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1.0 INTRODUCTION 

FRAM, the UK Fine Resolution Antarctic Model, (Webb et al 1991) was based on the Cox 

(1984) version of the Bryan-Cox-Semtner ocean general circulation model (Bryan 1969, Semtner 

1974, Cox 1984). 

This is usually classified as a primitive equation model because it uses the full advection-

difiusion equation for potential temperature and salinity and a full horizontal momentum equation. 

During each timestep of the model these equations are solved once for each of the model grid 

points. 

The model assumes hydrostatic balance in the vertical and places a rigid lid on the model 

ocean in order to eliminate surface gravity waves. Although this introduces a stream function for 

which an extra equation must be solved, it allows the use of a long time step, making the model 

computationally efficient. 

Calculating the density 

The density of sea water is calculated at two places within the model. The density is first 

needed, while timestepping the momentum equation, to calculate the horizontal pressure gradient. 

It is again needed while checking for convection at the end of each timestep. During the test for 

convection at least two calculations of density are needed, once for comparison with the grid point 

above and once for comparison with the grid point below. If convection does occur, then 

depending on the algorithm used, further calculations of density may be required (KUworth, 1989). 

Thus, during each timestep of the model, the density is calculated at least three times at 

each grid point. This can be computationally expensive and is made more so because the model 

uses potential temperature, salinity and depth, whereas the equation of state defining the density of 

sea water (EOS80) defines it as a function of in situ temperature, salinity and pressure. Model depth 

therefore has to be converted to pressure and potential temperature converted to in situ 

temperature. 

This is the scheme used by the 'reference' equation of state algorithm, described in 

Appendix I, which was developed to check the precision of the other algorithms described in this 

note. Although it is very precise, it requires many hundreds of floating point calculations for each 

grid point, and for this reason is impractical to use in large ocean general circulation models. 

To make the computational problem more manageable, a simpler equation of state is 

usually used. Thus Semtner (1974) used the simplifed Eckart (1958) equation of state. Ignoring 

calculations whose overhead can be spread over a number of grid points, this requires 20 floating 

point operations per model grid point. 
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Cox (1984) included subroutines for both the Eckart equation of state and the Bryan and Cox 

(1972) polynomial approximation to the Knudsen-Eckman equation of state. The latter requires 19 

floating point operations per grid point. 

2.0 THE FRAM MODEL RUN 

Tests carried out at the beginning of the FRAM project indicated that the Eckart equation 

was more accurate than the Bryan and Cox polynomial in the surface waters surrounding Antarctica. 

For this reason the Eckart equation of state was used during the main sixteen year run of the FRAM 

model^ . 

Initially the main run was planned to include a sea ice model. Such a model needs to know 

the air temperature, humidity and cloud cover but unfortunately when the run was started suitable 

data sets were not available for the sea ice covered regions around Antarctica. The main run 

therefore uses a simplified boundary condition in which it represents the surface flux of salt and 

heat by relaxing the surface temperature and salinity fields towards the values of the Levitus (1982) 

observational dataset. 

Towards the end of the FRAM project, suitable surface forcing fields became available, so 

part of the main run (from year 10.0 onwards) was repeated with a full sea ice model. This 

produced deep convection in aH the regions where sea ice was forming. Some convection was to be 

expected because of the increased salinity that arises when sea ice is formed. However, the amount 

of convection was far too large and the warm water brought from below to the surface was enough to 

melt the sea ice that had been formed. 

The problem was investigated and it was found that the fault lay with the Eckart equation of 

state. In the surface waters around Antarctica, the difference in density it predicts between the cold, 

fresh surface waters and the warmer, saline underlying waters, is far too small. As a result, when 

sea ice forms, the slight increase in salinity of the surface layers makes the whole system unstable 

and triggers deep convection. 

To overcome the problem a new equation of state algorithm was quickly developed making 

use of algorithms used by the sea-going community at lOSDL. In this algorithm, the depth to 

pressure conversion is carried out using a polynomial inverse of the Fofonoff and Millard (1983) 

version of the Saunders and Fofonoff (1976) algorithm. 

The standard method for transforming temperature adiabaticaHy from one pressure to 

another (Fofonoff and Millard, 1983) is computationally expensive, so a faster perturbation based 

method is used. Finally the density is calculated using the Fofonoff and MiUard algorithm for the 

international equation of state seawater (EOS80) (Fofonoff and MiUard 1983, UNESCO 1981a, b. Gill 

1982y 

^ The test results were wrong, so the Eckart equation should not have been used. The reason for the mistake 
is unknown and cannot now be traced. 



The resulting 'FRAM equation of state' was used for a repeat run of the FRAM model from 

years 10.0 to 12.0. It appeared to give excellent results. The remainder of this note discusses the 

Eckart and FRAM equations of state in detail and compares their results with those from a reference 

equation of state. The latter is documented more fully in Appendix I. 

3.0 THE ECKAE.T EQUATION OF STATE 

Eckart (1958) developed an equation of state for sea water using the Tumlirz (1909) 

equation for relating pressure and specific volume 

Q:H-Po)*(\̂ -T/o)== (1 

where p is the pressure, V the specific volume and Pq, Vq and X are functions of temperature and 

salinity. Rearranging the equation we obtain 

V = Vg + X/(p+Po), 

or if p is the density, 

P = l/[Vo + A'/(P-tPo)] (2 

In trying to derive expressions for pg, Vq and X, Eckart found a number of inconsistencies 

between different sets of measurements then available. He used the data sets which were most self 

consistent, and found that they were best fitted by the equations 

]Po = !3890 + 38*T - 0.37E^T2 +3*s. (3 

Vq = (1 - 10"^p), where P = 3020, (4 

A. == 1779.5 + ll.gSTrr -CX[)745*ir2 (5 

- (3.8 + 0.01*T)*8. 

In the above equations the in-situ temperature T is measured in degrees Centigrade, salinity 

s is measured in parts per thousand, and the pressure p is measured in atmospheres. 

Equations 2-5 define the Eckart equation of state as used by Semtner (1973) and Cox 

(1984). The algorithm they used is included in the first subroutine of Appendix II. Because the 

model measures salinity in parts per part (and not the more conventional parts per thousand), all 

the coefficient terms linear in s are multiplied by 1000 in the subroutine. Also the depth z, in 

centimetres, is converted to pressure, in atmospheres, using the relation 

p = 1 + z/1013. (6 
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The density calculated using the Eckart equation of state is compared with the reference 

equation of state (Appendix I), in figures 1 and 2. Figure 1 is similar to figure 2a of Bryan and Cox 

(1972), but their calculation was based on the Knudsen equation of state (Knudsen 1901, Fofonoff 

1962) instead of the UNESCO equation of state. 

4.0 THE FRAM ALGORITHM 

As discussed above, the model variables are potential temperature, salinity and depth. 

These need to be converted to in situ temperature, salinity and pressure before the EOS80 algorithm 

can be used. 

4.1 DEPTH TO PRESSURE 

Depth is transformed to pressure by inverting the Fofonoff and Millard (1983) version of the 

Saunders and Fofonoff (1976) algorithm. They first calculate gravity g as a function of latitude and 

depth, using the equations: 

X = sin(latitude)**2 

g = 9.780318*(1.0+(S.2788E-3+2.36E-5*x)*x + 1.092e-6*p, (7 

where p is the pressure measured in decibars. 

Saunders and Fofonoff assume a standard temperature and salinity profile for the ocean and 

derive a fourth order polynomial to convert pressure to depth. It gives a pressure correction at 

3,000 m of about 50 decibars. In addition there is a term (ranging from -1.5 to 2.5 decibars at 

1000 m and 0 to 4 decibars at 5000 m), which corresponds to the local dynamic height anomaly. 

Because this has a much smaller effect on the in situ pressure, it is neglected. 

In the FRAM algorithm, g is calculated using equation 7 but with the assumption that the 

pressure in decibars is numerically equal to the depth in metres. The inverse of the fourth order 

pressure to depth polynomial was approximated by a fifth order polynomial with coefficients 

calculated using the equations 3.6.25 of Abramowitz and Stegun (1964). These coefficients and 

other constant quantities are calculated during the first entry into the subroutine. 

The error of the FRAM inverse (shown in figure 3a) is less than 0,04 decibar at 5,000 m and 

less than 0.25 decibar at 10,000 m. This is less than the dynamic height term and for most 

purposes can be neglected. A fourth order version of the inverse polynomial gives an error of 0.04 

decibar at 5,000 m and 0.4 decibar at 10,000 m. 

Saunders (1981) independently revised the pressure to depth algorithm to allow for the new 

EOS80 international equation of state. Figure 3b shows the differences between the polynomial 

results and the Saunders (1981) revised algorithm. 
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Figure 1. Density contours calculated using the Eckart equation of state (solid lines) compared with the reference calculation (dotted lines) 
at depths of (a) 0 m and (b) 3000 m. The density contours are in sigma units (i.e. kg/m^-1000.0). 
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4.2 POTENTIAL TEMPERATURE AKD IN SITU TEMPERATDRE 

Potential temperature, as defined in the model, is the temperature a parcel of water will 

have if moved adiabatically from its in situ pressure to the surface. If the initial temperature, 

salinity and pressure are Tj, s and pj and the final temperature and pressure are Tg and pg, then 

T2 = Ti + 
•P2 

r (T,s,p) dp, (8 

'Pi 

where r is the adiabatic lapse rate and T is the temperature of the parcel of water when moved 

adiabatically to pressure p. Note that in the EOS80 equation of state and other oceanographic 

formulae, zero pressure refers to the ocean surface where the absolute pressure is one atmosphere. 

Fofonoff (1977) presents an algorithm for carrying out the integral using a fourth order 

Runge-Kutta scheme. For the adiabatic lapse rate he uses Bryden's (1973) polynomial equation, 

which contains 15 terms and has to be called four times by the Runge-Kutta scheme. As a result the 

temperature conversion takes about 130 floating point operations. This represents a considerable 

fraction of the computational requirement of the PRAM model and a modified scheme was 

developed to speed up the calculation. 

From equation 8, the transformation needed in the model to convert potential temperature 

to in situ temperature is 

Tg = Ti + 
f P 

r (T,s,p) dp (9 

The modified scheme makes use of a number of useful properties of the adiabatic temperature 

gradient r . The first of these is that, during the transformation, the effect of the change in 

temperature on the adiabatic temperature gradient is small enough to be treated as a perturbation. 

For example, when water with potential temperature of 0°C and salinity of 35 NSU moves 

adiabatically from the surface to 3000 m, the change in temperature is 0.19°C. This corresponds to 

a mean value of r of 6x10"® °C/decibar. If we then calculate the change in r due to this smaU 

change in temperature, we find that it is only 0. lxlO"®°C/decibar. Thus, although the effect of the 

temperature change during the adiabatic transform is not so small that it can be neglected, it is 

small enough that higher order temperature effects can be neglected. 

On this basis, equation 9 is approximated by 

T2 = Tl + 
'P 

r(T(p/2),8,p)dp (10 
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where the adiabatic temperature gradient is only calculated at the temperature corresponding to 

half the final pressure. 

Also, because T(p/2) only needs to be known approximately, it can be approximated by 

T(p/2) = Ti + r (Ti,s,0)*p/2 (11 

The polynomial for r simplifies when the pressure is zero, so this only needs a few floating 

point operations. Finally, as r is a polynomial in pressure, equation 11 can be integrated 

analytically to give a polynomial which again only needs a few floating point operations to evaluate. 

The resulting algorithm for the temperature transformation needs 46 floating point 

operations. Its precision can be estimated by comparing the in situ temperature with that 

calculated by the reference equation of state. This is done in figure 4. It shows that at 3000 m the 

error is fairly constant and has a magnitude of about 10"^°C. Comparisons at other depths give 

comparable results. 

4.3 THE FINAL CALCULATION OF DENSITY 

The final algorithm used to calculate the density from the in situ temperature, salinity and 

pressure is a vectorised version of Fofonoff and Millard (1983). Their algorithm was designed to 

achieve the required accuracy on the 32-bit computers in regular use by the sea-going community. 

With hindsight, it would have been more efficient to have used the original 1980 equation 

of state polynomial on the 64-bit Cray, rather than the slightly longer version required for 32-bit 

machines. 

5.0 COMPARISONS 

Comparisons of the different algorithms have been carried out on Cray X-MP and SUN 4 

computers, using 64-bit arithmetic. The SUN 4 computers use IEEE floating point arithmetic which 

differs sHghtly^ from that used by the Cray X-MP. For this reason, check results from both schemes 

are included in the listings given in Appendices n and IH. 

The listings are for the Cray versions of the algorithms. The SUN Fortran versions are similar 

except that to get the same precision, aU constants (e.g. 1.234E-56) should be written as double 

precision (1.234D-56) constants. 

2 Both systems use a binary fraction and a power of two exponent but the IEEE scheme is more precise 
because it uses a larger fraction. The Cray allocates 48 bits to the fraction, IEEE allocates 52 bits and gains an 
extra bit by always normalising the fraction so that the most significant bit is one. This is then discarded and 
only the lower order bits are stored. 
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Figure 3. Errors of the fifth and fourth order depth to pressure algorithms for the depth 
range 0 to 10,000 m compared with (a) the Saunders and Fofonoff (1976) equation 
and (b) the Saunders (1981) equation 
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Figure 4, Errors in the FRAM potential temperature transformation algorithm, at a depth of 
3000 m. The contour units are 10"̂  degrees Celsius. 
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5.1 PRECISION 

The performance of the Eckart equation of state at the surface and at 3000 m is compared in 

figures 1 and 2 with the results from the reference calculation, In the surface layer the errors in the 

slope of the temperature-salinity curve show up clearly. At temperatures below 0°C, the slope is out 

by a factor of two. This means that temperature gradients in the near surface layers have an 

unphysically large influence on stability. 

At 3000 m the errors in the slope of the temperature-salinity curves are smaller, but there is 

a marked mean density ofeet. Such a constant offiset does not affect either the stability or horizontal 

pressure gradient calculations, so for most modelling applications it can be neglected. (For this 

reason the Bryan and Cox density polynomial (Cox 1983) ignores the constant term completely.) 

The FRAM modification of the UNESCO equation of state is compared with the reference 

calculation in figures 5 and 6. At the surface the agreement with the reference calculation should 

be almost perfect as no approximation is involved in calculating either pressure or temperature. 

However differences of order 10"® occur because the FRAM scheme is formally only correct to single 

precision whereas the reference state is correct to double precision. 

At 3000 m there are additional small errors. These are primarily the effect of the 

approximations made in the scheme for transforming potential temperature to temperature. 

5.2 TIMING TESTS 

Tests of the speed of the different equation of state algorithms have been carried out on a 

Cray X-MP computer and a SUN Sparcstation 1. The times required to carry out one set of density 

calculations for all the grid points in the FRAM model are shown in table 1. As weH as the times 

taken by the Eckart and FRAM equations of state, the table also shows the times taken when the 

FRAM algorithm is modified to use either the Fofonoff (1977) algorithm for converting potential 

temperature to in situ temperature or the full UNESCO equation of state. Also included for 

comparison are tests with the Bryan and Cox (1972) polynomial equation. The Friedrich and Levitus 

(1972) polynomial equation of state should be slightly faster because fewer polynomial terms are 

used. 

The tests show that the FRAM equation of state takes about 6 to 7 times longer than the 

Eckart equation. The Fofonoff temperature algorithm adds an overhead of about 33% to the FRAM 

timings. The use of the full UNESCO equation of state produces a saving of about 10%. The Bryan 

and Cox (1972) polynomial is slightly faster than the Eckart formula on the SUN, but is 50% slower 

on the Cray. 
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Figure 5. Density contours calculated using the FRAM modified EOS80 equation of state (solid 
lines) compared with the reference calculation (dotted lines) at depths of (a) 0 m and 
(b) 3000 m. The density contours are in sigma units (i.e. kg/m^-lOOO.O). 
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Figure 6. The difference between the FRAM modified EOS80 equation of state and the reference 
calculation at depths of (a) 0 m and (b) 3000 m. In figure 4a the contour units are 10"® 
Sigma units. In figure 4b they are 10-3 sigma units. 
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6.0 CONCLUSIONS 

The comparisons have shown that the Eckart equation of state is not accurate enough for use 

in modelling polar oceans. It is recommended that in future it should not be used at all for ocean 

modelling. The FRAM scheme should be suitable for all oceans but it has an important drawback in 

that it is computationally expensive. On 64-bit machines, the computational cost can be reduced 

slightly by using the un-modified EOS80 formula. On 32-bit machines this would reduce the 

accuracy of the result. 

For ocean models like FRAM, for which density is required at fixed depths within the ocean, 

the Bryan and Cox (1972), Friedrich and Levitus (1972) and Levitus and Isayev (1992) polynomial-

based algorithms are recommended as being efficient alternatives. However, they should be 

initialised using the EOS80 equation of state and accurate transformations of depth to pressure and 

potential to in situ temperature, as are used in the reference equation of state described in 

Appendix 1. The precision of this scheme will be discussed in a later note. 
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TABLE 1 TIMING TESTS 

The figures give the times in seconds, to calculate the equation of state once at each of the 

grid points in the FRAM model (721 x 221 x 32 grid points). All calculations were carried out one 

slab at a time as in the FRAM model, using 64-bit arithmetic. The Cray X-MP tests were carried out 

using a single processor. 

ALGORITHM CRAY X-MP SUNSRUKSTAnONl 

Eckart 0.61 132J 

FE(AM 4,55 70&2 

FRAM + Fofonoff^ 6,79 9S&0 

FRAM + UNESCO^ 4.25 

Bryan and Cox^ 0.95 12L8 

Notes : 

1. The FRAM algorithm with the section transforming potential temperature to in situ temperature 

replaced by the Fofonoff 1977 algorithm (expanded in line). 

2. The FRAM algorithm with the final density calculation replaced by the full EOS80 polynomial. 

3. The Bryan and Cox (1972) polynomial. 
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APPENDDC 1 : THE REFERENCE EQUATION OF STATE 

This is based on the M international equation of state for seawater (EOS80) (UNESCO 

1981a,b, Gill 1982), the Saunders (1981) scheme for converting pressure to depth and the Bryden 

(1973) equation for the adiabatic lapse rate. These are the equations used in the best experimental 

work. The EOS80 equation of state has not been used much by ocean modellers because of its 

computational cost. 

Good ejqperimental practice 

Oceanographic instruments, such as the CTD, measure in situ temperature, salinity and 

pressure and these are the variables used in the international equation of state (EOS80). The 

temperature scale has recently been redefined (Saunders 1990), and for compatibility with earlier 

observations, if temperature measurements have been made using the later scale they should be 

transformed for analysis to the pre-1990 scale (International Practical Temperature Scale, IPTS-68). 

Experimentalists usually calculate density using the Fofonoff and Millard (1983) version of 

the international equation of state for seawater algorithm (EOS80). The Fofonoff and Millard 

algorithm is designed to calculate density and specific volume anomaly with high accuracy on the 

32-bit (single precision) computers used at sea. With computers of other precision, for example on 

64-bit computers like the Cray, the algorithm needs to be modified or the unmodified equation of 

state used. This is because some of the constants derived by Fofonoff from the EOS80 algorithm are 

only correct for 32-bit word computers. 

Pressure measurements made at sea are converted to depth using the algorithm of Saunders 

(1981) or the Fofonoff and Millard (1983) update of the Saunders and Fofonoff (1976) equation. The 

Saunders (1981) version is based on an analytic integration of the EOS80 and so is formally the most 

accurate. For this reason, it was chosen for the reference algorithm but the differences between the 

two schemes at depths of less than 6000 m are less that 0.2 m. The effect of the dynamic height 

anomaly on pressure is normally neglected. It generally increases with pressure, having values 

which range regionally from -0.5 to 2.5 m at 1000 db and from 0 m to 4 m at 5000 db (Saunders 

i98 iy 

Temperature measured at sea is converted to potential temperature by integrating the 

Bryden (1973) equation for the adiabatic lapse rate, using a fourth order Runge-Kutta algorithm 

(Fofonog 1976). 
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The reference algorithm 

The reference algorithm was designed to be as precise as possible so that it could be used to 

check the precision of the Eckart and FRAM equations of state. like the latter algorithms, it 

calculates density as a function of temperature, salinity and pressure, but it uses more accurate 

algorithms and so is computationally more expensive. The Fortran code for running on a Cray is 

given in Appendix lH. 

The conversion of depth to pressure is carried out by inverting the Saunders (1981) 

algorithm using an iterative scheme. Usually it takes about 15 iterations to converge, either 

converging absolutely or to a small limit cycle with values accurate to the last few bits in the 

machine word. 

The conversion of potential temperature to temperature is performed by integrating the 

Bryden (1973) equation using a leapfrog scheme with a step size of 1 db. Tests with different step 

sizes show that any errors introduced by the algorithm, as opposed to Bryden's formula, should be 

less than 10"® degrees Celsius. This scheme is much more accurate than using a fourth order 

Runge-Kutta algorithm but the computational cost is much larger. 

The reference density is then calculated from the in situ temperature, salinity and pressure 

using the unmodified EOS80 formula (UNESCO 1981a,b). 
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APPENDIXII. 

FORTRAN CODE LISTINGS FOR THE ECKART AND FRAM EQUATIONS OF STATE 

This appendix contains the listings of the two equations of state used by the FRAM model. 

The Cox (1984) model code requires the equation of state routine to have two entry points. The first 

calculates the density at all points in an east-west slab at a fixed latitude. The second is used for 

vertical stability calculations. Only the code corresponding to the first of the two entry points is 

given. 

A. 1 The Eckart equation of state 

SUBROUTINE S T A T E ( T X , S X , R H O , T 0 , S Q ) 

IMPLICIT REAL*8(A-H,0-Z) 

C 
0 = =: = = = = = = = = = = =: = = = = = = = = = = = = = = = ::: = = = = = = = = = = = = = = = =: = = = = = = = = = = = = = = = = = = =: = = = = 
c 

C STATE computes one row of n o r m a l i s e d d e n s i t i e s u s i n g t h e 
C E c k a r t e q u a t i o n of s t a t e . 

C 
C I n p u t and o u t p u t v a l u e s a r e i n 'model u n i t s ' : 

C 

C TX(IMT,KM) i s i n - s i t u t e m p e r a t u r e i n d e g r e e s C. ( IPTS-68) 

C SX(IMT,KM) i s s a l i n i t y i n p a r t s p e r p a r t minus 0 . 0 3 5 
C RHO(IMT,KM) i s d e n s i t y i n g r a m s / c u b i c c e n t i m e t r e minus 1 .02 
C V a r i a b l e s TQ and SQ a r e r e q u i r e d p a r a m e t e r s f o r t h e s t a n d a r d 

C Cox model STATE r o u t i n e b u t a r e unused i n t h i s v e r s i o n . 

C 
€ = = = = = = = = = = = = = = = = = = = = =: = =:=: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : 
*CALL PARAM 
*CALL SCALAR 
C = = = = = = = = = = = = = = = = = = = z= = = = = = = = = = = = = = = = = = =:=: = = = = = = = = = = = = = = = = = = = = = = :z = = = = = = = 

c 
C These two l i n e s i n s e r t t h e s t a n d a r d p a r a m e t e r d e f i n i t i o n s 
C and t h e s c a l a r common b l o c k s . The r o u t i n e u s e s t h e f o l l o w i n g 
C p a r a m e t e r s and common b l o c k v a r i a b l e s : 
C IMT i s t h e number of g r i d p o i n t s i n an e a s t - w e s t d i r e c t i o n . 

C KM i s t h e number of l e v e l s . 

C ZDZZ(KM) i s an a r r a y c o n t a i n i n g t h e d e p t h i n c e n t i m e t r e s a t t h e 
C c e n t r e of e a c h model l e v e l . 

C 
0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = = = = 



- 2 3 -

c 
C T h i s i s t h e Cray v e r s i o n of t h e r o u t i n e . The SUN (o r IEEE f l o a t i n g 
C p o i n t a r i t h m e t i c ) v e r s i o n i s o b t a i n e d by c o n v e r t i n g a l l s i n g l e 
C p r e c i s i o n c o n s t a n t s t o d o u b l e p r e c i s i o n . 
C 

C CHECK VALUE: RHO = 4 .0111867176869E-2 - CRAY 6 4 - b i t 

C = 4 .0111876126875D-02 - IEEE 6 4 - b i t . 
C FOR: TX=40.0, SX=0.005, ZDZZ=1000000.0. 
C These v a l u e s of RHO c o r r e s p o n d t o 60 .1118 - Sigma u n i t s . 
C 

DIMENSION TX(IMT,KM),SX(IMT,KM) 

DO 100 K=1,KM 

FACTOR = 5891.OEO + ZDZZ(K)/1013.OEO 

DO 100 1=1,IMT 

TEMP = FACTOR + 3000.OEO*(SX(I,K) + 0 .035E0) 

& + ( 3 8 . O E O - 0 . 3 7 5 E 0 * T X ( I , K ) ) * T X ( I , K ) 

TEMP = (1779.5E0 + (11.25E0 -0 .0745E0*TX(I ,K) ) * TX(I ,K) 

1 -(3800.OEO + 10.OEO * T X ( I , K ) ) * ( S X ( I , K ) + 0 .035E0)) /TEMP 

100 RHO(I,K) = 1 . 0 E 0 / ( 0 . 6 9 8 E 0 + TEMP) - 1.02E0 

RETURN 

END 
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A.2 The FRAM equation of state 

SUBROUTINE STATE(TX,SX,RHO,TQ,SQ,SINLAT) 

IMPLICIT REAL*8(A-H,0-Z) 

C 

C STATE computes n o r m a l i s e d d e n s i t y u s i n g t h e f u l l UNESCO 
C e q u a t i o n of s t a t e and new schemes f o r t h e c o n v e r s i o n of d e p t h 
C t o p r e s s u r e and f o r c o n v e r t i n g p o t e n t i a l t e m p e r a t u r e t o i n s i t u 
C t e m p e r a t u r e . 

C 
C I n p u t and o u t p u t v a l u e s a r e i n 'model u n i t s ' : 

C 

C TX(IMT,KM) i s p o t e n t i a l t e m p e r a t u r e i n d e g r e e s C. ( IPTS-68) 

C SX(IMT,KM) i s s a l i n i t y i n p a r t s p e r p a r t minus 0 . 0 3 5 . 

C RHO(IMT,KM) i s d e n s i t y i n g r a m s / c u b i c c e n t i m e t r e minus 1 . 0 2 . 
C V a r i a b l e s TQ and SQ a r e r e q u i r e d p a r a m e t e r s f o r t h e s t a n d a r d 

C Cox model STATE r o u t i n e b u t a r e unused i n t h i s v e r s i o n . 

C SINLAT i s t h e s i n e of t h e l a t i t u d e . (Note r o u t i n e s STATE and 

C CLINIC need t o be m o d i f i e d t o s e t t h i s p a r a m e t e r and t o 

C i n c l u d e i t i n t h e i r c a l l s t o STATE). 

C 
C================================================================== 

*CALL PARAM 
*CALL SCALAR 
C=================================================:================= 

c 
C T h e s e two l i n e s i n s e r t s t a n d a r d p a r a m e t e r d e f i n i t i o n s and 
C t h e s c a l a r common b l o c k s . The r o u t i n e u s e s t h e f o l l o w i n g 

C p a r a m e t e r s and common b l o c k v a r i a b l e s : 

C IMT i s t h e number of g r i d p o i n t s i n an e a s t - w e s t d i r e c t i o n . 

C KM i s t h e number of l e v e l s . 

C ZDZZ(KM) i s an a r r a y c o n t a i n i n g t h e d e p t h i n c e n t i m e t r e s a t 
C t h e c e n t r e of e a c h model l e v e l . 

C 
C=:=================================================================: 

c 
C REFERENCES: 

C M i l l e r o e t a l 1980, Deep Sea R e s 2 7 A , 2 5 5 - 2 6 4 

C J p o t s N i n t h R e p o r t 1978,UNESCO T e c h . P a p . M a r . S c i . N o 30 . 

c J p o t s T e n t h R e p o r t 1980,UNESCO T e c h . P a p . M a r . S c i . N o 36 . 

C Bryden H,1973 ,Deep Sea R e s . , 2 0 , 4 0 1 - 4 0 8 

C F o f o n o f f N ,1977 ,Deep Sea R e s . , 2 4 , 4 8 9 - 4 9 1 

C S a u n d e r s P and F o f o n o f f N,1976 ,Deep Sea R e s . , 2 3 , 1 0 9 - 1 1 1 

C F o f o n o f f N and M i l l a r d R,1983,UNESCO T e c h . P a p . M a r . S c i . N o 44 . 

C Fo rmu lae g i v e n by Abramowitz and S t e g a n a r e u s e d t o c o n v e r t 

C S a u n d e r s and F o n a n o f f ' s e q u a t i o n f o r c o n v e r t i n e p r e s s u r e t o 

C d e p t h i n t o one t o c o n v e r t d e p t h t o p r e s s u r e . 

C 
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C P o t e n t i a l t e m p e r a t u r e i s c a l c u l a t e d f rom B r y d e n ' s e q u a t i o n f o r 

C t h e g r a d i e n t w i t h p r e s s u r e u s i n g an a n a l y t i c method which 

C as sumes t h a t t h e t e m p e r a t u r e change i s s m a l l . T h i s i s i n s t e a d 
C of t h e c o m p u t a t i o n a l l y more e x p e n s i v e R u n g e - K u t t a scheme u s e d 
C by F o f o n o f f 1977. 
C 
C ===================================================================== 

c 
C T h i s i s t h e Cray v e r s i o n of t h e r o u t i n e . The SUN (or IEEE f l o a t i n g 
C p o i n t a r i t h m e t i c ) v e r s i o n i s o b t a i n e d by c o n v e r t i n g a l l s i n g l e 

C p r e c i s i o n c o n s t a n t s t o d o u b l e p r e c i s i o n . 
C 

C CHECK VALUE: RHO = 3 .9485438761937E-2 - CRAY 6 4 - b i t 

C = 3.9485438761930D-02 - IEEE 6 4 - b i t . 
C FOR: TX=40.0, SX=0.005, ZDZZ=1000000.0, SINLAT=SIN(30.0) . 
C 

C These v a l u e s of RHO c o r r e s p o n d t o 59 .485 - i n s igma u n i t s . 

C 

DIMENSION TX(IMT,KM),SX(IMT, KM),RHO{IMT, KM) 

SAVE IN,B1,B2,B3,B4,B5,THIRD,V3SOP 

DATA R 3 5 0 0 , R 4 / 1 0 2 8 . 1 0 6 3 E 0 , 4 . 8 3 1 4 E - 4 / 

DATA D R 3 5 0 / 2 8 . 1 0 6 3 3 1 E 0 / 

DATA I N / 0 / 

C 

C 1 . C a l c u l a t e c o n s t a n t s f o r u s e l a t e r . 

C 

IF(IN.EQ.O)THEN 

C C o n s t a n t s f o r p r e s u r e p o l y n o m i a l 

A1 = 97.2659E0 

A2 = - 2 . 2 5 1 2 E - 3 

A3 = 2 . 2 7 9 E - 7 

A4 = - 1 . 8 2 E - 1 1 

B1 = l .OEO/Al 

B2 = - A 2 / A 1 * * 3 

B3 = (2.0E0*A2**2 - A1*A3)/Al**5 

B4 = (5.0E0*A1*A2*A3 - A1**2*A4 - 5E0*A2**3)/Al**7 

B5 = (6.0E0*A1**2*A2*A4 + 3.0E0*A1**2*A3**2 + 14.0E0*A2**4 

& -21.0E0*A1*A2**2*A3)/Al**9 

C C o n s t a n t s f o r t e m p e r a t u r e c a l c u l a t i o n 

THIRD = 1 . 0 E 0 / 3 . 0 E 0 

C C o n s t a n t s f o r d e n s i t y c a l c u l a t i o n 

V350P = 1 .0E0/R3500 

IN = 1 

ENDIF 

C 

C 2 . V a r i a b l e s c a l c u l a t e d o n l y once e a c h e n t r y 
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X = SINLAT**2 
G R l = 9 . 7 8 0 3 1 8 E 0 * ( 1 . 0 E 0 + ( 5 . 2 7 8 8 E - 3 + 2 . 3 6 E - 5 * X ) * X ) 

C 

C 3 . C a l c u l a t i o n s made once a t each d e p t h 

C 

DO 100 K=1,KM 

C C o n v e r t model u n i t s (cm) t o m e t r e s 

Z = ZDZZ(K)*0.01E0 

Z1 = Z*(GR1 + ( 1 . 0 9 2 E - 5 * GRl /97 .2659E0)*Z) 

P = ( ( ({B5*Z1 + B4)*Z1 + B3)*Z1 + B2)*Z1 + B1)*Z1 

RK35 = {5 .03217E-5*P + 3 .359406E0)*P + 21582.27E0 

GAM = P/RK35 

PK = l.OEO-GAM 

V350Q = V350P*PK 

DR35P = GAM/V350Q 

DENl = DR350+DR35P 

RK35I = 1.0E0/RK35 

V350QI = 1.0E0/V350Q 

C 

C 4 . C a l c u l a t i o n s made a t each g r i d p o i n t 

C 

DO 100 1=1,IMT 

T = TX(I ,K) 

C C o n v e r t model u n i t s t o NSU 

S = SX( I ,K)*1000 .0E0 + 35.0E0 

SR = SQRT(S) 

C 

C C a l c u l a t e a b s o l u t e t e m p e r a t u r e TA a t p r e s s u r e P. 

C 

DS = S - 3 5 . 0 E 0 

C F i r s t e s t i m a t e t e m p e r a t u r e a t mid d e p t h . 

ATGR83 = ( - 4 . 2 3 9 3 E - 7 * T + 1 .8932E-5)*DS 

& + ( ( 6 . 6 2 2 8 E - 9 * T - 6 . 836E-7 )*T + 8 . 5 2 5 8 E - 5 ) * T + 3 .5803E-4 

T1 = T + 0.5E0*P*ATGR83 

C I n t e g r a t e a d i a b a t i c g r a d i e n t p o l y n o m i a l a n a l y t i c a l l y . 

R1 = ( - 2 . 1 6 8 7 E - 1 3 * T 1 + 1 .8676E-11)*T1 - 4 .6206E-10 

R2 = ( 2 .7759E-10*T1 - 1 .1351E-8)*DS 

& + ( ( - 5 . 4 4 8 1 E - 1 2 * T 1 + 8 . 7 3 3 E - 1 0 ) * T 1 - 6 . 7795E-8 )*T1 + 1 .8741E-6 

R3 = ( - 4 . 2 3 9 3 E - 7 * T 1 + 1 .8932E-5)*DS 

& + ( ( 6 .6228E-9*T1 - 6 . 836E-7 )*T1 + 8 .5258E-5 )*T1 + 3 .5B03E-4 

R1 = R1*THIRD 

R2 = R2*0.5E0 

TA = T + ((R1*P + R2)*P + R3)*P 

C 

C 3 . C a l c u l a t e d e n s i t y 

C 

C 
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C C a l c u l a t e s p e c i f i c volume anomaly a t t h e s u r f a c e 
C 

R1 = ( ( ( ( 6 . 5 3 6 3 3 2 E - 9 *TA - 1 .120083E-6)*TA + 1 .001685E-4)*TA 
& - 9 . 0 9 5 2 9 0 E - 3 ) * T A + 6 . 7 9 3 9 5 2 E - 2 ) * T A - 2 8 . 2 6 3 7 3 7 E 0 

R2 = ( { ( 5 . 3 8 7 5 E - 9 *TA - 8 .2467E-7)*TA + 7 .6438E-5)*TA 
& - 4 .0899E-3)*TA + 8 . 2 4 4 9 3 E - 1 

R3 = ( -1 .6546E-6*TA + 1.0227E-4)*TA - 5 .72466E-3 
SIG = (R4*S + R3*SR + R2)*S + R1 
SVA = 1 .0E0/ (R3500 + SIG) - V350P 

C 

C Now c o r r e c t sva f o r p r e s s u r e and c o n v e r t t o d e n s i t y 
C 

R1 = (9.ie97E-10*TA + 2 .0816E-8)*TA - 9 .9348E-7 
R2 = (5.2787E-B*TA - 6 .12293E-6)*TA + 3 .47718E-5 
A = R1*S + R2 
R1 = 1 .91075E-4 

R2 = ( -1 .6078E-6*TA - 1 .0981E-5)*TA + 2 .2838E-3 
R3 = ( ( - 5 . 7 7 9 0 5 E - 7 * T A + 1 . 1 6 0 9 2 E - 4 ) * T A + 1 . 4 3 7 1 3 E - 3 ) * T A 

& - 0.1194975E0 

B = ( R 1 * S R + R 2 ) * S + R3 

R1 = ( -5 .3009E-4*TA + 1 .6483E-2)*TA + 7 . 9 4 4 E - 2 

R2 = ( ( -6 .1670E-5*TA + 1.09987E-2)*TA - 0.603459E0)*TA + 54 .6746E0 
R3 = { ( ( -5 .155288E-5*TA + 1.360477E-2)*TA - 2.327105E0)*TA 

& + 148.4206E0)*TA - 1930.06E0 
C = (R1*SR + R2)*S + R3 
DK = (A*P + B)*P + C 

SVA = SVA*PK + (V350P + SVA)*P*{RK35I - 1 .0E0/(RK35 + DK)) 
DVAN = V350QI - 1E0/(V350Q + SVA) 

C 

C C o n v e r t d e n s i t y t o model u n i t s i . e . g m / c c - 1 . 0 2 
C 

R H O ( I , K ) = ( D E N l - D V A N ) * 0 . 0 0 1 E O - 0 . 0 2 E 0 

100 CONTINUE 
RETURN 
END 
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APPENDEXm: 

FORTRAN CODE FOR THE REFERENCE EQUATION OF STATE 

SUBROUTINE REFDEN(T,S,Z,RHO,XLAT) 
IMPLICIT REAL*8{A-H,0-Z) 

C 
C SUBROUTINE TO CALCULATE THE DENSITY AT TEMPERATURE T, SALINITY S 

C AND DEPTH Z, AS ACCURATELY AS POSSIBLE. IT USES AN INVERSE OF 

C THE SAUNDERS (1981) ROUTINE TO TRANSFORM FROM DEPTH TO PRESSURE, 

C AN ACCURATE METHOD OF CALCULATING THE IN SITU TEMPERATURE AND 
C THE UNESCO 80 EQUATION OF STATE. 
C 

C INPUT UNITS: 

C IN-SITU TEMPERATURE (T) : DEGREES C. ( IPTS-68) 

C SALINITY ( S ) : PRACTICAL SALINITY UNITS 
C DEPTH (Z) : METRES 

C LATITUDE (XLAT): DEGREES 
C OUTPUT UNITS: 

C DENSITY(RHO); KILOGRAMS PER CUBIC METER 
C 
C=====================================================================: 

c 
C T h i s and t h e f o l l o w i n g r o u t i n e s a r e t h e Cray v e r s i o n s of t h e 

C r o u t i n e s . The SUN (o r IEEE f l o a t i n g p o i n t a r i t h m e t i c ) v e r s i o n s 

C a r e o b t a i n e d by c o n v e r t i n g a l l s i n g l e p r e c i s i o n c o n s t a n t s t o d o u b l e 

C p r e c i s i o n . 

C 

C CHECK VALUE: RHO = 1059 .355556531 - CRAY 6 4 - b i t 

C = 1059.3555565304 - IEEE 6 4 - b i t . 

C FOR: T=40 .0 , S=40 .0 , 2=10000.0, XLAT=30.0. 

C 

C====================================================================== 
c 

P = FNPZ(Z,XLAT) 

T1 = POTTEM{T,S,O.OEO,P,l.OEO) 

CALL UNESCO(T1,S,P,RHO) 

RETURN 

END 

FUNCTION FNPZ(Z,XLAT) 

IMPLICIT REAL*8(A-H,0-Z) 

PARAMETER (ML00P=30,MC0NV=5, EPS=lE-6) 

C 

C FUNCTION TO CALCULATE PRESSURE IN DECIBARS FROM DEPTH IN METRES 
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C USING AN ITERATIVE INVERSE OF SAUNDERS ALGORITHM (FUNCTION 

C FNPZ). ITERATES UNTIL THE ERROR IS ZERO, A LIMIT CYCLE IS 

C DETECTED OR 'MLOOP' ITERATIONS REACHED. 

C ERROR EXIT I F ERROR > EPS. 

C ARRAY PA USED TO DETECT A LIMIT CYCLE. 

C 

C CHECK VALUE FNPZ = 103 02 .423165 - CRAY 6 4 - b i t 

C = 1 0 3 0 2 . 4 2 3 1 6 5 0 0 5 2 - I E E E 6 4 - b i t . 

C FOR: Z = 10000m, XLAT = 3 0 . 0 

C 

DIMENSION PA(MCONV) 

C 

P = Z 

lA = 0 

DO 2 0 1 = 1 , 3 0 

ZZ = FNZP(P,XLAT) 

C ZERO ERROR 

IF(Z.EQ.ZZ)GOTO 50 

EE = Z - ZZ 

EA = ABS(EE) 

C SAVE NEW BEST VALUE 

I F d A . E Q . O .OR. EA.LT.EP) THEN 

lA = 1 

EP = EA 

PA(IA) = P 

C LOOK FOR LIMIT CYCLE 

ELSEIF(EA.EQ.EP)THEN 

DO 40 J = l , l A 

IF(P.EQ.PA{J))GOTO 50 

40 CONTINUE 

IF(IA.LT.MCONV)THEN 

lA = lA + 1 

PA(IA) = P 

ENDIF 

ENDIF 

C CORRECT P AND LOOP 

P = P + EE 

20 CONTINUE 

C 
IF{EA.GT.EPS)THEN 

PRINT S u b r o u t i n e Z2PB. I t e r a t i o n h a s n o t c o n v e r g e d a f t e r ' , 

& ' 30 i t e r a t i o n s ' 

PRINT * , ' O b j e c t d e p t h = ' , Z 

PRINT *, ' L a t e s t P = ' , P , ' . C o r r e s p o n d i n g Z = ' , ZZ 

PRINT *, 'Minimum e r r o r = ' , EA 

PRINT * , 'Number of c o r r e s p o n d i n g Ps = ' , I A 

PRINT * , ' P A a r r a y ' , ( P A ( K ) , K = 1 , l A ) 

STOP 
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ENDIF 

C 

P = PA(IA) 

50 FNPZ = P 

RETURN 

END 

FUNCTION FNZP(PIN,XLAT) 

IMPLICIT REAL*8{A-H,0-Z) 

C 

C FUNCTION TO TRANSFORM PRESSURE TO DEPTH USING THE METHOD OF 

C P.M.SAUNDERS, 1981 . JOURNAL OF PHYSICAL OCEANOGRAPHY, 

C 1 1 , 5 7 3 - 5 7 4 . 

C 

C INPUT: PIN = PRESSURE IN DECIBARS ( " o c e a n o g r a p h i c " p r e s s u r e 

C e q u a l s a b s o l u t e p r e s s u r e minus one a t m o s p h e r e ) 

C XLAT= LATITUDE IN DEGREES. 

C 

C OUTPUT: FNZP = DEPTH IN METRES. 

C 

C CHECK VALUE: FNZP = 9712.478325455 - CRAY 6 4 - b i t 

C =: 9712 .4783254538 , - IEEE 6 4 - b i t . 

C FOR: PIN=10000.0 , XLAT=30.0. 

C 

DATA I N / 0 / 

SAVE IN 

C 

C 1 . CALCULATE CONSTANTS 

C 

IF{IN.EQ.O)THEN 

IN = 1 

PI = 3 .141592654E0 

RADIAN = PI /180E0 

G1 = 9 .780318E0 

G2 = 9 .780318E0*{5 .3024E-3 - 5.9E-6*4.OEO) 

G3 = - 9 . 7 8 0 3 1 8 E 0 * 5 . 9 E - 6 * 4.OEO 

C 

C AL = SPECIFIC VOLUME AT (T=0,S=35,P=0) TIMES 10**5 

C RK = CONSTANT COEFICIENT 

C RA = TERM PROPORTIONAL TO P 

C RB = TERM PROPORTIONAL TO P**2 

C 
S = 35.OEO 

C1P5 = 1.5E0 

AL = 1E5 / (9 .99842594E2 + 8 .24493E-1*S 

- 5.72466E-3*S**C1P5 + 4 .8314E-4*S**2) 

RK = 1 .965221E4 + 5.46746E1*S + 7.944E-2*S**C1P5 

RA = 3 . 2 3 9 9 0 8 E 0 + 2 . 2 8 3 8 E - 3 * S + 1 . 9 1 0 7 5 E - 4 * S * * C 1 P 5 
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RB = 8 .50935E-5 - 9 .9348E-7*S 
DD = SQRT(RA*RA - 4.0E0*RK*RB) 
C I = 0 . 5 E 0 / R B 

C2 = RA/RK 

C3 = RB/RK 

C4 = RA/(2.0E0*RB*DD) 
C5 = 2.0E0*RB/(RA - DD) 
C6 = 2.0E0*RB/(RA + DD) 
C7 = 0 .5E0*2 .226E-6 

END IF 

C 

C 2 . CALCULATE GRAVITY 
C 

X = SIN(RADIAN*XLAT)**2 
GS = ( G 3 * X + G 2 ) * X + G1 

C CONVERT FROM PRESSURE IN DECIBARS TO BARS 
P = PIN*1 .0E-1 

C 

C 3 . INTEGRATE SPECIFIC VOLUME 

C 
R1 = AL*(P - C1*L0G{(C3*P + C2)*P+1.0E0) + C4*L0G({1.OEO + C5*P) 

& / ( I . O E O + C 6 * P ) ) ) 

FNZP = R1/{GS + C7*PIN) 

RETURN 

END 

FUNCTION POTTEM(TT,SS,PO,P1,DPP) 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

C SUBROUTINE TO CALCULATE THE FINAL TEMPERATURE OF WATER MOVED 

C ADIABATICALLY FROM AN INITIAL TEMPERATURE TT, SALINITY SS AND 

C PRESSURE PO, TO A FINAL PRESSURE P I . 

C 

C THE INTEGRAL EQUATION IS SOLVED BY DIRECT INTEGRATION WITH A 

C PRESSURE INCREMENT DPP - USING THE BRYDEN EQUATION FOR THE 

C ADIABATIC LAPSE RATE (SUBROUITNE ATG). 

C 

C T = INITIAL TEMPERATURE IN DEGREES C. {IPTS-68) 

C S = SALINITY IN NSU. 

C P0= INITIAL PRESSURE IN DECIBARS. 

C P l= FINAL PRESSURE IN DECIBARS. 

C DPP=PRESSURE STEP. 

C POTTEM = FINAL TEMPERATURE IN DEGREES CENTIGRADE. 

C 

C PRESSURES ARE "OCEANOGRAPHIC" PRESSURES, EQUAL TO ABSOLUTE 

C PRESSURES MINUS ONE ATMOSPHERE. 
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C TESTS WITH DPP VALUES RANGING FROM 1 TO 128 DECIBARS SHOWED 
C THE MOST ACCURATE RESULTS WERE OBTAINED WITH DPP EQUAL TO 1 . 

C 

C CHECK VALUE: POTTEM = 43.26663196648 - CRAY 6 4 - b i t 

C = 4 3 . 2 6 6 6 3 1 9 6 7 0 5 1 , - I E E E 6 4 - b i t . 

C FOR: T=40 .0 , S=40.0, P0=0 .0 , P l = 1 0 0 0 0 . 0 , DPP=1.0. 
C 

I F ( P 0 . L T . 0 . 0 E 0 .OR. PO.GT.20000.OEO 
& .OR.Pl.LT.O.OEO .OR. PI.GT.20000.OEO)THEN 

PRINT * , ' SUBROUTINE POTTEM STOPPING - PRESSURES OUT OF RANGE' 
PRINT ' PRESSURES PO AND PI = ' , P 0 , P 1 
PRINT * , ' ALLOWED RANGE HAS MIN OF 0 . 0 , MAX OF 2 0 , 0 0 0 ' 

STOP 
ENDIF 

C 
DP = SIGN(DPP,Pl-PO) 
P = PO 
T = T T 

TB = T - ATG(PO,T,SS)*DP 

C 

10 TA = TB + 2.0E0*ATG(P,T,SS)*DP 
P = P + DP 
TB = T 
T = TA 

TEST = (P - P1 )* (P - DP - PI) 

IF(TEST.GT.OEO)GOTO 10 
POTTEM = ( ( P I - P + DP)*T + (P - P1)*TB)/DP 

RETURN 

END 

FUNCTION ATG(P,T,S) 

IMPLICIT REAL*8(A-H,0-Z) 

C 

C ADIABATIC TEMPERATURE GRADIENT DEC C PER DECIBAR 

C REF: BRYDEN,H.,1973,DEEP-SEA R E S . , 2 0 , 4 0 1 - 4 0 8 

C UNITS: 

C PRESSURE P DECIBARS 

C TEMPERATURE T DEGREES C. ( IPTS-68) 

C SALINITY S (PSS-78) 

C ADIABATIC ATG DEGREES CELCIUS PER DECIBAR 

C 

C PRESSURE IS "OCEANOGRAPHIC" PRESSURE EQUAL TO ABSOLUTE 

C PRESSURE MINUS ONE ATMOSPHERE. 

C 

C CHECK VALUE: ATG = 3 .2559758 - CRAY 6 4 - b i t 

C = 3 .25597580000000-04 DEG C/DBAR - IEEE 6 4 - b i t . 

C FOR: P=10000 .0 , T=40.0 , S=40.0. 
C 
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DS = S-35E0 

ATG = ( ( { - 2 . 1 6 8 7 E - 1 6 * T + 1 .8676E-14)*T - 4 . 6 2 0 6 E - 1 3 ) * P 
& + ( ( 2 . 7 7 5 9 E - 1 2 * T - 1 .1351E-10)*DS + ( ( - 5 . 4 4 8 1 E - 1 4 * T 
& + 8 . 7 3 3 E - 1 2 ) * T - 6 .7795E-10)*T + 1 . 8 7 4 1 E - 8 ) ) * P 
& + ( - 4 . 2 3 9 3 E - 8 * T + 1 . 8 9 3 2 E - 6 ) * D S 

& + ( ( 6 . 6 2 2 8 E - 1 0 * T - 6 .836E-8)*T + 8 . 5 2 5 8 E - 6 ) * T + 3 . 5 8 0 3 E - 5 
RETURN 
END 

SUBROUTINE UNESCO (T, S, PIN, RHO) 

IMPLICIT REAL*B(A-H,0~Z) 

C THIS SUBROUTINE CALCULATES THE DENSITY OF SEAWATER USING THE 
C STANDARD EQUATION OF STATE RECOMMENDED BY UNESCO(1981). 
C 
C INPUT UNITS: 

C IN-SITU TEMPERATURE (T) : DEGREES C. ( IPTS-68) 

C SALINITY ( S ) : PRACTICAL SALINITY UNITS 

C PRESSURE (PIN) : DECIBARS 

C OUTPUT UNITS: 

C DENSITY(RHO): KILOGRAMS PER CUBIC METER 
C 

C PRESSURE IS "OCEANOGRAPHIC" PRESSURE EQUAL TO ABSOLUTE 

C PRESSURE MINUS ONE ATMOSPHERE. 
C 

C REFERENCES: 

C GILL, A . , ATMOSPHERE-OCEAN DYNAMICS: INTERNATIONAL GEOPHYSICAL 

C SERIES NO. 30 . ACADEMIC PRESS, LONDON, 1982, PP 5 9 9 - 6 0 0 . 

C UNESCO, lOTH REPORT OF THE JOINT PANEL ON OCEANOGRAPHIC TABLES 

C AND STANDARDS. UNESCO TECH. PAPERS IN MARINE SCI . NO. 36, 
C PARIS, 1981 . 

C 
C = = = = = = = = = = = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: = = = = = = 

c 
C CHECK VALUE: RHO = 1059.82037676 - CRAY 6 4 - b i t 

C = 1059.8203767598 - IEEE 6 4 - b i t . 

C FOR: T=40.0, S=40 .0 , PIN=10000.0 . 

C 

C1P5 = 1.5E0 

C CONVERT DEPTH (IN DECIBARS) TO BARS 

P = PIN * l . O E - 1 

RW = 9 .99842594E2 + 6 .793952E-2*T - 9 .095290E-3*T**2 

& + 1 .001685E-4*T**3 - 1 .120083E-6*T**4 + 6 .536332E-9*T**5 

RSTO = RW + ( 8 . 2 4 4 9 3 E - 1 - 4 . 0 8 9 9 E - 3 * T + 7 . 6 4 3 8 E - 5 * T * * 2 

& - 8 .2467E-7*T**3 + 5 .3875E-9*T**4) * S 

& + ( - 5 . 7 2 4 6 G E - 3 + 1 . 0 2 2 7 E - 4 * T - 1 . 6 5 4 6 E - 6 * T * * 2 ) * S * * C 1 P 5 
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& + 4 .8314E-4 * S**2 

XRM = 1 . 9 6 5 2 2 1 E 4 + 1 . 4 8 4 2 0 6 E 2 * T - 2 . 3 2 7 1 0 5 E 0 * T * * 2 

& + 1 .360477E-2*T**3 - 5 .155288E-5*T**4 

XKSTO = XKW + (5 .46746E1 - 6 .03459E-1*T + 1 .09987E-2*T**2 

& - 6 .1670E-5*T**3) * S 

& + (7 .944E-2 + 1 .6483E-2*T - 5 .3009E-4*T**2) * S**C1P5 

XKSTP = XKSTO + (3.239908E0 + 1 .43713E-3*T + 1 .16092E-4*T**2 

& - 5 .77905E-7*T**3) * P 

& + (2 .2838E-3 - 1 .0981E-5*T - 1 .6078E-6*T**2) * P * S 

& + 1 .91075E-4 * P * S**C1P5 

& + ( 8 . 5 0 9 3 5 E - 5 - 6 . 1 2 2 9 3 E - 6 + T + 5 . 2 7 8 7 E - 8 * T * * 2 ) * P * * 2 

& + ( - 9 . 9 3 4 8 E - 7 + 2 .0816E-8*T + 9 .1697E-10*T**2) * P**2 " 
RHO = RSTO / (l.OEO - P/XKSTP) 

RETURN 
END 




