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Abstract: A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of
long-time averages of key flow quantities is presented. The key idea, first outlined in Ref. [1], is that the difficulties of treating
and optimising long-time averages are relaxed by shifting the analysis to upper/lower bounds for minimisation/maximisation
problems, respectively. In this setting, control design reduces to finding the polynomial-type state-feedback controller that
optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller
itself and a tunable polynomial function. A numerically tractable approach, based on Sum-of-Squares of polynomials techniques
and semidefinite programming, is proposed. As a prototypical example of control of separated flows, the mitigation of the
fluctuation kinetic energy in the unsteady two-dimensional wake past a circular cylinder at a Reynolds number equal to 100,
via controlled angular motions of the surface, is investigated. A compact control-oriented reduced-order model, resolving the
long-term behaviour of the fluid flow and the effects of actuation, is first derived using Proper Orthogonal Decomposition and
Galerkin projection. In a full-information setting, linear state-feedback controllers are then designed to reduce the long-time
average of the resolved kinetic energy associated to the limit cycle of the system. Controller performance is then assessed in
direct numerical simulations.
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1 Introduction

The development of feedback control strategies to ma-

nipulate the natural evolution of a fluid flow is one of

the key enablers for future advances in efficient transporta-

tion, energy generation and distribution, and in many other

technologically-relevant industrial sectors. However, despite

recent progress in understanding key physical processes and

mechanisms in turbulent flows, advances in the ability to ef-

fectively control the spatio-temporal evolution in complex

geometries have remained more elusive, owing to the non-

linear, multi-scale nature of turbulent motion.

In this paper a novel feedback control design paradigm for

fluid flows is introduced, in an effort to address some of the

outstanding difficulties. The methodology applies to finite-

dimensional, reduced-order, Galerkin-type models of incom-

pressible fluid flows and allows designing polynomial-type

state-feedback controllers of arbitrary degree. The nonlin-

earity of these systems, i.e. a quadratic term which conserves

and redistributes energy across the states, can be handled di-

rectly. Hence, key nonlinear processes and mechanisms can

be taken into account, if not exploited.

The long-term behaviour of the system, crucial to describe

the developed state of natural instabilities that arise progres-

sively as the Reynolds number increases, is central in this

paradigm, as design targets time averages of a given cost

function defined over an infinite horizon. To overcome the

objective difficulty of treating long-time averages in non-

linear dynamics, the analysis is shifted to the problems of

estimating a bound on the average, rather than considering
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the average itself, as first proposed in Ref. [1]. The design

problem is then recast into determining the controller that re-

duces/increases the bound, although the reduction/increase

of the average itself cannot be formally guaranteed. The

bound estimation and optimisation problems are solved by

leveraging recent algorithmic advances in Sum-of-Squares

of polynomials (SOS) methods and semidefinite program-

ming, [2–4]. These advances have emerged as a promising

and numerically tractable basis to solve many computation-

ally hard problems in control for systems whose dynamics

are described by polynomial functions, e.g. [5–7]. The ap-

plication of such methods to various problems in fluid dy-

namics, from stability analysis to bounds on time averaged

quantities, is discussed in Ref. [1].

The mitigation of large-scale velocity fluctuations in the

unsteady wake past a circular cylinder at a Reynolds num-

ber equal to 100, via controlled angular motions of the sur-

face, is numerically investigated. This flow has established

as a paradigmatic benchmark to investigate the dynamics and

control of the flow past a bluff-body, as exemplified by the

large variety of control strategies that have been proposed,

as recently reviewed in Ref. [8].

In section 2 the design paradigm is introduced. The nu-

merical formulation used to solve the governing equations

of the fluid flow is then presented in section 3, along with

the model order reduction strategy, based on Proper Orthog-

onal Decomposition and Galerkin projection, [9]. Linear

state-feedback controllers are then designed on this control-

oriented model and performance is assessed on both the

model and in direct numerical simulation of the fluid flow,

in a full-information setting. Conclusions are summarised in

section 5.



2 The control design method

2.1 Sum-of-Squares of polynomials

An brief introduction to SOS methods is provided here for

the sake of completeness. More details can be found in the

cited references. A multivariate polynomial f(a), a ∈ R
N

is a SOS, if there exist polynomials f1(a), · · · , fm(a) such

that

f(a) =

m
∑

i=1

f2
i (a). (1)

If f(a) is a SOS then f(a) ≥ 0, ∀a. In the general multi-

variate case, however, f(a) ≥ 0 ∀a does not necessarily im-

ply that f(a) is SOS. While being stricter, the condition that

f(a) is SOS is much more computationally tractable than

non-negativity, [4]. At the same time, practical experience

indicates that in many cases replacing non-negativity with

the SOS property leads to satisfactory results.

2.2 Problem statement

We consider finite-dimensional dynamical systems given

as a set of nonlinear, coupled ordinary differential equations,

as
da

dt
= f(a, γ) (2)

where f : RN × R → R
N is assumed to be a polynomial

function in the state variables vector a ∈ R
N and in the

control γ ∈ R, which we assume in this paper to be a sin-

gle scalar quantity. This is the formulation that arises from

Galerkin projection of the governing Navier-Stokes equa-

tions for an incompressible flow onto a finite-dimensional

orthonormal set of basis functions, [10]. For such systems

the vector field f has linear and quadratic terms, and the lat-

ter conserves energy for a large class of boundary conditions

of the original equations.

For system (2) it might be of interest to, e.g., reduce the

value of some key flow quantity Φ(t), e.g. drag or energy dis-

sipation rate, referred to as the cost, which we assume can be

expressed as a non-negative polynomial function of the state

variables and of the control, i.e. Φ(t) = Φ(a(t), γ(t)). For

systems exhibiting turbulent behaviour, long-time statistics

of Φ(t), for example long-time averages,

Φ = lim
T→∞

1

T

∫ T

0

Φ(a(t), γ(t))dt, (3)

are of primary interest, where a(t) is the solution of (2), with

γ = γ(t) and for some initial condition. Denoting with Φ
0

the long-time averaged cost without control, the objective

is to design a polynomial-type state-feedback controller of

degree dg

γ(t) = g(a(t)), (4)

g : R
N → R, that manipulates the system (2) such as to

reduce the long-time averaged cost to Φ
∗

. We assume at this

point that complete information on the instantaneous state

of the system is available. Hence, we avoid the necessity of

designing an observer which would be required in practical

applications, but it is out of the scope of this paper, which

focuses on control design only.

Formally, control design is the optimisation problem

Φ
∗

=







min
g

Φ, s.t.

da

dt
= f(a, g(a)).

(5)

The non-convexity of (5), but most importantly the fact

that the minimisation of a long-time average is considered,

makes its solution rather difficult. The key step is that instead

of treating a long-time average directly, we shift the analy-

sis to an upper bound, i.e. a value C for which an algorithm

exists proving Φ ≤ C for system (2), where the equality

holds when the bound is tight. Then, instead of attempt-

ing to reduce the long-time average, we reformulate (5) into

the problem of designing a controller minimising the upper

bound, from C0, the bound on Φ
0
, to C∗, the bound on Φ

∗

.

This reads as

C∗ =







min
g

C, s.t.

Φ̄ ≤ C,
da

dt
= f(a, g(a)).

(6)

The hope is that under the action of such a controller, the

actual time-average Φ
∗

will also decrease, although this is

not guaranteed to happen in a general case.

2.3 Bounds estimation for uncontrolled dynamics

To derive an upper bound C0 we introduce a tunable poly-

nomial function in the state variables, V (a), of degree dV ,

containing unknown decision variables as its coefficients.

Assuming that the trajectories of the system (2) are bounded

in some set, the function V and its gradient are also bounded

as V is a polynomial. The total time derivative of V along

trajectories of the system,

dV (a)

dt
=

∂V

∂a
·
da

dt
= ∇aV (a) · f(a), (7)

is then also bounded for polynomial f , where ∇aV ,

∂V/∂a is the gradient of V with respect to the the coordi-

nates of the state space. Then, if a V and a C can be found

such that the following polynomial inequality

∇aV (a) · f(a) + Φ(a) ≤ C (8)

is satisfied for all a ∈ R
N , it can be shown that Φ

0
≤ C.

This is because the time average of the time derivative con-

tribution vanishes identically under the above assumption of

boundedness. Hence, the upper bound C0 can be obtained

by minimizing C over all possible polynomials V of a given

degree under the polynomial constraint (8), i.e. by solving

Φ
0
≤ C0 =







min
V

C s.t.

−
(

∇aV (a) · f(a) + Φ(a)− C
)

≥ 0

(9)

Because constructing a non-negative polynomial is a noto-

riously difficult problem, we replace the non-negativity con-

straint in (9) with an SOS constraint, such as to have

Φ
0
≤ C0

SOS =







min
V

C, s.t.

−
(

∇aV (a) · f(a) + Φ(a)− C
)

∈ Σ

(10)



where Σ is the set of all polynomials that have a sum-

of-squares decomposition. For a given C, the search for

the function V is numerically reformulated into a con-

vex semidefinite programme (SDP) using standard software

tools, [12, 13].

The bound estimation is performed by trial-and-error. For

a given C we try to find a V satisfying the constraint in (10).

If the resulting SOS decomposition satisfies a feasibility-

checking condition, see Ref. [14], we decrease C by a δC,

and repeat the trial, until such a V cannot be found.

Strengthening the non-negativity constraint to a SOS con-

straint adds conservativeness in the optimisation, in the sense

that, if one were able to solve (9), the upper bound C0 might

be, in principle, lower than the bound C0
SOS found by solv-

ing (10), hence the tightness of the obtained bound may not

be guaranteed. However, the SOS constraint is numerically

tractable, whereas the non-negativity one is not.

2.4 Bounds optimisation for control design

We now consider a tunable polynomial function V (a),
and assume initially that the system trajectories will remain

bounded under closed-loop control. The optimisation prob-

lem equivalent to (10) is now

Φ
∗

≤ C∗

SOS = (11)

{

min
V,g

C s.t.

−
(

∇aV (a) · f(a, g(a)) + Φ(a)− C
)

∈ Σ

where the minimisation of the upper bound is now performed

over all possible polynomials V and state-feedback polyno-

mial controllers g, for a given degree dV and dg , subject to

the numerically tractable SOS constraint similarly to (10).

The additional degrees of freedom associated to g can en-

able a further reduction of the bound, that is C∗

SOS < C0
SOS .

The system is never integrated in time; the bounds C0 and

C∗ solely depends on the analytic definition of the vector

field f , hence on the structure of the phase space. Because

the system’s attractors determine the long-term evolution,

hence the bound, one can see this design scheme as finding

the vector field induced by g(a) that reshapes the attractor of

the system such as to reduce favourably the long-time aver-

aged cost.

The bound optimisation problem is non-convex, because

one needs to optimise simultaneously the tunable function

V and the controller g, and so the tuning variables in V
are multiplied with those in g. Hence, the problem is not

directly reducible to a semidefinite programme and convex-

optimisation-based techniques cannot be readily applied. Al-

ternative iterative algorithms need to be used, e.g. [15] for

an overview. The main idea, that we have also used in this

paper is: first fix one subset of the decision variables (e.g.,

that of g in (11)) and solve the resulting linear SDPs in the

other decision variables (e.g., correspondingly, that of V in

(11)); in the next step, the other decision variables are fixed

and the procedure is repeated.

3 Application to a fluid flow

In this section the control design methodology described

in section 2 is applied to the problem of mitigating fully-

developed vortex shedding, i.e. the nonlinear dynamics of
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Fig. 1: Schematic of the configuration for the circular cylin-

der flow, with boundary conditions on the domain boundary.

the two-dimensional unsteady wake flow past a circular

cylinder at low Reynolds number, Re = 100. Flow manip-

ulation is performed by controlling the rotation rate of the

cylinder surface.

3.1 Numerical setup

The formulation used to solve the flow problem is based

on the Navier-Stokes momentum and continuity equations

for a two-dimensional incompressible flow of a viscous fluid

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (12a)

∇ · u = 0, (12b)

where p is the reduced pressure and u = ui + vj is the ve-

locity vector defined on a two-dimensional Cartesian space

x = xi + yj, centred on the centre of the cylinder, located

at x = (0, 0), and oriented such that the x axis is aligned

with the free stream, as sketched in the schematic of figure

1. Normalisation of all variables and of the governing equa-

tions, resulting in system (12), is done using the cylinder

diameter and the free stream velocity. This yields a defini-

tion of the Reynolds number as Re = u∞D/ν, where D is

the cylinder diameters, u∞ is the free stream velocity and ν
is the kinematic viscosity of the fluid.

The Navier-Stokes problem (12) is numerically solved on

a triangular unstructured mesh with a finite volume formula-

tion provided by the open source software OpenFOAM, [16].

The computational domain extends for 10 and 20 diameters

upstream and downstream of the cylinder, respectively, and

spans a total vertical size of 20 diameters. The boundary

conditions associated with the problem are also sketched in

figure 1. More details can be found in Ref. [17].

In the following we will make use of a stan-

dard inner product between vector fields, defined as

〈v,w〉 =
∫

Ω
v ·w dΩ, where Ω is the flow domain.

3.2 Reduced Order Modelling and Proper Orthogonal

Decomposition

Spatial discretisation of equation (12), an infinite dimen-

sional system described by partial differential equations

(PDEs), leads formally to a finite-dimensional ordinary-

differential-equation representation of the dynamics. How-



ever, the extremely large dimension of such a system re-

sults in numerically intractable problems, even for moder-

ately complex flows. Model order reduction, whereby the

dynamics of a large system are approximated by a model of

a handful of degrees of freedom, is used in this paper to al-

low a numerical solution of the control problem.

We adopt a standard Galerkin projection method, whereby

the full dynamics are projected onto a low-dimensional lin-

ear subspace, spanned by appropriately selected basis func-

tions, (see [9] for details). To begin with, the velocity vector

field is assumed to be approximated by the ansatz

uN (x, t) = u(x) + γ(t)uc(x) +

N
∑

i=1

ai(t)ui(x). (13)

Here, the full velocity field is decomposed into a solenoidal

steady base flow u(x) satisfying homogeneous boundary

conditions on the cylinder, a “control flow” γ(t)uc(x), [18],

used to lift the time-dependent inhomogeneous boundary

conditions on the oscillating cylinder surface and to include

control via the boundary in the dynamic model, and the

weighted sum of N solenoidal vector fields ui(x), the basis

functions, which are assumed to form an orthonormal set.

Note that, as a result of this decomposition, the actual con-

trol input is γ, i.e. the normalised tangential velocity of the

cylinder surface.

In this work we used the snapshot version of Proper Or-

thogonal Decomposition (POD), [19] to identify the low-

dimensional subspace. The motivating observation for the

choice of POD in the current context is that when the snap-

shots used in the POD algorithm are obtained by sampling

the system after the developed regime has established, the

basis functions describe approximately the axis of inertia of

the attractor of the system. This feature is extremely impor-

tant when modelling the long-term behaviour of the system

is of ultimate interest, such as in the present case, where the

focus is on the dynamics, (bound estimation), and control,

(bound optimisation), of the developed regime.

Our modelling procedure follows closely that of Ref. [11].

With the idea of exciting transient flow structures and ob-

taining a richer snapshot set, the velocity vector field is sam-

pled from a direct numerical simulation in which the angular

motion of the cylinder is driven by an actuation signal with

bandwidth mostly around the vortex shedding frequency.

The time-dependent, inhomogeneous boundary condi-

tions on the cylinder are lifted from the snapshots by sub-

tracting, with appropriate amplitude, the control function

uc(x), a radially-symmetric, hence solenoidal, vector field,

with circumferential velocity decaying exponentially with

the radius, and with tangential velocity equal to one on the

cylinder surface. The arithmetic average of these snapshots,

u(x), is removed before applying the POD algorithm and it

is used as the base flow in (13).

As a compromise between computational cost and model

accuracy, we selected the first N = 9 POD modes, captur-

ing about 91% of the total fluctuation kinetic energy in the

snapshots. In addition, this model is augmented with a shift

mode, [20], a particular mode spanning the direction from

the steady base flow to the unstable, steady and symmetric

solution of (12).

Standard Galerkin projection is then performed by insert-

ing the expansion (13) in (12), and setting the inner prod-

uct with each of the modes in turn to zero. Neglecting the

small contribution arising from the projection onto the pres-

sure gradient field, as commonly done for this fluid flow,

e.g. [11, 20], results in the nonlinear system of first-order

coupled ordinary differential equations, the reduced-order

model (ROM):

dai
dt

= ci +
N
∑

j=1

Lijaj +
N
∑

j=1

N
∑

k=j

Qijkajak +mi

dγ

dt

+eiγ + biγ
2 +

N
∑

j=1

Fijajγ, i = 1, . . . N, (14)

where γ ∈ R is the control input, and a ∈ R
10 is the state

vector as in equation (2). Definitions of the coefficients

ci, Lij , Qijk,mi, ei, bi, Fij arising from the projection can

be found, for example, in Ref. [21]. Numerical time integra-

tion of the ROM is performed using a fourth-order Runge-

Kutta scheme with time step equal to 10−3.

The ten-mode reduced-order model obtained directly from

Galerkin projection is able to represent the dynamics of the

full-order system only over a short time scale, i.e. about one

shedding cycle, and the long-term behaviour is not correctly

represented. Furthermore, poor controllability of this com-

pact model was observed. As a result, a model calibration

scheme, following the work in Ref. [21], has been used to

ensure correct tracking of the uncontrolled limit cycle and a

better input-output behaviour.

3.3 Cost function

Similarly to previous works, [11, 22], in the present paper

the cost function to be reduced is the domain integral of the

turbulent kinetic energy of the velocity fluctuations resolved

by the ansatz (13), plus a penalisation on the control, i.e. the

quantity

Φ(a(t)) =
1

2
a(t)Ta(t) +Rγ2(a(t)). (15)

The penalisation factor R does not have an immediate phys-

ical meaning, but it is used as a design parameter as a means

to artificially limit the amplitude of the control.

4 Results

The long-time averaged cost (15) was calculated from

long numerical integrations of the ROM without control,

starting from several random initial conditions. All trajec-

tories converged to the same stable limit cycle and the asso-

ciated long-time averaged cost was Φ
0
= 3.07.

Linear state-feedback controllers, i.e. dg = 1, have been

then calculated, for dV = 4, and for different penalisa-

tion factors R. Tests for dV = 6 showed no difference,

as all bounds are tight to the actual average from simu-

lation with dV = 4. For linear controllers, of the form

γ(t) =
∑N

i=1
kiai(t), it is possible to get rid of the term

midγ/dt in (14), by noting that dγ/dt =
∑N

i=1
kidai/dt



Fig. 2: Performance of linear feedback controllers as a func-

tion of the penalisation factor R in closed-loop simulation

of the ROM. Blue line and crosses (×): upper bound of the

long-time averaged cost; open squares (�): long-time aver-

aged cost from simulation of the ROM; closed circles ( ):

long-time average of the resolved fluctuation kinetic energy.

The horizontal line denotes the time average/upper bound for

the uncontrolled system.

and using the state equation to get

dγ/dt =
1

1−×
N
∑

l=1

klml

N
∑

i=1

ki (16)

×
(

ci + Lijaj +Qijkajak + eiγ + biγ
2 + Fijajγ

)

,

which is the plugged back in the state equation (14). For

nonlinear controllers, another approach is necessary, as the

denominator in (16) would contain an expression in the state

variables, making the resulting system non-polynomial in

the state variables. Nevertheless, it is worth pointing out that

even though the feedback is a linear function of the state, the

nonlinear dynamics of the ROM are completely taken into

account in the design.

4.1 Feedback control on ROM

In figure 2 the control performance in closed-loop simula-

tion of the ROM is summarised. Long-time averages of the

cost are computed from numerical simulations started from

an initial condition on the ROM’s limit cycle and by dis-

carding initial transients as control is activated. The figure

reports the upper bound C∗, (blue line and crosses), the ac-

tual time average Φ
∗

from simulation, (open squares), and

the long-time average of the resolved fluctuation kinetic en-

ergy aTa/2, (closed circles), with the difference between

the two latter quantities being the average cost of control.

The horizontal line is the upper bound for the uncontrolled

system, which is tight to the actual time average from nu-

merical integration of the ROM. Control design successfully

reduces the upper bound. The reduction is larger for small

R, as larger control magnitudes are allowed. The maximum

reduction of the bound is relatively small, i.e. about 6% for

R = 50; larger reduction can be found for smaller penalisa-

tion factors, although these controllers performed poorly in

DNS. Interestingly, a significant part of the total time aver-

aged cost comes, artificially, from the control penalisation,

especially at large values of R.

4.2 Feedback control in DNS

In direct numerical simulation, at the beginning of the k-th

time step at time tk, the current system state is obtained by

projecting the POD modes on the current fluctuating velocity

field as

ai(tk) = 〈ui(x),u(x, tk)− u(x)− γ(tk−1)uc(x)〉. (17)

The new control action γ(tk) is calculated and it is kept con-

stant along the time step tk+1− tk, in a zero-order hold fash-

ion.

Controller effectiveness in direct numerical simulation is

reported here in terms of the total power coefficient, a physi-

cally meaningful quantity that expresses the normalised total

power spent to sustain the motion of the cylinder, [23]. It is

the sum of the power PD = Du∞ spent to move the cylin-

der at velocity u∞ against the drag force D and the control

power PM = Mθ̇ required to rotate the cylinder at angular

speed θ̇, against the viscous torque M exerted by the fluid

on the cylinder.

The normalised total power coefficient reads as

CP =
PD + PM

1/2ρu3
∞
D

= CD + 2CMγ, (18)

where CD and CM are the coefficients of drag and moment,

and γ is the normalised surface velocity as introduced above.

All actions on the body are computed by appropriate integra-

tion of the pressure and viscous forces around the cylinder

surface, and are expressed per unit span.

Time histories of the total power coefficient obtained from

direct numerical simulation of the closed-loop system, are

reported in figure 3, for R = 100, top panel, and R = 150,

bottom panel, with red dashed lines. The drag coefficient

CD, which does not include the control power, is also re-

ported as a black solid line. The difference between the two,

i.e. CP −CD, is the normalised energy per unit time and unit

span required to actively control the flow.

For R = 150, the SOS controller successfully reduces

both the total power and drag coefficients. Analyses not

reported here show that the both the kinetic energy of the

velocity fluctuations resolved by the ansatz (13) as well as

the total fluctuation kinetic energy are reduced by about 8%.

Physically, control mitigates vortex shedding by interfering

with the periodic generation and shedding of vortical struc-

tures in the near wake, resulting in a restructuring of the en-

tire wake flow. The time averaged percentage drag reduction,

normalised with the drag coefficient of the uncontrolled flow,

is 4.6% for this case. This value is not as high as in previous

control studies on this same configuration. Using optimal

control theory, drag reductions of 7% at Re = 75 and 15%

at Re = 150, were achieved in [24]. However, these authors

used the Navier-Stokes equations directly for control design

in a predictive setting, and not a reduction thereof.

Interestingly, the long-term cost of the control is ex-

tremely small, with peaks of CP −CD not exceeding 0.002.



Fig. 3: Time histories of the total power and drag coeffi-

cients, CP (t) and CD(t), obtained from closed-loop direct

direct numerical simulations, for R = 150, top panel, and

R = 100, bottom panel.

Thus, the control strategy identified is very efficient. Fol-

lowing [24], the control efficiency can be quantified by the

power saving ratio PSR = (CP
0
−CP

∗

)/2CMγ
∗

, i.e. the ra-

tio between the power saved and the power spent for control,

in a time-averaged sense. The PSR is remarkably large, and

equal to about 75 for R = 150. For comparison, in Ref. [24],

the authors obtained a PSR equal to 51 at Re = 150, and 122

at Re = 75.

For R = 100, in the initial stages after activation of con-

trol, the drag and power coefficients decrease significantly.

The drag minima can be as low as 1.30, suggesting that the

control design methodology is indeed effective. The drag co-

efficient associated with the steady laminar solution is, in our

setup, 1.14. As a result, the drag coefficient reduction, com-

pared to the drag associated to vortex shedding, [24], can be

instantaneously as large as 38%. Nevertheless, performance

is quickly lost after about 30 time units, and both quanti-

ties exhibits a characteristic low-frequency periodic varia-

tion, with CP showing large spikes due to large control ac-

tivity. Further analyses of the flow dynamics show that such

a loss of performance is associated to an instability of the

controlled wake that the ROM, hence the control design, is

not able to describe.

5 Discussion and conclusions

The main contribution of the present paper is the devel-

opment of a novel feedback control design paradigm for

Galerkin-type models of incompressible fluid flows.

From an algorithmic perspective, this paradigm is

grounded on computationally efficient approaches to con-

struct positive polynomial functions, commonly known as

Sum-of-Squares methods, that recast the search to the for-

mulation and solution of semidefinite programmes.

The key distinguishing features are that i) the long-term

behaviour of the system is central in the design, as long-time

averages of key flow quantities can be optimised by control

design, and that ii) the nonlinearity of turbulent fluid flows,

responsible of key physical processes, is taken directly into

account in the design process.

As a benchmark, the problem of mitigating the kinetic

energy of velocity fluctuations in the unsteady wake of a

circular cylinder at Re = 100, via controlled rotary mo-

tions of the surface, in a full-information state feedback ar-

rangement, has been investigated. A compact POD-Galerkin

reduced-order model of the actuated wake flow was first de-

rived. Linear state-feedback controllers were then derived.

The feedback system was energetically efficient, as the max-

imum power saved per unit control power spent was around

75. For low values of the penalisation factor, the greater

control input resulted in better performance just after activa-

tion of control, but eventually performance worsened signif-

icantly. This is not a limitation of the present design method,

but is it rather driven by the POD-Galerkin modelling strat-

egy used, which is known to lack robustness to actuation.

We expect that improvements in the modelling strategy will

result in increased performance in direct numerical simula-

tion.
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