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In the deep sea, biological data are often sparse; hence models capturing relationships between observed
fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce
full coverage species assemblage maps. Many statistical modelling techniques are being developed, but
there remains a need to determine the most appropriate mapping techniques. Predictive habitat mod-
elling approaches (redundancy analysis, maximum entropy and random forest) were applied to a het-
erogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the
spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely
operated vehicle (ROV) imagery transects high-resolution autonomous underwater vehicle (AUV) side-
scan backscatter maps. Area under the curve (AUC) and accuracy indicated similar performances for the
three models tested, but performance varied by species assemblage, with the transitional species as-
semblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed
between statistical approaches, but niche similarity metrics showed redundancy analysis and random
forest predictions to be most similar. As one statistical technique could not be found to outperform the
others when all assemblages were considered, ensemble mapping techniques, where the outputs of
many models are combined, were applied. They showed higher accuracy than any single model. Different
statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by
examining the outputs of a range of modelling techniques and their differences, more robust predictions,
with better described variation and areas of uncertainties, can be achieved. As improvements to pre-
diction outputs can be achieved without additional costly data collection, ensemble mapping approaches
have clear value for spatial management.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the anthropogenic footprint extends deeper into our oceans,
reliable descriptions of the seafloor and the species present are
required to devise appropriate management and conservation
measures. With very limited areas of seafloor mapped at com-
parable resolution to terrestrial environments (Sandwell et al.,
2006), quantitative spatial information regarding distributions of
marine biotic and abiotic components is needed to build benthic
habitat maps (Kostylev et al., 2001). Recent advances in acoustic
techniques for seafloor mapping (Brown et al., 2011) have made it
possible to create detailed geomorphological maps more rapidly.
r Ltd. This is an open access article

rt).
However, the biological information needed to supplement com-
plete coverage topographic and geological maps has remained
limited owing to the time-consuming process of specimen col-
lection and taxonomic identification (Przeslawski et al., 2011).

Full coverage biological sampling is often not an option, and
hierarchical approaches involving nested survey designs are often
employed. They involve a combination of broader-scale geological
map creation based on acoustic data, and detailed ground-truthing
biological studies covering smaller spatial extents, often taking the
form of imagery transects (Elvenes et al., 2014; Robert et al., 2015).
The broader-scale geological maps can be used to define habitat
patches allowing the relationships between the spatial arrange-
ment of these patches within the surrounding landscape and their
effect on species spatial patterns (Turner and Gardner, 1991) to be
examined, modelled and used to make biological predictions
across the larger extent covered by the acoustic surveys. The
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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spatial arrangement of habitat patches can be described using a
variety of class and landscape metrics, the former used to describe
properties of patches from a single habitat type while the latter are
used to characterise all patches present within a landscape
(McGarigal et al., 2012). Although such metrics have been shown
to help explain species spatial patterns (Teixidó et al., 2002), they
have so far rarely been employed for predictive mapping.

In recent years, there have been an increasing number of stu-
dies employing a variety of techniques to produce predictive full
coverage megabenthic invertebrate habitat maps: maximum en-
tropy (Rengstorf et al., 2012; Ross and Howell, 2012), many types
of decision or classification trees (Compton et al., 2013; Gonzalez-
Mirelis and Lindegarth, 2012), a variety of multivariate analyses or
ordination methods (Buhl-Mortensen et al., 2012; Shumchenia
and King, 2010), general additive models, neural networks (Palia-
lexis et al., 2011) and many more. Some of these techniques, such
as maximum entropy, are based on records of presence only (with
background points), as obtaining reliable absence data can be
particularly difficult (Pearce and Boyce, 2006). However, when
absence data is available, presence-absence models (such as gen-
eral linear/additive models or classification trees) can provide
more information regarding unsuitable habitats (Brotons et al.,
2004; Pearson et al., 2006) and avoid the difficulties associated
with selecting appropriate background points (Phillips et al.,
2009).

In this study, we used benthic imagery data (photographs and
extracted video frames), in addition to acoustic maps to produce
predictive maps for megabenthic invertebrate species assem-
blages, specifically demonstrating the usefulness of class and
landscape indices to improve prediction results. The prediction
Fig. 1. Map of the surveys carried out on Rockall Bank, Northeast Atlantic. Ship-based bat
data (grey boxes) collected during three autonomous underwater vehicle missions. The r
shown in red and the two from JC-073 in blue, superimposed on the autonomous underw
of a 2007 fisheries closure area (yellow) and a candidate for ‘Special Area of Conservat
GEBCO (General Bathymetric Chart of the Oceans (IOC IHO and BODC, 2003). (For interp
web version of this article.).
accuracy of three different modelling approaches was investigated
for highly heterogeneous sections of seabed mapped at very high
resolutions (�0.5 m pixel size): redundancy analysis (RDA) (ter
Braak, 1994), maximum entropy (MaxEnt) (Phillips and Dudík,
2008) and random forest (RF) (Breiman, 2001). As these techni-
ques represent three different modelling approaches (‘assemble
and predict together’, RDA; ‘assemble first, predict later’ using a
presence only model, MaxEnt; as well as a presence-absence
model, RF) (Ferrier and Guisan, 2006), the aim was to determine
which approach and whether a single one may be most appro-
priate when considered across multiple species assemblages.
Based on the results obtained, we also examined whether en-
semble maps, which take into account predictions and un-
certainties from more than one model (Araújo and New, 2007;
Marmion et al., 2009b), could further improve predictions.
2. Materials and methods

2.1. Survey design

As part of the ‘UK Marine Environmental Mapping Programme’
(MAREMAP; http://www.maremap.ac.uk/index.html) and the
‘COmplex Deep-sea Environments: Mapping habitat heterogeneity
As Proxy for biodiversity’ project (CODEMAP; http://www.code
map.eu/), a section of the western flank of Rockall Bank (200–
400 m), Northeast Atlantic, was mapped during the RRS James
Cook 060 cruise carried out in May–June 2011 (Fig. 1). Over
380 km2 of ship-based multibeam bathymetry (pixel size of
10�10 m), three 12–13 km2 Autosub6000 autonomous underwater
hymetry (black outline) displayed with superimposed outlines of the sidescan sonar
emotely operated vehicle imagery transects carried out during the JC-060 cruise are
ater vehicle sidescan sonar maps (high backscatter shown inwhite). The boundaries
ion’ (pink) are also displayed. Bathymetry for Northeast Atlantic background from
retation of the references to color in this figure legend, the reader is referred to the

http://www.maremap.ac.uk/index.html
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http://www.codemap.eu/


Table 1.
List of class and landscape variables used to construct predictive maps. Values in
italics indicate the size of the moving window used to calculate the metrics. For
formulas and descriptions see McGarigal et al. (2012).

Class metrics
60 m 150 m

Sand
Proportion of Like
Adjacencies

Max. Shape Index

Landscape Shape Index Min. Shape Index
Proportion of Like
Adjacencies
Mean Patch Area

Mixed Sediments
Landscape Shape Index Mean Shape Index
Mean Patch Core Area

Hard Substrate
Mean Shape Index Mean Patch Core Area

Bedrock
Effective Mesh Size Min. Patch Area
Patch Density
Mean Shape Index

Live Coral
Total Area Mean Shape Index
Min. Patch Core Area Largest Patch Index

Coral Rubble
Patch Density Min. Patch Core Area

Landscape Metrics

60 m 150 m
Max. Shape Index Number of Patches
Largest Patch Index Mean Core Area Index

Mean Shape Index
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vehicle (AUV, missions M43, M44 and M45) sidescan sonar
surveys (pixel size of 0.5�0.5 m) and five Lynx remotely oper-
ated vehicle (ROV) photographic imagery (2592�1944 pixels)
transects (1,222 images along �8 km using a Kongsberg OE14–
208 digital stills camera) were collected. During the JC-073
cruise carried out in June 2012 as part of the UK Ocean Acid-
ification programme’s ‘Changing Oceans Expedition’, two addi-
tional Holland I ROV high-resolution (1920�1080 pixels) video
transects (Insite Mini Zeus camera with direct HDSDI fibre
output) were carried out within the more heterogeneous area
(M43) surveyed by the AUV. Frames were extracted at a rate
representing the distance separating the previously collected
digital stills ( �1 frame per 5 m, 514 images).

The high resolution AUV surveys were positioned in areas of
proposed boundary changes to a conservations zone (Fig. 1). In
2007, a Fisheries Closure was established by the North East
Atlantic Fisheries Commission (NEAFC Recommendation IX-2008,
EC Regulation No 40/2008) based on reports of cold-water coral
occurrence. In 2011, a nearly overlapping, but slightly extended
area was put forth as candidate Special Area of Conservation
(cSAC) with the main aim of protecting stony and biogenic reefs
(JNCC, 2010), a habitat listed under Annex I of the Habitat Directive
(92/43/EEC). As such, AUV mapping was conducted in areas out-
side of the Fisheries Closure, but still inside the cSAC (M44 and
M45) as well as inside both protected areas (M43), to identify the
status of the seabed habitats. ROV imagery transects were posi-
tioned to sample a variety of sediment types within each of the
three areas, including areas of high backscatter likely to harbour
cold-water corals. To reduce the influence of spatial autocorrela-
tion, images were systematically subsampled into 8 groups in
which neighbouring pictures were located at a distance of 40 m
(Fig. 2).

All individual organisms larger than 1 cm were counted and
identified, using morphospecies when species-level identification
could not be achieved. Identification was achieved by consulting
image catalogues (Guillaumont et al., 2014; Howell and Davies,
2010; Jones and Gates, 2010; KeyToNature programme, 2015;
SERPENT project, 2009; WoRDSS, 2016), species lists compiled
from conservation work in the area (Howell et al., 2009; JNCC,
2010) and taxonomic resources (Hayward and Ryland, 1995 ;
Mortensen, 1927). Sponges were only described to morphological
categories as outlined in Bell and Barnes (2001). Parallel lasers
Fig. 2. Schematic of the steps taken. The data were separated into eight partitions
where images were located every 40 m. Three statistical approaches were applied
separately to each partition and the results were evaluated using the partition
whose images were halfway (20 m). For each partition, the three statistical ap-
proaches were combined to form ensemble models. These steps were carried out
for four species assemblages.
(with 10 cm separation) were mounted on the ROVs to provide a
scale on all recorded images. Positioning was achieved using the
ROVs’ ultra-short baseline (USBL) navigation systems. Only com-
mon species, which occurred in at least 10 images, were retained
for the analysis, which was carried out with the images as sam-
pling units.

Environmental descriptors were derived from the sidescan
backscatter maps (EdgeTech FS2200, 410 kHz). These maps had
been classified into sediment interpretation maps (0.5�0.5 m
pixel size) representing six seabed facies (soft and mixed sedi-
ments, hard substratum, exposed bedrock as well as coral stand
and rubble) using an unsupervised classification (Robert et al.,
2014). From the sediment interpretation maps, class and landscape
indices were derived to describe the shape, size, diversity and
spatial arrangement (connectivity) of habitat patches (selected for
their explanatory power using redundancy analysis and forward
selection based on Robert et al. (2014), listed in Table 1). Bathy-
metry and CTD derived environmental variables were examined,
but as they did not significantly improve the models, they were
not included and are not discussed further.

Landscape and class metrics were calculated for each pixel of
the sediment interpretation maps using moving windows (sizes of
60�60 m and 150�150 m, see Robert et al. (2014) for description
of size choice). Owing to the large number of computations in-
volved, the high performance computer cluster IRIDIS 3 (Uni-
versity of Southampton) was used to run an R script (R Develop-
ment Core Team, 2011) written for parallel computation. The R
package ‘SDMTools’ was used to compute the metrics and the
package ‘Snowfall’ was used to run the computations in parallel.
On smaller datasets, these computations could easily be accom-
plished on a regular desktop computer (see Appendix A for R
code).



K. Robert et al. / Deep-Sea Research I 113 (2016) 80–89 83
2.2. Predictive modelling

Four species assemblages (A1- Parastichopus tremulus, A2-
Munida sarsi and associated species, A3- Reteporella sp. and var-
ious sponge spp., and A4- Lophelia pertusa and associated species)
were identified using K-mean classification, ANOSIM and ‘species
indicator values’ (described in Robert et al., (2014)). Although low
numbers of individuals were generally found, the holothurian
Parastichopus tremulus was most commonly observed in soft se-
diments. Bryozoan species (mostly Reteporella sp.) and various
sponge morphotypes were characteristic of hard substratum,
while the abundant squat lobster Munida sarsi dominated mixed
sediment areas. Species associated with the cold-water coral Lo-
phelia pertusa included sabellid worms, an unsampled actinarian
sp. and many asteroid spp. Analyses were carried out using the R
libraries ‘vegan’, ‘randomForest’, ‘dismo’, ‘raster’ and ‘caret’.

2.2.1. Redundancy analysis
A multivariate approach was first considered, and redundancy

analysis (RDA) was used to create the first set of full coverage fine
scale biological maps. Similarly to Oldeland et al. (2010), we used
the estimated coefficients of the linear combination of environ-
mental predictors to position each pixel along the canonical axes.
To assign each pixel to a species assemblage, a nearest neighbour
classification (k¼10) was carried out. The probability of belonging
to each of the species assemblages was estimated using the pro-
portion of nearest neighbours.

2.2.2. MaxEnt
Maximum entropy (MaxEnt) predicts an index of relative ha-

bitat suitability using presence data compared to randomly se-
lected background points (Phillips and Dudík, 2008) by minimiz-
ing the distance between the probability density of species oc-
currence and the probability density of the covariates as they oc-
cur in space (relative entropy) (Elith et al., 2011). The software
MaxEnt (version 3.3.3, freely available online http://www.cs.prin
ceton.edu/�schapire/maxent/) was employed with sampling bias
grids to select the background points and help account for the
transect design. Weighted surfaces based on sampling density
were built (with more weight given to areas closer to sampled
locations) using a Gaussian kernel estimation (with SD of 500 m)
(Clements et al., 2012). Habitat suitability predictions were made
separately for each of the four species assemblages. Presence/ab-
sence predictions were obtained by setting the threshold level to
optimize sensitivity and specificity.

2.2.3. Random forest
Random Forest (RF) is a technique that allows for the building

of multiple trees for a dataset, hence the term forest (Breiman,
2001). Each tree is built based on a sub-sample of the data and at
each node the data are split based on the best predictor variable,
selected out of a smaller number of randomly selected variables. A
probability estimate can be obtained based on the number of votes
given to each class for a given pixel. Forests were built using a
varying number of trees and environmental variables, but a forest
containing 1000 trees and considering 15 environmental pre-
dictors per node was selected.

2.3. Model evaluation

To minimize spatial autocorrelation between the training and
testing datasets, systematic data splitting was carried out. For each
of the 8 data partitions, the dataset whose images were located at
a distance of 20 m (for example models based on partition 3 were
assessed using images in partition 7, Fig. 2) were used to calculate
the area under the curve (AUC) of the receiver operating
characteristics (ROC) (Fielding and Bell, 1997; Manel et al., 2001).
This distance was chosen based on spatial analysis of the data
which indicated that spatial autocorrelation became negligible at
distances of �20 m as a result of the high heterogeneity in-
troduced by iceberg ploughmarks in the area (Robert et al., 2014).
AUC was calculated for each partition, species assemblage and
statistical approach. The test AUC values reported for MaxEnt were
based on absences identified within the acquired imagery as op-
posed to background data. Prediction accuracy (the proportion of
correctly assigned presences and absences over total sample size)
was also calculated. Full coverage maps were produced for each of
the eight partitions. To assess similarities between the predictive
maps obtained from each of the statistical approaches, the Hel-
linger-based niche similarity metric described in Warren et al.
(2008) was computed on maps averaged across partitions. This
measure can vary from 0 (no overlap) to 1 (identical niches).

2.4. Ensemble predictions

Considering that different models are likely to produce differ-
ent predictive outputs, but with each containing separate in-
formation and areas of uncertainties, the idea of ensemble pre-
dictions is to summarise a range of potential outcomes to produce
more robust predictions (Araújo and New, 2007). Using the same
partitioning of training and test datasets as previously described,
for each partition, AUC values for the ensembles were calculated
by averaging probability maps from all three models for each
species assemblage. Accuracy of the ensemble predictions was
calculated by first assigning, for each statistical approach and
partition, the species assemblage with the highest predicted
probability of occurrence. Subsequently, for each partition, ma-
jority voting was carried out based on the species assemblage
predicted by each statistical technique. To obtain a visual depiction
of prediction confidence, the number of models in agreement at
each pixel was also calculated.
3. Results

For the combined JC-060 and JC-073 datasets, a total of 11,268
individual organisms were observed from 38 morphospecies
(present in at least 10 images). For each of the species assemblages
considered, AUC values showed all models to perform better than
could be expected by chance (Table 2). Based on the eight parti-
tions MaxEnt showed average AUC values ranging from 0.73
(SD¼0.05Assemblage A4; SD¼0.02 Assemblage A3) to 0.63
(SD¼0.05 Assemblage A2), values of 0.81 (SD¼0.02 Assemblage
A1) to 0.63 (SD¼0.04 Assemblage A2) for RDA and 0.83 (SD¼0.02
Assemblage A1) to 0.68 (SD¼0.05 Assemblage A2) for the RF
classifier. All models had the most difficulties predicting Assem-
blage A2. Assemblage A1 could be captured by RDA and RF, but
predictions using MaxEnt were lower (Mean¼0.67, SD¼0.02).
Overall, RF had the highest AUC values across species assemblages.

The three models showed differences in the maps of habitat
suitability for the various species assemblages, but measures of
environmental niche indicated similarities between model pre-
dictions (Table 3). Generally, RDA and RF showed the most simi-
larities across all species assemblages, and all models tended to
select a similar set of environmental descriptors as most im-
portant. For RF, the number of patches (150 m), the mean patch
size for soft sediments (150 m) and the total area occupied by coral
(60 m) were the most important variables. For individual species
assemblages, all three environmental descriptors were also the
most important for Assemblage A1, while for Assemblage A3, it
was the former and for Assemblage A4, the latter. Proportion of
like adjacencies for soft sediment (150 m) was also important for
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Table 2
Area under the curve (AUC) values observed based on eight partitions for four different species assemblages using three statistical approaches (Maximum Entropy (MaxEnt),
Redundancy Analysis (RDA) and Random Forest (RF)) and one ensemble mapping approach. Numbers in bold show highest values obtained for each assemblage and
partition. Assemblage A1 - Parastichopus tremulus and associated species, Assemblage A2 - Munida sarsi and associated species, Assemblage A3 - Reteporella sp. and various
sponge spp. and Assemblage A4 - Lophelia pertusa and associated species.

Assemblage A1 Assemblage A2 Assemblage A3 Assemblage A4

RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble

1 0.84 0.83 0.63 0.83 0.69 0.69 0.68 0.74 0.70 0.81 0.71 0.75 0.76 0.82 0.81 0.83
2 0.80 0.83 0.66 0.82 0.63 0.76 0.65 0.72 0.74 0.81 0.74 0.78 0.59 0.67 0.71 0.69
3 0.82 0.86 0.66 0.85 0.55 0.67 0.63 0.64 0.75 0.81 0.71 0.76 0.78 0.81 0.76 0.80
4 0.79 0.84 0.66 0.82 0.64 0.66 0.61 0.67 0.69 0.73 0.72 0.72 0.56 0.67 0.65 0.67
5 0.83 0.79 0.72 0.84 0.67 0.69 0.67 0.72 0.77 0.80 0.75 0.80 0.76 0.78 0.73 0.78
6 0.81 0.84 0.69 0.84 0.60 0.73 0.65 0.69 0.84 0.85 0.74 0.83 0.81 0.76 0.70 0.77
7 0.83 0.83 0.65 0.84 0.63 0.63 0.63 0.66 0.79 0.80 0.75 0.79 0.72 0.78 0.74 0.77
8 0.80 0.83 0.67 0.83 0.64 0.62 0.55 0.59 0.68 0.75 0.74 0.74 0.68 0.74 0.74 0.79
Mean 0.81 0.83 0.67 0.83 0.63 0.68 0.63 0.68 0.74 0.79 0.73 0.77 0.71 0.75 0.73 0.76
SD 0.02 0.02 0.03 0.01 0.04 0.05 0.04 0.05 0.05 0.04 0.02 0.04 0.09 0.06 0.05 0.06

Table 3
Hellinger-based niche similarities measures (Warren et al., 2008) between habitat suitability predictions for four species assemblages based on three statistical approaches.
Number in bold show highest values obtained for each assemblage and survey area. Assemblage A1 - Parastichopus tremulus and associated species, Assemblage A2 - Munida
sarsi and associated species, Assemblage A3 - Reteporella sp. and various sponge spp. and Assemblage A4 - Lophelia pertusa and associated species.

Assemblage A1 Assemblage A2 Assemblage A3 Assemblage A4

MaxEnt RDA RF MaxEnt RDA RF MaxEnt RDA RF MaxEnt RDA RF

M43
MaxEnt 0.83 0.83 0.81 0.84 0.81 0.81 0.75 0.78
RDA 0.91 0.90 0.87 0.88
RF
M44
MaxEnt 0.82 0.84 0.74 0.75 0.73 0.77 0.73 0.77
RDA 0.91 0.90 0.83 0.83
RF
M45
MaxEnt 0.81 0.84 0.82 0.83 0.79 0.82 0.81 0.83
RDA 0.90 0.89 0.84 0.87
RF
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Assemblage A2. For MaxEnt, total area covered by coral (60 m) and
effective mesh size of bedrock (60 m) were also important for
Assemblage A4, while number of patches (150 m) was selected for
both Assemblages A2 and A3. For Assemblage A1, it was maximum
shape index and proportion of like adjacencies for soft sediment
(150 m). Similarly for RDA, the number of patches (150 m) and the
proportion of like adjacencies for soft sediment (150 m) were most
important, but the mean shape index for corals (150 m) and the
effective mesh size for bedrock (60 m) were also valuable.

The areas of variability also differed between models (Fig. 3)
and ensemble predictions (Fig. 4 and Appendix B) made by com-
bining all three models exhibited a slightly higher accuracy across
species assemblages than could be obtained based on any single
model (Table 4). Ensemble predictions showed the highest (or
equal) accuracies in every partition for Assemblage A3, and all but
one partition for Assemblage A1. For the other two species as-
semblages, ensemble predictions still showed the highest (or
equal) accuracy in half of the partitions. Overall, models com-
pletely disagree in less than 10% of the area surveyed while all
three agreed in 25.8% of M43, 79.0% of M44 and 42.1% of M45
(Fig. 3).
4. Discussion

By taking advantage of species-environment relationships,
abiotic proxies can provide direct applications for the manage-
ment of natural resources by establishing representations of biotic
components via high resolution acoustic survey techniques. The
spatial arrangement of habitat patches was successfully included
to predict the spatial patterns of four species assemblages across a
highly heterogeneous area of seabed. No single approach con-
sistently surpassed the others across species assemblages and al-
though differences occurred between spatial predictions of habitat
suitability from the different statistical approaches, ensemble
models appeared as a meaningful improvement.

4.1. Model predictions

Of the three models (RDA, RF and MaxEnt) compared in this
study, similar AUC values were obtained, but performance varied
by species assemblage. As species turnover generally occurs over a
gradient, the predictions showed a similar pattern, and overlap
between habitat suitability predictions occurred, particularly be-
tween Assemblage A3 and A4. This is to be expected as cold-water
corals need hard substratum for attachment (Wilson, 1979) and in
turn provide hard substratum to a number of species. Assemblage
A2 appeared as a transition between the more defined hard sub-
stratum and soft sediment associated fauna, and as such predic-
tion performance for this assemblage generally tended to be lower.
Across models, areas of highest disagreement tended to occur at
the edge of patches and highlighted the difficulty associated in
delineating hard boundaries for otherwise continuous gradients of
species assemblages. Albeit at a larger scale, higher levels of dis-
crepancies between modelling techniques have been shown to
occur at the edge of a species distribution (Grenouillet et al., 2011).



180

190

200

220

230

240
250

350

340

330

320

3100

300

290

280

280

3 02
Fisheries Closure Special Area of

Conservation

M44

M43

M45

Number of model
in agreement

Fig. 3. Maps showing the prediction agreement based on the three models considered for Assemblage A4 (Lophelia pertusa and associated species) for three survey areas
around two conservation zone boundaries. The maps were based on the habitat suitability averaged across all eight partitions. The inset on the left shows the relative
position of the three survey areas M43, M44 and M45 with respect to the boundaries of the conservation zones and the outline of the shipboard-multibeam survey. The
white rectangles represent areas for which the acoustic data was corrupted and were not included in the prediction models.
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Fig. 4. Maps showing the relative habitat suitability resulting from an ensemble modelling approach for Assemblage A4 (Lophelia pertusa and associated species) for three
survey areas around two conservation zone boundaries (higher suitability in black). The maps show the habitat suitability averaged across all eight partitions. The inset on
the left shows the relative position of the three survey areas M43, M44 and M45 with respect to the boundaries of the conservation zones and the outline of the shipboard-
multibeam survey. Maps for the other three groups are presented in Appendix B. The white rectangles represent areas for which the acoustic data was corrupted and were
not included in the prediction models.
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Table 4
Accuracy values obtained based on eight partitions for four different species assemblages using three statistical approaches (Maximum Entropy (MaxEnt), Redundancy
Analysis (RDA) and Random Forest (RF)) and an ensemble mapping approach. Accuracy defined as the proportion of correctly assigned presences and absences over sample
size. Number in bold show highest values obtained for each assemblage and partition. Assemblage A1 - Parastichopus tremulusand associated species, Assemblage A2 -
Munida sarsi and associated species, Assemblage A3 - Reteporella sp. and various sponge spp. and Assemblage A4 - Lophelia pertusa and associated species.

Assemblage A1 Assemblage A2 Assemblage A3 Assemblage A4

Partition RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble

1 0.76 0.70 0.76 0.81 0.74 0.73 0.71 0.73 0.76 0.88 0.84 0.88 0.82 0.87 0.83 0.83
2 0.72 0.73 0.76 0.78 0.68 0.77 0.68 0.75 0.80 0.83 0.82 0.86 0.82 0.85 0.82 0.87
3 0.70 0.76 0.76 0.78 0.78 0.78 0.70 0.76 0.79 0.85 0.79 0.88 0.82 0.84 0.82 0.83
4 0.69 0.74 0.72 0.76 0.78 0.75 0.61 0.83 0.79 0.80 0.81 0.92 0.81 0.77 0.82 0.84
5 0.72 0.70 0.76 0.71 0.71 0.71 0.76 0.71 0.83 0.87 0.79 0.88 0.82 0.85 0.85 0.81
6 0.70 0.73 0.76 0.76 0.76 0.73 0.70 0.73 0.81 0.83 0.82 0.90 0.85 0.82 0.84 0.78
7 0.75 0.71 0.76 0.77 0.76 0.76 0.71 0.76 0.83 0.87 0.80 0.87 0.79 0.81 0.81 0.82
8 0.71 0.73 0.73 0.76 0.69 0.72 0.72 0.74 0.85 0.85 0.82 0.86 0.76 0.82 0.80 0.82
Mean 0.72 0.72 0.75 0.77 0.74 0.74 0.70 0.75 0.81 0.85 0.81 0.88 0.81 0.83 0.82 0.83
SD 0.02 0.02 0.02 0.03 0.04 0.02 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02
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Assemblage A2 tended to be found in particularly complex areas
where a high number of patches, of both hard and soft sediments,
appeared. On the other hand, Assemblage A1 was found in areas
characterised by few large patches in proximity to other large soft
sediment patches. Assemblage A3 or even A4 were generally found
in regions of harder substratum, particularly if bedrock was
present.

As these three statistical approaches are based on very different
modelling strategies, differences in their predictions are to be
expected. Presence-absence models generally provide more in-
formation about less suitable habitats (if adequate absences are
available). As this information is not available to presence only
models, overestimation of suitable habitats can occur (Brotons
et al., 2004; Pearson et al., 2006). Results can also depend on
species characteristics, with generalist species being more difficult
to predict accurately, and absence data being more valuable for
such species (Brotons et al., 2004; Marmion et al., 2009a). This
might be another reason why lower prediction performances were
obtained for Assemblage A2. Overall MaxEnt tended to show a
lower niche similarity than RDA and RF, which may be due to its
different data requirement. In the case of RDA, classification into
assemblages was only conducted after predictions of individual
species, and as such could be more affected by difficulties asso-
ciated with predicting rarer species. However, since species are
predicted instead of assemblages, it might also be possible to de-
fine potentially new assemblages as occurring in areas outside of
the originally sampled locations (Ferrier and Guisan, 2006). RF
predictions for Assemblage A4 equalled those of the ensemble
model. Other studies have found RF to often equal ensemble ap-
proaches (Grenouillet et al., 2011; Marmion et al., 2009b), poten-
tially because it already includes a consensus step and might be
less affected by species geographical attributes, such as prevalence,
range and spatial autocorrelation (Marmion et al., 2009a). On the
other hand, Meynard and Quinn (2007) found that although GAM
tended to outperform classification trees under many simulated
scenarios, the latter were particularly effective at predicting spe-
cies displaying threshold (on/off) response curves to environ-
mental variables. In the case of Assemblages A3 and A4, a
threshold response to the presence of hard substratum could be
expected while Assemblages A1 and A2 may be more likely to
exhibit more continuous response curves.

Additional factors also complicate predictive habitat modelling,
particularly in deeper waters. Precise spatial positioning can be
problematic for underwater vehicles, particularly AUVs, owing to
difficulties associated with determining the initial position fol-
lowing the descent and correcting for drift (McPhail, 2009).
However, as our study site was located at 200–400 m water depth,
limited drift would be expected. Accuracy of the ROV’s Sonardyne
USBL navigation is also expected to be better than 1% of the depth.
With the landscape and class metrics calculated at scales of 60 m
and 150 m, a small shift in position would have had limited effects
on the values of the explanatory variables. The spatial extent for
which predictions can be valid is also of importance, as predictions
made for areas outside the range of environmental conditions
captured by the survey design are problematic (Elith and Leath-
wick, 2009). The use of transects limited the area surveyed to
single narrow lines leaving most of the regions covered acousti-
cally without any biological sampling. Transects are designed to
maximise seafloor survey areal coverage for a given bottom time,
but also have the disadvantage of causing issues of spatial auto-
correlation which need to be taken into account in order to ade-
quately capture predictive ability (Hirzel and Guisan, 2002; Le-
gendre et al., 2002). In our study, this effect was mitigated through
a subsampling scheme which increased distances between sample
images used for model building.

4.2. Ensemble mapping for conservation

Comparison of the statistical approaches showed differences in
predictions, but a single approach did not consistently outperform
the others when multiple species assemblages were considered.
Instead, our results suggest that taking into account the output of
many different models may provide a valuable alternative. En-
sembles can be created using an array of approaches (Marmion
et al., 2009b), but even the relatively simple approach taken in this
study was effective at optimizing different model strengths and
increasing accuracy. All three statistical approaches were included
in the ensemble mapping of all four species assemblages, but in
other cases, the consideration of thresholds for the exclusion of
lower performing models may also be valuable. In any case, di-
versity in the type of approaches selected is needed to increase the
likelihood of obtaining better performing ensemble models (Du
et al., 2012). Identifying regions of prediction disagreement across
models also provides an easy to understand depiction of spatial
uncertainties.

On the other hand, under certain circumstances, ensemble
mapping may be of less value. One example may be when the
main aim is to derive habitat indicators such as extent to monitor
the achievement of "Good Environmental Status" as suggested by
the Marine Strategy Framework Directive (MSFD) (2008/56/EC)
(CEFAS, 2012; OSPAR Intersessional Correspondence Group on the
Coordination of Biodiversity Assessment and Monitoring, 2012). In
this case, having the most thorough description of an habitat, in-
cluding across model uncertainties, may not be as important as
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having a consistent approach with minimum deviation over time
from which to monitor change (Strong, 2015). Employing multiple
models can increase the variability as some models may perform
less adequately for certain assemblages and make it more difficult
to assess the degree of change across surveys. However, this
should still not preclude the examination of the data using mul-
tiple statistical approaches, as one approach may be more sensi-
tive to a given environmental variable and be able to detect change
earlier. Once prediction similarly has been ascertained, the final
measure of extent could still rely on one specific technique for
consistency.

Cold-water corals can have a strong impact on local diversity
and much effort is being made to improve their conservation
(Roberts and Hirshfield, 2004), but owing to limited data, spatial
planning often must rely only on spatial predictions of habitat
suitability. Even so, these maps provide greater insights into their
spatial distribution patterns, which helps in understanding their
ecology and supports adequate management better than single
point observation obtained from limited imagery transects or
physical samples. As illustrated by the case of Rockall Bank, dif-
ferent statistical approaches may provide different predictive
maps of coral suitability. Predictions of assemblage A4 (mostly
composed of the cold-water coral L. pertusa and associated filter-
feeding species), the least common assemblage, were particularly
sensitive to changes in modelling approach. For example, if only
random forest had been considered, it would have been tempting
to conclude that area M44 was as suitable a conservation area as
M45. However, M44 was only found to contain coral rubble in ROV
video surveys, likely resulting from past trawling activities. En-
semble models better represented the spatial patterns observed in
the video survey as they highlight areas where predictions were
consistent across at least two models.

Even though it is the broader-scale patterns in species dis-
tributions that may be of interest for management purposes, it is
the fine-scale habitat characterisation of the environment, through
high-resolution sidescan sonar mapping, that allowed the het-
erogeneity of the region to be accurately captured and the driving
processes identified. The ship-board bathymetry survey carried
out during JC-60 covered less than 10% of the 4365 km2 con-
servation zone and took approximately 2.3 days. Although of much
higher resolution than other datasets available for the remainder
of this area, compared to the even higher resolutions obtained
with the AUV, the ship-board dataset was of limited use in ex-
plaining species distribution patterns for the extent covered in this
survey (Robert et al., 2014). It is clear that AUV mapping shows
great promise for marine management; however there remains a
distinct trade-off between the resolution achieved and the extent
that can be covered. With current AUV technologies, Autosub6000
can be sent out from a ship to autonomously map an area for
�30 h, covering a distance of �150 km (the size of the resulting
area mapped will vary based on the acquired resolution) (Wynn
et al., 2012). In order to map the entirety of the conservation zone
to the resolution acquired in this study, 4200 days would be re-
quired. This is well outside the scope of most scientific cruises or
conservation projects, but AUVs have been successfully employed
to target certain features in other conservations zones such as Haig
Fras and the Darwin Mounds (Wynn et al., 2012). The Marine
Autonomous and Robotic Systems (MARS) facility is also currently
working on developing long-distance AUVs which could be de-
ployed from shore to reach the closer offshore conservation areas
with the aims of eventually covering greater extents at high re-
solutions and instituting repeat long-term monitoring of specific
areas without the need for expensive ship-based surveys.
4.3. Conclusion

Predictive habitat maps are of great use for marine manage-
ment as they represent the best available information to support
decision making, but, as they are typically based on a very limited
amount of data, they should only serve as general guides until
more data become available. The presentation of uncertainty maps
should help emphasize this point and can be employed to help
select target areas for which further biological sampling will be
particularly valuable. Uncritical reliance on a particular statistical
method, without comparison with others, may lead to decisions
being biased by the chosen method since predictions made from
different modelling strategies have been shown to give differing
outputs, but whose combination into ensemble models can lead to
increased accuracy. Comparison between statistical methods
showing one method to outperform the others may not always be
extendable to other habitats, species or assemblages, and similarly
our results cannot be perfunctorily generalized to all habitats.
However, in cases where one statistical approach cannot be
identified as performing significantly better, ensemble approaches
may provide an elegant alternative. Although this approach can be
more involved than other techniques, the additional work requires
no further costly sampling or access to specialized equipment and
potential increases in prediction performances are clearly of value
for spatial planning.
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