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ABSTRACT

We analyse a 2* table reporting the presence or absence of alcohol dependence and
depression in both members of 597 pairs of female monozygotic twins. The statistical
analysis is based on a latent class model, formulated as a 2x2 table and parametrized by
two marginal univariate genetic dispositions and the dependence ratio between these
dispositions. The final model, selected after some empirically motivated simplifying
assumptions are adopted, has six parameters and fits the data very well. The
identifiability and stability of the final model is studied by contour plots of profile log-
likelihood functions with two arguments. Numerical results are compared to those
obtained when the measure of association between binary responses is the odds ratio
rather than the dependence ratio. The conditional probability of alcohol dependence
given the disposition for it is approximately 1/3, while the corresponding probability of
depression is approximately 2/3. The association between these two latent dispositions is
strong, the dependence ratio being approximately 3. An extended model, defining
measures of heritability and similarity, for analysing, simultaneously, data on

monzygotic and dizygotic twins is proposed.
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SUMMARY. We analyse a 2% table reporting the presence or absence of al-
cohol dependence and depression in both members of 597 pairs of female
monozygotic twins. The statistical analysis is based on a latent class model,
formulated as a 2 x 2 table and parametrized by two marginal univariate
genetic dispositions and the dependence ratio between these dispositions.
The final model, selected after some empirically motivated simplifying as-
sumptions are adopted, has six parameters and fits the data very well. The
identifiability and stability of the final model is studied by contour plots of
profile log-likelihood functions with two arguments. Numerical results are
compared to those obtained when the measure of association between binary
responses is the odds ratio rather than the dependence ratio. The conditional
probability of alcohol dependence given the disposition for it is approximately
1/3, while the corresponding probability of depression is approximately 2/3.
The association between these two latent dispositions is strong, the depen-
dence ratio being approximately 3. An extended model, defining measures of
heritability and similarity, for analysing, simultaneously, data on monzygotic
and dizygotic twins is proposed.

KEY WORDS: Contour plot; Dependence and Odds ratio; Dizygotic and
Monozygotic twin; Genetic disposition; Cohen’s kappa; Moment parame-
terization.

1. Presentation and Inspection of the Monozygotic Twin Data

Drton and Richardson (2005) present the data reproduced below as Table 1,
referring to Kendler et al. (1992) where, however, these data are not pub-
lished. Table 1 is a cross-classification of alcohol dependence and depression
for 597 female monozygotic twin pairs in 2* = 16 different categories. For
twin member i, where i = 1,2, denote by A; = 1/0 the presence (1) or absence
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(0) of alcohol dependence and denote by D; = 1/0 the presence/absence of
depression. We use consistently the following ordering of these four binary
responses: (Aj, As, Dy, Ds), so that, for example, #(0,0,1,1) = 51, indicates
that there are 51 twin pairs in which neither member has alcohol dependence,
but both have depression.

Table 1
Observed counts of 597 female monozygotic twin pairs classified by
concordance/discordance with respect to alcohol dependence and depression.

D=1 D=0
Dy=1 Dy=0 Dy=1 Dy=0
Ai=1 Ay =1 7 4 2 3
Ai=1 Ay =0 9 8 4 8
Ai=0 Ay =1 10 7 9 15
Ai=0 Ay =0 o1 92 80 288

The univariate relative frequencies, denoted ji, are from Table 1,
fa, = 0.075, fig, = 0.095, fip, = 0.315, [ip, = 0.288,

indicating that depression is much more common than alcohol dependence.
The relative frequencies for twin 1 and twin 2 are closely similar, both for al-
cohol dependence and for depression. Since there is no indication in Kendler
et al. (1992) that the numbering of the twins in a pair carries any informa-
tion, we will in all modelling assume marginal homogeneity within pairs, i.e.,
E(A)) = E(Ay) = pa and E(D;) = E(Ds) = up.

Regarded as a four-variate binary response, the vector (Aj, Az, Dy, Ds)
has the unusual and challenging feature, that the bivariate marginal distri-
butions (Ay, Dy) and (As, Ds) refer to the same individual, but for different
variables, i.e., co-morbidity, while (A1, As) and (D, Ds) refer to the same
variable, but for different individuals, i.e., concordance.

For inspection of the six different marginal bivariate distributions of Table 1,
we use the dependence ratio of second order, defined, for A; and A, as
Taa, = E(A1As) /{E(A;)E(Ay)}, that is, the probability that both members
suffer from alcohol dependence divided by the same probability assuming
that A; and A, are independent. Ekholm et al. (1995) introduced the de-
pendence ratio; the most important features and comparisons with the more
familiar odds ratio are in Ekholm et al. (2003), and Ekholm (2003). The
dependence ratios for the six bivariate distributions, computed from the six
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marginal 2 x 2 tables of Table 1, are denoted by 7. Their numerical values
are listed below, with a note on what is constant and what is varying for the
bivariate distribution in question. For comparison the numerical values of
the odds ratio, denoted Y, are listed in parallel,

TayA, = 3.72, Xa,4, = 6.88, two twins, one problem: alcohol,
oD, = 142, Xp,p, = 2.29, two twins, one problem: depression,
Ta,p, = L1.70, Xa,p, = 2.56, two twins, two problems,

Ta,p, = L1.56, Xa,p, = 2.29, two twins, two problems,

Ta,p, = L1.98, Xa,p, =4.04, twin 1, two problems,

Ta,p, = L1.71, Xa,p, = 2.66, twin 2, two problems.

The dependence ratio, 7xy = 1 if and only if X and Y are independent.
If the association between X and Y is positive, then 7xy > 1, and if the
association is negative, then 0 < 7xy < 1. That 74,4, = 3.72 signifies that
the probability for both members of a monozygotic twin pair being alcohol
dependent is 272% higher than under independence. Note that 74,4, is by
far the highest of the six second order dependence ratios listed above. The
maximum possible value for 74, 4, is min{1/fi,, 1/fi4, }, which is 10.53. Sim-
ilarly, all the other five dependence ratios are well below their upper bound.
The upper bound of 7p, p, is 3.17. There is a clear indication that the asso-
ciation between twins is stronger for alcohol dependence than for depression.
We investigate this association by constructing a model with separate genetic
dispositions for alcohol dependence and depression.

The dependence and the odds ratio rank the six associations in the same
order, the odds ratio always being larger, which is a general result to which
we return in Section 4 (iii).

Note that both 74, p, and 74,p, are greater than 74, p, and 74,p,, even if
by only a narrow margin. This empirical observation motivates us to allow, in
the model, for the possibility that there is an individual effect in developing
alcohol dependence and depression, emanating from individual environmen-
tal experiences rather than from genetic dispositions.

2. Model for Monozygotic Twins

The model which we use for the statistical analysis of the data in Table 1 is
based on three assumptions.

Assumption 1: Each twin pair belongs to exactly one of four latent classes,

denoted by (a, d), (a,d), (a,d), (a, d), indicating presence in the following way:
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The probabilities for these four latent classes are expressed by three param-
eters: the marginal univariate probabilities v, and v, of the dispositions for,
respectively, alcohol dependence and depression, and the dependence ratio
between these two dispositions, £,;. The ensuing probabilities of the four
latent classes and their marginal sums are presented in Table 2

Assumption 2: We introduce four parameters, denoted «a, ¢, é and ),
defined, for 0 < a,6 < 1 and ¢, > 0, to depict the conditional probabilities
of the manifest responses given the latent classes:

pr(4; =1la) = pr(As =1la) = «, (1)

pr(A; =1la) = pr(4; =1la) = ¢a, (2)

pr(Dy=1|d) = pr(Dy=1ld) =4, (3)

pr(Dy =1]d) = pr(Dy = 1|d) = ¢0. (4)
Table 2

The bivariate probabilities that a monozygotic twin pair belongs to one of
four latent classes and the corresponding marginal probabilities for the
genetic dispositions.

Genetic dispositions
Alcohol Depression
dependence d d Sum
a VaVa€ad Va(1 — va€aa) Vo
a Vd(l _Vafad) 1_Va_Vd+Van€ad -,
Sum Vg 1-— Vg 1

Four features of equations (1) to (4) deserve comments:
(i) They imply marginal homogeneity, for the pairs (A;, Ay), and (D, D»).
(ii) The probability for alcohol dependence is influenced only by the genetic
disposition a/a, not at all by d/d, and conversely for depression.

(iii) The model provides for a possible association at the latent level between
the dispositions for alcohol dependence and depression; the strength of this

latent association is measured by the dependence ratio &,4.
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(iv) The parameter « is the probability of alcohol dependence, given that a
twin has the genetic disposition a, while ¢ is the ‘background’ probability of
depression, given that a twin does not have the genetic disposition d. The
reason for this asymmetry is technical convenience: by simply setting ¢ = 0,
the background probability for alcohol dependence, calculated as ¢a, is set
to zero and the model simplified by removal of one parameter.

Assumption 3: We assume conditional independence between the members
of a twin pair, given the pairs genetic structure. Let G' be a generic symbol
for the genetic structure of a twin pair, so that any realization of GG is one of

the four latent classes (a,d), (a,d), (a,d), (a,d). We assume,
Ay 1L Ao|G, Dy WL Do|G, Ay WL Dy|G, Ay 1L D4|G. (5)

Statements (5) imply conditional independence for four of the six bivariate
marginal distributions of (A, Ay, Dy, Dy). At the onset we must assume
Ay I Dy|G and Ay If Ds|G, for these bivariate distributions are based,
not only on the genetic disposition of the individual, but also on her unique
environmental experiences. To account for individual environmental effects
we introduce an eighth parameter, denoted ( and defined, for 7,7 = 1,2,
i #1, as

5= pr(AZ— 1,D; _1|G)' (©)
pI‘(z4Z = 17Dz" = 1‘G>

Using statements (1) to (6) one can calculate, conditionally on G, all mo-
ments of order four or less, for Ay, Ay, Dy, Dy. For example, F(A;AsD;|G) =
B{E(A|G)}?E(D|G) and E(A1A;DDs|G) = F{E(A|G)}*{E(D|G)}*. The
unconditional moments are then obtained as weighted sums of the condi-
tional moments, summing over the four latent classes in Table 2, using the
latent class probabilities as weights. From the explicit expressions, in terms
of parameters, for all the moments, the probabilities for all cells of Table 1
are easily calculated. For example,

pl"(l, 0, O, 1) = E(AlDQ) — E(AlAgDQ) — E(AlDng) + E(AlAQDng),
and the longest expression is for (0,0,0,0):

pr(0,0,0,0) = 1-E(A) - E(Az) — E(Dy) — E(D)
+E(A1Ay) + E(A1Dy) + E(A1Ds) + E(A3Dy) + E(AyDy) + E(D1Ds)
—E(A1A3Dy) — E(A1AyDy) — E(A1 D1 Dy) — E(AsDy Dy)
+E(A1 Ay D Dy).



Thus, we obtain an explicit expression for the log-likelihood function:

[(Va; Va; §ady @, ¢, 6,9, Bly) = Tlog{pr(1,1,1,1)} +- - -+ 288 log{pr(0,0,0,0)}.

The arguments of the log-likelihood function are the eight parameters defined
in Table 2 and equations (1) to (4) and it is based on the data y, which are
the 16 counts listed in Table 1.

3. Model Fitting and Selection

All programming was performed in R (Ihaka and Gentleman,1996), in par-

ticular the maximizing of the log-likelihood function using a quasi-Newton

optimiser.

Table 3 reports four model statistics,

(i) the maximum value of the log-likelihood function, denoted max{i(-|y)},

(ii) the number of parameters, denoted #(parameters),

(iii) the value of Akaike’s Information Criterion, denoted AIC,

(iv) the value of the determinant of the correlation matrix for the parameter
estimates, denoted det(corr),

for four models: Model 1 (all 8), in which all eight parameters, are estimated,

Model 2 (5 = 1), in which the value of [ is set to 1, Model 3 (¢ = 0), in

which the value of ¢ is set to 0, and Model 4 (3 = 1,¢ = 0), in which [ is

set to 1, and ¢ is set to 0.

Table 3
Four model statistics for four models fitted to the data of Table 1.
Model Model statistics

max{l(-]ly)} | #(parameters) | AIC | det(corr)
Model 1 (all 8) -1040.8 8 2097.6 | 0.00035
Model 2 (8 =1) -1041.5 7 2097.0 | 0.00153
Model 3 (¢ = 0) -1041.3 7 2096.5 | 0.00235
Model 4 (3 =1,¢ =0) -1042.5 6 2096.9 | 0.00685

Assessed by the likelihood ratio test, none of the models with more param-
eters fit the data significantly better than Model 4. Model 3 has a smaller
AIC value than Model 4, but by so small a margin that it would not be
sensible to prefer Model 3. The determinant of the matrix of correlations of
the parameter estimates can be used as a global measure of the stability of
the estimates. It makes for a fairer comparison of determinants of matrices
to use det'/?, where p is the dimension of the matrix. Even after the p-root
transformation Model 4 has the highest value, indicating the best determi-
nation of the parameters.



Based on these considerations we selected Model 4 as our final model.
From a substantive point of view, it is notable that the estimates for 3, by
Models 1 and 3 are, respectively 1.12 and 1.16, in both cases with stan-
dard errors 0.11. That the individual environmental effect is so small, in
this data set, could be a result of the majority of these twins having lived
in the same or closely similar circumstances, rather than being a confir-
mation of the dominant effect of the genetic disposition. The estimates of
pr(A = 1]a) from Models 1 and 2 are, respectively, 0.024 and 0.028. Setting,
in the final model, the background probability of alcohol dependence to 0, is
not because we believe that having the genetic disposition a is a necessary
prerequisite for alcohol dependence. But the values 0.024 and 0.028 are so
small, compared to the estimate of the background probability for depres-

sion, pr(D = 1]d) = 0.20, that it is sensible to increase the stability of the
model by eliminating the parameter pr(A = 1|a).

Table 4 reports the parameter estimates with standard errors, Table 5
the correlations of the estimates, Table 6 the fitted counts alongside the
observed ones and Table 7 the estimates of the probabilities of the latent
classes corresponding to the algebraic forms of Table 2.

Table 4
The parameter estimates with standard errors of Model 4, fitted to the
observed counts reported in Table 1.

Parameter Estimate Standard error

Vg 0.272 0.050
vy 0.215 0.087
Sad 2.943 0.676
a 0.314 0.060
) 0.199 0.031
v 3.381 0.428

The background probability for alcohol dependence is set to zero in Model 4
and pr(A = 1la) = & = 0.314, while the estimate of the background prob-
ability for depression is pr(D = 1|d) = 6 = 0.199 and the probability for
depression given the genetic disposition is pr(D = 1|d) = ¢4 = 0.673.



Table 5
The correlations of the parameter estimates of Model 4.

Vo Vg &ad o o Y
7, | 1.00 0.04 -0.08 -0.84 000 0.00
Dy 1.00 -0.82 0.00 -0.84 0.01
€ 1.00 0.00 0.76 -0.22
& 1.00 0.00 0.00
5 1.00 -0.47
U 1.00

Table 6
Observed and fitted counts of 597 female monozygotic twin pairs classified
by concordance/discordance with respect to alcohol dependence and
depression. The italicized fitted counts are for Model 4.

D=1 D=0
Dy=1 Dy=0 Dy=1 Dy =0
Ai=1 Ay =1 74.84 4 3.16 2316 3 4.84
Ai=1 A, =0 91058 86.92 46.92 8 10.58
A1=0 A, =1 10 10.58 7 6.92 96.92 15 10.58
Ai=0 Ay, =0 5150.99 92 86.01 80 86.01 288 287.99

The likelihood ratio test statistic for Model 4 against the saturated model
has the value 7.98 on 10 degrees of freedom corresponding to p = 0.63,
indicating that Model 4 fits the data very well.

Table 7
The fitted latent class probabilities for Model 4 corresponding to the
algebraic expressions given in Table 2.

Genetic dispositions
Alcohol Depression
dependence d d Sum
a 0.172 | 0.100 | 0.272
a 0.043 | 0.685 | 0.728
Sum 0.215 | 0.785 1

Two out of three (0.685) female monozygotic twin pairs have neither dis-
position and more than half (0.546) of those that have at least one, have
both. This latter fact is a reflection of fad = 2.94, indicating strong associ-
ation between the genetic dispositions for alcohol dependence and depression.



4. Model validation

In the framework of likelihood-based inference, a complete understanding of
the features of the selected model can only be reached by studying the surface
[(Va, Va, Ead, @, 6,9|y) as an object in an Euclidian space of seven dimensions.
We have to be content with subspaces of, at most, three dimensions and con-
centrate on features of most interest from the subject-matter point of view.
We group these issues under three headings.

(i) Label switching. It turns out, that the log-likelihood function has two
maxima with values -1042.5. Table 8 lists the two sets of arguments for
the two maxima, with arg(max 1) being the maximum likelihood estimates,
reported in Table 4, and arg(max 2) the coordinates of the second maximum.

Table 8
Two different sets of arguments both giving the log-likelihood function of
Model 4 the mazimum value -1042.5, see also Table 4.

Parameter v, Vg Ead « ) P
arg(max 1) 0.272 0.215 2.943 0.314 0.199 3.381
arg(max 2) | 0.272 0.785 0.468 0.314 0.674 0.296

We denote the coordinates of the second maximum by vy, ..., vg and drop,
for simplicity, the hats on the maximum likelihood estimates. Note first, that
v; = 0.272 = v, = pr(a) and vy = 0.314 = a = pr(A = 1|a), so that v, and
« appear in both solutions. A clue to understanding the relations between
the differing coordinates is that v, = 0.785 =1 — 0.215 = 1 — vy, which im-
plies that the labels for d and d have been switched, so that v, = pr(d).
Accordingly, vs = 0.468 = pr(a,d)/{pr(a)pr(d)} = 0.100/(0.272 - 0.785),
see Table 7. Moreover, vs = 0.674 = ¥d = pr(D = 1|d) and, finally,
vg = 0.296 = 1/3.381 = 1/4). The iterative algorithm that we used for finding
the maximum likelihood estimates converges to arg(max 2) when the initial
values for the arguments is set, for example, to (0.3,0.7,0.5,0.3,0.7,0.3).
There would not be any scientific sense in exchanging &,, for &,7, therefore,
choosing arg(max 1) as the maximum likelihood estimates is undisputable.
Some of the contour plots discussed next, are designed so that the location
of the second maximum is shown.

(i) Identifiability and stability. There are in Table 5 four pairs of parame-
ter estimates with disturbingly high correlations. Reading across rows, they
are for the pairs (1), (74, &), (2), (P4, &aa), (3), (P4,0), (4), ({ad, ). To under-
stand what these high correlations tell about the shape of the log-likelihood
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surface in the vincinity of the maximum, we use profile log-likelihood func-
tions with two arguments. The profile log-likelihood function for pair (1),
denoted [p(v,, @), is defined as,

lP(Vm Oé) = Z{Vm ﬁd(l/aa a)> éad(l/aa a)> «, 8(7/(17 Oé), "L(Vaa a)}7 (7)

where 74(v,, ), éad(l/a,a), S(Va,a), Qﬁ(ua,a) indicates that we have, for
any pair of fixed values (v,, «), maximized the log-likelihood function with
respect to the remaining four arguments. The profile log-likelihood func-
tion of two arguments is, thus, a synthetic function, composed of maxima
of the log-likelihood with respect to the other four arguments. For studying
the shape of I(-), as a function of two arguments, the other four arguments
are eliminated by maximisation, rather than by integration as in Bayesian
inference. Generally, the maximum of the profile log-likelihood coincides
with the maximum of the log-likelihood, in particular, argmax{lp(v,,a)} =

argmax{l(v,, Vg, {ad, @, 0,) }.

Fig. 1 depicts the contours of constant value of (p(v,, ). The point,
plotted as a tiny circle inside the closed contour marked ‘-1043’, is the
argmax{lp(vy, o)} = (0, &) = (0.272,0.314), at which 1p(0.272,0.314) =
—1042.5. It is clear from Fig. 1 that the profile log-likelihood has a ridge
in the direction of the principal axis of the ‘-1043’-contour. The heuristic
explanation for this ridge is that pr(A = 1) = pr(a)pr(A = 1|a) = v,«. From
inspection of [p(v,, ), the bad news is that a small perturbation of the data
could lead to considerable changes, in opposite directions, of the maximum
likelihood estimates for v, and a. The good news is, that there is a unique
highest point on the ridge and v, and « are properly identified, though not
estimated in a very stable way.

Fig. 2 depicts the contours of constant height of [p(£.q, v4). The striking
difference to Fig. 1 is, that both maxima show up, since the range for the
£aq-axis is (0,5). The part of Fig. 2 of subject-matter interest is, of course,
1 < &4 < 5. The ‘y = ¢/x’-shape of the ridge, inside the ‘-1043’-contour
emanates from the fact that £, = pr(a,d)/(v,vq) x ¢/vy. Fig. 3, being for
lp(va4, ), resembles closely Fig. 1 and Fig. 4, being for Ip(.q,0), resembles
Fig. 2. Finally, as a contrast, Fig. 5 presents the contour plot for (5 (), a),
in which case corr(zﬂ, &) = 0.00. Not only is the ridge less pronounced, but
since it is parallel to the abscissa the correlation is zero.

In conclusion, we note that for all four high correlations at least one of
the parameters involved, belongs to the group (v,, vy, £.q), which regulate
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Figure 1: Contour plot of profile log-likelihood of v, and «, Ip(v,, )

the latent structure, while all correlations are small between the parame-
ters in the group (a, d, 1), which regulate the conditional probabilities of
the observable events. The problem of instability of estimates is, therefore,
rather an intrinsic feature of the model we propose, than of bad luck with
the particular data set we analyse.

(#i) Odds ratio or dependence ratio? Commentators have voiced prefer-
ence for the well established odds ratio, over the more recently introduced
dependence ratio (Ekholm et al., 1995), on the grounds that the odds ratio is
invariant to the scoring and orthogonal to the marginal probabilities. To be
specific we denote the odds ratio for Table 2 by x.q and the cell probabilities,
reading across rows, by m, mo, w3, 4. Using the expressions from Table 2 we
find,

_ mmy €ad(l = Ve — v + EaalaVa)

Xad = - (8)
T3 (1 - Vagad>(1 - Vdgad)

It follows from (8) that

é-ad -1
(1 - Vagad>(1 - Vdgad) '

Xad_lz
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From (9) one readily deduces that

1€aa — 1| < |Xaa — 1], (10)

with equality only under independence, when £, = x.q = 1. The depen-
dence ratio is bounded towards zero association by the odds ratio.

The odds ratio is, indeed, invariant to the scoring if one reverses the scores
for both dispositions, that is, applying both switches @ — @ and d — d, then
Xad = Xad, While &7 # £,4. But if only the switch d — d is applied, while a is
untouched as in subsection (i), then the odds ratio is not invariant; instead
Xad = 1/Xad- Therefore, parametrising Table 2 by (v, V4, Xaa) does not pre-
vent the appearance of two maxima for the log-likelihood.

Expressing the cell probabilities of Table 2 by (v, V4, Xaq) is @ more cum-
bersome task, than expressing them by (v, V4, £uq). To go from given values
of vy, V4, Xaqa to the corresponding my, 7, 3, 74, one needs first to find the
root, satisfying 0 < m; < 1, of the quadratic equation,

(Xad — )72 = {(Xad — 1) (Vg + vg) + 1}71 + XaqVaVa = 0,
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Figure 3: Contour plot of profile log-likelihood of v; and 6, Ip(vy, d)

and then use the linear relations 7 + my = v, m + ™3 = 14, and 7 + 7 +
w3 + m4 = 1. Parametrising a k x k table, where k£ > 2, by marginal proba-
bilities and odds ratios, the required root of the corresponding high degree
polynomial can only be found iteratively. We will encounter such a 4 x 4
table when extending our model to the case of dizygotic twins in Section 5.
For a general k x k table the expressions for the cell probabilities, in terms
of marginal probabilities and dependence ratios, are simple and explicit.

The odds ratio, x.q4, is orthogonal to the marginal probabilities, v, and
Vg, in the following sense: denoting by 7,, 74 and Y,q the maximum like-
lihood estimates of these three parameters from any 2 x 2 table of ob-
served frequencies, one finds that, generally, corr(7,, Xaa) = corr(7, Xaq) = 0,
while corr(7,, §ad) and corr(7y, £ad) are not generally zero. The formulas for
corr (7, £qq) and corr(ud,gad) are derived in Ekholm (2003, Append.). Since
in Table 5, corr(l/d,fad) = —0.82 and corr(z/a,fad) = —0.08, it is of interest
to check if the orthogonality of the odds ratio carries over to the situation
where the 2 x 2 table is latent, instead of directly observed. As another piece
of model validation we, therefore, fitted Model 4 replacing &,, with three
alternatives, in turn, log &.4, Xaq and log x.q- The results from comparing
Model 4, which is the £,4-version to the log&,4-version, the y,4-version and
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the log x.4-version are:

(1) The alterations to the estimates and standard errors for v,, vy, o, 6, ¢ are
negligible.

(2) The alterations to AIC and to the fitted frequencies are negligible.

(3) The alterations to all correlations of estimates, not involving the measure
of latent association, are negligible.

(4) The estimates, with standard errors in parentheses, of .4, 10g 44, Xad
and log x,.q are, respectively, 2.94 (0.68), 1.08 (0.23), 27.59 (35.40) and
3.32 (1.29). Note that log2.94 = 1.08 and log 27.59 = 3.32, satisfying the
invariance of maximum likelihood estimates to parameter transformations:
logé,, = log éad and log x,; = log Xaa- We use, for esthetic reasons, the no-
tations log éad and log Y.

(5) The estimates éad and log éad have identical correlations with 7,, 74, &, 5 , 1&
and similarly X,q and log X4q have identical correlations, but the correlations
of &.q and of Y.q with ,, D4, &, 6§, 1 are different, being respectively, -0.08,
-0.82, 0.00, 0.76, -0.22, and 0.48, -0.48, -0.47, 0.52, -0.26.

(6) When exchanging &,4 for x4 the summary measure of stability, det(corr),
increases by a factor of 1.57 from 0.00685 to 0.01074.
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Figure 5: Contour plot of profile log-likelihood of ¢ and «, Ip(¢), «)

The results (1) to (3) show that the subject matter conclusions from the
odds ratio version of Model (4) are the same as from the dependence ratio
version, for all other parameters except for the association between the la-
tent dispositions. Results (5) and (6) demonstrate that x4 is, in the present
setting, not orthogonal to the marginal probabilities, but x,4 is considerably
less entangled than €,q With the estimates of the other five parameters.

Result (4), however, implies that the smaller entanglement comes with
Xad; itself, taking a very large value and having a dramatically large stan-
dard error. For further confirmation we plot in Fig. 6 the profile log-likelihood
functions for the four alternative measures of the latent association, namely
Ip(&aa), lp(log&ua), lp(Xaa) and Ip(log xaq)- The horizontal lines in Fig. 6 are
at level, max{lp(-)} — 1.92, which, in case of a quadratic log-likelihood func-
tion, delimits a 95% confidence interval, see Barndorff-Nielsen and Cox (1994,
p- 90). Note that the scale of the bottom two panels is ten-fold that of the
top two panels. Fig. 6 shows that no likelihood-based intervals can be con-
structed for x,q or log xaq- In contrast, [p(&,q) and, in particular, [p(log&.q),
are well behaved and the latter symmetric enough that a likelihood interval
can be given a confidence interpretation. The 95% confidence interval, based
on Ip(log&,q), for the log-dependence ratio is, 0.607 < log,q < 1.548, and
from there, by exponentiation, for the dependence ratio, 1.83 < £,4 < 4.70.
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Figure 6: Profile log-likelihood for four measures of association between the
latent variables. The horizontal line corresponds to max{lp(-)} — 1.92.

From the inequality (10) it was expected that £,q < X4, but it is sur-
prising that the probabilities of (a,d) and (@, d) are small enough to make
Xaa €xplode beyond usefulness. The intuitive background for the inequality
(10) is that &,; measures the strength of association between the events a
and d, while x,; measures the strength of association between two binary
random variates Y1 = a/a and Y, = d/d. The event specificity of {,q makes
it asymmetric and bounds it by finite limits, see equation (19). The de-
pendence ratio has been criticized for having finite bounds, but here they
are very helpful. Moreover, we show in Section 5, that boundedness of the
dependence ratio enables formulating models for monozygotic and dizygotic
twins in a common framework. To sum up the issue of odds ratio wersus
dependence ratio, the latter has in the present framework four advantages:
(i), the interpretation is simpler, (ii), the generalization to the 4 x 4 table
for dizygotic twins is neater, (iii), the boundedness by finite limits is useful,
(iv), the standard error of the estimate is smaller. At least in the present
example, the dependence ratio works better than the odds ratio.
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5. Model for Dizygotic Twins

Monozygotic twins are identical genetically, so that if we tabulate two monozy-
gotic twins, denoted, respectively, MZ1 and MZ2, against each other for the
four latent classes of genetic dispositions, (a,d), (a,d), (a,d), (a,d), we get
Table 9. For brevity, we use in Table 9 and henceforth, in parallel, the fol-
lowing two notations for the probabilities of the latent classes, 7, = v,1/4€q4,
o = V(1 — géad), T3 = Va(l — Veéaq) and my = 1 — vy — Vg + VaVg&aa-

For a pair of dizygotic twins the table corresponding to Table 9 no longer
has zeros in the off-diagonal positions. To derive the joint probabilities that
dizygotic twin 1 belongs to one of the four latent classes and dizygotic twin
2 to the same or another, we define two four-valued nominal responses Z;,
for i = 1,2, where Z; indicates to which latent class twin i belongs. Also, we
define a third four-valued nominal response P with the same four outcomes,
where P denotes the pool of genetic dispositions that the dizygotic twins can
inherit from their parents. We need not speculate whether the mechanisms
of inheritance of these four dispositions is additive or dominant, geared to a
single or a multitude of loci, gender linked or not, etc. The one assumption
we find necessary is that the marginal distribution of the pair of parents over
the four latent classes, (a,d), (a,d), (a,d), (a,d), is the same as that of their
children.

Table 9
The probabilities that monozygotic twins belong to one of the 16 latent
classes formed by cross-classifying the classes introduced in Table 2.

MZ2
MZ1 (a,d) (a,d) (a,d) (a,d) Sum
(a,d) | veVa&ad 0 0 0 m
(a,d) 0 (1l —valaa) 0 0 T
(a,d) 0 0 V(1 — Ve€aa) 0 3
(a,d) 0 0 0 1—vy —vg+ velglaq | T
Sum m T T3 Ty 1

Assumption 4: The marginal distribution of the latent variable P is the

same as that of the latent variables Z;, for « = 1, 2,
m = pr{P = (a,d)} =pr{Z; = (a,d)} = vaViaa, (11)
m = pr{P = (a,d)} = pr{Z; = (a,d)} = vu(l — va&aa),
T = pr{P = (a, 7)} =pr{Z; = (a,d)} = va(1 — va&aa),
T4 = pI‘{P (&7 )}_pr{Z - ( a, )} = 1_Va_yd+yayd§ad'



The three parameters v,, vy and .4 are, of course, the same as for monozy-
gotic twins from the same population. To complement these three parameters
to a saturated parametrisation for the bivariate joint distribution of (P, Z;),
1 = 1,2, we define six dependence ratios, denoted by €, and require that
the distribution of (P, Z;), in addition to being marginally homogenous, is
symmetric in the sense that, for h,k =1,...,4, h # k,

pr(P=h,Z; = k) =pr(P =k, Z; = h). (12)

The main interest focus on three intra-class dependence ratios depicting the
association between parents’ and their childrens’ latent class, for the three
classes indicating presence of at least one of the genetic dispositions.

Assumption 5: We define for k = 1, 2, 3 the intra-class dependence ratios
as,

pr(P =k, Z; = k)

O, = 13
w pr(P=k)-pr(Z; = k)’ (13)

and for h, k =1,2,3, h # k the cross-class dependence ratios,
pr(P =h,Z; = k) (14)

On = .
ik pr(P =h)-pr(Z; = k)

It follows from restriction (12) that 6, = 6, and from equations (11) to
(14) that the bivariate probabilities of (P, Z;), for i = 1,2, are as listed in
Table 10, where, for brevity the following notations are used:

o1 = mbi 4 mebia + m3bhs, 02 = by + Mabay + T3ba3, (15)
o3 = 7T1‘931+7T2(932+7T3‘933, O':].-71'1(2-0'1)—7T2(2—0'2)—7T3(2—0'3).
Table 10

The probabilities that a dizygotic twin belongs to the same or a different
latent class as her parents.

Latent Latent class

class of of twin i =1, 2

parents (a,d) (a,d) (a,d) (a,d) Sum
(CL, CD W%en 7T17T2(912 7T17T3¢913 7T1(1 — 0'1) T
(CL, d) as for (1,2) 7'(3922 7T27T3¢923 7T2(1 — 0'2) )
(a,d) | asfor (1,3) | as for (2,3) 73033 m3(1 —o3) | 73
(a,d) | asfor (1,4) | as for (2,4) | as for (3,4) o my
Sum m o 3 Ty 1
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The entries in the fourth row and fourth column of Table 10 are calculated
by subtraction to make the sums fit the marginal probabilities (11). Under
the restrictions (11) and (12), Table 10 is saturated by these nine parame-
ters; three parameters, v,, 14, £, regulate the marginal probabilities of the
latent classes and six parameters, O,;, h, k = 1,2, 3, regulate the association
between the latent classes of parents and their offspring. The former three
parameters are common for monozygotic and dizygotic twins, but the later
six parameters are identifiable only for dizygotic twins.

Monozygotic twins are conceived by one sperm fertilizing one egg, which
splits in two identical cells, from which two genetically identical individuals
develop, while dizygotic twins are conceived by two different sperms fertil-
izing two different eggs, from which two genetically nonidentical individuals
develop. The translation to the language of probability calculus is that two
dizygotic twins represent two independent draws from the pool of genetic
dispositions that their parents provide. We formulate the genetic origin of
dizygotic twins as follows.

Assumption 6: The indicators of the genetic make up of two dizygotic
twins are conditionally independent given the parents genetic make up,

Zy WL Zy|P. (16)
It follows from Assumption 6 that, for h,k =1,...,4,
4
pr(Zy = h,Zy = k) =) mpr(Z1 = h|P = j)pr(Zy = k|P = j). (17)
j=1

Exploiting (17) the joint class probabilities for dizygotic twins are readily
calculated from Table 10. These probabilities are listed in Table 11, which
is to be compared with Table 9. For brevity the following notation is used,
fori=1,2,

Arj = Pr(Zi =k|P =j)=mb, j,k=12,3, (18)
)\4|j = pr(ZZ :4|P:]) =1 — 0y, ]: 172737

Ajla = pr(Zz:J\P=4)=](T4]), j=1,2:3, and Ay = .
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Table 11

The probabilities that a pair of dizygotic twins belongs to one of the 16
different latent classes introduced in Table 8.

DZ2 is in class
DZ1 is in (a,d) (a,d) (a,d) (a,d)

class Zy =1 Ty =2 Zy =3 Jy =4 Sum
(a,d) Z, = =1 TA; | Diar midyiAey | o midag sy | i Ay | m
(CL, d) Z1 =2 | as for (1, 2) E?:l Wj)‘g\j Z?:l 7Tj>\2|j)‘3\j E?:l 7Tj)\2\j>\4|j T2
(@,d) Zy =3 | asfor (1,3) | as for (2,3) i TNy, | o s A | T
(a,d) Z; =4 | as for (1,4) | as for (2,4) as for (3,4) i TN T

Sum m o 3 Ty 1

Three important special cases of Table 11 are:
(1) Collapse to the monozygotic case. Consider two binary variables, Y; = 1/0,
for i = 1,2, with E(Y;) = p;, where 0 < p; < 1 and dependence ratio 6 de-
fined by pr(Y; = Y2 = 1) = Ouyps. The lower and upper bounds for the
dependence ratio are,

max(0, gy + py = py ') <0 < min(pg (19)
For a plot, see Ekholm (2003, p. 17). Suppose that for the dizygotic twins in
Table 11, m, < 1/2, for k = 1,2,3. Recall from Table 7 that this condition
is satisfied for the monozygotic twins studied in Section 3. It follows from
the bounds (19) that the maxima of the intra-class and the minima of the
cross-class dependence ratios are, for h, k = 1,2,3,h # k,

max(0py) = 7, ', min(fy) = 0. (20)

When, simultaneously, the intra-class dependence ratios reach their upper
bound and the cross-class dependence ratios their lower bound, then Table
11 collapses to Table 9. Accordingly, the parametrization, introduced here
for the dizygotic case, has as its extreme the monozygotic case.

For comparing the heritability of the three dispositions, (a,d), (a,d) and
(a,d) with each other, we propose the three normalized intra-class depen-
dence ratios Ay, for k =1,2,3 and ¢ = 1, 2,

Note that the normalized dependence ratio, A, is also the conditional prob-
ability that a child belongs to class k, given that his/her parents belong to
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k, for k = 1,2,3. As a summary measure of the similarity of twins for the
genetic complex, composed of the four latent classes (a,d), (a,d), (a,d) and
(a,d), we propose to use Cohen’s kappa, , (Agresti, 2002, p. 434), which
measures the excess of similarity over that expected by chance. The defini-

tion, in terms of the indicators Z;, for ¢ = 1,2, is

. pr(Zy = Zs) — pr(Zy = Zy|Zy AL Zs)
1 — pI'(Zl = ZQ‘Zl J_|_ Zg) ’

where pr(Z, = Z,) = 35, iy mAL; and pr(Zy = Zo|Zy AL Zo) = Y25, 5

(22)

J=1"j"
For twins, or more generally siblings, one would expect 0y, > 1, for k =1, 2, 3,

whence the range of x is 0 < x < 1. If and only if 0y, = 1/7 and 6, = 0,
for h,k =1,2,3,h # k, then k = 1 and the twins are identical with respect
to the four latent classes.

(2) Complete independence. If all six dependence ratios of Table 10 are
equal to one, then Table 11 collapses to the independence case, kK = 0 and
no heritability of the latent dispositions is detectable. One would expect this
model to be adequate only for the case of children born to different pairs of
parents, but of equal age and reared together.

(8) Positive association intra-class and independence cross-class. The sat-
urated model presented in Table 10 adds six parameters to the model, used
for empirical analysis of monozygotic twins, which has six parameters. The
total number of parameters of the model, we propose for analysis of data
on bivariate binary responses from both monozygotic and dizygotic twins, is
thereby 12. On the other hand the combined data would have 32 observed
frequencies, so that 12 parameters is not too close to saturation. A way of
imposing restrictions on the #-parameters, which has a touch of genetic mo-
tivation, is to put the cross-class dependence ratios to one, but retaining the
intra-class dependence ratios as parameters to be estimated. Moreover, if
the three intra-class dependence ratios can, without loss of fit, be restricted
to be equal, then only one new parameter is added to the six parameters
introduced for monozygotic twins.

As a numerical example of the relation between 6 and x, suppose that the
marginal probabilities are as in Table 7, m; = 0.172, 7, = 0.1, m3 = 0.043
and m; = 0.685, and 0y, = 1, for h,k = 1,2,3,h # k. Suppose futher that,
for k = 1,2,3, Ok, = 0, then k is of the form c(my, 7o, 73)(0 — 1)?, where
the expression for ¢(-) is complicated and of little interest. For the values
0 =1,2,3,4,5, respectively, k = 0, 0.033, 0.133, 0.300, 0.533.
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6. Conclusion

To conclude and tie up with the empirical analysis in Section 3, we propose
that a statistical analysis of a data set on alcohol dependence and depres-
sion, comprising both monozygotic and dizygotic twins, proceeds by fitting
a model with, at most, the following 12 parameters:

(1) va, Va, Ead, @, 0,9 having the same definition for both sets of twin data,
(ii) Opg, h, k = 1,2, 3, being defined only for the data set of dizygotic twins.
Assumption 3 in Section 2 of conditional independence between twins, given
the pairs genetic structure G, is upheld for dizygotic twins too, but with the
crucial modification that for dizygotic twins G consists of 16 classes, with,
at most ten different probabilities, as listed in Table 11.
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