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1. INTRODUCTION 

An important part of the Ocean Circulation and Climate Advanced Modelling project 

(OCCAM) is the development of a global ocean model The Gnal form of the model is, as yet, 

undecided but it wiH certainly require an accurate and computationally e@cient method of 

calculating density from temperature and salinity values. Within a Bryan-Cox-Semtner ocean 

general circulation model (Bryan 1969, Semtner 1974, Cox 1984) such calculations are done at 

least three times for each grid node within the model, Precise methods require many hundreds 

of floating point calculations to derive each value. However, Webb (1992) has examined the 

available equations of state and compared the use of polynominal approximations with more 

complex schemes. 

Following the recommendations of Webb (1992), the Cox polynominal equation of state 

will be used in the OCCAM model but the coeScients will be calculated using an improved 

method. This improved method uses the UNESCO equation of state (EOS80), (Fofono^ and 

Millard (1983), UNESCO (1981) and GDI (1982)) and accurate methods for converting model 

depth to pressure and in temperature to potential temperature. 

To be precise, a FORTRAN?7 program has been adapted to calculate the coefficients of a 

third order polynominal in potential temperature (°C) and salinity (parts per part) such that the 

polynominal wiU return values for density fitted to a least squares criterion. A diEerent set of 

coeBcients is derived for each model level, 

1.1 Earlier work 

This work uses as a starting point the subroutines and utility program supplied with the 

GFDL Modular Ocean Model (MOM) version 1 (Pacanowski, Dixon and Rosati (1990)). The 

equation of state supplied with the MOM code (state.F) employs the Cox polynominal 

approximation to the UNESCO equation of state as standard, A utility program, denscoef.F, is 

also supplied which will calculate the nine coeScients for each model level and construct the 

data statements to be included in state.F. The nine coeScients, ,Pg, are employed 

within the model to calculate the density anomaly (relative to a reference density, pg k) using 

the polynominal equation: 
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where ^o.k snd TQ are 'reference' values for each level k. 

2. The GFDL scheme 

The program denscoef.F calculates the values for tq, Sq, Pg and pj pg in the 

following manner: 

For each level: 

1. Ranges of ia afu t and s values are set for each model level The current settings are 

shown in table 1 (page 8). 

2. The ranges are divided into 2 x kx in situ temperature values and kx salinity values, 

where kx is a parameter set within the program (currently kx=5). 

3. Either the Khudsen equation of state or the UNESCO equation of state is then used to 

calculate the density at each of the 2 x kx x kx points within the domain, The depth in 

metres of the level is used to approximate pressure for these calculations. 

4. Each density is converted to a Oj value. 

5. Each in a'fu temperature is converted to a potential temperature (th) value using the 

Fofonoff and Froese (1958) equation. 

6. The mean temperature (t̂ ) and salinity (s^) are calculated and the (tot) value for 

seawater with these properties is calculated as in 5tep 3. 

7. The mean in aYu temperature is converted to potential temperature (t̂ ) and t̂ , s^ and tot 

are subtracted from each of the corresponding th, s and a values. 

8. A least squares procedure is then used to derive the nine polynominal coeScients as 

shown in equation 1. 

9. The coeEcients are then rescaled so that they are valid when used with salinity values 

given in model units. Model units are: (N.S.U.-35.)/1000., so this step involves 

subtracting 0.035 from the value of s^ and multiplying each coe&cient by 10^ for each 

power of s. 

10. At the same stage the coeEcients are rescaled so that density values in g/cm^ are 

calculated instead of If p is measured in g/cm^ then = 1000 x (p -1). Sinde the 
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right hand side of the polynominal is, at this stage, (o - Oq), the rescaling is achieved 

by multiplying each coeScient by 10"̂ . 

11. The values of t̂ , s^ and the nine coeScients are written out in data statements to a Gle, 

dncoef.h. This Gle will be included in state.F by the C preprocessing stage at 

compilation. The values of Oq are also written to dncoef.h within FORTRAN comment 

statements. 

12. State.F may now be fed values of potential temperature (°C) and salinity in model units 

and will return the deviation in g/cm^ from the reference density for the relevant level. 

3. The OCCAM scheme 

The program, denscoef.F has been changed in order to incorporate the recommenda-

tions of Webb (1992). The changes have been made in the style recommended by the original 

authors and aH the original features of the program have been retained in the form of '#ifdef 

preprocessor constructions. The currently recommended method is now the de6ult but the 

previous defai;ilt options may be recovered using the 'gMl_den' compile-time option. Several 

enhancements have been made for the current work. 

Firstly, the linear scheme used to convert model depth to pressure has been replaced by 

a more accurate scheme using an iterative inverse of the algorithm due to Saunders (1981). 

Secondly, the m aYu to potential temperature conversion is carried out by direct 

integration using the Bryden equation for the adiabatic lapse rate (Bryden 1973) and a pressi;ire 

increment of 1 dedbar. 

Thirdly, the curve-Gtting procedure has been improved. As described above the 

polynominal approximation Sxes the density at (toiS )̂ to be p^. Removing this constraint and 

making one of the unknown coeScients gives a better overall 5t at the expense of 

introducing a small error at the central point. The reference density is not used in the main 

ocean model so the routine, state.F can be used without modiGcation. 

FInaDy, in the OCX3AM version, the output procedure has been modiGed to write all 

relevant data into data statements within the include Gle. This includes two new arrays, zO and 

rhoO, each dimensioned with km elements. zO contains the depth in centimetres and rhoO 

contains the new reference density of the relevant model level. These new arrays are not used in 

state.F within the Cox/MOM code but are required by any other applications which require the 

actual density value. The introduction of these arrays requires a minor modiGcation to state.F : 
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the line: 

common /estate/ to(km), 80(km), c(]!cm,9) 

should be changed to: 

common /estate/ to(km), so(]an), c(km,9), zO(km), rhoO(km). 

The new OCCAM version of denscoef.F, is listed in Appendix I. In a SUNOS UNIX 

environment this can be compiled by the command: 

f77 -o eqstat denscoef.F 

On other systems it may be necessary to explicitly invoke the C-preprocesor. For example: 

cc -P denscoef.F 

mv denscoef.i denscoef.f 

f77 -0 eqstat denscoef f 

produces the same result. Similarly, use the following command in a SUNOS environment to 

compile the original GFDL default options: 

f77 -D g6il_den -o eqstat denscoefF 

A listing of state.F is given in Appendix HI and the format of the dncoef.h Sle, which is 

produced by denscoefF and included in state.F at compilation, is shown in Appendix H. 



Table 1 

k depth tmin tmax smin smax 

1 10.35e2 -2.000 29.000 28.5000 37.0000 

2 32.3Se2 -&000 29.000 28.5000 37^000 

3 57.25e2 -&000 29.000 28.5000 37^000 

4 86.00e2 -&000 29.000 28.5000 37^000 

5 12&15a3 -&000 29.000 28.5000 37^000 

6 162.15e2 -2.000 29.000 28.5000 37.0000 

7 216.30e2 -&000 29.000 28.5000 37^000 

8 290.0562 -&000 19.000 3&7000 36.6000 

9 393.50e2 -2.000 19.000 3&7000 36.6000 

10 532.00e2 -2.000 14.000 34.0000 35.8000 

11 700.00e2 -2.000 14.000 34.0000 35.8000 

12 887.50e2 -2.000 ILOOO 34.1000 35.7000 

13 1087.50e2 -LOOO 9.000 34.2000 35.3000 

14 1295.50e2 -1.000 7.000 34.4000 35J.000 

15 1508.50e2 -1.000 7.000 34.5000 35J000 

16 1725.50e2 -1.000 7.000 34.5000 35^000 

17 1945.50e2 -1.000 7.000 34.5000 3&0000 

18 2167.50e2 -1.000 7.000 34.6000 35.0000 

19 2391.50e2 -1.000 7.000 34.6000 3&0000 

20 2617D0e2 -1.000 7.000 34.6000 35^000 

21 2843.50e2 -1.000 7.000 34.6000 35.0000 

22 3071.00e2 -1.000 7.000 34.6000 35.0000 

23 3299.50e2 -1.000 7.000 34.6000 35^000 

24 3529.00e2 -1.000 7.000 34.6000 35^000 

25 3759.00e2 -1.000 7.000 34.6000 3&0000 

26 3989.50e2 -1.000 7.000 34.6000 3&0000 

27 4220.50e2 -1.000 7.000 34.6000 35.0000 

28 445&00e2 -1.000 7 000 34.6000 35.0000 

29 4684.00e2 -1.000 7 000 34.6000 35.0000 

30 4916.50e2 0.000 7.000 34.6000 35.0000 

31 5149.50e2 0.000 7.000 34.6000 35.0000 

32 5382.50e2 0.000 7.000 34.6000 35.0000 
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APPENDIX I: 

denscoef.F 

c subroutine eqstat 

program eqstat 

c 

c due to the simple UNIX linker, only one main program may be in the 

c directory at one time. To run this program, wipe out the 

c the subroutine call & uncomment the program eqstat line, all other 

c main programs must be either removed from the directory or 

c commented out also! 

c note: this is not a problem if "makefiles" are used for compiling 

c & linking. 

c 

c======================================================================= 

c 

c calculate coefficients for "MOM" density computations 

c 

c This program calculates the 9 or 10 coefficients of a third 

c order polynomial approximation to the equation of state for sea 

c water. 

c The program yields coefficients that will compute density as a 

c function of temperature, and salinity, at predetermined depths, 

c as used in the subroutine "state" of the GFDL ocean model. 

c More specifically, the densities calculated from the ploynomial 

c formula are in the form of sigma anomalies. The method is taken 

c from that described by Bryan & Cox (1972). 

c By default, the program uses the equation of state set by the 

c Joint Panel on Oceanographic Tables &' Standards (UNESCO, 1981) 

c an described by Gill (1982). An option exists to use tlm older 

c Knudsen-Ekman equation of state, as described by Fofonoff (1962), 

c if the user prefers. 

c Subroutine "lsqsl2" performs the iterative least-squares 

c polynomial fitting for the overdetermined system. The algorithm 

c is outlined by Hanson and Lawson (1969), and the code looks as if 

c it has not been altered since that time. 

c 

c references: 

c 

c Bryan, K. & M. Cox. 1972 An approximate equation of state for 

c numerical models of ocean circulation. 

c J. Phys. Oceanogr., 2, 510-514, 1972. 
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c Fofonoff, N. 1962 The Sea: Vol 1, (ed. M. Hill). 

c Interscience, New York, pp 3-30. 

c Gill, A. 1982. Atmosphere-Ocean Dynamics: International 

Geophysical Series No. 30. 

c Academic Press, London, pp 599-600. 

c Hanson, R., & C. Lawson. 1969 Extensions and applications of 

c the Householder algorithm for solving linear least squares 

c problems. Math. Comput., 23, pp 787-812. 

c UNESCO. 1981 10th report of the joint panel on oceanographic 

tables and standards. 

c UNESCO Tech. Papers in Marine Sci. No. 36, Paris. 

c 

c 

c ifdef options: 

c 

c Default: use the "reference equation of state" as in Webb (1992) 

c Ref: Webb, D.J. 1992 "The equation of state algorithms used by 

c the FRAM model". Institute of Oceanographic Sciences Internal 

c Document No. 313. 

c 

c "gdfl_den" 

c Revert to the original "GFDL" scheme as supplied with version 

c 1.0, released December 1991. 

c "knudsen" 

c To over-ride the default of using the UNESCO equation of state 

c and to instead employ the Knudsen-Ekman formula. 

c "insitu" 

c If the user desires the polynomial approximations to calculate 

c density as a function of in situ temperature, salinity, and depth, 

c th^^ the ifdef option "insitu" must lbs defined. Otherwise, the 

c default assumption is that potential temperatures will be used (as 

c in the ocean model code). 

c "extras" 

c If the user wishes to have a detailed report of the inputs and 

c results of the curve fitting processes written to the standard 

c output unit (stdout), then the ifdef option "extras" should be 

c defined. The default is for a rather short summary to be written, 

c 

c inputs: 

c The user needs only to specify the number of model levels "km" 

c and the model layer thicknesses [cm] "dzt(1. . km)" . This 

c information can be entered below via the same "dzt" data statement 

c contained in the "thick.h" file used in the compilation of the 

c GFDL ocean model. The parameter "km" and constants "cO", "c 1", 

c "c2" and "pS" can be set by including the "param.h" file from the 

c model as well. 

c 
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c 

c 

c 

implicit double precision (a-h,o-z) 

c 

c 

c 

#include "param.h" 

c 

dimension dzt(km) 

c 

parameter (kx = 5, kxx = 2*kx, kk = kx*kxx, 

#ifdef gfdl_den 

$ • kcolm=9 ) 

#el3e 

$ kcolm=10 ) 

#endif 

parameter (krdim = kk+4*kcolm, ksdim = kk+8*kcolm ) 

dimension a (kk, kcolm) , sigma (kk) , sigman (kk), c (kk, kcolm), x (kcolm), 

$ 8b(ksdim), r(krdim) 

dimension tmin(km), smin(km), tmax(km), smax(km), 

$ z(km), dd(km), ss(km), ab(kcolm+4, km), ts(33,4), 

$ ka(kxx), sa(kxx), kp(kk), sp(kk), th(kk) 

c 

real realz 

c 

double precision mpercm 

data mpercm / l.Od-2 / 

c 

#include "thick.h" 

c 

c enter bounds for polynomial fit: at 33 levels from sfc to 8000 m. 

c ts(k,1)slower bnd of t at z=(k-l)*250 meters 

c ts(k,2)=upper bnd of t " 

c ts(k,3)=lower bnd of s " 

c ts(k,4)=upper bnd of s " 

c 

c The user should review the appropriateness of the "ts" values set 

c below, and modify them if the intended modelling application could 

c be expected to yield temperature and salinity values outside of 

c the "ts" ranges set by default. 

c 

data (ts(k,l),k=l,33) / 4*-2.0, 15*-1.0, 14*0.0 / 

data (ts(k,2),k=l,33) / 29.0, 19.0, 14.0, 11.0, 9.0, 28*7.0 / 

data (ts(k,3),k=l,33) / 28.5, 33.7, 34.0, 34.1, 34.2, 34.4, 

$ 2*34.5, 15*34.6, 10*34.7 / 

data (t3(k,4),k=l,33) / 37.0, 36.6, 35.8, 35.7, 35.3, 2*35.1, 

$ 26*35.0 / 
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#ifndef gfdl_den 

data xlat/30,0/ 

c xlat = Reference latitude used by the depth-to-pressure 

c function: FNPZ. 

#endif 

c 

c z = model levels (midpoint of model layers) 

c tmin, tmax, smin, smax - minimum and maximum in situ temperature 

c and salinity values which define the ranges to be used 

c when computing the polynomials at each model level 

c dd, ds = increment between temperature and salinity values at 

c each model level to be used in constructing array of 

c temperature, salinity and density for curve fitting 

c ta, sa = in situ temperature and salinity values available for 

c constructing array of data for curve fitting at each 

c model level 

c tp, sp = in situ temperature and salinity values constructed from 

c all combinations of ta & sa 

c th = potential temperature values associated with "tp" at a 

c given level and salinity 

c tl, si, totl, thl = level mean insitu temp., salinity, density, 

c and potential temp, used in polynomial fitting 

c tot = density (in sigma units) calculate from tl and si at a 

c given model level 

c sigma = insitu densities (in sigma units) calculated from "tp" 

c and "sp" values 

c sigman = insitu density anomalies at a given level (formed by 

c subracting "tot" from sigma) 

c tanom, sanom = temperature and salinity anomalies used in loading 

c array "a" for use in lsqsl2 curve fitting 

c X = the 10 polynomial coefficients. This includes a constant 

c for the polynominal which means that the polynominal is 

c not constrained to pass through totl at (thl,si). This 

c constant is subtracted from the level reference density 

c after the least-squares procedure. The polynominal used 

c by state and statec is thus unchanged but should be a 

c better fit than that given by the original procedure, 

c r, sb = used only in lsqsl2 

c 

0 = = = = = = = = = = = = = = = = = = = =: = = = = = = := = = = = = = = = = = := = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

C 

c calculate depths of levels from dzt (converting dzt from cm 

c to meters) - the maximum allowable depth is 8000 meters 

c 

z(l)= p5 * dzt(l) * mpercm 

do 100 k=2,km 

z(k) = z(k-l) + p5 

100 continue 
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c set the temperature and salinity ranges to be used for each model 

c level when performing the polynomial fitting 

c 

do 200 k=l,km 

realz = z(k)/250.0 

i = ifix (realz) + 1 

tmin(k) = ts(i,l) 

tmax(k) = ts(i,2) 

smin(k) = ts(i,3) 

smax{k) = ts(i,4) 

200 continue 

c 

c write out model depths and ranges of temperatures & salinities over 

c which the polynomial approximations are computed. 

c 

write (stdout,9060) 

write (skdout,9061) (z(i),tmin(i),tmax(i),&min(i),smax(i),i=l,km) 

write (stdout,9062) 

c 

c set temperature and salinity increments to be used in creating 

c curve fitting array at each level (twice as ma^y temperature values 

c than salinity values) 

c 

fkx = kx 

do 3 00 k=l,km 

dd(k) = (tmax(k)-tmin(k)) / (c2*fkx-cl) 

ss(k) = (smax(k)-smin(k)) / (fkx-cl) 

3 00 continue 

c 

c loop over all model levels 

c 

do 400 k=l,km 

write(6,'(a,i3,$)') 'Start level: ',k 

c 

do 340 i=l,kxx 

fi = i 

ta(i) = tmin(k) + (fi-cl)*dd(k) 

sa(i) = smin(k) + (fi-cl)*3s(k) 

3 40 continue 

c 

c load the "kxx" cominations of the 2*"kx" insitu temp, and "kx" 

c salinity values into "tp" and "sp° 

c 

do 360 i=l,kxx 

do 350 j=l,kx 

ka = kx*i + j - kx 

tp(ka) = ta(i) 

sp(ka) = sa(j) 

350 continue 
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3 60 continue 

c 

tl = cO 

si = cO 

tot = cO 

thl — cO 

fkk = kk 

c 

c calculate insitu density "sigma" for each t,s combintion at 

c this depth "d" 

c 

do 37 0 ka=l,k:k 

#ifndef gfdl_den 

c Convert depth to pressure accurately 

d=fnpz(z(k),xlat) 

#else 

d = z(k) 

#endif 

8 = sp(ka) 

t = tp(ka) 

c 

#ifdef knudsen 

c "knuekm" returns density (in sigma units) from insitu temperature, 

c salinity, & depth (pressure) using the Knudsen-Ekman formula 

c 

call knuekm(t,s,d,densit) 

c 

sigma(ka) = densit 

#else 

c "unesco" returns density (kg per m**3) from insitu temperature, 

c salinity, & depth (pressure) using the UNESCO equation of state 

c 

call unesco(t,s,d,densit) 

c 

sigma(ka) = densit - 1.0d3 

#ifdef gfdl_den 

$ + 2.5d-2 

c (Note original denscoef.P added 2.5d-2 here to convert to "old" sigma) 

#endif 

#endif 

c 

c "potem" returns potential temp, from from insitu temperature, 

c salinity, & depth (pressure) 

c 

#ifdef gfdl_den 

call potem(t,s,d,theta) 

#else 

c ..so does "tadiab" but more accurately 

theta = tadiab(t,s,d,0.0d0,1.0d0) 

#endif 
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th{ka) = theta 

tl = tl + tp(ka) 

si = si + sp(ka) 

tot - tot + sigma(ka) 

thl = thl + th(ka) 

37 0 continue 

c 

c form layer averages "tl", "si", "thl", and "totl", compute 

c reference density "tot" from "tl" and "si" at this depth "d" 

c 

tl = tl/fkk 

si = sl/fkk 

thl = thl/fkk 

totl = tot/fkk 

#iEdef knudsen 

c 

c "knuekm" returns density from insitu temp., salinity, & depth 

c (pressure) using the Knudsen-Ekman formula 

c 

call knuekm (tl, si, d, densit) 

c 

tot = densit 

#else 

c 

c "unesco" returns density from insitu temp., salinity, & depth 

c (pressure) using the UNESCO equation of state 

c 

call unesco (tl, si, d, densit) 

tot = densit - 1.Od3 

#ifdef gfdl_den 

$ + 2.5d-2 

c (Note original denscoef.F added 2.5d-2 here to convert to "old" sigma) 

#endif 

#endif 

c 

#ifdef extras 

c 

c define "extras" for voluminous printout of calculation info. 

c 

write (sCdout,'(a49)') 

$ ' insitu temperatures used in polynomial fit & avg' 

write (stdout, 9071) kk, (tp(ka),ka=l,kk) 

write (stdout, 9072) tl, k 

write (stdout,'(a40)') 

$ ' salinities used in polynomial fit & avg' 

write (stdout, 9071) kk, (sp(ka),ka=l,kk) 

write (stdout, 9072) si, k 

write (stdout,'(a53)') 
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$ ' densities (sigma units) used in polynomial fit & cTMj' 

write (stdout, 9071) kk, (sigma(ka),ka=l,kk) 

write (stdout, 9072) totl, k 

write (stdout,'(a54)') 

$ ' density calculated from level avg insitu t & salinity' 

write (stdout, 9072) tot, k 

write (stdout,'(a52)') 

$ ' potential temperatures used in polynomial fit & avg' 

write (stdout, 9071) kk, (th(ka),ka=l,kk) 

write (stdout, 9072) thl, k 

#ifdef insitu 

write (stdout,'(a47)') 

$ ' » insitu temps were used in polynomial fit « 

#else 

write (stdout,'(aSO)') 

$ ' >> potential temps were used in polynomial fit « ' 

#endif 

c 

#endif 

#ifndef insitu 

c 

c define insitu if using insitu temperatures (removes this line) 

c 

tl = thl 

c 

#endif 

c 

c begin loading "ab" array with level averages 

c 

ab(l,k) = z(k) 

ab(2,k) = tot 

ab(3,k) = tl 

ab(4,k) = si 

c 

do 380 ka=l,kk 

#ifndef insitu 

c 

c define insitu (removes this line) if using insitu temperatures 

c 

tp(ka) = th(ka) 

#endif 

c 

c create anomalies for temperature, salinity & density and 

c load work array "a" with the anomalies and their products 

c 

tanom = tp(ka) - tl 

sanom = sp(ka) - si 

sigman(ka) = sigma(ka) - tot 
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a(ka,l) = tanom 

a(ka,2) = sanom 

a(ka,3) tanom * tanom 

a(ka,4) = tanom * sanom 

a(ka,5) = sanom * sanom 

a(ka,6) = a(ka,3) * tanom 

a(ka,7) = a(ka,5) * tanom 

a(ka,8) = a(ka,3) * sanom 

a(ka,9) a(ka,5) * sanom 

#ifndef gfdl_den 

a (ka, 10 ) = c 1 

#endif 

3 80 continue 

c 

c set the arguments used in call to "lsqsl2" 

c ndim = first dimension of array a 

c nrow =number of rows of array a 

c ncol = number of columns of array a 

c in = option number of lsqsl2 

c itmax = number of iterations 

c 

ndim = 50 

nrow = kk 

ncol = kcolm 

in = 1 

itmax = 4 

it = 0 

ieq = 2 

irank = 0 

eps = l.Oe-7 

nhdim - kcolm 

c 

c LSQL2 is a Jet Propulsion Laboratory subroutine that computes the 

c least squares fit in an iterative manner for overdetermined systems. 

c 

c 

Find vector x such that ax-sigman is minimised. 

call lsqsl2 (ndim, a, nrow, ncol, sigman, x, irank, in, itmax, 

$ it, ieq, enorm, eps, nhdim, h, c, r, sb) 

c 

#ifdef extras 

write (stdout, 9081) k, (x(i),i=l,kcolm) 

write (stdout, 9082) tot 

write (stdout, 9062) 

c 

#endif 

do 390 i=l,ncol 

ab(i+4,k) = x(i) 

390 continue 
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write(5, ' (a,i3) ') ' End of level: ' , k 

400 continue 

c 

nn = ncol + 4 

write (stdout, 9091) 

write (stdout, 9092) ((ab(i,i),i=l,nn),]=l,km) 

write (stdout, 9093) 

c 

c write data statements to unit 50 ==> "dncoef.h" 

c 

open (50,file='dncoef.h') 

c 

wTite(50,9501) 

c 

c Now rescale the coefficients so that the polynominal can be used with 

c model salinities (i.e. adjust sO & multiply coefficients of s by 

c 1000) rescale so that density is given in g/cm3 instead of 

c sigma_t (i.e. divide all coefficients by 1000). E.g. Coefficient of 

c (t-t0)*(s-s0)**2 will be multiplied by: 0.001*1.*1000.**2=1000. 

c 

do 500 k=l,km 

c convert sigO to g/cm3 and subtract constant: 

ab(2,k) = l.e-3 * ab(2,k) 

#ifndef gfdl_den 

$ - (l.e-3 * ab(14,k)) + 1. 

#endif 

c rescale so to model units: 

ab(4,k) = l.e-3 * ab(4,k) - 0.035 

c adjust coefficients: 

c 1. (t-to): 

ab(5,k) = l.e-3 * ab(5,k) 

c 2. (t-to)**2: 

ab(7,k) = l.e-3 * ab(7,k) 

c 3. (t-to)**3: 

ab(10,k) = l.e-3 * ab(10,k) 

c 4. (s-so)**2: 

ab( 9,k) = l.e+3 * ab( 9,k) 

c 5. (t-to)*(s-so)**2: 

ab(ll,k) = l.e+3 * ab(ll,k) 

c 6. (s-so)**3: 

ab(13,k) = l.e+6 * ab(13,k) 

c 7. scaling factors equate to unity for all other coefficients 

c 

500 continue 

#ifdef gfdl_den 

c 
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c write out "to" & "so" data statements 

c 

do 600 nx=3,4 

if (nx .eq. 3) WTike(50,9502) 

if (nx .eq. 4) write(50,9503) 

n = 0 

do 590 ii=l,99 

is = n+1 

ie = n+5 

if (ie .It. km) then 

write(50,9510) (ab(nx,i),i=is,ie) 

n = ie 

else 

ie = km 

n = ie-is+1 

if (n .eq. 1) write(50,9511) (ab(nx. i) , i = is, , ie) 

if (n .eq. 2) write(50,9512) (ab(nx. i) , , i = is, . ie) 

if (n .eq. 3) write(50,9513) (ab(nx, i) , , i = is, ie) 

if (n .eq. 4) write(50,9514) (ab(nx, i) , , i = is, ie) 

if (n .eq. 5) write(50,9515) (ab(nx. i) , . i = is, ie) 

goto 600 

endif 

590 continue 

600 continue 

#endif 

c 

c write out data statement for each level 

c (zO, rhoO, to, so & 9 coefficients) 

do 700 k=l,km 

#ifdef gfdl_den 

write(50,9521) k 

#else 

#endif 

write(50,9521) k,k,k,k,k 

WTite(50,9524) (ab(i,k),i=l,4) 

write(50,9522) (ab(i,k),i=5,8) 

write{50,9522) (ab(i,k),i=9,12) 

write(50,9523) ab(13,k) 

700 continue 

c 

write (50,9531) 

write (50,9532) (i, z(i),tmin(i),tmax(i),smin(i),smax(i),i=l,km) 

write (50,9533) 

do 800 k=l,km 

ab(2,k) = ab(2,k) * l.e3 

#ifndef gfdl_den 

$ - 1.e3 

#endif 
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800 continue 

write (50,9534) (ab(2,k),k=l,km) 

write (50,9535) 

close (50) 

c 
C = = = = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = =i = = = = =: = = = = = = = = = = = = = = =i = = = = = =: = = = = = = : 

c 

stop 

c 

9060 format{///6x,'level tmin tmax smin smax',/) 

9061 format(5x,f5.0,4f10.3) 

9062 format(///) 

9091 format(//, 

$' calculating coefficients for "mom" density computations'/ 

$' z sigO t s xl x2 ' , 

$'x3 x4 x5 x6 x7 x8' 

$' x9',/) 

#ifdef gfdl_den 

9092 format(//,f5.0,f8.4,f5.1,f6.2,9el2.5) 

#else 

9092 format(//,12(ell.5,lx)) 

#endif 

9093 format(//, 

$' === a new "dncoef.h" has been created by this program === ' ) 

#ifdef extras 

9071 format(/' kk = # of pts going into interpltn =',i4,/ 

$ (lx,5el4.7)) 

9072 format(5x,' avg =',el4.7,' for level ',14,/) 

#ifdef gfdl_den 

9081 format(' model level ',13,': before scaling (x(i),1=1,9)='/ 

$ Ix,5el4.7,/,lx,4el4.7) 

#else 

9081 format(' model level ',13,': before scaling (x(i),i=l,10)='/ 

$ Ix,5el4.7,/,lx,5el4.7) 

#endif 

9082 format(' reference sigma, about which density anomalies are ', 

$ 'computed'/lx,el4.7) 

#endif 

c 

#ifdef gfdl_den 

9501 format('c====================== include file "dncoef.h"', 

$ ' =========================='/'c'/'c'/, 

$ 'c normalized temperatures, salinities and', 

$ ' coefficients'/'c generated by program "eqstat" ', 

$ 'which fits 3rd order polynomials'/'c to the equation 

$ 'of state for each model level.'/'c') 
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#else 

9501 format('c====================== include file "dncoef.h" ' , 

$ ' =========================='/'c'/'c'/, 

$ 'c normalized temperatures, salinities and coefficients'/ 

$ 'c generated by program "eqstat" which fits 3rd order '/ 

$ ' c polynomials to the equation of state for each model 

$ 'level.'/'c'/ 

$ 'c The polynominal returns density deviations in g/cm**3 

$ 'from '/ 

$ ' c "rhoO" for each level. The polynominal is in powers of'/ 

$ 'c (t-to) and (s-so), where t is potential temperature, '/ 

$ ' c measured in degrees C and s is salinity measured in ' / 

$ ' c model units. The arrays rhoO and zO, where zO contains'/ 

$ ' c the depth in centimetres of each level, are stored for ' / 

$ 'c reference.'/'c') 

#endif 

9502 format(6x,'data to /',67x,i9) 

9503 format(6x,'data so /',67x,i9) 

9510 format(5x,'$',8x,5(fl0.7, 

9511 format(5x,'$',8x,fl0.7,'/ 

9512 format(5x,'$',8x,fl0.7,', 

9513 format(5x,'$',8x,2(fl0.7, 

9514 format(5x, '$',8x,3(f10.7 , 

9515 format(5x,'$',8x,4(f10.7, 

#ifdef gfdl_den 

9521 format(6x,'data (c(',i2,',n),n=l,9)/') 

#else 

9521 format(6x,'data zO(',i2,'), rhoO(',i2,'), to(',i2,'), so(',i2,')' 

+ ', (c(',i2,',n),n=l,9)/') 

#endif 

9522 format(5x,'$',9x,4(el3.7,',')) 

9523 format(5x,'$',9x,el3.7,'/',/,'c') 

#ifndef gfdl_den 

9524 format(5x,'$',9x,fl0.5,'E02,',2(fl3.7,','),el3.7,',') 

#endif 

9531 format('c the above coefficients were calculated using program 

$ '"eqstat"', 

#ifdef gfdl_den 

$ /'c compiled with the "gfdl_den" option and', 

#endif 

#ifdef knudsen 
$ /'c employing the Knudsen-Ekman equation of state.', 

#else 

$ /'c employing the UNESCO equation of state.', 

#endif 

$ /'c They are valid for the following depths and', 

$ ' T and S ranges' 

$ /'c',t7,'k',tl4,'depth',t27,'tmin',t37, 

/'c') 

fl0.7,'/',/'c') 

'),fl0.7,'/',/'c') 

'),fl0.7,'/',/'c') 

'),fl0.7,'/',/'c') 
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$ 'kmax',k52,'smin',t62,'&max') 

9532 formak('c',t5,i3,tl2,f7.2,'e2',t25,f7.3,k35,f7.3,t50,f:7.4, 

$ k60,f:7.4) 

9533 formate 'c'/ 

$ ' c the 3rd order polynomial will return density 

$ 'departures [gm/cm**3] as'/ 

$ ' c a function o f , 

#ifdef insitu 

$ • insitu ' , 

#else 

$ ' potential ', 

#endif 

$ 'temperature [deg C] & salinity [model units]'/ 

$ 'c'/ 

$ 'c k level reference densities (in sigma units):' 

9534 format('c ',8f8.4) 

9535 format('c') 

c 

end 

c 

subroutine knuekm (t, s, d, rho) 
C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : 

c this subroutine calculates the density of seawater using the 

c Knudsen-Ekman equation of state. 

c 

c input [units]: 

c in-situ temperature (t): [degrees centigrade] 

c salinity (s): [per mil] 

c depth (d): [meters of depth, to approximate pressure] 

c output [units]: 

c density (rho): sigma units 

c 

c reference: 

c Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience, 

c New York, 1962, pp 3-30. 

c 

c 

c 

implicit double precision (a-h,o-z) 

c 
C = = = = = = = = =: = = = = = = = = = = = =:=: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

c 

t2 = t*t 

t3 = t2*t 

s2 = s*s 

s3 = s2*s 

fl = -l.OdO * (t - 3.98dO)**2 * (t + 2.83d2) / 

$ (5.0357d2*(t + 6.726dl)) 
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f2 = t3*1.0843d-6 - k2*9.8185d-5 + t*4.786d-3 

E3 = k3*1.6670d-8 - t2*8.1640d-7 + k*1.803d-5 

Es = s3*6.76786136d-6 - s2*4.8249614d-4 + s*8.14876577d-l 

c 

sigma= fl + (fs + 3 .895414d-2)* 

$ (l.OdO - E2 + f:3*(fs - 2.2584586d-l)) 

c 

a= d*1.0d-4*(1.055d2 + k*9.50d0 - k2*1.58d-l - d*t*1.5d-4) -

$ (2.27d2 + t*2.833dl - t2*5.51d-l + t3*4.0d-3) 

bl = (fs - 2.81324dl)*l.d-l 

b2 = bl * bl 

b = -bl* (1.473d2 - t*2.72dO + k2*4.0d-2 - d*1.0d-4* 

$ (3.24dl - 0.87d0*t + 2.0d-2*t2)) 

b = b + b2*(4.5dO - 1.0d-l*t - d*1.0d-4*(1.8d0 - 6.0d-2*t)) 

CO = 4.886d3/(1.0d0 + 1.83d-5*d) 

c 

alpha = d*1.0d-6*(co + a + b) 

c 

rho = (sigma + alpha)/(l.dO - 1.0d-3*alpha) 

c 

return 

end 

subroutine lsqsl2 

l(ndim,a,d,w,b,x,irank,in,itmax,it,ieq,enorm,epsl 

2,nhdim,h,aa,r,s) 

c 

c this routine is a modification of Isqsol. march, 1968. r. hanson. 

c linear least squares solution 

c 

c this routine finds x such that the euclidean length of 

c (*) ax-b is a minimum. 

c 

c here a has k rows and n columns, while b is a column vector with 

c k components. 

c 

c an orthogonal matrix q is found so that qa is zero below the main 

c diagonal. 

c suppose that rank (a)=r 

c an orthogonal matrix s is found such that 

c qas=t is an r X n upper triangular matrix whose last n-r columns 

c are zero. 

c the system tz=c (c the first r components of qb) is tk̂ an 

c solved, with w=sz, the solution may be expressed 

c as X = w + sy, where w is the solution of (*) of minimum euclid-

c ean length and y is any solution to (qas)y=ty=0. 

c 

c iterative improvements are calculated using residuals and 

c the above procedures with b replaced by b-ax, where x is an 

c approximate solution. 
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implicit double precision (a-h,o-z) 

c 

double precision si,dp,up,bp,a] 

logical erm 

integer d,w 

c 

c in=l for first entry. 

c a is decomposed and saved, ax-b is solved, 

c in = 2 for subsequent entries with a new vector b. 

c in=3 to restore a from the previous entry. 

c in=4 to continue the iterative improvement for this system, 

c in = 5 to calculate solutions to ax=0, then store in the array h. 

c in = 6 do not store a in aa. obtain t = qas, where t is 

c min(k,n) x min(k,n) and upper triangular, now return.do not obtain 

c a solution. 

c no scaling or column interchanges are performed. 

c in = 7 sam^ as with in = 6 except that soln. of min. length 

c is placed into x. iterative refinement, now return. 

c column interchanges are performed, no scaling is performed, 

c in = 8 set addresses, now return. 

c 

c options for computing a matrix product y*h or h*y are 

c available with the use of the entry points myh and mhy. 

c use of these options in these entry points allow a great saving in 

c storage required. 

c 

c 

dimension a(iMlu^rKlim),b(l),aa(d,w),s(l), %(l),h(nhdim,nhdim),r(l) 

c d = depth of matrix. 

c w = width of matrix. 

k=d 

n=w 

erm=.true. 

c 

c if it=0 on entry, the possible error message will be suppressed. 

c 

if (it.eq.O) erm=.false. 

c 

c ieq = 2 if column scaling by least max. column length is 

c to be performed. 

c 

c ieq = 1 if scaling of all components is to be done with 

c the scalar max(abs(aij))/k*n. 

c 

c ieq = 3 if column scaling as with in =2 will be retained in 

c rank deficient cases. 

c 
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c the array s must contain at least max(k,n) + 4n + 4min(k,n) cells 

c the array r must contain k+4n s.p. cells. 

c 

data eps2/l.d-16/ 

c the last card controls desired relative accuracy. 

c epsl controls (eps) rank. 

c 

isw=l 

l=minO(k,n) 

m=maxO(k,n) 

il=in 

i2=n+i1 

i3=j2+n 

j4=]3+l 

i5=i4+l 

]6=i5+l 

i7=i6+l 

j8=j7+n 

]9=i8+n 

lm=l 

if (irank.ge.l.and.irank.le.l) lm=irank 

if (in.eq.6) lm=l 

if (in.eq.8) return 

c 

c return after setting addresses when in=8. 

c 

go to (10,360,810,390,830,10,10), in 

c 

c equilibrate columns of a (l)-(2). 

c 

C (1) 

c 

10 continue 

c 

c save data when in = 1. 

c 

if (in.gt.5) go to 3 0 

do 20 ]=l,n 

do 20 i=l,k 

20 aa(i,j)=a(i,j) 

30 continue 

if (ieq.eq.l) go to 60 

do 50 j=l,n 

am=0.eO 

do 40 i=l,k 

40 am= max(am,ab3(a(i,]))) 

c 

c s(m+n+1)-s(m+2n) contains scaling for output variables. 
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n2=]2+] 

if (in.eq.6) am=l.dO 

s(n2)=l.dO/am 

do 50 i=l,k 

50 a(i,j)=a(i,i)*s(n2) 

go to 100 

60 am=0.d0 

do 70 j=l,n 

do 70 i=l,k 

7 0 am= max(am,abs(a{i, j))) 

am=am/float(k*n) 

if (in.eq.6) am=l.d0 

do 80 j=l,n 

n2=j2+j 

80 s(n2)=1.dO/am 

do 90 i=l,n 

n2=i2+j 

do 90 i=l,k 

90 a(i,j)=a(i,j)*s(n2) 

c compute column lengths with d.p. sums finally rounded to s.p. 

c 

C (2) 

c 

100 do 110 ]=l,n 

n7=]7+] 

n2=j2+j 

110 s(n7)=s(n2) 

c 

c s(m+l)-s(m+ n) contains variable permutations. 

c 

c set permutation to identity. 

c 

do 120 j=l,n 

nl=jl+i 

120 s(nl)=j 

c 

c begin elimination on the matrix a with orthogonal matrices . 

c 

c ip=pivot row 

c 

c 

c 

do 250 ip=l,lm 

dp=0.d0 

km=ip 

do 140 j=ip,n 

sj =0.do 
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do 130 i=ip,k 

sj=sj+a(i,j)**2 

13 0 continue 

if (dp.gt.sj) go to 140 

dp=s j 

km=j 

if (in.eq.6) go to 160 

140 continue 

c 

c maximize (sigma)**2 by column interchange. 

c 

c supress column interchanges when in=5. 

c 

c 

c exchange columns if necessary. 

c 

if (km.eq.ip) go to 160 

do 150 i=l,k 

al=a(i,ip) 

a(i,ip)=a(i,km) 

150 a(i,km)=al 

c 

c record permutation and exchange squares of column lengths, 

c 

nl=j1+km 

al=s(nl) 

n2=j1+ip 

s(nl)=s(n2) 

s(n2)=al 

n7=j7+km 

n8=j7+ip 

al=s(n7) 

s(n7)=s(n8) 

s(n8)=al 

160 if (ip.eq.l) go to 180 

al=0.d0 

ipml=ip-l 

do 17 0 i=l,ipml 

al=al+a(i,ip)**2 

17 0 continue 

if (al.gt.O.dO) go to 190 

180 if (dp.gt.O.dO) go to 200 

c 

c test for rank deficiency. 

c 

190 if (dsqrt(dp/al).gt.epsl) go to 200 

if (in.eq.6) go to 200 

ii=ip-l 
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if (erm) write (6,1140) irank,epsl,ii,ii 

irank=ip-l 

erm=.false. 

go to 260 

c 

c (epsl) rank is deficient. 

c 

200 sp=dsqrt(dp) 

c 

c begin front elimination on column ip. 

c 

c sp=sqroot(sigma**2). 

c 

bp=l.dO/(dp+sp*abs(a(ip,ip))) 

c 

c store beta in s(3n+l)-s(3n+l}. 

c 

if (ip.eq.k) bp=0.d0 

n3=k+2*n+ip 

r(n3)=bp 

up=dsign(dhle(sp)+abs(a(ip,ip)),dble(a(ip,ip))) 

if (ip.ge.k) go to 250 

ippl=ip+l 

if (ip.ge.n) go to 240 

do 230 ]=ippl,n 

sj=0.d0 

do 210 i=ippl,k 

210 sj=s]+a(i,j)*a(i,ip) 

sj=sj+up*a(ip,j) 

sj=bp*s] 

c 

c sj=yj now 

c 

do 220 i=ippl,k 

220 a(i,j)=a(i,j)-a(i,ip)*s] 

230 a(ip,j)=a(ip,])-sj*up 

240 a(ip,ip)=-sign(sp,a(ip, ip)) 

c 

n4=k+3 *n+ip 

r(n4)=up 

250 continue 

irank=lm 

260 irpl=irank+l 

irml=irank-l 

if (irank.eq.O.or.irank.eq.n) go to 3 60 

if (ieq.eq.3) go to 290 

c 

c begin back processing for rank deficiency case 

c if irank is less than n. 
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c 

do 280 j=l,n 

n2=j2+j 

n7=i7+i 

l=minO(j,irank) 

c 

c unscale columns for rank deficient matrices when ieq.ne.3 

c 

do 270 i=l,l 

270 a(i,i)=a(i,j)/8(n7) 

s(n?)=1.do 

280 8(n2)=l.dO 

290 ip=irank 

300 sj=0.dO 

do 310 j=irpl,n 

si=sj+a(ip,j)**2 

310 continue 

8i=s]+a(ip,ip)**2 

aj=dsqrt(s]) 

up=dsign(aj+abs(a(ip,ip)),dble(a(ip,ip))) 

c 

c ip th element of u vector calculated. 

c 

bp=l.dO/(sj+abs(a(ip,ip))*aj) 

c 

c bp = 2/length of u squared. 

c 

ipml=ip-l 

if (ipml.le.O) go to 340 

do 33 0 i=l,ipml 

dp=a(i,ip)*up 

do 320 ]=irpl,n 

dp=dp+a(i,i)*a(ip,i) 

320 continue 

dp=dp/(sj+abs(a(ip,ip))*aj) 

c 

c calc. (aj.u), where aj=jth row of a 

c 

a(i,ip)=a(i,ip)-up*dp 

c 

c modify array a. 

c 

do 330 j=irpl,n 

330 a(i,j)=a(i,i)-a(ip,j)*dp 

340 a(ip,ip)=-dsign(ai,dble(a(ip,ip))) 

c 

c calc. modified pivot. 

c 
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c 

c save beta and ip th element of u vector in r array, 

c 

n6=k+ip 

n7=k+n+ip 

r(n6)=bp 

r(n7)=up 

c 

c test for end of back processing. 

c 

if (ip-1) 360,360,350 

350 ip=ip-l 

go to 300 

360 if (in.eq.6) return 

do 370 j=l,k 

370 r(i)=b(i) 

it=0 

c 

c set initial x vector to zero. 

c 

do 380 j=l,n 

380 x(i)=0.d0 

if (irank.eq.O) go to 690 

c 

c apply q to rt. hand side. 

c 

390 do 430 ip=l,irank 

n4=k+3 *n+ip 

si=r(n4)*r(ip) 

ippl=ip+l 

if (ippl.gt.k) go to 410 

do 400 i=ippl,k 

400 s]=sj+a(i,ip)*r(i) 

410 n3=k+2*n+ip 

bp=r(n3) 

if (ippl.gt.k) go to 430 

do 42 0 i=ippl,k 

420 r(i)=r(i)-bp*a(i,ip)*s] 

430 r(ip)=r(ip)-bp*r(n4)*sj 

do 440 j=l,irank 

440 s(j)=r(]) 

enorm=0.dO 

if (irpl.gt.k) go to 510 

do 450 j=irpl,k 

450 enorm=enorm+r(j)**2 

enorm=sqrt(enorm) 

go to 510 

460 do 480 j=l,n 
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si=0.d0 

nl=j1+j 

ip=s(nl) 

do 470 1=1,k 

470 s]=sj+r(i)*a.a(i,ip) 

c 

c apply at to rt. hand side. 

c apply scaling. 

c 

n7=j2+ip 

nl=k+n+j 

480 r(nl)=sj*s(n?) 

nl=k+n 

s(1)=r(nl+1)/a(1,1) 

if (n.eq.l) go to 510 

do 500 j=2,n 

nl=]-l 

3i=0.d0 

do 490 i=l,nl 

490 3i=sj+a(i,i)*s(i) 

n2=k+j+n 

500 s(])=(r(n2)-s])/a(j,j) 

c 

c entry to continue iterating. solves tz = c = 1st irank 

c components of qb . 

c 

510 s(irank)=s(irank)/a(irank,irank) 

if (irml.eq.O) go to 540 

do 53 0 j =1,irml 

nl=ira.nk-j 

n2=nl+l 

s]=0. 

do 520 i=n2,irank 

520 sj=sj+a(nl,i)*s(i) 

530 s(nl)=(s(nl)-s])/a(nl,nl) 

c 

c z calculated. compute x = sz. 

c 

540 if (irank.eq.n) go to 590 

do 550 j=irpl,n 

550 s(j)=0.d0 

db 580 i=l,irank 

n7=k+n+i 

sj=r(n7)*s(i) 

do 560 i=irpl,n 

sj=si+a(i,j)*s(]) 

560 continue 

n6=k+i 
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do 570 j=irpl,n 

570 s(])=s(i)-a(i,j)*r(n6)*s] 

580 s(i)=s(i)-r(n6)*r(n7)*si 

c 

c increment for x of minimal length calculated. 

c 

590 do 600 i=l,n 

600 x(i)=x(i)+s(i) 

if (in.eq.7) go to 750 

c 

c calc. sup norm of increment and residuals 

c 

topl=0.d0 

do 610 j=l,n 

n2=]7+j 

610 topl= max(kopl,abs(s(j))*s(n2)) 

do 630 1=1,k 

sj =0.do 

do 620 j=l,n 

n.l=j 1+j 

ip=s(nl) 

n7=]2+ip 

620 sj=s]+aa(i,ip)*x(])*s(n7) 

630 r(i)=b(i)-s] 

if (itmax.le.O) go to 750 

c 

c calc. sup norm of x. 

c 

top=0.d0 

do 640 j=l,n 

n2=]7+i 

640 top= max(top,abs(x(]))*s(n2)) 

c 

c compare relative change in x with tolerance eps 

c 

if (topl-top*eps2) 690,650,650 

650 if (ik-itmax) 660,680,680 

660 it=it+l 

if (it.eq.l) go to 670 

if (topi.gt..25*top2) go to 690 

670 top2=topl 

go to (390,460), isw 

680 it=0 

690 sj=0.do 

do 700 ]=l,k 

8j=s]+r(j)**2 

700 continue 

enorm=dsqrt(s]) 
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c 

c 
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if (irank.eq.n.and.isw.eq.l) go to 710 

go to 730 

710 eninl=enorm 

c 

c save X array. 

c 

do 720 j=l,n 

nl=k+j 

720 r(nl)=x(]) 

isw=2 

it = 0 

go to 460 

choose best solution 

730 if {irank.it.n) go to 750 

if (enorm.le.enml) go to 750 

do 740 ]=l,n 

nl=k+j 

740 x(j)=r(nl) 

enorm=enml 

c 

c norm of ax - b located in the cell enorm 

c 

c 

c rearrange variables. 

c 

7 50 do 7 60 j=l,n 

nl=jl+] 

760 s(j)=s(nl) 

do 790 j=l,n 

do 770 i=i,n 

ip=s(i) 

if (j.eq.ip) go to 780 

770 continue 

780 s(i)=s(i) 

s(])=j 

sj=x(j) 

x(j)=x(i) 

790 x(i)=si 

c 

c scale variables. 

c 

do 800 j=l,n 

n2=i2+j 

800 x(i)=x(i)*s(n2) 

return 
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c restore a. 

c 

810 do 820 j=l,n 

n2=j2+j 

do 820 i=l,k 

820 a(i,i)=aa(i,j) 

return 

c 

c generate solutions to the homogeneous equation ax = 0, 

c 

83 0 if (irank.eq.n) return 

ns=n-irank 

do 840 i=l,n 

do 840 j=l,ns 

840 h(i,i)=0.d0 

do 850 j=l,ns 

n2=irank+j 

850 h(n2,])=l.d0 

if (irank.eq.O) return 

db 870 j=l,irank 

do 870 i=l,ns 

n7=k+n+j 

sj=r(n7)*h(j,i) 

do 860 kl=irpl,n 

860 sj=s]+h(kl,i)*a(j,kl) 

n6=k+j 

bp=r(n6) 

dp=bp*r{n7)*sj 

al=dp 

a2=dp-al 

h(j,i)=h(j,i)-(al+2.*a2) 

do 870 kl=irpl,n 

dp=bp*a(j,kl)*sj 

al=dp 

•a2=dp-al 

870 h(kl,i)=h(kl,i)-(al+2.*a2) 

c 

c rearrange rows of solution matrix. 

c 

do 880 j=l,n 

nl=jl+i 

880 s(])=s(nl) 

do 910 i=l,n 

do 890 i=j,n 

ip=s(i) 

if (j.eq.ip) go to 900 

890 continue 

900 s(i)=s(i) 
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8(j)=] 

do 910 kl=l,ns 

al=h(j,kl) 

h(j,kl)=h(i,kl) 

910 h(i,kl)=al 

return 

c 

1140 format (/'warning, irank has been set to',i4,' but(',lpel0.3,l 

rank is',14,'. irank is now taken as ',i4) 

end 

subroutine potem (t, s, p, theta) 

c 

c = 

c this subroutine calculates potential temperature as a function 

c of in-situ temperature, salinity, and pressure. 

c 

c input [units]: 

c in-situ temperature (t): [degrees centigrade] 

c salinity (s): [per mil] 

c pressure (p): [decibars, approx. as meters of depth] 

c output [units]: 

c potential temperature (theta): [degrees centigrade] 

c 

c references: 

c based on Fofonoff and Froese (1958) as shown in ... 

c Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience, 

c New York, 1962, page 17, table iv. 

c 

c 

c 

implicit double precision (a-h,o-z) 

c 

0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

c 

bl = -1.60d-5*p 

b2 = 1.014d-5*p*t 

t2 = t*t 

t3 = t2*t 

b3 = -1.27d-7*p*t2 

b4 = 2.7d-9*p*t3 

b5 = 1.322d-6*p*s 

b6 = -2.62d-8*p*s*t 

s2 = s *s 

p2 = p*p 

b7 = 4.1d-9*p*s2 

b8 = 9.14d-9*p2 

b9 = -2.77d-10*p2*t 

blO = 9.5d-13*p2*t2 
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bll = -1.557d-13*p2*p 

potmp = bl+b2+b3+b4+b5+b6+b7+b8+b9+bl0+bll 

theta = t-potmp 

c 

return 

end 

subroutine unesco (t, s, pin, rho) 

c 

C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: = = = = = = = = = = = = = : 

c this subroutine calculates the density of seawater using the 

c standard equation of state recommended by unesco(1981) . 

c 

c input [units] : 

c in-situ temperature (t): [degrees centigrade] 

c salinity (s): [practical salinity units] 

c _ pressure (pin): [decibars, approx. as meters of depth] 

c output [units]: 

c density(rho): kilograms per cubic meter 

c 

c references: 

c 

c Gill, A. 1982 Atmosphere-Ocean Dynamics: International 

c Geophysical Series No. 30. Academic Press, London, pp 599-600, 

c UNESCO. 1981 10th report of the joint panel on oceanographic 

tables and standards. 

UNESCO Tech. Papers in Marine Sci. INo. 36, Paris. 

c 

c 

c 

implicit double precision (a-h,o-z) 

c 

C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = := = = = = = = = = = = = = = = = = = = = = = 

c 

clp5 = l.SdO 

c 

c convert from depth [m] (decibars) to bars 

p = pin * l.Od-1 

c 

rw = 9.99842594d2 + 6.793952d-2*t - 9.095290d-3*t**2 

$ + 1.001685d-4*t**3 - 1.120083d-6*t**4 + 6.536332d-9*t**5 

c 

rsto = rw + (8.24493d-l - 4.0899d-3*t + 7.5438d-5*t**2 

$ - 8.2467d-7*t**3 + 5.3875d-9*t**4) * s 

$ + (-5.72466d-3 + 1.0227d-4*t - 1.6546d-6*t**2) * 3**clp5 

$ + 4.8314d-4 * 3**2 

c 

xkw = 1.965221d4 + 1.484206d2*t - 2.327105d0*t**2 + 

$ 1.360477d-2*t**3 - 5.155288d-5*t**4 
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xksto = xkw + (5.4674661 - 6.03459d-l*t + 1.09987d-2*t**2 

$ - 6.1670d-5*t**3) * 8 

$ + (7.944d-2 + 1.6483d-2*t - 5.3009d-4*C**2) * s**clp5 

c 

xkstp = xksto + (3.239908d0 + 1.43713d-3*t + 1.16092d-4*t**2 

$ - 5.77905d-7*t**3) * p 

$ + (2.2838d-3 - 1.0981d-5*t - 1.6078d-6*t**2) * p * s 

$ + 1.91075d-4 * p * s**clp5 

$ + (8.50935d-5 - 6.12293d-6*t + 5.2787d-8*t**2) * p**2 

$ + (-9.9348d-7 + 2.0816d-8*t + 9.1697d-10*t**2) * p**2 * s 

c 

rho = rsto / (l.OdO - p/xkstp) 

c 

return 

end 

#ifndef gfdl_den 

function fnpz{z,xlat) 

implicit double precision (a-h,o-z) 

parameter (mloop=30,mconv=5,eps=ld-6) 

c 

c function to calculate pressure in decibars from depth in metres using 

c an iterative inverse of saunders algorithm (function fnpz). iterates 

c until the error is zero, a limit cycle is detected of 'mloop' 

c iterations reached. error exit if error > ^ps. array pa used to 

c detect a limit cycle. 

c 

c check value fnpz = 10302.423155 - cray 64-bit 

c = 10302.4231650052 - i,^^ 64-bit. 

c 

dimension pa(mconv) 

p = z 

ia = 0 

do 20 i=l,30 

Z2 = fnzp(p,xlat) 

c zero error 

if(z.eq.zz)goto 50 

ee = z - zz 

ea = abs(ee) 

c save new best value 

if(ia.eq.0.or.ea.It.ep)then 

ia = 1 

ep = ea 

pa(ia) = p 

c look for limit cycle 

elseif(ea.eq.ep)then 

do 40 i=l,ia 
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if:(p.eq.pa(j))goto 50 

40 continue 

iE(ia.lt.mconv)then 

ia = ia + 1 

pa(ia) = p 

endif 

endif 

c correct p and loop 

p = p + ee 

20 continue 

c 

if(ea.gt.eps)then 

print subroutine fnpz. iteration has not converged after', 

& ' 30 iterations' 

print *,'object depth =',z 

print latest p = ' , p , c o r r e s p o n d i n g z = ',zz 

print *,'minimum error = ',ea 

print *,'number of corresponding ps =',ia 

print *,'pa array',(pa(k),k=l,ia) 

stop 

endif 

c 

p = pa(ia) 

50 fnpz = p 

return 

end 

function fnzp(pin,xlat) 

implicit double precision (a-h,o-z) 

c 

c function to transform pressure to depth using the method of 

c p.m.saunders, 1981. journal of physical oceanography, 11, 573-574. 

c 

c input: pin = pressure in decibars ("oceanographic" pressure 

c equals absolute pressure minus one atmosphere), 

c xlat= latitude in degrees. 

c 

c output: fnzp = depth in metres. 

c 

c check value: fnzp = 9712.478325455 - cr^/ 64-bit 

c = 9712.4783254538, - ieee 64-bit. 

c for: pin=10000.0, xlat=30.0. 

c 

data in/0/ 

save in 

c 

c 1. calculate constants 

c 
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if{in.eq.0)then 

in = 1 

pi = 3.141592654dO 

radian = pi/180d0 

gl = 9.780318d0 

g2 = 9.780318d0*(5.3024d-3 - 5.9d-6*4.0e0) 

g3 = -9.780318d0*5.9d-6 * 4.0d0 

c 

c al = specific volume at (t=0,s=35,p=0) times 10**5 

c rk = constant coeficient 

c ra = term proportional to p 

c rb = term proportional to p**2 

c 

s = 3 5.OdO 

clp5 = l.SdO 

al = Id5/(9.99842594d2 + 8.24493d-l*s 

& - 5.72466d-3*s**clp5 + 4.8314d-4*s**2) 

rk = 1.965221d4 + 5.46746dl*s + 7.944d-2*s**clp5 

ra = 3.239908d0 + 2.2838d-3*s + 1.91075d-4*s**clp5 

rb = 8.50935d-5 - 9.9348d-7*s 

dd = sqrt(ra*ra - 4.0d0*rk*rb) 

cl = 0.5d0/rb 

c2 = ra/rk 

c3 = rb/rk 

c4 = ra/(2.0d0*rb*dd) 

c5 = 2.0d0*rb/(ra - dd) 

c6 = 2.0d0*rb/(ra + dd) 

c7 = 0.5d0*2.226d-6 

endif 

c 

c 2. calculate gravity 

c 

X = sin(radian*xlat)**2 

gs = (g3*x + g2)*x + gl 

c convert from pressure in decibars to bars 

p = pin*1.0d-l 

c 

c 3. integrate specific volume 

c 

rl = al*(p - cl*log((c3*p + c2)*p+1.0d0) + c4*log((1.OdO + c5*p) 

6 /(I.OdO + c6*p))) 

fnzp = rl/(gs + c7*pin) 

return 

end 

function tadiab(tt,ss,pO,pi,dpp) 

implicit double precision (a-h,o-z) 
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c 

c subroutine to calculate the final temperature of water moved 

c adiabatically from i&n initial temperature tt, salinity ss and 

c pressure pO, to a final pressure pi. 

c 

c the integral equation is solved by direct integration with a pressure 

c increment dpp - using the bryden equation for the cuiiabatic lapse 

c rate (subrouitne atg). 

c 

c t = initial temperature in degrees centigrade. 

c s = salinity in nsu. 

c pO= initial pressure in decibars. 

c pl= final pressure in decibars. 

c dpp=pressure step. 

c tadiab = final temperature in degrees centigrade. 

c 

c pressures are "oceanographic" pressures, equal to absolute pressures 

c minus one atmosphere. 

c tests with dpp values ranging from 1 to 128 decibars showed the most 

c accurate results were obtained with dpp equal to 1. 

c 

c check value: tadiab - 43.26563196548 - cray 64-bit 

c = 43.266631967051, - ieee 64-bit. 

c for: t=40.0, s=40.0, p0=0.0, pl=10000.0, dpp=1.0. 

c 

iffpO.lt.O.OdO .or. pO.gt.20000.OdO 

& .or.pl.It.0.OdO .or. pi.gt.2000 0.OdO)then 

print *,' subroutine tadiab stopping - pressures out of range' 

print *,' pressures pO and pi = ',pO,pl 

print allowed range has min of 0.0, max of 20,000' 

stop 

endif 

c 

dp = sign(dpp,pl-pO) 

p = pO 

t = tt 

tb = t - atg(pO,t,ss)*dp 

c 

10 ta = tb + 2.0d0*atg(p,t,ss)*dp 

p = p + dp 

tb = t 

t = ta 

test = (p - pl)*(p - dp - pi) 

if(test.gt.OdO)goto 10 

tadiab = ((pi - p + dp)*t + (p - pl)*tb)/dp 

return 

end 
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function atg(p,t,s) 

implicit double precision (a-h,o-z) 

c 

c adiabatic temperature gradient deg c per decibar 

c ref: bryden,h., 1973, deep-sea res., 20, 401-408 

c units: 

c pressure p decibars 

c temperature t deg celcius (ipts-68) 

c salinity s (pss-78) 

c adiabatic atg degrees celcius per decibar 

c 

c pressure is "oceanographic" pressure equal to absolute pressure 

c minus one atmosphere. 

c 

c check value; atg = 3.2559758 - cray 64-bit 

c - = 3.2559758000000d-04 deg c/dbar - ieee 64-bit. 

c for: p=10000.0, t=40.0, s=40.0. 

c 

ds = s-35d0 

akg = (((-2.1687d-16*t + 1.8676d-14)*t - 4.6206d-13)*p 

& + ((2.7759d-12*t - 1.1351d-10)*ds + ((-5.4481d-14*t 

& + 8.733d-12)*t - 6.7795d-10)*t + 1.8741d-8 ) )*p 

& + (-4.2393d-8*k + 1.8932d-6)*ds 

& + ((6.6228d-10*t - 6.836d-8)*t + 8.5258d-6)*t + 3.5803d-5 

return 

end 

#endif 
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APPENDIX n 

state.F 

subroutine state (t, s, rho) 

#ifdef multitasking 

cfpp$ noconcur r 

#endif 

c 

C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ZZ- = = = = = = ZZ- = = = = = - = = = = = = = = = = = - = = = = = = = = = Z 

c 
c State computes one row of normalized densities ky using a 3rd 

c order polynomial fit to the knudsen formula, for each level 

c subtract normalizing constants from temperature and salinity 

c and compute polynomial approximation of knudsen density. 

c 

c note., for precision purposes, there is a depth dependent 

c constant subtracted from the density returned by this routine, 

c so... this routine should be used only for horizontal gradients 

c of density. 

c 

c inputs: 

c 

c t = the input row of temperatures 

c s = th^ input row of salinities (units: (ppt-35)/1000) 

c 

c output: 

c 

c rho = normalized densities 

c 

0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = 

c 

c 

#include "param.h" 

c 

dimension t(imt,km), s(imt,km), rho(imt,km) 

common /estate/ to(km), so(km), c(km,9), zO(km), rhoO(km) 

c 

#include "dncoef.h" 

c 

c 
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c 
c statement function 

c-

c 

c 

c-

c 

dens (tq, sq, k) = (c(k,l) + (c(k,4) + c(k,7)*sq)*sq + 

$ (c(k,3) + c(k,8)*sq + c(k,6)*kq)*tq)*kq + 

$ (c(k,2) + (c(k,5) + c(k,9)*sq)*sq)*sq 

do 100 k=l,km 

do 90 i=l,imt 

rho(i,k) = dens (t(i,k)-to(k), s(i,k)-so(k), k) 

90 continue 

100 continue 

return 

c 

c 

c 

c 

c 

entry statec (t, s, rho, ind) 

c 

c 

C=: = = = = = = = = = = = = = = = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

C 

c statec computes, for one row, the normalized densities by using 

c a- 3rd order polynomial fit to the knudsen formula. For 

c purposes of checking vertical stability between adjacent 

c levels, the reference depth for pressure dependence in 

c the knudsen formula must be held constant, that level is 

c determined by "ind". 

c 

c inputs: 

c 

c t = the input row of temperatures 

c s = the input row of salinities (units: (ppt-35)/lOOO) 

c ind = 1 for comparing levels 1 to 2, 3 to 4, etc. 

c (coefficients for the lower of the 2 levels are used) 

c 2 for comparing levels 2 to 3, 4 to 5, etc. 

c (coefficients for the lower of the 2 levels are used) 

c 

c output: 

c 

c rho = normalized densities 

c 

c===================================================================== 

c 
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if (ind .It. 1 .or. ind .gt. 2) then 

write (stderr,99) 

stop '1 statec' 

endif 

c 

do 200 1=1,km,2 

if (ind .eq. 1) then 

k = min(l+l,km) 

else 

k = 1 

endif 

do 190 i=l,imt 

rho(i,l) = dens (t(i,l)-to(k), s(i,l)-so(k), k) 

190 continue 

200 continue 

c 

do 300 1=2,km,2 

if {ind .eq. 1) then 

k = 1 

else 

k = min(l+l,km) 

endif 

do 290 i=l,imt 

rho(i,l) = dens (t(i,l)-to(k), s(i,l)-so(k), k) 

290 continue 

3 00 continue 

return 

99 format(/' error => bad "ind" in statec: ind =',ilO) 

end 
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APPENDIX III: 

dncoef.h 

The include file dncoef.h now appears in the following form: 

c 

c 

0====================== include file "dncoef.h" ================= 

c 

c normalized temperatures, salinities and coefficients 

c generated by program "egstat" which fits 3rd order 

c polynomials to the equation of state for each model level. 

c 

c The polynominal returns density deviations in g/cm**3 from 

c "rhoO" for each level. The polynominal is in powers of 

c (t-to) and (s-so), where t is potential temperature, 

c measured in degrees C and s is salinity measured in 

c model units. The arrays rhoO and zO, where zO contains 

c the depth in centimetres of each level, are stored for 

c reference. 

zO( 1), rhoO( 1), to( 1), so( 1), (c( l,n),n=l,9)/ 

$ 10.35000E02, 1.0245946, 13.4986130,-.2250000E-02, 

$ -.2017008E-03,0.7730203E+00,-.4930029E-05,-.2021526E-02, 

$ 0.1678596E+00,0.3608601E-07,0.3776118E-02,0.3602963E-04, 

$ 0.1609481E+01/ 

data z0( 2), rho0( 2), to( 2), so( 2), (c( 2,n),n=l,9)/ 

$ 32.35000E02, 1.0246937, 13.4956607,-.2250000E-02, 

$ -.2021070E-03,0.7728720E+00/-.4923108E-05,-.2019249E-02, 

$ 0.1681032E+00,0.3601443E-07,0.3770950E-02,0.3599568E-04, 

$ 0.1609324E+01/ 

data z0(32), rhoO(32), to(32), so(32), (c(32,n),n=l,9)/ 

$ 5382.50000E02, 1.0518755, 2.9330675,-.2000000E-03, 

$ -.2294241E-03,0.7561387E+00,-.3894801E-05,-.2015824E-02, 

$ 0.2060329E+00,0.3214992E-07,0.3008361E-02,0.3937013E-04, 

$ 0.1602931E+01/ 
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