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Abstract

For a credit portfolio, we are often interested in modelling the migration of accounts
between credit grades over time. For a large retail portfolio, data on credit grade migration
may be available only in the form of a series of (typically monthly) population transition
matrices representing the gross flow of accounts between each pair of credit grades in the
given time period. The challenge is to model the transition process on the basis of these
aggregate flow matrices. Each row of an observed transition matrix represents a sample
from an ordinal probability distribution. Following Malik and Thomas (2012), Feng et al
(2008) and McNeil and Wendin (2006), we assume a cumulative link model for these ordinal
distributions. Common choices of link function are based on the normal (probit link) or
logistic distributions, but the fit to observed data can be poor. In this paper, we investigate
the fit of alternative link specifications based on the t-distribution. Such distributions arise
naturally when modelling data which arise through aggregating an inhomogeneous sample
of obligors, by combining a simple structural-type model for credit migration at the obligor
level, with a suitable mixing distribution to model the variability between obligors.
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1 Introduction

1.1 Background

Credit ratings can be an invaluable tool for describing and modelling the default risk for obligors
in a particular loan pool. A credit rating system is an ordinal classification reflecting the
probability of default of a given obligor, with the highest rating representing lowest probability
of default, ranging down to a lowest rating typically representing an obligor already in default.
For corporate assets, various ratings agencies (for example Moody’s or Standard and Poor’s)
provide credit ratings. For retail obligors, a bank typically uses its internal credit scoring
systems for rating purposes. Our work in this area is motivated by the need to model credit
grade transitions in retail portfolios. Hence, we assume that grades are only observed at fixed
discrete time intervals, and that detailed obligor-level covariate information is not available.
However, we observe the same behaviour in retail portfolios and in pooled corporate agency
ratings, and it is the latter which we use to illustrate our proposed modelling approach.

One possible method for forecasting the evolution of default risk in a portfolio is to forecast the
process by which individual credit grades (including default) migrate over time. The natural
description of the process of credit grade migration between two time points is the transition
matrix P (t, u), with elements pij(t, u), representing the probability of transition from grade i at
time point t to grade j at time point u, that is

pij(t, u) = Prob(grade at time u = j| grade at time t = i).

Here, we assume that i and j run from 1 (highest quality) toD with the final gradeD representing
default, and that, as described above, the grades are naturally ordinal with increasing grade
number representing increasing closeness to default.

If π(t) = {π1(t), . . . , πD(t)} is the row vector containing the proportions of obligors in each of
the credit grades at time t, then a forecast of the corresponding proportions π(u) at time u > t
is given by

π(u) = π(t)P (t, u).

Hence, forecasting a future credit grade profile can be achieved by estimating the corresponding
transition matrix between the present and the forecast horizon. Estimators are constructed
by developing statistical models for transition matrices, and fitting them to observed data on
historical transitions. In this paper, we focus on developing statistical models which fit historical
transition data on portfolio credit grade distributions. Typically, these data are a series of
portfolio transition matrices representing the gross flow of obligors between each pair of credit
grades in the given time period. We do not consider here the question of modelling the complete
transition process. That is, given an empirical matrix X(t, u) of portfolio flow between times t
and u, we consider the problem of estimating the corresponding transition matrix P (t, u) which
can be thought of as a smoothed (and normalised so that rows sum to one) version of X(t, u).
The matrices X(t, u) and P (t, u) are D × D matrices, with elements xij(t, u) representing the
observed number of transitions from state i to state j between times t and u, and pij(t, u) the
corresponding transition probability. As the default state D is an absorbing state, estimation of
P (t, u) simply requires estimation of the first D − 1 rows of P (t, u).

We model the transition process over time as a series of one-period models, rather than a single
all-encompassing model for the panel of empirical transition matrices. For a complete forecasting
model, it is necessary to augment these one-period models for individual historical transitions,
in order to predict future transition dynamics. This is discussed briefly in Section 5 and is the
subject of ongoing research. Henceforth, for clarity, the dependence of P , (pij) and X (xij) on t
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and u, the beginning and end points of the period under consideration, is considered as implicit,
and omitted from our notation.

1.2 Ordinal data models

Ordinal data can often be effectively modelled using a cumulative link model. A cumulative link
model, for a collection of ordinal variables {Yk}, can be written as

P (Yk ≤ j) = g(αj − µk) (1)

for some strictly increasing function g which can be interpreted as the distribution function of a
latent continuously distributed variable. Then, −∞ = α0, α1, . . . , αD =∞, can be thought of as
an increasing sequence of thresholds, defining the mapping between the underlying latent scale
and the ordinal classes. The µk parameters are observation-specific, but are typically modelled
using a parsimonious regression function. Common choices of g are based on the standard normal
(ordinal probit model) or logistic distributions (proportional odds model). A visual illustration
of the mapping between the threshold parameters α1, . . . , αD−1, the mean parameter µ and the
class probabilities is given in Figure 1 (for the case where D = 10).

latent scale

α1 α2 α3 α4 α5 α6 α7 α8 α9µ

Example class probabilities

Prob(class 5)
Prob(class 10)

Figure 1: Mapping between threshold and mean parameters and class probabilities for a cumu-
lative link model

For ordinal transition matrix modelling, each row represents the ordinal outcome distribution for
a different originating class. If we treat each row Xi of our data matrix X (data on transitions
from a single originating class i) as arising from observations of independent and identically
distributed ordinal random variables, then these observations share a common value of µk in
(1) denoted µi to acknowledge its dependence on the originating class i. Similarly, these ordinal
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outcomes share common threshold parameters, αi1, . . . , αiD−1. A general model is therefore

qij ≡
j∑

k=1

pik = g(αij − µi) (2)

so qij are the cumulative transition probabilities for row i, and we assume the same form of
underlying latent distribution (link function g) for each row. In fact, this is not a restriction,
as any transition matrix can be fitted exactly by (2) whatever the specification for g. However,
the fidelity of a more parsimonious specification for αij −µi in (2) will depend on the form of g.
In this paper, we consider two simplifications of (2), the standard cumulative link specification,
introduced in (1), which for a transition matrix can be written as

qij = g(αj − µi) (3)

and the scale-varying cumulative link model

qij = g

(
αj − µi
σi

)
. (4)

The standard cumulative link model (3) assumes a set of common thresholds, α, with the
difference between rows of the transition matrix being represented by a shift (mean-change)
in the distribution of the underlying latent variable. The scale-varying model allows for a
‘shift and stretch’ with the latent distribution differing between rows in both location (µ) and
dispersion (σ). Note that (4) gives the same probabilities under addition of the same constant
to α and µ, or multiplication of α, µ and σ by the same (positive) constant. Hence, to identify
the parameters, we set µ1 = 0 and σ1 = 1.

1.3 The link function

The natural (canonical) choice of link function is the logistic link

g(x) =
expx

1 + expx

which is the distribution function of the standard logistic distribution. A cumulative logistic
model is often referred to as a proportional odds model (McCullagh, 1980) as, for any j ∈
{1, . . . , D − 1}, from (1),

P (Yk ≤ j)
P (Yk > j)

= exp(µ` − µk)
P (Y` ≤ j)
P (Y` > j)

.

Malik and Thomas (2012) use a cumulative logit model for credit grade transition dynamics in
a retail portfolio.

Alternatively, one might choose the ordinal probit model, where g = Φ, the standard normal
distribution function. This model is intuitively attractive as it corresponds to a discretely
observed version of an underlying structural Gaussian model for a latent asset-value variable.
Suppose that an obligor’s ‘asset-value’, which represents their ability to repay the loan follows
a continuous-time geometric Brownian motion with drift µ and volatility σ2, as in the classic
Merton model (Merton, 1974). Then, the negative-log-asset value Zt+1, given the value at the
previous time Zt = z is normally distributed with mean z + λ ≡ z + σ2/2− µ and variance σ2.
Default occurs when the asset-value decreases below a threshold, or equivalently the negative-
log-asset value exceeds an equivalent threshold. Credit grades other than default can also be
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thought of as being defined by thresholding asset-value. Hence an ordinal probit model (3) with
g = Φ, for credit grade transitions can be thought of as an approximation to a structural asset-
value model where the αj define the credit grade thresholds on the negative-log asset value scale,
and µi = z + λ for a ‘representative’ value of z ∈ (αi−1, αi]. The approximation arises because
only the credit grade is observed, so we have imperfect conditioning information z ∈ (αi−1, αi],
rather than observing the exact asset value. Conditioning on z ∈ (αi−1, αi] in the Merton model
results in a distribution for Zt+1 which is not exactly normal.

1.4 Previous work

The use of ordinal probit models for credit grades was investigated for corporate credit ratings
by Nickell et al (2000) and for sovereign credit ratings by Hu et al (2002). In both cases, a form
of model (3) is used, but where µi is allowed to depend on obligor-level characteristics. Feng et
al (2008) propose a scale-varying ordinal probit model for corporate grade transitions, similar to
(4). The logistic link was proposed by McNeil and Wendin (2006) for corporate grade migration
and by Malik and Thomas (2012) in the retail setting. Again, a form of model (3) is proposed,
but Malik and Thomas (2012) find dependence of µi on both an obligor-level characteristic (time
since origination of the loan) and on the previous (time t− 1) grade, indicating non-Markovian
credit grade dynamics.

In all these approaches, parameters of the ordinal probit models are allowed to vary over time,
either as a function of observable time-dependent covariates, or as a serially correlated stochastic
process. As we have described above, the mean parameter of the underlying latent (normal or
logistic) variable is allowed to vary between obligors, but all these approaches assume homoge-
neous dispersion across the obligor pool at a given time.

We also note here that other approaches are possible for modelling corporate grade transitions
where more detailed information may be available. For example, Lando and Skødeberg (2002)
propose a continuous-time transition model, based on a transition intensity matrix, while Chan
et al (2012) use equity values to calibrate a structural transition model.

2 Exploratory analysis

We fit the model (4) to a credit card portfolio with D = 12, for both logistic and probit links.
We also fitted the same models to an artificially created portfolio of corporate assets constructed
from Moody’s Default and Recovery Database (DRD), where D = 8 and the non-default grades
are Aaa, Aa, A Baa, Ba, B and C. Finer numerical distinctions, such as Baa1 etc are ignored
for the purposes of this analysis, and we also merge Caa, Ca and C into a single grade (C) due
to smaller numbers of observations within these grades. Here, we present results from the latter
analysis; the results of the retail analysis are very similar in character. One difference is that
the retail portfolio is very much more mobile and larger (by several orders of magnitude), so
almost all transitions are observed in a month. For the smaller corporate portfolio we therefore
use a longer time period (a five-year transition matrix, over 2006-11) to exhibit a similar range
of observed transitions. It is the analysis of this matrix we describe initially, and use to motivate
further developments.

One might perform formal statistical goodness-of-fit analysis, either by conventional significance
tests, or by comparing a fitted model with the saturated (unstructured) model for the transition
matrix under study using the Akaike Information Criterion (AIC) or Bayes Information criterion
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(BIC). Initially, however, we here adopt a less formal, graphical, assessment. From (4), we have

g−1(qij) =
1

σi
αj −

µi
σi
. (5)

To assess the goodness-of-fit of (4) for a given link g, we plot, for each row i of the transition
matrix, g−1(q̂ij) against α̂j where

q̂ij =

∑j
k=1 xik∑D
k=1 xik

are the empirical cumulative transition probabilities and α̂j are the maximum likelihood esti-
mates of the threshold parameters, obtained by maximising the log-likelihood

`(α, µ, σ) =
∑
i,j

xij log

(
g

(
αj − µi
σi

)
− g

(
αj−1 − µi

σi

))
.

We use the R package ordinal for maximum likelihood estimation for model (4); see Christensen
(2012) for details. If the model fits, then we should observe a series of approximately straight
lines with gradient 1/σ̂i and intercept −µ̂i/σ̂i. If the conventional cumulative link model (3) fits,
then those lines will be parallel. Figure 2 presents this assessment for the probit and logistic link
functions for the five year (2006-11) transition matrix, where we have collapsed the A grades into
a single category, to make the visual representation clearer. It is immediately apparent that the
straight lines (derived from the maximum likelihood estimates for µ and σ) do not fit the observed
data well. The logistic is somewhat better than the probit, which together with the ‘S’-shape
of the empirical curves suggests that a heavier tailed link function might be more appropriate.
In Figure 3, we present the equivalent graphical summary for a link based on the distribution
function of a Student-t distribution with 2.65 degrees of freedom. (The value 2.65 is chosen to
optimise the fit; see Section 3 for details.) The empirical curves are generally closer to straight
lines indicating a superior fit, although we note that the gradients differ between the rows, so
the scale-varying model (4) is required. One can also perform a formal goodness-of-fit test of
the logistic, probit and t-link models. The p-values for log-likelihood ratio tests comparing these
three models against the saturated alternative are 0.0007 (logistic) 0.0000 (probit) and 0.5124
(t-link). This indicates a failure to fit of logistic and probit models, but an adequate fit of the
t-link model, suggesting that the main failure of the logistic and probit models is in the shape
of the link function rather than in other aspects (such as the assumption of a common set of
threshold parameters). In the next section we discuss a possible justification for the t-link and
describe our approach for fitting a t-link model to a credit grade transition matrix.

3 The cumulative t-link model

Albert and Chib (1991) propose the use of a cumulative t-link model for ordinal data, where g
in (4) is the distribution function of a standard Student-t distribution. This provides a family
of link functions, depending on the degrees of freedom parameter ν of the t distribution. In the
limit as ν tends to infinity, the t-link model converges to the probit model (as the t distribution
converges to normality). Ntzoufras et al (2003) investigated the t-link model with unknown
degrees of freedom ν. Applications of t-link modelling for ordinal data include the genetic
analysis of Kizilkaya et al (2003).

For finite degrees of freedom, the t distribution is heavier tailed than the normal, admitting more
extreme realisations. The left hand panel of Figure 2 indicates that a heavier-tailed link than
probit is required for this transition matrix. The standard logistic distribution is heavier tailed
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Figure 2: Goodness-of-fit of the cumulative link model to 5-year transition matrix for probit
link (left panel) and logistic link (right panel). The straight lines represent the thresholds for
each row (starting grade), as fitted by maximum likelihood.

than the standard normal, so the right hand panel of Figure 2 exhibits a better fit, but it seems
that further adjustment is required. Albert and Chib (1991) suggest that the standard logistic
is well-approximated by the t8 distribution, and it has a coefficient of kurtosis approximately
equal to that of a t9 distribution. We have found that, for cumulative link models the fit of the
logistic link (proportional odds model) compares with the fit of the t-link model for degrees of
freedom between 8 and 12. Hence, the right hand panel of Figure 2 illustrates that a t-link with
ν < 8 may be most appropriate, an observation confirmed by the superior fit of the t-link with
ν = 2.65, exhibited in Figure 3.

We use maximum likelihood to find the best degrees-of-freedom for the t-link. For any degrees
of freedom ν, the maximum likelihood estimate for the parameters (α, µ, σ) of (4) is obtained
by maximising the log-likelihood

`(α, µ, σ, ν) =
∑
i,j

xij log

(
Fν

(
αj − µi
σi

)
− Fν

(
αj−1 − µi

σi

))
(6)

as a function of (α, µ, σ) where Fν is the distribution function of a standard tν distribution.
We denote the corresponding maximising values as (α̂(ν), µ̂(ν), σ̂(ν)). The profile log-likelihood
function for ν,

`p(ν) ≡ `(α̂(ν), µ̂(ν), σ̂(ν), ν)

can then be plotted, and the maximising value of ν identified. This is arguably more cumbersome
than simply maximising directly over (α, µ, σ, ν), but we find the profile log-likelihood to be
informative about the sensitivity to mis-specification of the link function. In Figure 4, we
present the profile log-likelihood for the 2006-11 transition matrix analysed in Figures 2 and 3.
The profile log-likelihood can be seen to be maximised at ν̂ = 2.65, with a steep drop-off, for
values of ν < ν̂ and a more gradual decline for ν > ν̂. A 95% confidence interval for ν can be
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Figure 3: Goodness-of-fit of the cumulative link model to 5-year transition matrix for the t link
with 2.65 degrees of freedom. The straight lines represent the thresholds for each row (starting
grade), as fitted by maximum likelihood.

derived as
ν ∈ C = {ν : 2 (`p(ν̂)− `p(ν)) < 3.84}

which is (2.08, 3.52) here. In particular, there is strong evidence in favour of a t-link with low
(about 3) degrees of freedom, over the logistic or probit links which fit significantly worse.

The apparent superiority of the t-link over the logistic and, in particular, probit link raises the
question of why a heavy-tailed link, corresponding to a heavy-tailed latent asset value distri-
bution seems to be required. In Section 1, we described how a cumulative probit model was
approximately equivalent to a structural model for a latent asset-value variable with independent
normally distributed increments. Here, the model is fitted to aggregate data, so the correspon-
dence is valid under the assumption that the asset value increments in the population can be
modelled as marginally identically distributed normal variables. The assumption of marginal
identical normal distribution applies even if individual asset value increments have different
means λk (or equivalently that the drift parameter in the individual asset value processes is
different) provided that the mean (drift) parameter λk is normally distributed in the population
(with mean λ), However, this is not the case if the population of obligors is heterogeneous with
respect to the variance of individual asset value increments. Then, the marginal distribution is
a scale mixture of normals. For a discussion of normal mixture models for credit defaults, see
McNeil et al (2005, Chapter 8). The most tractable normal scale-mixture model is where the
individual obligor asset increment variances are assumed to have an inverse chi-squared distri-
bution in the population. For an individual obligor, k, this implies that the latent asset-value
process {Zkt} follows

Zk t+1 |Zkt = z ∼ N(z + λ, τ2k )
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Figure 4: Profile log-likelihood for the degrees of freedom parameter ν for a cumulative t-link
model. The maximum likelihood estimate is ν̂ = 2.65, with a 95% profile likelihood confidence
interval (2.08, 3.52) (displayed as vertical dotted lines). The maximised likelihoods for the probit
(ν →∞) and logistic (ν ≈ 8) links are also displayed.

where the population distribution of the individual obligor asset increment variances, τ2k , is

σ2

τ2k
∼ χ2

ν .

Then, the (discretely observed) marginal asset value increment process is

Zk t+1 − (z + λ)

σ
|Zkt = z ∼ tν .

Hence, there is a sound theoretical basis for using a t-link model for a credit-grade transition
matrix. Note that the marginal process is no longer independent in time, as the shared (un-
observed) τ2 across time for each obligor induces dependence in the individual series. In other
words, although, for example, Zt+1 − Zt and Zt − Zt−1 are conditionally independent given τ2,
they are not conditionally independent given σ2 as marginalisation over the inverse chi-squared
distribution of τ2 induces correlation in the magnitude of the increments (increments of large
absolute value are associated with large values of the unobserved asset increment variance τ2k ).

4 Further analysis

We fitted the t-link model to our credit card portfolio (monthly transitions with D = 12) and
to our artificially created portfolio of corporate assets (annual transitions with D = 8). In both
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cases, we found that the likelihood was maximised for degrees of freedom, ν, between 1.5 and 4
across the set of transition matrices analysed. Figure 5 displays how the optimal ν varies as a
function of the starting year for each transition.
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Year
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 (

ν)

Figure 5: Maximum likelihood estimate ν̂ for the degrees of freedom parameter of a cumulative
t-link model for a 1-year transition matrix, plotted against starting year. The vertical lines
represent 95% confidence intervals, based on profile likelihood.

We also investigated how the variability in ν̂ compares with the variability in marginal default
rate in the portfolio across time. Figure 6 displays the time series of 1/ν̂, superimposed over
the time series of the (empirical) probability of flow to default. It is interesting to note that
1/ν̂ is higher, representing a greater portfolio heterogeneity in years where the default rate
is higher, and correspondingly troughs in default rate correspond to the periods of greatest
portfolio homogeneity.

Goodness-of-fit of the cumulative t-link model can be evaluated by comparing it directly against
the saturated (unstructured) model which simply models the rows of each transition matrix
as a set of unrelated unconstrained discrete probability distributions over the sample space
{1, . . . , D}. Model comparison is based on the log-likelihood ratio statistic

L = 2 (`(α̂, µ̂, σ̂, ν̂)− `S(p̂))

where ` is given by (6),
`S(p) =

∑
i,j

xij log pij

and
p̂ij =

xij∑D
k=1 xik

.

A formal log-likelihood ratio comparison of the cumulative link and saturated models, rejects
the former in favour of the latter when L is too large as calibrated under the null distribution χ2

d,
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Figure 6: Maximum likelihood estimate 1/ν̂ for the inverse degrees of freedom parameter of a
cumulative t-link model for a 1-year transition matrix, plotted against starting year, together
with the marginal default rate, also plotted against starting year (y-axis suppressed).

where the degrees of freedom is the difference in the dimensionality of the parameter spaces. For
the scale-varying cumulative t-link model (4) for a D ×D transition matrix with an absorbing
state (D) there are (D − 1) ordinal probability distributions to estimate, corresponding to the
(D−1) possible non-default initial states. A saturated model for each of these D-category ordinal
probability distributions involves estimating (D−1) free probabilities. Hence the dimensionality
of the saturated model is (D − 1)2. For our cumulative link model, the free parameters are the
D− 1 thresholds, {αj , 1 ≤ j < D}, the row-specific mean and variance parameters {(µi, σ2i ), i >
1} and the degrees of freedom ν. Hence the degrees of freedom for our cumulative t-link model
is

d = (D − 1)2 − ((D − 1) + 2(D − 2) + 1)

= (D − 2)(D − 3)− 1.

Alternatively, one can compare the models using the AIC or BIC which prefer the cumulative
link model to the saturated model when L < 2d and L < d log n respectively, where n is the
sample size. These approaches are arguably preferable for transition matrix analysis where the
matrices under analysis may be sparse (as is the case here).

Figure 7 displays the log-likelihood ratio statistic for each of the 25 1-year transition matrices,
together with the thresholds for comparison between the cumulative link model and saturated
model using both the likelihood ratio test and AIC. Where the threshold is exceeded the sat-
urated model is preferred. The threshold for BIC is not displayed, as it exceeds 200 in every
year. Hence, BIC strongly favours the cumulative link model, AIC almost always favours the
cumulative link model (except 2000, 2002), and the likelihood ratio test results are more mixed,
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with the saturated model preferred in 9 of the 25 years. Given the reservations about the likeli-
hood ratio test in this analysis, described above, we are happy to conclude that the scale-varying
cumulative t-link model fits these transition matrices well, in comparison with the unstructured
alternative. Although we do not present the results here, the scale-varying cumulative t-link
model is also preferred over simpler alternatives, such as the constant-scale model (3) or models
with logistic or probit link functions.
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Figure 7: Maximised log-likelihood for a cumulative t-link model for a 1-year transition ma-
trix, plotted against starting year. The thresholds for comparison against the saturated (un-
structured) model are also displayed when comparison is based on AIC and likelihood ratio
chi-squared.

5 Conclusions and further work

When modelling a portfolio credit grade transition process, natural heterogeneity between the
obligors comprising the portfolio makes a heavy-tailed link such as Student-t, attractive when
considering a cumulative link model. Our experience, with both corporate and retail portfolio
data, suggests that degrees of freedom ν between 2 and 3 may be appropriate, but that the con-
servative approach is to choose something higher in this range, as the consequences in terms of
goodness-of-fit are more serious for underspecification of ν than (mild) overspecification. How-
ever, Figure 6 suggests there may be scope for using a varying degrees of freedom, modelled in
conjunction with other cumulative link model parameters. One possibility would be to consider
a joint model where there is a direct relationship between ν and other model parameters, or
where ν and other model parameters co-vary as a function of explanatory variables, such as
relevant macroeconomic covariates.

For a complete forecasting model, it is necessary to augment this model for individual historical
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transitions so that future transition dynamics can be predicted. This typically requires further
modelling assumptions. For example, one might make the further assumption that the credit
grade migration process is Markov, which implies that, for any t < u < v

P (t, v) = P (t, u)P (u, v).

Hence, under the Markov assumption, it is only necessary to forecast transition matrices between
consecutive time points. [With the further assumption, of time-homogeneity, under which P (t, u)
is a function of (t − u), then only a single transition matrix forecast is necessary, but such
an assumption ignores the natural response of the grade migration process to the underlying
economic cycle]. The Markov model may also be sensitive to portfolio heterogeneity, in that a
plausible Markov model at individual obligor level, with different underlying parameters may
not be well approximated by assuming the population-averaged parameters obtained from a
portfolio-level analysis. Malik and Thomas (2012) for retail credit grade migration and Lando
and Skødeberg (2002) for corporate data find significant evidence of non-Markov behaviour in
credit grade transition. Incorporating the t-link into a non-Markov model is the subject of
ongoing research.

Finally, we showed in Section 4 that the cumulative t-link model fits the corporate portfolio data
well. For some retail portfolios we have examined, the t-link model, although vastly superior
to links such as logistic and probit with lighter tails, does not always compare well with the
saturated alternative, even for a comparison using BIC. The issue seems to be that there is a
natural skewness in the data with transitions to better quality credit grades exhibiting longer
tails than transitions to inferior grades. Preliminary investigation has shown that this can be
effectively modelled using a skew t-distribution. Various families of skew-t are available. We
have found that a cumulative link model where the link is based on the distribution function
of the skew-t distribution of Azzalini and Capitanio (1985) provides a superior fit to the data.
On the other hand, Aas and Hobæk Haff suggest a skew t which is a member of the generalised
hyperbolic family (see also McNeil et al, 2005, Section 3.2.3). The characterisation of the
generalised hyperbolic as a mixture of normals suggests that a cumulative link model for a
portfolio transition matrix, based on this kind of skew t latent asset value variable, can be
motivated as an inhomogeneous mix of Merton models for individual obligors. This is also an
area of ongoing research.
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