0.3008361E-02,0.3937013E-04,
0.1602931E+01/

“r A Uy A

Brook Road, Wormley, Godalming '

Surrey, GU8 5UB,

United Kingdom

Telephone +44 (0) 428-684141
Facsimile +44 (0) 428-683066
Telex 858833 OCEANS G

Natural
Environment
Research
Council

—

