
FiLC.

Institute of
Oceanographic Sciences

-= 5̂̂ Deacon Laboratory

INTERNAL DOCUMENT No. 323

The Equation of State algorithms used by
the OCCAM model

A C Coward

1993

i

!

I
Natural Environment Research Council

INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 323

The Equation of State algorithms used by
the OCCAM model

A C Coward

1993

Wormley
Godalming
Surrey GU8 SUB UK
Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

D O C U M E N T D A T A S H E E T

COWARD, A.C. DATE 1993

TTTLE

The Equation of State algorithms used by the OCCAM model.

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 323,46pp.

(Unpublished manuscript)

The Ocean Circulation and Climate Advanced Modelling project (OCCAM) is an

NERC Community Project which forms part of the UK contribution to the World Ocean

Circulation Experiment (WOCE).

The aim of OCCAM Core Project 7 is to develop a global ocean model which will form

the central 'test-bed' for algorithms developed by associated projects.

This document details the Equation of State algorithm which will be used to calculate

density from potential temperature and salinity values derived by the numerical model.

NUMERICAL MODELLING

PROJECT - OCCAM

issimc OEGAMSA7YON
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 SUB. UE. TWepAoae Woimiey (0428) 684141

%/er 858833 OCEANS G.
Director: Colin Summerhayes DSc Facsimile (0428) 683066

Ck)pies of this report are available from: The Library, lOSDL. PRICE £0.00

CONTENTS

Page

1. INTRODUCTION 4

1.1 Earlier work 4

2. THE GFDL SCHEME 5

3. THE OCCAM SCHEME g

REFERENCES 9

APEENDKOS 10-46

Appendix I denscoef.F 10

Appendix II state.F 43

Appendix III dncoef.h 46

1. INTRODUCTION

An important part of the Ocean Circulation and Climate Advanced Modelling project

(OCCAM) is the development of a global ocean model The Gnal form of the model is, as yet,

undecided but it wiH certainly require an accurate and computationally e@cient method of

calculating density from temperature and salinity values. Within a Bryan-Cox-Semtner ocean

general circulation model (Bryan 1969, Semtner 1974, Cox 1984) such calculations are done at

least three times for each grid node within the model, Precise methods require many hundreds

of floating point calculations to derive each value. However, Webb (1992) has examined the

available equations of state and compared the use of polynominal approximations with more

complex schemes.

Following the recommendations of Webb (1992), the Cox polynominal equation of state

will be used in the OCCAM model but the coeScients will be calculated using an improved

method. This improved method uses the UNESCO equation of state (EOS80), (Fofono^ and

Millard (1983), UNESCO (1981) and GDI (1982)) and accurate methods for converting model

depth to pressure and in temperature to potential temperature.

To be precise, a FORTRAN?7 program has been adapted to calculate the coefficients of a

third order polynominal in potential temperature (°C) and salinity (parts per part) such that the

polynominal wiU return values for density fitted to a least squares criterion. A diEerent set of

coeBcients is derived for each model level,

1.1 Earlier work

This work uses as a starting point the subroutines and utility program supplied with the

GFDL Modular Ocean Model (MOM) version 1 (Pacanowski, Dixon and Rosati (1990)). The

equation of state supplied with the MOM code (state.F) employs the Cox polynominal

approximation to the UNESCO equation of state as standard, A utility program, denscoef.F, is

also supplied which will calculate the nine coeScients for each model level and construct the

data statements to be included in state.F. The nine coeScients, ,Pg, are employed

within the model to calculate the density anomaly (relative to a reference density, pg k) using

the polynominal equation:

(1)

5 -

+ (̂ - + A.* (̂ - ̂ O.t) ("̂ -

+ " ̂ O.t) " '̂ o.t) + AJt ('̂ - <̂0,*)

where ^o.k snd TQ are 'reference' values for each level k.

2. The GFDL scheme

The program denscoef.F calculates the values for tq, Sq, Pg and pj pg in the

following manner:

For each level:

1. Ranges of ia afu t and s values are set for each model level The current settings are

shown in table 1 (page 8).

2. The ranges are divided into 2 x kx in situ temperature values and kx salinity values,

where kx is a parameter set within the program (currently kx=5).

3. Either the Khudsen equation of state or the UNESCO equation of state is then used to

calculate the density at each of the 2 x kx x kx points within the domain, The depth in

metres of the level is used to approximate pressure for these calculations.

4. Each density is converted to a Oj value.

5. Each in a'fu temperature is converted to a potential temperature (th) value using the

Fofonoff and Froese (1958) equation.

6. The mean temperature (t̂) and salinity (s^) are calculated and the (tot) value for

seawater with these properties is calculated as in 5tep 3.

7. The mean in aYu temperature is converted to potential temperature (t̂) and t̂ , s^ and tot

are subtracted from each of the corresponding th, s and a values.

8. A least squares procedure is then used to derive the nine polynominal coeScients as

shown in equation 1.

9. The coeEcients are then rescaled so that they are valid when used with salinity values

given in model units. Model units are: (N.S.U.-35.)/1000., so this step involves

subtracting 0.035 from the value of s^ and multiplying each coe&cient by 10^ for each

power of s.

10. At the same stage the coeEcients are rescaled so that density values in g/cm^ are

calculated instead of If p is measured in g/cm^ then = 1000 x (p -1). Sinde the

6 -

right hand side of the polynominal is, at this stage, (o - Oq), the rescaling is achieved

by multiplying each coeScient by 10"̂ .

11. The values of t̂ , s^ and the nine coeScients are written out in data statements to a Gle,

dncoef.h. This Gle will be included in state.F by the C preprocessing stage at

compilation. The values of Oq are also written to dncoef.h within FORTRAN comment

statements.

12. State.F may now be fed values of potential temperature (°C) and salinity in model units

and will return the deviation in g/cm^ from the reference density for the relevant level.

3. The OCCAM scheme

The program, denscoef.F has been changed in order to incorporate the recommenda-

tions of Webb (1992). The changes have been made in the style recommended by the original

authors and aH the original features of the program have been retained in the form of '#ifdef

preprocessor constructions. The currently recommended method is now the de6ult but the

previous defai;ilt options may be recovered using the 'gMl_den' compile-time option. Several

enhancements have been made for the current work.

Firstly, the linear scheme used to convert model depth to pressure has been replaced by

a more accurate scheme using an iterative inverse of the algorithm due to Saunders (1981).

Secondly, the m aYu to potential temperature conversion is carried out by direct

integration using the Bryden equation for the adiabatic lapse rate (Bryden 1973) and a pressi;ire

increment of 1 dedbar.

Thirdly, the curve-Gtting procedure has been improved. As described above the

polynominal approximation Sxes the density at (toiS)̂ to be p^. Removing this constraint and

making one of the unknown coeScients gives a better overall 5t at the expense of

introducing a small error at the central point. The reference density is not used in the main

ocean model so the routine, state.F can be used without modiGcation.

FInaDy, in the OCX3AM version, the output procedure has been modiGed to write all

relevant data into data statements within the include Gle. This includes two new arrays, zO and

rhoO, each dimensioned with km elements. zO contains the depth in centimetres and rhoO

contains the new reference density of the relevant model level. These new arrays are not used in

state.F within the Cox/MOM code but are required by any other applications which require the

actual density value. The introduction of these arrays requires a minor modiGcation to state.F :

- 7 -

the line:

common /estate/ to(km), 80(km), c(]!cm,9)

should be changed to:

common /estate/ to(km), so(]an), c(km,9), zO(km), rhoO(km).

The new OCCAM version of denscoef.F, is listed in Appendix I. In a SUNOS UNIX

environment this can be compiled by the command:

f77 -o eqstat denscoef.F

On other systems it may be necessary to explicitly invoke the C-preprocesor. For example:

cc -P denscoef.F

mv denscoef.i denscoef.f

f77 -0 eqstat denscoef f

produces the same result. Similarly, use the following command in a SUNOS environment to

compile the original GFDL default options:

f77 -D g6il_den -o eqstat denscoefF

A listing of state.F is given in Appendix HI and the format of the dncoef.h Sle, which is

produced by denscoefF and included in state.F at compilation, is shown in Appendix H.

Table 1

k depth tmin tmax smin smax

1 10.35e2 -2.000 29.000 28.5000 37.0000

2 32.3Se2 -&000 29.000 28.5000 37^000

3 57.25e2 -&000 29.000 28.5000 37^000

4 86.00e2 -&000 29.000 28.5000 37^000

5 12&15a3 -&000 29.000 28.5000 37^000

6 162.15e2 -2.000 29.000 28.5000 37.0000

7 216.30e2 -&000 29.000 28.5000 37^000

8 290.0562 -&000 19.000 3&7000 36.6000

9 393.50e2 -2.000 19.000 3&7000 36.6000

10 532.00e2 -2.000 14.000 34.0000 35.8000

11 700.00e2 -2.000 14.000 34.0000 35.8000

12 887.50e2 -2.000 ILOOO 34.1000 35.7000

13 1087.50e2 -LOOO 9.000 34.2000 35.3000

14 1295.50e2 -1.000 7.000 34.4000 35J.000

15 1508.50e2 -1.000 7.000 34.5000 35J000

16 1725.50e2 -1.000 7.000 34.5000 35^000

17 1945.50e2 -1.000 7.000 34.5000 3&0000

18 2167.50e2 -1.000 7.000 34.6000 35.0000

19 2391.50e2 -1.000 7.000 34.6000 3&0000

20 2617D0e2 -1.000 7.000 34.6000 35^000

21 2843.50e2 -1.000 7.000 34.6000 35.0000

22 3071.00e2 -1.000 7.000 34.6000 35.0000

23 3299.50e2 -1.000 7.000 34.6000 35^000

24 3529.00e2 -1.000 7.000 34.6000 35^000

25 3759.00e2 -1.000 7.000 34.6000 3&0000

26 3989.50e2 -1.000 7.000 34.6000 3&0000

27 4220.50e2 -1.000 7.000 34.6000 35.0000

28 445&00e2 -1.000 7 000 34.6000 35.0000

29 4684.00e2 -1.000 7 000 34.6000 35.0000

30 4916.50e2 0.000 7.000 34.6000 35.0000

31 5149.50e2 0.000 7.000 34.6000 35.0000

32 5382.50e2 0.000 7.000 34.6000 35.0000

-9-

REFERENCES

BRYDEN, H.L. 1973 New polynomials for thermal expansion, adiabatic temperature gradient and '
potential temperature of sea water.
Deep Sea Research, 20, p 401-408.

FOFONOFF, N.P.&FROESE,C. 1958 As shown in FOFONOFF, N.P. 1962 The Sea: Vol. 1.
(Ed. M. HUl.) Interscience, New York, pl7,

FOFONOFF, N.P. & MILLARD, R.C. Jnr. 1983 Alogrithms for computation of fundamental properties of
seawater.
UNESCO Technical Papers in Marine Science, 44, 53pp.

GILL, AE. 1982 Atmosphere-Ocean dynamics.
Academic Press, New York, 662pp.

PACANOWSKI, R.C., DIXON K., & ROSATI, A 1990 The GFDL Modular Ocean Model Users Guide,
version 1.0.
GFDL Group Techinical Report No. 2.

SAUNDERS, P. M, 1981 Practical Conversion of Pressure to Depth.
Journal of Physical Oceanography, 11 (4), p 573-574.

UNESCO. 1981 TenQi report of the joint panel on oceanographic tables and standards.
UNESCO Technical Papers in Marine Science, 36, 25pp.

WEBB, D.J. 1992 The equation of state algorithms used by the FRAM model.
Institute of Oceanographic Sciences Deacon Laboratory, Internal Document No. 313, 34pp.

10

APPENDIX I:

denscoef.F

c subroutine eqstat

program eqstat

c

c due to the simple UNIX linker, only one main program may be in the

c directory at one time. To run this program, wipe out the

c the subroutine call & uncomment the program eqstat line, all other

c main programs must be either removed from the directory or

c commented out also!

c note: this is not a problem if "makefiles" are used for compiling

c & linking.

c

c===

c

c calculate coefficients for "MOM" density computations

c

c This program calculates the 9 or 10 coefficients of a third

c order polynomial approximation to the equation of state for sea

c water.

c The program yields coefficients that will compute density as a

c function of temperature, and salinity, at predetermined depths,

c as used in the subroutine "state" of the GFDL ocean model.

c More specifically, the densities calculated from the ploynomial

c formula are in the form of sigma anomalies. The method is taken

c from that described by Bryan & Cox (1972).

c By default, the program uses the equation of state set by the

c Joint Panel on Oceanographic Tables &' Standards (UNESCO, 1981)

c an described by Gill (1982). An option exists to use tlm older

c Knudsen-Ekman equation of state, as described by Fofonoff (1962),

c if the user prefers.

c Subroutine "lsqsl2" performs the iterative least-squares

c polynomial fitting for the overdetermined system. The algorithm

c is outlined by Hanson and Lawson (1969), and the code looks as if

c it has not been altered since that time.

c

c references:

c

c Bryan, K. & M. Cox. 1972 An approximate equation of state for

c numerical models of ocean circulation.

c J. Phys. Oceanogr., 2, 510-514, 1972.

11

c Fofonoff, N. 1962 The Sea: Vol 1, (ed. M. Hill).

c Interscience, New York, pp 3-30.

c Gill, A. 1982. Atmosphere-Ocean Dynamics: International

Geophysical Series No. 30.

c Academic Press, London, pp 599-600.

c Hanson, R., & C. Lawson. 1969 Extensions and applications of

c the Householder algorithm for solving linear least squares

c problems. Math. Comput., 23, pp 787-812.

c UNESCO. 1981 10th report of the joint panel on oceanographic

tables and standards.

c UNESCO Tech. Papers in Marine Sci. No. 36, Paris.

c

c

c ifdef options:

c

c Default: use the "reference equation of state" as in Webb (1992)

c Ref: Webb, D.J. 1992 "The equation of state algorithms used by

c the FRAM model". Institute of Oceanographic Sciences Internal

c Document No. 313.

c

c "gdfl_den"

c Revert to the original "GFDL" scheme as supplied with version

c 1.0, released December 1991.

c "knudsen"

c To over-ride the default of using the UNESCO equation of state

c and to instead employ the Knudsen-Ekman formula.

c "insitu"

c If the user desires the polynomial approximations to calculate

c density as a function of in situ temperature, salinity, and depth,

c th^^ the ifdef option "insitu" must lbs defined. Otherwise, the

c default assumption is that potential temperatures will be used (as

c in the ocean model code).

c "extras"

c If the user wishes to have a detailed report of the inputs and

c results of the curve fitting processes written to the standard

c output unit (stdout), then the ifdef option "extras" should be

c defined. The default is for a rather short summary to be written,

c

c inputs:

c The user needs only to specify the number of model levels "km"

c and the model layer thicknesses [cm] "dzt(1. . km)" . This

c information can be entered below via the same "dzt" data statement

c contained in the "thick.h" file used in the compilation of the

c GFDL ocean model. The parameter "km" and constants "cO", "c 1",

c "c2" and "pS" can be set by including the "param.h" file from the

c model as well.

c

12

c

c

c

implicit double precision (a-h,o-z)

c

c

c

#include "param.h"

c

dimension dzt(km)

c

parameter (kx = 5, kxx = 2*kx, kk = kx*kxx,

#ifdef gfdl_den

$ • kcolm=9)

#el3e

$ kcolm=10)

#endif

parameter (krdim = kk+4*kcolm, ksdim = kk+8*kcolm)

dimension a (kk, kcolm) , sigma (kk) , sigman (kk), c (kk, kcolm), x (kcolm),

$ 8b(ksdim), r(krdim)

dimension tmin(km), smin(km), tmax(km), smax(km),

$ z(km), dd(km), ss(km), ab(kcolm+4, km), ts(33,4),

$ ka(kxx), sa(kxx), kp(kk), sp(kk), th(kk)

c

real realz

c

double precision mpercm

data mpercm / l.Od-2 /

c

#include "thick.h"

c

c enter bounds for polynomial fit: at 33 levels from sfc to 8000 m.

c ts(k,1)slower bnd of t at z=(k-l)*250 meters

c ts(k,2)=upper bnd of t "

c ts(k,3)=lower bnd of s "

c ts(k,4)=upper bnd of s "

c

c The user should review the appropriateness of the "ts" values set

c below, and modify them if the intended modelling application could

c be expected to yield temperature and salinity values outside of

c the "ts" ranges set by default.

c

data (ts(k,l),k=l,33) / 4*-2.0, 15*-1.0, 14*0.0 /

data (ts(k,2),k=l,33) / 29.0, 19.0, 14.0, 11.0, 9.0, 28*7.0 /

data (ts(k,3),k=l,33) / 28.5, 33.7, 34.0, 34.1, 34.2, 34.4,

$ 2*34.5, 15*34.6, 10*34.7 /

data (t3(k,4),k=l,33) / 37.0, 36.6, 35.8, 35.7, 35.3, 2*35.1,

$ 26*35.0 /

13

#ifndef gfdl_den

data xlat/30,0/

c xlat = Reference latitude used by the depth-to-pressure

c function: FNPZ.

#endif

c

c z = model levels (midpoint of model layers)

c tmin, tmax, smin, smax - minimum and maximum in situ temperature

c and salinity values which define the ranges to be used

c when computing the polynomials at each model level

c dd, ds = increment between temperature and salinity values at

c each model level to be used in constructing array of

c temperature, salinity and density for curve fitting

c ta, sa = in situ temperature and salinity values available for

c constructing array of data for curve fitting at each

c model level

c tp, sp = in situ temperature and salinity values constructed from

c all combinations of ta & sa

c th = potential temperature values associated with "tp" at a

c given level and salinity

c tl, si, totl, thl = level mean insitu temp., salinity, density,

c and potential temp, used in polynomial fitting

c tot = density (in sigma units) calculate from tl and si at a

c given model level

c sigma = insitu densities (in sigma units) calculated from "tp"

c and "sp" values

c sigman = insitu density anomalies at a given level (formed by

c subracting "tot" from sigma)

c tanom, sanom = temperature and salinity anomalies used in loading

c array "a" for use in lsqsl2 curve fitting

c X = the 10 polynomial coefficients. This includes a constant

c for the polynominal which means that the polynominal is

c not constrained to pass through totl at (thl,si). This

c constant is subtracted from the level reference density

c after the least-squares procedure. The polynominal used

c by state and statec is thus unchanged but should be a

c better fit than that given by the original procedure,

c r, sb = used only in lsqsl2

c

0 =: = = = = = = := = = = = = = = = = = :=

C

c calculate depths of levels from dzt (converting dzt from cm

c to meters) - the maximum allowable depth is 8000 meters

c

z(l)= p5 * dzt(l) * mpercm

do 100 k=2,km

z(k) = z(k-l) + p5

100 continue

14

c set the temperature and salinity ranges to be used for each model

c level when performing the polynomial fitting

c

do 200 k=l,km

realz = z(k)/250.0

i = ifix (realz) + 1

tmin(k) = ts(i,l)

tmax(k) = ts(i,2)

smin(k) = ts(i,3)

smax{k) = ts(i,4)

200 continue

c

c write out model depths and ranges of temperatures & salinities over

c which the polynomial approximations are computed.

c

write (stdout,9060)

write (skdout,9061) (z(i),tmin(i),tmax(i),&min(i),smax(i),i=l,km)

write (stdout,9062)

c

c set temperature and salinity increments to be used in creating

c curve fitting array at each level (twice as ma^y temperature values

c than salinity values)

c

fkx = kx

do 3 00 k=l,km

dd(k) = (tmax(k)-tmin(k)) / (c2*fkx-cl)

ss(k) = (smax(k)-smin(k)) / (fkx-cl)

3 00 continue

c

c loop over all model levels

c

do 400 k=l,km

write(6,'(a,i3,$)') 'Start level: ',k

c

do 340 i=l,kxx

fi = i

ta(i) = tmin(k) + (fi-cl)*dd(k)

sa(i) = smin(k) + (fi-cl)*3s(k)

3 40 continue

c

c load the "kxx" cominations of the 2*"kx" insitu temp, and "kx"

c salinity values into "tp" and "sp°

c

do 360 i=l,kxx

do 350 j=l,kx

ka = kx*i + j - kx

tp(ka) = ta(i)

sp(ka) = sa(j)

350 continue

15

3 60 continue

c

tl = cO

si = cO

tot = cO

thl — cO

fkk = kk

c

c calculate insitu density "sigma" for each t,s combintion at

c this depth "d"

c

do 37 0 ka=l,k:k

#ifndef gfdl_den

c Convert depth to pressure accurately

d=fnpz(z(k),xlat)

#else

d = z(k)

#endif

8 = sp(ka)

t = tp(ka)

c

#ifdef knudsen

c "knuekm" returns density (in sigma units) from insitu temperature,

c salinity, & depth (pressure) using the Knudsen-Ekman formula

c

call knuekm(t,s,d,densit)

c

sigma(ka) = densit

#else

c "unesco" returns density (kg per m**3) from insitu temperature,

c salinity, & depth (pressure) using the UNESCO equation of state

c

call unesco(t,s,d,densit)

c

sigma(ka) = densit - 1.0d3

#ifdef gfdl_den

$ + 2.5d-2

c (Note original denscoef.P added 2.5d-2 here to convert to "old" sigma)

#endif

#endif

c

c "potem" returns potential temp, from from insitu temperature,

c salinity, & depth (pressure)

c

#ifdef gfdl_den

call potem(t,s,d,theta)

#else

c ..so does "tadiab" but more accurately

theta = tadiab(t,s,d,0.0d0,1.0d0)

#endif

16 -

th{ka) = theta

tl = tl + tp(ka)

si = si + sp(ka)

tot - tot + sigma(ka)

thl = thl + th(ka)

37 0 continue

c

c form layer averages "tl", "si", "thl", and "totl", compute

c reference density "tot" from "tl" and "si" at this depth "d"

c

tl = tl/fkk

si = sl/fkk

thl = thl/fkk

totl = tot/fkk

#iEdef knudsen

c

c "knuekm" returns density from insitu temp., salinity, & depth

c (pressure) using the Knudsen-Ekman formula

c

call knuekm (tl, si, d, densit)

c

tot = densit

#else

c

c "unesco" returns density from insitu temp., salinity, & depth

c (pressure) using the UNESCO equation of state

c

call unesco (tl, si, d, densit)

tot = densit - 1.Od3

#ifdef gfdl_den

$ + 2.5d-2

c (Note original denscoef.F added 2.5d-2 here to convert to "old" sigma)

#endif

#endif

c

#ifdef extras

c

c define "extras" for voluminous printout of calculation info.

c

write (sCdout,'(a49)')

$ ' insitu temperatures used in polynomial fit & avg'

write (stdout, 9071) kk, (tp(ka),ka=l,kk)

write (stdout, 9072) tl, k

write (stdout,'(a40)')

$ ' salinities used in polynomial fit & avg'

write (stdout, 9071) kk, (sp(ka),ka=l,kk)

write (stdout, 9072) si, k

write (stdout,'(a53)')

- 17

$ ' densities (sigma units) used in polynomial fit & cTMj'

write (stdout, 9071) kk, (sigma(ka),ka=l,kk)

write (stdout, 9072) totl, k

write (stdout,'(a54)')

$ ' density calculated from level avg insitu t & salinity'

write (stdout, 9072) tot, k

write (stdout,'(a52)')

$ ' potential temperatures used in polynomial fit & avg'

write (stdout, 9071) kk, (th(ka),ka=l,kk)

write (stdout, 9072) thl, k

#ifdef insitu

write (stdout,'(a47)')

$ ' » insitu temps were used in polynomial fit «

#else

write (stdout,'(aSO)')

$ ' >> potential temps were used in polynomial fit « '

#endif

c

#endif

#ifndef insitu

c

c define insitu if using insitu temperatures (removes this line)

c

tl = thl

c

#endif

c

c begin loading "ab" array with level averages

c

ab(l,k) = z(k)

ab(2,k) = tot

ab(3,k) = tl

ab(4,k) = si

c

do 380 ka=l,kk

#ifndef insitu

c

c define insitu (removes this line) if using insitu temperatures

c

tp(ka) = th(ka)

#endif

c

c create anomalies for temperature, salinity & density and

c load work array "a" with the anomalies and their products

c

tanom = tp(ka) - tl

sanom = sp(ka) - si

sigman(ka) = sigma(ka) - tot

18 -

a(ka,l) = tanom

a(ka,2) = sanom

a(ka,3) tanom * tanom

a(ka,4) = tanom * sanom

a(ka,5) = sanom * sanom

a(ka,6) = a(ka,3) * tanom

a(ka,7) = a(ka,5) * tanom

a(ka,8) = a(ka,3) * sanom

a(ka,9) a(ka,5) * sanom

#ifndef gfdl_den

a (ka, 10) = c 1

#endif

3 80 continue

c

c set the arguments used in call to "lsqsl2"

c ndim = first dimension of array a

c nrow =number of rows of array a

c ncol = number of columns of array a

c in = option number of lsqsl2

c itmax = number of iterations

c

ndim = 50

nrow = kk

ncol = kcolm

in = 1

itmax = 4

it = 0

ieq = 2

irank = 0

eps = l.Oe-7

nhdim - kcolm

c

c LSQL2 is a Jet Propulsion Laboratory subroutine that computes the

c least squares fit in an iterative manner for overdetermined systems.

c

c

Find vector x such that ax-sigman is minimised.

call lsqsl2 (ndim, a, nrow, ncol, sigman, x, irank, in, itmax,

$ it, ieq, enorm, eps, nhdim, h, c, r, sb)

c

#ifdef extras

write (stdout, 9081) k, (x(i),i=l,kcolm)

write (stdout, 9082) tot

write (stdout, 9062)

c

#endif

do 390 i=l,ncol

ab(i+4,k) = x(i)

390 continue

19

write(5, ' (a,i3) ') ' End of level: ' , k

400 continue

c

nn = ncol + 4

write (stdout, 9091)

write (stdout, 9092) ((ab(i,i),i=l,nn),]=l,km)

write (stdout, 9093)

c

c write data statements to unit 50 ==> "dncoef.h"

c

open (50,file='dncoef.h')

c

wTite(50,9501)

c

c Now rescale the coefficients so that the polynominal can be used with

c model salinities (i.e. adjust sO & multiply coefficients of s by

c 1000) rescale so that density is given in g/cm3 instead of

c sigma_t (i.e. divide all coefficients by 1000). E.g. Coefficient of

c (t-t0)*(s-s0)**2 will be multiplied by: 0.001*1.*1000.**2=1000.

c

do 500 k=l,km

c convert sigO to g/cm3 and subtract constant:

ab(2,k) = l.e-3 * ab(2,k)

#ifndef gfdl_den

$ - (l.e-3 * ab(14,k)) + 1.

#endif

c rescale so to model units:

ab(4,k) = l.e-3 * ab(4,k) - 0.035

c adjust coefficients:

c 1. (t-to):

ab(5,k) = l.e-3 * ab(5,k)

c 2. (t-to)**2:

ab(7,k) = l.e-3 * ab(7,k)

c 3. (t-to)**3:

ab(10,k) = l.e-3 * ab(10,k)

c 4. (s-so)**2:

ab(9,k) = l.e+3 * ab(9,k)

c 5. (t-to)*(s-so)**2:

ab(ll,k) = l.e+3 * ab(ll,k)

c 6. (s-so)**3:

ab(13,k) = l.e+6 * ab(13,k)

c 7. scaling factors equate to unity for all other coefficients

c

500 continue

#ifdef gfdl_den

c

20

c write out "to" & "so" data statements

c

do 600 nx=3,4

if (nx .eq. 3) WTike(50,9502)

if (nx .eq. 4) write(50,9503)

n = 0

do 590 ii=l,99

is = n+1

ie = n+5

if (ie .It. km) then

write(50,9510) (ab(nx,i),i=is,ie)

n = ie

else

ie = km

n = ie-is+1

if (n .eq. 1) write(50,9511) (ab(nx. i) , i = is, , ie)

if (n .eq. 2) write(50,9512) (ab(nx. i) , , i = is, . ie)

if (n .eq. 3) write(50,9513) (ab(nx, i) , , i = is, ie)

if (n .eq. 4) write(50,9514) (ab(nx, i) , , i = is, ie)

if (n .eq. 5) write(50,9515) (ab(nx. i) , . i = is, ie)

goto 600

endif

590 continue

600 continue

#endif

c

c write out data statement for each level

c (zO, rhoO, to, so & 9 coefficients)

do 700 k=l,km

#ifdef gfdl_den

write(50,9521) k

#else

#endif

write(50,9521) k,k,k,k,k

WTite(50,9524) (ab(i,k),i=l,4)

write(50,9522) (ab(i,k),i=5,8)

write{50,9522) (ab(i,k),i=9,12)

write(50,9523) ab(13,k)

700 continue

c

write (50,9531)

write (50,9532) (i, z(i),tmin(i),tmax(i),smin(i),smax(i),i=l,km)

write (50,9533)

do 800 k=l,km

ab(2,k) = ab(2,k) * l.e3

#ifndef gfdl_den

$ - 1.e3

#endif

21 -

800 continue

write (50,9534) (ab(2,k),k=l,km)

write (50,9535)

close (50)

c
C = = = = = = = = = =: =i = = = = =: = = = = = = = = = = = = = = =i = = = = = =: = = = = = = :

c

stop

c

9060 format{///6x,'level tmin tmax smin smax',/)

9061 format(5x,f5.0,4f10.3)

9062 format(///)

9091 format(//,

$' calculating coefficients for "mom" density computations'/

$' z sigO t s xl x2 ' ,

$'x3 x4 x5 x6 x7 x8'

$' x9',/)

#ifdef gfdl_den

9092 format(//,f5.0,f8.4,f5.1,f6.2,9el2.5)

#else

9092 format(//,12(ell.5,lx))

#endif

9093 format(//,

$' === a new "dncoef.h" has been created by this program === ')

#ifdef extras

9071 format(/' kk = # of pts going into interpltn =',i4,/

$ (lx,5el4.7))

9072 format(5x,' avg =',el4.7,' for level ',14,/)

#ifdef gfdl_den

9081 format(' model level ',13,': before scaling (x(i),1=1,9)='/

$ Ix,5el4.7,/,lx,4el4.7)

#else

9081 format(' model level ',13,': before scaling (x(i),i=l,10)='/

$ Ix,5el4.7,/,lx,5el4.7)

#endif

9082 format(' reference sigma, about which density anomalies are ',

$ 'computed'/lx,el4.7)

#endif

c

#ifdef gfdl_den

9501 format('c====================== include file "dncoef.h"',

$ ' =========================='/'c'/'c'/,

$ 'c normalized temperatures, salinities and',

$ ' coefficients'/'c generated by program "eqstat" ',

$ 'which fits 3rd order polynomials'/'c to the equation

$ 'of state for each model level.'/'c')

22

#else

9501 format('c====================== include file "dncoef.h" ' ,

$ ' =========================='/'c'/'c'/,

$ 'c normalized temperatures, salinities and coefficients'/

$ 'c generated by program "eqstat" which fits 3rd order '/

$ ' c polynomials to the equation of state for each model

$ 'level.'/'c'/

$ 'c The polynominal returns density deviations in g/cm**3

$ 'from '/

$ ' c "rhoO" for each level. The polynominal is in powers of'/

$ 'c (t-to) and (s-so), where t is potential temperature, '/

$ ' c measured in degrees C and s is salinity measured in ' /

$ ' c model units. The arrays rhoO and zO, where zO contains'/

$ ' c the depth in centimetres of each level, are stored for ' /

$ 'c reference.'/'c')

#endif

9502 format(6x,'data to /',67x,i9)

9503 format(6x,'data so /',67x,i9)

9510 format(5x,'$',8x,5(fl0.7,

9511 format(5x,'$',8x,fl0.7,'/

9512 format(5x,'$',8x,fl0.7,',

9513 format(5x,'$',8x,2(fl0.7,

9514 format(5x, '$',8x,3(f10.7 ,

9515 format(5x,'$',8x,4(f10.7,

#ifdef gfdl_den

9521 format(6x,'data (c(',i2,',n),n=l,9)/')

#else

9521 format(6x,'data zO(',i2,'), rhoO(',i2,'), to(',i2,'), so(',i2,')'

+ ', (c(',i2,',n),n=l,9)/')

#endif

9522 format(5x,'$',9x,4(el3.7,','))

9523 format(5x,'$',9x,el3.7,'/',/,'c')

#ifndef gfdl_den

9524 format(5x,'$',9x,fl0.5,'E02,',2(fl3.7,','),el3.7,',')

#endif

9531 format('c the above coefficients were calculated using program

$ '"eqstat"',

#ifdef gfdl_den

$ /'c compiled with the "gfdl_den" option and',

#endif

#ifdef knudsen
$ /'c employing the Knudsen-Ekman equation of state.',

#else

$ /'c employing the UNESCO equation of state.',

#endif

$ /'c They are valid for the following depths and',

$ ' T and S ranges'

$ /'c',t7,'k',tl4,'depth',t27,'tmin',t37,

/'c')

fl0.7,'/',/'c')

'),fl0.7,'/',/'c')

'),fl0.7,'/',/'c')

'),fl0.7,'/',/'c')

23

$ 'kmax',k52,'smin',t62,'&max')

9532 formak('c',t5,i3,tl2,f7.2,'e2',t25,f7.3,k35,f7.3,t50,f:7.4,

$ k60,f:7.4)

9533 formate 'c'/

$ ' c the 3rd order polynomial will return density

$ 'departures [gm/cm**3] as'/

$ ' c a function o f ,

#ifdef insitu

$ • insitu ' ,

#else

$ ' potential ',

#endif

$ 'temperature [deg C] & salinity [model units]'/

$ 'c'/

$ 'c k level reference densities (in sigma units):'

9534 format('c ',8f8.4)

9535 format('c')

c

end

c

subroutine knuekm (t, s, d, rho)
C = :

c this subroutine calculates the density of seawater using the

c Knudsen-Ekman equation of state.

c

c input [units]:

c in-situ temperature (t): [degrees centigrade]

c salinity (s): [per mil]

c depth (d): [meters of depth, to approximate pressure]

c output [units]:

c density (rho): sigma units

c

c reference:

c Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience,

c New York, 1962, pp 3-30.

c

c

c

implicit double precision (a-h,o-z)

c
C = = = = = = = = =: = = = = = = = = = = = =:=: =

c

t2 = t*t

t3 = t2*t

s2 = s*s

s3 = s2*s

fl = -l.OdO * (t - 3.98dO)**2 * (t + 2.83d2) /

$ (5.0357d2*(t + 6.726dl))

24

f2 = t3*1.0843d-6 - k2*9.8185d-5 + t*4.786d-3

E3 = k3*1.6670d-8 - t2*8.1640d-7 + k*1.803d-5

Es = s3*6.76786136d-6 - s2*4.8249614d-4 + s*8.14876577d-l

c

sigma= fl + (fs + 3 .895414d-2)*

$ (l.OdO - E2 + f:3*(fs - 2.2584586d-l))

c

a= d*1.0d-4*(1.055d2 + k*9.50d0 - k2*1.58d-l - d*t*1.5d-4) -

$ (2.27d2 + t*2.833dl - t2*5.51d-l + t3*4.0d-3)

bl = (fs - 2.81324dl)*l.d-l

b2 = bl * bl

b = -bl* (1.473d2 - t*2.72dO + k2*4.0d-2 - d*1.0d-4*

$ (3.24dl - 0.87d0*t + 2.0d-2*t2))

b = b + b2*(4.5dO - 1.0d-l*t - d*1.0d-4*(1.8d0 - 6.0d-2*t))

CO = 4.886d3/(1.0d0 + 1.83d-5*d)

c

alpha = d*1.0d-6*(co + a + b)

c

rho = (sigma + alpha)/(l.dO - 1.0d-3*alpha)

c

return

end

subroutine lsqsl2

l(ndim,a,d,w,b,x,irank,in,itmax,it,ieq,enorm,epsl

2,nhdim,h,aa,r,s)

c

c this routine is a modification of Isqsol. march, 1968. r. hanson.

c linear least squares solution

c

c this routine finds x such that the euclidean length of

c (*) ax-b is a minimum.

c

c here a has k rows and n columns, while b is a column vector with

c k components.

c

c an orthogonal matrix q is found so that qa is zero below the main

c diagonal.

c suppose that rank (a)=r

c an orthogonal matrix s is found such that

c qas=t is an r X n upper triangular matrix whose last n-r columns

c are zero.

c the system tz=c (c the first r components of qb) is tk̂ an

c solved, with w=sz, the solution may be expressed

c as X = w + sy, where w is the solution of (*) of minimum euclid-

c ean length and y is any solution to (qas)y=ty=0.

c

c iterative improvements are calculated using residuals and

c the above procedures with b replaced by b-ax, where x is an

c approximate solution.

25 -

implicit double precision (a-h,o-z)

c

double precision si,dp,up,bp,a]

logical erm

integer d,w

c

c in=l for first entry.

c a is decomposed and saved, ax-b is solved,

c in = 2 for subsequent entries with a new vector b.

c in=3 to restore a from the previous entry.

c in=4 to continue the iterative improvement for this system,

c in = 5 to calculate solutions to ax=0, then store in the array h.

c in = 6 do not store a in aa. obtain t = qas, where t is

c min(k,n) x min(k,n) and upper triangular, now return.do not obtain

c a solution.

c no scaling or column interchanges are performed.

c in = 7 sam^ as with in = 6 except that soln. of min. length

c is placed into x. iterative refinement, now return.

c column interchanges are performed, no scaling is performed,

c in = 8 set addresses, now return.

c

c options for computing a matrix product y*h or h*y are

c available with the use of the entry points myh and mhy.

c use of these options in these entry points allow a great saving in

c storage required.

c

c

dimension a(iMlu^rKlim),b(l),aa(d,w),s(l), %(l),h(nhdim,nhdim),r(l)

c d = depth of matrix.

c w = width of matrix.

k=d

n=w

erm=.true.

c

c if it=0 on entry, the possible error message will be suppressed.

c

if (it.eq.O) erm=.false.

c

c ieq = 2 if column scaling by least max. column length is

c to be performed.

c

c ieq = 1 if scaling of all components is to be done with

c the scalar max(abs(aij))/k*n.

c

c ieq = 3 if column scaling as with in =2 will be retained in

c rank deficient cases.

c

26

c the array s must contain at least max(k,n) + 4n + 4min(k,n) cells

c the array r must contain k+4n s.p. cells.

c

data eps2/l.d-16/

c the last card controls desired relative accuracy.

c epsl controls (eps) rank.

c

isw=l

l=minO(k,n)

m=maxO(k,n)

il=in

i2=n+i1

i3=j2+n

j4=]3+l

i5=i4+l

]6=i5+l

i7=i6+l

j8=j7+n

]9=i8+n

lm=l

if (irank.ge.l.and.irank.le.l) lm=irank

if (in.eq.6) lm=l

if (in.eq.8) return

c

c return after setting addresses when in=8.

c

go to (10,360,810,390,830,10,10), in

c

c equilibrate columns of a (l)-(2).

c

C (1)

c

10 continue

c

c save data when in = 1.

c

if (in.gt.5) go to 3 0

do 20]=l,n

do 20 i=l,k

20 aa(i,j)=a(i,j)

30 continue

if (ieq.eq.l) go to 60

do 50 j=l,n

am=0.eO

do 40 i=l,k

40 am= max(am,ab3(a(i,])))

c

c s(m+n+1)-s(m+2n) contains scaling for output variables.

27

n2=]2+]

if (in.eq.6) am=l.dO

s(n2)=l.dO/am

do 50 i=l,k

50 a(i,j)=a(i,i)*s(n2)

go to 100

60 am=0.d0

do 70 j=l,n

do 70 i=l,k

7 0 am= max(am,abs(a{i, j)))

am=am/float(k*n)

if (in.eq.6) am=l.d0

do 80 j=l,n

n2=j2+j

80 s(n2)=1.dO/am

do 90 i=l,n

n2=i2+j

do 90 i=l,k

90 a(i,j)=a(i,j)*s(n2)

c compute column lengths with d.p. sums finally rounded to s.p.

c

C (2)

c

100 do 110]=l,n

n7=]7+]

n2=j2+j

110 s(n7)=s(n2)

c

c s(m+l)-s(m+ n) contains variable permutations.

c

c set permutation to identity.

c

do 120 j=l,n

nl=jl+i

120 s(nl)=j

c

c begin elimination on the matrix a with orthogonal matrices .

c

c ip=pivot row

c

c

c

do 250 ip=l,lm

dp=0.d0

km=ip

do 140 j=ip,n

sj =0.do

28

do 130 i=ip,k

sj=sj+a(i,j)**2

13 0 continue

if (dp.gt.sj) go to 140

dp=s j

km=j

if (in.eq.6) go to 160

140 continue

c

c maximize (sigma)**2 by column interchange.

c

c supress column interchanges when in=5.

c

c

c exchange columns if necessary.

c

if (km.eq.ip) go to 160

do 150 i=l,k

al=a(i,ip)

a(i,ip)=a(i,km)

150 a(i,km)=al

c

c record permutation and exchange squares of column lengths,

c

nl=j1+km

al=s(nl)

n2=j1+ip

s(nl)=s(n2)

s(n2)=al

n7=j7+km

n8=j7+ip

al=s(n7)

s(n7)=s(n8)

s(n8)=al

160 if (ip.eq.l) go to 180

al=0.d0

ipml=ip-l

do 17 0 i=l,ipml

al=al+a(i,ip)**2

17 0 continue

if (al.gt.O.dO) go to 190

180 if (dp.gt.O.dO) go to 200

c

c test for rank deficiency.

c

190 if (dsqrt(dp/al).gt.epsl) go to 200

if (in.eq.6) go to 200

ii=ip-l

29 -

if (erm) write (6,1140) irank,epsl,ii,ii

irank=ip-l

erm=.false.

go to 260

c

c (epsl) rank is deficient.

c

200 sp=dsqrt(dp)

c

c begin front elimination on column ip.

c

c sp=sqroot(sigma**2).

c

bp=l.dO/(dp+sp*abs(a(ip,ip)))

c

c store beta in s(3n+l)-s(3n+l}.

c

if (ip.eq.k) bp=0.d0

n3=k+2*n+ip

r(n3)=bp

up=dsign(dhle(sp)+abs(a(ip,ip)),dble(a(ip,ip)))

if (ip.ge.k) go to 250

ippl=ip+l

if (ip.ge.n) go to 240

do 230]=ippl,n

sj=0.d0

do 210 i=ippl,k

210 sj=s]+a(i,j)*a(i,ip)

sj=sj+up*a(ip,j)

sj=bp*s]

c

c sj=yj now

c

do 220 i=ippl,k

220 a(i,j)=a(i,j)-a(i,ip)*s]

230 a(ip,j)=a(ip,])-sj*up

240 a(ip,ip)=-sign(sp,a(ip, ip))

c

n4=k+3 *n+ip

r(n4)=up

250 continue

irank=lm

260 irpl=irank+l

irml=irank-l

if (irank.eq.O.or.irank.eq.n) go to 3 60

if (ieq.eq.3) go to 290

c

c begin back processing for rank deficiency case

c if irank is less than n.

30

c

do 280 j=l,n

n2=j2+j

n7=i7+i

l=minO(j,irank)

c

c unscale columns for rank deficient matrices when ieq.ne.3

c

do 270 i=l,l

270 a(i,i)=a(i,j)/8(n7)

s(n?)=1.do

280 8(n2)=l.dO

290 ip=irank

300 sj=0.dO

do 310 j=irpl,n

si=sj+a(ip,j)**2

310 continue

8i=s]+a(ip,ip)**2

aj=dsqrt(s])

up=dsign(aj+abs(a(ip,ip)),dble(a(ip,ip)))

c

c ip th element of u vector calculated.

c

bp=l.dO/(sj+abs(a(ip,ip))*aj)

c

c bp = 2/length of u squared.

c

ipml=ip-l

if (ipml.le.O) go to 340

do 33 0 i=l,ipml

dp=a(i,ip)*up

do 320]=irpl,n

dp=dp+a(i,i)*a(ip,i)

320 continue

dp=dp/(sj+abs(a(ip,ip))*aj)

c

c calc. (aj.u), where aj=jth row of a

c

a(i,ip)=a(i,ip)-up*dp

c

c modify array a.

c

do 330 j=irpl,n

330 a(i,j)=a(i,i)-a(ip,j)*dp

340 a(ip,ip)=-dsign(ai,dble(a(ip,ip)))

c

c calc. modified pivot.

c

31

c

c save beta and ip th element of u vector in r array,

c

n6=k+ip

n7=k+n+ip

r(n6)=bp

r(n7)=up

c

c test for end of back processing.

c

if (ip-1) 360,360,350

350 ip=ip-l

go to 300

360 if (in.eq.6) return

do 370 j=l,k

370 r(i)=b(i)

it=0

c

c set initial x vector to zero.

c

do 380 j=l,n

380 x(i)=0.d0

if (irank.eq.O) go to 690

c

c apply q to rt. hand side.

c

390 do 430 ip=l,irank

n4=k+3 *n+ip

si=r(n4)*r(ip)

ippl=ip+l

if (ippl.gt.k) go to 410

do 400 i=ippl,k

400 s]=sj+a(i,ip)*r(i)

410 n3=k+2*n+ip

bp=r(n3)

if (ippl.gt.k) go to 430

do 42 0 i=ippl,k

420 r(i)=r(i)-bp*a(i,ip)*s]

430 r(ip)=r(ip)-bp*r(n4)*sj

do 440 j=l,irank

440 s(j)=r(])

enorm=0.dO

if (irpl.gt.k) go to 510

do 450 j=irpl,k

450 enorm=enorm+r(j)**2

enorm=sqrt(enorm)

go to 510

460 do 480 j=l,n

32

si=0.d0

nl=j1+j

ip=s(nl)

do 470 1=1,k

470 s]=sj+r(i)*a.a(i,ip)

c

c apply at to rt. hand side.

c apply scaling.

c

n7=j2+ip

nl=k+n+j

480 r(nl)=sj*s(n?)

nl=k+n

s(1)=r(nl+1)/a(1,1)

if (n.eq.l) go to 510

do 500 j=2,n

nl=]-l

3i=0.d0

do 490 i=l,nl

490 3i=sj+a(i,i)*s(i)

n2=k+j+n

500 s(])=(r(n2)-s])/a(j,j)

c

c entry to continue iterating. solves tz = c = 1st irank

c components of qb .

c

510 s(irank)=s(irank)/a(irank,irank)

if (irml.eq.O) go to 540

do 53 0 j =1,irml

nl=ira.nk-j

n2=nl+l

s]=0.

do 520 i=n2,irank

520 sj=sj+a(nl,i)*s(i)

530 s(nl)=(s(nl)-s])/a(nl,nl)

c

c z calculated. compute x = sz.

c

540 if (irank.eq.n) go to 590

do 550 j=irpl,n

550 s(j)=0.d0

db 580 i=l,irank

n7=k+n+i

sj=r(n7)*s(i)

do 560 i=irpl,n

sj=si+a(i,j)*s(])

560 continue

n6=k+i

33

do 570 j=irpl,n

570 s(])=s(i)-a(i,j)*r(n6)*s]

580 s(i)=s(i)-r(n6)*r(n7)*si

c

c increment for x of minimal length calculated.

c

590 do 600 i=l,n

600 x(i)=x(i)+s(i)

if (in.eq.7) go to 750

c

c calc. sup norm of increment and residuals

c

topl=0.d0

do 610 j=l,n

n2=]7+j

610 topl= max(kopl,abs(s(j))*s(n2))

do 630 1=1,k

sj =0.do

do 620 j=l,n

n.l=j 1+j

ip=s(nl)

n7=]2+ip

620 sj=s]+aa(i,ip)*x(])*s(n7)

630 r(i)=b(i)-s]

if (itmax.le.O) go to 750

c

c calc. sup norm of x.

c

top=0.d0

do 640 j=l,n

n2=]7+i

640 top= max(top,abs(x(]))*s(n2))

c

c compare relative change in x with tolerance eps

c

if (topl-top*eps2) 690,650,650

650 if (ik-itmax) 660,680,680

660 it=it+l

if (it.eq.l) go to 670

if (topi.gt..25*top2) go to 690

670 top2=topl

go to (390,460), isw

680 it=0

690 sj=0.do

do 700]=l,k

8j=s]+r(j)**2

700 continue

enorm=dsqrt(s])

c

c

c

34

if (irank.eq.n.and.isw.eq.l) go to 710

go to 730

710 eninl=enorm

c

c save X array.

c

do 720 j=l,n

nl=k+j

720 r(nl)=x(])

isw=2

it = 0

go to 460

choose best solution

730 if {irank.it.n) go to 750

if (enorm.le.enml) go to 750

do 740]=l,n

nl=k+j

740 x(j)=r(nl)

enorm=enml

c

c norm of ax - b located in the cell enorm

c

c

c rearrange variables.

c

7 50 do 7 60 j=l,n

nl=jl+]

760 s(j)=s(nl)

do 790 j=l,n

do 770 i=i,n

ip=s(i)

if (j.eq.ip) go to 780

770 continue

780 s(i)=s(i)

s(])=j

sj=x(j)

x(j)=x(i)

790 x(i)=si

c

c scale variables.

c

do 800 j=l,n

n2=i2+j

800 x(i)=x(i)*s(n2)

return

- 35

c restore a.

c

810 do 820 j=l,n

n2=j2+j

do 820 i=l,k

820 a(i,i)=aa(i,j)

return

c

c generate solutions to the homogeneous equation ax = 0,

c

83 0 if (irank.eq.n) return

ns=n-irank

do 840 i=l,n

do 840 j=l,ns

840 h(i,i)=0.d0

do 850 j=l,ns

n2=irank+j

850 h(n2,])=l.d0

if (irank.eq.O) return

db 870 j=l,irank

do 870 i=l,ns

n7=k+n+j

sj=r(n7)*h(j,i)

do 860 kl=irpl,n

860 sj=s]+h(kl,i)*a(j,kl)

n6=k+j

bp=r(n6)

dp=bp*r{n7)*sj

al=dp

a2=dp-al

h(j,i)=h(j,i)-(al+2.*a2)

do 870 kl=irpl,n

dp=bp*a(j,kl)*sj

al=dp

•a2=dp-al

870 h(kl,i)=h(kl,i)-(al+2.*a2)

c

c rearrange rows of solution matrix.

c

do 880 j=l,n

nl=jl+i

880 s(])=s(nl)

do 910 i=l,n

do 890 i=j,n

ip=s(i)

if (j.eq.ip) go to 900

890 continue

900 s(i)=s(i)

- 36 -

8(j)=]

do 910 kl=l,ns

al=h(j,kl)

h(j,kl)=h(i,kl)

910 h(i,kl)=al

return

c

1140 format (/'warning, irank has been set to',i4,' but(',lpel0.3,l

rank is',14,'. irank is now taken as ',i4)

end

subroutine potem (t, s, p, theta)

c

c =

c this subroutine calculates potential temperature as a function

c of in-situ temperature, salinity, and pressure.

c

c input [units]:

c in-situ temperature (t): [degrees centigrade]

c salinity (s): [per mil]

c pressure (p): [decibars, approx. as meters of depth]

c output [units]:

c potential temperature (theta): [degrees centigrade]

c

c references:

c based on Fofonoff and Froese (1958) as shown in ...

c Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience,

c New York, 1962, page 17, table iv.

c

c

c

implicit double precision (a-h,o-z)

c

0 =

c

bl = -1.60d-5*p

b2 = 1.014d-5*p*t

t2 = t*t

t3 = t2*t

b3 = -1.27d-7*p*t2

b4 = 2.7d-9*p*t3

b5 = 1.322d-6*p*s

b6 = -2.62d-8*p*s*t

s2 = s *s

p2 = p*p

b7 = 4.1d-9*p*s2

b8 = 9.14d-9*p2

b9 = -2.77d-10*p2*t

blO = 9.5d-13*p2*t2

37

bll = -1.557d-13*p2*p

potmp = bl+b2+b3+b4+b5+b6+b7+b8+b9+bl0+bll

theta = t-potmp

c

return

end

subroutine unesco (t, s, pin, rho)

c

C =: = = = = = = = = = = = = = :

c this subroutine calculates the density of seawater using the

c standard equation of state recommended by unesco(1981) .

c

c input [units] :

c in-situ temperature (t): [degrees centigrade]

c salinity (s): [practical salinity units]

c _ pressure (pin): [decibars, approx. as meters of depth]

c output [units]:

c density(rho): kilograms per cubic meter

c

c references:

c

c Gill, A. 1982 Atmosphere-Ocean Dynamics: International

c Geophysical Series No. 30. Academic Press, London, pp 599-600,

c UNESCO. 1981 10th report of the joint panel on oceanographic

tables and standards.

UNESCO Tech. Papers in Marine Sci. INo. 36, Paris.

c

c

c

implicit double precision (a-h,o-z)

c

C = :=

c

clp5 = l.SdO

c

c convert from depth [m] (decibars) to bars

p = pin * l.Od-1

c

rw = 9.99842594d2 + 6.793952d-2*t - 9.095290d-3*t**2

$ + 1.001685d-4*t**3 - 1.120083d-6*t**4 + 6.536332d-9*t**5

c

rsto = rw + (8.24493d-l - 4.0899d-3*t + 7.5438d-5*t**2

$ - 8.2467d-7*t**3 + 5.3875d-9*t**4) * s

$ + (-5.72466d-3 + 1.0227d-4*t - 1.6546d-6*t**2) * 3**clp5

$ + 4.8314d-4 * 3**2

c

xkw = 1.965221d4 + 1.484206d2*t - 2.327105d0*t**2 +

$ 1.360477d-2*t**3 - 5.155288d-5*t**4

38

xksto = xkw + (5.4674661 - 6.03459d-l*t + 1.09987d-2*t**2

$ - 6.1670d-5*t**3) * 8

$ + (7.944d-2 + 1.6483d-2*t - 5.3009d-4*C**2) * s**clp5

c

xkstp = xksto + (3.239908d0 + 1.43713d-3*t + 1.16092d-4*t**2

$ - 5.77905d-7*t**3) * p

$ + (2.2838d-3 - 1.0981d-5*t - 1.6078d-6*t**2) * p * s

$ + 1.91075d-4 * p * s**clp5

$ + (8.50935d-5 - 6.12293d-6*t + 5.2787d-8*t**2) * p**2

$ + (-9.9348d-7 + 2.0816d-8*t + 9.1697d-10*t**2) * p**2 * s

c

rho = rsto / (l.OdO - p/xkstp)

c

return

end

#ifndef gfdl_den

function fnpz{z,xlat)

implicit double precision (a-h,o-z)

parameter (mloop=30,mconv=5,eps=ld-6)

c

c function to calculate pressure in decibars from depth in metres using

c an iterative inverse of saunders algorithm (function fnpz). iterates

c until the error is zero, a limit cycle is detected of 'mloop'

c iterations reached. error exit if error > ^ps. array pa used to

c detect a limit cycle.

c

c check value fnpz = 10302.423155 - cray 64-bit

c = 10302.4231650052 - i,^^ 64-bit.

c

dimension pa(mconv)

p = z

ia = 0

do 20 i=l,30

Z2 = fnzp(p,xlat)

c zero error

if(z.eq.zz)goto 50

ee = z - zz

ea = abs(ee)

c save new best value

if(ia.eq.0.or.ea.It.ep)then

ia = 1

ep = ea

pa(ia) = p

c look for limit cycle

elseif(ea.eq.ep)then

do 40 i=l,ia

39 -

if:(p.eq.pa(j))goto 50

40 continue

iE(ia.lt.mconv)then

ia = ia + 1

pa(ia) = p

endif

endif

c correct p and loop

p = p + ee

20 continue

c

if(ea.gt.eps)then

print subroutine fnpz. iteration has not converged after',

& ' 30 iterations'

print *,'object depth =',z

print latest p = ' , p , c o r r e s p o n d i n g z = ',zz

print *,'minimum error = ',ea

print *,'number of corresponding ps =',ia

print *,'pa array',(pa(k),k=l,ia)

stop

endif

c

p = pa(ia)

50 fnpz = p

return

end

function fnzp(pin,xlat)

implicit double precision (a-h,o-z)

c

c function to transform pressure to depth using the method of

c p.m.saunders, 1981. journal of physical oceanography, 11, 573-574.

c

c input: pin = pressure in decibars ("oceanographic" pressure

c equals absolute pressure minus one atmosphere),

c xlat= latitude in degrees.

c

c output: fnzp = depth in metres.

c

c check value: fnzp = 9712.478325455 - cr^/ 64-bit

c = 9712.4783254538, - ieee 64-bit.

c for: pin=10000.0, xlat=30.0.

c

data in/0/

save in

c

c 1. calculate constants

c

40

if{in.eq.0)then

in = 1

pi = 3.141592654dO

radian = pi/180d0

gl = 9.780318d0

g2 = 9.780318d0*(5.3024d-3 - 5.9d-6*4.0e0)

g3 = -9.780318d0*5.9d-6 * 4.0d0

c

c al = specific volume at (t=0,s=35,p=0) times 10**5

c rk = constant coeficient

c ra = term proportional to p

c rb = term proportional to p**2

c

s = 3 5.OdO

clp5 = l.SdO

al = Id5/(9.99842594d2 + 8.24493d-l*s

& - 5.72466d-3*s**clp5 + 4.8314d-4*s**2)

rk = 1.965221d4 + 5.46746dl*s + 7.944d-2*s**clp5

ra = 3.239908d0 + 2.2838d-3*s + 1.91075d-4*s**clp5

rb = 8.50935d-5 - 9.9348d-7*s

dd = sqrt(ra*ra - 4.0d0*rk*rb)

cl = 0.5d0/rb

c2 = ra/rk

c3 = rb/rk

c4 = ra/(2.0d0*rb*dd)

c5 = 2.0d0*rb/(ra - dd)

c6 = 2.0d0*rb/(ra + dd)

c7 = 0.5d0*2.226d-6

endif

c

c 2. calculate gravity

c

X = sin(radian*xlat)**2

gs = (g3*x + g2)*x + gl

c convert from pressure in decibars to bars

p = pin*1.0d-l

c

c 3. integrate specific volume

c

rl = al*(p - cl*log((c3*p + c2)*p+1.0d0) + c4*log((1.OdO + c5*p)

6 /(I.OdO + c6*p)))

fnzp = rl/(gs + c7*pin)

return

end

function tadiab(tt,ss,pO,pi,dpp)

implicit double precision (a-h,o-z)

41

c

c subroutine to calculate the final temperature of water moved

c adiabatically from i&n initial temperature tt, salinity ss and

c pressure pO, to a final pressure pi.

c

c the integral equation is solved by direct integration with a pressure

c increment dpp - using the bryden equation for the cuiiabatic lapse

c rate (subrouitne atg).

c

c t = initial temperature in degrees centigrade.

c s = salinity in nsu.

c pO= initial pressure in decibars.

c pl= final pressure in decibars.

c dpp=pressure step.

c tadiab = final temperature in degrees centigrade.

c

c pressures are "oceanographic" pressures, equal to absolute pressures

c minus one atmosphere.

c tests with dpp values ranging from 1 to 128 decibars showed the most

c accurate results were obtained with dpp equal to 1.

c

c check value: tadiab - 43.26563196548 - cray 64-bit

c = 43.266631967051, - ieee 64-bit.

c for: t=40.0, s=40.0, p0=0.0, pl=10000.0, dpp=1.0.

c

iffpO.lt.O.OdO .or. pO.gt.20000.OdO

& .or.pl.It.0.OdO .or. pi.gt.2000 0.OdO)then

print *,' subroutine tadiab stopping - pressures out of range'

print *,' pressures pO and pi = ',pO,pl

print allowed range has min of 0.0, max of 20,000'

stop

endif

c

dp = sign(dpp,pl-pO)

p = pO

t = tt

tb = t - atg(pO,t,ss)*dp

c

10 ta = tb + 2.0d0*atg(p,t,ss)*dp

p = p + dp

tb = t

t = ta

test = (p - pl)*(p - dp - pi)

if(test.gt.OdO)goto 10

tadiab = ((pi - p + dp)*t + (p - pl)*tb)/dp

return

end

42 -

function atg(p,t,s)

implicit double precision (a-h,o-z)

c

c adiabatic temperature gradient deg c per decibar

c ref: bryden,h., 1973, deep-sea res., 20, 401-408

c units:

c pressure p decibars

c temperature t deg celcius (ipts-68)

c salinity s (pss-78)

c adiabatic atg degrees celcius per decibar

c

c pressure is "oceanographic" pressure equal to absolute pressure

c minus one atmosphere.

c

c check value; atg = 3.2559758 - cray 64-bit

c - = 3.2559758000000d-04 deg c/dbar - ieee 64-bit.

c for: p=10000.0, t=40.0, s=40.0.

c

ds = s-35d0

akg = (((-2.1687d-16*t + 1.8676d-14)*t - 4.6206d-13)*p

& + ((2.7759d-12*t - 1.1351d-10)*ds + ((-5.4481d-14*t

& + 8.733d-12)*t - 6.7795d-10)*t + 1.8741d-8))*p

& + (-4.2393d-8*k + 1.8932d-6)*ds

& + ((6.6228d-10*t - 6.836d-8)*t + 8.5258d-6)*t + 3.5803d-5

return

end

#endif

43

APPENDIX n

state.F

subroutine state (t, s, rho)

#ifdef multitasking

cfpp$ noconcur r

#endif

c

C = ZZ- = = = = = = ZZ- = = = = = - = = = = = = = = = = = - = = = = = = = = = Z

c
c State computes one row of normalized densities ky using a 3rd

c order polynomial fit to the knudsen formula, for each level

c subtract normalizing constants from temperature and salinity

c and compute polynomial approximation of knudsen density.

c

c note., for precision purposes, there is a depth dependent

c constant subtracted from the density returned by this routine,

c so... this routine should be used only for horizontal gradients

c of density.

c

c inputs:

c

c t = the input row of temperatures

c s = th^ input row of salinities (units: (ppt-35)/1000)

c

c output:

c

c rho = normalized densities

c

0 =: =

c

c

#include "param.h"

c

dimension t(imt,km), s(imt,km), rho(imt,km)

common /estate/ to(km), so(km), c(km,9), zO(km), rhoO(km)

c

#include "dncoef.h"

c

c

44

c
c statement function

c-

c

c

c-

c

dens (tq, sq, k) = (c(k,l) + (c(k,4) + c(k,7)*sq)*sq +

$ (c(k,3) + c(k,8)*sq + c(k,6)*kq)*tq)*kq +

$ (c(k,2) + (c(k,5) + c(k,9)*sq)*sq)*sq

do 100 k=l,km

do 90 i=l,imt

rho(i,k) = dens (t(i,k)-to(k), s(i,k)-so(k), k)

90 continue

100 continue

return

c

c

c

c

c

entry statec (t, s, rho, ind)

c

c

C=: =: =

C

c statec computes, for one row, the normalized densities by using

c a- 3rd order polynomial fit to the knudsen formula. For

c purposes of checking vertical stability between adjacent

c levels, the reference depth for pressure dependence in

c the knudsen formula must be held constant, that level is

c determined by "ind".

c

c inputs:

c

c t = the input row of temperatures

c s = the input row of salinities (units: (ppt-35)/lOOO)

c ind = 1 for comparing levels 1 to 2, 3 to 4, etc.

c (coefficients for the lower of the 2 levels are used)

c 2 for comparing levels 2 to 3, 4 to 5, etc.

c (coefficients for the lower of the 2 levels are used)

c

c output:

c

c rho = normalized densities

c

c===

c

-45-

if (ind .It. 1 .or. ind .gt. 2) then

write (stderr,99)

stop '1 statec'

endif

c

do 200 1=1,km,2

if (ind .eq. 1) then

k = min(l+l,km)

else

k = 1

endif

do 190 i=l,imt

rho(i,l) = dens (t(i,l)-to(k), s(i,l)-so(k), k)

190 continue

200 continue

c

do 300 1=2,km,2

if {ind .eq. 1) then

k = 1

else

k = min(l+l,km)

endif

do 290 i=l,imt

rho(i,l) = dens (t(i,l)-to(k), s(i,l)-so(k), k)

290 continue

3 00 continue

return

99 format(/' error => bad "ind" in statec: ind =',ilO)

end

46

APPENDIX III:

dncoef.h

The include file dncoef.h now appears in the following form:

c

c

0====================== include file "dncoef.h" =================

c

c normalized temperatures, salinities and coefficients

c generated by program "egstat" which fits 3rd order

c polynomials to the equation of state for each model level.

c

c The polynominal returns density deviations in g/cm**3 from

c "rhoO" for each level. The polynominal is in powers of

c (t-to) and (s-so), where t is potential temperature,

c measured in degrees C and s is salinity measured in

c model units. The arrays rhoO and zO, where zO contains

c the depth in centimetres of each level, are stored for

c reference.

zO(1), rhoO(1), to(1), so(1), (c(l,n),n=l,9)/

$ 10.35000E02, 1.0245946, 13.4986130,-.2250000E-02,

$ -.2017008E-03,0.7730203E+00,-.4930029E-05,-.2021526E-02,

$ 0.1678596E+00,0.3608601E-07,0.3776118E-02,0.3602963E-04,

$ 0.1609481E+01/

data z0(2), rho0(2), to(2), so(2), (c(2,n),n=l,9)/

$ 32.35000E02, 1.0246937, 13.4956607,-.2250000E-02,

$ -.2021070E-03,0.7728720E+00/-.4923108E-05,-.2019249E-02,

$ 0.1681032E+00,0.3601443E-07,0.3770950E-02,0.3599568E-04,

$ 0.1609324E+01/

data z0(32), rhoO(32), to(32), so(32), (c(32,n),n=l,9)/

$ 5382.50000E02, 1.0518755, 2.9330675,-.2000000E-03,

$ -.2294241E-03,0.7561387E+00,-.3894801E-05,-.2015824E-02,

$ 0.2060329E+00,0.3214992E-07,0.3008361E-02,0.3937013E-04,

$ 0.1602931E+01/

imsm

Surrey, GU8 5UB.-^ Natural
Environment
Research
Council ^

' United Kingdom < r - - ..i,
' Telephone +44 (0) 428-684141

Facsimile +44 (0) 428-683066 f
Toiov Btjsmi nrrnivrc n - '% -Telex 858833 OCEANS G

4. -

