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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

PHYSICS AND ASTRONOMY

Doctor of Philosophy

by Maria Dimou

This thesis reports on two projects concerning flavour physics. In the first project it is shown

how approximate Minimal Flavour Violation (MFV) can emerge from an SU(5) Supersymmetric

Grand Unified Theory (SUSY GUT) supplemented by an S4 × U(1) family symmetry, which

provides a good description of all quark and lepton (including neutrino) masses, mixings and CP

violation. Assuming a SUSY breaking mechanism which respects the family symmetry, the low

energy mass insertion parameters are calculated in full explicit detail in the super-CKM basis,

including the effects of canonical normalisation and renormalisation group running. It is found

that the very simple family symmetry S4 × U(1) is sufficient to approximately reproduce the

effects of low energy MFV where required but there is also a suggestion of testable new physics.

Numerical estimates of the low energy mass insertion parameters are presented for well-defined

ranges of SUSY parameters and the naive model expectations are compared to the numerical

scans and the experimental bounds. The results are then used to estimate the predictions for

Electric Dipole Moments (EDMs), Lepton Flavour Violation (LFV), B and K meson mixing as

well as rare B decays. The largest observable deviations from MFV come from the LFV process

µ→ eγ and the EDMs.

In the second project, matrix elements of the chromomagnetic operator, often denoted by O8,

between B/D-states and light mesons plus an off-shell photon are calculated, by employing the

method of light-cone sum rules (LCSR) at leading twist 2. These matrix elements are relevant

for flavour changing transition processes, such as B → K∗l+l− and they can be seen as the

analogues of the well-known penguin form factors T1,2,3 and fT . A large CP-even phase is

found, for which a long-distance (LD) interpretation is given. Results are compared to QCD

factorisation (QCDF), for which the spectator photon emission is end-point divergent. The

analytic structure of the correlation function used in the LCSR method, admits a complex

anomalous threshold on the physical sheet, the meaning and handling of which is discussed.
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B) in both figures. (left) Diagram of

LCSR or the LC-OPE respectively (right) Diagram in QCDF. Thus xQCDF⊥ ∼ 1/ū2 and
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Chapter 1

Introduction

“This result is too beautiful to be false; it is more important to have beauty in one’s equations

than to have them fit experiment” - Paul Dirac, 1963 [1].

A more conservative view, is that a beautiful theory is more likely to be true. The theories

described as beautiful within the physics community, are usually the ones that are formulated

by means of symmetries. In fact, the most ground breaking claims have been based upon sym-

metry arguments: from Plato’s “theory of everything”, based on the symmetrical properties

of the “five platonic solids”; to Galois’ mathematical description of symmetry through group

theory; Poincaré’s symmetry of spacetime; Einstein’s symmetry geometrization; Noether’s con-

nection between symmetries and conserved quantities; Maxwell-Yang-Mills’ description of the

non-gravitational fundamental forces through the imposition of local gauge symmetries and

the emergence of the corresponding vector gauge bosons; and Higgs’1 association of broken

symmetries with massive vector bosons.

It has been a long journey of pioneering developments that led to the construction of the Stan-

dard Model (SM) of particle physics in the second half of the 20th century [3]. The electroweak

(EW) and strong nuclear interactions, three out of the four fundamental forces of nature, have

been described with tremendous success and the observation of all predicted fundamental par-

ticles was completed in 2012, with the discovery of the Higgs boson at CERN [4]. Following the

2013 Nobel Prize award to François Englert and Peter W. Higgs “for the theoretical discovery of

a mechanism that contributes to our understanding of the origin of mass of subatomic particles,

and which recently was confirmed through the discovery of the predicted fundamental particle,

by the ATLAS and CMS experiments at CERN’s Large Hadron Collider”, there was hope that

this newly discovered particle would hint at the presence of some new physics (NP). However,

its properties appear to be in agreement with the SM expectations, to increasing levels of accu-

racy. This result has, on the one hand, been received as one more SM victory but on the other

hand, there has been some disappointment in the Higgs being exactly SM-like. The reason is

that, despite its ongoing verification, the SM is widely viewed as the low energy limit of a more

fundamental theory. There are solid arguments on an observational, as well as theoretical basis,

that NP effects have to emerge around the TeV scale.

1Work of three independent groups: Robert Brout and Franois Englert; Peter Higgs; Gerald Guralnik, C. R.
Hagen and Tom Kibble [2]
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Interestingly enough, the most popular beyond the SM (BSM) scenario is supersymmetry

(SUSY). Even though it predicts double the number of particles, none of which has yet been

observed, it seems too “beautiful”, too elegant and too predictive to give up on just yet. In

the framework of Grand Unified Theories (GUTs), it allows for unification of the strong, elec-

tromagnetic and weak coupling constants. Furthermore, when SUSY is imposed as a local

symmetry, the associated boson is identified with the graviton and therefore gravity is included

automatically, in the form of supergravity (SUGRA). String theory, which attempts to unify all

forces, is generally supersymmetric. There are many motivating arguments in favour of SUSY,

such as the provision of a solution to the hierarchy problem and the provision of Dark Matter

candidates. There is also a lot of disappointment in the null SUSY results of LHC Run 1. But,

with the second Run having just begun, it is the time to focus on, rather than abandon SUSY.

Some theoretical puzzles within the SM and its supersymmetric extension remain. The main

focus of this thesis is to tackle our lack of knowledge on the dynamics governing the flavour

sector. Following the award of the 2015 Nobel Prize for “the discovery of neutrino oscillations

which shows that neutrinos have mass”, we still have no more understanding of flavour than

back in 1936, when Rabi famously asked of the muon “who ordered that?”. Part of the reason

for this impasse is the failure of experiment to measure any flavour and CP violation beyond that

expected in the SM. In order to understand the nature of flavour within the SM and beyond, it

is necessary to answer the following questions:

1. Why are there three families of quarks and leptons?

2. Why are charged-fermion masses so hierarchical (spanning many orders of magnitude)?

3. Why are neutrinos so much lighter than every other fermion?

4. Why is the flavour mixing in the quark sector so much smaller than in the leptonic sector?

5. What is the origin of CP violation?

6. Why is the amount of flavour violation induced by new physics so small?

Pursuing the path of symmetry, this work attempts to answer the above questions following

the idea introduced by Froggatt and Nielsen [5]. The aim is to identify a predictive symmetry

that acts on the three families/flavours, thereby putting them on the same footing. In the limit

where this “family” or “horizontal” symmetry is exact, there are no Yukawa couplings. Those

are generated when the symmetry is spontaneously broken by non-zero vacuum expectation

values (vevs) of some Higgs-like heavy scalar fields, called “flavons”. The matter fields and the

flavons transform under non-trivial representations of the family symmetry group and can couple

to form non-renormalisable operators (at the level of the effective theory approach), invariant

under all symmetries. When the family symmetry is broken, the flavon vev, suppressed by the

heavy UV cut-off scale, induces an expansion parameter, in terms of which effective Yukawa

couplings can be written, resulting in the desired hierarchical charged-fermion Yukawa matrices.

The relatively recent information concerning massive neutrinos and their large mixing, points

towards non-Abelian discrete family symmetries, in order to account for such non-hierarchical

family structures. Ever since, there has been a lot of effort to formulate a theory of flavour

[6] which can account for the observed pattern of fermion masses and mixing, while providing
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more accurate predictions for the less well measured (or unmeasured) flavour parameters in the

neutrino sector [7]. The smallness of neutrino masses is explained via the see-saw mechanism

[8], while CP violation originates from the imposition of a CP symmetry, which is only broken

by complex flavon vevs.

When embedding such a model in a supersymmetric framework, where SUSY is spontaneously

broken in some “hidden” sector that respects the family symmetry, then the latter automatically

controls the generation of the soft SUSY breaking masses. Just like the Yukawas, the trilinear A-

terms vanish in the family symmetry limit, while the soft scalar masses are universal (assuming

a canonical Kähler potential [9]). The goal then is to find a suitable family symmetry, which,

combined with the appropriate set of flavon fields that acquire convenient vacuum alignments,

generates the correct masses and mixing angles for the fermions and at the same time forces the

soft SUSY breaking masses to be approximately diagonal. That way, the SUSY contributions

to flavour violating processes are suppressed, exactly as observed. An interesting model should

of course be viable with regard to the current experimental limits but it is also expected to

generate signatures that can be tested in the future.

Observations of lepton flavour violation (LFV), Electric Dipole Moments (EDMs) or rare B

decays at rates beyond that predicted by the SM, could in principle provide insight into the

nature of the BSM theory of flavour. While evidence of LFV and EDMs, which are essentially

zero in the SM, would be a clear NP signal, B decays, particularly the semileptonic ones, have

also always been considered as a powerful NP probe. They allow to indirectly measure decays of

the b quark, which is the heaviest quark that lives long enough to hadronise, resulting to multiple

decay channels, where independent tests of the SM can be performed. As the size of the NP scale

increases, indirect B physics measurements provide sensitivity to a much larger range of scales

than direct production. This comes with requirement for increasingly higher both experimental

and theoretical accuracy. Within the framework of an effective field theory, any BSM effects

manifest themselves through changes to the Wilson coefficients (encoding the high energy/short

distance (SD) dynamics), or through new operators (encoding the low energy/long distance

(LD) dynamics) becoming relevant. In order to set constraints on the Wilson coefficients, such

that NP models can in turn be constrained, the contribution of each effective operator to the

observables under consideration needs to be known.

The outline of this thesis is as follows:

Chapter 2 A brief overview of the basic SM features is given, along with its minimal exten-

sion to incorporate neutrino masses. After highlighting the main motivations to go beyond

the SM and consider a supersymmetric scenario, the basic formal aspects of SUSY are

reviewed, before introducing the Minimal Supersymmetric Standard Model (MSSM). Fi-

nally, the flavour puzzle and the idea of a family symmetry are discussed, together with

the fundamental aspects of model building, in particular when considering a SUSY GUT

background.

Chapter 3 The supersymmetric SU(5)× S4 × U(1) family symmetry model is analysed. The

model was first introduced in [10, 11], where only the fermionic sector was studied and

found to be providing a good description of the SM masses, mixing angles and CP violation.

As that analysis ignored effects of canonical normalisation that can significantly perturb
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the Yukawa structure [12], in the present work the fermionic sector is revisited, with those

effects included. The main focus though is on the flavour and CP violation induced by the

soft SUSY breaking sector. It is found that this model can achieve approximate Minimal

Flavour Violation (MFV) and the results are given in terms of mass insertion parameters

[13], explicit expressions of which are provided. This work has been published in [14].

Chapter 4 Here, the focus is on the phenomenological implications of the model’s low energy

deviations from MFV. The low energy mass insertion parameters are numerically esti-

mated for well-defined ranges of SUSY parameters and the “naive” model expectations

are compared to the results of a numerical scan and the experimental bounds available

in the literature. The results are then used to estimate the predictions for EDMs, B and

K meson mixing, BR(µ → eγ), as well as rare B decays. It is found that the largest

observable deviations from MFV come from the LFV process µ → eγ and the electron

EDM. This work has recently been submitted for publication [15].

Chapter 5 A different project, though still related to the flavour sector, is outlined. The

contribution of the chromomagnetic operator to semileptonic B decays is computed, using

the method of light cone sum rules (LCSRs) [16]. The results are compared with the QCD

factorisation (QCDF) computation [17], which however suffers from end-point divergences.

This work has been published in [18, 19].

Chapter 6 The conclusions of each Chapter are summarised.



Chapter 2

Theoretical Background

2.1 The Standard Model (SM) of Particle Physics

In what follows, the main features of the Standard Model of Particle Physics are summarised,

in the context of a four-dimensional relativistic quantum field theory that, in addition to the

space-time symmetry of the Poincaré group, exhibits a local gauge symmetry that describes all

known elementary particles and their interactions, excluding gravity.

The field content of the SM is assigned to irreducible representations of the unitary gauge group,

under which the electroweak (EW) and the strong nuclear interactions, the latter being described

by the theory of quantum chromodynamics (QCD), are symmetric. The EW interactions are

described through the Nobel Prize-winning (1979)“Glashow-Salam-Weinberg” model [3], the

renormalisability of which was shown by ’t Hooft and Veltman, whose work was also honoured

with the Nobel prize (1999) [20]. The QCD theory is characterised by two unique features,

known as “asymptotic freedom” and “confinement”. The strong nuclear force between two

particles increases with increasing distance, keeping them confined, while at very short distances

it becomes negligible and the particles are considered to be asymptotically free. D. Gross, F.

Wilczek and D. Politzer were awarded the Nobel Prize (2004) for their description of asymptotic

freedom [21].

The EW symmetry is spontaneously broken to the smaller symmetry of electromagnetism,

through the Higgs mechanism [2]. As a result, the unified electromagnetic and weak forces are

separated and the matter fields as well as the weak force carriers gain their measured masses.

The matter content, consisting of quarks that bind into hadrons and leptons that do not, comes

in three flavours/families/generations that only differ in mass. The copies of each first generation

particle that belong to the second and third generations have the same properties, like charges

and spin but are significantly heavier. In principle, there is no reason why they should exist, as

ordinary matter is only made up of particles that belong to the first generation. Their existence,

along with the lack of a mechanism that dictates the size of their masses, are part of the still

persistent SM flavour puzzle.

5
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2.1.1 Gauge sector and particle content

All known elementary particles seem to exhibit three internal symmetries and their interactions

can be described through the corresponding gauge theories:

• The U(1)Y symmetry of the weak hypercharge YW , with its associated gauge field Bµ,

where µ = 0, 1, 2, 3 is a Minkowski index.

• The SU(2)L symmetry of the weak isospin IW , with three gauge fields W i
µ, i = 1, 2, 3,

transforming in a triplet representation, IW = 1. Adopting the chiral Weyl spinor notation

for the fermions, the right-handed components transform as singlets, with IW = 0, while

the left-handed ones transform as doublets, with IW = 1/2.

• Finally, the SU(3)c symmetry of colour, known as QCD, with its eight gauge fields Gαµ, α =

1, .., 8, the gluons, that transform in an 8-plet of the gauge group. There are three colours:

red, blue and green and quarks transform in the fundamental triplet representation of

SU(3)c, while the colourless leptons are singlets.

The Standard Model of particle physics is therefore a Yang-Mills theory based on the gauge

group:

GSM = SU(2)L × U(1)Y × SU(3)c, (2.1.1)

that describes the electroweak and strong nuclear interactions between matter and radiation,

with respective coupling constants: g, g′ and gs. The interaction terms are incorporated in the

covariant derivative:

Dµ = ∂µ − ig′YWBµ − igW i
µTi − igsGαµTα, (2.1.2)

with Ti and Tα being the generators of SU(2)L and SU(3)c respectively. Including the kinetic

terms for the gauge bosons, the gauge part of the SM Lagrangian is written as:

Lg =
∑
f

f̄ iγµDµf −
1

4
BµνB

µν − 1

4
Tr(WµνW

µν)− 1

4
Tr(GµνG

µν), (2.1.3)

where the sum runs over all fermions, coming in three identical copies (families/generations)

and whose properties under GSM are summarised in Table 2.1. The electromagnetic charge

operator is given by the Gell-Man-Nishijima formula [22]:

Q = I3
W + YW . (2.1.4)

2.1.2 Higgs sector

The Lagrangian (2.1.3) describes massless particles, as in an exact gauge theory the underlying

symmetries forbid mass terms for the gauge bosons. However, the ones associated with the weak

force have been observed to have masses of the order of a hundred GeV. The required dynamics

for breaking the EW symmetry and giving mass to the weak gauge bosons are obtained by

introducing the Higgs field.
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Quarks Leptons Gauge bosons

QI =

(
uIL
dIL

)
uIR dIR LI =

(
νIL
eIL

)
eIR Bµ W i

µ Gαµ

SU(3)c 3 3̄ 3̄ 1 1 1 1 8
SU(2)L 2 1 1 2 1 1 3 1
U(1)Y 1/6 2/3 −1/3 − 1/2 −1 0 0 0

Table 2.1: Matter and gauge field content of the SM. I=1,2,3: matter family index, i=1,2,3,
α=1,...,8: weak and colour gauge indices, µ=0,..,3: Minkowski index.

The Higgs part of the Lagrangian is:

LH = (DµH)†(DµH)− V (H), V (H) = µ2H†H + λ(H†H)2, (2.1.5)

where the Higgs field H is a complex SU(2) doublet,

H =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.1.6)

with φi being real scalar fields. For µ2 < 0 and λ > 0, the minimum of the potential V (H) is

located not at the origin of the field configuration but at:

H†H = −µ
2

2λ
. (2.1.7)

Since electromagnetism is observed as an exact symmetry in nature, this non-zero value should

be reached in the neutral direction. Breaking the SU(2)L symmetry by making the choice:

φ1 = φ2 = φ4 = 0, φ3 = υ =
√
−µ2/λ and the U(1)Y by assigning the charge YW = 1/2, the

non-zero vacuum expectation value of the field:

〈H〉 =
1√
2

(
0

υ

)
, (2.1.8)

is given to the neutral component, such that the symmetry of electromagnetism with the gen-

erator Q is preserved: Q〈H〉 = 0. In other words, the EW symmetry is broken down to the

smaller symmetry of U(1)em,

SU(2)L × U(1)Y → U(1)em. (2.1.9)

The spectrum of the theory is analysed by plugging the Higgs field expanded around its vev

into LH . Since W 3
µ and Bµ have the same quantum numbers under U(1)em, they mix. The

resulting mass eigenstates are:

Zµ = − sin θWBµ + cos θWW
3
µ , (2.1.10)

Aµ = cos θWBµ + sin θWW
3
µ , (2.1.11)

W±µ =
(
W 1
µ ∓W 2

µ

)
/
√

2, (2.1.12)
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where cos θW = g/
√
g2 + g′2. The EW gauge bosons acquire mass terms (dropping the ± index

from MW ) [23]:

MW =
g υ

2
≈ 80.39 GeV, MZ =

MW

cos θW
≈ 91.19 GeV, (2.1.13)

while the photon Aµ remains massless. The relation of MW with the Fermi constant GF [23]:

GF =

√
2

8

g2

M2
W

≈ 1.1667× 10−5GeV−2, (2.1.14)

fixes the vacuum expectation value:

υ =
(√

2GF

)−1/2
≈ 246 GeV. (2.1.15)

The Higgs boson also has a mass term of υ/
√

2λ and the experimentally measured value of

∼ 125 GeV [4] implies the tree-level value for the quartic self-coupling: λ ≈ 0.13.

2.1.3 Yukawa sector

Adding by hand fermionic mass terms of the form mf f̄f = mf (f̄LfR + f̄RfL) in (2.1.3) would

also be forbidden by the EW gauge symmetry. It is though possible to write the gauge invariant

combinations:

LY = −Y e
ij L̄iH eRj − Y d

ij Q̄iH dRj − Y u
ij Q̄i H̃ uRj + h.c., (2.1.16)

where:

H̃ ≡ iτ2H
∗ =

(
φ0∗

−φ−

)
, τ2 =

(
0 − i
i 0

)
, (2.1.17)

Y f
ij are the Yukawa couplings of the Higgs-fermion interactions and i, j = 1, 2, 3 are generation

indices. When the Higgs field develops its non-zero vev, the fermions acquire masses proportional

to the eigenvalues of the 3 × 3 matrices Y f . Those are found through the singular value

decomposition method, that is, by performing bi-unitary rotations as:

Diag{mf
1 ,m

f
2 ,m

f
3} =

υ√
2

(UfL)†Y fUfR. (2.1.18)

The unitary matrices UfL,R rotate the matter fields from the flavour basis to the physical mass

basis: fmass
Li

= (UfL)†ijf
flav.
Lj

, fmass
Ri

= (UfR)†ijf
flav.
Rj

.

2.1.4 Flavour and CP violation

Unlike the Higgs field, the gauge bosons couple to the matter fields in the flavour basis. The

interaction terms, arising from the f̄ iγµDµf terms in the Lagrangian in Eq. (2.1.3), in the EW
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broken phase, can be written in terms of the currents:

Lg ⊃ −eJµemAµ −
e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

JµCC
(
W+
µ + h.c.

)
, (2.1.19)

with the electromagnetic current given by:

Jµem=Qu (ūLγ
µuL + ūRγ

µuR) +Qd
(
d̄Lγ

µdL + d̄Rγ
µdR

)
+Qe (ēLγ

µeL + ēRγ
µeR) , (2.1.20)

where Qf are the electric charges of the fermions f = u, d, e, the weak neutral current being:

JµNC = −1

2
d̄Lγ

µdL −
1

2
ēLγ

µeL +
1

2
ūLγ

µdL +
1

2
ν̄Lγ

µνL − sin2 θWJ
µ
em (2.1.21)

and the weak charged current:

JµCC = ūLγ
µdL + νLγ

µeL. (2.1.22)

When moving to the mass basis by redefining the matter fields by the unitary matrices UfL,R,

the electromagnetic and weak neutral currents remain invariant. The charged current however,

is now written as:

JµCC = ūLγ
µ(UuL)†UdLdL + νLγ

µ(UνL)†U eLeL. (2.1.23)

Since neutrinos are massless in the SM due to the absence of right-handed components, it is

possible to make the choice UνL = U eL, leaving invariant the above interaction in the lepton

sector. In the quark sector on the other hand, the matrix:

VCKM ≡ (UuL)†UdL, (2.1.24)

known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [24], is different than the unit matrix,

allowing for weak transitions between quarks of different flavours. In the so called “standard

parametrisation” [23, 25], it is written in terms of three mixing angles θ12, θ23 θ13 and one

complex phase δ as:

VCKM≡

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (2.1.25)

where cij ≡ cos θij , sij ≡ sin θij . The angles θij parametrise the amount of mixing between the

quarks of the i-th and j-th flavours and the Dirac phase δ is the source of parity and charge

conjugation (CP) violation, first discovered in the decays of neutral Kaon [26], that resulted

in the Nobel Prize being awarded to J. Cronin and Val Fitch in 1980. The experimental

measurements of the VCKM elements proves that there is flavour violation in the W± vertex in

the SM, as the up- and down-quark Yukawa matrices can not be diagonalised simultaneously.

Even though VCKM 6= 11, it is strongly hierarchical. This becomes apparent when writing

Eq. (2.1.25) in the Wolfstein expansion [27], in terms of a small parameter λ, as:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.1.26)
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where:

λ ≡ |Vus|√
|Vud|2 + |Vus|2

= s12, A ≡ 1

λ

∣∣∣∣ VcbVus

∣∣∣∣ =
s23

λ2
, ρ+ iη ≡ V ∗ub

Aλ3
=
s13e

iδ

Aλ3
, (2.1.27)

with numerical values [23]:

λ = 0.22537± 0.00061, A = 0.814+0.023
−0.024,

ρ

(
1− λ2

2

)
= 0.117± 0.021, η

(
1− λ2

2

)
= 0.353± 0.013. (2.1.28)

The amount of CP violation is measured through Jarlskog invariant [28], which is a phase-

convention-independent quantity, defined as:

Im[VijVklV
∗
ilV
∗
kj ] = JCP

∑
m,n

εikmεjln, (2.1.29)

with the numerical value of [23]:

JCP = (3.06+0.21
−0.20)× 10−5. (2.1.30)

In the SM, flavour changing neutral currents (FCNC) are forbidden are tree level, whereas the

flavour changing charged currents (FCCC) are suppressed, as they can only occur in loops with

the W± bosons and the CKM matrix is very close to the unit matrix.

2.1.5 Incompleteness of the SM

To this day, experiments keep confirming the Standard Model as a successful theory describing

the electroweak and strong nuclear forces. Every particle predicted has been observed, with

the last missing piece, the Higgs boson, discovered in July of 2012 at CERN [4]. However, the

only observation for physics beyond the SM has been the neutrino oscillations, implying that

neutrinos are not massless. This discovery is of great importance for our understanding of the

universe and Takaaki Kajita and Arthur B. McDonald were awarded the Nobel Prize in 2015

for their contributions.

• Neutrino masses and mixing

In the SM, the fermionic mass terms arise from interactions of the left- and right-handed

fermionic components with the Higgs field. Neutrinos were assumed to be only of the

left-handed type, as only those interact via the weak nuclear force, the only observed

interaction involving neutrinos. In the absence of right-handed components, neutrinos

are strictly massless, in agreement with the experimental data at the time of the SM

formulation.

Since 1998, a number of experiments involving solar [29], atmospheric [30] and reactor

[31] neutrinos have established that those particles can change flavour, just like quarks do

and therefore have small but non-zero mass. A straightforward way of accommodating
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massive neutrinos in the SM, is to extend it with a set of right-handed neutrinos, which

are singlets under the SM gauge group. One can then write down a Yukawa term for

neutrinos, to be added in Eq. (2.1.16), leading to Dirac masses of the type (2.1.18), once

EW symmetry is broken. Such a term would violate the lepton numbers Le, Lµ, Lτ that

distinguish the different flavours of neutrinos but still preserve the total lepton number

L = Le + Lµ + Lτ . For the masses generated by a neutrino Dirac term to be of the order

of 0.1 eV, in accordance with experimental observations, the Yukawa couplings should be

as small as 10−12, many orders of magnitude smaller than the corresponding couplings of

the rest of the SM fermions.

An alternative approach is to also allow for violation of the total lepton number L at

some high energy scale ΛL. Then, one can write the five-dimensional, non-renormalisable

Weinberg operator [32]:

−
Y ν
ij

ΛL
(LiH)(LjH) + h.c. (2.1.31)

which generates a Majorana mass term for the neutrinos:

− 1

2
(Mν)ijνLiνLj + h.c., (2.1.32)

where the masses Mν = Yν υ/ΛL arise from the eigenvalues of Y ν
ij . Then, the lightness

of the neutrinos implies that the scale ΛL is of the order of 1014 GeV, allowing for the

couplings Yν to be of order one.

Generating the Majorana masses described above in a renormalisable extension of the

SM, requires the presence of some heavy neutral particles, identified with right-handed

neutrinos. Allowing for tree-level exchange of these heavy particles, reduces to the effective

operator in Eq. (2.1.31), once they are integrated out. Then, the light neutrino mass

matrix is given by:

mµ = −mT
DM

−1
R mD, (2.1.33)

where mD is the Dirac type mass matrix and MR is the symmetric Majorana mass matrix

for the right-handed neutrinos. In this framework, the lightness of the left-handed neutri-

nos is nicely explained, as they are suppressed by the heavy right-handed neutrino mass

scale. Hence, this mechanism is called the “see-saw mechanism” [8].

The fact that neutrinos “oscillate” amongst the three flavour species νe, νµ, ντ , means that

their mass matrix is non-diagonal and, in fact, a matrix with large mixing angles is needed

for the extraction of its eigenvalues. As a result, the leptonic part of the charged current

in Eq. (2.1.23) is brought to a non-diagonal form. In analogy with the quark sector, the

product of the matrices that diagonalise the charged-lepton and neutrino mass matrices,

is identified with the leptonic mixing matrix, named after Bruno Pontecorvo, Ziro Maki,

Masami Nakagawa and Shoichi Sakata (PMNS) [33] and defined as:

UPMNS ≡ (U eL)†UνL. (2.1.34)

It can be parametrised in terms of the leptonic mixing angles and the leptonic CP violating

phase in analogy to VCKM in Eq. (2.1.25) and if neutrinos are Majorana, it is further post-

multiplied by a phase matrix P ≡ Diag.{1, eiβ21/2, eiβ31/2}. According to the global fit [34],
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the mixing angles lie in the 3σ range:

sin2 θ12 ∈ [0.270, 0.344], sin2 θ23 ∈ [0.385, 0.644], sin2 θ13 ∈ [0.0188, 0.0251]. (2.1.35)

• Gravity

Even minimally extended to incorporate neutrino masses, it is commonly agreed that

the SM can not be the whole story. For a start, it does not incorporate gravity and

gravitational effects become important near the Planck scale MP =
√

8πGNewton = 2.4×
1018 GeV. We therefore know that some new physics has to be present around that scale.

There is though strong theoretical motivation, accompanied with observations that the

SM cannot explain, to believe that new physics will be discovered soon, well below the

Planck scale.

• Gauge hierarchy problem

The “gauge hierarchy problem” [35], associated with the sensitivity of the Higgs mass to

the scale of new physics, is one of them. It arises when computing the quantum corrections

to the Higgs bare mass. Introducing a cut-off scale ΛNP at which some new physics is

present, the Higgs bare mass receives corrections from higher order Feynman diagrams,

involving any particle that couples to the Higgs, propagating in a loop. Schematically, the

loop correction due to a fermion f that couples to the Higgs through the Yukawa term

−λf f̄fH, is of the form:

δm2
h = −|λf |

2

8π2
Λ2

NP + log div. + finite, (2.1.36)

where the second term in Eq. (2.1.36) grows only logarithmically with ΛNP but the first

term, being quadratic in ΛNP is the source of the problem. Assuming that the SM is

valid all the way up to the Planck scale, such that ΛNP = MP and considering the largest

contribution to (2.1.36), stemming from the top quark, λf ≈ 1, results to radiative cor-

rections δm2
h that are about 30 orders of magnitude larger than the Higgs mass squared

itself. In other words, the tree-level Higgs mass squared should be of the same order as

the radiative corrections δm2
h ≈ 1034 GeV2, such that they cancel at a precision of about

30 digits, to yield m2
h ≈ 1252 GeV2! Such an “unnatural” cancellation could be prevented

if the new physics scale is not much larger than the measured Higgs mass or if there are

some extra contributions to Eq. (2.1.36) which, due to some symmetry, would be able to

cancel the quadratic in ΛNP term.

• Dark matter

An astrophysical observation for which the SM provides no explanation is the abundance

of Dark Matter (DM). Since the 1930’s, when Fritz Zwicky first discovered that the vast

majority of the Coma cluster’s mass was non-luminous [36], hence “dark”, there has been

compelling evidence that the ordinary, visible baryonic matter, consisting of protons and

neutrons, constitutes less than 5% of the total mass-energy content of the universe. Studies

of galaxy rotation curves, gravitational lensing effects, data from the cosmic microwave

background radiation, all point towards the existence of some electrically neutral, massive
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and stable particles that interact weakly with the ordinary matter. The only possible DM

candidate that the SM can provide are the neutrinos. However, neutrinos are relativistic

and a dominating DM particle with this property would lead to an unrealistic structure

formation [37] of the universe. In addition to this argument, neutrino masses less than 1

eV, are too light to account for the cosmological matter density. Right-handed “sterile”

neutrinos though, with masses in the keV range could account for all the dark matter of

the universe [38].

• Matter-antimatter asymmetry

The fact that our universe is matter dominated is an ongoing puzzle. Since the SM model

is built upon symmetries, it is assumed that at the big-bang there were equal amounts of

matter and antimatter. Had there been no mechanism to be held responsible for shifting

that balance in favour of matter, all that would be left today after matter-antimatter

annihilations, would be a universe of photons. The SM in its minimal form provides no

such mechanism but when equipped with right-handed neutrinos, the leading candidate is

“leptogenesis”, a process that produces an asymmetry between leptons and anti-leptons

in the early universe [39].

• The flavour puzzle

There are already 19 free parameters in the SM and with the inclusion of neutrino masses,

7 (if neutrinos are Dirac fields) or 9 (if they are Majorana) new parameters are added. 13

of those are related to the flavour sector, which seems to demand a deeper understanding.

The number of generations/flavours is not explained by first principles. The fermionic

masses span many orders of magnitude, with the top quark being more than 1011 times

heavier than the neutrinos. Furthermore, the quarks appear to change flavour/mix only

mildly, whereas the leptonic sector exhibits the opposite behaviour. Although we do have a

parametrisation to account for the observed masses and mixing angles, a lot of theoretical

work has been done towards describing these patterns within a concrete theory based on

symmetries.

2.2 Supersymmetry (SUSY)

2.2.1 Motivation

In the 1950s and ’60s, with the advances in particle accelerators and detectors, hundreds of

subatomic particles were discovered, urging for some classification scheme to put order in the

chaos. In 1962, Murray Gell-Mann and Yuval Ne’eman independently proposed the “Eightfold

Way” [40], that arranged mesons and baryons into geometrical shapes, based on their baryon

number, spin and parity. It was an organisation of the already observed particles in multiplets

of the SU(3)f symmetry of flavour, that also lead to the theoretical prediction of particles

that were yet unseen. The natural question that followed was whether it was possible to unify

particles of different spin in one multiplet of a symmetry group.

According to a no-go theorem of Coleman and Mandula in 1967 [41], under certain physically

reasonable assumptions, the most general symmetry group of the scattering matrix S that de-

scribes relativistic particle interactions, is a direct product of the Poincaré group and some
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internal symmetry groups, that does not allow for mixing of particles with different spins when

the interactions are required to be non-vanishing. In other words, the internal symmetry gener-

ators commute with the space-time translation and the rotation and Lorentz boost generators,

thus, acting on physical states by multiplying them with momentum- and spin-independent Her-

mitian matrices. However, in their proof, Coleman and Mandula had only considered bosonic

generators. A few years later [42, 43], it was realised that relaxing the assumption that the sym-

metry generators only satisfy commutation relations, this no-go theorem can be circumvented.

Extending the Poincaré algebra by including fermionic generators that satisfy anti-commutation

relations, it is possible to unify states with spin differing by 1/2 in a single multiplet.

Such symmetries are called supersymmetries and constitute the only possible non-trivial exten-

sion of the Poincaré symmetry, putting the fermionic and bosonic degrees of freedom on the

same footing and mixing internal (spin) and space-time states. The famous work of Wess and

Zumino in 1974 on four-dimensional supersymmetric field theories [44] established the interest

in their systematic study.

Even though no hint of supersymmetry has been experimentally observed so far, it is still a

particularly favoured area of research on beyond the SM physics for a number of reasons. One

of the most significant ones, is that it provides a solution to the gauge hierarchy problem, as for

every fermionic loop correction to the Higgs mass in Eq. (2.1.36), there is a bosonic one con-

tributing with the opposite sign, resulting to a perfect cancellation of the quadratic divergences

and naturally allowing for a light Higgs. Supersymmetry also provides for weakly interacting,

massive and stable neutral particles, which would be suitable Dark matter candidates. Another

important point is that supersymmetry allows the three coupling constants of the SM gauge

groups to unify around the energy scale of 1016 GeV. On the contrary, within the SM alone, the

coupling constants approach one another at around 1014 GeV but they do not unify. Finally,

when supersymmetry is gauged, i.e. imposed as a local symmetry where the transformations

are space-time dependent, gravity is accounted for in the context of supergravity. For these and

many more reasons that make this theory attractive, its main features are reviewed in what

follows. More details and references can be found in [45–47].

2.2.2 SUSY algebra

In SUSY, bosons are turned into fermions and vice-versa through the fermionic generator Q:

Q|boson〉 ∝ |fermion〉, Q|fermion〉 ∝ |boson〉. (2.2.1)

This is achieved by the generalisation of a Lie algebra to a graded algebra, where, for a group

generator Oα,

OαOβ − (−1)ηαηβOβOα = iCγαβOγ , ηα =

{
0 if Oα is bosonic

1 if Oα is fermionic
. (2.2.2)

The bosonic generators are those of the Poincaré group: Pµ for space-time translations and

Mµν for Lorentz transformations and the fermionic generators are the Weyl spinors QAα , Q̄Aα̇ ,

A = 1, ..,N . We shall restrict our discussion to N = 1 SUSY, with only one copy of Qs. Those
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commute with the generators of the SM gauge group, while the rest of the relations constituting

the SUSY algebra read:

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (2.2.3)

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, (2.2.4)

[Qα, Pµ] =
[
Q̄α̇, Pµ

]
= 0, (2.2.5)

[Qα,Mµν ] = −1

2
2(σµ)βαQβ, (2.2.6)[

Q̄α̇,Mµν

]
= −1

2
2(σ̄µ)β̇α̇Qβ, (2.2.7)

where the spinor indices α, β = 1, 2 and α̇, β̇ = 1, 2 are raised and lowered by the totally

antisymmetric tensor εαβ = εα̇β̇ = −εαβ = −εα̇β̇, ε12 = 1 and the four-vectors of the Pauli

matrices are defined as (σµ)αβ̇ ≡ (11, σi)αβ̇, (σ̄µ)α̇β ≡ (11,−σi)α̇β.

2.2.3 Superspace and Superfields

The single-particle states are organised into supermultiplets, the irreducible representations of

the SUSY algebra. Each supermultiplet contains both fermions and bosons which are called

superpartners of each other, such that the number of fermionic degrees of freedom (dof) is equal

to the number of the bosonic ones. The Poincaré Casimir operator P 2 also commutes with

the fermionic operators Q and therefore all states lying within a supermultiplet have equal P 2

eigenvalues, i.e. equal masses.

Just like our familiar fields are functions of the Minkowski space-time coordinates xµ, super-

symmetric fields (superfields) are functions of the superspace coordinates which include two

additional Grassmann valued coordinates θα, θ̄α̇. A generic superfield S(xµ, θα, θ̄
α̇) can be ex-

panded in powers of θα, θ̄
α̇ and since Grassmann numbers are nilpotent, it is given by a finite

number of terms:

S(xµ, θα, θ̄α̇) = ϕ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) + (θσν θ̄)Vν(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x), (2.2.8)

where ϕ,M,N are complex scalar fields, Vν is a complex vector field and φα, χ̄
α̇, ρα, λ̄

α̇ are Weyl

spinors. Thus, S has 16 bosonic and 16 fermionic dof. Let us define the infinitesimal SUSY

transformation:

S →
(
1 + iξQ+ iξ̄Q̄

)
S = S + δS, (2.2.9)

where ξ, ξ̄ are Grassmann variables and

Qα = −i∂α − (σµθ̄)α∂µ, Q̄α̇ = i∂̄α̇ + (θσµ)α̇∂µ, (2.2.10)

with ∂α ≡ ∂/∂θα, ∂̄α̇ ≡ ∂/∂θ̄α̇ , ∂µ ≡ ∂/∂xµ, are representations of the fermionic generators.

Then, if S1, S2 are superfields, so is their product, as δ(S1 S2) = i(ξQ + ξ̄Q̄)(S1 S2). Any

linear combination of superfields is also a superfield and so is ∂µS. However, ∂αS is not,

as δ(∂αS) = ∂α(δS) = i∂α
[
(ξQ+ ξ̄Q̄)S

]
6= i(ξQ + ξ̄Q̄)(δS). For that reason, the covariant
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derivatives are defined as:

Dα = i∂α + (σµθ̄)α∂µ, D̄α̇ = −i∂̄α̇ − (θσµ)α̇∂µ, (2.2.11)

satisfying:

{Dα, D̄β̇} = −2(σµ)αβ̇Pµ, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0, (2.2.12)

{Dα,Qβ} = {Dα, Q̄β̇} = {D̄α̇,Qβ} = {D̄α̇, Q̄β̇} = 0, (2.2.13)

such that DαS and D̄α̇S are superfields.

The generic superfield S, defined in Eq.(2.2.8), is not an irreducible representation of the super-

symmetric algebra. Those are found by imposing certain constraints upon S, eliminating some

of its dof. The simplest supermultiplet consist of a single Weyl fermion and a complex scalar

field, having in total four dof. It is called the left-handed chiral or matter scalar supermultiplet,

usually denoted by Φ and it is constructed by imposing the constraint:

D̄α̇Φ = 0. (2.2.14)

Analogously, the right-handed anti-chiral supermultiplet is defined as:

DαΦ = 0. (2.2.15)

Solving Eq.(2.2.16), a left-handed chiral superfield is written in terms of components as:

Φ(xµ, θα, θ̄α̇) = ϕ(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µϕ(x)

− i√
2

(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ(x). (2.2.16)

The scalar part ϕ can accommodate the Higgs and the superpartners of the SM fermions,

called squarks and sleptons. The SM fermions and Higgs’ superpartner, the Higgsino, would be

contained into the spinor part ψ, while the scalar component F is a non-dynamical auxiliary

field, added to match the bosonic and fermionic dof. The SUSY algebra then closes off-shell,

while on-shell, F can be eliminated by using its equation of motion. Any holomorphic function

of Φ is also a left-handed chiral superfield, while Φ̄ = Φ† is a right-handed anti-chiral superfield.

The next irreducible representation of the SUSY algebra is obtained by applying the condition:

V = V † (2.2.17)

on the superfield V. This is real vector supermultiplet, comprising by the components:

V (xµ, θα, θ̄α̇) = C(x) + iθχ(x)− iθ̄χ̄(x) + θσµθ̄Vµ(x)

+
i

2
θθ (M(x) + iN(x))− i

2
θ̄θ̄ (M(x)− iN(x))

+ i(θθ)θ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
− i(θ̄θ̄)θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
(θθ)(θ̄θ̄)

(
D(x)− 1

2
∂µ∂µC(x)

)
, (2.2.18)
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with C,M,N,D being real scalar fields, χ, λ complex Weyl spinors and Vµ a real spin-one

vector field, amounting to eight bosonic and eight fermionic dof. If Λ is a chiral superfield, then

Λ + Λ†, ΛΛ† ,i(Λ−Λ†) are real vector superfields, allowing us to consider a general U(1) gauge

transformation of the form:

V → V + i(Λ− Λ†). (2.2.19)

We then have the freedom to choose the components of i(Λ− Λ†) such that some of the dof of

V are eliminated or “gauged away”. Choosing the Wess-Zumino gauge [44]: C = M = N = 0,

χ = 0, V takes the simple form:

V (xµ, θα, θ̄α̇)|WZ
= θσµθ̄Vµ(x) + (θθ)(θ̄λ̄(x)) + (θ̄θ̄)(θλ(x)) +

1

2
(θθ)(θ̄θ̄)D(x). (2.2.20)

The gauge field Vµ can accommodate the SM gauge bosons, λ is its superpartner, called gaugino

and the auxiliary field D plays as similar role to the one that F plays in a chiral supermalutiplet.

2.2.4 SUSY Lagrangians

Let us consider a supersymmetric theory that incorporates the SM fermions within chiral su-

permultiplets. The action has to be invariant under the whole superspace. Thus, it would

be sufficient to construct a Lagrangian density, which is obtained by only integrating over the

fermionic coordinates, that, under an infinitesimal SUSY transformation, transforms up to a

total space-time derivative.

The D-term of a general superfield S = ...+ (θθ)(θ̄θ̄)D(x) and the F -term of a chiral superfield

Φ = ...+ θθF (x) do have this property, as their transformations under (2.2.9) are:

δD =
i

2
∂µ
(
ξσµλ̄− ρσ̄µλ

)
,

δF = i
√

2ξ̄σ̄µθµψ. (2.2.21)

Recalling that integrals over Grassmann variables behave like derivatives:∫
d2θ (θθ) = 1,

∫
d2θ

∫
d2θ̄ (θθ)(θ̄θ̄) = 1, (2.2.22)

we see that the most general supersymmetric Lagrangian density for a number of chiral super-

fields Φi, would have the form:

L =

∫
d2θ

∫
d2θ̄ K(Φi,Φ

†
i ) +

(∫
d2θW (Φi) + h.c.

)
= K(Φi,Φ

†
i )|D +

(
W (Φi)|F + h.c.

)
, (2.2.23)

where K is a real function, called the Kähler potential and W is chiral holomorphic function,

called the superpotential. The integrations over the Grassmann variables select the D-term

(whatever multiplies (θθ)(θ̄θ̄)) of the Kähler potential and the F -term (whatever multiplies

(θθ)) of the superpotential.
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In view of Eq.(2.2.16), a chiral superfield has the same mass dimension as its scalar component,

[Φ] = [ϕ] = 1. Furthemore, requiring that the fermions have mass dimension of 3/2, [ψ] = 3/2,

we are lead to assign the Grassmann variables the dimensions: [θα] = [θ̄α̇] = −1/2. Then, for

the Lagrangian density to have mass dimension of four, it follows that [K] = 2 and [W ] = 3.

The simplest renormalisable Kähler potential is:

K =
∑
i

Φ†iΦi, (2.2.24)

which gives rise to the kinetic terms:

LK =

∫
d2θ

∫
d2θ̄ K =

∑
i

(
|∂µϕi|2 − iψ̄iσ̄µ∂µψi + |Fi|2

)
(2.2.25)

A more general form of K would lead to more complicated kinetic terms of the form:

LK ⊃ Kij
(
∂µϕi∂

µϕj − iψ̄iσ̄µ∂µψj + FiF
†
j

)
, (2.2.26)

where

Kij =
∂2K

∂Φ†i∂Φj

∣∣∣
Φ=ϕ

, (2.2.27)

with Kij = (Kij)−1 is the Kähler metric. When Kij = δij , we say that the Kähler potential

is canonical, leading to canonical kinetic terms. In order to extract any physically meaningful

properties of a theory, the kinetic terms have to be brought to a canonical form through a basis

transformation which is known as canonical normalisation.

The most general form of the superpotential is:

W =
∑
i

αiΦi +
1

2

∑
ij

mijΦiΦj +
1

3!

∑
ijk

yijkΦiΦjΦk, (2.2.28)

encoding all renormalisable interactions amongst the scalar and fermionic components of the

supermultiplets. Then,

LW =
∑
i

∂W

∂Φi

∣∣∣
Φ=ϕ

Fi −
1

2

∑
ij

∂2W

∂Φi∂Φj

∣∣∣
Φ=ϕ

ψiψj + h.c. (2.2.29)

and solving the F-term equations of motion, we find the scalar potential of the theory:

V =
∂W̄

∂Φ†i
Kij

∂W

∂Φ†j

∣∣∣
Φ=ϕ

, (2.2.30)

where Kij = δij in the canonical basis.

Making the Lagrangian invariant under some abelian gauge U(1) transformation is achieved

by introducing a vector superfield in the Kähler potential, which transforms in the adjoint

representation, as shown in Eq.(2.2.19). Φi on the other hand transform in the fundamental
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representation as:

Φi → e−2igqiΛΦi, (2.2.31)

where qi are their charges under the U(1) symmetry and g is the gauge coupling. Then, the

Kähler potential:

K = Φ†ie
2gqiV Φi (2.2.32)

is gauge invariant and when expanding the exponential and extracting the D−term, in addition

to the kinetic terms of the components of the chiral superfields, it gives rise to their interactions

with the vector and fermionic components of the vector superfield:

LK =

∫
d2θ

∫
d2θ̄ K = (Φ†ie

2gqiV Φi)|D

=
∑
i

(
|∂µϕi|2 − iψ̄iσ̄µ∂µψi + |Fi|2 +

√
2qi
(
ϕiλ̄ψi + ϕ∗iλψi

)
+ g qiV

µ
(
−ψ̄iσ̄µψi + iϕ∗i ∂µϕi − iϕi∂µϕ∗i

)
+ qi(D + qiVµV

µ)|ϕi|2
)
. (2.2.33)

Note that if there was only one superfield Φ with non-zero charge under the gauge group, then

the superpotential W would be zero. In the case where several superfields Φi are involved in the

theory, then W can only consist of terms in which the net-charge cancels (gauge singet terms).

We also need to include the kinetic terms for the gauge fields. Introducing the field strength:

Wα = −1

4
(D̄D̄)DαV, (2.2.34)

which is a chiral superfield, such that WαWα is also chiral, its F -term transforms as a total

spacetime derivative and we can therefore add to the Lagrangian the term:

LGkin =
1

4

∫
d2θWαWα + h.c. =

1

2
D2 − 1

4
FµνF

µν − iλσµ∂µλ̄. (2.2.35)

Collecting all the terms in the Lagrangian that involve the auxiliary field D,

LD =
1

2
D2 +D

(∑
i

qi|ϕi|2
)2

(2.2.36)

and eliminating D by using its equations of motion, we arive at an additional D-term contribu-

tion to the scalar potential:

VD =
1

2

(∑
i

qi|ϕi|2
)2

. (2.2.37)

2.2.5 The Minimal Supersymmetric Standard Model (MSSM)

It is understood that the SM can only be an effective theory that does not describe physics up to

energy scales as large as the Planck scale. As we have seen, SUSY has many attractive features,
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making the extension of the SM to a supersymmetric theory a compelling task. There are many

ways this can be done, with the simplest possibility being the minimal extension of the SM,

known as MSSM, where the SM is extended by one set of fermionic generators (N = 1 SUSY)

and the particle content is minimal, in the sense that there is no introduction of “unnecessary”

fields.

The MSSM is invariant under the SM gauge group SU(3)c × SU(2)L × U(1)Y and hence the

fields that fall into the same supermultiplet have the same quantum numbers. Each SM fermion,

being chiral, is accomodated within a chiral superfield, transforming in the fundamental repre-

sentation of the gauge group. Since in the SM bosons have different quantum numbers from the

fermions, new complex scalar particles are introduced as their superpartners. Those are named

by putting an “s” in front of the associated fermion’s name, in abbreviation for “scalar”. For

example, the electron’s superpartners are two selectrons, one for each of the electron’s hand-

edness. The SM gauge bosons, being vectors, fall into vector superfields that transform in the

adjoint representation of the gauge group and their fermionic superpartners therein are called

gauginos.

Finally, the Higgs boson has no flavour while the fermions do, so it would fall into a seperate

chilar supermultiplet, with its fermionic superpartner called Higgsino. Note though that within

the MSSM, one Higgs superfield can not account for the masses of the up-type quarks as well

as those of the down-type quarks and the charged leptons. In the SM model, the Yukawa in-

teractions consist of the up-type quarks coupled to the Higgs field and the down-type quarks

and the charged leptons coupled to its conjugate. In the MSSM however, these interactions

arise from the superpotential, which is a holomorphic function, prohibiting a field and its com-

plex conjugate to appear at the same time. Therefore, two Higgs superfields: Hu and Hd,

with opposite hypercharges are required such that all fermions aquire their masses through the

Higgs mechanism. Then, the MSSM physical Higgs’ bosons are five rather than one. An ad-

vantageous consequence of this, is anomaly cancellation. The fermionic component of a Higgs

superfield contributes to the SM anomalous triangle diagrams. Having a second Higgs superfield

with opposite hypercharge, adds a contribution that cancells the first one, leaving the theory

anomally-free.

A further addition to the SM symmetries is a discrete symmetry called R-parity or matter

parity. It is introduced in order to forbid some interaction terms in the superpotential that

violate either baryon or lepton number and lead to fast proton decay. Under R-parity, each

particle is assigned a quantum number:

PR = (−1)3(B−L)+2s, (2.2.38)

were B is the baryon number, L is the lepton number and s is the spin. Then, the SM particles

are even under PR whereas their superpartners are odd. Some inportant consequences of R-

parity conservation, other than suppressing proton decay, are that superparticles are always

produced in pairs, that the lightest supersymmetric particle (LSP), if electrically and colour-

neutral, constitutes a dark matter candidate and that every other superparticle will always

decay to an odd number of LSPs plus some SM particles.

In summary, the MSSM particle spectrum consists of one superfield per SM field plus an extra

Higgs Hu superfield, all shown in Table 2.2. All superfields f̂ are labelled by a hat and the
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superpartners f̃ of the SM particle f are labelled by a tilde. Note that the SU(2)L singlets are

conjugated and placed into left-handed chiral superfields, denoted as f̂ c.

Superfield Label Bosonic part Fermionic part SU(3)c SU(2)L U(1)Y

left-handed

chiral
Q̂i Q̃i =

(
ũLi
d̃Li

)
Qi =

(
uLi
dLi

)
3 2 1/6

left-handed

chiral
Û ci ũci uci 3̄ 1 −2/3

left-handed

chiral
D̂c
i d̃ci dci 3̄ 1 1/3

left-handed

chiral
L̂i L̃i =

(
ν̃Li
ẽLi

)
Li =

(
νLi
eLi

)
1 2 −1/2

left-handed

chiral
Êci ẽci eci 1 1 1

left-handed

chiral
Ĥu Hu =

(
H+
u

H0
u

)
H̃u =

(
H̃+
u

H̃0
u

)
1 2 1/2

left-handed

chiral
Ĥd Hd =

(
H0
d

H−d

)
H̃d =

(
H̃0
d

H̃−d

)
1 2 −1/2

vector Ĝa ga g̃a 8 1 0

vector Ŵ k W k W̃ k 1 3 0

vector B̂ B B̃ 1 1 0

Table 2.2: MSSM field content and transformation properties. The index i = 1, 2, 3 labels

the three generations, a = 1, .., 8 enumarates the vector superfields of SU(3)c and k = 1, 2, 3

enumerates the vector superfiels of SU(2)L.

2.2.6 The soft SUSY breaking sector

Since one of the main features of a supersymmetric theory is that particles falling in the same

supermultiplet have the same mass, we know that SUSY cannot be an exact symmetry in nature.

No sfermions or gauginos of equal masses to their SM partners have been observed so far in

experiment, necessitating the formulation of a SUSY breaking mechanism. Without reference

to the specifics of such a mechanism, the MSSM incorporates all possible renormalisable SUSY

breaking terms that respect gauge and R−parity invariance, within the Lagrangian:

−Lsoft =
1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
+ m2

Hu |Hu|2 +m2
Hd
|Hd|2 +m2

Qij Q̃
α
i Q̃

α∗
j +m2

Lij L̃
α
i L̃

α∗
j

+ m2
ucij
ũc∗i ũ

c
j +m2

dcij
d̃c∗i d̃

c
j +m2

ecij
ẽc∗i ẽ

c
j

+ εαβ

(
−bHα

dH
β
u −AuijHα

u Q̃
β
i ũ

c
j +AdijH

α
d Q̃

β
i d̃

c
j +AeijH

α
d L̃

β
i ẽ
c
j + h.c.

)
, (2.2.39)

where α, β are spinor indices and i, j = 1, 2, 3 are family indices. The first line of Eq.(2.2.39)

contains the gaugino mass terms and the second and third lines the mass terms for the scalar
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partners of the SM fermions and for the two Higgses. The last line introduces Yukawa-like

trilinear A-terms and a Higgs mixing term. They all break supersymmetry, as they explicitly

contribute only to the particles appearing therein but not to their superpartners. They are

described as “soft” because all couplings are of positive mass dimension and the cancellation of

quadratic divergences in the theory is preserved.

Lsoft not only introduces a vast number of new parameters [48] the origin of which has to be

explained but also gives rise to flavour and CP violating transitions. The soft trilinear and scalar

masses are matrices in family space and the symmetries of the MSSM alone do not restrict their

structure. Any off-diagonal elements can contribute to FCNC and face severe bounds from

experimental measurements which, so far, are in agreement with the SM expectations. Also,

the soft parameters introduce many complex phases that are constrained by flavour changing as

well as flavour conserving transitions, such as CP asymmetries in rare decays or electric dipole

moments. These issues are the source of the so-called SUSY flavour and CP problems.

In order to reduce the SUSY parameter space, the MSSM can be embedded in a Grand Unified

Theory (GUT) background, where the gauge couplings unify at the high energy scale MGUT.

Then, all three gaugino masses are considered to be equal to the parameter M1/2 and there

are correlations amongst the matter sectors that transform in the same multiplets of the GUT

group. A further simplified scenario is the constrained MSSM (CMSSM), inspired by minimal

supergravity [49], which also assumes that all scalar masses are equal to m0 at the high scale,

stemming from diagonal and universal mass matrices. At the same time, the trilinear matrices

are aligned with the Yukawas, with a proportionality constat A0, while requiring EWSB fixes

the absolute value of the µ parameter. Then, the theory only is formulated in terms of M1/2,

m0, A0, sgn(µ) and the ratio of the Higgs’vevs: tanβ ≡ tβ = υu/υd. However, such assumptions

are not fully justified by symmetry arguments.

2.3 Family symmetries

2.3.1 Motivation

A lot of effort has been put into trying to understand the flavour structure of the Standard

Model. Its peculiar features involve hierarchical fermion masses, with the down-type quark and

charged-lepton masses showing a similar pattern which differs from that of the up-type quarks,

while neutrinos are signicantly lighter than all other particles. Flavour mixing in the lepton

sector appears to be much larger than in the quark sector and the number of generations is not

explained.

The explanation of the origin of mass comes through the Higgs mechanism. Particles that

interact with the Higgs field aquire a mass that is proportional to the strength of that interaction.

The masses of the SM particles have been well measured over the years and the Higgs discovery

in the summer of 2012 sealed that description. What determines the strength of such interactions

though, is still unknown.

As we have seen, the quark and charged-lepton mass terms are generated through Yukawa

couplings to the Higgs doublet and the neutrino masses through the see-saw mechanism. Since
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there are three generations/families for each fermion, those couplings are 3 × 3 matrices in

family space and, when diagonalised, they result to fermionic masses that span many orders

of magnitude. It has been observed that the mass and flavour bases are misaligned, allowing

particles of different families to mix. Even though the amount of this misalignment has been

measured, there is no confirmed theory that predicts it.

If we wish to understand the pattern of the fermionic masses and mixing angles, we need

to reveal what dictates the structure of the Yukawa and Majorana matrices, when they are

formulated in the flavour basis. Of course, one can always argue that Nature has simply chosen

the observed patterns for no apparent reason; but ever since the ancient times, the quest for

insight in physical reality and methodologies of physical inquiries has been based upon symmetry

arguments. Making use of the phenomenological consequences that a successful unification

theory can have, the strategy that has been extensively used in the literature is to unify the three

families of matter within irreducible representations of a family symmetry. This symmetry is

subsequently broken by some Higgs-like fields that develop non-zero vacuum expectation values.

Then, the non-trivial structures that are observed at the low energy scales where experiments

are performed, can be interpreted and analysed as the remaining traces of the family symmetry.

2.3.2 Model building

The idea of the family symmetry is based on extending the Standard Model gauge group by a

family symmetry group GF , which admits triplet representations, under which the three families

of matter unify. The field content of the theory is enlarged, by introducing a set of heavy scalar

fields Φ, called flavons, that are neutral under the SM gauge group but can couple to the usual

matter fields. The operators that are allowed by all symmetries are typically non-renormalisable,

of the form:

OY = fi
Φi Φj

M2
f cjH, (2.3.1)

where i, j are generation indices, f is a left-handed fermion, f c is a CP conjugated right-handed

fermion, H is the Higgs field and M is a heavy mass scale that acts as an ultraviolet (UV) cut-

off. The flavon fields aquire non-vanishing vacuum expectation values, spontaneously breaking

GF and giving rise to effective Yukawa couplings 1:

Yij =
〈Φi〉〈Φj〉
M2

, (2.3.2)

in terms of the small parameter:

λ =
〈Φ〉
M

, (2.3.3)

which can serve as an expansion parameter that is used to build the desired hierarchical Yukawa

matrices. The goal is to find an appropriate set of symmetries which, combined with a suitable

vacuum alignment for the flavons, will give rise to acceptable masses and mixing angles.

1It is more convenient in what follows to use the convention in Eq. (2.3.1) for the extraction of the Yukawa
couplings. Then, the coupling in Eq. (2.3.2) corresponds to the conjugate of the couplings in Eq. (2.1.16).



24 Chapter 2 Theoretical Background

This approach was first introduced in 1979 by Froggatt and Nielsen [5], who considered a U(1)FN

symmetry, broken by a single flavon field, carrying a U(1)FN charge of −1. The objective was

to explain the structure of the quark sector only. The charge assignment of quarks of different

generations was chosen such that each element of the effective Yukawa matrices could be written

as a power of λ times some order-one undetermined coefficient. The result was Yukawa matrices

with the appropriate hierarchical structure but the predictability of the masses and mixing angles

was hindered by the unspecified coefficients.

The Froggatt-Nielsen mechanism has since been extended to involve non-Abelian symmetries,

which are more predictive, as they provide relations between different Yukawa couplings and

are more successful in explaining the non-hierarchical leptonic mixing pattern. There have been

extensive studies on family symmetries based on the continuous groups U(2) [50], SO(3) [51]

and SU(3) [9, 52–54]. However, when a continuous symmetry is spontaneously broken by the

flavon vevs, one has to deal with the appearance of Goldstone modes. The use of a discrete

symmetry instead, is safe from such effects and also offers smaller irreducible representations

that can accommodate the flavon fields, simplifying their vacuum alignment. Furthermore,

discrete symmetries are more suitable for describing particular mixing patterns of the leptonic

mixing matrix. Together with the requirement for triplet irreducible representations that could

justify the number of fermionic generations, the greatest interest in the last decade has been

shown in discrete subgroups of SU(3), with particular attention drawn to the groups A4 [55, 56]

and S4 [10, 11, 57–59].

Until 2012, the neutrino tribimaximal (TB) mixing pattern proposed by Harrison, Perkins and

Scott [60]:

UTB =


2√
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 , (2.3.4)

was in good agreement with the experimental data. the entries of UTB correspond to sin2 θ12 = 1
3 ,

i.e. the three states |νe〉, |νµ〉, |ντ 〉 mix equally, sin2 θ23 = 1
2 , i.e. the |νµ〉 and |ντ 〉 states mix

maximally and sin2 θ13 = 0 due to no observation of electron neutrino disappearance at the time.

These fractional numbers could be arising from the Clebsch-Gordan coefficients of a symmetry

group. On the contrary, the neutrino mass squared differences (and the masses of the charged

leptons) are not characterised by such distinct fractional relations amongst each-other. This

suggests that the effective neutrino mass matrix mν is diagonalised by a matrix with mixing

angles that are independent of the eigenvalues, i.e. mν is a “form diagonalisable” matrix [61].

Such a property is known to be realised in the context of discrete flavour groups.

Assuming that neutrinos are Majorana, their mass matrix, in the basis of diagonal charged

leptons, is invariant under a Klein group ZS2 ×ZU2 , with generators denoted by S and U . In the

case of TB mixing, they have the simple representation:

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , U = −

 1 0 0

0 0 1

0 1 0

 . (2.3.5)
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If the flavour symmetry of neutrinos is a residual symmetry of the family symmetry and it is

preserved to leading order in the neutrino sector, then the family symmetry should contain both

S and U . The smallest group with this property is S4. It is the group of permutations of four

objects, having 4! = 24 elements [62].

In 2012, θ13 6= 0 was measured from RENO [63], MINOS [64], Daya Bay [65] and T2K [66]

experiments, with a current fit value of [7.87, 9.11]o in the 3σ range [34]. However, this mixing

angle is still a lot smaller than the other two, which are still consistent with TB mixing (see

Eq. (2.1.35)) and therefore such a mixing pattern would be a good first approximation of a

flavour model. Of course, deviations are needed, which can arise from charged lepton corrections

or from the neutrino sector, by partly breaking the Klein symmetry at higher orders. For reviews

on how discrete symmetry models can be modified to account for a non-zero θ13, see [6].

2.3.3 Extension to SUSY GUTs

The family symmetry formalism can be extended to include supersymmetry. In the context

of a supersymmetric field theory, all fields become superfields and the Yukawa operators arise

from the superpotential of the theory, while the kinetic terms and the soft scalar masses, come

from the Kähler potential. Now the flavour problem increases dramatically, as the superpartner

masses and mixing angles must also be explained, while facing severe experimental constraints

on the off-diagonal elements of the soft mass matrices.

In principle, when one writes the soft SUSY breaking Lagrangian, there is nothing that forces

the mass matrices to be approximately diagonal. When those matrices are rotated into the

mass basis of the SM fermions, the so called super-CKM (SCKM) basis [47], they participate

in loop diagrams inducing FCNC. So, the extra issue to be taken care of is to control these

off-diagonalities, as well as the new sources of CP violation, in order to stay in agreement with

experiment.

One of the most important aspects in building a model of flavour by means of a family symmetry,

is the appropriate alignment of the flavon vevs in flavour space. Supersymmetry provides a

convenient mechanism for this [55]. A new set of fields is introduced, called “driving fields”,

together with a U(1)R symmetry. Under this symmetry, the Higgs superfields and the flavons

are uncharged, the superfields containing the SM fields and the right-handed neutrinos have a

charge of +1 and the driving fields carry a charge of +2. In that way, driving fields do not

interact directly with the SM particles but can couple to the flavons and appear only linearly

in the so called “driving piece” of the superpotential. By requiring that supersymmetry is

unbroken at the scale of family symmetry braking, the F -terms of the driving fields have to

vanish, leading to a particular alignment of the flavon vevs.

Let us now consider a supersymmetric theory supplemented with a family symmetry and see

how the Yukawa and soft mass matrices are constructed. The first step is to write down all

operators that couple them to the Higgs and matter fields, in order to generate the Yukawa

piece of the superpotential (dropping the “hat” superfield notation for simplicity and including

right-handed neutrinos):

WY = εαβ

(
Y u
ijH

α
uQ

βiuc j + Y d
ijH

α
dQ

βidc j + Y ν
ijH

α
uL

βiνc j + Y e
ijH

α
d L

βiec j
)
. (2.3.6)
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The flavon expansion that, once the family symmetry is broken, will lead to WY in Eq. (2.3.6),

can be schematically represented as:

H f
∑
Φ Φ′

yf f
c

Φ Φ′
Φ⊗ Φ′

M2
f c, (2.3.7)

where yf f
c

Φ Φ′ are some order-one coefficients. Demanding that CP is only broken by complex

flavon vevs, all flavon expansion coefficients are real.

In the soft SUSY breaking sector, the piece of Eq. (2.2.39) containing the trilinear scalar cou-

plings has a similar form to Eq. (2.3.6). Assuming that SUSY breaking is triggered at some

mass scale MX by some “hidden sector” superfield(s) X, which acquires a non-zero vev on its

auxiliary F -component: 〈FX〉 6= 0, then the trilinear piece comes from the F -terms of operators

of the form:

X

MX
H f

∑
Φ Φ′

af f
c

Φ Φ′
Φ⊗ Φ′

M2
f c. (2.3.8)

In a supergravity framework, if the superpotential contains no direct couplings of X to the

Yukawa sector and the Kähler potential is canonical, “picking up” the F -term ofX in Eq. (2.3.8),

would lead to (once the relevant fields develop their vevs) Af ∝ Yf [52, 67], as af f
c

Φ Φ′ would be

equal to yf f
c

Φ Φ′ up to a global factor. However, it has been shown that any superfield with a

non-zero vev on its scalar component 〈Φ〉, is expected to also develop a non-zero 〈FΦ〉, of the

order of m3/2×〈Φ〉, where m3/2 is the gravitino mass; and so do the flavons [53, 68]. As a result,

when taking the F -terms of Eq. (2.3.8), there are additional, flavon-induced contributions to the

trilinears Aij , of the form: 〈FΦ∂ΦWY 〉ij . In a family symmetry model with multiple effective

operators, these contributions cause each of the coefficients af f
c

Φ Φ′ in Eq. (2.3.7) to differ from

the corresponding ones in Eq. (2.3.6) by a different order-one factor [68]. In other words, any

universality between the trilinear and the Yukawa matrices is inevitably lost. As discussed in

[52], there are mechanisms for suppressing 〈FΦ〉, such that they are a lot smaller than m3/2×〈Φ〉,
in order to keep flavour violating effects under control.

However, in the context of a global SUSY model that does not refer to a specific SUSY breaking

mechanism, the vacuum alignment of the flavon F -terms and their contribution to the generation

of the SUSY breaking terms can be derived through the minimization of the scalar potential,

after promoting the mass parameters and the coupling constants of the theory to constant

superfields with non-zero F -terms. This procedure is thoroughly described in [69], where it is

found that 〈FΦ〉 are indeed of the order of mSUSY ×〈Φ〉 and the orientations of these two types

of vevs in flavour space are aligned to LO in the expansion parameter 〈Φ〉/M .

Turning to the Kähler potential, to include the SUSY breaking effects, one can add a non-

renormalisable operator involving the hidden sector superfield and write the effective potential

as:

Kf =
∑
f

f †
[(

cf0 + bf0
X†X
M2
X

)
11 + α

∑
Φ

(
cfΦ + bfΦ

X†X
M2
X

)
Φ⊗ Φ†

M2

]
f, (2.3.9)
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where cf0(Φ), b
f
0(Φ) are some order-one coefficients and α is a constant. Let us first consider

α = 0. Taking the D-term of (2.3.9), we obtain the kinetic terms in Eq. (2.2.25) (as the factor

1+cf0〈|X|2〉/M2
X can be absorbed into a simple redefinition of the matter superfields), while the

term proportional to bf0 gives rise to effective soft scalar mass squared terms that are universal

in flavour space and of the order of 〈|FX |2〉/M2
X . However, when we allow for couplings between

the matter superfields and the flavons by turning on α 6= 1, these non-renormalisable terms

inevitably lead to a complicated Kähler metric once the relevant fields develop their non-zero

vevs. Not only it is different from the unit matrix but also develops off-diagonal entries. We

therefore need to go through the “canonical normalisation” procedure [12] and make a change of

basis by redefining the superfields, such that K̃ij = 11 in flavour space, leading to the standard

kinetic terms. Then, the Yukawa, trilinear and soft scalar matrices have to be rotated into that

basis.

In general, the Yukawa and trilinear terms vanish in the family symmetry limit, while the soft

scalar masses are universal. When this symmetry is broken, any universality is lost. Since the

soft scalar mass squared matrices and the non-canonical Kähler metrics arise from a similar

flavon expansion, they acquire a similar structure in flavour space. In complete analogy, the

flavour structure of the trilinear matrices is similar to the one of the Yukawas. The fact that

cfΦ and bfΦ are different to account for SUSY breaking effects, means that the scalar masses will

remain off-diagonal in the canonical basis. Similarly, as af f
c

Φ Φ′ 6= yf f
c

Φ Φ′ the trilinear matrices will

not be diagonal in the mass basis of the SM fermions (SCKM basis). It is these off-diagonalities

that a successful flavour model has to control, in addition to providing a good description of

the SM fermionic masses and mixing angles.

Since Renormalisation Group (RG) running down to the electroweak scale is not expected to

significantly alter these off-diagonal entries, the model should not predict large scalar mixings

at the high energy scale. This scale could be the unification scale when SUSY is embedded in

a GUT background. In such a case, quarks and leptons, as well as squarks and sleptons, fall

into the same supermultiplets, providing us with correlations between the hadronic and leptonic

sectors, which, after a computable RG running, can be inferred at the low energy scale where

experiments are performed.

The simplest GUT group that can be used to make a model of flavour more constraining, is

SU(5) [70]. SU(5) unification implies that the matter superfields fall into (three copies of) the

F = 5̄ and T = 10 representations as follows:

T =
1√
2


0 −ucG ucB −uR −dR
ucG 0 −ucR −uB −dB
−ucB ucR 0 −uG −dG
uR uB uG 0 −ec
dR dB dG ec 0

 and F = (dcR dcB dcG e − ν) , (2.3.10)

where r, b, g correspond to the SU(3)c charges: red, blue and green. The decompositions into

representations of the SM gauge group SU(3)c × SU(2)L × U(1)Y read:

5̄ = (3̄,1, 1/3)⊕ (1, 2̄,−1/2), 10 = (3̄,1,−2/3)⊕ (3,2, 1/6)⊕ (1,1, 1), (2.3.11)
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with F = (dc, L) and T = (uc, Q, ec), while right-handed neutrinos can be added as SU(5)

singlets. The Higgs doublets Hu and Hd fall within the SU(5) multiplets H5 and H5̄, such that

the Yukawa terms for one family are written as:

yuH5iTjkTlmε
ijklm + yνH5iF

iνc + ydH
i
5̄TijF

j , (2.3.12)

where εijklm is the SU(5) totally antisymmetric tensor with i, j, k, l,m = 1, ..., 5. Those terms

correspond to the SM couplings:

yuHuQu
c + yνHuLν

c + yd(HdQd
c +Hde

cL). (2.3.13)

The unification of the down-quark and electron Yukawa coupling implied in (2.3.13) is consis-

tent with the measurements of the down and electron masses but such a relation can not hold

for the the other two generations. This difficulty is bypassed by considering the Higgs repre-

sentation H4̄5, coupling to the second generation, through the SU(5) singlet (Y d)22H4̄5T2F2,

corresponding to (Y d)22(HdQ2d
c
2 − 3Hde

c
2L2). Now Hd is actually a linear combination of the

electroweak doublets contained in H5̄ and H4̄5 and the factor −3 is an SU(5) Clebsch-Gordan

coefficient. For hierarchical Yukawa matrices with a zero (11) element, this set up results in the

Georgi-Jarlskog relations [71]:

yb = yτ , ys =
yµ
3
, yd = 3ye (2.3.14)

at the GUT scale, which lead to acceptable low energy scale mass relations.



Chapter 3

Approaching Minimal Flavour

Violation from an

SU(5)× S4 × U(1) SUSY GUT

3.1 Introduction

This chapter details my research on a model of flavour, using a family symmetry in a super-

symmetric GUT background. The work presented here has been published in [14].

As discussed in Chapter 2, the SM should be viewed as an effective field theory and some new

physics is required, in particular in view of the Higgs naturalness problem. In the absence of

any observed beyond the SM flavour and CP violation, strong restrictions are imposed on the

flavour sector of any new physics model. In order to tackle this issue, a sort of “straw man”

ansatz for flavour has emerged, known as Minimal Flavour Violation (MFV) [72–75]. In this

scenario, all flavour and CP violating transitions are postulated to originate in the SM Yukawa

matrices, so that they are governed by the CKM matrix.

When considering supersymmetry softly broken at the TeV scale, then in general large deviations

from SM flavour and CP violation are expected. SUSY models include one-loop diagrams that

lead to FCNC processes, such as e.g. b→ sγ and µ→ eγ, at rates which are proportional to the

size of the off-diagonal elements of the scalar mass matrices, when the latter have been rotated

to the SCKM basis where the Yukawa matrices are diagonal [47]. These SUSY contributions

are tamed in the CMSSM, which postulates that, at the high energy scale, the SUSY breaking

squark and slepton mass squared matrices are proportional to the unit matrix and the trilinear

A-terms are additionally aligned with the Yukawa matrices, resulting in an (approximate) MFV-

like structure at low energy [47], which is of course exactly what is observed.

The CMSSM framework always provides a safe haven from unwanted flavour violation, although

CP violation in the form of Electric Dipole Moments (EDMs) remains a challenge [47]. However,

with SUSY and SUSY GUTs, the real challenge is to justify the assumptions of MFV or the

CMSSM, while at the same time providing a realistic explanation of quark and lepton (including

29
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neutrino) masses, mixing and CP violation. This non-trivial balancing act is the concern of this

chapter.

The discovery of neutrino mass and mixing has spurred a lot of work aiming to describe flavour

in terms of a family symmetry of some kind, in particular a discrete non-Abelian family sym-

metry [6]. It was realised early on that in such models, the idea of spontaneous flavour and

CP violation could effectively tame the flavour and CP problems of the SM [53, 68] without

any ad hoc assumptions about MFV or the CMSSM. The main point is that the same fam-

ily symmetry introduced to understand the Yukawa sector will also automatically control the

flavour structures of the soft SUSY breaking sector. The only requirement is that the SUSY

breaking hidden sector must respect the family symmetry, which means that the family (and

CP) symmetry breaking scale must be below the mass scale of the messengers which mediate

SUSY breaking to the visible sector. SUSY breaking in the framework of supergravity provides

one attractive example for such a situation.

The idea of using family symmetry to solve the SUSY favour and CP problems has been fully

explored in the framework of an SU(3) family symmetry [9, 52, 53], where it was shown that the

flavons that spontaneously break the family and CP symmetries will perturb the SUSY breaking

sector, leading to tell-tale signatures of flavour and CP violation beyond MFV or the CMSSM.

Unfortunately, these signatures which were expected to appear in Run1 of the LHC [76] did not

in fact materialise, and indeed the allowed parameter space has been much reduced [77].

In the set-up discussed in [9, 52], the extra flavour violation can be understood as follows. At

leading order, the CMSSM is enforced by the SU(3) family symmetry acting on the squark and

slepton mass squared matrices. However, the fact that SU(3) is broken by flavons, as it must be

to generate the quark and lepton masses, means that flavons appearing in the Kähler potential

will give important contributions to the kinetic terms, requiring extra canonical normalisation

(CN) [12]. Since SUSY breaking also originates from the Kähler potential, the flavons will

also modify the couplings of squarks and sleptons to the fields with SUSY breaking F -terms.

The resulting corrections to the soft mass squared matrices from unity will be similar to the

corrections of the corresponding Kähler metrics, yet both are not aligned due to independent

coefficients of the relevant operators. Likewise, the trilinear soft SUSY breaking A-terms will

replicate the flavour structure of the Yukawa matrices prior to CN but exact alignment is

not realised. All of this occurs at the high scale. Additional flavour violation is generated

by renormalisation group (RG) running down to low energy, taking into account the see-saw

mechanism [8] which will involve thresholds at an intermediate scale, see e.g. [78, 79].

In this chapter, it will be shown how approximate MFV can emerge from an SU(5) SUSY GUT,

supplemented by an S4 × U(1) family symmetry. The fermionic sector of this model has been

studied in [10, 11], where it was found that it provides a good description of all quark and

lepton (including neutrino) masses, mixings and CP violation. The aim of the work presented

here is to introduce the model’s soft SUSY breaking sector, which is assumed to respect the

family symmetry and investigate the flavour and CP violating (as well as conserving) effects

that emerge.

One of the foremost steps in doing so, is to formulate the flavon expansion of the Kähler potential,

which gives rise to the soft scalar mass matrices and the kinetic terms of the theory. As already

pointed out, the breaking of the family symmetry necessarily leads to non-canonical kinetic
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Field T3 T F N H5 H5 H45 Φu
2 Φ̃u

2 Φd
3 Φ̃d

3 Φd
2 Φν

3′ Φν
2 Φν

1 η

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1

S4 1 2 3 3 1 1 1 2 2 3 3 2 3′ 2 1 1(′)

U(1) 0 5 4 −4 0 0 1 −10 0 −4 −11 1 8 8 8 7

Table 3.1: The matter, Higgs and flavon superfields of the model in [11] together with their
transformation properties under the imposed SU(5)× S4 × U(1) symmetry.

terms, such that a change of basis is required in order to make any meaningful predictions for

the physical implications of the model. In fact, [12] highlights that the change to the canonical

basis can significantly perturb the structure of the Yukawa matrices. These CN effects were

ignored in [10, 11]. Therefore, the present work revisits the fermionic sector by including such

corrections and it is advantageously found that the results of [10, 11] for the fermionic masses

and mixing angles survive to leading order.

The vacuum alignment of the flavons is also revisited and calculated up to the eighth order

in the expansion parameter (2.3.3), in order to keep track of different CP violating phases

accompanying the higher order corrections. Also, there may be some notational differences

with [10, 11] as, here, subleading terms are not absorbed into the corresponding leading ones,

neither in the parametrisation of the flavon vevs nor in the parametrisation of the mass matrices,

such that the series expansions can be performed in a systematic way.

The model’s predictions for the SUSY contributions to any process, are given in terms of a set

of dimensionless parameters, known as “mass insertion” parameters [13]. Those parameters are

calculated in full detail and their low energy expressions are given in the SCKM basis, including

effects of RG running. Remarkably, due to the peculiar flavour structure of the model, it is

found that the small family symmetry S4 × U(1) is sufficient to reproduce the effects of low

energy MFV much more accurately than the previous SU(3) family symmetry model.

3.2 Trimaximal SU(5)× S4 × U(1) model

In this section, the basic ingredients of the supersymmetric model of flavour proposed in [11]

are presented. It is capable of correctly describing a sizeable reactor neutrino mixing angle θl13

by generating a neutrino mass matrix of trimaximal form. The model represents a modification

of an earlier tri-bimaximal model [10] with only minor changes.

Being formulated in a supersymmetric SU(5) grand unified framework, the matter superfields

fall into the 10 and 5̄ representations, as shown in Eq. (2.3.10). Table 3.1 lists the matter,

Higgs and flavon superfields together with their transformation properties under the imposed

SU(5) × S4 × U(1) symmetry. Details of the non-Abelian finite group S4 are provided in

Appendix A. The 5̄-plets, labelled by F , are assigned to a triplet representation of S4, while

the 10-plets are split into an S4 doublet T for the first two generations and an S4 singlet T3

for the third generation. In addition, right-handed neutrinos N are introduced, transforming
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in the same S4 triplet representation as F . The SU(5) Higgs fields H5, H5̄ and H4̄5 are all

S4 singlets. Note that each of these GUT Higgs representations contains an SU(2)L Higgs

doublet. Therefore, the low energy doublet Hu originates from H5, while Hd arises from a

linear combination of H5̄ and H4̄5 [45, 47]1 . In addition, a number of flavon fields Φf
ρ are

introduced, which are labelled by the corresponding S4 representation ρ, as well as the fermion

sector f to which they couple at leading order (LO). Two flavons, Φu
2 and Φ̃u

2 , generate the LO

up-type quark mass matrix. Three flavon multiplets, Φd
3, Φ̃d

3 and Φd
2, are responsible for the

down-type quark and charged lepton mass matrices. Finally, the right-handed neutrino mass

matrix is generated from the flavon multiplets Φν
3′ , Φν

2 and Φν
1 , as well as the flavon η which is

responsible for breaking the tri-bimaximal pattern of the neutrino mass matrix to a trimaximal

one at subleading order [11]. The additional U(1) symmetry has been introduced in order to

control the coupling of the flavon fields to the matter fields in a way which avoids significant

perturbations of the LO flavour structure by higher-dimensional operators [10].

The vacuum structure of the flavon fields arises from the F -term alignment mechanism [55].

Introducing a set of so-called driving fields, the corresponding F -term conditions give rise to

particular flavon alignments as described in Appendix B. To LO, these are given as [10, 11]:

〈Φu
2〉

M
=

(
0

1

)
φu2 λ

4,
〈Φ̃u

2〉
M

=

(
0

1

)
φ̃u2 λ

4, (3.2.1)

〈Φd
3〉

M
=

 0

1

0

φd3 λ
2,

〈Φ̃d
3〉

M
=

 0

−1

1

 φ̃d3 λ
3,

〈Φd
2〉

M
=

(
1

0

)
φd2 λ , (3.2.2)

〈Φν
3′〉
M

=

 1

1

1

φν3′ λ
4,

〈Φν
2〉

M
=

(
1

1

)
φν2 λ

4,
〈Φν

1〉
M

= φν1 λ
4,

〈η〉
M

= φη λ4, (3.2.3)

where λ ≈ 0.225 is the Wolfenstein parameter [27] and the φs are dimensionless order one

parameters. Imposing CP symmetry of the underlying theory, all coupling constants can be

taken as real [58, 59], so that CP is broken spontaneously by generally complex values for

the φs. M denotes a generic messenger scale which is common to all the non-renormalisable

effective operators and assumed to be around the scale of grand unification. Considering also

subleading terms in the flavon potential, these LO vacuum alignments receive corrections which

are parametrised by small shifts as discussed in Appendix B and shown explicitly in Eq. (B.4).

Throughout the calculations, such shifts have been taken into account, as well as all other

subleading effects. As the LO results for the mass insertion parameters depend solely on the

LO structure of the model, only the LO analysis is reported in the main part of this chapter.

When giving explicit expressions, only the leading contributions will be shown and the additional

higher order corrections will be omitted for the sake of simplicity. Such approximations will be

indicated by ≈ throughout the chapter. Finally, the vevs of the two neutral Higgses are:

1As H5̄ and H4̄5 transform differently under U(1), it is clear that the mechanism which spawns the low
energy Higgs doublet Hd must necessarily break U(1). Although the discussion of any details of the SU(5) GUT
symmetry breaking (which, e.g., could even have an extra dimensional origin) is beyond the scope of this work,
it is remarked that a mixing of H5̄ and H4̄5 could be induced by introducing the pair H±24 with U(1) charges ±1
in addition to the standard SU(5) breaking Higgs H0

24.
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υu = υ tβ/
√

1 + t2β, υd = υ/
√

1 + t2β, (3.2.4)

where tβ ≡ tan(β) = υu
υd

and υ =
√
υ2
u + υ2

d = 174 GeV 2.

3.3 Kähler potential

A characteristic feature of any effective theory is the presence of non-renormalisable operators

which are only constrained by the imposed symmetries. In the context of supersymmetry, this is

the case for both the superpotential and the Kähler potential. The effective coupling of flavons

to the Kähler potential gives rise to kinetic terms with a non-canonical Kähler metric K 6= 1,

Lkin = Kij
(
∂µf̃

∗
i ∂

µf̃j + i f∗i ∂µσ̄
µfj

)
, (3.3.1)

where f̃ and f are, respectively, the scalar and fermionic components of a generic chiral superfield

f̂ . In order to extract physically meaningful properties of a model, the kinetic terms have to be

brought to a canonical form via a basis transformation [12].

In the context of SU(5), a Kähler metric is encountered for each of the three GUT represen-

tations containing the matter fields. These will be denoted by KT , KF and KN , respectively.

Using the symmetries of Table 3.1, the expansions of these 3 × 3 matrices in terms of flavon

fields can be obtained from:

(
T † T †3

)
(KT − 1)

(
T

T3

)
=
∑
n

(
T † T †3

) c
KT22
n (R2)n c

KTi3
n (R4)n[

c
KTi3
n (R4)n

]†
c
KT33
n (R3)n

(T
T3

)
, (3.3.2)

F †(KF − 1)F =
∑
n

F †
[
cKFn (R1)n

]
F , (3.3.3)

N †(KN − 1)N =
∑
n

N †
[
cKNn (R1)n

]
N , (3.3.4)

where cn are order one coefficients which can be assumed to be real thanks to the imposed CP

symmetry. Products of flavons which are allowed to couple in the Kähler potential are collected

in the tuples Ri, which in turn are unions of tuples Si. They contain all possible combinations

of up to eight flavons with a minimum contribution of order λ8 and are defined as:

R1 = S1 ∪ S2 ∪ S3 , R2 = S1 ∪ S2 , R3 = S1 , R4 = S4 , (3.3.5)

S1 =

{
Φd

2Φd†
2

M2
,

Φd
3Φd†

3

M2
,

Φ̃d
3Φ̃d†

3

M2
,

Φu
2Φu†

2

M2
,

Φ̃u
2Φ̃u†

2

M2
,

(Φ̃u
2)2

M2
,

Φν
3′Φ

ν†
3′

M2
,

Φν
2Φν†

2

M2
,

Φν
1Φν†

1

M2
,
ηη†

M2
,

(Φd
3)2Φν

1

M3
,

(Φd
3)2Φν

2

M3
,

(Φd
3)2Φν

3′

M3
,

Φd
2Φd†

2 Φ̃u
2

M3
,

Φd†
2 Φ̃d†

3 Φu
2

M3
,

(Φd
2Φd†

2 )2

M4
,

(Φd
3Φd†

3 )2

M4
,

Φd
2Φd†

2 Φd
3Φd†

3

M4
,

Φd
2Φd†

2 Φ̃d
3Φ̃d†

3

M4
,

(Φd
2Φd†

2 )2Φ̃u
2

M5
,

(Φd
2Φd†

2 )3

M6
,

(Φd
2Φd†

2 )4

M8
+ all h.c.

}
, (3.3.6)

2Absorbing the factor of
√

2 in Eq. (2.1.15) into υ.
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S2 =

{
Φ̃u

2

M
,

Φν
1Φν†

2

M2
,

Φd†
2 Φ̃d†

3 Φu
2

M3
+ all h.c.

}
, (3.3.7)

S3 =

{
(Φd

2)4Φd
3

M5
,

Φν
1Φν†

3′

M2
,

Φν
2Φν†

3′

M2
,

Φd
3Φd†

3 Φ̃u
2

M3
,

(Φd
2)5Φd†

2 Φd
3

M7
+ all h.c.

}
, (3.3.8)

S4 =

{
(Φd

2)5

M5
,
η(Φd†

2 )2

M3
,

Φd
2Φd

3Φν
3′

M3
,

Φd
2Φd

3(Φd†
3 )2

M4
,

(Φd†
2 )2Φd

3Φd†
3

M4
,

(Φd†
2 )3Φν

2

M4
,

(Φd†
2 )3(Φd†

3 )2

M5
,
ηΦd

2(Φd†
2 )3

M5
,

(Φd
2)6Φd†

2

M7

}
. (3.3.9)

S1 and S2 contain combinations of flavons with U(1) charges that sum up to zero. They come

form S4 invariants when contracted with two doublets or two triplets. Therefore, S1 and S2

contribute to KF , KN and the upper-left 2 × 2 block of KT in Eq. (3.3.2). Moreover, the

combinations in S1 can be contracted to S4 invariants so that they additionally contribute to

the lower-right 1× 1 block of KT . S3 gives further contributions to KF and KN but not to KT .

Finally, the combinations contained in S4 have U(1) charges which add up to 5 and allow for

S4 contractions to a doublet. Hence, they contribute to the off-diagonal upper-right block of

KT . Note that the effects of the operators involving the flavon field η are independent of its S4

transformation properties as a 1 or a 1′.

When calculating the Kähler metric from the expressions of Eqs. (3.3.2-3.3.4), it is important

to take into account all invariant S4 contractions of two matter fields with a given product of

flavons.

3.3.1 Kähler metric with LO corrections

It is straightforward though tedious to determine the matrices KT , KF and KN from Eqs. (3.3.2-

3.3.4). Keeping only the LO corrections to the unit matrix, for the 10 of SU(5) it is found that:

KT − 1 ≈

 (k5 + k1)λ2 k2 λ
4 k4 e

−iθk4λ6

· (k5 − k1)λ2 k3 e
−iθk3λ5

· · k6 λ
2

 , (3.3.10)

where ki denote real order one coefficients, and θki are phases associated with the generally

complex flavon vevs. Here and throughout the chapter, the dots in the lower-left corner of the

matrix represent the complex conjugates of the corresponding entries in the upper-right part

of the matrix. The operator T †Φd
2Φd†

2 T/M
2 gives rise to the parameters k1 and k5 through

different S4 contractions, while k6 is due to T †3 Φd
2Φd†

2 T3/M
2. Being associated with T †Φ̃u

2T/M ,

the parameter k2 carries no phase factor because φ̃u2 ∈ R, see Appendix B. Finally, the (13) and

(23) elements originate from T †η(Φd†
2 )2T3/M

3 and T †(Φd
2)5T3/M

5, respectively. Making use of

the phases of the LO flavon vevs, given explicitly in Eq. (B.2), the phases of Eq. (3.3.10) can

be written as:

θk4 = θd3 − θd2 and θk3 = −5θd2 , (3.3.11)



Chapter 3 Approaching Minimal Flavour Violation from an SU(5)× S4 × U(1) SUSY GUT35

where θd2 and θd3 are the phases of the LO vevs φd2 and φd3, respectively.

Analogously, one obtains the matrix KF :3

KF − 1 ≈

 2K1 K3 K3

· K2 −K1 K3

· · −(K2 +K1)

λ4 , (3.3.12)

where Ki ∈ R. The parameters on the diagonal, K1 and K2, originate from different contractions

of the term F †Φd
3Φd†

3 F/M
2. The off-diagonal elements, parametrised by K3, are derived from

the operator F †Φ̃u
2F/M and are real due to φ̃u2 ∈ R. Hence the LO correction to KF from unity

is given by a real matrix.

The corresponding Kähler metric KN for the right-handed neutrinos is identical to KF up to a

difference in the order one coefficients of the individual corrections. Therefore,

KN − 1 ≈

 2KN
1 KN

3 KN
3

· KN
2 −KN

1 KN
3

· · −(KN
2 +KN

1 )

λ4 , (3.3.13)

where the coefficients KN
i are again real.

3.3.2 Canonical normalisation

The expansion of the Kähler potentials in terms of flavon insertions leads to non-canonical ki-

netic terms. In order to bring the Kähler potential back to its canonical form, a non-unitary

transformation has to be applied on the matter superfields. The canonical normalisation pro-

cedure introduces the 3× 3 matrices PA which transform the matter superfields A = T, F,N as

A = P−1
A A′ so that

(P †A)−1KAP−1
A = 1 =⇒ KA = P †APA . (3.3.14)

A prescription for deriving the matrices PA can be found in Appendix C.1. To LO, they take

the simple form

PT ≈

 1 k2
2 λ

4 k4
2 e
−iθk4λ6

· 1 k3
2 e
−iθk3λ5

· · 1

 , PF (N) ≈

 1
K

(N)
3
2 λ4 K

(N)
3
2 λ4

· 1
K

(N)
3
2 λ4

· · 1

 . (3.3.15)

In the following sections, the structure of the Yukawa matrices is studied as well as the soft

supersymmetry breaking sectors. The CN transformations of Eq. (3.3.15) have to be applied to

these before aiming at a physical interpretation of the resulting patterns.

3There are also flavour universal λ2 and λ4 contributions to the diagonal elements of KF which, however, do
not effect the LO results.



36Chapter 3 Approaching Minimal Flavour Violation from an SU(5)× S4 × U(1) SUSY GUT

3.4 Yukawa sector after CN

In this section, the fermionic sector of the model is studied, completing the analysis of [10, 11]

by including the effects of canonical normalisation. The parametrisation differs slightly from the

one used in [10, 11] as, in this work, none of the higher order corrections to the mass matrices

or the flavon vevs are absorbed into the associated leading order terms. See Appendix B for

more details.

3.4.1 Charged fermions

3.4.1.1 Up-type quarks

The Yukawa matrix of the up-type quarks can be constructed by considering all the possible

combinations of a product of flavons with TTH5 for the upper-left 2 × 2 block, with TT3H5

for the (i3) elements, and with T3T3H5 for the (33) element. The operators which generate a

contribution to the Yukawa matrix of order up to and including λ8 are

ytT3T3H5 +
1

M
yu1TTΦu

2H5 +
1

M2
yu2TTΦu

2Φ̃u
2H5

+
1

M3
yu3,4T3T3(Φd

3)2Φν
2,3′H5 +

1

M5
yu5TT (Φd

2)2(Φd
3)3H5 +

1

M5
yu6TT3(Φd

2)3(Φd
3)2H5 ,

(3.4.1)

where the parameters yt and yui are real order one coefficients. Inserting the flavon VEVs and

expanding the S4 contractions of Eq. (3.4.1) using the Clebsch-Gordan coefficients that can be

found in [10] , gives rise to the up-type Yukawa matrix at the GUT scale:

YuGUT ≈

 yue
iθyuλ8 0 0

0 yce
iθycλ4 zu2 e

iθzu2 λ7

0 zu2 e
iθzu2 λ7 yt

 , (3.4.2)

where the relation to the flavon vevs, see Eqs. (3.2.1-3.2.3) as well as Appendix B, is given by:

yue
iθyu = yu2φ

u
2 φ̃

u
2 + yu1 δ

u
2,1, yc e

iθyc = yu1φ
u
2 , zu2 e

iθzu2 = yu6 (φd2)3(φd3)2 . (3.4.3)

Applying the phases of the LO flavon vevs as given in Eq. (B.2), it is found moreover that

θyu = θyc = 2θd2 + 3θd3 , θzu2 = 3θd2 + 2θd3 , (3.4.4)

where the fact that the shift δu2,1 of the flavon vev〈Φu
2〉 in the first component is of order λ8 and

proportional to (φd2)2(φd3)3 has also been used, see. Eq. (B.5). It is worth noting that the (12),

(13) and (21), (31) elements of Eq. (3.4.2) remain zero up to order λ8.

Changing to the basis with canonical kinetic terms, (P−1
T )TYuGUTP

−1
T is calculated. For conve-

nience an extra phase redefinition on the right-handed superfields is applied,

Qu = diag(eiθ
y
u , eiθ

y
u , 1). (3.4.5)
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As a result, the up-type quark Yukawa matrix in the canonical basis is obtained:

Y u
GUT ≈

 yu λ
8 −1

2k2 yc λ
8 −1

2k4 yte
iθk4 λ6

−1
2k2 ycλ

8 yc λ
4 −1

2k3 yte
iθk3λ5

−1
2k4 yte

i(θk4−θ
y
u) λ6 − 1

2k3 yte
i(θk3−θ

y
u)λ5 yt

 . (3.4.6)

Compared to Eq. (3.4.2), the canonical normalisation has significantly modified the off-diagonal

entries: the texture zeros are filled in; moreover, the (23) and (32) elements feature a reduced

λ-suppression.

3.4.1.2 Down-type quarks and charged leptons

The Yukawa matrices of the down-type quarks and the charged leptons can be deduced from

the superpotential operators:

yd1
1

M
FT3Φd

3H5̄ + yd2
1

M2
(F Φ̃d

3)1(TΦd
2)1H4̄5 + yd5

1

M3
(F (Φd

2)2)3(T Φ̃d
3)3H5̄

+ yd3
1

M2
FT3Φd

3Φ̃u
2H5̄ + yd4

1

M2
FT3ηΦ̃d

3H5̄ + yd6
1

M3
FTΦd

2Φ̃d
3Φ̃u

2H4̄5

+ yd7
1

M5
FT (Φd

2)2(Φd
3)3H4̄5 + yd8

1

M5
FT3(Φd

2)3(Φd
3)2H4̄5 + yd9

1

M6
FT3(Φd

2)4(Φd
3)2H5̄ ,

(3.4.7)

where the ydi are real order one coefficients. For the operators proportional to yd2 and yd5 ,

specific contractions have been chosen as described in [10, 11], such that the Gatto-Sartori-

Tonin (GST) [80] and Georgi-Jarlskog (GJ) [71] relations are satisfied at LO. The contractions

for all other operators are not restricted to special choices; however, it was checked that in all

cases, the LO result can simply be parametrised by an effective coupling constant which is given

as a combination of the individual contributions from each contraction. It is worth noting that

the operator proportional to yd4 is only allowed if η transforms as a trivial singlet under S4.

Separating the contributions of H5̄ and H4̄5, the S4 contractions give rise to:

Y5̄ ≈

 0 x̃2e
iθx̃2λ5 −x̃2e

iθx̃2λ5

−x̃2e
iθx̃2λ5 0 x̃2e

iθx̃2λ5

zd3e
iθ
zd
3 λ6 zd2e

iθ
zd
2 λ6 ybe

iθyb λ2

 , Y4̄5 ≈

 zd1e
iθ
zd
1 λ8 0 0

0 yse
iθysλ4 −yseiθ

y
sλ4

0 0 0

 .

(3.4.8)

The parameters in these expressions are related to the flavon vevs as defined in Eqs. (3.2.1-3.2.3)

and Appendix B via:

x̃2e
iθx̃2 = yd5(φd2)2φ̃d3 , ybe

iθyb = yd1φ
d
3 , zd2e

iθ
zd
2 = yd1δ

d
3,3+ yd3φ

d
3φ̃

u
2 , zd3e

iθ
zd
3 = yd1δ

d
3,1 ,

yse
iθys = yd2φ

d
2φ̃

d
3 , zd1e

iθ
zd
1 = yd7(φd2)2(φd3)3 − yd6φd2φ̃d3φ̃u2 . (3.4.9)

Using Eqs. (B.2,B.6), the following relations for the phases are deduced:

θx̃2 = 3(θd2 + θd3) , θys = θzd1 = 2θd2 + 3θd3 , θyb = θzd2 = θzd3 = θd3 . (3.4.10)
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The Yukawa matrices of the down-type quarks and the charged leptons are linear combinations

of the two structures in Eq. (3.4.8). Following the construction proposed by Georgi and Jarlskog

[71], one has: YdGUT = Y5̄ + Y4̄5 and YeGUT = (Y5̄ − 3Y4̄5)T , respectively.

Performing the canonical normalisation on the Yukawa matrices (P−1
T )TYdGUTP

−1
F and (P−1

F )TYeGUTP
−1
T

as well as an additional rephasing of the right-handed superfields by:

Qd = Qe = diag(eiθ
x̃
2 , eiθ

x̃
2 , eiθ

y
b ), (3.4.11)

results in:

Y dGUT ≈

 ei(θ
zd
1 −θ

x̃
2 )zd1λ

8 x̃2λ
5 −ei(θx̃2−θyb )x̃2λ5

−x̃2λ5 ei(θ
y
s−θ

x̃
2 )ysλ

4 −ei(θys−θyb )ysλ4
e−iθ

x̃
2

(
zd3e

iθ
zd
3 −K3

2 e
iθyb yb

)
λ6 e−iθ

x̃
2

(
zd2e

iθ
zd
2 −K3

2 e
iθyb yb

)
λ6 ybλ

2

, (3.4.12)

Y eGUT ≈


−3ei(θ

zd
1 −θ

x̃
2 )ydλ

8 −x̃2λ5 e−iθ
y
b

(
zd3e

iθ
zd
3 − K3

2 e
iθyb yb

)
λ6

x̃2λ
5 −3 ei(θ

y
s−θ

x̃
2 )ysλ

4 e−iθ
y
b

(
zd2e

iθ
zd
2 − K3

2 e
iθyb yb

)
λ6

−x̃2λ5 3 ei(θ
y
s−θ

x̃
2 )ysλ

4 ybλ
2

. (3.4.13)

Note that the canonical normalisation modifies the down-type quark and charged lepton Yukawa

matrices solely by additional contributions of the same order in the (31), (32) and (13), (23)

elements, respectively. Comparing Eq, (3.4.12) with Eq. (3.4.6) suggests that the CKM mixing is

dominated by the diagonalisation of the down-type quark Yukawa matrix. This will be explicitly

verified when calculating the SCKM transformations in Section 3.6.

3.4.2 Neutrinos

3.4.2.1 Dirac neutrino coupling

Having introduced right-handed neutrinosN in Table 3.1, their Dirac coupling to the left-handed

SM neutrinos originates from the superpotential terms:

yDFNH5 + yD1
1

M
FN Φ̃u

2H5 + yD2
1

M2
FN(Φ̃u

2)2H5 + yD3,4,5
1

M3
FN(Φd

3)2Φν
1,2,3′H5

+ yD6
1

M5
FN(Φd

2)4Φd
3H5,

(3.4.14)

where yD and yDi are real order one parameters. The corresponding Yukawa matrix is determined

as:

Yν ≈

 yD zD2 e
iθ
zD
2 λ6 zD1 λ4

zD2 e
iθ
zD
2 λ6 zD1 λ4 yD

zD1 λ4 yD zD2 e
iθ
zD
2 λ6

 , (3.4.15)

with

zD1 = yD1 φ̃
u
2 , zD2 e

iθ
zD
2 = yD1 δ̃

u
2,1 , θzD2 = 4θd2 + θd3 . (3.4.16)

Here, the phase can be deduced from Eq. (B.5).
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Applying the CN transformation (P−1
F )TYνP−1

N , the corresponding Yukawa matrix in the basis

with canonical kinetic terms takes the form:

Y ν ≈


yD −yD(K3+KN

3 )
2 λ4

(
zD1 −

yD(K3+KN
3 )

2

)
λ4

−yD(K3+KN
3 )

2 λ4
(
zD1 −

yD(K3+KN
3 )

2

)
λ4 yD(

zD1 −
yD(K3+KN

3 )
2

)
λ4 yD −yD(K3+KN

3 )
2 λ4

 . (3.4.17)

Compared to Eq. (3.4.15), an additional contribution of the same order arises in the (13), (22)

and (31) entries. Moreover, the λ-suppression of the (12), (21) and (33) elements is reduced.

3.4.2.2 Majorana neutrino mass

The mass matrix of the right-handed neutrinos is obtained from the superpotential terms:

w1,2,3NNΦν
1,2,3′ + w4

1

M
NNΦd

2η + w5,6,7
1

M
NN Φ̃u

2Φν
1,2,3′ + w8

1

M7
NN(Φd

2)8 , (3.4.18)

where wi denote real order one coefficients. This results in a right-handed Majorana neutrino

mass matrix MR of the form:

MR

M
≈

A+ 2C B − C B − C
B − C B + 2C A− C
B − C A− C B + 2C

 eiθAλ4 +

 0 0 D

0 D 0

D 0 0

 eiθDλ5 , (3.4.19)

with

AeiθA = w1φ
ν
1 , BeiθA = w2φ

ν
2 , CeiθA = w3φ

ν
3′ , DeiθD = w2(δν2,1− δν2,2) +w4 η φ

d
2 . (3.4.20)

According to Eqs. (B.2,B.5,B.6), the phases are given by:

θA = −2θd3 , θD = 4θd2 − θd3 . (3.4.21)

The first matrix of Eq. (3.4.19) arises from terms involving only Φν
1,2,3′ . As their VEVs respect

the tri-bimaximal (TB) Klein symmetry ZS2 × ZU2 ⊂ S4, this part is of TB form. The second

matrix of Eq. (3.4.19), proportional to D, is due to the operator w4
1
MNNΦd

2η. As the product

of both flavon VEVs involved is not an eigenvector of U , half of the TB Klein symmetry is

broken at a relative order of λ. The resulting trimaximal TM2 [81] structure can accommodate

the sizeable value of the reactor neutrino mixing angle θl13 as explained in [11] in the context of

the original model [10].

Performing the CN basis transformation (P−1
N )TMRP

−1
N does not alter the matrix in Eq. (3.4.19)

at the given order, so that MR =MR +O(λ6)M .
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3.4.2.3 Effective light neutrino mass matrix

Calculating the effective light neutrino mass matrix which arises via the type I see-saw mecha-

nism v2
u Y

νM−1
R (Y ν)T , the LO result can be parametrized as:

meff
ν ≈

y2
Dυ

2
u

λ4M


 bν + cν − aν aν aν

aν bν cν

aν cν bν

 e−iθA +

 0 0 dν

0 dν 0

dν 0 0

λ ei(θD−2θA)

 , (3.4.22)

with aν , bν , cν and dν being functions of the real parameters A, B, C and D. The deviation from

tri-bimaximal neutrino mixing is controlled by dν ∝ D. Due to the three independent LO input

parameters (w1 ∝ A ,w2 ∝ B ,w3 ∝ C), any neutrino mass spectrum can be accommodated

in this model. At this order, the canonical normalisation does not modify the effective light

neutrino mass matrix as obtained without the CN transformations. Hence, concerning the

results on light neutrino masses and mixing, the reader is simply referred to the corresponding

discussion in [11].

3.5 Soft SUSY breaking sector after CN

Having applied the CN basis transformation of the matter superfields to the Yukawa sector, the

focus will now turn to the soft SUSY breaking terms. In the context of the general MSSM with

R-parity, these are parametrised as4 [47]

−Lsoft ⊃ AuijHuQ̃iũ
c
j +AdijHdQ̃id̃

c
j +AeijHdL̃iẽ

c
j +AνijHuL̃iÑj + h.c.

+ m2
Qij Q̃

α
i Q̃

α∗
j +m2

Lij L̃
α
i L̃

α∗
j +m2

ucij
ũc∗i ũ

c
j +m2

dcij
d̃c∗i d̃

c
j +m2

ecij
ẽc∗i ẽ

c
j +m2

Nij Ñ
∗
i Ñj

+ m2
Hu |Hu|2 +m2

Hd
|Hd|2 , (3.5.1)

and contain trilinear scalar couplings (A-terms) as well as bilinear scalar masses. A tilde in-

dicates the scalar partner f̃ of a SM fermion f . Taking into account the SU(5) framework,

in this section the effective soft SUSY breaking operators are constructed, assuming that the

mechanism of SUSY breaking is practically independent of the family symmetry breaking.

3.5.1 Trilinear soft couplings

The flavour structure of the trilinear A-terms is similar to the corresponding Yukawa matrices,

as both originate from the same set of superpotential terms. In the case of the soft terms, these

are coupled to a hidden sector superfield X with independent real order one coupling constants

and suppressed by a mass scale MX . When X develops its SUSY breaking F -term VEV, the

scalar components of the Higgs and matter superfields are projected out, thereby generating the

trilinear soft terms. There exist in fact extra contributions to the A-terms from superpotential

operators involving flavons but no X field. These can be traced back to non-vanishing vevs for

the auxiliary F -components of the flavon fields, which are zero in the SUSY limit but develop a

4Dropping the spinor indeces in Eq. (2.2.39) and including the right-handed neutrino terms.
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non-trivial value when SUSY breaking terms are included. It turns out that such F -term vevs

are aligned with the LO flavon vevs in many situations [68, 69]. Hence, these extra contributions

to the A-terms do not give rise to new flavour structures.

Defining the mass parameters m0 ≡ 〈FX〉/MX and A0 ≡ α0m0, with α0 being a real constant,

one obtains the expressions for the trilinear matrices AfGUT/A0 by copying the Yukawas matrices

of Eqs. (3.4.2,3.4.8,3.4.15) with different order-one coefficients and phases: yf → af , x̃2 → x̃a2,

zfi → zfai , yD → αD as well as θyf → θaf , θx̃2 → θx̃a2 , θ
zf
i → θ

zfa
i . With these replacements, it is

found that

AuGUT

A0
≈

 au e
iθauλ8 0 0

0 ac e
iθac λ4 zua2 eiθ

zua
2 λ7

0 zua2 eiθ
zua
2 λ7 at

 , (3.5.2)

and similarly for AdGUT, AeGUT and Aν . Applying the CN transformation as well as the rephas-

ing of the right-handed superfields proceeds analogously to the Yukawa sector. The result-

ing trilinear matrices AfGUT/A0 in the basis of canonical kinetic terms are thus derived from

Eqs. (3.4.6,3.4.12,3.4.13,3.4.17) by simply replacing yu → au e
i(θau−θyu), yc → ac e

i(θac−θyu), yt → at,

ys → as e
i(θas−θys ), yb → ab e

i(θab−θ
y
b ), x̃2 → x̃a2 e

i(θx̃a2 −θx̃2 ), zfi → zfai ei(θ
zfa
i −θzfi ) and yD → αD. For

example, the up-type quark trilinear matrix takes the form:

AuGUT

A0
≈

 au e
i(θau−θyu) λ8 −1

2k2 ac e
i(θac−θyu) λ8 −1

2k4 ate
iθk4 λ6

−1
2k2 ac e

i(θac−θyu)λ8 ac e
i(θac−θyu) λ4 −1

2k3 ate
iθk3λ5

−1
2k4 ate

i(θk4−θ
y
u) λ6 − 1

2k3 ate
i(θk3−θ

y
u)λ5 at

 . (3.5.3)

3.5.2 Soft scalar masses

The scalar mass terms of the soft supersymmetry breaking Lagrangian originate from the Kähler

potential. Non-renormalisable couplings of the matter superfields to the square X†X/M2
X of the

SUSY breaking field X generate soft masses when the F -term of X develops a vev. The structure

of the soft mass matrices is therefore similar to the Kähler metric K of the corresponding GUT

multiplet. As for the trilinear soft terms, all order one coefficients are independent of those

appearing in K. The scalar masses before canonical normalisation are then obtained from

KT , KF and KN of Eqs. (3.3.10,3.3.12,3.3.13) by replacing ki → bi, θ
k
i → θbi , Ki → Bi and

KN
i → BN

i . Moreover, the ones on the diagonal of K have to be rescaled by a new factor of

order one. In the case of the 10 of SU(5), the 2+1 structure requires the introduction of two

extra parameters, b01 and b02. Explicitly, one gets:

M2
TGUT

m2
0

≈

 b01 + (b5 + b1)λ2 b2λ
4 b4 e

−iθk4λ6

· b01 + (b5 − b1)λ2 b3 e
−iθk3λ5

· · b02 + b6λ
2

 , (3.5.4)

M2
F (N)GUT

m2
0

≈

B
(N)
0 + 2B

(N)
1 λ4 B

(N)
3 λ4 B

(N)
3 λ4

· B
(N)
0 + (B

(N)
2 −B(N)

1 )λ4 B
(N)
3 λ4

· · B
(N)
0 − (B

(N)
2 +B

(N)
1 )λ4

 . (3.5.5)



42Chapter 3 Approaching Minimal Flavour Violation from an SU(5)× S4 × U(1) SUSY GUT

Performing the transformations to the basis of canonical kinetic terms results in soft scalar mass

matrices of the form:

M2
TGUT

m2
0

≈

 b01 (b2 − b01k2)λ4 e−iθ
k
4 (b4 − k4(b01+b02)

2 )λ6

· b01 e−iθ
k
3 (b3 − k3(b01+b02)

2 )λ5

· · b02

 , (3.5.6)

M2
F (N)GUT

m2
0

≈

B
(N)
0 (B

(N)
3 −K(N)

3 )λ4 (B
(N)
3 −K(N)

3 )λ4

· B
(N)
0 (B

(N)
3 −K(N)

3 )λ4

· · B
(N)
0

 . (3.5.7)

For convenience, the order one parameter B0 is absorbed into the soft SUSY breaking mass m0,

so that the leading contribution on the diagonal of M2
FGUT

/m2
0 is nothing but unity. For the

right-handed fields contained in the GUT multiplets, an additional rephasing has to be applied.

This will be revisited when calculating the soft terms in the SCKM basis in Section 3.6.2. Notice

that all λ-suppressed corrections of the diagonal elements have been dropped. This simplification

is justified as FCNC processes are induced by loop diagrams involving the off-diagonal entries

of the sfermion mass matrices. The simplification of the diagonal elements in Eqs. (3.5.6,3.5.7)

does not affect these off-diagonals in the LO analysis, even when going to the SCKM basis.

3.6 SCKM basis

Predictions relating a theoretical model with its phenomenological implications are typically

given in the basis in which the Yukawa matrices are diagonal and positive, corresponding to

the physical quark and lepton mass eigenstates. The so-called SCKM basis is the analogue in a

supersymmetric framework. Changing to the SCKM basis, all canonically normalised quantities

undergo a unitary transformation of the superfields which diagonalises the effective Yukawa

couplings in the superpotential. In this basis it is convenient to define a set of dimensionless

parameters, known as the “mass insertion parameters”, which directly enter the expressions of

phenomenological flavour observables.

In principle, the SCKM transformation should be performed after electroweak symmetry break-

ing. The canonically normalised Yukawa, trilinear and soft mass matrices should be evolved

from the GUT scale MGUT to the weak scale MW using the corresponding renormalisation group

equations (RGEs). Only at that point, the diagonalisation of the Yukawa matrices should take

place, leading to the definition of a SCKM basis. Following this procedure, there is obviously

no notion of mass insertion parameters at the scale MGUT as there is no proper definition of

the SCKM basis.

An alternative approach which is commonly used consists in diagonalising the Yukawa matrices

at (or rather just below) the GUT scale. The so-obtained basis is approximately identical to

the SCKM basis provided the RGE contributions to the off-diagonal elements of the Yukawa

matrices remain negligible. This is the case as long as the RGE effects can be absorbed into

a redefinition of the (unknown) order one coefficients. It is then possible to introduce mass

insertion parameters already at MGUT. Their low energy values have to be determined from

the corresponding RG evolution. In this work, the latter approach is adopted as it allows for a
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semi-analytical study of the relations between the high and low energy parameters by means of

a perturbative λ-expansion.

3.6.1 SCKM transformations

The SCKM transformations are applied on the matter superfields f̂L,R → UfL,Rf̂L,R, where UfL,R
denote unitary 3 × 3 matrices. These diagonalise the canonically normalised Yukawa matrices

Y f

(UfL)†Y fUfR = Ỹ f
diag , (3.6.1)

where the tilde denotes the SCKM basis. The derivation and the explicit form of the unitary

transformations can be found in Appendix C.2. Applying this change of basis to the Yukawa

matrices yields:

Ỹ u
GUT ≈

 yuλ
8 0 0

0 ycλ
4 0

0 0 yt

 , Ỹ d
GUT ≈


x̃2

2
ys
λ6 0 0

0 ysλ
4 0

0 0 ybλ
2

 , (3.6.2)

Ỹ e
GUT ≈


x̃2

2
3ys
λ6 0 0

0 3ysλ
4 0

0 0 ybλ
2

 . (3.6.3)

These results, which are valid at the high scale, agree with the LO results derived in [10, 11].

This shows that the canonical normalisation does not affect the LO expressions of the quark

and charged lepton masses.

Up to phase convention, the CKM matrix is given by VCKMGUT
= (UuL)TUd∗L (see Appendix C.2

for explicit expressions). Extracting the mixing angles

sin(θq13)GUT ≈
x̃2

yb
λ3 , tan(θq23)GUT ≈

ys
yb
λ2 , tan(θq12)GUT ≈

x̃2

ys
λ , (3.6.4)

shows that the LO CKM mixing arises purely from the down-type quark sector, incorporating the

GST relation [80] θq12 ≈
√
md/ms, and agrees with the results obtained in [10, 11]. Concerning

the CP violation, it is found that the Jarlskog invariant [28] to be

JqCPGUT
≈ λ7 x̃3

2

y2
bys

sin(θd2) . (3.6.5)

The PMNS matrix is dominated by the trimaximal TM2 neutrino mixing Vν which diagonalises

the effective light neutrino mass matrix of Eq. (3.4.22). Including the charged lepton corrections,
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one has UPMNSGUT
= (U eL)TV ∗ν with mixing angles given as:

tan(θl23)GUT ≈ 1 + λ
dν

2(aν − cν)
cos(4θd2 + θd3) , (3.6.6)

tan(θl12)GUT ≈
1√
2
− λ x̃2

2
√

2ys
cos(θd2) , (3.6.7)

sin(θl13)GUT ≈
λ

6
√

2ys

[(
3dνys cos(4θd2 + θd3) + 2(aν − cν)x̃2 cos(θd2)

aν − cν
)2

+

(
3dνys sin(4θd2 + θd3) + 2(aν − bν)x̃2 sin(θd2)

aν − bν
)2
] 1

2

, (3.6.8)

and a leptonic Jarlskog invariant of the form:

J lCPGUT
≈ − λ

36

(
2x̃2

ys
sin(θd2) +

3dν

aν − bν sin(4θd2 + θd3)

)
.

3.6.2 Soft terms in the SCKM basis

In order to obtain the flavour structure of the soft SUSY breaking terms in a basis which

is suitable for physical interpretations, one has to apply the SCKM transformations on the

canonical trilinear soft couplings and soft scalar masses, see Section 3.5. The action of the UfL,R
matrices on the A-terms is identical to the transformation of the Yukawa matrices:

(UfL)†AfGUTU
f
R = ÃfGUT. (3.6.9)

However, due to different order one coefficients, the A-terms remain non-diagonal in the SCKM

basis. The soft masses of Eqs. (3.5.6,3.5.7) are transformed differently for different components

of the SU(5) multiplets. Moreover, one has to associate the mass matrices of the effective

soft Lagrangian in Eq. (3.5.1) with M2
TGUT

and M2
FGUT

and take into account the additional

rephasing transformations of the right-handed superfields, see Eqs. (3.4.5,3.4.11), that were

performed after CN. Then, the soft masses in the SCKM basis are:

(m̃2
u)LLGUT

= (UuL)†M2 ∗
TGUT

UuL, (m̃2
u)RRGUT

= (UuR)†QuM2
TGUT

Q†u U
u
R, (3.6.10)

(m̃2
d)LLGUT

= (UdL)†M2 ∗
TGUT

UdL, (m̃2
d)RRGUT

= (UdR)†QdM
2
FGUT

Q†d U
d
R, (3.6.11)

(m̃2
e)LLGUT

= (U eL)†M2 ∗
FGUT

U eL, (m̃2
e)RRGUT

= (U eR)†QdM
2
TGUT

Q†d U
e
R. (3.6.12)

The following leading order expressions are found, where the order one coefficients are defined

in Eqs. (D.4,D.5). Note that the order one coefficient B0 into m0 is absorbed, see. Eq. (3.5.7),

so that (m̃2
d)RRGUT

/m2
0 and (m̃2

e)LLGUT
/m2

0 have 1s on the diagonal.
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Up-type quark sector:

ÃuGUT

A0
≈

 ãu11λ
8 0 0

0 ãu22λ
4 eiθ

d
2 ãu23λ

7

0 ei(3θ
d
2+θd3)ãu23λ

7 ãu33

 , (3.6.13)

(m̃2
u)LLGUT

m2
0

≈

 b01 e−iθ
d
2 b̃12 λ

4 e−i(4θ
d
2+θd3)b̃13 λ

6

· b01 e−i(7θ
d
2+2θd3)b̃23 λ

5

· · b02

 , (3.6.14)

(m̃2
u)RRGUT

m2
0

≈

 b01 e−iθ
d
2 b̃12 λ

4 b̃13 λ
6

· b01 ei(5θ
d
2+θd3)b̃23 λ

5

· · b02

 . (3.6.15)

Down-type quark sector:

ÃdGUT

A0
≈

 ãd11 λ
6 ãd12 λ

5 ãd12 λ
5

−ãd12 λ
5 ãd22 λ

4 ãd23 λ
4

e−iθ
d
2 ãd31 λ

6 ãd32 λ
6 ãd33 λ

2

 , (3.6.16)

(m̃2
d)LLGUT

m2
0

≈

 b01 B̃12 λ
3 eiθ

d
2 B̃13 λ

4

· b01 B̃23 λ
2

· · b02

 , (3.6.17)

(m̃2
d)RRGUT

m2
0

≈

 1 eiθ
d
2 R̃12 λ

4 − eiθd2 R̃12 λ
4

· 1 − R̃12 λ
4

· · 1

 . (3.6.18)

Charged lepton sector:

ÃeGUT

A0
≈

 1
3 ã

d
11 λ

6 eiθ
d
2 ãd12 λ

5 ãd31 λ
6

−e−iθd2 ãd12 λ
5 3ãd22 λ

4 ãe23 λ
6

−e−iθd2 ãd12 λ
5 3ãd23 λ

4 ãd33 λ
2

 , (3.6.19)

(m̃2
e)LLGUT

m2
0

≈

 1 R̃12 λ
4 − R̃12 λ

4

· 1 − R̃12 λ
4

· · 1

 , (3.6.20)

(m̃2
e)RRGUT

m2
0

≈

 b01 − eiθd2 1
3B̃12 λ

3 1
3B̃13 λ

4

· b01 3B̃23 λ
2

· · b02

 . (3.6.21)
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3.7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion and

sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM basis,

the Yukawa matrices are diagonal. Thus, the off-diagonal entries of the scalar mass matrices

determine the size of the resulting FCNCs. As both the left- and the right-handed fermions

have their own scalar partners, there are three types of scalar mass matrices:

m2
f̃LL

= (m̃2
f )LL+Ỹf Ỹ

†
f υ

2
u,d , m2

f̃RR
= (m̃2

f )RR+Ỹ †f Ỹfυ
2
u,d , m2

f̃LR
= Ãfυu,d−µỸfυd,u , (3.7.1)

where µ is the higgsino mass which is taken to be real. In Eq. (3.7.1), the first contribution on

the right-hand sides originates from the soft breaking Lagrangian, while the second term is the

supersymmetric F -term contribution to the scalar masses. Note that it is formally possible to

define m2
f̃RL
≡ (m2

f̃LR
)†.

From the model building perspective, a convenient measure of flavour violation is provided by

a set of dimensionless parameters, known as the mass insertion parameters. These are defined

as [13]:

(δfLL)ij =
(m2

f̃LL
)ij

〈mf̃ 〉2LL
, (δfRR)ij =

(m2
f̃RR

)ij

〈mf̃ 〉2RR
, (δfLR)ij =

(m2
f̃LR

)ij

〈mf̃ 〉2LR
, (3.7.2)

where the average masses in the denominators are:

〈mf̃ 〉2AB =
√

(m2
f̃AA

)ii(m2
f̃BB

)jj . (3.7.3)

3.7.1 Mass insertion parameters δ at the GUT scale

Inserting the results of Section 3.6, it is straightforward to calculate the mass insertion parame-

ters at the GUT scale. The full LO expressions are given in Appendix D. In the following, only

the flavour structure of the various δs in terms of their λ-suppression is reported.

δuLLGUT
∼

 1 λ4 λ6

· 1 λ5

· · 1

 , δuRRGUT
∼

 1 λ4 λ6

· 1 λ5

· · 1

 , δuLRGUT
∼

 λ8 0 0

0 λ4 λ7

0 λ7 1

 , (3.7.4)

δdLLGUT
∼

 1 λ3 λ4

· 1 λ2

· · 1

 , δdRRGUT
∼

 1 λ4 λ4

· 1 λ4

· · 1

 , δdLRGUT
∼

 λ6 λ5 λ5

λ5 λ4 λ4

λ6 λ6 λ2

 , (3.7.5)

δeLLGUT
∼

 1 λ4 λ4

· 1 λ4

· · 1

 , δeRRGUT
∼

 1 λ3 λ4

· 1 λ2

· · 1

 , δeLRGUT
∼

 λ6 λ5 λ6

λ5 λ4 λ6

λ5 λ4 λ2

 . (3.7.6)

3.7.2 Effects of RG running

Having calculated the GUT scale mass insertion parameters, it is now necessary to consider

their evolution down to the electroweak scale. Only then is one able to compare the predictions
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of the model to experimental measurements of flavour observables. This evolution is described

by the RG equations which are given explicitly in Appendix E in the SCKM basis. Technically,

the RG running is performed in two stages, first from MGUT to MR where the right-handed

neutrinos are integrated out, and then from MR to MSUSY ∼MW . In order to derive analytical

results, the effects of the running is estimated using the leading logarithmic approximation. As

the Yukawa matrices themselves are also affected by the running, it is necessary to apply further

basis transformations on the superfields which diagonalise the low energy Yukawas matrices.

Details of the various steps involved in calculating the low energy mass insertion parameters

can be found in Appendix F. For the down-type squarks and the charged sleptons, the resulting

effects can simply be absorbed into new order one coefficients. It is interesting to see that this

is not the case for the up-type squarks, where the order of the (13) and (23) elements of δuLR
get modified. For completeness, the flavour structure of the low energy δs is presented in terms

of their λ-suppression, which should be compared to Eqs. (3.7.4-3.7.6).

δuLL ∼

 1 λ4 λ6

· 1 λ5

· · 1

 , δuRR ∼

 1 λ4 λ6

· 1 λ5

· · 1

 , δuLR ∼

 λ8 0 λ7

0 λ4 λ6

0 λ7 1

 , (3.7.7)

δdLL ∼

 1 λ3 λ4

· 1 λ2

· · 1

 , δdRR ∼

 1 λ4 λ4

· 1 λ4

· · 1

 , δdLR ∼

 λ6 λ5 λ5

λ5 λ4 λ4

λ6 λ6 λ2

 , (3.7.8)

δeLL ∼

 1 λ4 λ4

· 1 λ4

· · 1

 , δeRR ∼

 1 λ3 λ4

· 1 λ2

· · 1

 , δeLR ∼

 λ6 λ5 λ6

λ5 λ4 λ6

λ5 λ4 λ2

 . (3.7.9)

3.8 Conclusion

The main aim of this Chapter was to study the amount of flavour and CP violation that can

be generated through the soft SUSY breaking sector of the SU(5)× S4 ×U(1) supersymmetric

GUT model of flavour, which was proposed in [11]. The model’s objective is to address the

number of quark and lepton families, provide an explanation for the structure of the fermionic

masses and mixing angles and at the same time describe the mechanism that suppresses flavour

and CP violation induced by the SUSY sector.

The existence of three families emerges through the furnishing of the only faithful irreducible

representations of S4, the triplet representations. Working in an expansion in powers of the

Wolfenstein parameter λ, the structure of the Yukawa and Majorana matrices, including CP

violating phases, stems from the controlled way in which the family and CP symmetries are

broken by the non-zero complex flavon vevs. This aspect was studied in [10, 11] where it

was shown to provide a good description of all quark and lepton masses, mixings and CP

violation. In this Chapter, the Yukawa sector was revisited, in order to examine whether

canonical normalisation effects, which were ignored in [10, 11], considerably perturb the original

matrix structures. It was found that those effects significantly alter the up-quark Yukawa

matrix, by filling the zero textures and suppressing the (23) and (32) elements by two orders in

λ. The (12), (21) and (33) elements of the Dirac Yukawa matrix are also reduced by two orders

in λ. On the other hand, the down-quark and charged lepton Yukawas are solely modified by
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additional contributions that are of the same order in λ as the non-canonical matrices. The

structure of the effective neutrino mass matrix is also not alter to LO. As a result, the fermionic

masses and mixing angles survive the canonical transformation effects and, to LO, they are in

agreement with those obtained in [10, 11].

The study of the SUSY sector was based on the assumptions that the soft SUSY breaking

mechanism respects the family and CP symmetries. Expressing the operators that contribute

to the soft mass matrices as flavon expansions, after the family and CP symmetry breaking, the

trilinear and scalar mass squared matrices were also expressed as power series in λ. Moving to

the canonical and then to the SCKM basis, the results were presented in terms of mass insertion

parameters at the GUT scale. When considering the effects of RG running down to the low

scales, the Yukawa matrices developed off-diagonal entries anew. Therefore, a further basis

transformation was required to render them diagonal again. Explicit expressions for the low

mass insertion parameters in that basis are provided in Appendix F.3, while their λ-structure

(dropping any coefficients) is summarised in Eqs. (3.7.7-3.7.9).

It was found that δfLL and δfRR are approximately equal to the identity, with only small off-

diagonal entries. The δfLR parameters feature the same hierarchies in the diagonal entries as the

corresponding diagonal Yukawa matrices Ỹ f , while the off-diagonal elements are strongly sup-

pressed. These results show that the S4×U(1) SUSY GUT approximately reproduces the effects

of low energy MFV, where one would simply impose δfLL = δfRR = 1 and δfLR ∝ Ỹ f . The phe-

nomenological implications of the deviations form MFV are discussed quantitatively in Chapter

4, where the model’s predictions with respect to a number of different flavour observables are

discussed in detail.



Chapter 4

Phenomenological Implications of an

SU(5)× S4 ×U(1) SUSY GUT of

Flavour

4.1 Introduction

This chapter details my research on the exploration of the phenomenology implied by the

SU(5) × S4 × U(1) SUSY GUT model of flavour that was studied in Chapter 3. The work

presented in this chapter was recently submitted for publication [15] as a separate follow up to

[14].

In Chapter 3 it was shown how MFV emerges approximately in the model. However, there are

important phenomenological differences which can provide tell-tale signatures of the model, and

it is the main purpose of this chapter to discuss these in detail. In other words, this work exploits

the low energy mass insertion parameters of the model calculated in Chapter 3 to analyse a

panoply of rare and flavour changing processes as well as EDMs in both the lepton and quark

sectors. The results are quite illuminating: while only small new effects in B physics are found,

very large effects arise for Lepton Flavour Violation (LFV) and the EDMs which are therefore

predicted to be observed soon.

The layout of the remainder of the Chapter is as follows. Section 4.2 discusses numerical

estimates of the low energy mass insertion parameters for ranges of SUSY parameters which are

consistent with the bounds from direct searches for squarks and sleptons at LHC Run 1. The

naive model expectations are compared to the numerical scans and the experimental bounds.

In Section 4.3 these results are then used to estimate the predictions for EDMs, LFV, B and

K meson mixing as well as rare B decays. The largest observable deviations from MFV come

from the LFV process µ→ eγ and the EDMs. Section 4.4 concludes the Chapter.

49
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4.2 Numerical analysis

4.2.1 Parameter range

Numerical results for the running quark and charged lepton masses as well as for the quark

mixing angles at the GUT scale can be found in [83]. The matching conditions from the SM to

the MSSM, imposed at the SUSY scale, take the form

ySM
u,c,t ≈ yMSSM

u,c,t sin β̄,

ySM
d,s ≈ (1 + η̄q) y

MSSM
d,s cos β̄,

ySM
b ≈ (1 + η̄b) y

MSSM
b cos β̄,

ySM
e,µ ≈ (1 + η̄l) y

MSSM
e,µ cos β̄,

ySM
τ ≈ yMSSM

τ cos β̄, (4.2.1)

for the singular values of the Yukawa matrices. Similarly, for the CKM mixing

θq,SM
i3 ≈ 1 + η̄q

1 + η̄b
θq,MSSM
i3 , θq,SM

12 ≈ θq,MSSM
12 , δq,SM ≈ δq,MSSM. (4.2.2)

Here

η̄q = ηq − η′l, η̄b = η′q + ηA − η′l, η̄l = ηl − η′l , (4.2.3)

represent SUSY radiative threshold corrections that are parametrised by ηi = εi tanβ, with

explicit expressions for εi available in [84]. The unprimed η parameters correspond to corrections

to the first two generations, the primed ones to the third generation, and the one with index

“A” to a correction due to the soft SUSY breaking trilinear terms. The parameter β̄ follows

from the absorption of η′l into β,

cos β̄ ≡ (1 + η′l) cosβ, sin β̄ ≈ sinβ, (4.2.4)

with the approximation being valid for tanβ & 5. In the limit where threshold effects for the

charged leptons are neglected, tan β̄ simply reduces to tanβ.

The model presented in Chapter 3 predicts ŷb,τ = yb λ
2, where the hat indicates the diagonalised

Yukawa sector at the GUT scale. As a consequence, very large values of tanβ are excluded,

and this work will only study the parameter space in which tanβ ∈ [5, 25], keeping the value

of yb below four. In order to obtain viable ranges for the Yukawa input parameters, yu,c,t,b,

(x̃2/ys)
2 and (1 + η̄l)ys are plotted against tan β̄ using the results for the diagonalised Yukawa

sector at the GUT scale provided in [83]. Note that yb, ys and x̃2 are extracted from the

lepton sector. The resulting curves are fitted using the relative uncertainties σ(yu)/yu = 31%,

σ(yc)/yc = 3.5%, σ(yt)/yt = 10%, σ(yb)/yb = 0.6%, see [83]. Concerning ys and x̃2, here it is

taken that σ(ys)/ys = 10% and σ(x̃2)/x̃2 = 10%, allowing for higher order corrections to the

mass ratios that would reduce the discrepancy between the values of x̃2/ys predicted from the

lepton and the quark sectors and maximise the GUT scale value of (ŷµ ŷd)/(ŷs ŷe). Due to the

implementation of the Georgi-Jarlskog relation [71], it is equal to 9 in the model at LO, while
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its preferred range is 10.7+1.8
−0.8 [83], which is independent of threshold corrections and also not

sensitive to a change of the SUSY scale.

The low energy Yukawa couplings are estimated using the leading logarithmic approximation

as described in Chapter 3. Clearly, the resulting low energy Yukawa matrices will only be valid

up to that approximation. Mindful of such limitations, one has

Ỹ u
low ≈ Diag

[
(1 +Ryu) yu λ

8, (1 +Ryu) yc λ
4, (1 +Ryt ) yt

]
, (4.2.5)

Ỹ d
low ≈ Diag

[
(1 +Ryd)

x̃2
2

ys
λ6, (1 +Ryd) ys λ

4, (1 +Ryb ) yb λ
2
]
, (4.2.6)

Ỹ e
low ≈ Diag

[
(1 +Rye)

x̃2
2

3 ys
λ6, (1 +Rye)3ys λ

4, (1 +Rye) yb λ
2
]
, (4.2.7)

where the corrections from the RG running are encoded in the parameters Ryf , defined in

Eq. (F.1.6). The scan produces the following values for the right-hand sides of Eq. (4.2.1):

Ỹ u
low11

sin β̄ ∈ [3.4, 6.9]× 10−6, Ỹ u
low22

sin β̄ ∈ [2.34, 2.65]× 10−3, Ỹ u
low33

sin β̄ ∈ [0.77, 0.89],

Ỹ d
low11

cos β̄(1 + η̄q) ∈ [0.9, 1.6]× 10−5, Ỹ d
low22

cos β̄(1 + η̄q) ∈ [2.2, 3.5]× 10−4,

Ỹ d
low33

cos β̄(1 + η̄b) ∈ [1.17, 1.6]× 10−2,

Ỹ e
low11

cos β̄(1 + η̄l) ∈ [2.4, 3.8]× 10−6, Ỹ e
low22

cos β̄(1 + η̄l) ∈ [5.6, 7.7]× 10−4,

Ỹ e
low33

cos β̄ ∈ [1.06, 1.14]× 10−2, (4.2.8)

which have to be compared to the SM values, taken from Table 2 of [83],

ySM
u ∈ [3.40, 7.60]× 10−6, ySM

c ∈ [2.69, 3.20]× 10−3, ySM
t ∈ [0.78, 0.88], (4.2.9)

ySM
d ∈ [1.15, 1.56]× 10−5, ySM

s ∈ [2.29, 2.84]× 10−4, ySM
b ∈ [1.21, 1.42]× 10−2,

ySM
e ∈ [2.85, 2.88]× 10−6, ySM

µ ∈ [6.01, 6.08]× 10−4, ySM
τ ∈ [1.02, 1.03]× 10−2.

The corresponding ranges of the order one input parameters of the Yukawa sector are listed

in the first five rows of the first column of Table 4.1. All other coefficients that are not fixed

by this fit, are scanned over the interval ±[0.5, 2], with the following exceptions: the absolute

value of the Dirac neutrino Yukawa coupling yD is allowed to be as small as 0.2 but not larger

than 0.6, such that it does not exceed the maximum allowed value of yt. The lower bounds on

|x̃a2|, |as| and |au| are also relaxed and the upper bound on |ab| is extended, such that they are

allowed to get the same values as the corresponding Yukawa coefficients. The coefficients cHu
and cHd of the soft Higgs mass squares,

m2
HuGUT

= cHum
2
0, m2

HdGUT
= cHdm

2
0 , (4.2.10)

are taken to be positive, just like the coefficients b01, b02 and B
(N)
0 of the leading order diagonal

elements of the soft scalar mass squared matrices. Phases are generally allowed to take arbitrary

values within [0, 2π]. As mentioned earlier, tanβ ≡ tβ is varied between 5 and 25. Concerning

the CMSSM parameters, the following are defined:

α0 ≡ A0/m0, x ≡ (M1/2/m0)2, (4.2.11)
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Yukawa terms Range Soft trilinear terms Range

x̃2, ys [0.2, 1.6] x̃a2, as ±[0.2, 2]

yb [0.7, 3.8] ab ±[0.5, 4]

yu [0.3, 0.6] au ±[0.3, 2]

yc [0.5, 0.6] ac

±[0.5, 2]
yt [0.46, 0.6] at
yD ±[0.2, 0.6] αD
zfi ±[0.5, 2] zfai

Kähler metric Range Soft mass terms Range

k2, k3, k4,K
(N)
3 ±[0.5, 2] b2, b3, b4, B

(N)
3 ±[0.5, 2]

b01, b02, B
(N)
0 , cHu , cHd [0.5, 2]

SUSY masses Range SUSY ratios Range

M1/2 [0.3, 5] TeV tanβ [5, 25]

m0 [0.05, 5] TeV α0 [−3, 3]

Table 4.1: Ranges of the input parameters used in the scan.

and scanned over M1/2 ∈ [0.3, 5] TeV, m0 ∈ [0.05, 5] TeV as well as α0 ∈ [−3, 3] in order to

avoid charge and colour breaking minima.1

The µ parameter, which is taken as real, is given at the electroweak scale by the relation [86]

M2
Z

2
=
m2
Hd

+ Σd
d − (m2

Hu
+ Σu

u)t2β
t2β − 1

− µ2, (4.2.12)

where MZ denotes the Z boson mass. Σu
u and Σd

d are radiative corrections, with the most

important contributions coming from the stops,

Σu
u

(
t̃1,2
)

=
3

16π2
F (m2

t̃1,2
)

(
Y 2
t − g2

Z ∓
A2
t − 8g2

Z

(
1
4 − 2

3xW
)

∆t

m2
t̃2
−m2

t̃1

)
, (4.2.13)

Σd
d

(
t̃1,2
)

=
3

16π2
F (m2

t̃1,2
)

(
g2
Z ∓

Y 2
t µ

2 + 8g2
Z

(
1
4 − 2

3xW
)

∆t

m2
t̃2
−m2

t̃1

)
. (4.2.14)

In these expressions, Yt, At and µ denote the low energy Yukawa and trilinear couplings and

the low energy µ parameter, respectively. Moreover,

m2
t̃1,2

=
1

2

(
m2
t̃LL

+m2
t̃RR
∓
√

4m2
t̃LR

+ (m2
t̃LL
−m2

t̃RR
)2
)
,

F (m2) = m2

(
log

(
m2

M2
S

)
− 1

)
, ∆t =

1

2

(
m2
t̃LL
−m2

t̃RR

)
+M2

Z cos(2β)

(
1

4
− 2

3
xW

)
,

xW = sin2 θW , g2
Z =

M2
Z

4υ2
, MS =

√
mt̃1

mt̃2
, (4.2.15)

with θW denoting the Weinberg angle. m2
t̃LL

, m2
t̃RR

and m2
t̃LR

are the low energy (33) elements

of the squark mass matrices defined in Eq. (3.7.1).

1In the numerical scan, it was checked that the potentials are always bounded from below and that the
corresponding minima do not break charge nor colour [85].
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The so-determined µ parameter can then be used to calculate the physical Higgs mass. The

estimation of the intrinsic theoretical uncertainties when including the full one-loop and dom-

inant two-loop corrections to the tree level mass is of the order of 3 GeV [88]. Considering

the t/t̃ sector, the one-loop effect leads to the by far most important positive contribution to

the Higgs mass, while the two-loop O(αtαs) and O(α2
t ) effects, where αt is defined as the su-

perpotential top Yukawa coupling squared suppressed by 4π, cause a further reduction and a

smaller enhancement respectively. Approximate formulae including the leading m4
t corrections

(ignoring the O(α2
t ) effects) within the Feynman diagrammatic (FD) approach, are provided in

[87]. Eqs. (2.64-2.66) therein express the Higgs mass in terms of on-shell quantities. Rewritting

this result in terms of the running top-quark mass in the MS scheme, as in Eqs. (2.67,2.68) of

[87], an extra O(αtαs) contribution is induced, lifting the Higgs mass by a few GeV for MS ∼ 1

TeV and considerably more for growing MS . When taking into account the O(α2
t ) corrections,

a several GeV increase is observed [87], while the (s)bottom effects only become important

for large µ and tβ > 30. As pointed out in [88], an adequate estimation of the Higgs mass

should properly account for the dependence on the SUSY scale. In particular, the few GeV

uncertainty atributed in the MS ∼ 1 TeV study, corresponds to a significant underestimation of

the higher order corrections for MS & 2 TeV. Interestingly, for a sufficiently high SUSY scale,

the experimentally measured Higgs mass can be reached, even for vanishing mixing in the stop

sector [88]. In view of the limitations of the available approximate analytic expressions, in this

work, adopting the formulae (2.64-2.66) of [87], it is demanded that the resulting Higgs mass

lies within the interval [110, 135] GeV. A more precise fit, even though is expected to restrict

any model’s parameter space, would require the implementation of the appropriate numerical

methods, an approach which is beyond the scope of the present work. However, it is worth

commenting on the well known maximal mixing requirement for reaching the observed Higgs

mass, when MS ∼ 1 TeV. In that case, due to the trilinear couplings being non-universal in

family space, the mixing in the sectors other than the stop one, can still be relatively small,

while, as already mentioned, with increasing SUSY scale, the maximal mixing requirement gets

lifted.

Concerning cuts on the SUSY parameters from direct searches, it is required that the first and

the second generation squark masses are larger than 1.4 TeV.

4.2.2 Estimates of the low energy mass insertion parameters

This section analyses the predictions for the low energy mass insertion parameters δ, whose

explicit expressions are given in Appendix F.3. Tables 4.2-4.6 provide naive expectations for

the individual δs, where the λ-suppression and the main effects of the RG running are accounted

for, while any order one coefficients are set to one. Clearly, one still expects to see a spread

within a few orders of magnitude due to the variation of the SUSY scale and the order one

coefficients. The third columns of Tables 4.2-4.6 list existing experimental bounds. The full

ranges of the δs arising from scanning over the input parameters given in Table 4.1, are depicted

in Figures 4.1-4.6.
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4.2.2.1 Up-type quark sector

Parameter Naive expectation Exp. bound√
|Im[(δuLL,RR)2

12]| O
(√

sin(2θd2)λ4

1+6.3x ≈ 4× 10−4
√

sin(2θd2)

)
2.85× 10−2 [89](
1.65× 10−3

)
|LL=RR√

|Im[(δuLR,RL)2
12]| 0 3.75× 10−3[89]

|(δuLL)13| O
(

1+η
(

Rq
1+6.5 x

−y2
t

)
1+6.5x λ6 ≈ 2× 10−5

)
O(10−1) [90]

|(δuRR)13| O
(

1+2η
(

Rq
1+6.15 x

−y2
t

)
1+6.15x λ6 ≈ 2× 10−5

)

|(δuLL)23| O
(

1+η
(

Rq
1+6.5 x

−y2
t

)
1+6.5x λ5 ≈ 8× 10−5

)

|(δuRR)23| O
(

1+2η
(

Rq
1+6.15 x

−y2
t

)
1+6.15x λ5 ≈ 8× 10−5

)
|(δuLR)13| O

(
α0 υu
m0

2 η
(1+6.3x)λ

7 ≈ 10−7
)

|(δuLR)23| O
(
α0 υu
m0

2 η
(1+6.3x)λ

6 ≈ 5× 10−7
)

O(10−1) [91]

|(δuRL)13| 0

|(δuRL)23| O

α0 υu
m0

1+η

(
46 g2U

5
−8y2

t+
Rq

1+6.5 x

)
1+6.3x λ7 ≈ 5× 10−7



Table 4.2: The naive numerical expectations for the low energy up-type mass insertion param-

eters as extracted from the model (second column), to be compared with experimental bounds

in the literature (third column). The full ranges of the δs are shown in Figures 4.1 and 4.2.

Note that the (12), (21) and (31) δuLR parameters remain zero up to order λ8.

The strongest constraints on the up-type mass insertion parameters involve the (12) sector

and stem from D0 − D̄0 mixing. The SM contribution to this amplitude conserves CP to a

good approximation and provides significant constraints on the imaginary parts of (δuAB)12,

A,B = L,R. These limits were derived in [89], assuming equal squark and gluino masses of

1 TeV. They are quoted in the third column of Table 4.2, rescaled to masses of 1.5 TeV. The

limits on the RR and RL parameters are identical to the LL and LR ones due to the L ↔ R

symmetric form of the gluino-squark box diagram. The index LL = RR refers to the assumption

that (δuLL)12 ≈ (δuRR)12, as is the case in the model. In the second column of Table 4.2,

naive estimates are given for
√
|Im[(δuLL)2

12]| ≈
√
|Im[(δuRR)2

12]| ≈
√
|Im[(δuLL)12(δuRR)12]|. For

θd2 = π/2, as suggested from maximising the Jarlskog invariant of Eq. (3.6.5), these quantities

vanish to LO. Since
√
|Im[(δuLL,RR)2

12]| is at most ∼ |(δuLL)12|, only the full range of the absolute

value of that parameter is shown in Figure 4.1, plotted against the corresponding GUT scale

coefficient b̃12, defined in Eq. (D.4). This coefficient quantifies the mismatch between the Kähler

metric and the soft mass matrix elements for the SU(5) 10-plets and can be as large as 6 when

the associated parameters contribute constructively and receive their maximum values in the

scan. The effects of the RG running are trivial and depend only on x = (M1/2/m0)2; for x ≈ 1

and b̃12 ≈ 1, a value of around 4×10−4 is estimated, shown by the blue dashed line in Figure 4.1.
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With increasing x, even smaller values are obtained, as the RG suppression is increased. The

red dotted line shows the experimental limit, adapted from [89] and valid for (δuLL)12 ≈ (δuRR)12.

The LL and RR parameters of the (i3) sector (i = 1, 2) have GUT scale coefficients with the

same range as the parameters of the (12) sector but a different RG suppression due to the

milder running of the third generation sfermionic masses. This is represented by the factor

η Rq appearing in Eq. (F.3.14), where η and Rq are defined in Eqs. (F.1,F.2.14), respectively.

Approximating these δs as shown in Table 4.2 and taking x ≈ 1, Rq ≈ 3y2
t +1 as well as yt ≈ 0.5,

one expects |(δuLL,RR)13| ∝ λ6 and |(δuLL,RR)23| ∝ λ5 to vary around 2 × 10−5 and 8 × 10−5,

respectively. The existing bounds on these variables from flavour changing effects are very weak,

leaving them essentially unconstrained. Bd mixing can place a bound on |(δuLL)13| of the order

of 10−1 at most, as described in [90].

Figure 4.1: The low energy LL and RR up-type mass insertion parameters plotted against

their GUT scale coefficients, defined in Eq. (D.4). The blue dashed lines represent the naive

numerical expectations according to the second column of Table 4.2, while the red dotted lines

(when available) represent the experimental limits shown in the third column of Table 4.2.

Since (δuRR)12 ≈ (δuLL)12, only the LL parameter is plotted. The plots have been produced by

scanning over the input parameters listed in Table 4.1.
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The parameters of LR type have a slightly different behaviour. They are proportional to the

factor (α0 υu/m0) which, for |A0| > 0.5 TeV, can cause an extra suppression of up to O(10−3).

Because of this factor, the LR parameters show a dependence on the mass scale, even at the

GUT scale. (δfLR)ij are also generally proportional to the mismatch of the ratios of soft trilinear

over Yukawa sector coefficients for the i-th and the j-th generation and vanish, barring RG

induced corrections, if those are aligned. To estimate the magnitude of these parameters in

Table 4.2, |α0| υu/m0 ≈ 10−1, x ≈ 1, yt ≈ 0.5 and Rq ≈ 1.75 are taken, while their full ranges

are shown in Figure 4.2.

The (δuLR)13 parameter was zero at the GUT scale but receives a contribution through the RG

running of the order of η λ7. Similarly, (δuLR)23, which was suppressed by λ7 at the GUT scale,

receives a similar running contribution which comes in at an even lower order, namely η λ6.

Such an effect is not found in any other δ parameter. Finally, note that (δuLR,RL)12 as well as

(δuRL)13 are zero up to order λ8, where the expansion is truncated.

Figure 4.2: Low energy LR and RL up-type mass insertion parameters. (δuRL)23 is plotted

against its GUT scale coefficient, defined in Eq. (D.5), while (δuLR)13,23 are plotted against a

coefficient multiplying the RG running contribution, see Eqs. (F.3.11,F.3.12). The blue dashed

lines represent the naive numerical expectations according to the second column of Table 4.2,

while the red dotted line represents the experimental limit shown in the third column of Ta-

ble 4.2. The plots have been produced by scanning over the input parameters listed in Table 4.1.

The limits on the LR parameters of the (i3) sector (i = 1, 2) originate mainly from the require-

ment that the potential be bounded from below with a vacuum that does not break charge nor

colour [85]. Having already constrained the trilinear parameters accordingly, those effects shall

not be discussed further. Other bounds on the LR off-diagonal parameters can be deduced by

demanding that the supersymmetric radiative corrections to the CKM matrix elements do not
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exceed their experimental values [92]. The limit for |(δuLR)23| quoted in Table 4.2 has been ob-

tained in [91] by considering chargino loop contributions to b→ sl+l−. In the model, all up-type

mass insertion parameters of the LR type turn out to be safely below any current bound.

4.2.2.2 Down-type quark sector

Parameter Naive expectation Exp. bound√∣∣Re
[
(δdLL)2

12

]∣∣ O
(

1
1+6.5xλ

3 ≈ 2× 10−3
)

[6.6× 10−2,√∣∣Re
[
(δdRR)2

12

]∣∣ O
(√

cos(2θd2)

1+6.1x λ4 ≈ 4× 10−4
√

cos(2θd2)

)
3.3× 10−1]√∣∣Im [(δdLL)2

12

]∣∣ O
(√

sin(θd2)

1+6.5x λ
7/2 ≈ 7× 10−4

√
sin(θd2)

)
[8.7× 10−3,√∣∣Im [(δdRR)2

12

]∣∣ O
(√

sin(2θd2)

1+6.1x λ4 ≈ 4× 10−4
√

sin(2θd2)

)
4.2× 10−2]√∣∣∣Re

[
(δdLR(RL))

2
12

]∣∣∣ O
(
α0 υd
m0

1+η
44 g2U

5
1+6.3x λ5× [7.8, 12]× 10−3∣∣∣Im [(δdLR(RL))12

]∣∣∣ Re(Im)
[
f(θx̃a2 − θx̃2 , θas − θys )

]
≈ 7× 10−7

)
[1, 5.7]× 10−4

Table 4.3: The naive expectation for the ranges of (δdAB)12, A,B = L,R, as extracted from

the model (second column), to be compared with experimental bounds from [93] for mq̃ ≈ 1.5

TeV and (mg̃/mq̃)
2 ∈ [0.3, 4] (third column). The full ranges of these δs as produced in the

scan are shown in Figures 4.3 and 4.4.

The (12) elements of the down-type mass insertion parameters (δdAB)12 will be considered first,

where A,B = L,R. The corresponding bounds are derived from the results of [93], which are

rescaled to mq̃ ≈ 1.5 TeV and (mg̃/mq̃)
2 ∈ [0.3, 4]. These bounds are summarised in the third

column of Table 4.3 and have been extracted using observables related to Kaon mixing. They

are given separately for the real and imaginary parts due to a relative difference of an order of

magnitude.

In the model, (δdLL)12 ∼ λ3 is real at LO, while the NLO contribution is a linear combination of

e−iθ
d
2 and cos(4θd2 +θd3). Therefore,

√∣∣Im [(δdLL)2
12NLO

]∣∣ is proportional to
√

sin(θd2)λ7/2. Setting

θd2 = π/2, i.e. the value preferred by the Jarlskog invariant JqCP , one expects Im
[
(δdLL)2

12NLO

]
to

take its maximum value. In Figure 4.3 only the absolute value of this mass insertion parameter

is plotted versus its GUT scale coefficient B̃12, see Eq. (D.4), which can take values between zero

and twelve. The naive numerical estimate of |(δdLL)12|, approximated as shown in the second

column of Table 4.3, is of the order of 10−3 for x ≈ 1, visualised by the blue dashed line in

Figure 4.3. Since the experimental limits are given as ranges, they are depicted by the red

shaded region.

The parameter (δdRR)12 is proportional to eiθ
d
2 , so that

√∣∣Im [(δdRR)2
12

]∣∣ vanishes for θd2 = π/2,

while the corresponding real part is maximised. The RG suppression is again trivial, only

depending on x, while the GUT scale δ parameter is proportional to the misalignment of the

coefficients of the Kähler metric and the soft squared mass for the SU(5) 5̄-plets: R̃12 =

(B3 − K3), see Eq. (D.4). When B3 = −K3 = 2 and x � 1, the absolute value of this mass
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insertion reaches its maximum of 10−2, as can be seen in the associated plot in Figure 4.3. On

the other hand, for B3 = 0.5, K3 = 1 and x � 1, it can scale down to about 10−6. Note that

|(δdRR)12| = |(δdRR)23| = |(δdRR)13|, as can be seen in Eqs. (F.3.20,F.3.21).

Figure 4.3: Low energy LL and RR down-type mass insertion parameters plotted against

their GUT scale coefficients, defined in Eqs. (D.4). The blue dashed lines represent the naive

numerical expectation according to the second columns of Tables 4.3-4.5. The red shaded areas

cover the parameter space bounded by the limits shown in the third column of the corresponding

tables, with the red dotted lines denoting the weakest limit in each case. The absolute values

of δdRR are equal in the (12),(23) and (13) sectors; therefore only the bound stemming from the

(12) sector is shown, as it is the strongest one. The plots have been produced by scanning over

the input parameters shown in Table 4.1.

As parts of the parameter space place the down-type mass insertion parameter |(δdLL)12| within a

region possibly excluded by Kaon mixing observables, the relevant contributions will be studied

in Section 4.3 in more detail. Due to additional strong constraints on the product of LL and

RR mass insertion parameters, it will be shown that actually a large fraction of the parameter

space will be excluded.

The mass insertion parameters (δdLR)12 = −(δdRL)12 = (δdLR)13 receive an extra suppression

from the factor α0 υd/m0, for which the value of 5× 10−3 is used in naive numerical estimates.

Then, for x ≈ 1, one expects these δ parameters to vary around 7 × 10−7, see the last two
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rows of Table 4.3. As can be seen in Figure 4.4, the model predictions lie well below the limits.

Furthermore, if the Yukawa and soft trilinear phase structures are aligned, the phases within

ãd12 cancel and (δdLR)12 becomes real at the given order in λ.

Figure 4.4: Low energy LR and RL down-type mass insertion parameters plotted against

their GUT scale coefficients, defined in Eqs. (D.5). The blue dashed lines represent the naive

numerical expectation according to the second columns of Tables 4.3-4.5. The red shaded areas

cover the parameter space bounded by the limits shown in the third column of the corresponding

tables, with the red dotted lines denoting the weakest limit in each case. Since|(δdLR)12| =

|(δdRL)12| = |(δdLR)13|, only the bound stemming from the (12) sector is shown, as it is the

strongest one. All plots have been produced by scanning over the input parameters shown in

Table 4.1.

The bounds on (δdAB)23, A,B = L,R, are related to b→ s transitions. They are taken from [94]

and were derived by demanding that the contribution of each individual mass insertion param-

eter to the flavour observables BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs does not exceed

the current experimental limits. The analysis was performed for six representative points of

the MSSM parameter space which are compatible with LHC SUSY and Higgs searches as well

as an explanation of the discrepancy of (g − 2)µ from its SM value in terms of one-loop SUSY

contributions from charginos and neutralinos. The extracted bounds are presented in the third

column of Table 4.4, where the intervals arise due to the dependence on the SUSY spectra.

Note that, for simplicity, all δs were assumed to be real in [94].
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Parameter Naive expectation Exp. bound

|(δdLL)23| O
(

2η Rq
1+6.5xλ

2|b01=b02 ≈ 5× 10−3
)

[6× 10−2, 8× 10−1]

|(δdRR)23| O
(

1
1+6.1xλ

4 ≈ 4× 10−4
)

[6.3, 9.7]× 10−1

|(δdLR)23| O

α0 υd
m0

1+η

(
44 g2U

5
+2at yt

)
1+6.3x λ4 ≈ 5× 10−6

 [7× 10−3, 2× 10−1]

|(δdRL)23| O

α0 υd
m0

1+η

(
44 g2U

5
+2at yt+

Rq
1+6.5 x

)
1+6.3x λ6 ≈ 3× 10−7

 [2, 6]× 10−2

Table 4.4: The naive expectation for the ranges of (δdAB)23, A,B = L,R, as extracted from the

model (second column), to be compared with experimental bounds from [94] (third column).

The full ranges of each δ parameter, produced by scanning over the input parameters as shown

in Table 4.1, are shown in Figures 4.3 and 4.4.

At the GUT scale, the parameter (δdLL)23 ∼ λ2 is proportional to (b01−b02); it can therefore van-

ish at that order if b02 → b01. In that case, it would still receive a non-zero contribution through

the running, as can be seen in Eq. (F.3.19), through the factor Rq, defined in Eq. (F.2.14). To

see this effect, (δdLL)23 is expanded to first order in the running parameter η, defined in Eq. (F.1),

taking the limit b02 → b01. Then, for Rq ≈ 3y2
t + 1, yt ≈ 0.5 and x ≈ 1, the absolute value

of (δdLL)23 is expected to vary around 5 × 10−3 for B̃23 ∝ b01 − b02 → 0, as shown by the blue

dashed line in Figure 4.3. The spread towards smaller values of (δdLL)23 as B̃23 deviates from

zero, is mainly due to the parameter space where b01− b02 is negative, thereby partly cancelling

the Rq contribution. As can be seen in Figures 4.3 and 4.4, all generated points lie below the

limits of the corresponding (23) sector.

Parameter Naive expectation Exp. bound

|(δdLL)13| O
(

2η Rq
1+6.5xλ

4|b01=b02 ≈ 2× 10−4
)

[1.2, 14]× 10−1

|(δdRR)13| O
(

1
1+6.1xλ

4 ≈ 4× 10−4
)

|(δdLR)13| O
(
α0 υd
m0

1+η
44 g2U

5
1+6.3x λ

5 ≈ 7× 10−7

)
[6, 9]× 10−2

|(δdRL)13| O

α0 υd
m0

1+η

(
44 g2U

5
+

Rq
1+6.5 x

−y2
t

)
1+6.3x λ6 ≈ 2× 10−7



Table 4.5: The naive expectation for the ranges of (δdAB)13, A,B = L,R, as extracted from the

model (second column), to be compared with experimental bounds from [93] for mq̃ ≈ 1 TeV

and (mg̃/mq̃)
2 ∈ [0.25, 4] (third column). The full ranges of the δs as produced in the scan are

shown in Figures 4.3 and 4.4.

In the model, |(δdLL)13| is expected to have a similar behaviour as |(δdLL)23| but with an extra

suppression of λ2. Furthermore, |(δdLR)23| mimics |(δdLR)12| = |(δdRL)12| = |(δdLR)13| with an extra

enhancement factor of λ−1. The RL parameters (13) and (23) sectors are of the same order in λ
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and should therefore have a similar numerical range. All (13) sector mass insertion parameters

δdAB lie below the limits set by Bd mixing, as can be seen in Figures 4.3 and 4.4.

4.2.2.3 Charged lepton sector

Parameter Naive expectation Exp. bound

|(δeLL)12| O
(

2RlηN
1+0.5xλ

4|B3=K3 ≈ 2× 10−4
) [1.5, 60]× 10−5

|(δeLL)23,13| [0.7, 35]× 10−2

|(δeRR)12| O
(

λ3

1+0.15x ≈ 10−2
)

[0.35, 25]× 10−3

|(δeRR)23| O
(

λ2

1+0.15x ≈ 4× 10−2
)

[2, 10]× 10−1

|(δeRR)13| O
(

λ4

1+0.15x ≈ 2× 10−3
)

|(δeLR(RL))12|
O
(
α0 υd
m0

1+η
24g2U

5
+ηN

(
Rl

1+0.5 x
−y2

D

)
1+0.3x λ5 ≈ 3× 10−6

) [1.2, 22]× 10−6

|(δeRL)13|

[1, 22]× 10−2|(δeLR)13|
O
(
α0 υd
m0

1+η
24g2U

5
+ηN

(
Rl

1+0.5 x
−y2

D

)
1+0.3x λ6 ≈ 8× 10−7

)
|(δeLR)23|
|(δeRL)23| O

(
α0 υd
m0

1+η
24g2U

5
+ηN

(
Rl

1+0.5 x
−y2

D

)
1+0.3x λ4 ≈ 10−5

)

Table 4.6: The naive expectation for the ranges of (δeAB)ij , A,B = L,R, as extracted from the

model (second column), to be compared with experimental bounds from [95] (third column).

The full ranges of the δ parameters produced in the scan are shown in Figures 4.5 and 4.6.

The bounds on the mass insertion parameters (δeAB)ij , A,B = L,R, of the charged lepton sector

are taken from [95]. They were derived by studying radiative, leptonic and semileptonic LFV

decays as well as µ → e conversion in heavy nuclei. The analysis was performed for six repre-

sentative points in the MSSM parameter space, which are in agreement LHC SUSY and Higgs

searches as well as data on (g − 2)µ. Moreover, four additional, more general two-dimensional

scenarios, characterised by universal squark and slepton mass scales, were considered in [95].

The derived limits vary within an order of magnitude in all cases and are summarised in the

third column of Table 4.6. Note that all δs were assumed to be real in [95] for simplicity.

At the GUT scale, the mass insertion parameter (δeLL)12 ∼ λ4 is proportional to R̃12 = B3−K3.

Its absolute value is equal to |(δdRR)12| due to the SU(5) framework. However, the parameter

of the lepton sector, given in Eq. (F.3.31), receives large RG corrections which encode see-saw

effects. At the low energy scale, it is non-zero even for B3 = K3, due to the term proportional to

the small parameter ηN which is defined in Eq. (F.1) and originates from the running between

the GUT scale and the scale of the right-handed neutrinos. In the second column of Table 4.6,

this effect is estimated by considering B3 = K3. Expanding to first order in ηN , Rl ≈ R′l is

then considered, where Rl and R′l are defined in Eqs. (F.2.16,F.2.17). For x ≈ 1, Rl ≈ 3y2
D + 1

and yD ≈ 0.5, one expects the low energy |(δeLL)12| to vary around 2 × 10−4. However, the

non-trivial expression of Ẽ12, see Eqs. (F.2.15,F.3.31), creates a spread of about two orders of

magnitude around this value. As |R̃12| increases, the mass insertion parameter lies above the

limits given in Table 4.6. As can be seen in Figure 4.5, the non-observation of µ → eγ places
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stronger constraints on the down-type quark δs than the direct bounds from the quark sector.

Analogous to the down-type RR parameters, the absolute values of the (12), (23) and (13)

lepton LL parameters are identical, see Eqs. (F.3.31,F.3.32).

Figure 4.5: Low energy LL and RR charged lepton mass insertion parameters plotted against

the down-type δs to which they are related via the SU(5) framework. The dashed lines repre-

sent their GUT scale relations, while the red shaded areas denote experimental limits on the

parameter space according to the third columns of Tables 4.3-4.6. Scanning over the input

parameters within the ranges shown in Table 4.1, it is found that in particular |(δeLL)12| exceeds

its limit for much of the parameter space. Note that |(δeLL)12| = |(δeLL)23| = |(δeLL)13| .

Similarly, at the GUT scale, the absolute values of the RR parameters in the lepton sector are

equal to the LL ones of the down-type sector times the Georgi-Jarlskog factor of 1/3. For the

(12) δs, the RG running effects are trivial, consisting only of a suppression through x, which is

milder in the lepton sector where the numerical prefactor of x is 0.15, as compared to a factor

of 6.5 in the quark one. For the (13) and (23) parameters, the non-trivial running effects in the

quark sector are obvious in Figure 4.5, where it is seen that even though |(δdLL)23,13| can get

very small for negative b01− b02, |(δeRR)23,13| can only receive such small values when b01 → b02,

see e.g. Eqs. (F.3.18,F.3.34).

Finally, the variation of the LR parameters can be understood in an analogous way to the

one described in the quark sector. |(δeLR)ijGUT
| = |(δdRL)ijGUT

|, with the exception of the (23)

parameters which are not equal due to a term which involves a H4̄5, thereby receiving an extra

factor of 9 for the leptons, see Eqs. (D.2,D.3,D.5). As in the down-type sector, |(δeRL)12| =
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|(δeLR)12| = |(δeRL)13| and only the (12) parameter is shown in Figure 4.6 which features the

strongest experimental constraint.

Figure 4.6: Low energy LR and RL charged lepton mass insertion parameters plotted against

the down-type δs to which they are related via the SU(5) framework. Note that |(δeRL)12| =

|(δeLR)12| = |(δeRL)13|. The dashed lines represent their GUT scale relations, while the red

shaded areas denote experimental limits on the parameter space according to the third column

of Tables 4.3-4.6. The plots have been produced by scanning over the input parameters within

the ranges shown in Table 4.1

4.3 Phenomenological implications

In the preceding section, it was found that parts of the parameter space spanned by the (12) mass

insertion parameters of the down-type and charged lepton sector are excluded due to experimen-

tal limits set by µ→ eγ and Kaon mixing observables. The corresponding bounds are available

in the literature and their derivation is highly dependent on the assumed SUSY mass spectra.

Possible interference effects between contributions from multiple δ parameters to a given observ-

able can additionally have significant effects. These are usually ignored when setting “model

independent” limits on mass insertion parameters.

This section therefore investigates the phenomenological implications of the deviations of the

model from MFV. In particular, the focus is on predictions for BR(µ→ eγ) and εK and whether

the phase structure of the model can survive the strong limits set by electric dipole moments.

Since the analysis in [94], which provides the limits on (δdAB)23, assumes real parameters through-

out, how the model contributes to the time-dependent CP asymmetry associated with the decay
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Bs → J/ψφ is also studied. For completeness, it is checked that the limits set by the decay

Bd → J/ψKS and the mass differences ∆MBs,d are satisfied. Finally, the branching ratios of

b→ sγ and Bs,d → µ+µ− will be considered.

Adopting the leading logarithmic approximation, the low energy gaugino masses [45]:

Mi =
g2
i

g2
U

M1/2 ≈
M1/2

1 + 2 η g2
U βi

, i = 1, 2, 3, (4.3.1)

with β1 = 33/5, β2 = 1 and β3 = −3, are given by:

M1 ≈ 0.43M1/2, M2 ≈ 0.83M1/2, M3 ≈ 2.53M1/2. (4.3.2)

4.3.1 Electron EDM

The current experimental limit for the electric dipole moment of the electron stems from the

ACME collaboration [96] and is given by:

|de/e| . 8.7× 10−29 cm ≈ 4.41 × 10−15 GeV−1. (4.3.3)

This tiny value poses a strong constraint on the phases of any model. The supersymmetric

contributions depend on the mass insertion parameters as follows [97]2 :

de
e

=
α

8π cos2 θW
0.43

√
x

m3
0

mẽLLIm
[
− (δeLR)11CBmẽRR +

+
{

(δeLL)1i(δ
e
LR)i1C

′
B,L + (δeLR)1i(δ

e
RR)i1C

′
B,R

}
mRii −

−
{

(δeLL)1i(δ
e
LR)ij(δ

e
RR)j1 + (δeLR)1j(δ

e
RL)ji(δ

e
LR)i1

}
C ′′BmRjj

]
, (4.3.4)

where mẽLL and mẽRR are given in Eq. (F.3.45). Moreover mRii = mẽRR for i = 1, 2 and

mR33 = mτ̃RR , with the latter being also defined in Eq. (F.3.45). The expression of Eq. (4.3.4)

is actually proportional to the bino mass M1, which is approximated by Eq. (4.3.2) using

x = (M1/2/m0)2. The dimensionless loop functions Ci, whose expressions can be found in

Appendix G encode the contributions from the pure bino (i = B) and the bino-higgsino with

left- (i = B,L) and right-handed (i = B,R) slepton diagrams. For x� 1, all ratios of different

Ci functions are close to one. With increasing x, CB takes slightly larger values than the rest of

the functions, reaching up to twice the value of C ′B,L(R) and three times the value of C ′′B. This

can be seen in the limit where the left- and right-type slepton masses are not very different,

2The corresponding expression in [76] also include triple mass insertions of type (LR)(RR)(RR) and
(LL)(LL)(LR). In the model, these give suppressed contributions to de/e of order λ11 and λ13, respectively,
which can be safely neglected.
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Figure 4.7: Left panel: the prediction for the SUSY contribution to the electron EDM versus
mẽ =

√
mẽLL

mẽRR
. The red dotted line represents the current experimental limit of Eq. (4.3.3),

while the black dotted line corresponds to the expected future limit of |de/e| . 3× 10−31 cm ≈
1.52×10−17 GeV−1 [98]. Right panel: the behaviour of the functions h1, k1 and (in anticipation

of the discussion in Section 4.3.2) h2.

such that the loop functions take the form [97]

CB ≈
m4

0

m4
ẽ

h1(x̄), C ′′B ≈
m4

0

3m4
ẽ

(h1(x̄) + 2k1(x̄)) ,

C ′B,L ≈ C ′B,R ≈
m4

0

2m4
ẽ

(h1(x̄) + k1(x̄)) , (4.3.5)

where mẽ =
√
mẽLLmẽRR is considered as the average slepton mass3 and x̄ = (M1/mẽ)

2. The

function h1 is given in Appendix G while k1 denotes the derivative k1(x̄) ≡ d(x̄h1(x̄))/dx̄. Their

behaviour is shown in the right panel of Figure 4.7.

The dominant contribution to the electron EDM comes from the single chirality flipping diagonal

mass insertion (δeLR)11 ∝ λ6, such that the following approximation can be made

|de/e| ≈
α

8π cos2 θW
0.43
√
x
|α0|υd
m2

0

(1 +Rye)
1

3

∣∣∣Im[ãd11]
∣∣∣ λ6CB, (4.3.6)

where Rye is an RG running factor defined in Eq. (F.1.6) and ãd11/3, defined in Eq. (D.5), is the

(11) element of ÃeGUT/A0, with ÃeGUT denoting the GUT scale soft trilinear matrix in the SCKM

basis. Its imaginary part is non-zero when allowing the phases of the soft trilinear sector to

be different from the phases of the corresponding Yukawa sector. Then, for |α0υd/m0| ≈ 10−2,

m0 ≈ 1 TeV and x ≈ 1, one expects |de/e| to vary around 10−13 GeV−1.

As can be seen in the left panel of Figure 4.7, which was produced using the full expression in

Eq. (4.3.4), the numerical choice for the suppression factor |α0 υd/m0| corresponds to the yellow

points and brings the prediction for the EDM above its current experimental limit, represented

by the red dotted line.

3mẽRR and mτ̃RR only differ in the order one coefficients b01 and b02 which take values in the same range.
Since the dominant term in Eq. (4.3.4) involves the first generation masses, mẽ =

√
mẽLLmẽRR is used rather

than mẽ =
√
mẽLL

√
mẽRRmτ̃RR as the average slepton mass.
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In the case where the phases of the soft trilinear and Yukawa sectors are equal, ãd11 and all

factors in Eq. (D.5) become real. In that case, the dominant imaginary part originates from

the NLO contribution4 to (δeLR)11 and is proportional to sin(4θd2 + θd3). Setting θd2 = π/2, as

is preferred by the Jarlskog invariant JqCP , given in Eq. (3.6.5), it is seen that also the NLO

contribution vanishes for θd3 = 0, such that |de/e| would only arise at order λ8.

Concerning the terms of Eq. (4.3.4) with double mass insertions, they enter at orders (δeLR)12(δeRR)21 ∼
λ8, (δeLR)13(δeRR)31 ∼ λ10 and (δeLL)12(δeLR)21 ∼ (δeLL)13(δeLR)31 ∼ λ9 in the model. In the situa-

tion described in the preceding paragraph, the first two terms are real, while the contributions of

the latter two cancel against each other. Finally, the contributions of the triple mass insertions

are further suppressed, with the largest one, (δeLL)13(δeLR)33(δeRR)31 ∼ λ10, being real in the case

at hand, while all other triple insertions entail contributions which lie below the experimental

limit.

4.3.2 BR(µ→ eγ)

According to Figures 4.5 anf 4.6, a large part of the parameter space in the (12) charged lepton

sector appears to be excluded by the experimental limit set by the non-observation of µ→ eγ.

This section, therefore studies in detail the contributions to this LFV process within the model.

The current experimental limit for the branching ratio

BR(µ→ e γ) . 5.7× 10−13 , (4.3.7)

is set by the MEG collaboration [99]. The expression for the corresponding SUSY contribution

is given by [97]:

BR(µ→ eγ) = 3.4× 10−4 × 0.432M4
W x

µ2 t2β
m6

0

×

×
(∣∣∣∣(δeLL)12

(
−(δeLR)22

mẽLLmẽRR

µ tβmµ
C ′B,L +

1

2
C ′L + C ′2

)
+ (δeLR)12

mẽLLmẽRR

µ tβmµ
CB

∣∣∣∣2
+

∣∣∣∣(δeRR)12

(
−(δeLR)∗22

mẽLLmẽRR

µ tβmµ
C ′B,R − C ′R

)
+ (δeLR)∗21

mẽLLmẽRR

µ tβmµ
CB

∣∣∣∣2
)
. (4.3.8)

It is proportional to the bino mass squared, that has been approximated by Eq. (4.3.2) and

expressed as M2
1 = 0.432xm2

0, where x = (M1/2/m0)2. The loop function C ′2 encodes the

wino-higgsino contribution and is defined in Appendix G, along with the rest of the functions

Ci.

In the model, (δeLL)12 ∼ λ4, (δeRR)12 ∼ λ3, (δeLR)12(21) ∼ λ5 and (δeLR)22 ∼ λ4. To get an estimate

of the dominant δs in Eq. (4.3.8), the SU(2) (∝ C ′2) and the U(1) (∝ C ′B,L, C
′
L) contributions

to the (δeLL)12 term are compared by studying the ratio:

R =

∣∣∣∣C ′2/((1− A0

µ tβ

ãd22

ys

)
C ′B,L +

1

2
C ′L

)∣∣∣∣ , (4.3.9)

4The SCKM rotation which renders the Yukawas sector diagonal and real does not do the same to the A-terms
beyond leading order.
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Figure 4.8: Left panel: the contour lines for R̄, the approximate ratio of the SU(2) over the
U(1) contributions to the (δeLL)12 term in Eq. (4.3.8), as defined in Eq. (4.3.10). For the average
slepton mass mẽ =

√
mẽLL

mẽRR
, x̄ = (M1/mẽ)

2 ≈ 0.432x/(1 + 0.3x), with x = (M1/2/m0)2.
Right panel: the ratio R (without approximation), as defined in Eq. (4.3.9) and produced in the
scan. The dependence of (M2/µ)2 and x̄ on x is such that the SU(2) contributions dominate

for most of the parameter space.

which, in the limit where mẽRR and mẽLL are not very different, can be written as

R ≈ R̄ = 2
M2

M1
cot2 θW

∣∣∣∣∣
1

ȳ−x̄′ (h2(x̄′)− h2(ȳ))

h1(x̄) + k1(x̄) + 1
ȳ−x̄ (h1(x̄)− h1(ȳ))

∣∣∣∣∣ . (4.3.10)

The behaviour of the loop functions h1 and h2, which are defined in Appendix G, as well as

k1(x̄) ≡ d(x̄h1(x̄))/dx̄ is shown in the right panel of Figure 4.7, and x̄ = (M1/mẽ)
2, x̄′ =

(M2/mẽ)
2, ȳ = (µ/mẽ)

2, with mẽ =
√
mẽLLmẽRR . The contours in the left panel of Figure 4.8

show the dependence of R̄, as defined in Eq. (4.3.10), on (M2/µ)2 and x̄. It is seen that for

(M2/µ)2 & 1.5, R̄ is larger than one for all x̄ ≈ 0.432x/(1 + 0.3x) . 0.6, while for (M2/µ)2 ∼
O(1) and smaller, the U(1) contributions can dominate if x̄ does not decrease faster than

(M2/µ)2. The right panel in Figure 4.8 is based on the scan and shows that the correlation of

(M2/µ)2 and x̄ through x is such that R, as defined in Eq. (4.3.9), stays larger than one in most

of the parameter space, making the SU(2) contribution to the (δeLL)12 term in Eq. (4.3.8) the

most important one.

Similarly, one can show that the RR contribution to µ→ eγ in Eq. (4.3.8) is comparable to the

LL one only when |(δeRR)12λ|/|(δeLL)12| & 1, although (δeLL)12 is suppressed by an order of λ with

respect to (δeRR)12. This happens because the RR parameter has only two U(1) contributions

which come in with opposite signs, allowing even for a complete cancellation.

Finally, the relative size of the LL and LR contributions will now be studied by considering the

ratio:

R′ =
∣∣∣ µ tβmµ(δeLL)12C

′
2

mẽLLmẽRR(δeLR)12CB

∣∣∣ = λ3κ
∣∣∣µ tβ
A0

C ′2
CB

∣∣∣, (4.3.11)
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where κ =
∣∣∣3 ys(R̃12 − 2ηN Ẽ12)/(ãd12(peL)2)

∣∣∣, with R̃12, ãd12, peL, Ẽ12 and ηN defined in Eqs.

(D.4,D.5,F.3.44,F.2.15,F.1), respectively. The absolute value of the right-hand side of Eq. (4.3.11)

exhibits a similar behaviour as the ratio R, defined in Eq. (4.3.9) and shown in the right panel

of Figure 4.8. Taking into account the λ-suppression (λ3 ∼ 10−2) and the range of κ which can

vary within two orders of magnitude, it is found that the (δeLR)12 contribution to the branching

ratio can be comparable to the (δeLL)12 one when (M2/µ)2 ∼ 1.

Considering situations in which the (δeLR)12 contribution to Eq. (4.3.8) dominates, one obtains

the approximate expression

BR(µ→ eγ)|
(δe
LR

)12
≈ O

(
102 α2

0

m4
0

m8
ẽ

h2
1(x̄)

)( |ãd12|
3 ys

)2

. (4.3.12)

In the case where (δeLL)12 is more important, e.g. when (M2/µ)2 � 1, see right panel of

Figure 4.8, one obtains

BR(µ→ eγ)|
(δe
LL

)12
≈ O

(
x t2β
µ2

m6
0

m8
ẽLL

h2
2(3.7xL)

)∣∣∣R̃12 − 2ηN Ẽ12

∣∣∣2. (4.3.13)

For xL ≡ (M1/mẽLL)2 ≈ x̄ ≈ 0.1, x ≈ 1, α0 ≈ 1, tβ ≈ 10, µ ≈ m0 ≈ 1 TeV andmẽLL ≈ 750 GeV,

the approximations of Eqs. (4.3.12,4.3.13) both produce a value of the order of 10−10 times the

relevant order one coefficients squared. In order to gain an extra suppression of at least an order

of magnitude, the latter are preferred to be smaller than one.

The total supersymmetric contribution to the branching ratio of µ → eγ of Eq. (4.3.8) as

produced in the scan is shown in Figure 4.9. There it is plotted against the average slepton mass

(left panel) as well as |de/e| (right panel). From the left panel, observe that the model requires

rather heavy sleptons, in the TeV range, in order to survive the current experimental limit in

Eq. (4.3.7), which is denoted by the red dotted line. As can be seen in Eqs. (4.3.8,4.3.13), there

is also a strong µ dependence, with a preference for large values. The right panel of Figure 4.9

shows that the µ→ eγ branching ratio is correlated with the electron EDM, mainly through the

slepton masses and the bino-slepton mass ratio. The combination of the current limits on both

observables highly restricts the parameter space. Reaching the expected future limits, denoted

by the black dotted lines, would nearly exclude the model.

In Figure 4.10 it is shown that the predictions for BR(µ → eγ) in the plane of two (12) mass

insertion parameters as produced in the scan. Comparing this to the discussion of Section 4.2.2.3

reveals that, with the present MEG bound, |(δeLL)12| . 5 × 10−3 and |(δeLR)12| . 5 × 10−6 are

not excluded as it was suggested by the limits in Figure 4.5. On the other hand, |(δeRR)12| can

take its maximum values produced by the scan. The reason for these weaker bounds is twofold.

Firstly, the analysis in [95] sets the limits on the mass insertion parameters by choosing tβ as

large as 60, whereas here only maximum values of 25 are allowed. Secondly, the derivation in [95]

requires that the discrepancy of (g− 2)µ from its SM value is explained by SUSY contributions.
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Figure 4.9: The supersymmetric contribution to the branching ratio of µ → e γ versus the
average slepton mass mẽ =

√
mẽLL

mẽRR
(left panel) as well as |de/e| (right panel). The red

dotted lines represent the current experimental limits given in Eqs. (4.3.3,4.3.7) while the black
dotted lines show the expected future limits, that is BR(µ → e γ) . 6 × 10−14 [100] and

|de/e| . 1.52× 10−17 GeV−1 [98].

Figure 4.10: The range of the (12) lepton mass insertion parameters as produced in the scan,
together with the resulting prediction for the branching ratio of µ → eγ. The grey points do

not satisfy the current experimental limit given in Eq. (4.3.3).

4.3.3 Meson mixing

Turning to ∆F = 2 transitions, the SUSY contributions to meson mixing are now studied. The

dispersive part of the mixing for a meson P can be parametrised as [101]:

MP
12 = MP, SM

12 +MP,NP
12 = MP,SM

12

(
1 + hP e

2iσP
)
, (4.3.14)

and the corresponding mass difference is given by:

∆MP = 2|MP
12|. (4.3.15)
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The SM contribution is expressed herein as MP, SM
12 = |MP, SM

12 | e2iφSM
P . The New Physics (NP)

contribution, MP,NP
12 = |MP,NP

12 | e2iθP , is encoded in the real parameters

hP =
|MP,NP

12 |
|MP,SM

12 |
, σP = θP − φSM

P . (4.3.16)

The contributions of the gluino-squark box diagram in terms of mass insertion parameters

read [13, 76]:

M
P,(g̃)
12 = A

P,(g̃)
1

(
A
P,(g̃)
2

[
(δdLL)2

ji + (δdRR)2
ji

]
+A

P,(g̃)
3 (δdLL)ji(δ

d
RR)ji

+ A
P,(g̃)
4

[
(δdLR)2

ji + (δdRL)2
ji

]
+A

P,(g̃)
5 (δdLR)ji(δ

d
RL)ji

)
, (4.3.17)

where

A
P,(g̃)
1 = − α2

s

216m2
q̃

1

3
MP f

2
P , A

P,(g̃)
2 = 24 yf6(y) + 66f̃6(y), (4.3.18)

A
P,(g̃)
3 =

(
384

(
MP

mj +mi

)2

+ 72

)
yf6(y) +

(
− 24

(
MP

mj +mi

)2

+ 36

)
f̃6(y),

A
P,(g̃)
4 = −132

(
MP

mj +mi

)2

yf6(y), A
P,(g̃)
5 =

(
− 144

(
MP

mj +mi

)2

− 84

)
f̃6(y).

MP denotes the mass of the meson under consideration and fP is the associated decay constant.

mi and mj are the masses of the meson’s constituent quarks while mq̃ is an average squark mass

defined herein as:

mq̃ =

{ √md̃LL
md̃RR

, P = K,√√md̃LL
mb̃LL

md̃RR
, P = Bs,d,

(4.3.19)

with md̃LL
, mb̃LL

and md̃RR
defined in Eq. (F.3.30). The loop functions f6(y) and f̃6(y), where

y = (mg̃/mq̃)
2, are given in Appendix G and the gluino mass has been approximated by

Eq. (4.3.2).

4.3.3.1 Bq − B̄q mixing

The SM contribution to Bq, q = s, d meson mixing given by [102]:

M
Bq ,SM
12 =

G2
FMBq

12π2
M2
W (VtbV

∗
tq)

2ηBS0(xt)f
2
BqB̂Bq , (4.3.20)

with:

Vts = −|Vts|eiβs , Vtd = |Vtd|e−iβ, (4.3.21)

φSM
Bs = −βs, φSM

Bd
= β. (4.3.22)
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Here ηB is a QCD factor, B̂Bq a perturbative parameter related to hadronic matrix elements

and S0(xt ≡ m̄2
t (m̄t)/M

2
W ) is the Inami-Lim loop function [103]. The calculation of the pure

SM contribution to the Bs mass difference gives [104]:

∆M
(SM)
Bs

= 125.2+13.8
−12.7 × 10−13 GeV, (4.3.23)

with the largest uncertainty stemming from the non-perturbative factor fBs

√
B̂Bs , for which

the value 275 ± 13 MeV [105] has been used.5 The SM prediction for ∆MBd can be deduced

from the ratio [104]:

∆M
(SM)
Bd

∆M
(SM)
Bs

= 0.02835± 0.00187, (4.3.24)

which is less sensitive to theoretical uncertainties. On the other hand, the associated experi-

mental averages as of summer 2014, provided by the HFAG group, read [107]:

∆M
(exp)
Bs

= (116.9± 0.1)× 10−13 GeV , (4.3.25)

∆M
(exp)
Bd

= (3.357± 0.020)× 10−13 GeV , (4.3.26)

∆M
(exp)
Bd

∆M
(exp)
Bs

= 0.02879± 0.0002. (4.3.27)

Comparing Eq. (4.3.23) with Eq. (4.3.25) leads to a negative central value for the experimentally

allowed NP contribution to ∆MBs , with a similar result being obtained for ∆MBd . The main

source for the errors are the uncertainties of the SM calculation.6 In view of Eqs. (4.3.23-

4.3.27), and in anticipation of reduced theoretical uncertainties, it is concluded that the largest

NP effects that could still be allowed should be consistent with:

|∆M (NP)
Bs
| ≤ 2× 10−12 GeV , |∆M (NP)

Bd
| ≤ 1× 10−13 GeV . (4.3.28)

Using Eqs. (4.3.15,4.3.17), one can estimate the effects of the gluino-squark box diagrams.

Taking into account the λ-suppression of each δ parameter entering Eq. (4.3.17), one can write

∆M
(g̃)
Bs,d

in the schematic form:

∆M
(g̃)
Bs
∝ λ4

(
A
Bs,(g̃)
2 +A

Bs,(g̃)
3 λ2 +A

Bs,(g̃)
4 λ4 +A

Bs,(g̃)
5 λ6

)
,

∆M
(g̃)
Bd
∝ λ8

(
A
Bd,(g̃)
2 +A

Bd,(g̃)
3 +A

Bd,(g̃)
4 λ2 +A

Bd,(g̃)
5 λ3

)
. (4.3.29)

Figure 4.11 shows the individual contributions as a function of y = (mg̃/mq̃)
2. The largest

contributions originate from the terms proportional to A
Bs,d,(g̃)
2 and A

Bs,d,(g̃)
3 , i.e. the terms as-

sociated with the δdLL and δdRR, see Eq. (4.3.17). The contributions from the LR-type mass

insertion parameters, proportional to A
Bs,d,(g̃)
4,5 , are negligible. The maximum effect of the

gluino-squark box diagrams is obtained when x = (M1/2/m0)2 and y are smaller than one,

5Note that the 2014 average of the FLAG collaboration [106] corresponds to a lower central value but with a

larger error: fBs

√
B̂Bs

∣∣∣
FLAG

= 266± 18 MeV.
6For a recent discussion on theoretical uncertainties and comparison with experimental results, see [108].
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Figure 4.11: The dependence of the individual contributions in Eq. (4.3.29) on y = (mg̃/mq̃)
2.

The average squark mass mq̃ is defined in Eq. (4.3.19) while the functions A
Bs,d,(g̃)
i can be found

in Eq. (4.3.18).
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Figure 4.12: The dependence of the loop functions as well as |ABq,(DP)
2,3 | appearing in

Eq. (4.3.30) on y = (mg̃/mq̃)
2, yµ = (µ/mq̃)

2 and y2 = (M2/mq̃)
2 ≈ 0.11 y. The blue lines

correspond to yµ/y = 30 and the magenta ones to yµ/y = 0.3. In the plots for |ABq,(DP)
2 |, it

has been assumed that At ≈ mq̃.

with the (δdLL(RR))
2
i3 and (δdLL)i3(δdRR)i3 terms interfering constructively. For relatively light

mq̃ around 2 TeV, |ABs,d,(g̃)1 |max ∼ O(10−12) GeV. Assuming furthermore |(δdLL)13| ≈ 10−3,

|(δdLL)23| ≈ 2 × 10−2 and |(δdRR)13| = |(δdRR)23| ≈ 10−2 (see Figure 4.3) as well as y ≈ 0.3, one

can use Eqs. (4.3.15,4.3.17) together with Figure 4.11 to estimate the maximum gluino effects

as |∆M (g̃)
Bs
|max ∼ O(10−14) GeV and |∆M (g̃)

Bd
|max ∼ O(10−15) GeV. This is about two orders of

magnitude smaller than the corresponding SM and experimental values.

For relatively large values of tβ and a light CP-odd Higgs mass MA, the contributions of the

double penguin (DP) diagrams, which scale as t4β µ
2/M2

A, become important. Considering dia-

grams with (i) two gluino, (ii) one gluino and one Higgsino and (iii) one gluino and one Wino
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loops, the associated part of M
Bq
12 can be approximated by [76]:

M
Bq ,(DP)
12 = A

Bq ,(DP)
1 (δdRR)3i t

4
β

µ2

M2
A

{
A
Bq ,(DP)
2 + (δdLL)3iA

Bq ,(DP)
3

}
, (4.3.30)

where i = 1(2) for q = d(s) and

A
Bq ,(DP)
1 =

αs α
2
2

16π

MBqf
2
Bq

m2
q̃

(
MBq

mb +mq

)2 2m2
b

3M2
W

y f3(y),

A
Bq ,(DP)
2 =

At
mg̃

m2
t

M2
W

VtbV
∗
tq f1(yµ),

A
Bq ,(DP)
3 = 2

(
M2

mg̃
f4(y2, yµ)− 8

3

αs
α2
f3(y)

)
. (4.3.31)

yµ = (µ/mq̃)
2 and y2 = (M2/mq̃)

2 where the latter is related to y = (mg̃/mq̃)
2 via the approx-

imations of Eq. (4.3.2). The loop functions f3(y), f1(yµ), f4(y2, yµ) are given in Appendix G.

Their behaviour is sketched in Figure 4.12, along with that of |ABq ,(DP)
2,3 |. For |At| > 500

GeV, the dominant contribution to Eq. (4.3.30) comes from A
Bd,(DP)
2 in the Bd sector, even

for the maximum values of |(δdLL)13|, while for Bs, where |(δdLL)23| assumes larger values (see

Figure 4.3), the two terms in the curly brackets are comparable. For light average squark masses

mq̃ around 2 TeV, A
Bq ,(DP)
1 can reach values up to O(10−16) GeV, while |(δdRR)i3|max ≈ 10−2

(see Figure 4.3). Then, for At & mg̃ and µ � mq̃, |A
Bs(d),(DP)

2 | ≈ O(10−1(−2)), such that

|∆MBs(d),(DP)

12 | ≈ 2×10−19(−20)× t4β µ2/M2
A GeV, barring contributions from the A

Bq ,(DP)
3 term.

When tβ takes its maximum value of 25 and µ ∼ MA, the double penguin contributions to

∆MBq increase to about an order of magnitude above the gluino-box contributions, which is

however still significantly below the SM and experimental values.

Figure 4.13 shows the predicted SUSY contributions to the Bq meson mixings as produced in

the scan. They are plotted against the average squark mass defined in Eq. (4.3.19) and lie below

both the experimental measurements (red dotted lines) and the NP limits (blue dotted lines) by

at least an order of magnitude. This result is in agreement with the findings in Section 4.2.2.2,

where the predictions for the mass insertion parameters are compared with existing limits in

the literature.

The effects of the complex down-type mass insertion parameters of the (23) and (13) sectors can

be studied through the time dependent CP asymmetries associated with the decays Bs → J/ψ φ

and Bd → J/ψKS . Focusing on the mixing-induced CP asymmetries, one has [109]

Sf =
2 Im(λf )

1 + |λf |2
, (4.3.32)

with:

λf =
q

p

Ā(B̄q → f)

A(Bq → f)
,

q

p
=

√√√√M
Bq∗
12 − i

2Γ
Bq∗
12

M
Bq
12 − i

2Γ
Bq
12

, (4.3.33)
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Figure 4.13: The absolute value of the gluino and double penguin contributions to ∆MBs(d)

versus the average squark mass as defined in Eq. (4.3.19). The colour coding corresponds to
different values of x = (M1/2/m0)2. The red dotted lines denote the experimental central
values of Eqs. (4.3.25,4.3.26), while the blue dotted lines indicate the maximum allowed NP

contributions according to Eq. (4.3.28).

where f denotes the final state of the decay and A is the corresponding amplitude. As the

absorptive part Γ
Bq
12 of the Bq meson mixing is much smaller than the dispersive one M

Bq
12 , i.e.

Γ
Bq
12 � M

Bq
12 , one can approximate q/p ≈

√
M

Bq∗
12 /M

Bq
12 . Then, the λf factors associated with

the decays Bs → J/ψ φ and Bd → J/ψKS take the form:

λJ/ψφ = e−iφs , φs = −2βs + arg
(

1 + hBse
2iσBs

)
,

λJ/ψKS = −e−iφd , φd = 2β + arg
(

1 + hBde
2iσBd

)
, (4.3.34)

where the parameters hBq and σBq are defined in Eq. (4.3.16), while the SM phases βs and β

can be found in Eqs. (4.3.21,4.3.22). The mixing-induced time dependent asymmetries can then

be simply written as:

SJ/ψφ = − sin(φs), SJ/ψKS = sin(φd). (4.3.35)

The current measurements are [107]7

SJ/ψφ = 0.015± 0.035, SJ/ψKS = 0.682± 0.019, (4.3.36)

while the SM expectations read [111]:

SSM
J/ψφ = sin(2βs) = 0.0365+0.0012

−0.0013, SSM
J/ψKS

= sin(2β) = 0.771+0.017
−0.041. (4.3.37)

SSM
J/ψφ comes with a relatively small error, whereas SSM

J/ψKS
depends strongly on the value of |Vub|,

which differs significantly when extracted via inclusive or exclusive decays, see e.g. [102], with

the above data preferring the lower exclusive result. The value of SSM
J/ψKS

quoted in Eq. (4.3.37)

has been derived by averaging over inclusive and exclusive semileptonic determinations of the

7LHCb recently published their first measurements of SJ/ψKS
= 0.746± 0.030 [110] in the limit of a vanishing

direct CP asymmetry, i.e.
1−|Ā(B̄q→J/ψKS)/A(Bq→J/ψKS)|2
1+|Ā(B̄q→J/ψKS)/A(Bq→J/ψKS)|2 = 0, thereby improving consistency with the SM

expectation.
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relevant CKM elements and using the value of the CP-violating parameter εK , see Eq. (4.3.45),

amongst the input parameters but not the measurement of sin(2β) itself.

Comparing Eq. (4.3.36) and Eq. (4.3.37), one observes that the NP contributions to SJ/ψφ
and SJ/ψKS can be as large as ∼ 100% and ∼ 10% of the respective SM values. In order to

reach 10% deviations, hBs and hBd should be larger than ∼ 4 × 10−3 and ∼ 0.14 respectively,

corresponding to |∆M (NP)
Bs,d
| & 5 × 10−14. Here NP phases were assumed which maximise the

effect. In view of Figure 4.13, one would expect a non-negligible contribution to SJ/ψφ in a

small part of the parameter space. However, at leading order, (δdLL)23 and (δdRR)23 are real, see

Eqs. (F.3.19,F.3.21). They only receive non-trivial phase factors at order λ5, suppressing the

imaginary part of ∆MSUSY
Bs

by one power of λ ≈ 10−1 with respect to the real part. As a result,

any deviation from SSM
J/ψφ is only of the order of 1%. In the Bd sector, (δdLL)13 and (δdRR)13

are already complex at leading order in λ, see Eqs. (F.3.18,F.3.20). But as can be seen from

Figure 4.13, |∆MSUSY
Bd

|max ≈ 10−15 is too small to be relevant. Even for |∆MSUSY
Bd

| ≈ 10−14,

the maximum deviation from SSM
J/ψKS

would be ∼ 3% at most.

In conclusion, the model would not be able to explain any persistent deviations from SM ex-

pectations in observables related to B meson mixing.

4.3.3.2 K − K̄ mixing

The SM contribution to the Kaon mixing reads [102]:

MK,SM
12 =

G2
FMK

12π2
M2
W

(
(VcsV

∗
cd)

2ηccS0(xc) + (VtsV
∗
td)

2ηttS0(xt) +

+ 2VcsV
∗
cdVtsV

∗
tdηctS0(xc, xt)

)
f2
KB̂K , (4.3.38)

where ηi are QCD factors, B̂K denotes a perturbative parameter and S0(xi ≡ m̄2
i (m̄i)/M

2
W ) are

the Inami-Lim loop functions [103]. From this, the SM value for the Kaon mass difference is

numerically given by [112]:

∆M
(SM)
K = 3.30(34)× 10−15 GeV, (4.3.39)

while the experimental measurement yields [113]:

∆M
(exp)
K = 3.484(6)× 10−15 GeV. (4.3.40)

Therefore it is sensible to impose the constraint that the maximum allowed NP contribution

should be limited by:

∆M
(NP)
K ≤ 5× 10−16 GeV. (4.3.41)

For Kaon mixing, the relevant mass insertion parameters are those of the (12) sector. Taking into

account their λ-suppression, one can write the gluino-box contribution to the mixing amplitude,

given in Eq. (4.3.17), in the schematic form:

∆M
(g̃)
K ∝ λ6

(
A
K,(g̃)
2 +A

K,(g̃)
3 λ+A

K,(g̃)
4 λ4 +A

K,(g̃)
5 λ4

)
. (4.3.42)
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Figure 4.14: The dependence of the individual contributions in Eq. (4.3.42) on y = (mg̃/mq̃)
2.

The average squark mass mq̃ is defined in Eq. (4.3.19) while the functions A
K,(g̃)
i can be found

in Eq. (4.3.18).

Figure 4.14 depicts the individual contributions as a function of y = (mg̃/mq̃)
2. It shows

that the dominant contribution originates from the term proportional to A
K,(g̃)
3 , i.e. the term

proportional to (δdLL)21(δdRR)21, see Eq. (4.3.17). The effects of the LR-type δs, proportional to

A
K,(g̃)
4,5 , are negligible. Using Eqs. (4.3.15,4.3.17) together with Figure 4.14, one can estimate

the maximum gluino contributions to |∆MK |. Assuming y ≈ 0.3, A
K,(g̃)
1 ≈ 10−13 GeV and

(δdLL)21 ≈ 5 × 10−2, (δdRR)21 ≈ 7 × 10−3 (see Figure 4.3), it is expected that |∆M (g̃)
K |max ≈

5 × 10−14 GeV, which is about one order of magnitude larger than the experimental result of

Eq. (4.3.40).

The double penguin (DP) contributions to ∆MK arise at the level of four mass insertions, by

effectively generating the (s→ d) transitions through (s→ b) followed by (b→ d). The relevant

part of the mixing amplitude takes the form [76]:

M
K, (DP)
12 =

α2
s α2

16π
MKf

2
K

(
MK

ms +md

)2 32m2
b

9M2
W

t2β µ
2

M2
Am

2
q̃

y (f5(y))2 × (4.3.43)

× (δdLL)23(δdLL)31(δdRR)23(δdRR)31, (4.3.44)

with the loop function f5(y) given in Appendix G. It is found that this contribution is completely

negligible, as it is proportional to λ14. The upper left panel of Figure 4.15 shows the combined

gluino and DP SUSY contribution to ∆MK , as produced in the scan. It can exceed the NP

limit quoted in Eq. (4.3.41) (blue dotted line) for small values of x, even shooting above the

experimental value of Eq. (4.3.40) (red dotted line) for x� 1.

Turning now to the CP-violating parameter εK , defined as [102]:

εK =
κεe

iϕε

√
2∆M exp.

K

(
Im(MK,SM

12 ) + Im(MK,SUSY
12 )

)
, (4.3.45)

where the superweak phase8 ϕε = arctan(2∆MK/∆Γ) = (43.52 ± 0.05)◦ [113], and the factor

8∆Γ denotes the difference of the widths.
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Figure 4.15: Upper panels: the absolute value of SUSY contributions to ∆MK (left) and
εK (right) plotted against the average squark mass defined in Eq. (4.3.19), with the different
colours corresponding to different values of x = (M1/2/m0)2. Lower panels: the most important
mass insertion parameters, relevant for K mixing (left) with different colours representing the
produced value of |εSUSY

K |; |∆MSUSY
K | versus |εSUSY

K | (right), with the grey shaded points being
excluded by BR(µ → eγ). The red dotted lines indicate the experimentally observed values,

while the blue dotted lines show the limits on NP contributions.

κε = 0.94±0.02 [114] takes into account that ϕε 6= π/4 and includes long distance contributions.

The experimentally measured value of εK is [113]:

ε
(exp)
K = (2.228± 0.011)× 10−3 × eiϕε , (4.3.46)

while the SM prediction depends highly on the value of Vcb [102]. According to [115] and for

the input set from the angle-only fit [116], where the Wolfenstein parameters do not show an

unwanted correlation with εK and B̂K , one finds

|ε(SM)
K | = 2.17(24)× 10−3 (inclusive Vcb),

|ε(SM)
K | = 1.58(18)× 10−3 (exclusive Vcb). (4.3.47)

Therefore, it is demanded that:

|ε(NP)
K | ≤ 0.8× 10−3. (4.3.48)
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The upper right panel of Figure 4.15 shows the absolute value of the predicted SUSY contribu-

tion to εK , plotted against the average squark mass. This can exceed the limit of Eq. (4.3.48)

by more than three orders of magnitude when x < 1. In view of Figure 4.3, one would not

have expected such a big effect. However, the limits on the mass insertion parameters used in

Section 4.2.2.2, only take into account one non-zero mass insertion at a time. As was seen in

this section, the dominant contribution to the Kaon mixing amplitude stems from the multiple

δ term A
K,(g̃)
3 (δdLL)21(δdRR)21 (see Figure 4.14). The non-zero phase of the RR parameter is the

source of the prediction of a large |εSUSY
K |.

The lower left panel of Figure 4.15 shows |εSUSY
K | in the |(δdLL)12| − |(δdRR)12| plane. It indicates

that for |(δdLL)12| ∼ 5 × 10−2, i.e. towards the largest possible value according to Figure 4.3,

|(δdRR)12| . 10−5 is required. When |(δdRR)12| takes its maximum value of ∼ 10−2, |(δdLL)12|
should stay below ∼ 10−4.

Finally, from the lower right panel of Figure 4.15 one observes that εK places stronger bounds

on the mass insertion parameters than ∆MK . Due to the SU(5) framework of the model there

is a correlation between the δ parameters relevant in Kaon mixing and the ones that enter the

branching ratio of (µ → eγ). Denoting the points excluded by BR(µ → eγ) with a grey shade

reveals that there still remains a small area of parameter space which is excluded by εK .

4.3.4 BR(b→ sγ)

This section will now consider the gluino contribution to the branching ratio of b → sγ. In

terms of the relevant mass insertion parameters it is given by [13]:

BR(b→ sγ) =
α2
s α

81π2m4
q̃

m3
bτB

(
|mbM3(y)(δdLL)23 +mg̃M1(y)(δdLR)23|2 + L↔ R

)
, (4.3.49)

where the loop functions M1(y), M3(y) are defined in Appendix G, τB denotes the mean life

of the B meson and y = (mg̃/mq̃)
2. This observable does not constraint the parameter space.

Even for squark masses as low as 100 GeV and y = 1, the LL and RR mass insertion parameters

would only need to be smaller than 0.4 to be consistent with the current experimental value

of [107]:

BR(B → Xsγ) = (3.43± 0.21± 0.07)× 10−4, (4.3.50)

which is in good agreement with the SM prediction [117]. Similarly, the chirality flipping mass

insertion parameters would need to be smaller than 3× 10−3. In the scan it is found that, see

Figure 4.3, (δdLL)23 . 10−2, (δdRR)23 . 10−2, (δdLR)23 . 10−5 and (δdRL)23 . 10−6. Taking into

account the squark mass dependence and the fact that the scan excludes such light squarks, it

was found that the model predicts a contribution to BR(b→ sγ) which is at least three orders

of magnitude below the experimental measurement.
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4.3.5 BR(Bs,d → µ+µ−)

The most recent SM predictions for the branching ratios of Bs,d → µ+µ− are given by [118]:

BR(Bs → µ+µ−)(SM) = (3.65± 0.23)× 10−9,

BR(Bd → µ+µ−)(SM) = (1.06± 0.09)× 10−10, (4.3.51)

while the averages of the CMS and LHCb collaborations read [119]:

BR(Bs → µ+µ−)(exp.) = 2.8+0.7
−0.6 × 10−9,

BR(Bd → µ+µ−)(exp.) = 3.9+1.6
−1.4 × 10−10. (4.3.52)

The Bd sector therefore still allows for rather large relative deviations from the SM expectations.

In the case of Bs the experimental measurement yields a value which is slightly lower than the

SM prediction.9 Therefore, the allowed room for contributions from new physics is quoted as:

BR(Bs → µ+µ−)(NP) ≤ 1.68× 10−9,

BR(Bd → µ+µ−)(NP) ≤ 4.53× 10−10. (4.3.53)

The chargino and gluino contributions to the branching ratio of Bs,d → µ+µ− can be expressed

as [76]:

BR(Bq → µ+µ−) =
τBq f

2
Bq
M3
Bq

32π

√
1− 4

m2
µ

M2
Bq

× (4.3.54)

×
{∣∣∣∣∣ABq1

[
ABq2 −

αs
α2
f3(y)

(
(δdLL)i3 − (δdRR)i3

)]∣∣∣∣∣
2(

1− 4
m2
µ

M2
Bq

)

+

∣∣∣∣∣2 mµ

MBq

CSM
10 +ABq1

[
ABq2 −

αs
α2
f3(y)

(
(δdLL)i3 + (δdRR)i3

)]∣∣∣∣∣
2}

,

where

ABq1 = α2
2 t

3
β

MBq mµ

4M2
W

mg̃ µ

M2
Am

2
q̃

, ABq2 =
m2
t

M2
W

At
mg̃

VtbV
∗
tqf1(yµ) +

M2

mg̃
(δuLL)i3 f4(y2, yµ),

CSM
10 =

α2

4π

4GF√
2
VtbV

∗
tqY0(xt), Y0(x) =

x

8

(
x− 4

x− 1
+

3x

(x− 1)2
ln(x)

)
, (4.3.55)

with xt = m2
t /M

2
W and i = 1(2) for q = d(s) . The the loop functions f1(yµ), f3(y) and f4(y2, yµ)

are the ones which appear in the double penguin contributions to Bq mixing in Section 4.3.3.1.

With CSM
10 = 0 and At & 100 GeV, the dominant contribution to Eq. (4.3.54) originates from

the flavour blind term of ABq2 , such that the following approximation can be made:

BR(Bs(d) → µ+µ−) ≈ O
(

6× 10−6(1× 10−7)GeV4

m4
q̃

t6β
A2
t µ

2

M4
A

f2
1 (yµ)

)
. (4.3.56)

9The calculations in [118] have been performed using the inclusive value of |Vcb|. Working with the exclusive
one would result in a lower central value of BR(Bs → µ+µ−)(SM) = 3.1 × 10−9 which fully agrees with the
data [120].
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Figure 4.16: The SUSY contributions to the branching ratios of Bq → µ+µ− versus the
average squark mass mq̃, defined in Eq. (4.3.19). The red dotted lines denote the experimental

measurements, while the blue dotted lines indicate the maximum NP contributions.

Then, for |At µ|/M2
A ≈ O(1), mq̃ ≈ 2 TeV, tβ ≈ 25 and f1(yµ) receiving its maximum value of

order one (cf. Figure 4.12), one expects BR(Bs(d) → µ+µ−) ≈ O(10−10(−12)).

In Figure 4.16, the predicted SUSY contributions to the branching ratios of Bq → µ+µ− are

plotted against the average squark mass mq̃, defined in Eq. (4.3.19). The red dotted lines

denote the experimental measurements, while the blue ones correspond to the limits for the NP

contributions as given in Eq. (4.3.53). In both sectors, Bs and Bd, the maximum predictions

fall about an order of magnitude below these limits.

4.3.6 Neutron and 199Hg EDMs

CP-violating effects in the quark sector can manifest themselves through the quark EDMs

as well as the quark Chromo Electric Dipole Moments (CEDMs). The gluino contributions

read [76, 121, 122]:{
dqi
e
, dCqi

}
=
αs
4π

mg̃

m2
q̃

Im
[
(δqLL)ik(δ

q
LR)kj(δ

q
RR)ji

] {
QqFq(y),FCq (y)

}
, (4.3.57)

with

Fq(y) = −8

3
N1(y), FCq (y) =

(
1

3
N1(y) + 3N2(y)

)
, (4.3.58)

where Qq denotes the electric charge of quark q and the loop functions N1(y), N2(y), with

y = (mg̃/mq̃)
2, are given in Appendix G. As the first generation squarks dominate Eq. (4.3.57),

the average squark masses are used

mũ =
√
mũLLmũRR , md̃ =

√
md̃LL

md̃RR
, (4.3.59)

with mq̃LL(RR)
given in Eqs. (F.3.15,F.3.30).
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Similar to the case of the electron EDM, the most general scenario is considered where the

phases of the soft trilinear sector are different from the corresponding Yukawa ones. Then the

dominant contributions of Eq. (4.3.57) arise from the single mass insertions with i = j = k = 1,

Im [(δuLR)11] ∝ Im [ãu11]λ8, Im
[
(δdLR)11

]
∝ Im

[
ãd11

]
λ6, (4.3.60)

where ãfij is defined in Eq. (D.5). The double and triple mass insertions start contributing at

orders λ12 and λ8 for the up and down quark (C)EDMs, respectively.

If, however, the phases of the soft trilinear and Yukawa sectors are aligned, ãfij is real. In the case

of the up quark sector, one should then check10 whether the NLO corrections to Im [(δuLR)11] also

vanish, before assuming that the term Im [(δuLL)13(δuLR)33(δuRR)31] ∝ sin(4θd2−θd3)λ12 dominates.

The situation in the down sector is such that the NLO correction to (δdLR)11 gives a non-vanishing

contribution to the (C)EDMs. Explicitly, it was found that Im
[
(δdLR)11

]
NLO
∝ sin(4θd2 + θd3)λ7,

while the smallest contribution from multiple mass insertions is Im
[
(δdLL)12NLO(δdLR)21

]
∝

sin(θd2)λ9.

In order to compare the gluino contributions of the model according to Eq. (4.3.57) with the

experimental limits, the RG running is taken into account from the SUSY scale down to the

hadronic scale, using the LO results of [123], for αs(µS ≈ 1TeV) ≈ 0.089 and αs(µH ≈ 1GeV) ≈
0.358 [124]. Then,

dCqi(µH) ≈ 0.87 dCqi(µS),

dqi
e

(µH) ≈ 0.38
dqi
e

(µS)− 0.39Qq d
C
qi(µS), (4.3.61)

with d
(C)
qi (µS) as given in Eq. (4.3.57).

With these preparations, the predictions for the neutron and the 199Hg EMDs can be studied.

Adopting the QCD sum rules approach, the neutron EDM at the renormalisation scale µ =

1 GeV, is given in terms of the QCD θ̄-term and the quark (C)EDMs by [98]:

dn
e

= 8.2× 10−17 cm θ̄ − 0.12
du
e

+ 0.78
dd
e

+
(
−0.3 dCu + 0.3 dCd − 0.014 dCs

)
, (4.3.62)

while the current experimental limit is [125]:

|dn/e| ≤ 2.9× 10−26cm ≈ 1.47× 10−12 GeV−1. (4.3.63)

The quark (C)EDMs can also be probed through measurements of the EDMs of atomic systems,

where 199Hg provides the best upper limit amongst the diamagnetic systems [126]:

|dHg/e| ≤ 3.1× 10−29cm ≈ 1.57× 10−15 GeV−1. (4.3.64)

However, large theoretical uncertainties in the atomic and in particular the nuclear calculations

prevent the extraction of bounds on d
(C)
qi . Eq. (4.3.64) limits the nuclear Schiff moment as [127]:

SHg ≤ 1.45× 10−12|e| fm3, (4.3.65)

10The expansion was truncated at the order of λ8.
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Figure 4.17: The neutron EDM versus the average squark mass mq̃ =
√
mũmd̃, with mũ and

md̃ as defined in Eq. (4.3.59) (left panel) and versus the electron EDM (right panel). The red
dotted lines denote the current experimental limits as given in Eqs. (4.3.63,4.3.3) and the black
dotted lines the future limits |dn/e| . 10−28 cm ≈ 5×10−15 GeV−1 and |de/e| . 3×10−31 cm≈

1.52× 10−17 GeV−1 [98].

which, assuming it is dominated by pion-nucleon interactions, can be expressed as [128]:

SHg = 13.5
(

0.01 ḡ
(0)
πNN + (±)0.02 ḡ

(1)
πNN + 0.02 ḡ

(2)
πNN

)
. (4.3.66)

In this equation, the ḡ
(i)
πNN denote the pion-nucleon couplings. Their coefficients in Eq. (4.3.66)

are the best fit values taken from the review article [128], which assesses the strengths and

weaknesses of different, sometimes contradictory, nuclear calculations provided in the literature.

Combining Eqs. (4.3.65,4.3.66) with the relation:

ḡ
(1)
πNN = 2× 10−12

(
dCu − dCd

)
, (4.3.67)

which was derived in [129], it can be inferred that [127]:

|(dCu − dCd )/e| ≤ 2.8× 10−26cm ≈ 1.42× 10−12 GeV−1. (4.3.68)

However, this bound only applies if the coefficient of ḡ
(1)
πNN in Eq. (4.3.66) takes its best fit value.

In principle, it could also be zero, in which case no bound on |(dCu − dCd )/e| could be extracted.

In the left panel of Figure 4.17, the prediction for the neutron EDM is shown versus the average

first generation squark mass mq̃ =
√
mũmd̃. For squark masses less than about 6 TeV, it lies

just below the red line denoting the experimental limit in Eq. (4.3.63). For heavier squarks it

stays below the limit by at least one order of magnitude. The colour coding corresponds to

the predicted value of |(dCu − dCd )/e| × 1012 GeV, which can also reach the limit in Eq. (4.3.68)

for large |dn/e| values. In the right panel of Figure 4.17, the neutron and electron EDMs are

plotted against each other. They are of the same order of magnitude, but it is the current

electron EDM limit that constrains the parameter space. When the future experimental limits

are reached, only the small part lying in the lower left corner bounded by the black dotted lines

would survive.
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4.4 Conclusions

In Chapter 3 it was shown how MFV can emerge approximately from an SU(5) SUSY GUT,

whose flavour structure is controlled by the family symmetry S4 × U(1) and provides a good

description of all quark and lepton masses, mixings, as well as CP violation. It was seen that the

model leads to mass insertion parameters in Eqs. (3.7.7,3.7.8,3.7.9) which very closely resemble

the MFV forms, where δu,d,eLL,RR are unit matrices and δu,d,eLR are proportional to the Yukawa

matrices.

Whereas Chapter 3 focused on the similarity to MFV, this chapter investigates the deviations, by

considering the predictions for electric dipole moments, lepton flavour violation, B and K meson

mixing, as well as rare B decays. It is found that many of the supersymmetric contributions

lie below current limits, as anticipated. This is the case for example in B physics observables,

where deviations are negligible (at the 1% level) making it unlikely for the model to explain

any possible discrepancies between SM expectations and measurements in ∆MBs,d or in the

time dependent asymmetries SJ/ψφ and SJ/ψKS . On the contrary, the SU(3) family symmetry

models previously studied, predicted large effects in these observables.

However, there are still processes where the S4 × U(1) SUSY GUT model could be probed.

The (12) down-type quark and charged lepton sectors, show significant deviations from MFV,

leading to large contributions to Kaon mixing observables and to the branching ratio of µ→ eγ.

In particular, (δeLL)12 provides the dominant contribution to BR(µ → eγ) and rather heavy

sleptons, exceeding about 1 TeV, are required in order to satisfy the experimental bound. Fur-

thermore, the model produces observable CP violating effects, predominantly in the prediction

of the electron EDM, where again large (TeV scale) slepton masses are required for compatibil-

ity with current bounds. A signal is therefore expected to be observed in both µ→ eγ and the

electron EDM, within the expected future sensitivity of the associated experiments.

Turning to CP violation in the Kaon system, an important contribution to εK is found, due to

the phase of (δdRR)12. The SM prediction for this observable depends sensitively on |Vcb|, which

differs when considering inclusive or exclusive decays, leading to a lower central value in the

latter case. It is noted though, that even for inclusive values of |Vcb|, the SM expectation for εK
is still about 10% below the measurement. That being the case, sufficient enhancement appears

to be available from this flavour model, in order for experimentally observed value of εK to be

explained.





Chapter 5

Exclusive Chromomagnetism in

heavy-to-light FCNCs

5.1 Introduction

This Chapter reports on a different project, not directly related to Chapters 3 and 4. It describes

the computation of the chomomagnetic matrix element for heavy-to-light semileptonic decays,

using the method of light-cone sum rules (LCSRs). The work presented here has been published

in [18, 19]. My contribution has been to the derivation of the analytical results; the numerical

output presented in Tables 5.2, 5.3, H.1 and Figure 5.5 has been provided by my collaborators.

The study of exclusive flavour changing semileptonic decays, where the underlying quark level

transition is of the b → s(d)l+l− type, are of particular interest, as they give rise to multiple

observables, such as CP and isospin asymmetries. These “rare” decays are very suppressed in

the SM and they can potentially provide invaluable information for the flavour structure of TeV

scale physics. Identification of any BSM effects in the B-sector necessitates the improvement of

the measurements of different independent observables, but also accurate theoretical estimation

of how the operators of the weak effective Hamiltonian in Eq. (5.1.1) contribute to each one

of them. There are ten operators contributing to the amplitudes of semileptonic B decays and

with the present calculation of the chromomagnetic dipole operator O8 contribution, they are

now all known.

The energy scales encountered in such a decay are both the electroweak scale of O(MW ), related

to the underlying quark level flavour changing transition and the scale of the strong interactions

ΛQCD, related to meson formation. Since the mass of the W boson is a lot larger than the

typical hadronic scale, the W propagator is of very short range and the charged currents, which

it connects in a weak decay, can be considered to interact locally, as in the classical Fermi theory.

In that sense, the W boson, as well as heavy quarks, can be integrated out as dynamical degrees

of freedom and using the Operator Product Expansion (OPE), one can construct an effective

weak Hamiltonian, appropriate for the low energy scales under consideration [132]:

Heff =
GF√

2

∑
i

V i
CKMCi(µ)Oi(µ) (5.1.1)

85
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In the above formula, the operators Oi(µ) describe the low-energy/long distance (LD) dynamics

of the system, while the Wilson coefficients Ci(µ) encode the high-energy/short distance (SD)

structure of the theory and play the role of coupling constants for the effective interaction terms

Oi(µ). The factorisation scale at which the LD and SD contributions are separated is denoted

by µ and the V i
CKM factors denote the CKM structure of a particular operator. Then, the

probability amplitude for an I → F transition factorises as:

A(I → F ) = 〈F |Heff |I〉 =
GF√

2

∑
i

V i
CKMCi(µ)〈F |Oi(µ)|I〉. (5.1.2)

Any new physics effects at a high scale manifest themselves at low energy through corrections

to the Wilson coefficients (and/or introduction of additional operators). The Wilson coefficients

are process independent perturbative objects that can be calculated once and for all. This is

done by requiring that the “full” amplitude, where the W bosons have not been integrated out,

is equal to the amplitude in the effective approach; this is done at the matching scale which

is of the order of MW . Subsequently, the Wilson coefficients can be evolved down to the low

energy scale of the external momenta, typically of the order of the decaying meson.

On the other hand, the hadronic matrix elements 〈Oi〉, depend on the external states and encode

LD contributions. As exclusive processes suffer from non-perturbative QCD effects due to the

hadronisation of the quarks participating in the I → F transition, these matrix elements are

described in terms of hadronic “Form Factors” (FF), that are specific to the initial and final

states and their calculation requires a non-perturbative method.

In a B meson decay, the b quark decays into a light quark (recoiling quark), which combines

with the light quark contained in the B meson (spectator quark), to form the final state meson.

There are two different parton configurations that need to be described [133]; one is the so-

called hard-gluon exchange, where through the momentum transfer of an energetic gluon, all

quarks have large momenta; the second one corresponds to the case where one quark is soft

and interacts with the other partons only via soft-gluon exchange. The method used for the

calculation of 〈Oi〉 needs to treat these two mechanisms on the same footing. The light-cone

sum rules (LCSRs) method is designed to do exactly that. In the context of weak-decay form

factors, the main object of the calculation is the correlation function of the weak current and

a current with the quantum numbers of the B-meson, sandwiched between the vacuum and

the final state meson. For large (negative) virtualities of these currents (below any thresholds

corresponding to physical states), the correlation function is (in coordinate-space) dominated

by distances near the light-cone, such that it can be analysed within the framework of a “light-

cone” expansion (LC-OPE) [16, 133], which allows consistent factorisation of perturbative and

non-perturbative effects. This is briefly illustrated in what follows.

In order for the final meson to be formed, its two constituent quarks should have a small

transverse separation. The light-cone expansion is based on integrating out the transverse

momenta of the partons, up to some scale µF , and considering only the longitudinal ones as the

relevant degrees of freedom. Then, the correlation function can be factorised as:∑
i

T (i) ◦ φ(i), (5.1.3)
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according to the so-called “collinear factorisation”, as the momenta of the partons in the meson

are collinear with its momentum. All momenta below the cut-off µF are included in the light-

cone distribution amplitude (DA) φ, which is a non-perturbative object, while the larger ones

are contained in the process-dependent amplitudes T , which are the analogues of the Wilson

coefficients in Eq. (5.1.1) and can be calculated in perturbation theory. The sum runs over

contributions with increasing “twist”, which is defined as the difference between the spin and

the dimension of the corresponding operators. With increasing twist, the terms in the sum are

suppressed by increasing powers of the virtualities of the involved currents. The leading term is

a twist-2 DA, which corresponds to the final state meson being in a 2-parton (quark-antiquark)

state. It is then a dimensionless function of u that describes the probability to find the meson

in a state where its quark has a collinear momentum fraction u and its antiquark ū ≡ 1− u. A

twist-3 DA would describe a meson being in a 3-parton (quark-antiquark-gluon) state and so

on.

Using the LCSRs method, a review of which can be found in [16], this Chapter describes the

computation of the matrix elements:

〈M(p)γ∗(q)|O8|H(pH)〉 , pH = p+ q , (5.1.4)

of the chromomagnetic operator 1 :

O8 ≡ −
g

8π2
mbs̄σµνG

µν
a

λa

2
(1 + γ5)b ≡

[
−gmb

8π2

]
Õ8 , (5.1.5)

where H is a pseudoscalar heavy meson that decays into a pseudoscalar or vector meson M

and a photon γ. Allowing the latter to be off-shell, leads to photon momentum invariant q2-

dependence of the matrix element. It is found that the matrix elements are suppressed by

one(two) orders of magnitude for the D(B)-transitions w.r.t. to the penguin short-distance

(SD) form factors. Their interest is thus for asymmetries rather than for branching ratios. One

example is the isospin asymmetry, since the emission of the photon from the spectator quark is

dependent on the charge of the decaying hadron.

The chapter is organised as follows: In section 5.2 the matrix elements are defined and the

basic sum rule is presented. Section 5.3 describes the computation, including the final sum rule

expression. Section 5.4 contains the numerics. In section 5.5 the results are compared with

the estimate of the QCD Factorisation method (QCDF) [17], which suffered from end-point

divergences, not encountered in the LCSRs approach. In section 5.6 the main points of the

chapter are summarised. Some explicit results and definitions can be found in Appendices H to

L. The analytic structure of the correlation functions in use, can be found in Appendix J.

1The normalisation of O8 goes with the effective Hamiltonian normalisation convention: Heff =
−GFV ∗tsVtbC8O8/

√
2 + . . .
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5.2 Matrix element and sum rule

5.2.1 Lorentz-decomposition of Õ8 matrix elements

For definiteness, throughout this chapter, the initial state meson is chosen to be of the B̄ type

and the final state meson to be a vector meson V 2 . The relevant transition amplitude reads:

A∗ρ(V ) ≡ 〈γ∗(q, ρ)V (p, η)|Õ8|B̄(pB)〉 = i

∫
x
〈V |Tjρem(x)Õ8(0)|B̄〉eiq·x + . . . , (5.2.1)

where the dots stand for higher-twist contributions. The polarisation vector of V is denoted by

η and the momenta of V , γ and B are denoted by p, q and pB ≡ p + q respectively. Also, the

notation:
∫
x =

∫
d4x is used. The star indicates that the photon is, generically, off-shell and the

index ρ is due to the photon polarisation left uncontracted. The operator Õ8 ≡ s̄σ ·G(1 + γ5)b

corresponds to O8 in Eq. (5.1.5) with the constant prefactor dropped.

The amplitude in Eq. (5.2.1) can be decomposed as: 3

cV A∗ρ(V ) = kG

(
G1(q2)P ρ1 +G2(q2)P ρ2 +G3(q2)P ρ3

)
A∗ρ(P ) = kG

(
GT (q2)P ρT

)
, (5.2.2)

where Gι are the scalar functions that play the role of the form factors and Pi,T are the Lorentz

structures given in Appendix I. The normalisation constant kG ≡ −2e/g is chosen such that the

Gι-functions parallel the standard vector Ti and pseudoscalar fT penguin form factors in the

amplitude:

〈γ∗(q, ρ)V (p, η)|Heff |B̄〉 ∝
∑
i

(C7Ti(q
2) + C8Gi(q

2))P ρi + . . .

〈γ∗(q, ρ)P (p)|Heff |B̄〉 ∝ (C7fT (q2) + C8GT (q2))P ρT + . . . (5.2.3)

The physical domain of semileptonic transitions is (2ml)
2 ≤ q2 ≤ (mB−mP,V )2. Under exchange

of chirality (1+γ5)→ (1−γ5) in O8, often denoted as O′8, the Gι-functions transform as follows:

{G1, G2, G2, GT }
(1+γ5)→(1−γ5)→ {G1,−G2,−G3, GT } . (5.2.4)

5.2.2 The sum rule

A characteristic feature of the LCSRs method is that the initial state meson features as an

interpolating current, which can produce not only the ground state but also excited mesons and

a continuum of states that have the same quantum numbers. The matrix elements (5.1.4) are

2The analogous relation for the pseudoscalar Aρ(P ) simply replaces V by P in the final state.
3The factor cV is inserted to absorb trivial factors due to the ω ∼ (ūu + d̄d)/

√
2 and ρ0 ∼ (ūu − d̄d)/

√
2

wave functions. cV = −
√

2 for ρ in b → d transitions, cV =
√

2 in all other transitions into ω & ρ0 and cV = 1
otherwise.
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extracted from the following correlation function4:

ΠV (q2, p2
B) = ε∗ρ(q)ΠV

ρ (q2, p2
B) = i

∫
x
〈γ∗(q)V (p)|TJB(x)Õ8(0)|0〉e−ipB ·x , (5.2.5)

JB = imbb̄γ5q , 〈B̄(pB)|JB|0〉 = m2
BfB . (5.2.6)

where JB is the interpolating current of the B-meson. The dispersion representation of the

correlation function in the variable p2
B reads:

ΠV (q2, p2
B) =

1

2πi

∮
Γ

dsΠV (q2, s)

s− p2
B

, (5.2.7)

and is nothing but Cauchy’s integral theorem: The closed path Γ is chosen such that no sin-

gularities5 are crossed. An example is shown in Figure 5.1 for the analytic structure of the

correlation function in QCD; Γ = ΓP ∪ ΓC. In a second step, advantage is taken of the isolated

B-pole, encircled by ΓP in Figure 5.1, by splitting the dispersion integral into two parts as

follows:

ΠV (q2, p2
B) =

m2
BfB

m2
B − p2

B

〈γ∗(q)V (p)|Õ8|B̄(pB)〉+
1

2πi

∮
ΓC

dsΠV (q2, s)

s− p2
B

. (5.2.8)

Equating (5.2.7) and (5.2.8), one obtains the desired ground state contribution:

m2
B

Im s

Re s

s̄0 Γ̄C

s̄+

Γ̄P

m2
b

Im s

Re s

s0

s+

ΓC

ΓP

Figure 5.1: ΓP[ΓP] and ΓC[ΓC] correspond to the straight and dashed paths in the right[left]
figure respectively. (left) Analytic structure of the correlation function in QCD. There is an
isolated B-pole at s = m2

B and a branch point s̄0 = (mB + 2mπ)2 at the continuum threshold.
The existence of a complex branch point s̄+, which corresponds to an anomalous threshold is
discussed in Appendix J. The path Γ = ΓP ∪ ΓC is a possible path for Eq. (5.2.7). (right)
Analytic structure of the correlation function as found in leading order perturbation theory.
The branch point related to the normal threshold starts at m2

b . The two branch points s̄+ and
s+ are expected to be close, but not identical, like m2

B is close to m2
b .

4For the sake of notational simplicity the photon polarisation tensor is kept contracted here as with respect
to (5.2.1), though from a physical point of view this does not make sense for an off-shell photon.

5including the anomalous branch-cut extending into the lower half plane in Figure 5.1, the existence of which
is discussed in the next section
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m2
BfB

m2
B − p2

B

〈γ∗(q)V (p)|Õ8|B̄(pB)〉 =
1

2πi

(∮
Γ

dsΠV (q2, s)

s− p2
B

−
∮

ΓC

dsΠV (q2, s)

s− p2
B

)
. (5.2.9)

For the purpose of numerical improvement, a Borel transformation [16, 134],

Bs→M2 [
1

x− s ] =
e−x/M

2

M2
, (5.2.10)

in the variable p2
B is applied to (5.2.9), yielding:

〈γ∗(q)V (p)|Õ8|B̄(pB)〉 = D[ΠV ,Γ]−D[ΠV ,ΓC] , (5.2.11)

where the following shorthand notation is introduced:

D[f,Γf ] ≡ 1

fBm2
B

1

2πi

∮
Γf

ds e(m2
B−s)/M2

f(q2, s) . (5.2.12)

The expression in (5.2.11), up to neglecting the width of the B-meson, is exact although rather

cryptic. Approximations enter the calculation of the correlation function ΠV , due to neglect-

ing higher twist- and αs-corrections and in estimating D[ΠV ,ΓC]. More precisely, whereas

D[ΠV ,Γ] ≈ D[ΠV |LC−OPE,Γ] is a good approximation for off-shell p2
B (up to the truncations in

twist and αs mentioned above), the approximation D[ΠV ,ΓC] ≈ D[ΠV |LC−OPE,ΓC], which goes

under the name of semi-global quark hadron duality, is less transparent and usually the main

limitation of a sum rule computation. In the full theory ΓC marks the onset of the continuum

threshold which corresponds to the lowest lying multi-particle state (e.g. s̄0 = (mB + 2mπ)2

in QCD. For the LC-OPE dispersion representation shown in Figure 5.1 (right), one introduces

an effective continuum threshold s0 [16, 134], which corresponds to the duality approximation

mentioned above.

The crucial point in connection with the anomalous threshold which results in branch cuts

extending into the complex plane, is that its real part is above the continuum threshold, m2
b +

m2
B/2 > s0, and therefore it is entirely included in ΓC and does not contribute to the final sum

rule6. Therefore, the path Γ minus the path ΓC corresponds to the path ΓP that encircles the

real line segment from m2
b to s0. The final sum rule can be written as:

〈γ∗(q)V (p)|Õ8|B̄(pB)〉 ' D[ΠV |LC−OPE,Γ]−D[ΠV
LC−OPE,ΓC]

= D[ΠV |LC−OPE,ΓP ] =
1

fBm2
B

∫ s0

m2
b

dse(m2
B−s)/M2

ρV (q2, s) (5.2.13)

where:

2πiρV (q2, s) = DiscsΠ
V (q2, s) = ΠV (q2, s+ i0)−ΠV (q2, s− i0) , (5.2.14)

and the subscript LC-OPE in Eq. (5.2.14) has been dropped. Note that the radius of the path

ΓC and Γ (as well as for the barred quantities) does not enter the final relation (5.2.13). The

important point is that the endpoint of the duality interval is much larger than the intrinsic

scale of QCD: s0 � Λ2
QCD.

6 It is also suppressed by the Borel transformation (5.2.10) (by at least of e(m2
B−s0)/M2

with respect to the
B-pole part), both due to the large real part of s and the oscillation in the exponential due to = s 6= 0 along the
associated branch cut.
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5.2.2.1 Remarks on dispersion relations and anomalous thresholds

As the appearance of complex singularities in forms of anomalous thresholds is rather non-

standard in sum rule computations, adding a few remarks may be worthwhile. For a two-point

function, a dispersion representation is in one-to-one correspondence with the insertion of a

complete set of states. Thus, the analytic structure in the complex plane of the four momentum

invariant has a cut and poles on the real line, starting from the lowest state in the spectrum. For

correlation functions with three and more fields, there is no such direct relation. The analytic

structure can be more involved, as singularities other than those related to intermediate states

might appear, known as anomalous thresholds e.g. [137, 138]. Singularities related to unitarity,

that is to say to an insertion of a complete set of states, are called normal thresholds. From the

viewpoint of a dispersion relation, normal and anomalous thresholds should be viewed as being

on the same footing, as only the analytic structure counts. Which singularities are relevant for

the physics in question is another matter. Clearly, the interest here is in the matrix element

corresponding to the residue of the pole of the B-meson, which belongs to the normal part. It

should be clear that the anomalous thresholds do no more harm to the extraction of the matrix

element in question than any other continuum contribution.

5.3 The computation

This section provides some more details of the computation, with some explicit results deferred

to the appendices. At leading order in αs, there are twelve graphs in total. They can be split

into those where the gluon connects to the spectator(s) and the ones where it connects to the

non-spectator (ns) quark:

Gι(q
2) = G(s)

ι (q2) +G(ns)
ι (q2) . (5.3.1)

The four diagrams denoted by A1 to A4 in Figure 5.2 (top, middle) contribute to G
(s)
ι , whereas

the diagrams at the bottom of the same figure correspond to the G
(ns)
ι -contributions. Hereafter,

ū ≡ 1 − u is used. The G
(ns)
ι -functions factorise into a function f(q2/m2

b) times the standard

vector, axial or tensor form factors. The function f has been obtained in the inclusive case in

[139]7, in terms of an expansion in powers of q2/m2
b and logarithmic terms. The two diagrams

where the gluon connects to the non-spectator quark and the photon is emitted from the latter

are not shown. These diagrams are expected to be small, since no fraction of the mb-rest mass

is transmitted to the energetic photon. They are therefore neglected. For the same reason and

for being of higher twist, one expects the diagrams where the gluon is radiated into the final

state meson to be suppressed 8.

7It is worth adding that it would be possible to compute these contribution within LCSR itself.
8A rough estimate can be given by comparing the similar case, where a gluon is radiated from a charm loop,

instead of O8, to the hard spectator or the final state meson. Taking the estimates of [130] and [140, 141], a
factor of roughly four is found between them.
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ūp

V (p)
pB

q

ūp+ q

upÕ8

A1 A2 q

V (p)
pB

ūp

upÕ8

A3

V (p)
pB

ūp

upÕ8
q

q

V (p)
pB

ūp

upÕ8

−up− q

A4

b

Õ8

sb

Õ8

s

Figure 5.2: (top/middle) Diagrams A1 to A4, correspond to all four possibilities with the gluon

from the weak vertex connecting to the spectator quark. (bottom) Non-spectator corrections.

They have been computed in the inclusive case in [139]. The crosses indicate all possible photon

insertions.

5.3.1 The problem of parasitic cuts

Due to the fact that there is no momentum flowing into the weak vertex at Õ8, there’s an

ambiguity in separating the cuts corresponding to the B-meson from other cuts. The general

problem originates from the fact that the relation between correlation functions of higher degree

and matrix elements is complicated by time ordering and a non-trivial analytic structure. The

problem is best understood by first introducing its (partial) cure.

Following the method introduced by Khodjamirian for B → ππ [143], a spurious momentum k is

introduced into the weak vertex. This introduces two further momenta, denoted by P = pB − k
and Q = q−k. Formally, the 1→ 2 decay is augmented by the spurious momentum k to a 2→ 2

scattering process, which has six independent kinematic variables: {q2, Q2, p2
B, P

2, k2, p2}. For

the purposes considered here, it is possible to set q2 = Q2 and k2 = 0 without consequence. From

now on, capital Q will only be used for the four momentum throughout the chapter. Recalling

that p2 = m2
P,V the six kinematical invariants are reduced to {q2, P 2, p2

B}. The variable P 2

remains the only trace of the spurious momentum at this stage. How it effectively disappears

from the final result, is discussed in the next subsection after the light-like dominance of the
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Q

V (p)
pB

ūp

up
k Õ8

−up−Q

p2B
p2BP 2

,

Figure 5.3: Various cuts in the variables p2B and P 2 ≡ (pB − k)2. The cut in P 2 is of a
parasitic type, in the sense that for k → 0 it cannot be distinguished from p2B , yet it is clearly
not associated with the B-meson, as it does not cut in the b-quark line. The two cuts in p2B are
of the 2-parton and 3-parton type and should and are both included. The double-line denotes

the b-meson propagator.

correlation function is discussed. At the level of the correlation function (5.2.5), the change

is implemented by changing the photon momentum q → Q. The above mentioned cuts then

branch into cuts in p2
B and P 2, see Figure 5.3, where the former correspond to the B-meson

and the latter to parasitic ones.

The extension of the Lorentz-structures to the case where the spurious momentum k is included,

is given in Appendix I.1. Denoting the photon polarization tensor by ε(Q), the correlation

function is now parametrised as:

ΠV =
4∑
i=0

gi(q
2)ε(Q) · pi , ΠP =

∑
i∈{0,T,T̄}

gi(q
2)ε(Q) · pi . (5.3.2)

5.3.2 The Light-Cone Expansion

The correlation function is expected to be dominated by light-like distances, in the case where

the kinematical invariants k2, q2, p2
B and P 2 9 are below the thresholds. In that case, the

light-cone operator product expansion (LC-OPE), see [16] for a review article on the topic, is

applicable. For the physical matrix element, q2 and P 2 necessitate analytic continuation, an

issue which is deferred to sections 5.3.3 and 5.4.2. Schematically the LC-OPE reads:

Π(q2, p2
B, P

2) =
∑
i

T
(i)
H (q2, p2

B, P
2;µF ;u) ◦ φ(i)(u, µF ) , (5.3.3)

9The remaining two invariants are Q2 = q2 and p2 = m2
P,V . The former does not necessitate a separate

statement, while the latter is on-shell, as it corresponds to the momentum of a physical state.
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where i sums over different distribution amplitudes (DAs) of increasing twist. The twist corre-

sponds to the dimension of the operator minus its spin. The terms in the sum are suppressed

by ΛQCD over the virtuality, to the power of the twist. This work is limited to the the leading

twist-2. The relevant DAs are summarised in Appendix I.2. The variable u represents generic

parton momentum fractions, the symbol ◦ stands for the integration over the latter and TH is a

perturbatively calculable hard kernel. The symbol µF denotes the collinear factorisation scale

and separates, within the LC-OPE, the SD physics in the kernel TH from the LD part in the

DA. Using FeynCalc [145] to compute Dirac traces, Passarino-Veltman (PV) [146] reduction

and basis projections, the results are obtained in terms PV functions and their corresponding

dispersion relations, including the handling of the complex branch cuts, are given appendices H

and J respectively.

5.3.3 Analytic continuation and appearance of strong phases

As previously stated, the LC-OPE is valid when all invariants take on values such that no

thresholds are crossed. To obtain a physical result, two of those invariants: q2 and P 2 need to

be analytically continued; q2 to enter the physical domain for B → V (P )ll transitions and P 2

to eliminate the spurious momentum k.

For B → V (P )ll, the physical range for q2 is between (2ml)
2 and (mB − mP,V )2 and it has

become customary to exclude the region below 1 GeV2, in order to avoid the (ρ, ω)-resonance

region. For B → V γ, which corresponds to q2 = 0, it can be argued that one is sufficiently

below the (ρ, ω)-threshold region and therefore the LC-OPE is expected to work. It is once

again highlighted, that the only trace of the spurious momentum is in P 2 ≡ (pB − k)2 6= p2
B.

This trace can be lifted by analytically continuing P 2 → m2
B + i0. Note that if the full solution

of the correlation function was available, then p2
B = m2

B would lead to an exact projection by

virtue of an LSZ reduction. In the sum rule approximation, the remnant of this is the fact that

the integral representation (5.2.13) averages over a narrow range of m2
B. On the level of the LC-

OPE, this analytic continuation is expected to hold, as it is far above all thresholds; the variable

P 2 does not cut through the b quark line (see Figure 5.3). Both analytic continuations lead to

LD contributions, which in turn lead to strong phases. This is illustrated for a P 2 = m2
B-cut in

Figure 5.4 (left) and for a q2 ' m2
ρ cut in Figure 5.4 (right). In summary, both q2 and P 2 are

analytically continued sufficiently far above the thresholds.

5.4 Results, summary and numerics

Note that in the sum rule the product [m2
BfB]× 〈γ∗(q)V (p)|Õ8|B̄(pB)〉, see Eq. (5.2.8), rather

than the Gi(q
2) functions themselves are extracted. This suggests that one should use a sum

rule determination of the same order in the quantity [m2
BfB] 10 in order to extract the matrix

element(s). Such a strategy has for example been proposed in [147]. From Figure 5.3, it is

evident that the 2-particle cut corresponds to a decay constant of order O(α0
s). The 3-particle

cut in the same figure corresponds partially to an O(αs)-correction. The former is expected to

be dominant, justifying the use of the sum rule result for [m2
BfB] [148] to O(α0

s),

10This quantity corresponds to the matrix element of the interpolating current (5.2.6).
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Õ8
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ρ, ω

BB B V (p)
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up

ūp ūp
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Figure 5.4: (left) Hadronic interpretation of the 3-particle cut in Figure 5.3 in terms of a
LD hadronic process. The latter is a source for the strong (CP-even) phase obtained for the
Gι(q

2)-functions. (right) Hadronic interpretation of the strong phase due to q2 > 0, associated
with B → V (ρ, ω)→ V γ∗ → V ll-type transitions.

[m2
BqfBq ]

2|SR0 = (mb +mq)
2e

m2
B−m

2
b

M2

(
−mb〈q̄q〉µ −

mb

2M2
(1− m2

b

2M2
)〈q̄Gq〉µ (5.4.1)

+
3

8π2

∫ s0

(mb+mq)2

e
m2
b−s
M2 (s−(mb−mq)

2)
√

(s−m2
b−m2

q)
2−4m2

bm
2
q

ds

s

)
The parameters M2 = M2[fHq ] and s0 = s0[fHq ] are not necessarily the same as the ones in the

sum rule for Gι-functions.

Following the decomposition (5.3.1), at twist-2, the spectator parts decompose for the vector

and pseudoscalar final state as follows:

G
(s)
i = G

(⊥)
i (q2) +G

(‖)
i (q2) ,

G
(s)
T = G

(P )
T (q2) , (5.4.2)

The superscripts {⊥, ‖, P} refer to the projections onto the corresponding light-meson DA e.g.

(I.2.11). Out of the seven functions (5.4.2), four satisfy relations, so that the full function can

be reconstructed by three of them:

V : G
(⊥)
1 (q2), G

(‖)
3 (q2) , P : G

(P )
T (q2) , (5.4.3)

The four relations required are:

G
(‖)
1 (q2) = G

(‖)
2 (q2) = 0, G

(⊥)
2 = (1− q2/m2

B)G
(⊥)
3 , G

(⊥)
2 = (1− q2/m2

B)G
(⊥)
1 (5.4.4)

Furthermore, in the ultra-relativistic approximation m2
V → 0, the projections G

(P )
T (q2) and

G
(‖)
3 (q2) are proportional to each other modulo a replacement of the corresponding DA, see

Appendix H.
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For the sake of completeness, the sum rule expression for G
(⊥)
1 (q2) is given:

G
(⊥)
1 (q2) =

1

(m2
BfB)|SR0

∫ s0

m2
b

e
m2
B−s
M2 ρ

(⊥)
1 (s)

ρ
(⊥)
1 (s) = p

∫ 1

0
duφ⊥(u)

d∑
i=a

(b⊥i ρBi(u, s) + c⊥i ρCi(u, s)) , (5.4.5)

where p ≡ CF (αs/4π)f⊥V m
2
bQb/(−2) and and ρB(C)i and b(c)⊥i are given in Eqs. (J.4) and (H.5)

respectively.

The types of FCNC b→ (d, s)-, c→ u-transitions of B(D) meson into a light V (P ) meson that

have been considered are indicated in Table 5.1 This sums to a total of 19 transitions; 11 to a

vector and 8 to a pseudoscalar.

ρ[π]+ ρ[π]0, ω ρ[π]− K∗[K]+ K∗[K]0 K∗[K]− K̄∗[K̄]0 φ

(ud̄) (ūu)± (d̄d) (ud̄) (us̄) (ds̄) (sū) (sd̄) (ss̄)

B− (bū) − − b→ d − − b→ s − −
B̄0 (bd̄) − b→ d − − − − b→ s −
B̄s (bs̄) − − − − b→ d − − b→ s

D0 (cū) − c→ u − − − − − −
D+ (cd̄) c→ u − − − − − − −
Ds (cs̄) − − − c→ u − − − −

Table 5.1: FCNC-transitions up to charge conjugation for B(D) → V (P ) as indicated. The

valence quark content of the mesons are indicated in brackets and the type of transition is also

indicated. There are 11V + 8P = 19 transitions in total.

The central hadronic input parameters and their uncertainties are given in Appendix K. The

collinear factorisation scale is chosen to be µ2
F = mb(mc)Λhad ' mb(mc) 0.8 GeV for B(D)

transitions. This scale corresponds to the momentum transfer and is standard for hard-spectator

contributions. Central values at q2 = 0 for G
(⊥)
1 (0), as required for B(D)→ V γ-transitions and

uncertainties are collected in Tab.5.2. The Borel parameters M2[G], M2[fH ], the continuum

threshold s0, the heavy quark mass mb, the decay constants and the condensates are all varied

as indicated in Appendix K. The major uncertainties come from varying s0, mh and µF which

amount to about 11[15], 8[7], and 5[20]% for B[D]-transitions respectively. The uncertainties in

the decay constants can be significant depending on the final state meson, as they enter linearly.

One expects violation of quark-hadron duality to be accounted for by variations of s0. There are

two further sources of uncertainty which are not taken care of by varying parameters. First, the

scale dependence of the operator Õ8(µUV),11 especially since proper radiative corrections in αs
are not included. At 1-loop level the diagonal anomalous dimension is γ88 = CF in conventions

where γm = 6CF and is fortunately small. Evolving at leading log level from µ = 1 GeV to

11In physical processes, such as B → K∗γ, this is compensated by the Wilson coefficients.
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mb leads to a 7%-effect which shall be adapted as an estimate of this uncertainty. Second,

the omission of twist-3 and higher twists: on grounds of past experience a 15% uncertainty

is attributed to them. Note that the Borel mass is chosen to suppress the latter, yet keeping

violations of quark-hadron duality acceptably small, as explained in Appendix K. Finally all

the parametric variations, as described above, and the uncertainty of higher twist and µUV are

added in quadrature, as strong correlations are not anticipated. The final uncertainties along

with the central values are collected in Table 5.2.

G
(⊥)
1 (0) · 102 unc.% type G

(⊥)
1 (0) · 102 unc.% type

B− → ρ−γ 0.29− 0.39i 25% (bD)− B̄s → K∗0γ 0.21 + 0.18i 27% (bD)0

B− → K∗−γ 0.29− 0.40i 26% (bD)− B̄s → φγ 0.26 + 0.23i 26% (bD)0

B̄0 → ρ0γ 0.22 + 0.19i 27% (bD)0 D0 → ρ0γ −7.0− 5.0i 32% (cu)0

B̄0 → ωγ 0.19 + 0.17i 33% (bD)0 D0 → ωγ −6.1− 4.3i 34% (cu)0

B̄0 → K̄∗0γ 0.20 + 0.20i 28% (bD)0 D+ → ρ+γ −1.9 + 2.5i 32% (cu)+

D+
s → K∗+γ −1.8 + 2.1i 33% (cu)+

Table 5.2: Contribution of the diagrams A1-A4 in Figure 5.2 at q2 = 0, for an on-shell

photon. On a qualitative level, there are four types of transitions, the B or D and charged or

uncharged. The notation (bD)0 for instance means a b → (d, s) transition in a charge neutral

meson. In all cases, the charge conjugate transition follows by simply reversing the sign, since

all amplitudes are proportional to the charges of the valence quarks. Together with the non-

spectator correction G
(ns)
i , this constitutes the relevant information for B(D) → V γ decays.

Note that G
(⊥)
1 (0) = G

(⊥)
2 (0). The uncertainties in the real and imaginary parts are very close

and thus are not quoted separately.

5.4.1 Qualitative discussion

As discussed in the caption of Table 5.2, there are four qualitatively different transitions de-

pending on whether the initial meson is either of b or c flavour and on whether it is charged

or not, which is of course a manifestation of the sensitivity to isospin. The b-types are plotted

in Figure 5.5. The q2-dependence is somewhat more complex than the one of an ordinary form

factor B → π. In the latter case, the q2-dependence is merely governed by a series of poles,

starting at q2 = m2
B∗ , and higher multi-hadron cuts. For this reason, fitting that form factor is

rather simple. In the case at hand, the photon couples to all kinds of flavours and thus poles

in q2 = m2
ρ,m

2
B∗ ,Υ(b̄b) appear. Furthermore, there are genuine LD contributions which result

in strong phases for q2, P 2 > 0, as discussed in subsection 5.3.3 and illustrated in Figure 5.4.

Moreover, note that the imaginary part decreases with q2. This is to be expected as the process

shown in Figure 5.4 (left) is more and more off-shell for higher q2.
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Figure 5.5: Plots of G
(⊥)
1 (q2) and G

(‖)
3 (q2) for charged and uncharged B mesons. Any other

Gι-function, where a U - or D-type flavour is exchanged, is qualitatively similar. As usual, U -

and D-type stand for the u, c, t and d, s, b-flavours.

Table 5.3 reproduces values for G1(0) for the spectator contributions G
(s)
1 (0), the non-spectator

contributions G
(ns)
1 (0), their sum G1(0) = G

(s)
1 (0) +G

(ns)
1 (0) as well as ratios between the latter

and the SD penguin form factors T1(0). The ratios of |G(⊥)
1 (0)/G

(ns)
1 | are between 20% and

59% and vary considerably according to the charge and flavour of the heavy initial meson. The

ratio of |G(s)
1 (0)/T1(0)| is around 2% for the B meson and considerably larger for the D0(−) at

5%(13%). The ratio of the total G1(0) to the SD part, |G1(0)/T1(0)|, is 7% for the B meson and

rather sizeable for the D0(−): 21%(34%). Concerning the comparison of the B and D matrix

elements themselves, to obtain a meaningful answer one has to use the decomposition:

G
(s)
1 (0) = QhG

h,(s)
1 (0) +QqG

q,(s)
1 (0) , h ∈ {b, c} , q ∈ {u, d, s}. (5.4.6)

Then,

Rh =
G
b,(⊥)
1 (0)[B → ργ]

G
c,(⊥)
1 (0)[D → ργ]

= 0.14 , Rl =
G
q,(⊥)
1 (0)[B → ργ]

G
q,(⊥)
1 (0)[D → ργ]

= 0.05 + 0.04i . (5.4.7)
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type B− → ρ−γ B̄0 → ρ0γ D+ → ρ+γ D0 → ρ0γ

G
(s)
1 (0) · 10−2 0.29− 0.39i 0.22 + 0.19i −1.9 + 2.5i −7.0− 5.0i

G
(ns)
1 (0) · 10−2 0.90 + 1.3i 0.90 + 1.3i −8.5− 12i −8.5− 12i

G1(0) · 10−2 1.2 + 0.91i 1.1 + 1.5i −10− 9.5i −16− 17i∣∣∣G(s)
1 (0)/G

(ns)
1 (0)

∣∣∣ [%] 31 18 21 58∣∣∣G(s)
1 (0)/T1(0)

∣∣∣ [%] 2 1 4 12

|G1(0)/T1(0)| [%] 6 7 20 33

Table 5.3: Comparison of various parts of the four characteristic types of Gι-functions. See

subsection 5.4.1 for comments. For the T1(0) form factors the following were used as reference

values: TB→ρ1 (0) = 0.27 [154] for B → ρ and TD→ρ1 (0) = 0.7, e.g. [155], for D → ρ. Note

G
(s)
1 (0) = G

(⊥)
1 (0) at this level of twist-approximation. The ratio of G

(ns)
1 to T1(0) can directly

be inferred from the formula (5.4.9).

5.4.2 Validity of computation in q2-range

The validity of the computation in the q2-range will now be discussed in some more detail than

in section 5.3.3. The computation cannot be trusted when either real QCD or perturbative

QCD, as employed here12, predicts the production of particles, which would be hadrons and

quarks & gluons in the respective cases. This happens in real QCD when q2 reaches the ρ-,

B∗d,s- and Υ(b̄b) thresholds for JPC = 1−−-mesons. The corresponding production thresholds for

perturbative QCD are of the two-valence quark-type and occur at q2: (2mq)
2, (mb +md,s)

2 and

(2m2
b) respectively. The ρ-threshold leads to the exclusion of the region 0 < q2 < (' 1 GeV2)

for B → V ll. The quark threshold at (mb + md,s)
2 indicates that the LC-OPE is not valid a

few GeV below that value. This is the case for all diagrams except A1 −A2 which do not have

these thresholds and therefore the validity ought to extend a few GeV below B∗-resonance and

thus basically to the endpoint of the physical region.

5.4.3 Summary for B(D)→ V γ

For the reader’s convenience, the essentials points for B(D) → V γ decay are briefly be sum-

marised.

B(D)→ V γ : G1(0) = G2(0) = G
(⊥)
1 (0) +G

(ns)
1 (0) (5.4.8)

with

G
(ns)
1 (0) =

(
3αs(mh)

4π

)
QhF

(7)
8 T1(0) , (5.4.9)

where h = b(c), Qb(c) = −1/3(2/3) and F
(7)
8 are taken from [139]. The generic amplitude

assumes the following form:13

A(B(D)→ V γ) ∼
(
A1(P1 ·ε) +A2(P2 ·ε)

)
, (5.4.10)

12By which it is meant that the LC-OPE with perturbatively computed hard scattering kernels.
13The amplitudes A1,2 up to normalisation are often denoted by APC,PV in the literature.
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where AL,R = A1 ± A2 correspond to left- and right-handed photon polarisations. The result

and the leading SD penguin read:

A1 = A2 = C7T1(0) + C8G1(0) + .. . (5.4.11)

Using the notation O′7,8 = O7,8|γ5→−γ5 for the penguin operators with opposite chirality and

the corresponding Wilson coefficients one gets:

A1,2 = C7T1(0) + C8G1(0)± (C ′7T1(0) + C ′8G1(0)) + .. , (5.4.12)

where T1(0) = T2(0) and G1(0) = G2(0) were used. The former is an equality and the latter is

a result of the leading twist-2 computation.

5.5 Comparison with QCD factorisation

This section compares the results with QCDF [17]. More precisely the diagrams A1 and A2
14,

in Figure 5.2, at q2 = 0 corresponding to QqG
q,(s)
1 (0) (5.4.2) shall be considered, where the

formulae take on a rather simple form. The G1-function at q2 = 0 is parametrised as follows:

G1(0) =
[ αs

4π

CF
Nc

12π2 f⊥fB
m2
B︸ ︷︷ ︸

∼m−5/2
b

]
(QqX⊥ +QbX⊥) , (5.5.1)

with X⊥ as in [17],

X⊥ =

∫ 1

0
φ⊥(u)x⊥(u) , (5.5.2)

xQCDF⊥ (u) =
1 + ū

3ū2
(5.5.3)

and likewise for the quantity X⊥. The LCSR result in this limit reads:

xLCSR⊥ (u) =

∫ s0

m2
b

ds e
m2
B−s
M2 ρ(s, u) , (5.5.4)

with

ρ(s, u) =
m2
bNc

12π2f2
B︸ ︷︷ ︸

≡cm3
b

[
log
(
ūs(m2

b+P
2−s)

P 2(m2
b−us)

)
P 2 − ūs − s−m2

b

ūsP 2

]
,

ρ̄(s, u) =
m2
bNc

12π2f2
B

[
−

s−m2
b

usP 2
− θ(us−m2

b)

us−m2
b

2u2sP 2
+

log
(
us
m2
b

)
2uP 2

] . (5.5.5)

It should be emphasised that the result in Eq. (5.5.3) was computed anew and found to be

in agreement with reference [17]. The contributions of diagrams A3,4, which correspond to

14Note the sum of these two diagrams is well-defined as they constitute the contribution proportional to the
spectator charge.
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X⊥, have been kept in the expression above. A few remarks about the mb-behaviour are in

order. The term in the bracket in Eq. (5.5.1) scales as m
−5/2
b , taking into account fB ∼ m−1/2

b .

The coefficient c in Eq.(5.5.5) is O(m0
b). The expression XQCDF

⊥ is O(1). The questions for

investigation are:

a) The presence and absence of an endpoint divergence at leading order αs, for ū → 0, in

XQCDF
⊥ and XLCSR

⊥ respectively.

b) In what respect XQCDF
⊥ and XLCSR

⊥ can be compared to each other.

c) The absence and presence of an imaginary part, to leading order in αs, in XQCDF
⊥ and

XLCSR
⊥ respectively.

The answers to these questions are, certainly, tied to each other. First, question a) will be

discussed. Assuming the usual endpoint behaviour

φ⊥(u)
u'1→ 6ūu , (5.5.6)

the most singular part in (5.5.3),

xQCDF⊥ =
1

3ū2
+O(ū−1) ⇒ XQCDF

⊥ = 2

∫ 1

0

du

ū
+ finite (5.5.7)

convoluted as in (5.5.2) with (5.5.6) leads to logarithmic endpoint divergence. The endpoint

configuration u ' 1 corresponds to the situation where the non-spectator quark carries all the

momentum. On a purely technical level the divergent integral arises from the fact that two

propagators assume the same form 1/(ūm2
B), see Figure 5.6 (left), as the momentum fraction

of the spectator quark is neglected due to ΛQCD/mb suppression. In view of this and poten-

tial transverse corrections, it was advertised in [156], that for B → ππ and similar cases the

replacement 1/(ūm2
B) → 1/((ū + ε)m2

B) should be made (ε = Λh/mb with Λh some hadronic

scale of the order of the QCD-scale) and a correction term included to account for missing soft

contributions with possible strong phases. The endpoint divergent integral in (5.5.7) becomes,

xQCDF⊥ → (1 + ρeiφ)Θ

(
ū− Λh

mb

)
1

3ū2
+O(ū−1) (5.5.8)

⇒ XQCDF
⊥ = 2(1 + ρeiφ) ln

(
mb

Λh

)
+ Λh-independent , (5.5.9)

with ρ ∈ [0, 1] and φ ∈ [0, 2π] being numbers parametrising the above mentioned corrections.

Thus changes can be expected if the heavy quark limit is not assumed as is the case in LCSR.

Yet the question to address is whether there are qualitative differences beyond the behaviour of

the RHS in Eqs. (5.5.8, 5.5.9).

In the LCSR computation there is only one propagator with manifest 1/(ūm2
B)-behaviour, see

Figure 5.6. Thus, to the question: Is there another one hidden in the loop? The answer is no, as

it would correspond to a power IR-divergence whereas it is known that in four dimensions IR-

singularities, be they soft or collinear, are at worst logarithmic in nature, e.g. [157]. Inspection

of the graph Figure 5.6 reveals that there can at most be a collinear divergence in the limit
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ū→ 0 and p2 = q2 = 0. The potential endpoint sensitive terms are parametrised as follows:

xLCSR⊥ ∼ α⊥
ln(ū)

ū
+ β⊥ ln(ū) + γ⊥

1

ū
. (5.5.10)

Note that they are all integrable assuming the DA Eq.(5.5.6). From Eq. (5.5.5) 15 it is found

that: α⊥ = 0, β⊥ 6= 0, γ⊥ 6= 0. The absence of the most singular term ln(ū)/ū appears to

be accidental; such terms are present in the P/V ‖-contribution. In summary, the endpoint

behaviour of the xLCSR⊥ (5.5.10) differs from xQCDF⊥ (5.5.7) even when finite mb-effects are

added by hand (5.5.8).

Before attempting an interpretation of this difference one should try to reflect on question b),

namely to what degree it makes sense to compare the QCDF and the LCSR result at face value.

ūp

V (p)
pB

q

ūp+ q

upÕ8

ūp

V (p)

q

ūp+ q

upÕ8

B(pB)

Figure 5.6: The shaded propagators that scale like 1/(ūm2
B) in both figures. (left) Diagram

of LCSR or the LC-OPE respectively (right) Diagram in QCDF. Thus xQCDF⊥ ∼ 1/ū2 and
xLCSR⊥ ∼ ln(ū)/ū at worst, as explained in the text.

It is advocated here that, within the approximations, the QCDF contribution is contained in

the LCSR result but the converse is not true. For example, the gluon in Figure 5.6 (right) is not

necessarily the hard gluon of QCDF but can also be a gluon that hadronises into a 3-particle

(qs)0±-state, as shown in Figure 5.4(left). Moreover there are cuts of the 3-particle type for

the B-meson as well, see Figure 5.3. Possibly it is helpful, at this point, to note that there is

a crucial difference between the two approaches. In QCDF one computes a specific sub-process

and the corresponding scaling of the momenta leads to a clear physical picture of the dynamics

of that sub-process, whereas in LCSR one computes a correlation function, in a domain where it

is believed to be valid, and extracts the matrix element by suitable methods such as dispersion

relation and Borel transformation. Thus, the physical parton configurations are, generically,

not immediately deducible from the correlation function.

In summary, the LCSR result is not endpoint divergent, yet sensitive to the endpoint It is seen

that the amendment (5.5.8) is not enough to obtain a similar qualitative behaviour of xQCDF⊥
and xLCSR⊥ . Whether or not this is due to the fact that xLCSR⊥ constitutes in addition to the

physics present in xQCDF⊥ , a LD-part, see Figure 5.4 (left) is a question not addressed herein.

15Integration over ds is not going to change anything at this point.
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5.6 Summary & conclusions

This chapter has reported on the computation of O8 matrix elements between heavy pseu-

doscalar B and D states and a light vector and pseudoscalar state plus an off-shell photon, by

using the method of LCSRs, at leading twist-2 and leading αs. Scalar functions of the photon

momentum invariant G1,2,3(q2) and GT (q2) Eqs. (5.2.1,5.2.2) were defined such that they par-

allel the well-known penguin tensor form factors T1,2,3(q2) and fT (q2), see Eq. (5.2.3). Central

values for interesting flavour transitions are presented in Table 5.2, as well as plots of the four

characteristic cases in Figure 5.5 are presented in section 5.4. A remarkable feature is the large

CP-even (strong) phase for which a LD interpretation was given in section 5.3.3 (see Figure 5.4).

This fact, as well as the plots, make it clear why Gι(q
2) should be referred to as matrix elements

rather than form factors. Comparison of various contributions such as spectator, non-spectator,

and SD penguin photon emission can be found in Table 5.3. Note that the Gι(q
2)-functions are

relevant for asymmetries of isospin- [151] and CP-type (depending on new weak phases) [131],

rather than branching ratios.

In section 5.5 the computation was compared with QCDF. The comparison is not straightfor-

ward as the LCSRs contain LD contributions of the type shown in Figure 5.4 (left) which are not

present in leading order QCDF. The LCSR computation does not suffer from endpoint diver-

gences like QCDF, which is attributed to the fact that IR-divergences are at worst logarithmic

in four dimensions.

A remarkable feature on the technical side of the computation is the appearance of a com-

plex anomalous threshold on the physical Riemann sheet, for which various viewpoints and

derivations are given in Appendix J. The anomalous threshold is associated, in the three point-

function, with all three propagators being on the mass shell and therefore is not related to the

intermediate B-meson state. The crucial point, for the physics, is that the anomalous thresholds

is well isolated from the mB-pole. This results in an exponential as well as oscillatory suppres-

sion by the Borel parameter, such that the extraction of the matrix element is not affected

considerably.
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Conclusions

To recap, despite its tremendous success, the Standard Model of particle physics is widely

viewed as the low energy limit of a more fundamental theory. One of its long-standing puzzles

is associated with the flavour sector, which is governed by free parameters, tuned to fit the

experimental observation. There is still no mechanism that dictates their size. When consider-

ing a supersymmetric framework, the number of free parameters and, as a result, the flavour,

as well as the CP problems increase dramatically. Even though there is no symmetry to force

supersymmetric sources of flavour and CP violation to be small, experiment tells us that they

have to be as all measurements so far are in agreement with the SM expectations. From the

phenomenological point of view, this issue is usually addressed by means of ad hoc assumptions

such as e.g. Minimal Flavour Violation (MFV), where all sources of flavour violation are inti-

mately linked to the flavour structure of the Yukawa matrices. However, the concept of MFV

is not a theory of flavour. Moreover, it does not seem to provide a framework in which the

structure of the fermionic masses and mixing angles, the origin of CP violation and the number

of generations can be addressed in a satisfactory way. Through all those concerns emanates the

need for an underlying symmetry.

In Chapter 2, the main features of the SM were briefly reviewed and its perceived shortcomings

were discussed. Motivating supersymmetry as a favourable new physics scenario, its basic

ingredients were outlined. Finally, the idea of imposing a family symmetry was discussed in

order to gain insight into the flavour sector of the SM and its supersymmetric extension, ideally

in a GUT background.

In Chapter 3, the crux of the original research of this thesis was reached. Therein, the SM

and SUSY flavour and CP problems were addressed, within an SU(5) SUSY GUT model of

flavour, based on the simple family symmetry S4×U(1) [11]. The existence of three families of

quarks and leptons ensues from the non-Abelian factor of the family symmetry, whose triplets

are the only faithful irreducible representations and they accommodate the matter superfields.

Introducing a set of heavy Higgs-like scalars, called flavons, that can couple to the usual matter

superfields and working in an effective theory approach, all operators involving flavons, matter

and Higgs fields, that can form a singlet under all symmetries were identified. The structure

of the Yukawa, Majorana and soft SUSY breaking mass matrices, as well as that of the Kähler

metrics, is dictated by the controlled breaking of the family and CP symmetries, via non-zero

105
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complex flavon vevs. Identifying the absolute value of these vevs, divided by the UV cut-off

mass scale, with powers of the Wolfenstein parameter λ, all matrices were constructed up to and

including the order λ8. Taking into account effects of canonical normalisation and RG running,

it is found that the model provides a good description of all quark and lepton masses, mixings

and CP violation, in agreement with the LO results in [11](where canonical normalisation effects

were ignored).

Concerning the soft SUSY breaking sector, which was the main focus in this work, the mass

insertion parameters were derived, which parametrise the amount of flavour and CP violation

beyond the SM. The calculation relied on the assumption that the SUSY breaking mechanism

respects the family symmetry. The results for the low energy mass insertions were summarised

in Eqs. (3.7.7-3.7.9) in terms of their λ-suppression, while their full expressions were given in

Appendix F.3. It was found that δfLL and δfRR are approximately equal to the identity, with only

small off-diagonal entries. Considering the parameters δfLR, it was observed that the diagonal

elements featured the same hierarchies as the corresponding diagonal Yukawa matrices Ỹ f , while

the off-diagonal elements are strongly suppressed. Crucially, this shows that the S4×U(1) SUSY

GUT model approximately reproduces the effects of low energy MFV, where one would simply

impose δfLL = δfRR = 1 and δfLR ∝ Ỹ f . The phenomenological implications of the deviations

from MFV were left to be discussed quantitatively in Chapter 4, where the predictions of the

model with respect to a number of different flavour observables were presented and discussed

in detail.

Whereas in Chapter 3 the focus was on the similarity to MFV, Chapter 4 highlighted the

differences. This was done by considering the predictions for electric dipole moments, lepton

flavour violation, B and K meson mixing as well as rare B decays. As expected, it was found

that many of the new physics contributions fall well below current limits. This is the case for

example in B physics observables, where deviations are negligible (at the 1% level). Thus, the

model would be unable to explain any discrepancies between SM expectations and measurements

in ∆MBs,d or in the time dependent asymmetries SJ/ψφ and SJ/ψKS . This is in marked contrast

to the SU(3) family symmetry models previously studied, where large effects were expected in

these observables. Thus, neutrino physics which led to S4 × U(1), appears to lead us towards

models with small such deviations.

On the other hand, it was found that there were observable effects which would distinguish the

S4 × U(1) SUSY GUT model from MFV. The most significant effects of the departure from

MFV appear in the (12) down-type quark and charged lepton sectors, related to Kaon mixing

observables and the branching ratio of µ→ eγ. It was found that (δeLL)12 provides the dominant

contribution to BR(µ→ eγ) and that the model requires rather heavy sleptons, exceeding about

1 TeV, in order to satisfy the experimental bound. Another important area where the model

gives observable deviations from MFV is CP violation, in particular the electron EDM, where

again large (TeV scale) slepton masses are required for compatibility with current bounds to

be achieved. Interestingly, it is therefore predicted that a signal should be observed in both

µ→ eγ and the electron EDM within the expected sensitivity of future experiments.

It was also observed that with regard to CP violation in the Kaon system, the model contributes

significantly to εK due to the phase of (δdRR)12. The SM prediction for this observable depends

sensitively on |Vcb|, which differs when considering inclusive or exclusive decays, leading to
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a lower central value in the latter case. However, even for inclusive values of |Vcb|, the SM

expectation for εK is about 10% below the measurement. Thus, the model is capable of providing

sufficient enhancement to explain the experimentally observed value of εK .

To summarise, in the first and main part of this thesis presented in Chapters 3 and 4, theories

with discrete flavour symmetries such as the S4×U(1) SUSY GUT model, motivated by neutrino

physics, seem to lead to MFV-like flavour changing expectations, but with some important

exceptions. This study shows that, while observable deviations in B physics are generally not

expected to show up, departures from MFV are expected in both µ → eγ and the electron

EDM within the foreseeable sensitivity of future experiments. CP violating effects may also be

observed in εK , perhaps resolving some possible SM discrepancies.

The second part of this thesis was presented in Chapter 5 and described the computation of

chromomagnetic matrix elements between heavy pseudoscalar B and D states and a light vector

and pseudoscalar state plus an off-shell photon, by using the method of LCSRs, at leading

twist-2 and leading αs. The basic object was a correlation function with the B initial state

interpolated by a current that has the same quantum numbers. As a result, not only the ground

state was produced but also excited mesons and a continuum of states. The calculation starts

with the four momentum invariants being far below any thresholds, such that perturbative

QCD can be applied. Cauchy’s formula was used in writing the dispersion representation of

the correlation function in the variable of the B-current four momentum invariant, the aim

being to extract the ground state. For the description of real particles, analytic continuation

of the four momentum invariants to the physical domain is required. The discontinuities in the

dispersion integrand (associated with non-zero imaginary parts of the correlation function) are

usually interpreted as physically accessible states. Upon analytic continuation of a three-point

function, the appearance of a complex anomalous threshold was observed, associated with the

case where all the propagators are on the mass shell. This made the computation highly non-

trivial, but, crucially, the anomalous threshold was well isolated from the mB pole and it did

not considerably affect the extraction of the matrix element.

An interesting feature of the computation was the appearance of a large CP-even (strong) phase,

which was interpreted as a long distance effect. For that reason, the Gι(q
2) scalar functions of

the four momentum invariant, defined in Eqs. (5.2.1,5.2.2), were referred to as matrix elements,

rather than form factors. Results for interesting flavour transitions were presented in Table 5.2

and in Figure 5.5. Contributions amongst spectator, non-spectator, and SD penguin photon

emission were provided in Table 5.3. Finally, the results were compared with those obtained

using the QCDF method. The comparison was not straightforward as the LCSRs contain long

distance contributions, which are not present in leading order QCDF. The advantage is that the

LCSRs computation does not suffer from endpoint divergences like the QCDF one. As a result

of this work, the contribution of the chromomagnetic operator in these FCNC decays that had

been unknown for a long time, can now be accounted for. As the Gι(q
2)-functions are small,

they may not be relevant for the overall branching ratios but they can provide a significant

contribution to isospin and CP asymmetries and their calculation allows for assessing whether

any possible deviations from the SM expectations can be attributed to the associated C8 Wilson

coefficient.





Appendix A

S4 and CP symmetry

The non-Abelian finite group S4 can be defined in terms of the presentation

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1 ,

where S, T and U denote the generators of the group. Explicit matrix representations are basis

dependent. In this work we apply the basis where the T generator is diagonal and complex for

the doublet and triplet representations. Defining ω = e2πi/3, we have

1 : S = 1 , T = 1 , U = 1 ,

1′ : S = 1 , T = 1 , U = −1 ,

2 : S =

(
1 0

0 1

)
, T =

(
ω 0

0 ω2

)
, U =

(
0 1

1 0

)
,

3 : S = 1
3

−1 2 2

2 −1 2

2 2 −1

 , T =

 1 0 0

0 ω2 0

0 0 ω

 , U = −

 1 0 0

0 0 1

0 1 0

 ,

3′ : S = 1
3

−1 2 2

2 −1 2

2 2 −1

 , T =

 1 0 0

0 ω2 0

0 0 ω

 , U = +

 1 0 0

0 0 1

0 1 0

 .

The corresponding Clebsch-Gordan coefficients are all real and can be found e.g. in [10].

In addition to the flavour symmetry S4, we impose the canonical CP symmetry in our theory.

As has been discussed in the literature, see e.g. [171, 172], the consistent combination of a

flavour and a CP symmetry requires certain conditions to be fulfilled; in particular that the

subsequent application of a CP, a flavour and a further CP transformation leads to a transfor-

mation belonging to the flavour group. The possibility to combine the group S4 with CP has

been explored previously, see e.g. [58, 171]. Here we are interested in combining S4 symmetry,

defined in the above basis, with the canonical CP transformation, i.e. the CP transformation

that acts trivially in flavour space with Xr = 1 for all representations r of S4. Note that this
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particular CP transformation Xr fulfils the constraints of being a unitary and symmetric ma-

trix. Moreover, it represents a consistent choice for a CP transformation (see e.g.[58]), which

corresponds to the involutionary automorphism that maps the generators S, T and U in the

following way

S → S , T → T 2 = T−1 and U → U , (A.1)

since S and U are represented by real matrices in our chosen basis, while the generator T is given

as a diagonal complex matrix in the two- and three-dimensional representations. As with all

automorphisms of S4, this is an inner one. In particular, one can check that the automorphism

of Eq. (A.1) is “class-inverting” [82], i.e. it maps the group element g into the class which

includes g−1. This is true, since all automorphisms are inner ones and all classes of S4 are

ambivalent, i.e. the elements g and g−1 are in the same class.

With only real Clebsch-Gordan coefficients, a canonical CP symmetry imposed on the theory

entails that all coefficients in the (super-)potential are real. Moreover, we observe that the

residual symmetry in the neutrino sector at LO comprises the CP symmetry if all three neutrino

flavons share the same phase factor. Following the comments of Footnote 2 of Appendix B, this

is the case in our setup, cf. also Eqs. (B.1,B.2), so that the common phase can be factored out

of the neutrino mass matrix, leading to an effective LO result which conserves CP. Furthermore,

the canonical CP transformation Xr = 1 commutes with the Klein group generated by S and

U and thus at LO the residual symmetry is given by the direct product Z2 × Z2 × CP.



Appendix B

Vacuum alignment

The vacuum alignment of the flavon fields is achieved by coupling them to a set of so-called

driving fields and requiring the F -terms of the latter to vanish. These driving fields, whose

transformation properties under the family symmetry are shown in Table B.1, are SM gauge

singlets and carry a charge of +2 under a continuous R-symmetry. The flavons and the GUT

Higgs fields are uncharged under this U(1)R, whereas the supermultiplets containing the SM

fermions (or right-handed neutrinos) have charge +1. As the superpotential must have a U(1)R
charge of +2, the driving fields can only appear linearly and cannot have any direct interactions

with the SM fermions or the right-handed neutrinos.

Field Xd
1 X

d
1 X

νd
1′ X

u
1 Y du

2 Y d
2 Y ν

2 Zν3′ V0 V1 Vη Xnew
1 X̃new

1′

SU(5) 1 1 1 1 1 1 1 1 1 1 1 1 1

S4 1 1 1′ 1 2 2 2 3′ 1 1 1(′) 1 1′

U(1) −2 14 3 10 9 6 −16 −16 0 −8 −7 18 15

Table B.1: The transformation properties of the driving fields, as introduced in [11], which
serve to align the flavon VEVs.

The LO alignment of the flavon fields, see Eq. (3.2.1), has been thoroughly discussed in [10, 11].

The particular setup also provides correlations amongst the VEVs. As described in Appendix D

of [10] and in Section 4 of [11],1 the vanishing of the F -terms of the driving fields Xnew
1 , X̃new

1′ ,

Y ν
2 , Zν3′ , V0, V1 and Vη gives rise to the relations2

φu2 ∼ φd2 φ̃d3 , φν1 ∼ φν2 ∼ φν3′ , (φd3)2φνi ∈ Re ,

φ̃u2 ∼
φν1
φν2

, φ̃d3 ∼ φd2 (φd3)3 , φν3′ ∼
η

(φd2)3φd3
. (B.1)

1The introduction of the new flavon field η in [11] favours the exchange of the S4 doublet driving field V2,
which was introduced in [10], by the S4 singlet field V1. Furthermore, the field Vη, transforming in the same
representation of S4 as η, is introduced in order to relate the new flavon field to an explicit mass scale.

2The proportionality constant between φν3′ and φν2 is a square root of an order one real number, which we
assume to be positive, such that φν3′ and φν2 have the same phases.
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Denoting the phase of each flavon VEV φfρ by θfρ , Eq. (B.1) correlates the LO phases as3

θ̃u2 = 0 , θu2 = 2θd2 + 3θd3 , θ̃d3 = θd2 + 3θd3 ,

θη = 3θd2 − θd3 , θν3′ = θν2 = θν1 = −2θd3 , (B.2)

leaving as free variables only the two phases θd2 , θ
d
3 , which correspond to the LO VEVs of the

two flat superpotential directions: 〈Φd
2,1〉 and 〈Φd

3,2〉 respectively.

In order to find the higher order terms of the flavon VEVs, we start by writing each one of them

as a series expansion in λ, up to and including order λ12. For example, the leading operators of

the superpotential fix 〈Φu
2,1〉/M to be zero up to λ4, while 〈Φu

2,2〉/M has to be φu2 λ
4 [10]. When

considering the subleading operators, the VEVs of Φu
2,1 and Φu

2,2 receive corrections (shifts)

which we parametrise as

〈Φu
2〉

M
=

(
0

φu2 λ
4

)
+


12∑
n=5

δu2,1(n)
λn

12∑
n=5

δu2,2(n)
λn

 . (B.3)

All flavon VEVs are parametrised in a similar manner. The aim is to find the order of λ at which

each shift δ has to be non-zero. The computation consists of taking into account all possible

operators and solving the F -term conditions resulting from the set of driving field order by

order in λ, up to λ12. Each vanishing expression is solved for the lowest order shift involved.

At the end, all shifts can be expressed in terms of the LO flavon VEVs. We find

〈Φu
2〉

M
=

(
δu2,1 λ

8

φu2 λ
4 + δu2,2 λ

5

)
,
〈Φ̃u

2〉
M

=

(
δ̃u2,1 λ

6

φ̃u2 λ
4 + δ̃u2,2 λ

5

)
,
〈η〉
M

= φηλ4 + δηλ5,

〈Φd
3〉

M
=

 δd3,1 λ
6

φd3 λ
2

δd3,3 λ
6

, 〈Φ̃d
3〉

M
=


δ̃d3,1 λ

7

−
(
φ̃d3 λ

3 + δ̃d3,2(4)
λ4 + δ̃d3,2(5)

λ5
)

φ̃d3 λ
3 + δ̃d3,2(4)

λ4 + δ̃d3,3(5)
λ5

, 〈Φd
2〉

M
=

(
φd2 λ

δd2,2 λ
7

)
,

〈Φν
3′〉
M

=

 1

1

1

(φν3′λ4+ δν3′λ
5
)
,
〈Φν

2〉
M

=

(
φν2 λ

4+ δν2,1 λ
5

φν2 λ
4+ δν2,2 λ

5

)
,
〈Φν

1〉
M

= φν1λ
4+ δν1λ

5. (B.4)

Note that the shifts presented in Eq. (B.4) are the first non-trivial ones. However, in our

calculations of the mass matrices we take into account all shifts up to O(λ8). It should be

pointed out that the alignment of Φν
3′ is not perturbed up to order λ8, so that it preserves the

S symmetry to that level. On the other hand, the alignment of Φν
2 is already perturbed at

order λ5 which, however, does not break the S generator as it is nothing but the identity for

the doublet representation. Taking into account also CN effects, one can show that meff
ν has the

form of Eq. (3.4.22) up to O(λ7).

Eq. (B.4) is in agreement with the discussion presented in Section 4 of [11], barring the ab-

sorptions of δu2,2 λ, δ̃u2,2 λ, δ̃d3,2(4)
λ, δν3′λ, δν1λ and δη λ into the corresponding LO VEVs. Being

interested in the CP transformation properties of the fields, such absorptions must not be made

3Here and in Eq. (B.6), a possible phase shift by π has been ignored as real coefficients can generally be
positive or negative.
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in the current work, as the phases of shifts and LO VEVs are generally different. In particular,

we find the following relations between the shifts and the LO VEVs,

δu2,1 ∼ (φd2)2(φd3)3 , δu2,2 ∼ (φd2)6(φd3)4 , δ̃u2,1 ∼ δ̃u2,2 ∼ (φd2)4φd3 , δη ∼ (φd2)7,

δd3,1 ∼ δd3,3 ∼ φd3 , δ̃d3,1 ∼ φd2 (φd3)3 , δ̃d3,2(4)
∼ (φd2)5(φd3)4 , δ̃d3,3(5)

− δ̃d3,2(5)
∼ (φd2)5,

δd2,2 ∼ (φd2)5φd3 , δν3′ ∼ δν2,1 ∼ δν2,2 ∼ δν1 ∼
(φd2)4

φd3
. (B.5)

Similar relations also hold for higher order shifts. Although such shifts have to be taken into

account when performing a systematical λ-expansion, their explicit expressions are irrelevant

for our phenomenological study.

The phases of the LO shifts can be deduced straightforwardly from Eq. (B.5). Denoting the

phase of δfρ,i by θfρ,i we obtain

θu2,1 = 2θd2 + 3θd3 , θu2,2 = 2(3θd2 + 2θd3) , θ̃u2,1 = θ̃u2,2 = 4θd2 + θd3 , arg[δη] = 7θd2 ,

θd3,1 = θd3,3 = θd3 , θ̃d3,1 = θd2 + 3θd3 , θ̃d3,2(4)
= 5θd2 + 4θd3 , arg[δ̃d3,3(5)

− δ̃d3,2(5)
] = 5θd2 ,

θd2,2 = 5θd2 + θd3 , arg[δν3′ ] = θν2,1 = θν2,2 = arg[δν1 ] = 4θd2 − θd3 . (B.6)





Appendix C

Basis transformations

C.1 Canonical normalisation

In order to find the transformations which map the Kähler potential into its canonical form, we

express the hermitian matrix KA as in Eq. (3.3.14), i.e. P †APA = KA. Note that the matrix PA
is not unique since PA → QAPA with unitary QA will satisfy Eq. (3.3.14) just as well. Moreover,

KA can always be decomposed as

KA = (Q†A
√
DAQA)(Q†A

√
DAQA) , (C.1.1)

where DA is the diagonalised form of KA. Therefore it is sufficient to find a hermitian matrix

PA which satisfies Eq. (3.3.14), i.e. P †APA = PAPA = KA. Expanding KA and PA in powers of

λ,

KA =
∞∑
n=0

knλ
n , PA =

∞∑
m=0

pmλ
m , (C.1.2)

with kn, pn being matrices, allows one to calculate PA iteratively. With k0 = 1, the result reads

p0 = 1 , p1 =
1

2
k1 , pn =

1

2

kn − n−1∑
j=1

pjpn−j

 . (C.1.3)

C.2 SCKM transformations

The SCKM rotation matrices that diagonalise the Yukawas are found through the singular

value decomposition. In particular, if Y f = UfLỸ
f

diag(UfR)†, then UfL and UfR consist of the

eigenvectors of Y f (Y f )† and (Y f )†Y f , respectively. These eigenvectors are only defined up to

phase transformations

UfL → UfLΩf
L , Ωf

L = diag

(
e
iωfL1 , e

iωfL2 , e
iωfL3

)
, (C.2.1)

UfR → UfRΩf
LΩf

R , Ωf
R = diag

(
e
iωfR1 , e

iωfR2 , e
iωfR3

)
. (C.2.2)
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We fix the phases of the matrices Ωf
L by requiring that the CKM and PMNS mixing matrices

are given in the standard phase convention, while the phases of Ωf
R are fixed by demanding

real and positive charged fermion masses. To LO, we find the following structure of the SCKM

transformation matrices in terms of their λ-suppression.

UuL ≈

 1 λ4 λ6

λ4 1 λ5

λ6 λ5 1

 , UuR ≈

 1 λ4 λ6

λ4 1 λ5

λ6 λ5 1

 , (C.2.3)

UdL ≈

 1 λ λ3

λ 1 λ2

λ4 λ2 1

 , UdR ≈

 1 λ λ4

λ 1 λ4

λ4 λ4 1

 , (C.2.4)

U eL ≈

 1 λ λ4

λ 1 λ4

λ4 λ4 1

 , U eR ≈

 1 λ λ3

λ 1 λ2

λ4 λ2 1

 . (C.2.5)

With these SCKM transformations, it is straightforward to calculate the CKM mixing to leading

order,

VCKMGUT
= (UuL)TUd∗L ≈

 1 x̃2
ys
λ x̃2

yb
λ3

− x̃2
ys
λ 1 ys

yb
λ2

−e−iθd2 x̃2
2

ys yb
λ4 − ys

yb
λ2 1

 . (C.2.6)

The associated measure of CP violation is given by the Jarlskog invariant JqCPGUT
and can be

calculated from the imaginary part of VCKMGUT21
VCKMGUT32

V ∗CKMGUT22
V ∗CKMGUT31

. The explicit

result can be found in Eq. (3.6.5).



Appendix D

Mass insertion parameters at the

GUT scale

In the following we present the explicit expression for the various LO mass insertion parame-

ters at the GUT scale whose λ-suppressions have been stated in Eqs. (3.7.4-3.7.6). Using the

definitions of Eqs. (3.7.2,3.7.3), we obtain

δuLLGUT
≈


1 e−iθ

d
2 b̃12
b01

λ4 e−i(4θ
d
2+θd3)b̃13√

b01(b02+υ2
u y

2
t /m

2
0)
λ6

· 1 e−i(7θ
d
2+2θd3)b̃23√

b01(b02+υ2
u y

2
t /m

2
0)
λ5

· · 1

 ,

δuRRGUT
≈


1 e−iθ

d
2 b̃12
b01

λ4 b̃13√
b01(b02+υ2

u y
2
t /m

2
0)
λ6

· 1 ei(5θ
d
2+θd3)b̃23√

b01(b02+υ2
u y

2
t /m

2
0)
λ5

· · 1

 , (D.1)

δuLRGUT
≈ υu α0

m0



ãu11−yu µ
tβA0

b01
λ8 0 0

0
ãu22−yc µ

tβA0

b01
λ4 eiθ

d
2 ãu23√

b01(b02+υ2
u y

2
t /m

2
0)
λ7

0
ei(3θ

d
2+θd3)ãu23√

b01(b02+υ2
u y

2
t /m

2
0)
λ7

ãu33−yt µ
tβA0

b02+υ2
u y

2
t /m

2
0

 ,

δdLLGUT
≈

 1 B̃12
b01

λ3 eiθ
d
2 B̃13√
b01 b02

λ4

· 1 B̃23√
b01 b02

λ2

· · 1

, δdRRGUT
≈

 1 eiθ
d
2 R̃12 λ

4 − eiθd2 R̃12 λ
4

· 1 − R̃12 λ
4

· · 1

, (D.2)

117



118 Appendix D Mass insertion parameters at the GUT scale

δdLRGUT
≈ υd α0

m0


1√
b01

(
ãd11 −

µ tβ
A0

x̃2
2
ys

)
λ6 ãd12√

b01
λ5 ãd12√

b01
λ5

− ãd12√
b01
λ5 1√

b01

(
ãd22 −

µ tβ
A0
ys

)
λ4 ãd23√

b01
λ4

e−iθ
d
2
ãd31√
b02

λ6 ãd32√
b02

λ6 1√
b02

(
ãd33 −

µ tβ
A0
yb

)
λ2

,

δeLLGUT
≈

 1 R̃12 λ
4 − R̃12 λ

4

· 1 − R̃12 λ
4

· · 1

, δeRRGUT
≈

 1 − eiθ
d
2 B̃12

3 b01
λ3 B̃13

3
√
b01b02

λ4

· 1 3B̃23√
b01b02

λ2

· · 1

, (D.3)

δeLRGUT
≈ υd α0

m0


1

3
√
b01

(
ãd11 −

µ tβ
A0

x̃2
2
ys

)
λ6 eiθ

d
2 ãd12√
b01

λ5 ãd31√
b02
λ6

− e−iθ
d
2 ãd12√
b01

λ5 3√
b01

(
ãd22 −

µ tβ
A0
ys

)
λ4 ãe23√

b02
λ6

− e−iθ
d
2 ãd12√
b01

λ5 3ãd23√
b01

λ4 1√
b02

(
ãd33 −

µ tβ
A0
yb

)
λ2

.
These δ parameters are expressed in terms α0 = A0/m0 and the coefficients of the soft mass

matrices in Eqs. (3.6.13-3.6.21), where we have defined:

b̃12 = (b2 − b01k2), b̃13 = −(b4 − b01k4), b̃23 = −(b3 − b01k3), (D.4)

B̃12 = 2
x̃2

ys
(b1 − b01k1), B̃13 =

x̃2
2

yb ys
(b01 − b02), B̃23 =

ys
yb

(b01 − b02), R̃12 = B3 −K3,

and

ãu11 = aue
i(θau−θyu), ãu22 = ace

i(θac−θyu), ãu33 = at, ãu23 = zu2

(
at
yt
− ei(θ

zua
2 −θzu2 ) z

ua
2

zu2

)
,

ãd11 =
x̃2

2

ys

(
2
x̃a2
x̃2
ei(θ

x̃a
2 −θx̃2 ) − as

ys
ei(θ

a
s−θys )

)
, ãd22 = ase

i(θas−θys ), ãd33 = abe
i(θab−θ

y
b ),

ãd12 = x̃2

(
x̃a2
x̃2
ei(θ

x̃a
2 −θx̃2 ) − as

ys
ei(θ

a
s−θys )

)
, ãd23 = ys

(
as
ys
ei(θ

a
s−θys ) − ab

yb
ei(θ

a
b−θ

y
b )

)
,

ãd31 = zd3

(
ab
yb
ei(θ

a
b−θ

y
b ) − zda3

zd3
ei(θ

zda
3 −θzd3 )

)
,

ãd32 =
y2
s

yb

(
as
ys
ei(θ

a
s−θys ) − ab

yb
ei(θ

a
b−θ

y
b )

)
+ zd2

(
ab
yb
ei(θ

a
b−θ

y
b ) − zda2

zd2
ei(θ

zda
2 −θzd2 )

)
,

ãe23 = 9
y2
s

yb

(
as
ys
ei(θ

a
s−θys ) − ab

yb
ei(θ

a
b−θ

y
b )

)
+ zd2

(
ab
yb
ei(θ

a
b−θ

y
b ) − zda2

zd2
ei(θ

zda
2 −θzd2 )

)
. (D.5)

The phases θyu,c,s,b, θ
zu,d
i , θx̃2 can be expressed in terms of the flavon phases θd2 , θ

d
3 according to

Eqs. (3.4.4,3.4.10). This has been done in Eq. (D.4), but we refrain from doing so in Eq. (D.5)

in order to highlight the fact that all ãfij become real in the limit where the contributions of

the auxiliary components of the flavon superfields to the A-terms are neglected such that the

relation θaf = θyf holds.



Appendix E

Renormalisation group equations in

SCKM basis

The renormalisation group equations for the parameters of the superpotential as well as the soft

breaking terms are usually given in the gauge flavour basis, see e.g. [47], with the transforma-

tion to the SCKM basis being defined only at the electroweak scale. As already discussed in

Section 3.6, we find it useful to diagonalise the Yukawa matrices already at the high scale. In

such a high scale SCKM basis, the RGEs will explicitly depend on the CKM mixing matrix.

Here we define for convenience

V = (UdL)†UuL = V T
CKMGUT

. (E.1)

Introducing the parameter t = ln(µ/Mx), with µ being the renormalisation scale and Mx the
high energy scale, we have for the Yukawas and the trilinear A-parameters,

16π2 dỸ
u

dt
=

(
3Ỹ uỸ u† + V †Ỹ dỸ d†V − 16

3
g23 − 3g22 −

13

15
g21 + 3Tr[Ỹ u†Ỹ u] + Tr[Ỹ ν†Ỹ ν ]

)
Ỹ u,

16π2 dỸ
d

dt
=

(
3Ỹ dỸ d† + V Ỹ uỸ u†V † − 16

3
g23 − 3g22 −

7

15
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ỹ d,

16π2 dỸ
e

dt
=

(
3Ỹ eỸ e† + Ue†L Y

νY ν†UeL − 3g22 −
9

5
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ỹ e, (E.2)

16π2 dÃ
u

dt
=

(
5Ỹ uỸ u† + V †Ỹ dỸ d†V − 16

3
g23 − 3g22 −

13

15
g21 + 3Tr[Ỹ u†Ỹ u] + Tr[Y ν†Y ν ]

)
Ãu +

+

(
4ÃuỸ u† + 2V †ÃdỸ d†V +

32

3
g23M3 + 6g22M2 +

26

15
g21M1 + 6Tr[Ỹ u†Ãu] + 2Tr[Y ν†Aν ]

)
Ỹ u,

16π2 dÃ
d

dt
=

(
5Ỹ dỸ d† + V Ỹ uỸ u†V † − 16

3
g23 − 3g22 −

7

15
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ãd +

+

(
4ÃdỸ d† + 2V ÃuỸ u†V † +

32

3
g23M3 + 6g22M2 +

14

15
g21M1 + 6Tr[Ỹ d†Ãd] + 2Tr[Ỹ e†Ãe]

)
Ỹ d,

16π2 dÃ
e

dt
=

(
5Ỹ eỸ e† + Ue†L Y

νY ν†UeL − 3g22 −
9

5
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ãe +

+

(
4ÃeỸ e† + 2Ue†L A

νY ν†UeL + 6g22M2 +
18

5
g21M1 + 6Tr[Ỹ d†Ãd] + 2Tr[Ỹ e†Ãe]

)
Ỹ e. (E.3)
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The running of the soft scalar masses in the SCKM basis is given by

16π2 d

dt
(m̃2

u)LL = GQ 1 + F uQ + V †F dQV,

16π2 d

dt
(m̃2

d)LL = GQ 1 + V F uQV
† + F dQ,

16π2 d

dt
(m̃2

e)LL = GL 1 + F eL + F νL ,

16π2 d

dt
(m̃2

f )RR = Gf 1 + Ff , f = u, d, e, (E.4)

with:

F uQ = Ỹ uỸ u†(m̃2
u)LL + (m̃2

u)LLỸ
uỸ u† + 2Ỹ u(m̃2

u)RRỸ
u† + 2(m2

Hu)Ỹ uỸ u† + 2ÃuÃu†,

F dQ = Ỹ dỸ d†(m̃2
d)LL + (m̃2

d)LLỸ
dỸ d† + 2Ỹ d(m̃2

d)RRỸ
d† + 2(m2

Hd
)Ỹ dỸ d† + 2ÃdÃd†,

F eL = Ỹ eỸ e†(m̃2
e)LL + (m̃2

e)LLỸ
eỸ e† + 2Ỹ e(m̃2

e)RRỸ
e† + 2(m2

Hd
)Ỹ eỸ e† + 2ÃeÃe†,

F νL = U e†L Y
νY ν†U eL(m̃2

e)LL + (m̃2
e)LLU

e†
L Y

νY ν†U eL + 2U e†L Y
νm2

NY
ν†U eL +

+ 2(m2
Hu)U e†L Y

νY ν†U eL + 2U e†L A
νAν†U eL ,

Fu = 2
(
Ỹ u†Ỹ u(m̃2

u)RR + (m̃2
u)RRỸ

u†Ỹ u + 2Ỹ u†(m̃2
u)LLỸ

u + 2(m2
Hu)Ỹ u†Ỹ u + 2Ãu†Ãu

)
,

Fd = 2
(
Ỹ d†Ỹ d(m̃2

d)RR + (m̃2
d)RRỸ

d†Ỹ d + 2Ỹ d†(m̃2
d)LLỸ

d + 2(m2
Hd

)Ỹ d†Ỹ d + 2Ãd†Ãd
)
,

Fe = 2
(
Ỹ e†Ỹ e(m̃2

e)RR + (m̃2
e)RRỸ

e†Ỹ e + 2Ỹ e†(m̃2
e)LLỸ

e + 2(m2
Hd

)Ỹ e†Ỹ e + 2Ãe†Ãe
)
,

GQ = −4

(
8

3
g2

3|M3|2 +
3

2
g2

2|M2|2 +
1

30
g2

1|M1|2 −
1

10
g2

1(m2
Hu −m2

Hd
)

)
,

GL = −4

(
3

2
g2

2|M2|2 +
3

10
g2

1|M1|2 +
3

10
g2

1(m2
Hu −m2

Hd
)

)
,

Gu = −4

(
8

3
g2

3|M3|2 +
8

15
g2

1|M1|2 +
2

5
g2

1(m2
Hu −m2

Hd
)

)
,

Gd = −4

(
8

3
g2

3|M3|2 +
2

15
g2

1|M1|2 −
1

5
g2

1(m2
Hu −m2

Hd
)

)
,

Ge = −4

(
6

5
g2

1|M1|2 −
3

5
g2

1(m2
Hu −m2

Hd
)

)
.

For completeness, we also show the evolution of the µ parameter, i.e. the coupling of the bilinear

superpotential term HuHd,

16π2dµ

dt
=

(
3Tr[Ỹ u†Ỹ u] + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e] + Tr[Y ν†Y ν ]− 3g2

2 −
3

5
g2

1

)
µ , (E.5)

where gi,Mi, i = 1, 2, 3 are the gaugino couplings and masses respectively.



Appendix F

Renormalisation group running

In this appendix, we provide analytical expression for the RG evolved Yukawa couplings, soft

terms and mass insertion parameters. We estimate the effects of RG running using the leading

logarithmic approximation. In order to formulate the two-stage running (i) from MGUT to MR,

where the right-handed neutrinos are integrated out, and (ii) fromMR toMSUSY ∼MW ≡Mlow,

we introduce the parameters

η =
1

16π2
ln

(
MGUT

Mlow

)
, ηN =

1

16π2
ln

(
MGUT

MR

)
. (F.1)

For MGUT ≈ 2 × 1016 GeV, MR ≈ 1014 GeV and Mlow ≈ 103 GeV, η ≈ 0.19 is of the order of

our expansion parameter λ ≈ 0.22 and ηN ≈ 0.03.

F.1 Low energy Yukawas

The SCKM transformations, discussed in Section 3.6, diagonalise the Yukawa matrices at high

scales. RG running to low energies re-introduces off-diagonal elements in the low energy Yukawa

matrices. These off-diagonal entries in Ỹ u
low and Ỹ d

low are proportional to the quark masses and

the VCKM elements. As the CKM matrix features only a mild running, the RG corrections can

be treated as a perturbation. In Ỹ e
low, the off-diagonal terms are proportional to the charged

lepton masses and the elements of Y ν . The corresponding RG equations are provided explicitly

in Eq. (E.2) for convenience. To LO in λ, we find,

Ỹ u
low ≈

 1 +Ryu 0 0

0 1 +Ryu 0

0 0 1 +Ryt

 Ỹ u
GUT − η yb yt

 0 0 x̃2 λ
7

0 0 ys λ
6

0 0 0

 , , (F.1.1)

Ỹ d
low ≈

 1 +Ryd 0 0

0 1 +Ryd 0

0 0 1 +Ryb

 Ỹ d
GUT + η y2

t

 0 0 eiθ
d
2
x̃2

2
ys
λ6

0 0 ys λ
4

0 y2
s
yb
λ6 0

 , (F.1.2)
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Ỹ e
low ≈

 1 +Rye 0 0

0 1 +Rye 0

0 0 1 +Rye

 Ỹ e
GUT + ηN yD Rν

 0 −3 ys λ
8 yb λ

6

0 0 yb λ
6

0 0 0

 , (F.1.3)

with

Ryu = η

(
46

5
g2
U − 3y2

t

)
− 3ηN y

2
D, Ryt = Ryu − 3 η y2

t , (F.1.4)

Ryd = η
44

5
g2
U , Ryb = Ryd − η y2

t , (F.1.5)

Rye = η
24

5
g2
U − ηN y2

D, Rν = zD1 − yD(K3 +KN
3 ). (F.1.6)

where gU ≈
√

0.52 is the universal gauge coupling constant at the GUT scale.

F.2 Low energy soft terms

Similar to the Yukawa matrices, the parameters of the soft terms have to be run down to low

energies. Moreover, it is mandatory to perform further transformations to the “new” SCKM

basis which render Ỹ f
low diagonal again. The running of the trilinear terms is similar to the one

of the corresponding Yukawas. To LO in λ, η and ηN , we derive the following expressions in

the “new” SCKM basis.

Ãulow

A0
≈

 1 +Ryu 0 0

0 1 +Ryu 0

0 0 1 +Ryt

 ÃuGUT

A0
− 2

Rau 0 0

0 Rau 0

0 0 Rat

 Ỹ u
GUT (F.2.1)

− 2η yt

 0 0 yb x̃
a
2 e

i(θx̃
a

2 −θx̃2 ) λ7

0 0 yb as e
i(θas−θys ) λ6

0 yte
i(3θd2+θd3)ãu23λ

7 0

 ,

Ãdlow

A0
≈

 1 +Ryd 0 0

0 1 +Ryd 0

0 0 1 +Ryb

 ÃdGUT

A0
− 2

Rad 0 0

0 Rad 0

0 0 Rab

 Ỹ d
GUT (F.2.2)

+ 2η ys yt

 0 0 0

0 0 at λ
4

0 1
yb

(
ys at − yt ãd23

)
λ6 0

 ,

Ãelow

A0
≈

 1 +Rye 0 0

0 1 +Rye 0

0 0 1 +Rye

 ÃeGUT

A0
− 2Rae Ỹ

e
GUT (F.2.3)

+ 2ηN yD Rν yb

 0 0 αD
yD

λ6

0 0 Raν
Rν
λ6

0 0 0

 ,
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with

Rau = η

(
46

5
g2
U

M1/2

A0
+ 3at yt

)
+ 3ηN yD αD, Rat = Rau + 3 η at yt, (F.2.4)

Rad = η
44

5
g2
U

M1/2

A0
, Rab = Rad + η at yt, (F.2.5)

Rae = η
24

5
g2
U

M1/2

A0
+ ηN yDαD, (F.2.6)

Raν = zDa1 eiθ
zDa
1 − αD(K3 +KN

3 ). (F.2.7)

The first terms in Eqs. (F.2.1-F.2.3) are analogous to the first terms in Eqs. (F.1.1 - F.1.3); they

are usually ignored. The second terms contain the universal gaugino mass M1/2 contributions,

which generate non-zero diagonal trilinear couplings through the running, even for A0 → 0. The

sources of the off-diagonal entries in the Yukawa couplings are also present for the trilinear soft

terms. We see that the (13) element in Ãulow, which was zero in ÃuGUT, is now filled in, and there

is an O(λ6) contribution (but additionally suppressed by a factor of η) to the (23) element,

which was of order λ7 in ÃuGUT. The (32) element in Ãulow, with ãu23 given in Eq. (D.5), is of

the same order in λ as the one that is already present in ÃuGUT. All the off-diagonal elements

generated by the running in Ãdlow and in Ãelow are of the same order in λ as the ones that were

already present at the high scale.

Analogously to the trilinear A-terms, we find for the soft scalar mass,

(m̃2
u)LLlow

m2
0

≈ (m̃2
u)LLGUT

m2
0

+ (6.5x+ T uL)1− η


0 0 y2

t

(m̃2
u)LLGUT13

m2
0

· 0 y2
t

(m̃2
u)LLGUT23

m2
0

· · 2Rq

, (F.2.8)

(m̃2
u)RRlow

m2
0

≈ (m̃2
u)RRGUT

m2
0

+ (6.15x+ T uR)1− 2η


0 0 y2

t

(m̃2
u)RRGUT13

m2
0

· 0 y2
t

(m̃2
u)RRGUT23

m2
0

· · 2Rq

, , (F.2.9)

(m̃2
d)LLlow

m2
0

≈ (m̃2
u)LLGUT

m2
0

+ (6.5x+ T dL)1 + η


0 0

(
2Rq

b01−b02
+ y2

t

) (m̃2
d)LLGUT13

m2
0

· 0
(

2Rq
b01−b02

+ y2
t

) (m̃2
d)LLGUT23

m2
0

· · − 2Rq

, (F.2.10)

(m̃2
d)RRlow

m2
0

≈ (m̃2
d)RRGUT

m2
0

+ (6.1x+ T dR)1 , (F.2.11)

(m̃2
e)LLlow

m2
0

≈ (m̃2
e)LLGUT

m2
0

+ (0.5x+ T eL − 2ηN Rl)1− 2ηN

 0 Ẽ12 − Ẽ∗12

· 0 − Ẽ12

· · 0

λ4, (F.2.12)

(m̃2
e)RRlow

m2
0

≈ (m̃2
e)RRGUT

m2
0

+ (0.15x+ T eR)1, (F.2.13)
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where we have introduced the ratio x = M2
1/2/m

2
0 and

Rq = (2b02 + cHu) y2
t + α2

0 a
2
t , (F.2.14)

Ẽ12 = y2
D

(
R̃12 +BN

3 −KN
3 B

N
0

)
+R′l − (K3 +KN

3 )Rl , (F.2.15)

Rl = (1 +BN
0 + cHu)y2

D + α2
0α

2
D , (F.2.16)

R′l = (1 +BN
0 + cHu)yD z

D
1 + α2

0αD z
Da
1 eiθ

zDa
1 , (F.2.17)

with α0 = A0/m0 and cHu = m2
HuGUT

/m2
0. Furthermore, the small quantities T fL,R are defined

as

T uL =
1

m2
0

(
1

20
T + ∆u

L

)
, T uR =

1

m2
0

(
−1

5
T + ∆u

R

)
, (F.2.18)

T dL =
1

m2
0

(
1

20
T + ∆d

L

)
, T dR =

1

m2
0

(
1

5
T + ∆d

R

)
, (F.2.19)

T eL =
1

m2
0

(
− 3

20
T + ∆e

L

)
, T eR =

1

m2
0

(
3

10
T + ∆e

R

)
, (F.2.20)

with T = 1
4π2

ln(Mlow)∫
ln(MGUT)

g2
U (m2

Hu
−m2

Hd
), as well as

∆u
L =

(
1

2
− 2

3
sin2(θW )

)
cos(2β)M2

Z , ∆u
R =

2

3
sin2(θW ) cos(2β)M2

Z , (F.2.21)

∆d
L =

(
−1

2
+

1

3
sin2(θW )

)
cos(2β)M2

Z , ∆d
R = −1

3
sin2(θW ) cos(2β)M2

Z , (F.2.22)

∆e
L =

(
−1

2
+

1

2
sin2(θW )

)
cos(2β)M2

Z , ∆e
R = − sin2(θW ) cos(2β)M2

Z . (F.2.23)

The contributions T fL,R to the running soft masses are usually ignored, and it is common practice

to set them to zero in a numerical scan. In our study, we will therefore not consider them any

further.

The off-diagonal entries in the soft scalar masses which are induced by the running are of the

same order in λ as the high scale ones, with an additional suppression by η. Only for the LL

masses of the down-squarks and charged sleptons, the contributions due to Rq and R
(′)
l can

be relatively large as those factors take values up to ∼ 35 in a numerical scan. Generally,

however, the main effect of the RG evolution on the scalar masses is the change of the diagonal

elements. The masses of the first two generations of (m̃2
u)LLlow

, (m̃2
u)RRlow

, (m̃2
d)LLlow

and all

three generations of (m̃2
d)RRlow

, (m̃2
e)RRlow

are increased at low energy scales due to the second

terms in Eqs. (F.2.8-F.2.13). The (33) elements of (m̃2
u)LLlow

, (m̃2
u)RRLow and (m̃2

d)LLlow
can

still remain relatively light, as they also feel the effect of Rq, defined in Eq. (F.2.14), entering

with a negative sign. Similarly, the enhancement of all three diagonal entries of (m̃2
e)LLlow

is

reduced due to the term −2ηNRl which encodes seesaw effects.
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F.3 Low energy mass insertion parameters

With these preparations, we can now formulate the mass insertion parameters at the low energy

scale.

Up-type quark sector:

(δuLL)12 =
1

(pu
L1G)2

e−iθ
d
2 b̃12 λ

4, (F.3.1)

(δuLL)13 =
1

pu
L1Gp

u
L3G

e−i(4θ
d
2+θd3)(1− η y2

t ) b̃13 λ
6, (F.3.2)

(δuLL)23 =
1

pu
L1Gp

u
L3G

e−i(7θ
d
2+2θd3)(1− η y2

t ) b̃23 λ
5, (F.3.3)

(δuRR)12 =
1

(pu
R1G)2

e−iθ
d
2 b̃12 λ

4, (F.3.4)

(δuRR)13 =
1

pu
R1Gp

u
R3G

(1− 2η y2
t ) b̃13 λ

6, (F.3.5)

(δuRR)23 =
1

pu
R1Gp

u
R3G

ei(5θ
d
2+θd3)(1− 2η y2

t ) b̃23 λ
5, (F.3.6)

(δuLR)11 =
α0 υu

m0 puL1G p
u
R1G

yu(1 +Ryu)

(
ãu11

yu
− µ(1 +Rµ)

A0 tβ
− 2

Rau
1 +Ryu

)
λ8, (F.3.7)

(δuLR)22 =
α0 υu

m0 puL1G p
u
R1G

yc(1 +Ryu)

(
ãu22

yc
− µ(1 +Rµ)

A0 tβ
− 2

Rau
1 +Ryu

)
λ4, (F.3.8)

(δuLR)33 =
α0 υu

m0 puL3G p
u
R3G

yt(1 +Ryt )

(
ãu33

yt
− µ(1 +Rµ)

A0 tβ
− 2

Rat
1 +Ryt

)
, (F.3.9)

(δuLR)12 = (δuLR)21 = (δuLR)31 = 0, (F.3.10)

(δuLR)13 = − α0 υu
m0 puL1G p

u
R3G

x̃2 yb yt

(
x̃a2
x̃2
ei(θ

x̃a
2 −θx̃2 ) +

Rat
1 +Ryt

)
2ηλ7, (F.3.11)
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(δuLR)23 =
α0 υu

m0 puL1G p
u
R3G

{
− ys yb yt

(
as
ys
ei(θ

a
s−θys ) +

Rat
1 +Ryt

)
2ηλ6 + (F.3.12)

+ λ7

[
eiθ

d
2 ãu23(1 +Ryt − η y2

t ) + 2η yb yt

(
eiθ

d
2 ãd12 +

(
as
ys
ei(θ

a
s−θys ) +

Rat
1 +Ryt

)
×

× (x̃2 cos(θd2)− zd4 cos(4θd2 + θd3)) + zd4e
i(4θd2+θd3)

(
ei(θ

a
s−θys ) − zda4

zd4
ei(θ

zda
4 −θzd4 )

))]}
,

(δuLR)32 =
α0 υu

m0 puL3G p
u
R1G

(1 +Ryt − 2η y2
t )e

i(3θd2+θd3)ãu23 λ
7, (F.3.13)

where, in Eq. (F.3.12), zd4 and zda4 parameterise the O(λ5) NLO corrections of the (22) and (23)

elements of the down-type Yukawa and soft trilinear structures, respectively. Originating from

the second term of Eq. (3.4.7), zd4e
iθ
zd
4 = yd2 δ̃

d
3,2(4)

φd2, so that θzd4 = 6θd2 + 4θd3 . We see that the

term proportional to η λ6, which was generated in Ãulow23
via th RG evolution, is the source of

the associated term in (δuLR)23, which was of order λ7 at the GUT scale. In Eqs. (F.3.1-F.3.13)

we have defined the factors

puL1G =
√
b01 + 6.5x, puL3G =

√
b02 + 6.5x− 2ηRq +

υ2
u

m2
0

y2
t (1 +Ryt )

2 ,

puR1G =
√
b01 + 6.15x, puR3G =

√
b02 + 6.15x− 4ηRq +

υ2
u

m2
0

y2
t (1 +Ryt )

2 , (F.3.14)

which are related to the full sfermion mass matrices by

mũLL ≈ mc̃LL ≈ m0 p
u
L1G , mt̃LL

≈ m0 p
u
L3G ,

mũRR ≈ mc̃RR ≈ m0 p
u
R1G , mt̃RR

≈ m0 p
u
R3G , (F.3.15)

whose GUT scale definitions are given in Eq. (3.7.1). The µ parameter at the low energy scale

can be estimated by

µlow ≈ µ (1 +Rµ) , Rµ = 4η

(
0.9 g2

U −
3

4
y2
t

)
− 3ηN y

2
D . (F.3.16)

Down-type quark sector:

(δdLL)12 =
1

(pd
L1G)2

B̃12 λ
3, (F.3.17)

(δdLL)13 =
1

pd
L1Gp

d
L13

eiθ
d
2
x̃2

2

yb ys
(b01 − b02 + 2η Rq)

(
1 +

η y2
t

1 +Ryb

)
λ4, (F.3.18)

(δdLL)23 =
1

pd
L1Gp

d
L13

ys
yb

(b01 − b02 + 2η Rq)

(
1 +

η y2
t

1 +Ryb

)
λ2, (F.3.19)
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(δdRR)12 = −(δdRR)13 =
1

(pdR)2
eiθ

d
2 R̃12 λ

4, (F.3.20)

(δdRR)23 = − 1

(pdR)2
R̃12 λ

4, (F.3.21)

(δdLR)11 =
α0 υd

m0 pdL1G p
d
R

x̃2
2

ys
(1 +Ryd)

(
ãd11

x̃2
2/ys

− µ tβ(1 +Rµ)

A0
− 2

Rad
1 +Ryd

)
λ6, (F.3.22)

(δdLR)22 =
α0 υd

m0 pdL1G p
d
R

ys(1 +Ryd)

(
ãd22

ys
− µ tβ(1 +Rµ)

A0
− 2

Rad
1 +Ryd

)
λ4, (F.3.23)

(δdLR)33 =
α0 υd

m0 pdL3G p
d
R

yb(1 +Ryb )

(
ãd33

yb
− µ tβ(1 +Rµ)

A0
− 2

Rab
1 +Ryb

)
λ2, (F.3.24)

(δdLR)12 = −(δdLR)21 = (δdLR)13 =
α0 υd

m0 pdL1G p
d
R

(1 +Ryd)ã
d
12 λ

5, (F.3.25)

(δdLR)23 =
α0 υd

m0 pdL1G p
d
R

ys(1 +Ryd)

(
ãd23

ys
+ 2

η y2
t

1 +Ryb

(
at
yt

+
Rad

1 +Ryd

))
λ4, (F.3.26)

(δdLR)31 =
α0 υd

m0 pdL3G p
d
R

e−iθ
d
2 (1 +Ryb )ã

d
31 λ

6, (F.3.27)

(δdLR)32 =
α0 υd

m0 pdL3G p
d
R

(1 +Ryb )yb

(
ãd32

yb
+ 2ηy2

t

y2
s

y2
b

[
2(1 +Ryb ) + ηy2

t

2(1 +Ryb )
2

ãd23

ys

+

(
at
yt

+
Rad

1 +Ryd

)
(1 +Ryd)

2

(1 +Ryb )
3

])
λ6, (F.3.28)

where

pdL1G =
√
b01 + 6.5x, pdL3G =

√
b02 + 6.5x− 4ηRq, pdR =

√
1 + 6.1x, (F.3.29)

such that

md̃LL
≈ ms̃LL ≈ m0 p

d
L1G , mb̃LL

≈ m0 p
d
L3G ,

md̃RR
≈ ms̃RR ≈ mb̃RR

≈ m0 p
d
R . (F.3.30)

Charged lepton sector:

(δeLL)12 = −(δeLL)23 =
1

(peL)2

(
R̃12 − 2ηN Ẽ12

)
λ4, (F.3.31)

(δeLL)13 = − 1

(peL)2

(
R̃12 − 2ηN Ẽ

∗
12

)
λ4, (F.3.32)
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(δeRR)12 = − 1

(pe
R1G)2

eiθ
d
2
B̃12

3
λ3, (F.3.33)

(δeRR)13 =
1

pe
R1G p

e
R3G

B̃13

3
λ4, (F.3.34)

(δeRR)23 =
1

pe
R1G p

e
R3G

3B̃23 λ
2, (F.3.35)

(δeLR)11 =
1

peL p
e
R1G

υd α0

m0

x̃2
2

3 ys
(1 +Rye)

(
ys
x̃2

2

ãd11 −
µ tβ
A0

(1 +Rµ)− 2
Rae

1 +Rye

)
λ6, (F.3.36)

(δeLR)22 =
1

peL p
e
R1G

υd α0

m0
3 ys(1 +Rye)

(
ãd22

ys
− µ tβ

A0
(1 +Rµ)− 2

Rae
1 +Rye

)
λ4, (F.3.37)

(δeLR)33 =
1

peL p
e
R3G

υd α0

m0
yb(1 +Rye)

(
ãd33

yb
− µ tβ

A0
(1 +Rµ)− 2

Rae
1 +Rye

)
λ2, (F.3.38)

(δeLR)12 =
1

peL p
e
R1G

υd α0

m0
(1 +Rye)e

iθd2 ãd12 λ
5, (F.3.39)

(δeLR)13 =
1

peL p
e
R3G

υd α0

m0

(
(1 +Rye)ã

d
31 + 2ηN yD Rν yb

(
αD
yD

+
Rae

1 +Rye

))
λ6, (F.3.40)

(δeLR)21 = (δeLR)31 = − 1

peL p
e
R1G

υd α0

m0
(1 +Rye)e

−iθd2 ãd12 λ
5, (F.3.41)

(δeLR)23 =
1

peL p
e
R3G

υd α0

m0

(
(1 +Rye)ã

e
23 + 2ηN yD Rν yb

(
Raν
Rν

+
Rae

1 +Rye

))
λ6, (F.3.42)

(δeLR)32 =
1

peL p
e
R1G

υd α0

m0
(1 +Rye)3 ã

d
23 λ

4, (F.3.43)

where

peL =
√

1 + 0.5x− 2ηN Rl, peR1G =
√
b01 + 0.15x, peR3G =

√
b02 + 0.15x, (F.3.44)

such that

mẽLL ≈ mµ̃LL ≈ mτ̃LL ≈ m0 p
e
L ,

mẽRR ≈ mµ̃RR ≈ m0 p
e
R1G , mτ̃RR ≈ m0 p

e
R3G . (F.3.45)
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Loop functions

The dimensionless functions CB, C ′L, C ′R, C ′2, C ′B,R, C ′B,L and C ′′B which appear in the ex-

pressions for the EDM of the electron in Section 4.3.1 and the branching ratio of µ → eγ in

Section 4.3.2 are defined as [97]

Ci =
m4

0

µ2
Ii , (G.1)

where

IB(M2
1 , m

2
L, m

2
R) =

1

m2
R −m2

L

[yL g1 (xL)− yR g1 (xR)] , (G.2)

I ′L(m2
L, M

2
1 , µ

2) =
1

m2
L

yL
yL − xL

[h1 (xL)− h1 (yL)] , (G.3)

I ′R(m2
R, M

2
1 , µ

2) =
1

m2
R

yR
yR − xR

[h1 (xR)− h1 (yR)] , (G.4)

I ′2(m2
L, M

2
2 , µ

2) =
M2 cot2 θW
M1m2

L

yL
yL − x′L

[
h2

(
x′L
)
− h2 (yL)

]
, (G.5)

I ′B,R(M2
1 , m

2
L, m

2
R) = − 1

m2
R −m2

L

(
yR h1 (xR)−m2

RIB
)
, (G.6)

I ′B,L(M2
1 , m

2
L, m

2
R) =

1

m2
R −m2

L

(
yL h1 (xL)−m2

LIB
)
, (G.7)

I ′′B(M2
1 , m

2
L, m

2
R) =

m2
Lm

2
R

m2
R −m2

L

1

µ2

(
yRI

′
B,R − yLI ′B,L

)
, (G.8)

with

xL =
M2

1

m2
L

, xR =
M2

1

m2
R

, x′L =
M2

2

m2
L

, yL =
µ2

m2
L

, yR =
µ2

m2
R

, (G.9)
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and

g1(y) =
1− y2 + 2y ln(y)

(1− y)3
,

h1(y) =
1 + 4y − 5y2 + (2y2 + 4y) ln(y)

(1− y)4
,

h2(y) =
7y2 + 4y − 11− 2(y2 + 6y + 2) ln(y)

2(y − 1)4
. (G.10)

Note that we assume real and positive values for Mi and µ2.

The loop functions appearing in the meson mixing amplitudes of Section 4.3.3 as well as the

branching ratios of Bs,d → µ+µ− in Section 4.3.5 read [76]

f6(y) =
6(1 + 3y) ln(y) + y3 − 9y2 − 9y + 17

6(y − 1)5
, (G.11)

f̃6(y) =
6y(1 + y) ln(y)− y3 − 9y2 + 9y + 1

3(y − 1)5
, (G.12)

f1(y) =
1

1− y +
y

(1− y)2
ln(y), (G.13)

f3(y) = − 1 + y

2(1− y)2
− y

(1− y)3
ln(y), (G.14)

f4(x, y) = − x ln(x)

(1− x)2(y − x)
− y ln(y)

(1− y)2(x− y)
+

1

(1− x)(1− y)
, (G.15)

f5(y) =
2 + 5y − y2

6(1− y)3
+

y

(1− y)4
ln(y). (G.16)

The relevant functions for the branching ratio of b→ sγ in Section 4.3.4 are given by [13]

M1(y) =
1 + 4y − 5y2 + 4y ln(y) + 2y2 ln(y)

2(1− y)4
, (G.17)

M3(y) =
−1 + 9y + 9y2 − 17y3 + 18y2 ln(y) + 6y3 ln(y)

12(y − 1)5
. (G.18)

Finally, the loop functions entering the hadronic EDM expressions in Section 4.3.6 are [121]

N1(y) =
3 + 44y − 36y2 − 12y3 + y4 + 12y(2 + 3y) ln(y)

6(y − 1)6
, (G.19)

N2(y) = −10 + 9y − 18y2 − y3 + 3(1 + 6y + 3y2) ln(y)

3(y − 1)6
. (G.20)



Appendix H

LC-OPE results of the correlation

function ΠV,P

Below are presented the results of the LC-OPE for the correlation functions for the vector and

pseudoscalar case,s using the decompositions in Eq. (5.3.2). The same decomposition as in

Eq. (5.4.2) is used for the various contributions on the DA (I.2.11) parts:

g
(s)
i = g

(⊥)
i + g

(‖)
i + .. , i = 0..3 . g

(s)
T = g

(P )
T

The dots stand for higher twist contributions. In order for the results to be presented our in a

compact way, the following abbreviations are introduced for the PV-functions:

Ba = B0(u(p2
B−P 2), 0,m2

b) , Bb = B0(p2
B − P 2, 0,m2

b) ,

Bc = B0(up2
B+ūq2, 0,m2

b) , Bd = B0(p2
B, 0,m

2
b) ,

Ca = C0(p2
B, u(p2

B−P 2), ūP 2+uq2, 0,m2
b , 0) , Cb = C0(p2

B, p
2
B − P 2, q2, 0,m2

b , 0) ,

Cc = C0(up2
B + ūq2, u(p2

B−P 2), q2,m2
b , 0,m

2
b) , Cd = C0(p2

B, p
2
B − P 2, q2,m2

b , 0,m
2
b) (H.1)

Note only the PV-functions which depend on p2
B are listed, as the other ones do not enter the

dispersion representation. Moreover, the functions on the right correspond to the functions on

the left at u = 1.

V⊥-transverse

It is found that for the transverse parts, the Lorentz-projections satisfy:

g
(⊥)
2 = (1− q2/P 2)g

(⊥)
3 , g

(⊥)
2 = (1− q2/P 2)g

(⊥)
1 , g

(⊥)
0 = 0 . (H.2)

The result g
(⊥)
1 (q2) can be written as:

k−1
V g

(⊥)
1 (q2) =

αs
4π
CF (−1

2
)f⊥V m

2
bQb

∫ 1

0
du t

(⊥)
H (u)φ⊥(u) (H.3)
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where the t
(⊥)
H (u) corresponds to the hard kernel and is given in terms of PV-functions:

t
(⊥)
H (u) =

d∑
i=a

(b⊥i Bi + c⊥i Ci), (H.4)

where the sum extends alphabetically from a to d. The only non-zero coefficients are:

(b⊥a , b
⊥
c , b
⊥
d ) = (

qR
uq2 + ūP 2

,
1

ūq2 + uP 2
, 2(b⊥a + b⊥c )) ,

(c⊥a , c
⊥
c ) = (−2qR,−1) , (H.5)

with qR ≡ Qq/Qb being the charge ratio.

V‖-longitudinal

The computation of V‖ is in principle highly non-trivial due the extra coordinates x appearing

in front of the integral in (I.2.11). The so-called ultra-relativistic limit can be employed,

η(p)α →
1

mV

(
pα +O

(
m2
V

E2
V

)
ζα

)
, (H.6)

which is correct up to the relativistic correction, as indicated, and the vector ζ is a linear

combination of p and η. In this limit, using the DA as given in appendix I.2, the V‖ and P

contributions are identical up to the replacements f
‖
V → −ifP and φ‖ → φP . Noting that in

the ultra-relativistic limit

P1 → 0 , P2 → cP3|η→p/mV (H.7)

with c a constant, it is clear that only g3 receives a contribution. Taking further into account

Eq.(I.1.2) one gets:

G
(P )
T (q2) =

p ·Q
mV

ifP

f
‖
V

kV
kP
G

(‖)
3 (q2)|φ‖→φP =

−(m2
B − q2)

2mV (mB −mP )

fP

f
‖
V

G
(‖)
3 (q2)|φ‖→φP . (H.8)

Thus, the result for the longitudinal vector meson entirely follows from the pseudoscalar in the

ultra-relativistic limit. Note that the sign of this relation changes when (1 + γ5)→ (1− γ5) in

O8 (5.1.5).

P (pseudoscalar)

Analogously to (H.3), g
(P )
T is parametrised as follows:

k−1
P g

(P )
T (q2) =

αs
4π
CF (−1

2
)fPm

2
bQb

∫ 1

0
du t

(P )
H (u)φP (u) . (H.9)
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The entire expression of t
(P )
H (u) is rather bulky, so only one coefficient for t

(P )
H (u) is given,

cPb =
4qRP

2
(
m4
b +m2

b(P
2 − 2p2

B + q2) + p2
B(p2

B − P 2)
)

mb(mB −mP )ū
(
P 4 + 2P 2q2 + q2(q2 − 4p2

B)
) . (H.10)

Q2 G
(⊥)
1 × 102 G

(‖)
3 × 102 G

(⊥)
1 × 102 G

(‖)
3 × 102

B− → K∗− B− → K∗− B̄0 → K̄∗0 B̄0 → K̄∗0

0.010 0.2931− 0.3960i 2.3443 + 0.8303i 0.2022 + 0.1980i −1.1952− 0.4151i

0.261 0.3204− 0.3781i 1.0673 + 0.8213i 0.1661 + 0.1890i −0.5574− 0.4107i

0.512 0.3384− 0.3604i 0.7999 + 0.8122i 0.1431 + 0.1802i −0.4243− 0.4061i

0.764 0.3526− 0.3429i 0.6388 + 0.8029i 0.1251 + 0.1715i −0.3443− 0.4014i

1.015 0.3641− 0.3257i 0.5217 + 0.7933i 0.1102 + 0.1629i −0.2863− 0.3966i

1.266 0.3736− 0.3087i 0.4286 + 0.7834i 0.0975 + 0.1544i −0.2403− 0.3917i

1.517 0.3815− 0.2920i 0.3508 + 0.7732i 0.0866 + 0.1460i −0.2020− 0.3866i

1.768 0.3878− 0.2755i 0.2834 + 0.7628i 0.0771 + 0.1378i −0.1688− 0.3814i

2.020 0.3929− 0.2593i 0.2235 + 0.7519i 0.0689 + 0.1297i −0.1395− 0.3760i

2.271 0.3969− 0.2434i 0.1693 + 0.7407i 0.0617 + 0.1217i −0.1129− 0.3703i

2.522 0.3998− 0.2277i 0.1196 + 0.7290i 0.0554 + 0.1139i −0.0887− 0.3645i

2.773 0.4018− 0.2124i 0.0734 + 0.7168i 0.0499 + 0.1062i −0.0662− 0.3584i

3.024 0.4028− 0.1974i 0.0300 + 0.7041i 0.0453 + 0.0987i −0.0451− 0.3521i

3.275 0.4030− 0.1827i −0.0110 + 0.6908i 0.0413 + 0.0913i −0.0253− 0.3454i

3.527 0.4024− 0.1683i −0.0500 + 0.6768i 0.0379 + 0.0842i −0.0064− 0.3384i

4.786 0.3883− 0.1024i −0.2248 + 0.5935i 0.0295 + 0.0512i 0.0775− 0.2967i

6.046 0.3586− 0.0489i −0.3754 + 0.4758i 0.0323 + 0.0245i 0.1488− 0.2379i

7.305 0.3177− 0.0129i −0.4908 + 0.2946i 0.0431 + 0.0065i 0.2019− 0.1473i

8.565 0.2758 + 0.0000i −0.4519 + 0.0224i 0.0562− 0.0000i 0.1770− 0.0112i

9.824 0.2492 + 0.0000i −0.2972 + 0.0000i 0.0630− 0.0000i 0.0933− 0.0000i

11.084 0.2312− 0.0000i −0.2485− 0.0000i 0.0669 + 0.0000i 0.0613 + 0.0000i

12.343 0.2176− 0.0000i −0.2243− 0.0000i 0.0696 + 0.0000i 0.0400 + 0.0000i

13.603 0.2070− 0.0000i −0.2128 + 0.0000i 0.0718 + 0.0000i 0.0230− 0.0000i

14.862 0.1986 + 0.0000i −0.2101 + 0.0000i 0.0740− 0.0000i 0.0076− 0.0000i

16.122 0.1921− 0.0000i −0.2147− 0.0000i 0.0763 + 0.0000i −0.0080 + 0.0000i

17.381 0.1873− 0.0000i −0.2267 + 0.0000i 0.0790 + 0.0000i −0.0252− 0.0000i

18.641 0.1843 + 0.0000i −0.2475 + 0.0000i 0.0824− 0.0000i −0.0459− 0.0000i

19.900 0.1831− 0.0000i −0.2803 + 0.0000i 0.0869 + 0.0000i −0.0725− 0.0000i

21.160 0.1844− 0.0000i −0.3310− 0.0000i 0.0932 + 0.0000i −0.1097 + 0.0000i

D0 → ρ0 D0 → ρ0 D+ → ρ+ D+ → ρ+

0.010 −7.0027− 4.9787i 14.939 + 2.507i −1.9295 + 2.4893i 19.589− 1.254i

0.048 −6.5207− 4.7048i 10.506 + 2.673i −1.8309 + 2.3524i 0.5204− 1.3366i

0.087 −6.2041− 4.4945i 8.9314 + 2.7462i −1.7662 + 2.2472i −1.0918− 1.3731i

0.125 −5.9599− 4.3583i 7.9497 + 2.9176i −1.7163 + 2.1792i −1.4961− 1.4588i

0.163 −5.7571− 4.2099i 7.2213 + 3.1650i −1.6766 + 2.1050i −1.5870− 1.5825i

0.202 −5.5875− 4.1273i 6.6209 + 3.4331i −1.6417 + 2.0637i −1.5541− 1.7166i

0.240 −5.4402− 4.0195i 6.1014 + 3.5850i −1.6115 + 2.0098i −1.4644− 1.7925i

0.440 −4.9159− 3.4292i 3.7348 + 4.8267i −1.4907 + 1.7146i −0.5866− 2.4133i

0.640 −4.6317− 3.0393i 0.8816 + 6.7486i −1.3979 + 1.5196i 0.8464− 3.3743i

0.840 −4.4966− 2.6815i −3.643 + 11.193i −1.3125 + 1.3407i 3.2215− 5.5964i

1.040 −4.4921− 2.1974i −11.832 + 18.837i −1.2174 + 1.0987i 7.4949− 9.4187i

1.240 −4.6038− 1.8406i −27.338 + 33.651i −1.1080 + 0.9203i 15.490− 16.825i

1.440 −4.8063− 1.2685i −58.743 + 61.022i −0.9925 + 0.6342i 31.511− 30.511i

Table H.1: q2-dependance of the G
(⊥)
1 (q2)- and G

(‖)
3 (q2)-functions for the four characteristic

cases, depending on whether the initial state is B−, B̄0, D0 or D+-type.





Appendix I

Lorentz structures and

distristribution amplitudes

The Lorentz structures of the vector meson are given by1:

P ρ1 = 2εραβγη
∗αpβqγ

P ρ2 = i{(m2
B−m2

V )η∗ρ−(η∗ ·q)(p+ pB)ρ}

P ρ3 = i(η∗ ·q){qρ− q2

m2
B−m2

V

(p+ pB)ρ} , (I.1)

and the one for the pseudoscalar meson is

P ρT =
1

mB +mP
{(m2

B −m2
P )qρ − q2(p+ pB)ρ} . (I.2)

All projectors are transverse, i.e. q · P = 0 when on-shell momentum relations like p2
B = m2

B

etc are taken into account. The structure P3 = P ρ3 ε(q)ρ is absent for an on-shell photon since

ε(q) · P3|q2=0 = 0 and thus P3 can be seen as a purely longitudinal part of the photon. Note:

P ρ3 = i/(mB −mP )(η∗ ·q)P ρT |mP→mV .

1The sign convention for the epsilon tensor is given by tr[γ5γaγbγcγd] = 4iεabcd and are the ones used in the
classic textbook of Bjorken & Drell.
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I.1 Extension to include spurious momentum

The extension of the Lorentz structures to include the spurious momentum k in the vector case

(I.1) is

(p1)ρ = 2εραβγη
∗αpβQγ

(p2)ρ = i[((pB + p) ·Q) η∗ρ − (η∗ ·Q)(pB + p)ρ]

(p3)ρ = i[(η∗ ·Q)Qρ − (η∗ ·Q)(pB + p)ρ
q2

Q · (pB + p)
]

(p4)ρ = i[(η∗ ·Q)kρ − (η∗ ·Q)(pB + p)ρ
k ·Q

Q · (pB + p)
] (I.1.1)

and in the pseudoscalar case (I.2) is:

(pT )ρ = (mB −mP )[(Qρ −
q2

Q · (pB + p)
(pB + p)ρ]

(p̄T̄ )ρ = (mB −mP )[(kρ −
k ·Q

Q · (pB + p)
(pB + p)ρ]

Essentially, we get one more structure due to a linearly independent vector k and the projectors

are extended such that they remain transverse, i.e. Q · q = 0. This is easy to verify using

q2 = Q2. Since pρ3 = (η ·Q)pρT we have got:

pρ3 →
(

ip ·Q
mV (mB −mV )

)
pρT =

(
i(P 2 − q2)

2mV (mB −mV )

)
pρT , (I.1.2)

in the ultra-relativistic limit η → p/mV . In the last equality we have used the approximation

p2 = 0.

I.2 Distribution amplitudes

The leading twist (twist 2) DAs for the pseudoscalar (e.g. [143]) and vector (e.g. [154]) mesons

are defined as follows,

〈K(p)|[s̄(x)]α..[q(z)]β|0〉 = i
fK
4

[/pγ5]βα

∫ 1

0
du eiux·p+iūz·p φK(u) + ...

〈K∗(p, η)|[s̄(x)]α..[q(z)]β|0〉 =
f⊥K∗

4
[/η∗(p)/p]βα

∫ 1

0
dueiux·p+iūz·pφ⊥(u) (I.2.11)

+ mK∗
fK∗

4
[/p]βα

η∗ · (x− z)
p · (x− z)

∫ 1

0
dueiux·p+iūz·pφ‖(u) + ... ,

which have been represented by the kaons for definiteness.
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Analytic structure and dispersion

representation

Let us parametrise a dispersion representation as follows:

f(p2
B) =

∫ ∞
0

ρf
s− p2

B − i0
+ [f(p2

B)]An + subtractions . (J.1)

The polynomial subtraction terms, as previously emphasised, are of no importance as they

vanish under the Borel-transformation. The term [f ]An corresponds to an anomalous threshold.

Amongst the PV-functions (H.1) present in the results, given in appendix H, solely Ca
1 includes

an anomalous threshold which extends into the lower complex half plane, c.f. Fig. J.1, at

physical momenta P 2, q2 > 0. This is discussed in section J.1 from various viewpoints. In

addition, the density ρCa necessitates many case distinctions, which is not uncommon for vertex

function e.g. [166].

We have checked the dispersion relations by comparing them against LoopTools [169] which

allow for numerical evaluation of the scalar PV-functions. Below, we shall quote the results,

starting with the anomalous part of Ca:

[Ca(p
2
B)]An = −2πi

∫ Re s+

s+

ds

s− p2
B

1√
λ
. (J.2)

s+ is one of the two solutions of the leading Landau equations of the graph

s± =
(1 + u)m2

b + uP 2 ±
√

(uP 2 − ūm2
b)

2 − 4u2m2
bq

2 − i0
2u

. (J.3)

1Cb corresponds to Ca|u→1 and so we shall not discuss it separately as well as all other functions on the RHS
of the list in Eq. (H.1)
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where the −i0 implies that = s+ ≤ 0. The densities ρf of the representation (J.1) are:

ρBa =

(
1− m2

b

u(s− P 2)

)
Θ

(
s− m2

b

u
− P 2

)
ρBc =

(
1− m2

b

us+ ūq2

)
Θ

(
s− m2

b − ūq2

u

)
ρCa =

(
Im[Ca]

π
+

1√
λ

(
logL

(
z+ − zL
z− − zL

)
− log−

(
z+ − 1

z− − 1

)))
Θ(s−m2

b)

ρCc =
log
(
A−
√
λ1λ3

A+
√
λ1λ3

)
√
λ3

[
Θ

(
s− m2

b − ūq2

u

)
−Θ

(
s− m2

b

u
− P 2

)]

+
log
((

B−
√
λ2λ3

B+
√
λ2λ3

)(
A−
√
λ1λ3

A+
√
λ1λ3

))
√
λ3

Θ

(
s− m2

b

u
− P 2

)
, (J.4)

where

A ≡ 2m2
bq

2 − u
(
q2 − P 2

) (
m2
b + ūq2 + us

)
B ≡ u

((
q2 − P 2

) (
m2
b + u

(
s− P 2

))
− 2q2

(
s− P 2

))
λ1 ≡ λ

(
us+ ūq2,m2

b , 0
)
, λ2 ≡ λ

(
u(s− P 2),m2

b , 0
)
,

λ3 ≡ λ
(
us+ ūq2, u(s− P 2), q2

)
, λ ≡ λ(p2

B, ūP
2 + uq2, u(p2

B − P 2)) (J.5)

and λ(x, y, z) = (x− (y + z))2 − 4yz is the Källén-function.

The notation log− and logL in the density ρCa demands clarification:

logL θ →



r+ > 0 ∧ r− > 0 log+ θ

r+ < 0 ∧ r− > 0



λ < 0

{
s < Res+ log+ θ

s > Res+ log− θ

λ > 0



θ < 0

{
s < λ− log− θ

s > λ+ log+ θ

θ > 0


Res+ < s < λ− log θ − 2πi

λ+ < s < Res+ log θ + 2πi

otherwise log θ

r+ < 0 ∧ r− < 0 log− θ

(J.6)

The square root of λ, but not λ1,2,3, in Eq. (J.4) is to be taken as:

√
λ→


√
λ s < λ−

i
√
−λ λ− < s < λ+

−
√
λ s > λ+

. (J.7)
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Furthermore, log± are defined as follows:

log+ x =

{
log x Imx = 0

log(−x) + iπ Imx 6= 0
(J.8)

log− x = log(−x)− iπ (J.9)

The remaining variables in ρCa are given by:

λ± =
ūP 2 + u(1 + u)q2 ± 2u

√
q2(ūP 2 + uq2)

ū2
, λ = ū2(s− λ+)(s− λ−)

z± =
(1 + u)p2

B − P 2 − uq2 ±
√
λ

2p2
B

, zL = 1 +
ūP 2 + uq2

m2
b − p2

B

r± = r(λ±) , r(p2
B) = (1 + u− 2zL)p2

B − P 2 − uq2 . (J.10)

J.1 Analytic structure of C0(s, s− β, α, 0,m2
b , 0) in Cs

In this section we shall discuss the analytic properties of the PV-function Ca through a function

with simplified but equivalent variables, namely,

C0(s, s− β, α, 0,m2
b , 0) , (J.1.1)

with conventions as indicated in the caption of Fig. J.1. The function (J.1.1) corresponds to Ca
in Eq. (H.1) with the following substitutions:

s = p2
B , α = uq2 + ūP 2 , β = uP 2 + ūs . (J.1.2)

It is argued in a succession of rigour: first from the viewpoint of Landau equations J.1.1, then

explicit one-loop solutions & uniqueness of analytic continuation J.1.2 and finally axiomatic

results by Källén & Wightman J.1.2.1, that the correlation function has a complex anomalous

threshold on the physical sheet for

α > α∗ ≡ β2

4m2
b

. (J.1.3)

J.1.1 Singularities from the Landau equations

The Landau equations [137, 138] are a means to determine singularities of a perturbative dia-

gram2. The crucial and limiting point is that, unless the singularities are real, there is no direct

way to determine on which Riemann sheets they appear.

We shall be interested in determining the so-called leading Landau singularity of the triangle

graph J.1, also known as an anomalous threshold. It corresponds to all three propagators being

2Singularities which arise due to infinite loop-momentum are possible to interpret through the Landau equa-
tions though not easily and have therefore been called singularities of the second-type or non-Landau singularities.
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Analytic

continuation s−

s+

m2
b m2

b + β/2

Im s

Re s

m3

m1

m2

p1

p2

p3

Figure J.1: Analytic structure of C0(s, s−β, α, 0,m2
b , 0). The path of the branch cut connected

to the branch point s+ can be inferred from a deformation analysis as in [170]. (left) Black spots
correspond to branch points on the physical sheet. White spot branch point which is not on the
physical sheet. Black zig-zag lines are branch cuts on the physical sheet. The dashed zig-zag line
corresponds to a branch cut of CFa (J.1.2.1) but not of Ca = C0(s, s−β, α, 0,m2

b , 0) as explained
in the text. The arrow indicates around which branch point CFa is analytically continued into
the lower half plane. (right) Triangle graph corresponding to the C0(p21, p

2
2, p

2
3,m

2
2,m

2
3,m

2
1)

PV-function. The conventions are the same as in LoopTools [169] and Feyncalc [145].

on-shell. The condition can conveniently be written in terms of a determinant,

det

 1 x1 x2

x1 1 x3

x2 x3 1

 = 0 , xi ≡
p2
i −m2

j −m2
k

2mjmk
, i 6= j 6= k 6= i , (J.1.1.1)

where mj and mk are the masses of the propagators adjacent to the in-going momentum squares

p2
i . For the C0 in question (J.1.1), this leads to the Landau surface

(s−m2
b)(s−m2

b − β) + αm2
b = 0 (J.1.1.2)

whose solutions are given by

s± = m2
b + β/2±

√
(β/2)2 − αm2

b (J.1.1.3)

As long as α < α∗ (J.1.3) the solutions are real and we can decide of whether they are on

the physical sheet or not by checking whether the Landau equations admit solutions where

the Feynman parameter admit values between [0, 1]. As a matter of fact for any q2 > 0,

c.f. Eq. (J.1.2), there is exists some u ∈ [0, 1] for which α > α∗. Thus we are lead to the

question of whether or not the singularities s± are on the physical sheet. Some guidance can

be gained following Mandelstam contour deformation prescription [170]. The idea is that one

starts with values for P 2 and Q2 such that s± are real. Then a dispersion representation can

be constructed by checking which singularities are on the physical sheet. Upon deformation of

the external momenta (P 2, Q2) the contour is deformed such that no singularities are crossed.

Applying this procedure we found that s+ is on the physical sheet and s− on an unphysical

sheet. In the next section we shall show the same result to be true in a more explicit and

possibly more transparent way from the known one loop result.
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J.1.2 Complex branch points in the lower half-plane from analytic continu-

ation of the Feynaman parameter representation

Here we discuss the function Ca (H.1) itself rather than C0 (J.1.1) because reference is made to

the variables used in ρCa (J.4) and thereafter. Variables are restricted to the following values :

0 ≤ u ≤ 1, m2
B > m2

b > 0, P 2 = m2
B + i0 and q2 − i0 = Re[q2] > 0. Our two main ingredients

are the uniqueness of analytic continuation from the real line and the fact that the lowest cut

on the real line starts at m2
b . The latter can be verified from the Landau equations.

The correlation function Ca, originally defined just above the real line of p2
B (at Re[p2

B]+i0), can

be analytically continued into the entire upper half-plane by the Feynman-parameter integral

representation,

CFa (p2
B)=

∫ 1

0
dx

∫ 1−x

0
dy
[
(1− x− y)(xp2

B + yu(p2
B − P 2)−m2

b) + xy(ūP 2 + uq2) + i0
]−1

,

(J.1.2.1)

since it is free from singularities in this region. For =[p2
B] 6= 0 (where the i0-prescription is

irrelevant) CFa (p2∗
B ) = CFa (p2

B)∗ by inspection. This implies that CFa , but not necessarily Ca,

has got a branch cut on the real axis whenever =[CFa (p2
B)] 6= 0. Note these are the only possible

singularities for the range of variables mentioned above.

Using the Feynman-parameter representation CFa (p2
B) as a starting point we construct an ana-

lytic continuation to the lower half-plane as follows:

Ca(p
2
B) =

{
CFa (p2

B) =[p2
B] > 0

CFa (p2∗
B )∗ + Crem

a (p2
B) =[p2

B] < 0
. (J.1.2.2)

With reminder-function Crem
a (p2

B) such that there is no branch cut below p2
B < m2

b for Ca(p
2
B).

To remove the branch cut near a given p2
B we require that Ca(p

2
B) in (J.1.2.2) is equal immedi-

ately above and below the real line which enforces

Crem
a (p2

B) = 2i=[CFa (p2
B)] , =[p2

B] = 0 . (J.1.2.3)

The resulting function eliminates the branch cut for p2
B < m2

b . In this region a remainder

function Crem
a (p2

B) may be derived from (J.1.2.3) and (J.1.2.1) using 1/(x + i0) = PP[1/x] −
iπδ(x)3 to give

Crem
a (p2

B) = −2πi√
λ

(
log

(
z+ − zL
z+ − 1

)
− log

(
z− − zL
z− − 1

))
, (J.1.2.4)

with z±, zL and λ as in (J.10)4. The branch points of the logarithms and square roots appear

on all Riemann sheets unless there are cancellations between terms.

The branch cuts of the two logarithms start at z± = zL (there are no solutions for |p2
B| <∞ to

z± = 1), which occurs at p2
B = s±, and since the branch points s± are separate no cancellation

3PP stands for the principal part.
4Note whilst the directions of the cuts are ambiguous the branch points s± are unambiguous. Fortunately it

is the latter we are interested in. In other words: The exact location of the cuts is somewhat analogous to the
choice of a coordinate system whereas the branch points are not dependent on it.
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occurs and there indeed must be a cut on all Riemann sheets of Crem
a (p2

B). s± is complex for

physical momenta, and since we know that Crem
a (p2

B) is the only term with branch points away

from the real line in (J.1.2.2) we conclude that analytically continuing (J.1.2.1) to =[p2
B] < 0

across the real line, to the left of the branch point p2
B = m2

b c.f. Fig. J.1(left), necessarily

results in a branch cut off the real line in the lower complex half plane. To this end we note

that Crem
a (p2

B) corresponds to ρCa (J.4) modulo the imaginary part. To this end we would

like to add a clarifying remark. Whereas the Feynman parameter representation does satisfy

the Schwarz reflection principle (CF0 (s∗))∗ = CF0 (s), as previously stated, the proper analytic

continuation (C0(s∗))∗ 6= C0(s) does not. This is surely due to the complex singularity on the

lower half-plane which is not balanced by a singularity on the upper half plane.

In the next section we are going to learn that the complex singularities are not an artefact of

perturbation theory but are expected on most general grounds from axiomatic approaches.

J.1.2.1 The Källén-Wightman domain

Based on axioms such as Lorentz-covariance, assumption on the spectrum and microcausality

Källén & Wightman [167] obtained results on the domain analyticity of the vacuum expectation

value of three scalar fields. We note that the C0 PV-function is simply a one-loop approximation

in a specific theory with three point interactions. Denoting the three invariant momentum

squares of the three vertices by Zi = p2
i , for i = 1..3, the domain can be separated into eight

regions characterised by the signs of Im[Zi]; denoted by [±±±] . Those eight octants are partly

separated by the normal cuts. In addition the domains with signatures [+ +−] and [−−+] and

permutations thereof have got the following boundaries [168]:

(Z1 − r)(Z2 − r) + rZ3 = 0 , r > 0 ; (J.1.3.1)

with Im(Z1)Im(Z2) > 0. Thus for (Z1, Z2, Z3) = (s, s− β, α+ i0) with Im[s] < 0 we find

(s− r)(s− β − r) + rα = 0 (J.1.3.2)

which corresponds to the Landau surface equation (J.1.1.2) upon identifying r = m2
b .
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Hadronic input values

The hadronic input for the vector DAs is summarised in Table K.1. For the pseudoscalar decay

constants fπ = 0.131 GeV and fK = 0.160 GeV are taken [158] the data for the pseudoscalar

meson DAs is taken from Ref [159]:

a2(π) = 0.29(3)(7) , a2(K) = 0.24(3)(7) , a1(K) = 0.074(2)(4) (K.1)

The latter value is in good agreement with [160].

The sum rule specific input can be found in Table K.2. s0[fH ] = s0[H] ≡ s0 is chosen throughout,

with s0[Bq] = 35(1) GeV2 as a reference value. All others are determined to satisfy (mHq+X)2 =

s0[Hq] for “universal” X, where X is between the two pion mass and the rho-threshold. The

Borel parameter M2[fH ] of (5.4.1) is chosen in the minimum of the Borel window and in

addition it is verified that the dimension five operators are below 10% and that the continuum

contribution, vulnerable to quark-hadron duality violation, does not exceed 30%. The Borel

parameter M2[G] for the Gi is chosen such that the continuum is 30%; this choice suppresses

higher twist-corrections, which have not been computed, maximally.
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f‖[ GeV] f⊥[ GeV] a
‖
2 a⊥2 a

‖
1 a⊥1

ρ 0.216(1)(6) 0.160(11) 0.17(7) 0.14(6) − −
ω 0.187(2)(10) 0.139(18) 0.15(12) 0.14(12) − −
K∗ 0.211(7) 0.163(8) 0.16(9) 0.10(8) 0.06(4) 0.04(3)

φ 0.235(5) 0.191(6) 0.23(8) 0.14(7) − −

Table K.1: 1−−-mesons with odd G-parity have vanishing odd Gegenbauer moments. The

scale dependent quantities f⊥, a
‖,⊥
1,2 are evaluated at µ = 1 GeV. The value B(τ → K∗ντ ) =

1.20(7) · 10−2 is used [158] as compared to the PDG value used by the end of 2006 B(τ →
K∗ντ ) = 1.29(5) · 10−2 in [141], which leads to a decay constant which changes f

‖
K∗ from

0.220 GeV to 0.211 GeV whereas all the others remain the same as in [141]; with a numerical

error corrected for f
‖
φ as noted by the authors of [161]. The f⊥ decay constants follow from

the ratios r[X] = f⊥X (2 GeV)/f
‖
X with r[ρ] = 0.687(27), r[K∗] = 0.712(12) and r[φ] = 0.750(8)

in [162]. Further, r[ω] ' r[ρ] is used, in view of a lack of a lattice QCD determination of this

quantity. For the DA parameters the values a
‖
1, a
‖
2(ρ,K∗, φ) from the lattice [159] are averaged

with the sum rule determinations, keeping the relative sum rule uncertainty, which is larger, in
order to account for neglecting higher Gegenbauer moments. The references for the sum rule
values are [163] for the ρ, [164] for the φ and [160] and [165] for the K∗. In view of the lack
of theoretical determinations of parameters for the ω, it is assumed that they have the same

values as for the ρ enlarged uncertainty by a factor of 2.

H s0 M2[G] M2[fH ] mH fH(5.4.1) cond. value mass value

Bs 36(1.5) 9(2) 5.0(5) 5.37 0.162 〈q̄q〉 (−0.24(1))3 mb 4.7(1)

Bq 35(1.5) 9(2) 5.0(5) 5.28 0.142 〈s̄s〉 0.8(1)〈q̄q〉 mc 1.3(1)

Ds 6.7(7) 6(2) 1.5(2) 1.96 0.185 〈q̄Gq〉 (0.8(1))2〈q̄q〉 m̄s 0.094(3)

Dq 6.2(7) 6(2) 1.5(2) 1.86 0.156 〈s̄Gs〉 (0.8(1))2〈s̄s〉

Table K.2: (left) H stands for heavy-light meson and q stands for either a u or d quark. Sum
rule specific values in units of GeV to the appropriate power. fH correspond to the decay
constants obtained from a tree-level sum rule. They should not be compared with the true
value of fH as the latter have substantial radiative corrections in QCD sum rules. (middle)
condensates relevant for the fH sum rule (5.4.1). (right) Quark masses. The tree-level heavy
quark masses are chosen to satisfy mH ' mh+Λ̄ with Λ̄ ' 0.6 GeV approximately. The strange
quark mass in the MS correspond to µMS = 2 GeV. In the the sum (5.4.1) m̄s is scaled up to

µ = µF .
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Non-spectator corrections G(ns)

The corrections which do not connect the gluon of the operator Õ8 with the spectator quark

are depicted in Figure 5.2 (bottom). They have been computed for the inclusive b → sll [139]

and their contribution is proportional to a function F
7(9)
8 (q2/m2

b) times the operator O7(9). The

latter reduces to the standard tensor and vector form factors Ti(fT ) and V,Ai(f+) when taken

between B and V (P ) states.

G
(ns)
i (q2)=

(
−αs(mb)

4π

)(
Qb
−1/3

)(
F

(7)
8 Ti(q

2)− F (9)
8

q2

2mb
Vi(q2)

)
, i = 1..3 ,

G
(ns)
T (q2)=

(
−αs(mb)

4π

)(
Qb
−1/3

)(
F

(7)
8 fT (q2)− F (9)

8

q2

2mb
vT (q2)︸ ︷︷ ︸

−mB+mP
2mb

f+(q2)

)
(L.1)

where F
7(9)
8 are given in [139] in terms of an expansion in powers of q2/m2

c and a logarithm.

The functions Vi and vT are defined as:

〈V (p, η)|s̄γρ(1−γ5)b|B̄(pB)〉 = P ρ1 V1 + P ρ2 V2 + P ρ3 V3 + [i(η∗ · q)qρ]VP
〈P (p)|s̄γρb|B̄(pB)〉 = P ρT vT + qρvS (L.2)

with

VP =
−2mV

q2
A0(q2) V1 =

−V (q2)

mB +mV

V2 =
−A1(q2)

mB −mV
V3 =

(mB +mV

q2
A1(q2)− mB −mV

q2
A2(q2)

)
vs =

m2
B −m2

P

q2
f0(q2) vT =

−(mB +mP )

q2
f+(q2) , (L.3)

where V,Ai, f+, f0, fT , Ti are all standard form factor notations in the literature. Note, as

manifested by limiting the sum from i = 1..3, the f0(A0) component does not contribute to

B → V ll as the qρ vanishes upon contraction with l̄γρl or the photon polarization tensor ε(q).
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A. J. Buras, P. Gambino, M. Gorbahn, S. Jäger and L. Silvestrini, “Universal unitarity tri-

angle and physics beyond the standard model”, Phys. Lett. B 500 (2001) 161 [arXiv:hep-

ph/0007085].

[74] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, “Minimal flavor violation: An

Effective field theory approach,” Nucl. Phys. B645 (2002), 155 [arXiv:hep-ph/0207036];

V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise,“Minimal flavor violation in the

lepton sector,” Nucl. Phys. 728 (2005), 121 [arXiv:hep-ph/0507001].

[75] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, “Enhancement of B(anti-B(d) → µ+µ−)

/ B(anti-B(s) → µ+µ−) in the MSSM with minimal flavor violation and large tan beta”,

Phys. Rev. D 66 (2002) 074021 [arXiv:hep-ph/0204225].

[76] W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi and D. M. Straub, “Anatomy and

Phenomenology of FCNC and CPV Effects in SUSY Theories,” Nucl. Phys. B 830 (2010)

17 [arXiv:hep-ph/0909.1333].



BIBLIOGRAPHY 157

[77] A. J. Buras and J. Girrbach, “BSM models facing the recent LHCb data: A First look”,

Acta Phys. Polon. B 43 (2012) 1427 [arXiv:hep-ph/1204.5064];

D. M. Straub, “Overview of Constraints on New Physics in Rare B Decays”,

arXiv:1205.6094.

[78] S. Antusch and M. Spinrath, “Quark and lepton masses at the GUT scale including SUSY

threshold corrections”, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717].

[79] Y. Yamada, “SUSY and GUT threshold effects in SUSY SU(5) models”, Z. Phys. C 60

(1993) 83.

[80] R. Gatto, G. Sartori and M. Tonin, “Weak Selfmasses, Cabibbo Angle, and Broken SU(2)

x SU(2)”, Phys. Lett. B 28 (1968) 128.

[81] X. G. He and A. Zee, “Minimal modification to the tri-bimaximal neutrino mixing”, Phys.

Lett. B 645 (2007) 427 [arXiv:hep-ph/0607163];

W. Grimus and L. Lavoura, “A Model for trimaximal lepton mixing”, JHEP 0809 (2008)

106 [arXiv:hep-ph/0809.0226]; C. H. Albright, A. Dueck and W. Rodejohann, “Possi-

ble Alternatives to Tri-bimaximal Mixing”, Eur. Phys. J. C 70 (2010) 1099 [arXiv:hep-

ph/1004.2798]; H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, “Neutrino

masses and mixing from S4 flavor twisting”, Phys. Rev. D 83 (2011) 033004 [arXiv:hep-

ph/1010.3805]; Y. Shimizu, M. Tanimoto and A. Watanabe, “Breaking Tri-bimaximal

Mixing and Large θ13”, Prog. Theor. Phys. 126 (2011) 81 [arXiv:hep-ph/1105.2929];

E. Ma and D. Wegman, “Nonzero theta(13) for neutrino mixing in the context of A(4)

symmetry”, Phys. Rev. Lett. 107 (2011) 061803 [arXiv:hep-ph/1106.4269]; X. G. He

and A. Zee, “Minimal Modification to Tri-bimaximal Mixing”, Phys. Rev. D 84 (2011)

053004 [arXiv:hep-ph/1106.4359]; S. F. King and C. Luhn, “Trimaximal neutrino mix-

ing from vacuum alignment in A4 and S4 models”, JHEP 1109 (2011) 042 [arXiv:hep-

ph/1107.5332]; I. K. Cooper, S. F. King and C. Luhn, “A4xSU(5) SUSY GUT of Flavour

with Trimaximal Neutrino Mixing”, JHEP 1206 (2012) 130 [arXiv:hep-ph/1203.1324].

[82] M. C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner, “CP Violation

from Finite Groups”, Nucl. Phys. B 883 (2014) 267 [arXiv:hep-ph/1402.0507].

[83] S. Antusch and V. Maurer, “Running quark and lepton parameters at various scales”,

JHEP 1311 (2013) 115 [arXiv:hep-ph/1306.6879].

[84] S. Antusch and M. Spinrath, “Quark and lepton masses at the GUT scale including SUSY

threshold corrections”, Phys. Rev. D 78 (2008) 075020 [arXiv:hep-ph/0804.0717].

[85] J. A. Casas and S. Dimopoulos, “Stability bounds on flavor violating trilinear soft terms

in the MSSM”, Phys. Lett. B 387 (1996) 107 [arXiv:hep-ph/9606237].

[86] H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, “Radiative

natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass”,

Phys. Rev. D 87 (2013) 11, 115028 [arXiv:hep-ph/1212.2655].

[87] S. Heinemeyer, “MSSM Higgs physics at higher orders”, Int. J. Mod. Phys. A 21 (2006)

2659 [arXiv:hep-ph/0407244].



158 BIBLIOGRAPHY

[88] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, “Prediction of the light

CP-even Higgs-Boson Mass of the MSSM: Towards the ILC Precision”, International

Workshop on Future Linear Colliders (LCWS13) Tokyo, Japan, November 11-15, 2013

[arXiv:hep-ph/1404.0186].

[89] N. Carrasco et al., “D0−D̄0 mixing in the standard model and beyond from Nf =2 twisted

mass QCD”, Phys. Rev. D 90 (2014) 1, 014502 [arXiv:hep-ph/1403.7302].

[90] E. Gabrielli and S. Khalil, “Constraining supersymmetric models from B(d) - anti-B(d)

mixing and the B(d)→ J/ψ K(S) asymmetry”, Phys. Rev. D 67 (2003) 015008 [arXiv:hep-

ph/0207288].

[91] A. Behring, C. Gross, G. Hiller and S. Schacht, “Squark Flavor Implications from B →
K* l+ l-”, JHEP 1208 (2012) 152 [arXiv:hep-ph/1205.1500].

[92] A. Crivellin and U. Nierste, “Supersymmetric renormalisation of the CKM matrix and

new constraints on the squark mass matrices”, Phys. Rev. D 79 (2009) 035018 [arXiv:hep-

ph/0810.1613].

[93] A. Masiero, S. K. Vempati and O. Vives, “Flavour physics and grand unification”, Particle

physics beyond the standard model. Proceedings, Summer School on Theoretical Physics,

84th Session, Les Houches, France, August 1-26, 2005 [arXiv:hep-ph/0711.2903].

[94] M. Arana-Catania, S. Heinemeyer and M. J. Herrero, “Updated Constraints on General

Squark Flavor Mixing”, Phys. Rev. D 90 (2014) 7, 075003 [arXiv:hep-ph/1405.6960].

[95] M. Arana-Catania, S. Heinemeyer and M. J. Herrero, “New Constraints on General Slep-

ton Flavor Mixing”, Phys. Rev. D 88 (2013) 1, 015026 [arXiv:hep-ph/1304.2783].

[96] J. Baron et al. [ACME Collaboration], “Order of Magnitude Smaller Limit on the Electric

Dipole Moment of the Electron,” Science 343 (2014) 269 [arXiv:1310.753].

[97] I. Masina and C. A. Savoy, “Sleptonarium: Constraints on the CP and flavor pattern of

scalar lepton masses”, Nucl. Phys. B 661 (2003) 365 [arXiv:hep-ph/0211283].

[98] J. Hisano, D. Kobayashi, W. Kuramoto and T. Kuwahara, “Nucleon Electric Dipole

Moments in High-Scale Supersymmetric Models”, JHEP 1511 (2015) 085 [arXiv:hep-

ph/1507.05836].

[99] J. Adam et al. [MEG Collaboration], “New constraint on the existence of the µ+ → e+γ

decay”, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:hep-ex/1303.0754].

[100] A. M. Baldini et al., “MEG Upgrade Proposal” (2013) [arXiv:1301.7225].

[101] Z. Ligeti, M. Papucci and G. Perez, “Implications of the measurement of the B0
s − B̄0

s

mass difference”, Phys. Rev. Lett. 97 (2006) 101801 [arXiv:hep-ph/0604112].

[102] A. J. Buras and J. Girrbach, “Towards the Identification of New Physics through

Quark Flavour Violating Processes”, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:hep-

ph,1306.3775].



BIBLIOGRAPHY 159

[103] T. Inami and C. S. Lim, “Effects of Superheavy Quarks and Leptons in Low-Energy Weak

Processes k(L) —¿ mu anti-mu, K+ —¿ pi+ Neutrino anti-neutrino and K0 ¡—¿ anti-K0,”

Prog. Theor. Phys. 65 (1981) 297 [Prog. Theor. Phys. 65 (1981) 1772];

G. Buchalla, A. J. Buras and M. E. Lautenbacher, “Weak decays beyond leading loga-

rithms”, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380].

[104] E. Golowich, J. Hewett, S. Pakvasa, A. A. Petrov and G. K. Yeghiyan, “Relating Bs
Mixing and Bs → µ+µ− with New Physics”, Phys. Rev. D 83 (2011) 114017 [arXiv:hep-

ph/1102.0009].

[105] J. Laiho, E. Lunghi and R. S. Van de Water, “Lattice QCD inputs to the CKM unitarity

triangle analysis”, Phys. Rev. D 81 (2010) 034503 [arXiv:hep-ph/0910.2928].

[106] S. Aoki et al., “Review of lattice results concerning low-energy particle physics”, Eur.

Phys. J. C 74 (2014) 2890 [arXiv:hep-lat/1310.8555].

[107] Y. Amhis et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], “Averages of b-

hadron, c-hadron, and τ -lepton properties as of summer 2014,” [arXiv:hep-ex/1412.7515].

[108] M. Artuso, G. Borissov and A. Lenz, “CP Violation in the B0
s system”, [arXiv:hep-

ph/1511.09466].

[109] T. Aushev et al., “Physics at Super B Factory”, [arXiv:hep-ex/1002.5012].

[110] R. Aaij et al. [LHCb Collaboration], “Measurement of CP violation in B0 → J/ψK0
S

decays”, Phys. Rev. Lett. 115 (2015) 3, 031601 [arXiv:hep-ex/1503.07089].

[111] J. Charles et al., “Current status of the Standard Model CKM fit and constraints on

∆F = 2 New Physics”, Phys. Rev. D 91 (2015) 7, 073007 [arXiv:hep-ph/1501.05013].

[112] J. Yu, “KL-KS mass difference from Lattice QCD”, PoS LATTICE 2013 (2014) 398

[arXiv:hep-lat/1312.0306].

[113] K. A. Olive et al. [Particle Data Group Collaboration], “Review of Particle Physics”, Chin.

Phys. C 38 (2014) 090001.

[114] A. J. Buras and D. Guadagnoli, “Correlations among new CP violating effects in ∆ F =

2 observables”, Phys. Rev. D 78 (2008) 033005 [arXiv:hep-ph/0805.3887].

[115] J. J. A. Bailey et al. [SWME Collaboration], “Standard Model evaluation of εK using

lattice QCD inputs for B̂K and Vcb”, Phys. Rev. D 92 (2015) 3, 034510 [arXiv:hep-

lat/1503.05388].

[116] A. Bevan et al., “Standard Model updates and new physics analysis with the Unitarity

Triangle fit”, Nucl. Phys. Proc. Suppl. 241-242 (2013) 89.

[117] M. Misiak et al., “Updated NNLO QCD predictions for the weak radiative B-meson

decays,” Phys. Rev. Lett. 114 (2015) 221801 [arXiv:hep-ph/1503.01789].

[118] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, “Bs,d →
l+l− in the Standard Model with Reduced Theoretical Uncertainty”, Phys. Rev. Lett. 112

(2014) 101801 [arXiv:hep-ph/1311.0903].



160 BIBLIOGRAPHY

[119] V. Khachatryan et al. [CMS and LHCb Collaborations], “Observation of the rare B0
s →

µ+µ− decay from the combined analysis of CMS and LHCb data”, Nature 522 (2015) 68

[arXiv:hep-ex/1411.4413].

[120] A. Buras, “Flavour Expedition to the Zeptouniverse”, PoS FWNP (2015) 003 [arXiv:hep-

ph/1505.00618].

[121] J. Hisano and Y. Shimizu, “Hadronic EDMs induced by the strangeness and constraints

on supersymmetric CP phases”, Phys. Rev. D 70 (2004) 093001 [arXiv:hep-ph/0406091].

[122] J. Hisano, M. Nagai and P. Paradisi, “Flavor effects on the electric dipole moments in

supersymmetric theories: A beyond leading order analysis”, Phys. Rev. D 80 (2009)

095014 [arXiv:0812.4283].

[123] G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, “QCD corrections to the elec-

tric dipole moment of the neutron in the MSSM”, JHEP 0511 (2005) 044 [arXiv:hep-

ph/0510137].

[124] W. Dekens and J. de Vries, “Renormalization Group Running of Dimension-Six Sources of

Parity and Time-Reversal Violation2, JHEP 1305 (2013) 149 [arXiv:hep-ph/1303.3156];

V. Khachatryan et al. [CMS Collaboration], “Measurement of the inclusive 3-jet produc-

tion differential cross section in protonproton collisions at 7 TeV and determination of the

strong coupling constant in the TeV range”, Eur. Phys. J. C 75 (2015) 5, 186 [arXiv:hep-

ex/1412.1633];

G. Dissertori, “The Determination of the Strong Coupling Constant”, [arXiv:hep-

ex/1506.05407].

[125] C. A. Baker et al., “An Improved experimental limit on the electric dipole moment of the

neutron”, Phys. Rev. Lett. 97 (2006) 131801 [arXiv:hep-ex/0602020].

[126] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and E. N. Fort-

son, “Improved Limit on the Permanent Electric Dipole Moment of Hg-199”, Phys. Rev.

Lett. 102 (2009) 101601.

[127] Y. Singh and B. K. Sahoo, “Rigorous limits for hadronic and semi-leptonic CP -violating

coupling constants from the electric dipole moment of 199Hg”, Phys. Rev. A 91 (2015) 3,

030501 [arXiv:1408.4337].

[128] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, “Electric Dipole Moments of Nucleons,

Nuclei, and Atoms: The Standard Model and Beyond”, Prog. Part. Nucl. Phys. 71 (2013)

21 [arXiv:nucl-th/1303.2371].

[129] M. Pospelov, “Best values for the CP odd meson nucleon couplings from supersymmetry”,

Phys. Lett. B 530 (2002) 123 [arXiv:hep-ph/0109044].

[130] S. W. Bosch and G. Buchalla, “The Radiative decays B → V γ at next-to-leading order

in QCD,” Nucl. Phys. B 621 (2002) 459 [arXiv:hep-ph/0106081].

[131] J. Lyon and R. Zwicky, “Anomalously largeO8 and long-distance chirality from ACP[D0 →
(ρ0, ω)γ](t)”, [arXiv:hep-ph/1210.6546].



BIBLIOGRAPHY 161

[132] A. J. Buras, “Weak Hamiltonian, CP violation and rare decays”, Proceedings, Sum-

mer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les

Houches, France, July 28-September 5, 1997. Pt. 1, 2 [arXiv:hep-ph/9806471].

[133] P. Ball and R. Zwicky, “B(D,S) → ρ, ω,K∗, φ decay form-factors from light-cone sum

rules revisited”, Phys. Rev. D 71 (2005) 014029 [arXiv:hep-ph/0412079].

[134] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, “QCD And Resonance Physics. Sum

Rules,” Nucl. Phys. B 147 (1979) 385.

[135] S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations,” Cambridge, UK: Univ.

Pr. (1995) 609 p

[136] G. Källén, “On the definition of the Renormalization Constants in Quantum Electrody-

namics,” Helv. Phys. Acta 25 (1952) 417.

H. Lehmann, “On the Properties of propagation functions and renormalization contants

of quantized fields,” Nuovo Cim. 11 (1954) 342.

[137] R. J. Eden P. V. Landshoff D. I. Olive and J. C. Polkinghorne “The Analytic S-Matrix,“

Cambridge: Cambridge University Press, 1966.

[138] I. T. Todorov “Analytic Properties of Feynman Diagrams in Quantum Field Theory,“

Pergamon (1971)

[139] H. H. Asatrian, H. M. Asatrian, C. Greub and M. Walker, “Two loop virtual corrections

to B → X(s) lepton+ lepton- in the standard model,” Phys. Lett. B 507 (2001) 162

[hep-ph/0103087].

[140] P. Ball and R. Zwicky, “Time-dependent CP Asymmetry in B → K* gamma as a (Quasi)

Null Test of the Standard Model,” Phys. Lett. B 642 (2006) 478 [hep-ph/0609037].

[141] P. Ball, G. W. Jones and R. Zwicky, “B → V gamma beyond QCD factorisation,” Phys.

Rev. D 75 (2007) 054004 [hep-ph/0612081].

[142] L. Maiani and M. Testa, “Final state interactions from Euclidean correlation functions,”

Phys. Lett. B 245 (1990) 585.

[143] A. Khodjamirian, “B → pi pi decay in QCD,” Nucl. Phys. B 605 (2001) 558 [arXiv:hep-

ph/0012271].

[144] A. V. Smilga and M. A. Shifman, “Procedure Of Unitary Borelization In Three Point

Sum Rules Of Qcd. (in Russian),” Sov. J. Nucl. Phys. 37 (1983) 958 [Yad. Fiz. 37 (1983)

1613].

B. L. Ioffe and A. V. Smilga, “Meson Widths and Form-Factors at Intermediate Momen-

tum Transfer in Nonperturbative QCD,” Nucl. Phys. B 216 (1983) 373.

[145] R. Mertig, M. Bohm, A. Denner, “FEYNCALC: Computer algebraic calculation of Feyn-

man amplitudes,” Comput. Phys. Commun. 64 (1991) 345-359.

[146] G. Passarino, M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+

mu- in the Weinberg Model,” Nucl. Phys. B160 (1979) 151.



162 BIBLIOGRAPHY

[147] E. Bagan, P. Ball and V. M. Braun, “Radiative corrections to the decay B → πeν and

the heavy quark limit,” Phys. Lett. B 417 (1998) 154 [hep-ph/9709243].

[148] T. M. Aliev and V. L. Eletsky, “On Leptonic Decay Constants of Pseudoscalar D and B

Mesons,” Sov. J. Nucl. Phys. 38 (1983) 936 [Yad. Fiz. 38 (1983) 1537].

[149] S. J. Lee, M. Neubert and G. Paz, “Enhanced Non-local Power Corrections to the anti-B

→ X(s) gamma Decay Rate,” Phys. Rev. D 75 (2007) 114005 [hep-ph/0609224].

[150] Y. Amhis et al. [Heavy Flavor Averaging Group Collaboration], “Averages of B-Hadron,

C-Hadron, and tau-lepton properties as of early 2012,” arXiv:1207.1158 [hep-ex].

[151] J. Lyon and R. Zwicky, “Isospin asymmetries in B → (K∗, ρ)γ/l+l− and B → Kl+l− in

and beyond the Standard Model,” arXiv:1305.4797 [hep-ph].

[152] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, “Heavy to light form-

factors in the heavy mass to large energy limit of QCD,” Phys. Rev. D 60 (1999) 014001

[hep-ph/9812358].

[153] V. M. Braun, A. Khodjamirian and M. Maul, “Pion form-factor in QCD at intermediate

momentum transfers,” Phys. Rev. D 61 (2000) 073004 [hep-ph/9907495].

[154] P. Ball and R. Zwicky, “B/(d,s) –¿ rho, omega, K*, Phi decay form factors from light-cone

sum rules revisited,” Phys. Rev. D 71 (2005) 014029 [arXiv:hep-ph/0412079].

[155] Y. -L. Wu, M. Zhong and Y. -B. Zuo, “B(s), D(s) → pi, K, eta, rho, K*, omega, phi

Transition Form Factors and Decay Rates with Extraction of the CKM parameters |V (ub)|,
|V (cs)|, |V (cd)|,” Int. J. Mod. Phys. A 21 (2006) 6125 [arXiv:hep-ph/0604007].

[156] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, “QCD factorisation for exclu-

sive, nonleptonic B meson decays: General arguments and the case of heavy light final

states,” Nucl. Phys. B 591 (2000) 313 [arXiv:hep-ph/0006124].

[157] T. Muta, “Foundations of quantum chromodynamics. Second edition,” World Sci. Lect.

Notes Phys. 57 (1998) 1.

[158] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86 (2012) 010001.

[159] R. Arthur, P. A. Boyle, D. Brommel, M. A. Donnellan, J. M. Flynn, A. Juttner, T. D. Rae

and C. T. C. Sachrajda, “Lattice Results for Low Moments of Light Meson Distribution

Amplitudes,” Phys. Rev. D 83 (2011) 074505 [arXiv:hep-lat/1011.5906].

[160] P. Ball and R. Zwicky, “SU(3) breaking of leading-twist K and K* distribution amplitudes:

A Reprise,” Phys. Lett. B 633 (2006) 289 [arXiv:hep-ph/0510338].

[161] M. Jung, X. -Q. Li and A. Pich, “Exclusive radiative B-meson decays within the aligned

two-Higgs-doublet model,” [arXiv:hep-ph/1208.1251].

[162] C. Allton et al. [RBC-UKQCD Collaboration], “Physical Results from 2+1 Flavor Do-

main Wall QCD and SU(2) Chiral Perturbation Theory,” Phys. Rev. D 78 (2008) 114509

[arXiv:hep-lat/0804.0473].



BIBLIOGRAPHY 163

[163] P. Ball and V. M. Braun, “The Rho meson light cone distribution amplitudes of leading

twist revisited,” Phys. Rev. D 54 (1996) 2182 [arXiv:hep-ph/9602323].

[164] P. Ball and G. W. Jones, “Twist-3 distribution amplitudes of K* and phi mesons,” JHEP

0703 (2007) 069 [hep-ph/0702100 [HEP-PH]].

[165] P. Ball and R. Zwicky, “|Vtd/Vts| from B → V γ,” JHEP 0604 (2006) 046 [hep-

ph/0603232].

[166] C. Fronsdal, K. Mahanthappa and R. E. Norton, “Integral Representations For Vertex

Functions,” Physical Review Vol 127 No 5 (1962) p1847-1850

[167] G. Källén and A. S. Wightman: “The Analytic Properties of the Vacuum Expectation

Value of a Product of Three Scalar Local Fields.” Mat. Fys. Skr. Dan. Vid. Selsk. 1, No.

6 (1958).

[168] B.Anderson “Dispersion Relations for the Vertex Function from Local Commutativity.”

Commun. math. Phys. 25, 283–307 (1972).

[169] T. Hahn, M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and

D-dimensions,” Comput. Phys. Commun. 118 (1999) 153-165. [hep-ph/9807565].

[170] S. Mandelstam, “Unitarity Condition Below Physical Thresholds in the Normal and

Anomalous Cases,” Phys. Rev. Lett. 4 (1960) 84.

[171] F. Feruglio, C. Hagedorn and R. Ziegler, “Lepton Mixing Parameters from Discrete and CP

Symmetries,” JHEP 1307 (2013) 027 [arXiv:hep-ph/1211.5560]; M. Holthausen, M. Lind-

ner and M. A. Schmidt, “CP and Discrete Flavour Symmetries,” JHEP 1304 (2013) 122

[arXiv:hep-ph/1211.6953].

[172] W. Grimus and M. N. Rebelo, “Automorphisms in gauge theories and the definition of

CP and P,” Phys. Rept. 281 (1997) 239 [arXiv:hep-ph/9506272].


