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ABSTRACT 

Molecular monitoring of chronic myeloid leukemia patients using robust BCR-ABL1 tests standardized to 

the International Scale (IS) is key to proper disease management, especially when treatment cessation is 

considered.  Most laboratories currently utilize a time-consuming sample exchange process with 

reference laboratories for IS calibration.  A World Health Organization (WHO) BCR-ABL1  reference panel 

was developed (MR1-MR4), but access to the material is limited.  In this study, we describe the 

development of the first cell-based secondary reference panel that’s traceable to and faithfully 

replicates the WHO panel, with an additional MR4.5 level.  The secondary panel was calibrated to IS using 

digital PCR with ABL1, BCR, and GUSB as reference genes and evaluated by 44 laboratories worldwide.  

Interestingly, we found that > 40% of BCR-ABL1 assays showed signs of inadequate optimization such as 

poor linearity and suboptimal PCR efficiency.  Nonetheless, when optimized sample inputs were used, > 

60% demonstrated satisfactory IS accuracy, precision and/or MR4.5 sensitivity, and 58% obtained IS 

conversion factors from the secondary reference concordant with their current ones.  Correlation 

analysis indicated no significant alterations in %BCR-ABL1 results caused by different assay 

configurations.  More assays achieved good precision and/or sensitivity than IS accuracy, indicating the 

need for better IS calibration mechanisms. 
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INTRODUCTION 

The development of BCR-ABL1 tyrosine kinase inhibitors (TKIs), from the first generation imatinib to 

newer agents such as nilotinib and dasatinib, has enabled progressively deeper molecular responses in 

chronic myeloid leukemia (CML) patients undergoing TKI therapy.1, 2  Deeper molecular responses are 

defined as BCR-ABL1 levels of ≤ 0.01% (MR4) and ≤ 0.0032% (MR4.5) on the international reporting scale 

(IS) and are important milestones for patients considering treatment cessation.3  Other landmarks on 

the IS also represent different treatment decision thresholds and prognostic outcomes.4  For example, 

patients who reach 10% IS or below at 3 months after treatment have significantly higher rates of MR4.5 

by 5 years,5 and reaching 0.1% IS (major molecular response, MMR) by 12 months of treatment is 

predictive of subsequently achieving undetectable BCR-ABL1 levels.6  Thus, regular molecular monitoring 

using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is recommended 

for optimal disease management, and treatment decisions rely on achieving milestone molecular 

responses in the first year of therapy and beyond.2, 7   

Since treatment decisions are directly impacted by test results, accuracy and precision of BCR-ABL1 

assays across the entire measurement range is crucial for patient management, especially in patients 

with deep molecular responses when considering possible treatment cessation.  It is well known that 

high variability exists between RT-qPCR methods used in different laboratories.8, 9  The first international 

standardization attempt occurred in 2003, when different BCR-ABL1 assays used in the IRIS trial 

established IS based on 30 CML patient samples.10  Subsequently, a process for establishing a test-

specific IS Conversion Factor (CF) by exchanging 20-30 CML patient samples with a reference laboratory 

was developed.11  Although this process works well for laboratories with tests that show good stability 

over time, it is time-consuming, expensive and difficult to access for smaller laboratories.12, 13     
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In 2010, the “first International Genetic Reference Panel for quantitation of BCR-ABL mRNA” was 

developed as a primary standard for BCR-ABL1 assay IS calibration and accredited by the World Health 

Organization (WHO).14  The WHO panel is made of lyophilized K562 and HL-60 cell line mixtures, which 

allows the inclusion of cellular RNA extraction in the IS calibration against the 2 major BCR-ABL1 

breakpoints (e13a2 and e14a2), and carries 3 sets of nominal %BCR-ABL1 values using ABL1, BCR and 

GUSB as reference genes.  Due to restricted access, the WHO panel is currently only available to 

manufacturers of BCR-ABL1 test kits and secondary standards.13  The commercial secondary standards 

available to date are made of RNA,15, 16 thus RNA extraction is not included in the IS calibration process, 

except when  the standards are artificially spiked into the cell samples.  Furthermore, none of these are 

calibrated to the WHO panel against all 3 reference genes.        

In this study, we describe the successful development of the first cell-based BCR-ABL1 secondary 

reference panel that is traceable to and faithfully replicates the WHO panel in both raw materials 

(lyophilized K562 and HL-60 cell mixes) and manufacturing process, with the addition of a MR4.5 level.  

Nominal %BCR-ABL1 IS values were assigned to the secondary panel using reverse transcription droplet 

digital PCR (RT-ddPCR) against ABL1, BCR, and GUSB.  The secondary panel was successfully evaluated by 

45 different BCR-ABL1 assays in a subsequent international multi-center evaluation study. 

 

MATERIALS AND METHODS   

Manufacturing and IS calibration of secondary reference panel 

K562 (ATCC CCL-243) and HL-60 cells (ATCC CCL-240) (American Type Culture Collection, Manassas, 

Virginia, USA) were cultured, mixed, and lyophilized following methods described by White et al.14 with 

minor modifications (supplementary information).  Calibration to the WHO standards was performed as 
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described.14  IS calibration using ABL1 as a reference gene was conducted using 10 sets of WHO “first 

International Genetic Reference Panel for quantitation of BCR-ABL mRNA” panels (National Institute for 

Biological Standards and Control, South Mimms, UK).  Calibration using BCR and GUSB was conducted in 

a second study using another 10 sets of WHO panels.  On each day of 10 non-consecutive days, 1 WHO 

panel and 2 to 3 secondary panels were tested using RT-ddPCR in 4 replicates for the MR1 (10% BCR-

ABLIS) to MR4 (0.01% BCR-ABLIS) samples, and in 8 replicates for the MR4.5 sample to enhance assay 

precision.  Data analysis was performed using the statistical methods described by White et al.14   

 

Reverse transcription droplet digital PCR  

RNA extraction from the secondary panel was performed using RNeasy mini kits (Qiagen, Hilden, 

Germany).  Reverse transcription was performed using ABI High Capacity cDNA reverse transcription kit 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA), and ddPCR was performed using 2X ddPCR 

Supermix (Bio-Rad, Hercules, California, USA) on the QX-100 or QX-200 ddPCR system (Bio-Rad).  All 

primer and probe sequences are listed in Table 1.  BCR-ABL1 and reference genes were run as singleplex 

reactions in separate wells.  To achieve optimal assay precision and avoid signal saturation, cDNA input 

for BCR-ABL1 per 20 µl reaction was 80 ng for the MR1 sample, 400 ng for the MR2 sample and 675 ng for 

samples ≤ MR3.  cDNA input for reference genes was 10 ng for all 3 reference genes.  For each RT-ddPCR 

run, wells with > 9025 accepted droplets were considered valid per the manufacturer’s 

recommendations.         

 

RESULTS  

Manufacturing and IS calibration of the WHO BCR-ABL1 secondary reference panel 
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We successfully manufactured > 12 000 vials of secondary BCR-ABL1 lyophilized cell reference panel, 

using the same K562 and HL-60 cell lines and following similar manufacturing procedures as the primary 

WHO panel (supplementary information).14  A MR4.5 level was added to the secondary panel to enable 

more accurate IS calibration at this critical level, as CML patients reaching this deep molecular response 

are increasingly  being considered for treatment cessation.  Quality control assessments indicated that 

the secondary panel had minimal residual moisture, excellent vial-to-vial homogeneity and > 2.5 years of 

real-time stability (supplementary information).   

To calibrate the secondary panel to the WHO first International Genetic Reference Panel for 

quantitation of BCR-ABL1 mRNA, we followed the study design described by White et al.,14 except that 

the sample size was doubled to strengthen the statistical power (supplementary information).  RT-

ddPCR was chosen as the calibration method due to its superior sensitivity, precision and absolute 

quantification capability compared to RT-qPCR.17, 18  At the time of this study, no commercially available 

BCR-ABL1 test utilized BCR or GUSB as reference genes.  We developed 3 sets of RT-ddPCR assays, 

including BCR-ABL1/ABL1, BCR-ABL1/BCR, and BCR-ABL1/GUSB, to enable IS calibration of the secondary 

panel against all 3 reference genes.  All RT-ddPCR assays were validated following a combination of 

industry best practices, Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) and Clinical and Laboratory Standards Institute (CLSI) guidelines to ensure proper 

accuracy, precision, sensitivity and linearity were achieved (supplementary information ).19-22  Using 

methods described by White et al.,14 we determined the IS CF for the RT-ddPCR assays to be 0.93 for 

BCR-ABL1/ABL1, 1.85 for BCR-ABL1/BCR, and 1.28 for BCR-ABL1/GUSB.   

Each CF was subsequently applied to the empirical %BCR-ABL1 of the secondary panel measured by RT-

ddPCR to obtain the assigned %BCR-ABL1IS values (Figure 1 and Table 2a).  We found that the mean 

%BCR-ABL1 for each level of the secondary panel met all targeted BCR-ABL1 levels and were within 1.3-

©    2016 Macmillan Publishers Limited. All rights reserved.
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fold of the WHO standards values.  The assigned %BCR-ABL1IS of level E was 0.0038%, 0.0050% and 

0.0029% for ABL1, BCR and GUSB respectively, indicating that a MR4.5 level was successfully created.  

Moreover, the mean copy number of BCR-ABL1, ABL1, BCR and GUSB per ng of RNA measured using RT-

ddPCR was highly similar between the WHO and secondary panels (Table 2b).  This demonstrated that 

the secondary panel replicated the primary WHO panel faithfully, with the successful addition of a MR4.5 

level.   

 

Laboratory evaluation of the WHO BCR-ABL1 secondary reference panel 

Study Design 

The secondary panel was sent to 44 clinical laboratories from 24 countries worldwide for evaluation, 

including 34 laboratories from Europe (Supplementary Table 2).  One laboratory tested the panel with 2 

different BCR-ABL1 assays, resulting in a total of 45 BCR-ABL1 tests included in this report.  The 

laboratories were asked to conduct 2 studies with the secondary panel.  In Study 1, to determine the 

optimal sample input of the secondary panel specific for each BCR-ABL1 test, a standard curve 

experiment was run with Vial A (MR1) and Vial C (MR3) of the panel using 50 ng, 100 ng, 200 ng, and 400 

ng of RNA (for 1-step assays) or cDNA (for 2-step assays) input per PCR reaction; 3 replicates were run 

per sample at each input level (Figure 2a-b).  In Study 2, to assess the usability of the secondary panel 

and performance of the BCR-ABL1 tests, laboratories used the optimal sample input determined in 

Study 1 to test 3 sets of the panel on 6 different days (Figure 2c).     

 

Study 1: sample input optimization 

©    2016 Macmillan Publishers Limited. All rights reserved.
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The WHO panel did not offer recommendations on sample input for IS calibration.  Nonetheless, sample 

input outside of the linear dynamic range of a qRT-PCR assay might potentially lead to inaccurate 

results.  Thus, we designed a standard curve experiment to help laboratories determine the optimal 

sample input of the secondary panel for their BCR-ABL1 tests (Figure 2a-b).  Surprisingly, approximately 

half of the tests showed different %BCR-ABL1 results against different sample inputs of the same sample 

(P < 0.05), even when data from either the highest or lowest sample input were allowed to be removed 

based on auxiliary-pick-regression analysis (Figure 3 and supplementary information).  Among the 42 

assays that tested Vial A (MR1), 29% (12 of 42) showed decreasing %BCR-ABL1 with increasing sample 

input (Figure 3d), and 24% (10 of 42) showed increasing %BCR-ABL1 (Figure 3g and Supplementary 

Figure 2).  Among the 45 assays that tested Vial C (MR3), 22% (10 of 45) showed decreasing %BCR-ABL1 

with increasing sample input (Figure 3d), and 18% (8 of 45) showed increasing %BCR-ABL1 (Figure 3g 

and Supplementary Figure 3).       

In this study, we observed that the mean standard deviation (SD) in %BCR-ABL1 measurements from all 

45 assays was 0.2 log, which was mathematically equivalent to a 1.6-fold difference in the linear scale.  

Based on recommendations by Thiers et al., 1 SD (0.2 log) was considered the optimal cut-off for 

determining differences in measurements in this study.  Selecting 1 SD as the cut-off took into 

consideration the fact that a < 1 SD cut-off would require a substantially larger sample size to be 

considered statistically robust, whereas > 1 SD would increase the number of misclassifications.23  Thus, 

in this study, a mean difference of ≥ 0.2 log in %BCR-ABL1 value at different sample inputs by the same 

test was considered as beyond the inherent variability of an assay.  We found that among the assays 

that showed changing %BCR-ABL1 against different sample inputs, 55% (12 of 22) at MR1 and 78% (14 of 

18) at MR3 obtained results with ≥ 0.2 log difference.  Overall, these results showed that some BCR-ABL1 

tests were non-linear and might therefore yield statistically different %BCR-ABL1 results against 

different sample inputs.  To mitigate the risk of inaccurate %BCR-ABL1 measurements from using an 
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inappropriate sample input, it is highly recommended that laboratories standardize CML patient sample 

inputs by quantifyingthe extracted RNA prior to performing RT-qPCR.          

To further investigate the cause of the unstable %BCR-ABL1 measurements across different sample 

inputs, we calculated the PCR efficiency and efficiency ratio for each individual BCR-ABL1 and reference 

gene assay using the formula “Efficiency = -1 + 10(-1/slope)” (supplementary information).24  A well-

optimized PCR assay should have PCR efficiency between 0.9 and 1.1,25 which would result in a PCR 

efficiency ratio of approximately 1 between the BCR-ABL1 and reference gene assays.  Indeed, we found 

that most assays that successfully achieved stable %BCR-ABL1 across different sample inputs had a PCR 

efficiency close to 1 for both the BCR-ABL1 and reference gene assays, resulting in a mean efficiency 

ratio of 1.03 (n = 43; abnormal efficiency ratios of < 0 and > 10 were excluded from the analysis) (Figure 

3a-c).  Assays that showed decreasing %BCR-ABL1 against increasing sample input had a mean PCR 

efficiency ratio of 1.51 (n = 20) (Figure 3d-f), whereas assays that showed increasing %BCR-ABL1 had a 

mean PCR efficiency ratio of 0.63 (n = 16) (Figure 3g-i).  This indicated that the lack of stability in %BCR-

ABL1 against sample input was directly correlated with suboptimal PCR efficiency.  Surprisingly, BCR-

ABL1 and reference gene assays that were suboptimal in similar fashion could artificially cancel each 

other’s defects to achieve artificially stable %BCR-ABL1 results (Figure 3j-l).  Overall, these results 

illustrated that both the BCR-ABL1 and reference gene assays needed to be properly optimized and 

validated in order to achieve good quality %BCR-ABL1 testing.26, 27, 28     

Since different assays had different linear dynamic ranges, we observed a > 30-fold range of optimal 

sample input for the secondary panel calculated for the different BCR-ABL1 tests.  Interestingly, among 

the 31 laboratories that routinely quantified their CML patient sample inputs, the reported patient 

sample input was on average 2.4-fold higher than the calculated optimal input of the secondary panel, 

after 2 extreme outlier values of 11.6- and 48.3-fold were identified using robust regression analysis and 
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excluded from the calculation (supplementary information).  This was concordant with the fact that 

while the mean copy number of ABL1, BCR and GUSB per ng of RNA in the secondary panel was 674, 

1028 and 1245 (Table 2b), the mean copy per ng of human EDTA anticoagulated blood RNA was only 

289  for ABL1 (n = 40), 750 for BCR (n = 6), and 420 for GUSB (n = 5) (data not shown).  These results 

indicated that the optimal sample input of the secondary panel was approximately half of the patient 

sample input typically used by the laboratory in terms of ng RNA or cDNA.  Thus, when using the 

secondary panel, laboratories might consider using 2-fold less cDNA input per PCR reaction compared to 

CML patient samples to achieve similar copy numbers and avoid exceeding the linear dynamic range of 

their assay.  Nonetheless, it is recommended that laboratories perform a similar standard curve 

experiment to identify the optimal sample input specific for their assay prior to using the secondary 

panel for the first time.  The optimized sample input should maximize copy number detection but 

minimize potential PCR inhibition caused by carryover from the reverse transcription reactions.         

 

Study 2: performance of clinical BCR-ABL1 tests on the secondary panel  

A robust BCR-ABL1 test should demonstrate good IS accuracy, precision and sensitivity within statistical 

limits, especially at the lower disease levels.  In Study 2, laboratories were asked to use the optimal 

sample input determined in Study 1 to test 3 sets of the secondary panel on 6 different days, following 

the design previously used by White et al. (Figure 2c).14  Results from each assay were subsequently 

analyzed to assess accuracy, precision and sensitivity.  For IS accuracy, the overall mean %BCR-ABL1 

from all 45 assays, calculated using robust regression analysis to minimize effects of outliers, were highly 

concordant with the assigned values of the secondary panel (Table 3 and Supplementary Figure 5).  The 

mean ratios for all reference genes at all levels were within 1.5-fold or 0.16 log of the panel’s assigned 

values, with the exception of Vial D (MR4) for GUSB, which differed by 1.7-fold/0.24 log.  For results from 
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individual assays, 60% (27 of 45) obtained mean %BCR-ABL1 within 2-fold of the panel’s assigned values 

at all levels (Supplementary Figure 5).  The observed concordance was most likely due to 3 factors.  First, 

optimal sample input calculated in Study 1 was used for each assay, thus restricting the PCR reactions 

within the assay’s linear dynamic range.  Second, even though many different assay configurations were 

used by the laboratories (Supplementary Table 2), 60% (27 of 45) followed the EAC recommendations 

for the PCR primer design26 and 18% (8 of 45) used commercial BCR-ABL1 kits (Supplementary Table 2 

and Supplementary Figure 5), which are generally well optimized and validated.  Lastly, 51% (23 of 45) of 

assays were IS calibrated via sample exchange with the reference laboratory in Mannheim, Germany 

and 20% (9 of 45) with Adelaide, Australia.  This demonstrated that BCR-ABL1 tests can be effectively 

harmonized by using the same PCR primer designs and by standardizing the IS calibration process.  Thus, 

commercial availability of a common IS reference material could contribute to worldwide IS 

standardization.                 

Most clinical samples are typically run in only 1 or 2 replicates, which requires a high degree of assay 

precision to ensure accuracy of each of the final BCR-ABL1 test results.   To enable ≥ 95% confidence for 

the true value of a CML patient sample to be within 0.5 log on each side of the measured value, a SD of 

< 0.25 log for the BCR-ABL1 test is required.  Accordingly, if a sample is measured at MR4.5, there will be 

≥ 95% confidence that the true value of the sample is not above MR4 or below MR5.29  We calculated the 

intra-lab SD for each BCR-ABL1 test and noted that 84% (38 of 45) successfully achieved a SD of < 0.25 

log from MR1 to MR4.  For BCR-ABL1 tests that obtained ≥ 0.25 log SD, precision may be improved by 

performing further assay optimization and increasing the number of replicates per patient sample.28, 30   

For monitoring deep molecular response, good BCR-ABL1 assay sensitivity and precision are key 

performance characteristics.  In Study 2, we found that 93% (42 of 45) assays successfully detected all 

replicates at MR4, and 76% (34 of 45) detected all replicates at MR4.5.  To further understand how 
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sample input affected assay sensitivity and precision, we analyzed results from the 32 ABL1 assays since 

this provided the largest sample size.  Among the ABL1 assays, 56% (18 of 32) detected all replicates at 

MR4.5 and achieved < 0.25 log SD, 19% (6 of 32) detected all replicates but had ≥ 0.25 log SD, and 25% (8 

of 32) assays had at least 1 undetected replicate.  Logistic regression analysis showed a strong positive 

correlation between increased sample input and increased detection rate (P = 0.001).  In addition, the 

median ABL1 copy number per PCR reaction was 98 202 for laboratories that achieved good detection 

rate and precision, 74 923 for those that achieved good detection rate but suboptimal precision, and 29 

717 for those that had undetected replicates at MR4.5, further illustrating that an increased sample input 

could improve the sensitivity and precision of MR4.5 detection.  

The laboratories that participated in this study utilized diverse assay configurations for BCR-ABL1 testing 

(Supplementary Table 2).  To determine if assay configurations affected assay performance in terms of IS 

accuracy, precision, and sensitivity, we performed Bayesian average analysis and found no statistically 

significant relationship between assay performance versus choice of reference gene, RNA extraction 

method and the usage of commercial versus LDT assays.  Interestingly, among the assays that 

successfully achieved good accuracy (within 2-fold of assigned values), good precision (< 0.25 log SD) 

and good MR4.5 sensitivity (no undetected replicate), 82% (14 of 17) showed stable %BCR-ABL1 

measurements against sample inputs at MR3 in Study 1, compared to 46% (13 of 28) among assays with 

less optimal assay performance.  This illustrated that while BCR-ABL1 assays of different designs can 

perform equally well, proper PCR optimization is required to ensure good clinical performance.  

Interestingly, the number of assays that achieved good precision (84%) and MR4.5 (76%) sensitivity 

exceeded the number that achieved good IS accuracy (60%), indicating that there remains an unmet 

need for a simple and broadly available IS calibration mechanism.  
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Calculating WHO IS CF from the secondary panel  

Using the assigned BCR-ABL1 IS values of the secondary panel, it was possible to calculate an IS CF 

traceable to the WHO panel for each test.  Prior to CF calculation, Bland-Altman analysis was performed 

for each assay as described by White et al.14 to assess if bias was linear across the %BCR-ABL1 range.  Of 

all the assays, 69% (31 of 45) showed no statistically significant trend in the Bland-Altman analysis, 

indicating that a valid CF could be calculated for these assays and compared to the laboratory’s current 

CF, most of which were obtained from sample exchange.  Mathematically, when the ratio between the 

assay’s current CF and the CF calculated from the secondary panel is < 0.63 or > 1.58, the resulting 

%BCR-ABL1 values will have a > 0.2 log difference (supplementary information).  Among the 31 assays, 

58% (18 of 31) achieved a CF ratio between 0.63 and 1.58, indicating that their current CF was 

equivalent to the CF from the secondary panel.  This was concordant with the fact that 60% of assays 

obtained mean %BCR-ABL1 within 2-fold of the panel’s assigned values.  This also indicated that the 

secondary panel can be effectively used to obtain IS CFs equivalent to sample exchange.         

 

DISCUSSIONS 

In this study, we successfully created the first cell-based BCR-ABL1 secondary reference panel that 

faithfully replicated the WHO BCR-ABL1 International Genetic Reference Panel in both raw material and 

manufacturing methods,14 with an additional MR4.5 level.  The secondary panel was manufactured under 

Good Manufacturing Practice and confirmed to have low residual moisture content, vial-to-vial 

homogeneity and > 2.5-year stability.  BCR-ABL1 IS values traceable to the WHO panel were assigned to 

the secondary panel using RT-ddPCR against ABL1, BCR, and GUSB.  Both the assigned IS values and 
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absolute copy numbers of the secondary panel were found to be highly concordant with the primary 

WHO standards.     

Many of the 44 laboratories that participated in the secondary panel evaluation currently act as a 

national reference laboratory for their country.  The panel was successfully processed by all laboratories, 

indicating that it is compatible with many different BCR-ABL1 test configurations.  Through a standard 

curve experiment, we found that close to half of the tests showed signs of inadequate PCR optimization 

such as poor linearity against different sample inputs and suboptimal PCR efficiency.  Interestingly, when 

a customized optimal sample input was used, 60% (27 of 45) of assays achieved mean %BCR-ABL1 values 

within 2-fold of the panel’s assigned values, 84% (38 of 45) achieved good precision (≤ 0.25 log SD) from 

MR1 to MR4, and 76% (34 of 45) achieved 100% detection rate down to MR4.5.  Three factors likely 

contributed to these excellent results: usage of a validated optimized sample input specific to the assay, 

the fact that 78% (35 of 45) assays used either the EAC primer design or a commercial kit, and that 71% 

(32 of 45) assays were IS calibrated via sample exchange with one of the two major international 

reference centers.  This indicated that using published assay designs and a harmonized IS calibration 

approach may lead to BCR-ABL1 test standardization.  Nonetheless, we noted that the number of assays 

that achieved good precision and sensitivity exceeded the number that achieved good IS accuracy, 

indicating that there remains an unmet need for a simple and broadly available calibration mechanism, 

such as this secondary panel, to ensure IS accuracy is maintained in laboratories over time.   

We also showed that different assay designs, including different reference genes, RNA extraction 

methods and usage of commercial kits versus LDTs did not affect assay performance.  Nonetheless, 

better PCR optimization correlated with better assay performance, and increased sample input 

improved detection rate and precision at MR4.5.  In addition to being a reference sample for IS 

calibration,14 the secondary reference material and its derivatives could also be used in assay analytical 
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validation and optimization.  For example, it can be used as standardized samples in External Quality 

Assessment (EQA) programs for proficiency testing,31 especially since nominal values (i.e. correct 

answers) are available for each member of the panel.  Second, it can become a source of positive control 

samples to be run alongside patient samples for quality assurance.  This can become especially powerful 

when multiple laboratories participate in a peer group quality control monitoring program, in which 

results from such positive control samples are compared and monitored regularly.  Lastly, the MR4.5 

sample in the reference panel can be used to validate the sensitivity and MR4.5 detection capability of an 

assay.   

In conclusion, a secondary reference panel traceable to the WHO panel with an additional MR4.5 level 

can provide easier access to IS calibration, as well as act as a tool for assay optimization, validation and 

quality assurance.               
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FIGURE LEGENDS 

Figure 1: The BCR-ABL1 secondary reference panel was calibrated to the WHO standards using RT-ddPCR 

against (a) ABL1, (b) BCR, and (c) GUSB for IS conversion (n = 40 from MR1 to MR4, n = 80 for MR4.5).  The 

IS CFs for the RT-ddPCR assays were determined to be 0.93 for the BCR-ABL1/ABL1 assay, 1.85 for the 

BCR-ABL1/BCR assay, and 1.28 for the BCR-ABL1/GUSB assay.  Blue dotted lines represent the nominal 

%BCR-ABL1 value of the WHO panel at different levels.  

Figure 2:  Study design for the international multi-center evaluation of the secondary panel, including (a) 

Study 1 for 1-step RT-qPCR tests, (b) Study 1 for 2-step RT-qPCR tests, and (c) Study 2.  

Figure 3: Examples of different assay results from Study 1 of the multi-center evaluation study.  A 

properly optimized assay should yield similar %BCR-ABL1 results at different sample inputs, and both the 

BCR-ABL1 and reference gene assays should have a PCR efficiency close to 1 (a-c).  Some assays showed 

decreasing %BCR-ABL1 measurements with increasing sample input (d-f), whereas others showed 

increasing %BCR-ABL1 measurements instead (g-i).  The PCR efficiency of these assays tended to be 

suboptimal (< 0.9 or > 1.1), resulting in disproportional increase of BCR-ABL1 or reference gene copy 

number with increasing sample input (e, f, h, i), which subsequently led to the unstable %BCR-ABL1 

measurements (d, g).  Occasionally, BCR-ABL1 and reference gene assays that were suboptimal in similar 

manner could cancel each other’s defects to achieve artificially stable %BCR-ABL1 measurements (j-l).  

Red lines represent the linear regression fit based on actual data, and blue lines represent what ideal 

data should resemble.               
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Table 1: Primer and probe sequences for the RT-ddPCR assays.

Gene Primer/Probe Sequence (5’ – 3’)

Forward primer CCGCTGACCATCAATAAGGAA

FAM MGB Probe AAGCCCTTCAGCGGC

Reverse primer CTGAGGCTCAAAGTCAGATGCTACT

Forward primer ACCACTGACGTGCCTGAGATG

FAM MGB Probe AGAGAGCGATCCTCTGG

Reverse primer GAGACACGGCAGGCTCATG

Forward primer CACTCAGCCACTGGATTTAAGC

FAM MGB Probe CCTGGAGGTGGATTC

Reverse primer CGCGTCTTTGCTTTATTCACAA

Forward primer ACGCAGAAAATACGTGGTTGG

FAM MGB Probe CTCATTTGGAATTTTGCCGAT

Reverse primer GCCGAGTGAAGATCCCCTTT

BCR-ABL1

ABL1

BCR

GUS
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Table 2: The BCR-ABL1 secondary reference panel was highly concordant with the WHO panel in 

(a) empirical and %BCR-ABL1IS values, and (b) copy numbers of ABL1, BCR-ABL1, BCR and GUSB per ng of RNA.

(a)

Panel Member

Mean 

Empirical 

%BCR-ABL1

Nominal %BCR-

ABL1
IS

Panel 

Member

Mean 

Empirical 

%BCR-ABL1 

Assigned %BCR-

ABL1
IS

4 (08/198) 11.2250 10.7469 A 13.7178 12.7575

3 (08/196) 1.2540 1.1672 B 1.2841 1.1942

2 (08/194) 0.1260 0.1112 C 0.1095 0.1019

1 (08/192) 0.0130 0.0118 D 0.0116 0.0108

E 0.0041 0.0038

4 (08/198) 9.8135 16.3129 A 11.5502 21.3678

3 (08/196) 0.8441 1.6627 B 0.7300 1.3505

2 (08/194) 0.0988 0.1753 C 0.0759 0.1404

1 (08/192) 0.0098 0.0195 D 0.0081 0.0150

E 0.0027 0.0050

4 (08/198) 6.5834 10.1235 A 9.1800 11.7504

3 (08/196) 0.5924 0.8295 B 0.6219 0.7960

2 (08/194) 0.0677 0.0749 C 0.0628 0.0804

1 (08/192) 0.0065 0.0071 D 0.0068 0.0087

E 0.0023 0.0029

(b)

BCR-ABL1 ABL1 BCR GUSB

A 103.27 754.55 973.44 1198.94

B 8.56 665.80 1058.25 1238.22

C 0.72 651.95 1012.51 1261.53

D 0.08 653.85 1079.15 1283.79

E 0.03 642.71 1017.74 1244.11

4 (08/198) 92.98 831.74 948.59 1380.43

3 (08/196) 9.75 778.56 1036.91 1454.12

2 (08/194) 0.99 784.95 1004.05 1390.83

1 (08/192) 0.10 785.90 1033.21 1388.23

Panel Member
Mean Copy Number Per ng RNA

Secondary 

Panel

WHO Panel

Secondary Panel

ABL1 0.93

BCR 1.85

GUSB 1.28

Reference 

Gene

RT-ddPCR IS 

Conversion 

Factor

WHO Panel
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Table 3: Summary results of the secondary panel international multi-center evaluation study.

WHO Panel 
Secondary 

Panel

Nominal Assigned Mean SD Minimum Maximum

4 (08/198) / A 10.7469 12.7575 11.4450 8.2225 3.6127 37.4603

3 (08/196) / B 1.1672 1.1942 1.1771 0.9994 0.4014 4.4109

2 (08/194) / C 0.1112 0.1019 0.1013 0.0931 0.0362 0.4553

1 (08/192) / D 0.0118 0.0108 0.0110 0.0232 0.0033 0.1323

NA / E 0.0038 0.0038 0.0038 0.0013 0.0159

4 (08/198) / A 16.3129 21.3678 21.3999 12.3547 13.6781 42.5295

3 (08/196) / B 1.6627 1.3505 1.7243 1.2662 1.0215 4.2655

2 (08/194) / C 0.1753 0.1404 0.1615 0.0863 0.0881 0.3025

1 (08/192) / D 0.0195 0.0150 0.0153 0.0105 0.0071 0.0302

NA / E 0.0050 0.0056 0.0047 0.0028 0.0134

4 (08/198) / A 10.1235 11.7504 8.9008 3.7900 4.5344 14.9359

3 (08/196) / B 0.8295 0.7960 0.7346 0.4133 0.3514 1.5494

2 (08/194) / C 0.0749 0.0804 0.0587 0.0351 0.0218 0.1149

1 (08/192) / D 0.0071 0.0087 0.0050 0.0033 0.0010 0.0106

NA / E 0.0029 0.0020 0.0018 0.0005 0.0054

%BCR-ABL1IS

Results From 45 BCR-ABL1  Assays

ABL 32

BCR 5

GUS 8

Reference 

Gene

Number of 

Labs

Vial (WHO / 

Secondary Panel)
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