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Abstract

Compressibility effects are present in many practical turbulent flows, ranging from shock-

wave/boundary-layer interactions on the wings of aircraft operating in the transonic flight

regime to supersonic and hypersonic engine intake flows. Besides shock wave interactions,

compressible flows have additional dilatational effects and, due to the finite sound speed, pres-

sure fluctuations are localized and modified relative to incompressible turbulent flows. Such

changes can be highly significant, for example the growth rates of mixing layers and turbulent

spots are reduced by factors of more than three at high Mach number. The present contribu-

tion contains a combination of review and original material. We first review some of the basic

effects of compressibility on canonical turbulent flows and attempt to rationalise the differing

effects of Mach number in different flows using a flow instability concept. We then turn our at-

tention to shock-wave/boundary-layer interactions, reviewing recent progress for cases where

strong interactions lead to separated flow zones and where a simplified spanwise-homogeneous

problem is amenable to numerical simulation. This has led to improved understanding, in

particular of the origin of low-frequency behaviour of the shock wave and shown how this

is coupled to the separation bubble. Finally, we consider a class of problems including side

walls that is becoming amenable to simulation. Direct effects of shock waves, due to their

penetration into the outer part of the boundary layer, are observed, as well as indirect effects

due to the high convective Mach number of the shock-induced separation zone. It is noted in

particular how shock-induced turning of the detached shear layer results in strong localized
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damping of turbulence kinetic energy.

1 Introduction

While shock-wave interactions with turbulent boundary layers were known since basic exper-

iments conducted in the 1940s (Dolling, 2001), it became apparent in subsequent work that

more subtle effects of compressibility were also present, for example in the experimental data

on mixing layers collated by Birch & Eggers (1973) that showed a large reduction in growth

rate as the Mach number increased. Indeed this was one of the motivations for the Brown &

Roshko (1974) work on mixing layers that, besides stimulating work on organised structures

in turbulence, also demonstrated that the reductions in growth rate could not be attributed

solely to the effects of variable density. However other flows, such as attached turbulent

boundary layers, did not show strong effects of compressibility, with Morkovin’s hypothesis

(Bradshaw, 1977) of weak compressibility applying up to Mach 5. Some of the apparent

contradictions have been resolved in subsequent research, while some aspects, including tur-

bulence and sub-grid modelling for compressible flows, are unresolved. A number of reviews

of compressible turbulence and shock-wave/boundary-layer interaction (SWBLI) have been

published over the last decade, including Smits & Dussauge (2006), Gatski & Bonnet (2009),

Babinsky & Harvey (2011) and Clemens & Narayanaswamy (2014). Recent progress on un-

derstanding low-frequency unsteadiness of SWBLI interactions, along with heat transfer and

flow control, has been reviewed by Gaitonde (2015).

In this contribution we will first consider (in section 2) the main canonical flow problems

and then discuss flow stability arguments that, in connection to turbulence production at the

largest eddy scales, can help to explain some of the differences seen between different flows

such as the mixing layer and wall boundary layer. We then review (in section 3) more practical

examples of SWBLI including fully 3D flow where the need to incorporate additional physics

is observed in the form of streamline curvature effects.

Much of the recent progress has come from improvements in both experimental flow di-

agnostics and in the capabilities of numerical simulations based on eddy-resolving techniques

such as direct numerical simulation (DNS) and large-eddy simulation (LES). Over the last 25

years experiments have been revolutionised by the application of particle image velocimetry

(PIV) and related techniques such as stereo PIV. Initially developed for low-speed flows, the

techniques are now being applied to high-speed SWBLI. Examples of the emerging capabilities

of experiments are seen in recent studies of SWBLI by Souverein et al. (2010) for turbulent

2



interactions and Giepman et al. (2015) for initially laminar interactions. On the numerical

side progress has been even more striking, mainly enabled by improvements in computer

hardware, but also with careful attention to algorithms, so this is briefly reviewed first, before

proceeding to the physical problems.

1.1 Progress in numerical simulations of SWBLI

In this section we focus only on the techniques of DNS and LES that can provide reliable

access to time-dependent three-dimensional flow fields during SWBLI. A pioneering study was

by Adams (1998), who considered ramp flow at Mach 3, including a fully turbulent inflow

based on a precursor simulation of a temporally-developing boundary layer. The numerical

approach used compact finite differences (6th order) and an essentially non-oscillatory (ENO)

scheme for shock capturing. Adams (2000) used the methodology to resolve a small separation

bubble in the ramp corner, the high-frequency components of shock oscillation and the strong

amplification of turbulence energy in the interaction region.

A fundamental numerical issue in SWBLI is the requirement both to capture shock waves

and resolve turbulence to an acceptable level. Shock-capturing schemes are dissipative by

nature and, as a by-product, damp turbulence such that acceptable accuracy may only be

achieved with extremely fine grids. A pragmatic approach is usually adopted, as suggested for

example by the work of Yee et al. (1999), which showed the benefits of additional shock de-

tectors that serve to restrict the additional dissipation to the immediate vicinity of the shock

waves. Even with such localisation, no benefit was seen in moving from fourth to higher order

of accuracy. Given the additional inter-processor communication costs of compact schemes,

limiting the order of accuracy to fourth order and using non-compact schemes has led to

efficient algorithms that scale well to large core counts on massively parallel architectures.

Additional ad hoc limiters such as that of Ducros et al. (1999) serve to restrict the dissi-

pative shock-capturing schemes within boundary layers. This is potentially an issue where

shock waves penetrate boundary layers, an example of which will be seen later in this paper.

An unwelcome feature of these additional limiters is the appearance of additional numerical

parameters that one might be tempted to tune for each simulation. However, this is not

advisable and a better approach is to fix all the parameters for model problems and then

numerical issues, when they appear, can usually be attributed to a lack of grid resolution.

Other algorithmic developments over the last 20 years have led to more stable schemes for

high Mach number, a number of which are compared by Johnsen et al. (2010). Examples of the
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algorithms used in SWBLI applications include the entropy splitting appraoch fromGerritsen

& Olsson (1996) that was applied to turbulence simulation in Sandham et al. (2002), and

skew-symmetric formulations, reviewed by Pirozzoli (2011). The idea is to ensure that some

energy-like norm of the flow solution is conserved, although typically this is only provable for

simplified forms of the equations. Other stabilising features include treatment of odd-even

decoupling, which would otherwise lead to grid-to-grid point oscillations and explicit filtering

that is often incorporated in place of the de-aliasing approach that would commonly be applied

in spectral simulations of incompressible flows. Again, caution is needed, since filtering can

lead to smooth solutions, giving the impression that a flow is fully resolved. It may be

better in many applications to have a numerical method that leads to grid-scale oscillations

when the grid is inadequate, since then the problem is apparent and in principle fixable

with a finer grid, even though this comes with additional computational cost. Recent works

commonly use shock capturing from one of the family of weighted ENO (WENO) schemes,

but are computationally expensive (Pirozzoli, 2011) and Johnsen et al. (2010) caution that

grid refinement studies are unavoidable for such schemes.

Large-eddy simulation is problematic for compressible flows due to the large number of

sub-grid terms that may need to be modelled, as discussed in Garnier et al. (2009). Vreman

(1995) recognised the problem and overcame it to some extent by proposing dynamic models

that do not require any particular physical insight into the nature of the various terms. On

the other hand, the errors due to the neglect of compressibility effects may not so serious

for LES, since most of the strong compressibility is expected to reside in the larger scales

that are resolved on the grid. The majority of examples of LES for high-speed flows use

sub-grid models that have been converted from low speed flows in a straightforward manner

by including density variations. Sub-grid heat conduction is usually treated with a constant

turbulent Prandtl number. A big variable in LES is the size of the grid relative to what would

be required for a DNS. For flows near wall a common approach is to resolve the flow down

to the structures of the viscous sublayer, which means that grids are typically within a factor

of 2 to 4 (in each direction) of the grids required for DNS. In this situation relatively little

energy is carried in the subgrid model and errors to the omission of compressibility terms

will anyway be small. Nevertheless, shocks and eddy shocklets have spectral content at the

smallest scales and this is not generally taken into account in the models.

A recent research direction in numerical approaches to turbulence and shock waves has

been to avoid sub-grid models entirely by adopting numerical dissipation from the basic nu-

merical algorithm. At its crudest this approach involves turning off the subgrid modelling and
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using the shock-capturing method as a sub-grid treatment, essentially providing sufficient dis-

sipation to avoid a pile-up of energy in the small scales of turbulence. More elegant approaches

involve adapting the characteristics of the numerical scheme to represent the sub-grid turbu-

lence, a recent example of which is given by Hickel et al. (2014), where a compression ramp

flow was computed using a numerical method that simultaneously captured shock waves and

was consistent with known properties of incompressible turbulence. In a comparison with

a dynamic Smagorinsky calculation for a shock-turbulence interaction problem, equivalently

good results were obtained. An additional aesthetic advantage of such methods is the lack of

tunable parameters in the algorithm.

2 Canonical Flows

In this section we discuss some results for two simple flows that exhibit strong compressibil-

ity effects, namely mixing layers and turbulent spots, and contrast this behaviour with zero

pressure gradient boundary layers which show minimal compressibility (as opposed to mean

density) effects up to free stream Mach numbers of around 5. In the final subsection we ratio-

nalise this behaviour by considering flow instabilities and extrapolate the results to boundary

layers with adverse pressure gradients, where true compressibility effect are expected for much

lower free stream Mach numbers.

2.1 Mixing layers

The most striking effect of compressibility on turbulence is the reduction in growth rate of the

compressible turbulent mixing layer. Experiments by Papamoschou & Roshko (1988) showed

how a convective Mach number concept, together with a suitable normalisation of mixing

layer growth rate with its incompressible value, could collapse data over a wide range of Mach

numbers and density ratios. For free-streams with equal ratio of specific heats, the convective

Mach number is given by Mc = (U1 −U2)/(a1 + a2), where U is the velocity and a the sound

speed, with subscripts 1 and 2 denoting the fast and slow speed streams respectively. Mc can

be interpreted as the free-stream Mach number seen by an eddy convecting downstream at a

velocity of Uc = (a2U1 + a1U2)/(a1 + a2). The most comprehensive attempt to collapse the

experimental data is in Slessor et al. (1998), who used a modified version of the convective

Mach number to get a best fit. For two parallel streams with equal ratio of specific heats and

equal free stream temperatures the resulting curve is shown in figure 1, in the form of a plot of

the relative growth rate Φ (the mixing layer spreading rate under compressible flow conditions
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Figure 1: Relative growth rate Φ as a function of convective Mach number Mc, showing
results from linear stability theory (LST) compared with the empirical fits to experimental
data discussed in Slessor et al. (1998).

divided by the spreading rate in incompressible flow for the same velocity and density ratio)

against the convective Mach number Mc. The growth rate of the turbulent wedge is seen to

be reduced by almost a factor of three as the convective Mach number is raised to 1.0. Despite

a considerable spread in the experimental data, the convective Mach number concept appears

to be well supported by experimental data. Figure 1 also shows a curve from linear stability

theory (LST), showing the effect of Mach number on the temporal growth rate (taking the

maximum over all streamwise and spanwise wavenumber combinations). We shall return

later to the observation that the linear theory follows the empirical fits quite closely, at least

considering the scatter of the experimental data.

An explanation for the reduction in growth rate has been sought from the Reynolds stress

transport equations. Early suspicions fell on the additional terms in these equations that

are not present in incompressible flows. However, Vreman et al. (1996) showed that the

dilatation dissipation and pressure dilatation terms remained small even as the growth rate

reduced significantly due to compressibility. It was shown instead how the growth rate falls

in proportion to the production and that this in turn was caused by reductions in pressure

strain terms in the Reynolds stress equations. Thereafter, explanations differ as to the root

cause. Vreman et al. (1996) considered a model compressible vortex, showing how pressure

fluctuations naturally reduced in compressible flows. A model based on this idea, together

with the concept of sonic-limited eddies originally proposed by Breidenthal (1992), was shown

to capture the growth rate reduction. A different perspective was offered by Pantano & Sarkar
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(2002), who considered the effect of reduced communication due to the finite sound speed.

The state of turbulence modelling for compressible flows is discussed in Wilcox (2006),

which despite being ten years old still represents the state of the art. Wilcox describes a

number of fixes to low-speed models to account for both the rapid change of mixing layer

growth rate with Mach number and the relative insensitivity of the boundary layer to Mach

number. These fixes are purely empirical and the lack of progress in modelling has been a

disappointment. One approach was based on dilatation dissipation, for example in Sarkar

et al. (1991), which considered the additional dissipation due to eddy shocklets. Some ad

hoc attempts have since been made to damp pressure strain terms with Mach number, as

reviewed by Yoder et al. (2015). However, the modelling of compressibility based on the

physical understanding gained from DNS has not so far been translated into practical models

the can be implemented in commercial Computational Fluid Dynamics (CFD) codes and, as

such, results from such codes must be treated with extreme caution. With further advances

in experimental diagnostics and DNS it is now possible (Barre & Bonnet, 2015) to develop

reliable kinetic energy budgets in spatially-developing mixing layers at Mc = 1, providing for

the first time the complete databases needed to reappraise the modelling issues.

2.2 Boundary layers

It is well known that compressible wall boundary layers are mainly affected by density effects,

rather than compressibility, for free stream Mach numbers M∞ ≤ 5 (Bradshaw, 1977). The

standard way to scale density effects out of the mean profile is with the van Driest transfor-

mation, given by

u+vD =

∫ u+

0

(
ρ

ρw

)1/2

du+ (1)

The transformed profiles have been observed to provide a useful (though not exact) collapse

of high speed boundary layer profiles back onto incompressible cases, as shown for example

in Duan & Martin (2011). The transform has also been used to extend turbulence inflow

generation methods to fully compressible flow, for example in Touber & Sandham (2009).

Early progress on understanding the effect of compressibility on boundary layer turbulence

was reviewed by Bradshaw (1977). He expressed the findings as a number of hypotheses

and analogies between energy and momentum transport. Morkovin’s hypothesis covers an

expectation that the turbulence shear stress and streamwise normal stress are not strongly

dependent on Mach number, whereas the strong Reynolds analogy uses a linearisation of the

governing equation to connect thermodynamic and velocity fluctuations (see Gatski & Bonnet
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(2009) for a complete discussion). Evidence for the applicability or otherwise of these relations

is provided by DNS studies, including Maeder et al. (2001) and Pirozzoli et al. (2004). In

particular, Huang et al. (1995) and Duan & Martin (2011) show how the analogies can be

adapted for high Mach number and high enthalpy flows to provide reasonable representations

of the turbulence in attached wall flows.

Other insights have helped to understand the different effects of Mach number on different

flows. In particular, the gradient Mach number Mg = Sl/a (where S is the mean shear rate, l

is an integral lengthscale of the turbulence and a is the sound speed) was exploited by Sarkar

(1995) to compare mixing layers with boundary layers, since it was found that for equivalent

flow Mach numbers the gradient Mach number was substantially higher in mixing layers.

This study also first identified the role of compressibility in modifying the production rate of

turbulence.

2.3 Turbulent spots

Given the relative insensitivity of zero pressure gradient boundary layers to the free-stream

Mach number, it is surprising that the lateral growth rate of turbulent spots (regions of a

turbulence within an otherwise laminar boundary layer) is strongly affected by compressibility.

Figure 2(a) shows an example of a turbulent spot simulated at Mach 3 with an adiabatic wall

boundary condition (Redford et al., 2012). The spot spreads approximately linearly as it

moves downstream, with a half angle defined relative to an artifical origin upstream, which

needn’t be the spot inception point. A collection of experimental data by Fischer (1972) shows

a reduction in spreading angle by a factor of three at M∞ = 5, compared with incompressible

flow (where the spreading half angle is about 10◦). In the years since the experimental data

was published, it has become possible to carry out numerical simulations of some of the cases,

with examples reported in Krishnan & Sandham (2006) and Jocksch & Kleiser (2008). It is

interesting to note that there are varying definitions of spot width and numerical simulations

show similar scatter to the experiments, as shown in figure 2(b). Calculations by Redford

et al. (2012) show the expected reductions in growth rate and how the wall thermal condition

is of lesser importance than the Mach number. Cases with cold walls (wall temperature equal

to the free stream temperature) spread more slowly than spots in flows where the walls are

at the adiabatic temperature, but only by 20-30%, whereas the spreading rate at M∞ = 6 is

already reduced by a factor of four compared to incompressible flow.

Why should compressibility be so important to the spreading of turbulent spots, but
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Figure 2: Structure and spreading rate of turbulent spots (Redford et al., 2012): (a) Turbulent
spot at Mach 3 with an adiabatic wall condition. Red shows the second invariant, green the
high streamwise momentum of the calmed region and blue the low streamwise momentum
caused by lift-up at the spot wing tips. (b) Variation of the spreading angle of the half-width
of turbulent spots as a function of free-stream Mach number. The shaded area represents the
spread of the experimental data from Fischer (1972), while the symbols show DNS results
from Jocksch & Kleiser (2008) (+), Krishnan & Sandham (2006) (open symbols) and Redford
et al. (2012) (filled symbols, red for hot wall conditions and blue for cold-wall conditions).

play only a minor role in the fully developed turbulent boundary layer? To explain this,

attention has focused on the wing-tip region where the boundary between turbulent and

laminar flow provides a strong lateral velocity gradient that can drive the spot growth. Gad-

El-Hak et al. (1981) noted that the turbulence can spread by two mechanisms, either by

mean convection outwards from the spot centre, or by destabilisation of the surrounding

boundary layer. Once fluid has become turbulent it can be thought of as being convected at

typical speeds associated with structures within the turbulent flow. Structures towards the

edge of the boundary convect at near the free stream speed, while those closest to the wall

(the near wall streaks and buffer layer structures) convect at speeds of 40-50% of the free

stream, dependent on Reynolds number. This leads to a natural streamwise spreading of the
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newly-turbulent flow that, together with the lateral spreading, gives the classical arrow-head

structure of spots. Close to the wall at the rear of the spot the turbulent flow (with high

skin friction) merges back into a laminar boundary layer (with lower skin friction). In this

region there is a large positive ∂u/∂x and for mass conservation along the spot centreline

there must be a negative ∂v/∂y, leading to an inrush of high momentum fluid behind the

spot. This produces a fuller velocity profile behind the turbulent region that is stable and

known as the calmed region. More complicated explanations of the formation of the calmed

region can be found in the literature, for example Brinkerhoff & Yaras (2014), but the simple

explanation given here shows the basic phenomenon. The turbulent structure is changed by

compressibility, with examples of turbulent spots shown in Redford et al. (2012). Additional

structures related to the second (Mack) modes of instability are also observed underneath

the spots (Krishnan & Sandham, 2006). After being first observed in DNS, these structures

have now also been observed in laboratory experiments by Casper et al. (2014). With respect

to the part of the growth mechanism that was affected by compressibility, Redford et al.

(2012) showed how it was the destabilisation of the surrounding boundary layer (Gad-El-Hak’s

second mechanism) that was affected by Mach number, with a much slower rate of generation

of new structures at Mach 6 compared to Mach 3 in their simulations. The relevance of an

instability/destabilisation mechanism for spot growth is something that we will follow up at

the end of the next subsection.

2.4 Synthesis of canonical flow results in terms of a θ −Mc stability map

There have been a number of studies that make a connection between local stability analysis

and turbulent free shear layer growth rates, of which Monkewitz & Huerre (1982) is an early

example. In particular the spatial growth rate of small amplitude disturbances is found to be

approximately proportional to the growth rate of a turbulent mixing layer. The rationale for

this, that the growth and decay of long-wavelength structures (more than ten times the mixing

layer vorticity thickness) controls the production of turbulence at large scales, was tested

experimentally by Gaster et al. (1985), who showed that upstream forcing of instability waves

could be quantitatively compared to the downstream behaviour of large structures in mixing

layers. This was elaborated by Morris et al. (1990), who showed how the proportionality

between linear spatial growth rate and mixing layer growth rate could be derived from a

simplified model. Further evidence for the continued importance of linear modes has emerged

in the study of jet noise; for example Suzuki & Colonius (2006) measured disturbances in the

potential flow just outside a circular jet, with clear detection of the linear eigenmodes of the
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Figure 3: Contours of disturbance growth reduction factor Φ as a function of wave angle θ
and convective Mach number Mc.

(turbulent) jet shear layer.

For compressible flows, the relation between mixing layer growth rate and spatial stability

theory was noted by Ragab & Wu (1989) and Sandham & Reynolds (1990). In particular it

was shown how the effect of velocity ratio, density ratio and Mach number on mixing layer

growth rate could all be well predicted by the linear theory. In this section we present the

basic shear layer instability results in the form of a θ −Mc map, where θ is the wave angle

and Mc is the convective Mach number, and we will attempt to find definitions of an effective

Mc (different to the gradient Mach number Mg) for boundary layers and turbulent spots.

The basic θ−Mc plot is shown on figure 3. The vertical axis is the wave angle θ, which is

equal to zero for spanwise wavefronts and 90◦ for streamwise wavefronts. The horizontal axis is

the convective Mach number Mc defined earlier. The contours on the stability map are of the

growth reduction factor Φ, which is defined as the growth rate relative to the largest growth

rate of the same case (with the same velocity and density ratio) from incompressible flow. Φ

is defined by taking the maximum growth rate over all streamwise wavenumbers. In Sandham

& Reynolds (1990) it was shown that the spatial and temporal theories provide very similar

results for Φ, so here we use the temporal approach for simplicity and only consider cases

with equal density ratio. The plot includes only first mode disturbances, which are oblique

at the higher Mach numbers. There are also radiating modes, but these are only weakly

unstable and can be ignored in this context. The first stages of oblique-mode breakdown to
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turbulence were presented based on DNS by Sandham & Reynolds (1991), and it is interesting

that such mode combinations are also relevant to boundary layer transition in the supersonic

flow regime (Mayer et al., 2011), before additional second (Mack) modes enter the problem

at higher Mach numbers.

A number of interesting results are clearly seen from figure 3. At Mc = 0 the most

unstable mode is 2D (a consequence of Squires’ theorem). This is not to say that only 2D

modes are excited, however. An N -factor calculation in Sandham & Sandberg (2009) showed

how structures could emerge from background spectra including structures at different angles,

not just for θ = 0◦. Neither this approach, nor the DNS, gave perfectly spanwise structures,

implying that other factors may have been active in the Brown & Roshko (1974) experiments

that showed clear spanwise organisation. From figure 3 it can be seen that for Mc > 0.6

oblique modes are the most unstable. The peak growth rate follows a line Mc cos θ = 0.6

(Sandham & Reynolds, 1990). The variation of Φ, taking the maximum over θ for each

Mc was shown on figure 1 as the LST result. This curve matches the observed decrease in

shear layer growth rate observed experimentally, almost as well as the empirical fit to the

data. Finally we note that for Mc cos θ > 1 (the second contour shown on figure 3) there is

no first mode growth, supporting the sonic-eddy suggestion of Breidenthal (1992)) that only

subsonic eddying motions are relevant. Thus, for any local shear layer that is evolving within

a turbulent flow, a dead zone occurs, with no instability (up to a certain wave angle) to drive

shear-layer roll-up. This is expected to modify the turbulence dynamics at any scale where a

locally-defined convective Mach number exceeds one.

The stability plot extends straightforwardly to other free shear layers such as jets and wake.

However, we will also attempt to show in the following paragraphs how it may potentially

also be applied to boundary layers, particularly under the effect of adverse pressure gradients,

and to turbulent spots, by a suitable redefinition of Mc. The potential for a more general

applicability of these concepts is supported by the recent work of Kumar et al. (2014) who

considered pressure-velocity interactions in homogeneous shear flows. They identified the key

parameter as a Mach number Mg cos θ and noted the stability of supersonic modes within the

turbulent flow.

We have already remarked that compressibility effects enter the turbulence problem by

modifying the production term, i.e. at the scale of the largest local structures, or alternatively

where the local mach number fluctuations are largest. For the boundary layer, there are

three regions where compressibility effects might enter, namely the buffer layer (which is

exposed to a large velocity gradient), the log layer, and the outer (wake) region. Although
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the buffer layer is in a region of high velocity gradients, it is also typically a region of high

temperature and hence high sound speed. This is sufficient to reduce considerably the effective

value of Mc, for example a Mach 5 boundary layer with a wall temperature equal to the

adiabatic wall temperature (assuming a recovery factor of 0.9), a buffer layer ∆U+ = 6

(i.e. a very strong eddy) and an edge velocity of U+
∞ = 25 would have an effective Mach

number of Mc = 0.05M∞ = 0.25, based on Mc = ∆U/(2aw) putting this within the region

relatively unaffected by compressibility according to figure 3. Nevertheless, there can still

be some effects of compressibility, particularly for cold-wall cases, such as the changes in

the low speed streaks observed by Coleman et al. (1995). In the log layer we can make a

simple estimation based on the idea of a mixing length l = κy (with κ the von Karman

constant). Here the effective Mach number, for a boundary layer with U+
∞ = 25 is given by

Mc = M∞/(2U
+
∞)l+(du+/dy+) = 0.02M∞, for the worst case of a constant density and hence

constant sound speed equal to the free stream value (a∞).

The outer layer is interesting because the form of the mean velocity profile that adds onto

the log law to get to the observed data is already in the form of a mixing layer (i.e. Coles’

wake function) as seen in the last term of the van Driest-transformed mean velocity equation,

given by

u+vD =
1

κ
ln y+ + b+

Π

κ

[
1− cos

(πy
δ

)]
. (2)
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We can develop an effective Mach number using the wake parameter Π and the respective

sound speeds at the wall (aw) and in the freestream (a∞) by

Mc,bl ≡
∆U+

vD

U+
∞

M∞
(1 + aw/a∞)

, (3)

where ∆U+
vD refers to the last term in (2), taking the difference between y = 0 and y = δ and

δ is the boundary=layer thickness. Using the van Driest profile, this becomes

Mc,bl =
2Π/κ

(2Π/κ+ (1/κ) ln δ+vD + b)

M∞
(1 + aw/a∞)

. (4)

Figure 4 shows a plot of this effective convective Mach number for boundary layers as a func-

tion of free stream Mach number M∞ for three values of Π and two different wall thermal

conditions. The effects of variations in the wake strength are illustrated for Π = 0.5, cor-

responding to a zero pressure gradient (ZPG) boundary layer, Π = 2.5, corresponding to a

strong adverse pressure gradient (APG), and Π → ∞, corresponding to the point of separa-

tion. The two thermal conditions are a cold wall, with Tw = T∞ and an adiabatic (hot) wall

with
Tw
T∞

= 1 + r
(γ − 1)

2
M2
∞, (5)

with the recovery factor r = 0.9 and the ratio of specific heats γ = 1.4. The calculations are

shown for a value of (1/κ ln δ+vD + b) = 25. The horizontal line shows the level of 0.3 that

we might take as the threshold above which compressibility effects may be expected to be

significant. We see that this is reached for cold-wall conditions (aw = a∞) at M∞ = 6 for ZPG

flow, reducing down to M∞ = 1.8 for the strong APG case and M∞ = 0.6 for a boundary

layer on the point of separation or reattachment. The hot wall cases are similar except that

the adiabatic wall case never seems to reach conditions where true compressibility corrections

are needed, at least until Mach numbers where real gas effects need to be incorporated. Thus

compressibility may be a significant effect in transonic flows involving separation. This is

not particularly a new observation, but equation (4) seems to provide a rationale for future

studies to look for strong compressibility effects in boundary-layer flows with adverse pressure

gradients at moderate supersonic M∞.

Finally in this section we consider the growth of turbulent spots and the surprising result

that even in zero pressure gradient boundary layers the lateral growth rate is strongly com-

pressible, showing a reduction by a factor of four in a boundary-layer at M∞ = 6. The reasons

for this strong reduction have not yet been fully explored. Redford et al. (2012) showed how

compressibility mainly acted on the mechanism of destabilisation of the surrounding laminar
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Figure 5: Prediction based on equation (6) of the growth rate (measured by the half angle in
degrees) as a function of free stream Mach number M∞. Two cases are shown, for adiabatic
and cold wall (wall temperature equal to free stream temperature) conditions. The green
shaded zone correspond to an additional 5% tolerance for comparison with figure 2(b).

boundary layer and, perhaps most relevant to the mechanisms considered here, observed roll-

up of lateral jets emanating from the wing tips of the spot. The local instability problem is

not amenable to analysis since the basic flow is three dimensional. Also, the jets themselves

are not fast enough to be subject to high compressibility effects. However, a simple estimate

of Mc for these jets relative to the freestream can be derived, by considering the jet location

in the laminar boundary layer, as

Mc,spot = M∞
1− Uj/U∞
1 + aj/a∞

, (6)

where Uj is the laminar boundary layer streamwise velocity (and aj the corresponding sound

speed) at the jet location and from Redford et al. (2012) Uj ≈ 0.45U∞. A prediction of spot

growth rates based on equation (6) is shown on figure 5, where we take Uj = 0.45U∞ and

consider two thermal conditions corresponding, as before, to hot (adiabatic) and cold (free

stream) wall temperatures. The green shaded region is taken as the area between a line 5%

above the hot-wall case and a line 5% below the cold wall case, and may be compared with

the spread of experimental and numerical data from figure 2(b). The trends with both Mach

number and wall temperature both seem to be captured by this method.

In this section we have attempted to extend the basic shear layer instability arguments

from mixing layers to boundary layers with pressure gradients and to turbulent spots. These
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arguments are testable with more experiments and simulations of compressible boundary

layers, particularly under conditions of adverse pressure gradient, and turbulent spots, where

more understanding of the physical mechanisms of spot growth is needed, even in the more

restricted case of incompressible flow, possibly along the lines of recent studies by Brinkerhoff

& Yaras (2014) and Goldstein et al. (2015).

3 Shock-wave interactions

3.1 Shock/turbulence interaction without walls

A useful starting point in considering the effect of shock waves on turbulence is a model

problem consisting of isotropic turbulence passing through a normal shock, for which direct

numerical simulations (DNS) and a linearised theory are possible. Linearised interaction anal-

ysis (LIA) is derived from the Euler equations. The oncoming turbulence can be decomposed

into vortical, acoustic and entropy modes, which can in principle interact with each other

according to the mechanisms given in Chu & Kovásznay (1958). To study shock/turbulence

interactions, each of the linear modes can be interacted separately with a normal shock wave.

Results from comparisons between DNS and linear theory are reported in e.g. Mahesh et al.

(1997), who looked in particular at the variations in turbulence associated with an entropy

wave passing through a normal shock. Turbulence kinetic energy and temperature fluctua-

tions are amplified across the shock, with the streamwise normal stress being most affected.

Generally a good qualitative agreement has been found between DNS and theory and the

DNS has been shown to converge to the LIA predictions just downstream of the shock in the

limit of small turbulent Mach number (Ryu & Livescu, 2014). However, Larsson et al. (2013)

identified some important differences. The post-shock anisotropy of vorticity was found to be

of small practical importance due to a rapid return to isotropy at higher Reynolds numbers.

Additionally, different flow regimes in which the shock wave became wrinkled and broken were

identified. To help separate different physical phenonomena, it is useful to bear these results

in mind when considering more complex interactions.

3.2 Shock-wave/boundary-layer interactions

When a shock wave interacts with a boundary layer the subsequent interaction can be weak,

where the boundary layer is thickened by the adverse pressure gradient imposed by the shock,

or strong, where there is a shock-induced boundary-layer separation. This category of canoni-
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Figure 6: Three different types of shock-wave/boundary later interaction problems: (a) shock
impingement (omiting details of the shock and expansion wave structure, (b) supersonic ramp
flow, (c) transonic flow over a bump (Lawal, 2002).

cal flows can be further subdivided, as shown in figure 6, into: (a) an oblique shock impinging

onto a boundary layer on a flat plate, (b) an interaction initiated by a ramp, and (c) a tran-

sonic interaction in flow over a bump. The latter case (simulated by Pirozzoli et al. (2010),

for a case with incipient separation) is different, since the flow upstream and downstream is

subsonic. However all three cases share important flow physics, including separation, with

a shock wave developing from the coalescence of compression waves from the separation re-

gion, and a similar phenomenon leading to a reattachment shock, with a closed separation

bubble forming in each case. The bump flow forms a classical λ-shock pattern, where the

two shocks near the wall (forming the front and rear feet) meet at a triple point. Above

this region a near-normal shock marks the end of the supersonic flow region. The oblique

shock and ramp cases have similar physics, as shown for small disturbance cases by Pagella

et al. (2004). However there are important potential differences, with many observations of

streamwise structures attributed to Görtler instability due to the destabilising curvature near

the reattachment point. There are also curvature effects in the oblique shock case, as we shall
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see later, and it is important to note that the flow over the top of the bubble in this case also

experiences an expansion fan. The bubble in this case is roughly triangular in shape, with

the apex at the point where the shock impinges and reflects as an expansion wave. For the

oblique shock case, Matheis & Hickel (2015) have considered stronger interaction cases where

the regular reflection transitions to a Mach reflection.

All three cases in figure 6 show similarities in the difficulty of the turbulence modelling

and in the occurrence of large amplitude low-frequency oscillations. The former problem is

well known. Reynolds-averaged Navier-Stokes (RANS) methods give results of only quali-

tative accuracy, as for example shown by Doerffer et al. (2010). One might think that the

unsteadiness can be captured in unsteady RANS (URANS), but this method only gives steady

results, as does detached eddy simulation (DES). Better agreement with experiment can only

be obtained with such methods by introducing additional unsteadiness, as shown by Garnier

(2009), but this requires the specification of disturbances, the precise form of which is not

known a priori. This is an ongoing research topic, as is the embedding of higher fidelity meth-

ods within RANS, URANS and DES. The lowest form of modelling that has been proven

to work for SWBLI problems is LES, and strictly only with wall-resolved LES, by which we

mean LES that resolves the sublayer, with total grid counts smaller than DNS by only a

factor of 20-30 and with care taken particularly to resolve the wall-normal direction close to

what would be needed for DNS. The first application of LES to the oblique SWBLI problem

was by Garnier et al. (2002). Such simulations can show excellent agreement with experi-

ment, as for example shown in figure 7, where results from Touber & Sandham (2009) are

compared with experiments carried out in Marseille by Dupont et al. (2006) and Piponniau

et al. (2009). Figure 7(a) shows the mean streamwise velocity, with filled contours referring to

experimental results and lines to simulations, while figure 7(b) shows comparisons at different

streamwise locations downstream of reattachment. We should bear in mind the sensitivity

of the experimental flow to upstream conditions and sidewall effects, and of the LES to the

spanwise domain size. Nevertheless, it is clear that LES captures the correct bubble physics.

Furthermore, LES (as opposed to DNS) is the only currently feasible way of obtaining suf-

ficiently long time series to be able to study the other interesting feature of shock-induced

separated flow, namely the low-frequency unsteadiness.

There are a number of competing explanations of the occurrence of low-frequency oscilla-

tions in SWBLI problems, and it is only very recently that a resolution appears to be possible.

Figure 8 shows a weighted (pre-multiplied with frequency) power spectrum of wall pressure

fluctuations under the base of the reflected shock. The figure shows a good agreement be-
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Figure 7: Comparison of LES with experiment showing (a) contours of mean streamwise
velocity, comparing PIV (shaded) with LES (contour lines), with the orange lines (dashed
for the experiment) showing the zero velocity contour, and (b) velocity profiles at several
streamwise locations (Touber, 2010).

tween the experimental measurements (Dupont et al., 2006) and the LES. The LES shows two

peaks, one at Strouhal number of St = 0.03 and the other (not resolved in the experiment)

corresponding to boundary layer turbulence. Alternative explanations for the low-frequency

peak include upstream boundary-layer disturbances, global modes, acoustic feedback mecha-

nisms within the bubble and bubble ‘breathing’. We will not recap all the arguments here;

they are readily available in the literature, for example in Ganapathisubramani et al. (2007),

Robinet (2007), Pirozzoli & Grasso (2006), Piponniau et al. (2009) and recently reviewed by

Gaitonde (2015). Each study is in some sense correct in that the physical phenomena are

reproducible, but there is generally a lack of testable predictions from the various approaches.

A resolution appears possible when we consider some recent developments. Firstly Touber &
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Figure 8: Weighted power spectral density of wall pressure fluctuations as a function of
normalised frequency, comparing experiment (dashed line), LES (line with open symbols and
the model (filled symbols), from Touber (2010).

Sandham (2011) showed how an analysis based on the (wall-normal) integrated Navier-Stokes

equations, using LES data to neglect terms with lower order of magnitude, could provide a

simplified model in the form of a first order ordinary differential equation, with stochastic

forcing provided by the boundary layer skin friction fluctuations. It is important to note that

the source of these fluctuations can be either upstream or downstream of separation, and

not necessarily the upstream turbulent boundary layer. Remarkably, this analysis results in

exactly the same model equation as was originally proposed without proof by Plotkin (1975).

The prediction of this type of model is shown with filled symbols on figure 8, with excellent

agreement between the model and both LES and experiment. Recent comparisons with ex-

perimental data are included in Poggie et al. (2015). The analysis only requires the flow near

the separation to be modelled, suggesting that bubble feedback dynamics (recirculation or

acoustic in origin) do not need to be included. It is however, well established that there is a

global behaviour of the bubble, usually described as ‘breathing’ and involving simultaneous

changes in bubble length and height, coexisting with forward and backward movements of the

shock wave. Recent work by Agostini et al. (2015) describes this behaviour in detail, as well

as offering a conceptual model that links shear layer structures to shock-wave motions.
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Another useful way of looking at the problem is provided by the recent work of Sartor

et al. (2015) , who used a resolvent mode analysis to look at the global response of a transonic

bump flow problem (the so-called Delery bump). This linearised analysis considers forcing in

the problem formulation and the resulting singular value decomposition provides information

about the flow response to forcing and about the forcing that gives the largest gain. Sartor did

not find any globally unstable modes and showed how the response problem correctly picked

out the dynamics of the shock and shear-layer interactions. The optimal forcing showed

both upstream and downstream contributions, whereas in practical applications it would

be modified by the disturbance environment. For example, it is now known that the low-

frequency response occurs even in the absence of upstream coherent disturbances (Touber &

Sandham, 2009), or indeed any disturbances at all in the laminar case (Sansica et al., 2014).

Our current best explanation is therefore that the low-frequency unsteadiness is the linear

response of the separating flow to background noise, with the shock acting as a low-pass filter

of disturbances that can come from upstream or downstream. Near the separation there is a

high mean streamwise pressure gradient, hence the amplitude of the wall pressure fluctuations

at this point is high.

Within the spanwise-homogeneous framework, other configurations are possible, including

the combination of ramp-type flows with expansions. Grilli et al. (2012) considered a com-

pression ramp followed by an expansion corner, observing the expected unsteady behaviour

near the ramp and analysing this in terms of a dynamic mode decomposition. Fang et al.

(2015) considered the opposite combination of an expansion fan followed by a compression

corner. In this case turbulent structures are strongly suppressed by the expansion and there

is not a full recovery of the flow after the first distortion. Clear Görtler vortices were observed

in the separated shear layer associated with the ramp.

3.3 Sidewall interactions

In this final section we consider a fully 3D flow that in principle contains many of the phenom-

ena reported in the previous sections. SWBLI interactions with sidewalls links two classes

of interactions: a swept SWBLI on the side wall, with the initial shock generator playing

the role of a fin embedded in the sidewall boundary layer, and the main oblique SWBLI on

a test plate. The problem also includes the possible interaction between the two regions in

the corner area which may have its own vortex and separation structure. Eagle & Driscoll

(2014) used stereo PIV to measure all three velocity components, showing details of the corner

vortices and showing the need to consider the full 3D problem for shock interactions in low
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Figure 9: Schematic of SWBLI in a 3D duct with width W and height H, from Wang et al.
(2015).

aspect ratio ducts. A test geometry suitable for CFD validation was described by Helmer

et al. (2012) and Campo & Eaton (2015), who pointed out a steepening of the main incident

shock as it encounters the sidewall boundary layer.

Wall-resolved LES of such configurations is expensive, taking into account the numerical

resolution to resolve the SWBLI on the test plate and side walls together with the long run

times needed if the low-frequency dynamics are to be investigated. Various alternatives to

wall-resolved LES have been tested, including stimulated DES approach of Garnier (2009)

mentioned earlier. Garnier used the method to show how the strength of the interaction near

the centreline is increased in low aspect-ratio ducts and found the largest pressure fluctuations

to be in the corner region. Bermejo-Moreno et al. (2014) used a wall-modelled LES approach

based on a sub-grid treatment computing the boundary-layer equations with a mixing-length

eddy viscosity. Results were compared with experimental data from Helmer et al. (2012),

showing low-frequency oscillations and that the wall-modelled LES are in reasonable quanti-

tative agreement with experimental measurements.

To illustrate the flow phenomena, we consider the configuration from Wang et al. (2015),

which included both sidewalls in an M∞ = 2.7 interaction of an oblique shock with a flat

plate boundary layer and was simulated using wall-resolved LES. The M∞ = 2.7 upstream

boundary layer is not expected to experience strong compressibility effects until it enters

the region of interaction with an oblique shock that is strong enough to separate the flow.

Structures in the outer part of the boundary layer will experience shock/turbulence interaction

and the separated shear flow will be affected by compressibility. In addition there are sidewall

and corner interactions as well as a strong curvature of the shear layer due to the shock

impingement.
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Figure 10: Mean pressure contours on the lower wall showing the pressure rise through the
bubble and end-wall effects. The white contours show the regions of reverse flow adjacent to
the wall.

Details of the simulations are given in Wang et al. (2015), with the basic set up reproduced

in figure 9. After running the simulations all distances have been rescaled to units of mm

in the corresponding experiment, whereas other quantities are shown in dimensionless form.

The case is set up as a wall-resolved LES and a grid refinement study was run to show the

sensitivity of the solution to the grid in each direction separately. The simulations shown

here were run on a grid of 480 × 416 × 758 points in the streamwise, normal and spanwise

directions respectively. The inflow turbulent boundary is set using the same digital filter

approach used by Touber (2010), with the inflow thickness adjusted to give a target Reynolds

number of Reθ = 4300 based on the boundary layer at the shock impingement location, but

in a case with no shock. The interaction is located sufficiently far downstream of the inflow

to give the boundary layer enough time to relax to an equilibrium condition, measured by an

acceptable comparison of the van Driest scaled profile with incompressible flow data at the

same Reynolds number. The cases were run for both sidewalls, since a test simulation with

a symmetry plane in the spanwise direction gave unphysical results near that plane due to

the constraints imposed of the turbulence by this boundary condition. The upper boundary

condition is designed to mimic a shock generator in an experiment. Upstream of the shock

generator a characteristic boundary condition was applied. On the shock generator a no-slip

condition was set, and then downstream of it the boundary condition was changed back to

characteristic. Care was taken to ensure that the expansion wave emanating from the rear of

the shock generator impacted on the lower test plate far enough downstream of the interaction

not to affect the pressure and skin friction distributions within the interaction.
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The shock generator (with angle 9◦) generates an oblique shock. Depending on the aspect

ratio W/H, where W is the width between the two sidewalls and H is the height of the

leading edge of the shock generator above the plate, there are different types of interaction.

In particular for a case with W/H = 4 it was shown that there is a region of genuinely span-

independent mean flow near the centreline, with good agreement with a simulation run with

spanwise periodic boundary conditions. This is because the sidewall-induced modifications to

the impinging shock have not reached the centreline within the interaction region. In contrast,

a case with W/H = 1 was shown to be completely 3D in the mean, as in Bermejo-Moreno

et al. (2014). Here we consider the intermediate case W/H = 2, for which contours of surface

pressure are shown on figure 10. The white contour line marks the edge of the reverse flow

region, with the separation line seen to be more two-dimensional than the reattachment line.

Clear corner effects are observed, with the wall pressure rising earlier near the corners and

with a small corner separation.

The nature of the interaction can be explained by tracing the effects back to the shock

generator. The generated shock thickens the sidewall boundary layer. The pressure rise is

thus smeared out and the start of the pressure rise precedes the shock location. Another

interesting feature is that the shock does not penetrate the sidewall boundary layer down

to the sonic line, but only down to a swept sonic condition. Wang et al. (2015) defined

a penetration Mach number by Mp = M∞ cosβ, where β is the oblique shock angle, and

showed that this matched the actual penetration Mach number observed in the simulations.

Thus only the very outermost part of the sidewall turbulent boundary layers was exposed to

a shock wave. The leading edge of the sidewall interaction reaches the lower wall first (ahead

of the main shock induced separation) and reflects in the corner, but causing only a small

corner separation. The effect of the interaction with the lower surface was clarified by running

a separate simulation with a slip-wall lower boundary condition. This showed that significant

spanwise flow is developed irrespective of the lower boundary condition.

In the present contribution we consider some more aspects of the WH2 case from Wang

et al. (2015). Figure 11 shows contours on the centreline of the mean streamwise velocity

(a), mean pressure (b) and the three normal components of the Reynolds stress (c-e). Also

shown on each figure are three white lines corresponding from top to bottom to the sonic line

(local M = 1, solid white line), a streamline located near the centre of the detached shear

layer (dashed white line) and a line with zero mean streamwise velocity (solid white line),

with reverse flow below this line. The shock pattern is best observed from figure 11b) where

the incoming shock crosses the compression waves caused by the boundary layer thickening,
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Figure 11: Mean flow and turbulent stresses in the interaction region: (a) velocity, (b) pressure
(c) u′2, (d) v′2 (e) w′2. The upper white contour in each frame shows the sonic line and the
lower contour shows u = 0. The dashed line is a streamline.
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which starts upstream of the interaction. These reflected waves coalesce into a reflected shock.

It can be seen how the incoming shock penetrates approximately to the sonic line and how

the incoming shock is reflected as an expansion wave, with the shear-layer streamline then

deflected downwards. This pattern is well known from previous studies and is representative

of previous LES and experiments.

Figure 11(c-e) should in principle show the effect of turbulence in the outer part of the

boundary layer passing through a shock wave that might be compared to previous work on

normal-shock/turbulence interaction. However, on closer inspection, that problem seems of

little relevance here, since the changes in the turbulence are dominated by the shear layer.

In figure 11(c) it is just possible to see a small increase in the magnitude of u′2 in the region

above the sonic line. Instead, the streamwise Reynolds stress is dominated by the growth of

turbulence in the detached shear layer, reaching a maximum at x = 139. Interestingly the

peak shear stress doesn’t exactly align with the streamline in these pictures.

Even more remarkable in figure 11(c) is the strong reduction in the streamwise component

of the normal Reynolds stresses after the apex of the bubble. The stress decreases by a factor

of approximately two between x = 149 and x = 155. Given that the local vorticity thickness is

about 6, this reduction occurs within one vorticity thickness (and substantially less than one

boundary layer 99% thickness). The explanation lies with what might be termed an indirect

compressibility effect, based on the shear layer curvature near the apex of the bubble. For

the streamline shown in figure 11 the minimum radius of curvature was determined to be 6.9.

The direction of the curvature (opposite to the Görtler instability) is stabilizing and such a

level of curvature, with the flow deflected by 15◦ within one vorticity thickness, is extreme.

The curvature arises due to the reflection of the shock wave from the top of the bubble as an

expansion, with subsequent flow turning only smeared over one boundary layer thickness. For

a turbulence model to cope well with such a shock-induced separation, not only would it need

to treat compressibility correctly, but also the stabilising effects of extremely strong curvature.

In contrast to the behaviour of u′2 it can be seen that v′2 and w′2 are relatively unaffected

by the sudden change of flow direction. Such strong curvature effects may be rather common

in shocked flows. For example the measurements of Edgington-Mitchell et al. (2014) show

strong reductions in streamwise velocity fluctuations in regions with high turning at shock

reflection points in a screeching underexpanded axisymmetric jet.

Figure 12 shows the velocity profile at separation and another two profiles through the

separated flow, one upstream and one downstream of the bubble apex. For these two pro-

files the effective (convective) Mach number was estimated by taking the velocity difference
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Figure 12: Velocity profiles at separation (solid line) and at two locations within the bubble.

between the external flow (under the shock waves) and the maximum reverse flow and the

sound speed at the same two locations. This gave Mc = 1.0 for the upstream profile and

Mc = 0.9 for the downstream profile (it may be noted that the freestream is slower at the

second location due to the shock waves leading to the lower Mc). Based on the arguments

of the previous section, these levels of Mc suggest significant compressibility effects on the

turbulence. However the profiles are not well approximated by the hyperbolic tangents used

in the previous section, and of course a wall is present here, so additional stability calculations

are required to check the relevance of the previous results.

An impression of the instantaneous flow can be obtained from figure 13, which in part (a)

shows an x − y plane at the duct centreline and in part (b) shows a cut in a y − z plane at

x = 73.2. In figure 13(b) the sidewall boundary layer is visible and it can be seen that there is

a significant penetration of high momentum fluid close to the wall, as also seen by Bermejo-

Moreno et al. (2014). This effect is partly responsible for the mean flow to be attached in

a region close to the sidewalls (cf. figure 10) and for the corner separation to be small. The

horizontal contour lines present in the freestream are cuts through the impinging and reflected

shock waves. In figure 13(a) it can be seen that the detached shear layer develops a wavy

motion with a wavelength of perhaps 8-10 mm, while in figure 13(b) it can be seen that

there are a series of undulations in the outer part of the boundary layer with a wavelength of

approximately 6 mm. The resulting wave angles are around 60◦, which is not out of line with

the θ−Mc diagram shown on figure 3, given that the local Mc is about one. More comparisons
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with stability theory are needed to confirm the potential role of inflectional instability in the

generation of these structures. The structures themselves appear to be manifestations of the

‘medium’ or ‘intermediate’ frequency band seen in discussed by Aubard et al. (2013) and

Agostini et al. (2015).

4 Conclusions

An overview of compressible turbulence and SWBLI has been provided, focusing on canon-

ical problems in shock-free and shocked shear flows. An important aspect of the shock-free

canonical flows is the fundamental and surprising difference in the effect of Mach number

on different flows. Turbulent spots and mixing layers are two model problems where com-

pressibility has a very strong effect, whereas only minor changes are seen in wall-attached

ZPG boundary layers. To resolve these differences we have applied a stability map from the

mixing layer to other flows in order to better understand the effect of Mach number. The

stability map for the mixing layer shows how shear layer instability growth rates reduce with

convective Mach number and how the variation of growth rate with wave angle also changes,

leading to oblique modes being most unstable and also to a cut-off of modes with supersonic
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relative Mach number. By considering compressibility effects to enter mainly at large scale,

this shows how large-scale structures and hence turbulence production can be modified by

compressibility. Effective convective Mach numbers have been defined for turbulent spots and

for boundary layers under pressure gradients to show how significant compressibility effects

may be present in turbulent spots and in equilibrium boundary layers under adverse pressure

gradient conditions.

The SWBLI review has focused on the numerical simulation of oblique and ramp SWBLI

for which much of the previous research has been carried out, providing more complete and

complementary information compared to laboratory experiments, even though the latter are

also developing rapidly based on the application of advanced laser-based diagnostics. Span-

periodic simulations have enabled the physics of shock interaction to be explored in detail,

including the low-frequency unsteadiness of interactions. The most recent developments have

been in the development of simulation capabilities for flows with multiple interactions includ-

ing oblique SWBLI with sidewalls. In particular, we have considered the development of the

mean flow and Reynolds stresses in a 3D SWBLI problem with side wall effects included in the

simulation. The high convective Mach numbers within the separation bubble suggest strong

compressibility effects on the turbulence. The shock impinges near the apex of the bubble

and is reflected as an expansion wave. The associated turning of the flow was shown to have a

strong stabilising effect, leading to a reduction in turbulence intensity by over a factor of two.

This is an example of an indirect compressibility effect, where the turbulence is governed by

streamline curvature, which exists only due to the shock impingement.

Acknowledgements

The author would like to thank Bo Wang and Satya Jammy for providing databases for the

3D SWBLI case. Data statement: No additional data was generated in this work. Funding:

This work would not have been possible wthout the continued support of the UK Turbu-

lence Consortium, under grants EP/G069581/1 and EP/L000261/1. Conflict of interest: The

author declares that he has no conflict of interest. A preliminary version of this paper was

presented at the 9th International Symposium on Turbulence and Shear Flow Phenomena

(TSFP-9) Conference, June 30th to July 3rd 2015, Melbourne, Australia.

References

Adams, N.A. 1998 Direct numerical simulation of turbulent compression ramp flow.

Theor. Comp. Fluid Dyn. 12 (2), 109–129.

29



Adams, N.A. 2000 Direct simulation of the turbulent boundary layer along a compression

ramp at M=3 and Re-theta=1685. J. Fluid Mech. 420, 47–83.

Agostini, L., Larcheveque, L. & Dupont, P. 2015 Mechanism of shock unsteadiness in separated

shock/boundary-layer interactions. Phys. Fluids 27 (12).

Aubard, G., Gloerfelt, X. & Robinet, J. C. 2013 Large-Eddy Simulation of Broadband Un-

steadiness in a Shock/Boundary-Layer Interaction. AIAA Journal 51 (10), 2395–2409.

Babinsky, H. & Harvey, J. 2011 Shock Wave-Boundary-Layer Interactions. Cambridge.

Barre, S. & Bonnet, J. P. 2015 Detailed experimental study of a highly compressible supersonic

turbulent plane mixing layer and comparison with most recent DNS results: “Towards an

accurate description of compressibility effects in supersonic free shear flows”. Int. J. Heat

and Fluid Flow 51, 324–334.

Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J.K. 2014

Confinement effects in shock wave/turbulent boundary layer interactions through wall-

modelled large-eddy simulations. J. Fluid Mech. 758, 5–62.

Birch, S. F. & Eggers, J. M. 1973 A critical review of the experimental data for developed

free turbulent shear layers. Tech. Rep. 32. NASA-SP.

Bradshaw, P. 1977 Compressible turbulent shear layers. Ann. Rev. Fluid Mech. 9, 33–54.

Breidenthal, R.E. 1992 Sonic eddy - a model for compressible turbulence. AIAA Journal

30 (1), 101–104.

Brinkerhoff, J.R. & Yaras, M.I. 2014 Numerical investigation of the generation and growth of

coherent flow structures in a triggered turbulent spot. J. Fluid Mech. 759, 257–294.

Brown, G.L. & Roshko, A. 1974 Density effects and large structure in turbulent mixing layers.

J. Fluid Mech. 64, 775–816.

Campo, L.M. & Eaton, J.K. 2015 Shock boundary layer interactions in a low aspect ratio

duct. Int. J. Heat Fluid Flow 51, 353–371.

Casper, K.M., Beresh, S.J. & Schneider, S.P. 2014 Pressure fluctuations beneath instability

wavepackets and turbulent spots in a hypersonic boundary layer. J. Fluid Mech. 756, 1058–

1091.

Chu, B.-T. & Kovásznay, S. G. 1958 Non-linear interactions in a viscous heat-conducting

compressible gas. Journal of Fluid Mechanics 3, 515–522.

Clemens, N.T. & Narayanaswamy, V. 2014 Low frequency unsteadiness of shock

wave/turbulent boundary layer interactions. Ann. Rev. Fluid Mech. 46, 469–492.

Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic

isothermal-wall channel flow. J. Fluid Mech. 305, 159–183.

30



Doerffer, P., Hirsch, C., Dussauge, J.-P., Babinsky, H. & Barakos, G.N. 2010 Unsteady Effect

of Shock Wave Induced Separation, Notes on Numerical Fluid Mechanics and Multidisci-

plinary Design, vol. 114. Springer.

Dolling, D.S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next?

AIAA Journal 39 (8), 1517–1531.

Duan, L. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary

layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 25–59.

Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T.

1999 Large-eddy simulation of the shock turbulence interaction. J. Comp. Phys. 152 (2),

517–549.
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