
Intermediate Notation for Provenance and
Workflow Reproducibility

Danius T. Michaelides1, Richard Parker2, Chris Charlton2, William J.
Browne2, and Luc Moreau1

1 Electronics and Computer Science, University of Southampton, UK
{dtm,L.Moreau}@ecs.soton.ac.uk

2 Graduate School of Education, University of Bristol, UK
{Richard.Parker,C.Charlton,William.Browne}@bristol.ac.uk

Abstract. We present a technique to capture retrospective provenance
across a number of tools in a statistical software suite. Our goal is to
facilitate portability of processes between the tools to enhance usability
and to support reproducibility. We describe an intermediate notation to
aid runtime capture of provenance and demonstrate conversion to an ex-
ecutable and editable workflow. The notation is amenable to conversion
to PROV via a template expansion mechanism. We discuss the impact
on our system of recording this intermediate notation in terms of runtime
performance and also the benefits it brings.

1 Introduction

Reproducibility of scientific results is a key challenge to the modern scientist[1].
Systems that have been built to tackle this often focus on recording provenance,
especially scientific workflow systems.

The focus of the EBook project3 is on a suite of tools called StatJR4 designed
to aid in the use and teaching of statistical analysis techniques with a particular
emphasis on their use in social science. The tool suite consists of a Web front-
end to statistical processes, a command line interface and a dynamic document
system, whereby interactive computations can be embedded in a document[2].
They are designed to support the user as their experience and understanding of
statistical methods improves by surfacing different levels of detail of the under-
lying computations. More recently, the suite was enriched by a workflow system
that enables the composition of processes from low-level operations to broad
methodological steps. The overall aim is to allow users to move seamlessly be-
tween the StatJR tools in order to refine the activity they are engaged in, whilst
maintaining their context and the choices they have made so far in their inter-
active computational investigations. Concretely, it is a requirement to be able to
capture both the interactive investigations and the batch processing that took
place, convert them to editable workflows that may be further refined, before

3 http://www.bristol.ac.uk/cmm/research/ebooks/
4 http://www.bristol.ac.uk/cmm/software/statjr/

2

being packaged as downloadable web-enabled documents, which support full re-
producibility of the computations.

Many scientific workflow tools, such as Taverna[3], Kepler[4] and VisTrails[5],
are monolithic “integrated development environments”. Instead of locking a user
into a single tool, we seek to facilitate their mobility between tools, to allow them
to use the best tools for the job. This motivates the need for recording provenance
in a manner that allows multiple tools to be used. Our approach is more akin to
YesWorkflow[6] allowing multiple tools to be used in the scientific processes.

Furthermore, reproducibility is a key direction of development for many work-
flow tools. For example, ReproZip[7] enables reproducible experiments by mon-
itoring command-line executions and packaging required resources into a single,
distributable package. Its integration with VisTrails aids reproducibility by cre-
ating a suitable workflow of the original experiment for running within VisTrails.
In that context, Moreau[8] sees provenance as a “program”, which when inter-
preted, can reproduce results. Our take on this is the ability to translate the
trace of a process execution back into an executable specification that is also
editable.

The aim of this paper is to present a PROV-based technique to capture
provenance at runtime from multiple tools, and to provide the capability to au-
tomatically convert them into reproducible and editable workflows. Specifically,
our contributions are fourfold. i) INPWR (Intermediate Notation for Prove-
nance and Workflow Reproducibility), an intermediate representation capturing
key values logged at runtime, from the various tools in a tool suite; ii) A con-
version of INPWR to PROV by means of a template expansion mechanism; iii)
A conversion of INPWR into an editable and executable workflow, which when
executed would result in the same provenance; iv) A quantitative evaluation
demonstrating that the approach is tractable in terms of size of representations
and computational costs.

The paper is organised as follows. We discuss some application requirements
in Sect. 2 and our computation model in Sect. 3. In Sect. 4 we introduce IN-
PWR and demonstrate how we capture logs in Sect. 5. We demonstrate how the
INPWR representation enables the generation of PROV graph data as well as
generation of new workflows in Sect. 6. In Sect. 7 we evaluate the costs of our
notation and go on to look at related work. Finally, we present our conclusions
and further work.

2 Application Requirements

In this section we discuss some of the requirements of application to provide
some context and motivation for this work.

Guide a reader through steps of an analysis The system should enable a
user to step through a complex analysis. The steps in the analysis could vary
in size from broad methodological steps down to low-level operations. They
should match the user’s cognitive understanding of what is going on.

3

Adaptable The user should be able to influence the path taken through an
analysis. Analyses should support user input, branching and repetition.

Allow the results to be reproduced The system should support the repro-
ducibility of the analysis in light of choices made by the user. Specifically: 1)
published material - provide supporting evidence for publication 2) automa-
tion - rerun the analysis e.g. to verify results or run with a different dataset
3) logbook - be a record of what actions were performed in the analysis for
the user to refer/return to.

Ease of authoring Authoring of an analysis should be available to all types
of users. It should be easy to adapt/extend/repurpose an analysis. There
should be a tight link between edit and running to facilitate explorative
analysis and pedagogy.

From these application requirements, we derive the following technical re-
quirements:

1. Capture information about the steps taken in the analysis into a log in
sufficient detail for re-use whilst remaining concise.

2. Be able to transform that log into outputs for different purposes.

3. Transformation of log back into analysis should include user input and un-
wind branching and repetition. This revised analysis is different to storing
the original analysis alongside inputs made as reflects the exact steps taken
to complete the analysis.

3 Computational Model

StatJR uses the Blockly visual programming system[9]. Blockly is designed to
aid non-programmers in writing short scripts and as a toolkit for building visual
programming language, it focusses on extensibility. Blockly opts to take an im-
perative programming approach in contrast to the dataflow approach of many
scientific workflows. Blocks can be statement blocks or expression blocks and
they have the notion of containment of other blocks for scoping and traditional
flow control. Statement blocks are composed into a sequence of blocks.

In StatJR, we extend the selection of blocks available to include blocks that
perform common statistical processes. In addition, as blocks can encapsulate
large computations, statement blocks can produce named outputs.

A simple workflow is shown in Fig. 1 which consists of a sequence of two
blocks: 1) add a new variable (normexam2) to current dataset by squaring another
variable (normexam) and 2) calculate some summary statistics about the revised
dataset. Variables, in this context, are statistical variables (i.e. named columns
in a dataset).

We model the computation in our system in terms of tasks with named inputs
and outputs. All tasks and values are uniquely identified. Tasks are invoked by
a parent task.

4

Fig. 1. Simple StatJR Workflow.

4 INPWR Notation

The INPWR notation captures the salient detail of the execution of a task as
defined in the previous section. The notation consists of a set of variables and
their values as shown in Fig. 2. They fall into two categories; 1) pertaining to

Variable name Type Description
block instance uri identifier for this execution
parent uri the parent of this execution
starttime date when the block started executing
endtime date when the block finished executing
block uri uri refers to the block
block title string the name of the block
block type uri the type of the block
consumed list of URIs entities consumed
consumed at list of dates when they were consumed
consumed name list of strings their names
produced list of URIs entities produced
produced at list of dates when they were produced
produced name list of strings their names
literal list of URIs identifiers of literal values
literal value list of strings their value
literal type list of strings their type

Fig. 2. Binding variables for an execution of a block.

information about the task and 2) linking to resources consumed and produced.
Tasks are uniquely identified by the instance URI5, but also have a link to the
block in the original workflow document and also its type. The parent task
is stored to indicate the task hierarchy. Resources are linked to a task via a
named port as with many dataflow workflow systems[10]. Values of literals are
also stored in variables. All inputs and outputs (including literals) are given a
generated URI with the exception of resources that are supplied with StatJR
(such as datasets) which have a static URI. The consumed, consumed at and
consumed name variables are lists used to store details about the consumption
of resources i.e. the nth resource consumedn was used at consumed atn on the
named port consumed namen. A similar pattern is used for produced resources
and any literals.

5 We generate UUIDs and use the urn:uuid: scheme.

5

Variable name Block 1 Block 2 Block 3
block instance urn:uuid:1 urn:uuid:2 urn:uuid:8
parent - urn:uuid:1 urn:uuid:1
starttime 2016-02-12T15:12:28.543093 2016-02-12T15:12:28.546712 2016-02-12T15:12:28.679199
endtime 2016-02-12T15:12:29.527988 2016-02-12T15:12:28.677037 2016-02-12T15:12:29.527225
block uri rqvik2xqakayemazt813 pgno3ns6cur7ej7yxhju 6fdqrmkq5n8fuq57qfti
block title Sequence Calculate DatasetSummary
block type estatwf:Sequence estatwf:Calculate estatwf:DatasetSummary

consumed urn:uuid:3 1 urn:uuid:5

urn:uuid:4 2

estat:datasets/tutorial
consumed at 2016-02-12T15:12:28.546846 2016-02-12T15:12:28.679253

2016-02-12T15:12:28.546846
2016-02-12T15:12:28.546846

consumed name expression dataset
column
dataset

produced urn:uuid:5 urn:uuid:9
urn:uuid:6 urn:uuid:10
urn:uuid:7 urn:uuid:11

produced at 2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171
2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171
2016-02-12T15:12:28.676943 2016-02-12T15:12:29.527171

produced name inputs script.py
output inputs
script.py table

literal urn:uuid:3 1

urn:uuid:4 2

literal value normexam*normexam 1

normexam2 2

literal type xsd:string 1

xsd:string 2

Fig. 3. Example INPWR records for 3 blocks.

INPWR notation generated from executing the example workflow Fig. 1 are
shown in Fig. 3. For clarity uuid references have been renamed. Note that Block 2
consumes two literal values “normexam2” (the name of the new dataset variable)
and “nornexam*normexam” (an expression which the Calculate block which is
passed directly to the underlying code in StatJR). In this case, the URIs in the
consumed variable (marked 1 and 2 in circles) refer to values defined in the vari-
ables for literals. Both blocks output intermediate resources such as marshalled
inputs and the underlying Python code executed by the step in line with our
project goals of exposing pedagogical material to the user. A JSON representa-
tion of the variables from block 2 can be seen in the appendix.

5 Capture

The StatJR workflow interpreter was augmented to capture execution infor-
mation in INPWR notation. The key points for capture during interpreting a
workflow are at the beginning of a block evaluation, at the point its input argu-
ments have been evaluated, at the point when outputs are generated and finally

6

at the end of block evaluation. At each capture point, a subset of variables are
captured; we call this a binding fragment. The binding fragment is appended to
a log along with the type of recording: begin, input, output and end.

To generate the complete notation log after execution, we iterate over the
binding fragment log and use a stack to aid in combining the fragments. A begin
fragment pushes a new INPWR record onto the stack, filling in appropriate vari-
ables including the parent variable (the block instance from the next block on
the stack). Record input/output appends values to the appropriate variables (i.e.
consumed* or produced*). End finalises a binding setting the endtime variable,
pops the INPWR record from the stack, and commits it to the log.

6 Transformations

In this section, we look at how the INPWR records that we captured in Sect. 5
can be transformed into outputs useful in the StatJR system.

6.1 PROV output via Templates

The PROV-Template system[11] allows the generation of PROV[12] documents
by combining a template with a binding. The template is a PROV document
which contains variables acting as placeholders for values and a binding doc-
ument contains values for those variables. A provenance document is created
by expanding a template against a binding; templates include special attributes
that control this expansion process.

The process log recorded using INPWR is an ordered list of sets of variables,
one for each step in the execution. Each set of variables in INPWR are the
equivalent of a binding in PROV-Template. Hence, creating a complete PROV
graph for an execution of a workflow involves expanding each binding in the
INPWR log against a template and merging the resulting documents.

Figures 4 and 5 show an example template in graphical form and PROV-N
representation. This PROV document is modelled on the computation model
from Sect. 3 and articulates the process hierarchy, entities consumed and pro-
duced, and their derivations as well as supplementary information about time
and types. In PROV-Template, attributes in the tmpl namespace map to specific
elements in PROV-DM[12] where the typing does not allow a Qualified Name,
for example the attribute tmpl:startTime on an Activity corresponds to the ac-
tivity’s start time. Note that in this template, we choose to model literal values
as entities and whilst in the template the var:literal entity is disconnected,
references to it will appear in the consumed or produced variables and the graph
will be connected after expansion. This can be seen in Fig. 6 showing the prove-
nance graph derived from the INPWR log from an execution of the workflow
from Sect. 5. In this paper we use a single template for all INPWR log entries,
however templates could be applied selectively, perhaps based on the value of a
variable (block type for instance).

7

b

block_instance

consumed

use

type: var:block_type
startTime: var:starttime
endTime: var:endtime
label: var:block_title
block: var:block_uri

parent

produced
gen

der

literal

value: var:literal_value
type: var:literal_type

Fig. 4. Graphical representation of a template.

document
prefix tmpl <http://openprovenance.org/tmpl#>
prefix var <http://openprovenance.org/var#>
prefix vargen <http://openprovenance.org/vargen#>
prefix estat <http://purl.org/net/statjr/ns#>
prefix estatwf <http://purl.org/net/statjr/wf#>

bundle vargen:b
activity(var:block_instance, -, -,

[tmpl:startTime=’var:starttime’, tmpl:endTime=’var:endtime’,
prov:type=’var:block_type’, tmpl:label=’var:block_title’,
estatwf:block=’var:block_uri’])

activity(var:parent,-,-)
wasStartedBy(var:block_instance, -, var:parent, -, [tmpl:time=’var:starttime’])
entity(var:consumed)
used(var:block_instance, var:consumed, -,

[tmpl:time=’var:consumed_at’,
estat:bindingname=’var:consumed_name’])

entity(var:produced)
wasGeneratedBy(var:produced, var:block_instance, -,

[tmpl:time=’var:produced_at’,
estat:bindingname=’var:produced_name’])

entity(var:literal, [estatwf:value=’var:literal_value’, estatwf:type=’var:literal_type’])
wasDerivedFrom(var:produced, var:consumed, -, -, -)

endBundle
endDocument

Fig. 5. PROV-N representation of the template in Fig. 4.

8

8

5

use

type: estatwf:DatasetSummary
label: DatasetSummary
block: 6fdqrmkq5n8fuq57qfti

1

type: estatwf:Sequence
label: Sequence
block: rqvik2xqakayemazt813

2

datasets/tutorial

use

4

use

3

use

type: estatwf:Calculate
label: Calculate
block: pgno3ns6cur7ej7yxhju

10 gen
der

9

gen der

type: xsd:string
value: normexam*normexam

gen derder

der
6 gender

der

der 7

gen
derder

der

11

gen der

value: normexam2
type: xsd:string

Fig. 6. Provenance graph derived from expansions of template of Fig. 5 and INPWR
records of Fig. 3.

6.2 Workflow output

The INPWR log captured is sufficiently descriptive to allow conversion to a
workflow. Conversion from INPWR back into the original workflow is not pos-
sible (due to conditionals), however a reconstruction of the exact steps taken
to generate a given output is beneficial for reproducibility and also for moving
activity between tools in our system. In addition, the INPWR notation may not
have been generated directly by the workflow system, and may instead come
from one of the other StatJR tools.

Blockly uses an XML format to serialise the abstract syntax tree of a Blockly
program. Converting an INPWR record to Blockly XML involves creating the
appropriate XML node and recursively generating nodes for the consumed re-
sources. A consumed resource is found by searching the outputs of the immediate
children of the current block. Special cases occur for sequences, control struc-
tures and user input. Reconstruction of sequences is performed by looking for
blocks which have the same the parent and then ordering by time. For control
structures, special care has to be taken to evaluate any conditions in case they
created a side-effect; their results are discarded in the generated workflow. We
unwind all loop structures. User input blocks are replaced with literal values
that represent the input made.

Figure 7 shows an example workflow (left) and a reconstructed workflow from
the INPWR log or a run (right). The workflow (left) consists of a loop asking

9

Fig. 7. Workflow (left) enabling the user to iteratively add new variables to a dataset,
and resulting workflow reconstruction (right) after two variables were added.

the user whether they want to add a new variable, and a calculate block to
construct a new variable based on asking the user the name of the new variable
and an expression for it. A variable in this context is a statistical variable i.e. a
column in a dataset. This calculate block modifies the currently active dataset
by adding the column. This workflow was executed in which the user adds 2
variables (normexam2 and normexam3), answering the “Add another variable?”
question Yes, Yes and No. The reconstruction of this run is shown on the right of
the figure, with the evaluation. The unwinding of the repeat/while loop can be
seen with the repetition of the Calculate block and the condition translated to 3
instances of setting the variable condition. The values of the loop conditional
were inputs made by the user, and were translated to boolean literals true, true
and false.

7 Evaluation

To establish that the cost of recording an INPWR log is not too onerous we look
at memory and CPU usage when running a selection of workflows. Workflows
were based on real-world examples and vary in size from small workflows which,
for example, perform linear regression with 3 variables (reg3) or generate X-Y
plots of multiple variables (plotloop) to larger workflows which perform more
lengthy analysis (lemma3 and big).

Figure 8 shows some memory usage metrics for the workflows. Python sizes
are calculated by traversing the Python structures and applying sys.getsize().
The Python fragment sizes equate to the runtime memory overhead. Python
records are the post-computation in memory cost and PROV-N records is the
cost of serialising to disk. On average, we see a per record overhead of approxi-
mately 6kB during runtime, 3.4kB post-computation and on disk cost of 1.8kB
per record.

10

blocks records fragments INPRW records expansion variables
name # # # python python prov-n prov-n #

reg3 18 40 308 283,714 177,309 81,126 81,439 1,364
lemma3 74 69 441 414,514 267,197 122,939 97,324 2,082
plotloop 25 75 393 371,821 245,102 120,898 74,557 2,004

big 259 235 1,501 1,360,741 859,482 415,609 305,844 7,088

Average
per record – – 6 5,962 3,395 1,798 1,436 30

Fig. 8. Memory overhead for a number of workflows (Python memory usage and
PROV-N in bytes), including per record averages.

no provenance provenance overhead
name seconds seconds %

reg3 1333.16 1334.97 0.14
lemma3 1196.58 1202.45 0.49
plotloop 198.78 200.15 0.86

big 783.61 790.37 0.86

Fig. 9. Runtime overhead of tracking provenance across a selection of workflows - total
runtime for 100 runs.

Runtime was measured as the wall-clock time for running each workflow 100
times with and without provenance capture. Figure 9 shows the results and the
runtime overhead calculated as percentage.

8 Related work

Many scientific workflow systems capture provenance[13] with a distinction made
between prospective and retrospective provenance. VisTrails[5] uses an SQL
database for storage of retrospective provenance and an XML serialization for
storing prospective provenance. It also records provenance about the evolution
of workflows as they are edited. Taverna[3] collects retrospective provenance for
use internally with in its workbench and provides export in the form of PROV-
O. The noWorkflow system[14] captures provenance information from scripts
without the need to instrument them. They use language dependent (primarily
Python) methods to capture runtime provenance from of function activations and
I/O events. They store their structured data in an SQL database. YesWorkflow[6]
provides script authors with an annotation mechanism to describe prospective
provenance. Their annotations are placed in language comments to be extracted
by YesWorkflow tools; many scientific languages are supported.

Converting workflow traces back into valid workflows was the subject of the
third Provenance Challenge[15]. To guarantee losslessness in the conversion from
OPM back into a valid Taverna workflows additional annotations are needed[16].

11

9 Conclusion and Future work

This paper has introduced an intermediate notation for recording provenance
for use across multiple tools in StatJR. Our notation is compatible with existing
PROV tools allowing easy generation of PROV graphs. We also demonstrated
that the notation is expressive enough to support conversion to executable work-
flow and we have discussed benefits to our system of being able to do so. We
measured the overhead of recording our notation at runtime and found that it
is tractable.

It is clear that in-memory and on-disk management of the INPWR notation
lends itself to optimisation, in particular in the presence of large workflows.
Whilst we have made no attempt to optimise storing of INPWR records, one
possible avenue is to look at storing the records in SQL databases as many
workflow systems do.

Our notation is amenable to other transforms. For example, D-PROV[10]
introduces extensions to PROV to express structural features in typical dataflow
models. Generating D-PROV from INPWR would simply involve introducing the
new relations to the PROV-Template system.

Acknowledgments

This research was supported by the UK’s Economic and Social Research Council
(grant reference ES/K007246/1).

References

1. Stodden, V., Leisch, F., Peng, R.D.: Implementing Reproducible Research. CRC
Press (2014)

2. Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L.: DEEP:
A Provenance-Aware Executable Document System. In: 4th International Prove-
nance and Annotation Workshop, IPAW 2012, Santa Barbara, CA, USA, June
19-21, 2012. Springer (2012) 24–38

3. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K.,
Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S.,
Goble, C.: The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research 41(W1)
(2013) W557–W561

4. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System.
Concurr. Comput. : Pract. Exper. 18(10) (August 2006) 1039–1065

5. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
VisTrails: Visualization Meets Data Management. In: Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data. SIGMOD ’06,
New York, NY, USA, ACM (2006) 745–747

12

6. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky,
R., Cao, Y., Cheney, J., Chirigati, F., Dey, S., Freire, J., Jones, C., Hanken, J.,
Kintigh, K.W., Kohler, T.A., Koop, D., Macklin, J.A., Missier, P., Schildhauer, M.,
Schwalm, C., Wei, Y., Bieda, M., Ludäscher, B.: YesWorkflow: A User-Oriented,
Language-Independent Tool for Recovering Workflow Information from Scripts.
International Journal of Digital Curation 10(1) (2015) 298–313

7. Chirigati, F., Shasha, D., Freire, J.: ReproZip: Using Provenance to Support Com-
putational Reproducibility. In: Presented as part of the 5th USENIX Workshop
on the Theory and Practice of Provenance, Berkeley, CA, USENIX (2013)

8. Moreau, L.: Provenance-Based Reproducibility in the Semantic Web. Web Seman-
tics: Science, Services and Agents on the World Wide Web 9(2) (2011)

9. Fraser, N.: Blockly: A library for building visual editors.
https://developers.google.com/blockly/

10. Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttin, V., Ludäscher, B.: D-PROV:
Extending the PROV Provenance Model with Workflow Structure. In: 5th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 13), Lombard, IL,
USENIX Association (April 2013)

11. Michaelides, D., Huynh, T.D., Moreau, L.: PROV-Template: A Template System
for PROV Documents. https://provenance.ecs.soton.ac.uk/prov-template/

12. Moreau, L., Missier, P.: PROV-DM: The PROV data model. World Wide Web
Consortium, Recommendation REC-prov-dm-20130430 (April 2013)

13. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks:
A Survey. Computing in Science & Engineering 10(3) (2008) 11–21

14. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noWorkflow: Cap-
turing and Analyzing Provenance of Scripts. In: 5th International Provenance and
Annotation Workshop, IPAW 2014, Cologne, Germany, June 9-13, 2014. Springer
(2015) 71–83

15. Simmhan, Y., Groth, P., Moreau, L.: The Third Provenance Challenge on using
the Open Provenance Model for interoperability. Future Generation Computer
Systems 27(6) (2011) 737 – 742

16. Missier, P., Goble, C.: Workflows to open provenance graphs, round-trip. Future
Generation Computer Systems 27(6) (2011) 812 – 819

13

Appendix

This material to be made available online for final version.
JSON representation of a variables from Block 2 in Fig. 3:

{
"context" : {

"xsd" : "http://www.w3.org/2001/XMLSchema#",
"estat" : "http://purl.org/net/statjr/ns#",
"estatwf" : "http://purl.org/net/statjr/wf#",
"urn_uuid" : "urn:uuid:"

},
"var" : {

"block_instance" : [{ "@id" : "urn_uuid:2" }],
"parent" : [{ "@id" : "urn_uuid:1" }],
"starttime" : [{

"@value" : "2016-02-12T15:12:28.546712",
"@type" : "xsd:dateTime"

}],
"endtime" : [{

"@value" : "2016-02-12T15:12:28.677037",
"@type" : "xsd:dateTime"

}],
"block_uri" : ["pgno3ns6cur7ej7yxhju"],
"block_title" : ["Calculate"],
"block_type" : [{ "@id" : "estatwf:Calculate" }],
"consumed" : [{ "@id" : "urn_uuid:3" },

{ "@id" : "urn_uuid:4" },
{ "@id" : "estat:datasets/tutorial" }],

"consumed_name" : ["column", "expression", "dataset"],
"consumed_at" : [{

"@value" : "2016-02-12T15:12:28.546846", "@type" : "xsd:dateTime" }, {
"@value" : "2016-02-12T15:12:28.546846",
"@type" : "xsd:dateTime"

}, {
"@value" : "2016-02-12T15:12:28.546846",
"@type" : "xsd:dateTime"

}],
"produced" : [{ "@id" : "urn_uuid:5" },

{ "@id" : "urn_uuid:6" },
{ "@id" : "urn_uuid:7" }],

"produced_at" : [{
"@value" : "2016-02-12T15:12:28.676943",
"@type" : "xsd:dateTime"

}, {
"@value" : "2016-02-12T15:12:28.676943",
"@type" : "xsd:dateTime"

}, {
"@value" : "2016-02-12T15:12:28.676943",
"@type" : "xsd:dateTime"

}],
"produced_name" : ["a", "inputs", "script.py"],
"literal" : [{ "@id" : "urn_uuid:3" },

{ "@id" : "urn_uuid:4" }],
"literal_value" : ["normexam2",

"normexam*normexam"],
"literal_type" : [{ "@id" : "xsd:string" },

{ "@id" : "xsd:string" }]
},
"vargen" : { }

}

14

Provenance graph from Figure 6 in PROV-N representation:

document
prefix var <http://openprovenance.org/var#>
prefix estat <http://purl.org/net/statjr/ns#>
prefix estatwf <http://purl.org/net/statjr/wf#>
prefix urn_uuid <urn:uuid:>

entity(urn_uuid:10)
entity(urn_uuid:9)
entity(estat:datasets/tutorial)
entity(urn_uuid:4,[estatwf:type = ’xsd:string’, estatwf:value = "normexam*normexam" %% xsd:string])
entity(urn_uuid:5)
entity(urn_uuid:6)
entity(urn_uuid:7)
entity(urn_uuid:11)
entity(urn_uuid:3,[estatwf:value = "normexam2" %% xsd:string, estatwf:type = ’xsd:string’])
activity(urn_uuid:8,2016-02-12T15:12:28.679Z,2016-02-12T15:12:29.527Z,

[prov:type = ’estatwf:DatasetSummary’, prov:label = "DatasetSummary",
estatwf:block = "6fdqrmkq5n8fuq57qfti" %% xsd:string])

activity(urn_uuid:1,2016-02-12T15:12:28.543Z,2016-02-12T15:12:29.527Z,
[prov:type = ’estatwf:Sequence’, prov:label = "Sequence",
estatwf:block = "rqvik2xqakayemazt813"])

activity(urn_uuid:2,2016-02-12T15:12:28.546Z,2016-02-12T15:12:28.677Z,
[prov:type = ’estatwf:Calculate’, prov:label = "Calculate",
estatwf:block = "pgno3ns6cur7ej7yxhju" %% xsd:string])

used(urn_uuid:2,urn_uuid:3,2016-02-12T15:12:28.546Z,
[estat:bindingname = "column" %% xsd:string])

used(urn_uuid:2,urn_uuid:4,2016-02-12T15:12:28.546Z,
[estat:bindingname = "expression" %% xsd:string])

used(urn_uuid:2,estat:datasets/tutorial,2016-02-12T15:12:28.546Z,
[estat:bindingname = "dataset" %% xsd:string])

used(urn_uuid:8,urn_uuid:5,2016-02-12T15:12:28.679Z,
[estat:bindingname = "dataset" %% xsd:string])

wasGeneratedBy(urn_uuid:5,urn_uuid:2,2016-02-12T15:12:28.676Z,
[estat:bindingname = "a" %% xsd:string])

wasGeneratedBy(urn_uuid:6,urn_uuid:2,2016-02-12T15:12:28.676Z,
[estat:bindingname = "inputs" %% xsd:string])

wasGeneratedBy(urn_uuid:7,urn_uuid:2,2016-02-12T15:12:28.676Z,
[estat:bindingname = "script.py" %% xsd:string])

wasGeneratedBy(urn_uuid:9,urn_uuid:8,2016-02-12T15:12:29.527Z,
[estat:bindingname = "inputs" %% xsd:string])

wasGeneratedBy(urn_uuid:10,urn_uuid:8,2016-02-12T15:12:29.527Z,
[estat:bindingname = "script.py" %% xsd:string])

wasGeneratedBy(urn_uuid:11,urn_uuid:8,2016-02-12T15:12:29.527Z,
[estat:bindingname = "table" %% xsd:string])

wasDerivedFrom(urn_uuid:5, urn_uuid:3)
wasDerivedFrom(urn_uuid:5, urn_uuid:4)
wasDerivedFrom(urn_uuid:5, estat:datasets/tutorial)
wasDerivedFrom(urn_uuid:6, urn_uuid:3)
wasDerivedFrom(urn_uuid:6, urn_uuid:4)
wasDerivedFrom(urn_uuid:6, estat:datasets/tutorial)
wasDerivedFrom(urn_uuid:7, urn_uuid:3)
wasDerivedFrom(urn_uuid:7, urn_uuid:4)
wasDerivedFrom(urn_uuid:7, estat:datasets/tutorial)
wasDerivedFrom(urn_uuid:9, urn_uuid:5)
wasDerivedFrom(urn_uuid:10, urn_uuid:5)
wasDerivedFrom(urn_uuid:11, urn_uuid:5)
wasStartedBy(urn_uuid:2,-,urn_uuid:1,2016-02-12T15:12:28.546Z)
wasStartedBy(urn_uuid:8,-,urn_uuid:1,2016-02-12T15:12:28.679Z)

endDocument

