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Abstract

The macronutrients nitrate and phosphate are aquatic pollutants that arise naturally, however, in

excess concentrations they can be harmful to human health and ecosystems. These pollutants

are driven by river currents and show dynamics that are affected by weather pattern and extreme

rainfall events. As a result, the nutrient budget in the receiving estuaries and coasts can change

suddenly and seasonally, causing ecological damage to resident wildlife and fish populations. In

this paper, we propose a statistical change-point model with interactions between time and river

flow, to capture the macronutrient dynamics and their responses to river flow threshold behaviour.

It also accounts for the nonlinear effect of water quality properties via nonparametric penalised

splines. This model enables us to estimate the daily levels of riverine macronutrient fluxes and

their seasonal and annual totals. In particular, we present a study on macronutrient dynamics on

the Hampshire Avon River, which flows to the southern coast of the UK through the Christchurch

Harbour estuary. We model daily data for more than a year during 2013-14 in which period there

were multiple severe meteorological conditions leading to localised flooding. Adopting a Bayesian

inference framework, we have quantified riverine macronutrient fluxes based on input river flow

values. Out of sample empirical validation methods justify our approach, which captures also the

dependencies of macronutrient concentrations with water body characteristics.

Keywords: Change-point analysis, Bayesian inference, Macronutrients, Fluxes, River flows,

Water quality properties.
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1. Introduction1

River ecosystems are experiencing rapid transformations in response to anthropogenic and2

climatological stressors, which impact on macronutrient pollution, water quality characteristics,3

biodiversity and ultimately on the ecological health of the rivers (Whitehead et al., 2009). In4

particular, macronutrients nitrate and phosphate occur naturally in freshwater bodies, but when5

present in excessive amounts can be harmful not only for aquatic life but also for human health,6

reducing drinking water quality (Whitehead and Crossman, 2012). Many sources can contribute7

to macronutrient over enrichment (eutrophication) from human activities, including runoff from8

fertilised fields, discharge from sewage treatment, burning of fossil fuels and food production (e.g.9

Conley et al., 2009; Paerl, 2009; Withers et al., 2014).10

In addition to these disturbances, natural features of the environment and climate changes can11

compromise macronutrient cycles in fresh waters (Woodward et al., 2010; Whitehead and Cross-12

man, 2012). Climate changes are likely to impact on weather pattern and bring an increasing13

number of extreme events, including increased frequency and intensity of storms, leading to high14

winds and heavy rainfall. These events might cause changes in the process that governs macronu-15

trient behaviour.16

In this paper, we are concerned with the dynamics of riverine nitrate and phosphate concen-17

trations and their response to rapid changes in river flow and water quality properties, such as18

temperature, conductivity, dissolved oxygen and turbidity. River flow alteration is indeed an envi-19

ronmental factor to which riverine ecosystems respond considerably (Poff and Zimmerman, 2010;20

Rolls et al., 2012). Rapid changes in river flow are greatly driven by extreme weather pattern and21

events such as storms, which can impact on the macronutrient runoff and budget, but which eco-22

logical importance is not well documented (Leigh et al., 2014). Inclusion of the effect of variations23

in river flow on riverine macronutrient dynamics provides new insights into the dynamics of the24

macronutrient fluxes from the river to the estuary.25
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Our study is based on measurements collected at the Knapp Mill gauging station on the River26

Hampshire Avon in the UK under the Macronutrient Cycles Programme funded by Natural Envi-27

ronmental Research Council (NERC). In particular, we use macronutrient and river flow data, as28

well as water quality properties, from the Hampshire Avon which flows to the south coast of the29

UK and feeds into the Christchurch Harbour estuary. We model daily concentrations of nitrate and30

phosphate for more than a year during 2013-14, a period in which the UK experienced a highly31

unusual number of storm events (Muchan et al., 2015), with series of destructive floods across the32

country.33

We adopt a novel change-point approach, within a Bayesian hierarchical structure, which re-34

sults in a generalized additive model that is able to: (i) differentiate the effect of changes in river35

flow on nitrate and phosphate according to the time of year in which they occur, and (ii) capture the36

complex nonlinear relationships among macronutrients with the water quality properties through37

unspecified smooth functions of these properties. The resulting model allows us to estimate the38

annual total flux of the modelled micronutrients from the river to the downstream estuary, often39

called the annual budget, with quantified uncertainties.40

The hierarchical model detects changes in micronutrient dynamics by simultaneously estimat-41

ing change-points in river flow and also a change-point in time. Thus the changes in river flow rate,42

that we call change thresholds following the terminology adopted by Alameddine et al. (2011), can43

be different according to the period of the year in which they occur. Hence, the model accommo-44

dates a temporal window introducing a possible shift in time, that we simply call switch-point, to45

distinguish it from the terminology used to refer to changes in river flow. Henceforth, we call the46

full statistical model identifying the switch-point in time and the change thresholds in river flow47

simply as change-point structures.48

Change-point analysis has become a popular tool in ecological studies and in the simplest49

form it detects distributional changes within observations that are ordered in time. Its use in50

water quality models resulted in very interesting contributions. For example, Fortin et al. (2004)51

reformulated the shifting-level model to show that it belongs to the class of hidden Markov models,52

and developed Bayesian methods for evaluating its parameter uncertainty and demonstrated its53

utility for forecasting of streamflows. Alameddine et al. (2011) used a change-point and threshold54
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model to analyse the relationship between nitrogen concentrations and flow regimes during a long55

period of 29 years, quantifying changes in this relationship across time.56

The modelling approach proposed in this paper, is similar in spirit to the Bayesian model of57

Alameddine et al. (2011), as we describe the macronutrient dynamics through change-point struc-58

tures, modelling their locations as unknown. However our model formulation is different from the59

Alameddine et al. (2011) contribution, as (i) we focus on a short study period, (ii) we use interac-60

tion terms between time and river flow to capture a potential seasonal behavior in freshwater, that is61

known to be an important determinant when considering macronutrient loadings (Sigleo and Frick,62

2003; Laud and Ibrahim, 2008), and (iii) we include different physico-chemical water properties63

without imposing any parametric form (e.g. linear) in their relationship with macronutrients.64

2. Methods65

2.1. Study area66

The Hampshire Avon is one of the most biodiverse chalk rivers in the UK, providing a habitat67

for a very rich flora and fauna. Much of the Hampshire Avon river has been designated as Sites of68

Special Scientific Interest or as a Special Area of Conservation, and its water has been used for a69

number of purposes including general agriculture, spray irrigation and fish farming, as well as for70

public and private water supplies (Environment Agency, 2012).71

The sampling site for this study is located at the lowest water flow gauging station on Hamp-72

shire Avon at Knapp Mill (latitude: 50.74807, longitude: –1.77968), encompassing a catchment73

area of 1706 km2. Fig. 1 provides a map of the study area.74

2.2. Macronutrient and water quality samples75

Sampling at Knapp Mill was carried out between 22 November 2013 and 19 December 2014.76

Water quality properties, including temperature, conductivity, dissolved oxygen, turbidity and77

chlorophyll concentration, were measured in situ every 10 minutes using an EXO2 multiparam-78

eter sonde (Xylem, UK). Samples for macronutrient analysis were collected every 8 to 15 hours79

with an ISCO automated water sampler (RS Hydro, UK). Water samples were fixed immediately80

with 0.015M mercuric chloride (750 µL in 150 mL) and later filtered through a glass fibre filter81

4



upon return to the laboratory. Concentrations of inorganic macronutrients were determined at the82

University of Portsmouth using a QuAAtro segmented flow nutrient analyser (SEAL Analytical,83

UK). River flow data were obtained from the UK Environment Agency. To regularise the sampling84

intervals between measurements, the 24-hour (daily) means were calculated and used for further85

analyses.86

2.3. Exploratory analysis87

Table 1 provides the descriptive statistics for all the data collected at the Knapp Mill station88

and also for the daily river flow data. The large difference between the mean and median daily89

river flow clearly highlights the severe impacts of storm events that the UK experienced during90

the 2013-2014 winter months. Time-series plots of these data are given in Figs. 2 and 3. A91

visual inspection of the plots shows considerable variation in the daily levels of the data, with a92

winter/summer seasonal pattern for most of the time-series. The time-series for nitrate exhibits93

lower concentrations during the winter months, from December 2013 to March 2014, while phos-94

phate does not show a specific trend but does display lower concentrations during the months of95

February and March 2014. In general, there is greater overall variability in nitrate than seen in96

phosphate concentrations. From Fig. 2 it is also apparent that river flow rates are at the highest97

during the winter months 2013-2014 with levels that gradually decline towards summer. Among98

the water quality properties (Fig. 3), we observe, as expected, a seasonal temperature pattern,99

and higher level of turbidity during winter months, consistent with altered flow regimes. Nitrate100

concentrations show a trend consistent with changes in conductivity.101

Table 1 shows the Spearman rank correlation coefficients between macronutrients and water102

quality properties. Only temperature and conductivity have a strong positive correlation (>0.90),103

while moderate correlations are found for dissolved oxygen % saturation with conductivity (0.50)104

and turbidity (–0.62). Fig. 4 shows the relationship between macronutrient concentrations and105

water quality properties, with these scatter plots revealing generally nonlinear relationships.106

2.3.1. Data pre-processing107

The various measured water quality properties have a range of different units, therefore for108

modelling purposes these are standardised to have zero mean and unit variance. This procedure109
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makes the magnitude of the coefficients comparable. Macronutrient concentrations and river flow110

data are modelled on logarithmic scale to stabilise their variance. Moreover, logarithmic transfor-111

mation of the data is convenient for macronutrients, as they are nonnegative and their distributions112

are often skewed to the right.113

2.3.2. Selection of water quality properties114

Before embarking on the task of modelling the data, we carefully examined the possibility of115

issues arising from multicollinearity among the water quality properties that may compromise the116

estimation of the regression coefficients and thus affect their interpretation. To mitigate this, we117

applied a covariate selection procedure based on knowledge of riverine ecosystems as well as on a118

conventional statistical methods such as Lasso (Least Absolute Shrinkage and Selection Operator;119

Tibshirani (1996)) that allows identification of the water quality properties that have the strongest120

association with variation in the macronutrient concentrations. Lasso is a method that is used in the121

context of regression analysis, and it can simultaneously perform variable selection and shrinkage122

of the vector of regression coefficients toward zero.123

We use a Bayesian formulation of Lasso regression (Park and Casella, 2008; Hans, 2009;124

O’Hara and Sillanpää, 2009) that is constructed by specifying a Laplace distribution as a prior dis-125

tribution for the model coefficients. We standardised all regressor variables and implemented the126

Bayesian Lasso regression technique described by Lykou and Ntzoufras (2013). This Lasso tech-127

nique revealed temperature, conductivity, dissolved oxygen, and turbidity as the most important128

water quality properties for modelling nitrate data on the log scale and our subsequent analysis129

proceeds with these only. For modelling phosphate data, the Lasso technique showed temperature130

and dissolved oxygen as the two most important covariates, followed by chlorophyll, turbidity and131

conductivity. In this instance, however, we exclude chlorophyll from the main analysis on phos-132

phate. In fact, although chlorophyll is important in analysing data sets from estuarine and coastal133

waters, we find that chlorophyll is less important in explaining macronutrient dynamics within134

riverine systems, where it is more likely the result from storm runoff and not a predictor.135
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3. Model set-up136

The discussion in the previous section leads us to consider a regime switching model for137

macronutrients according to both temporal window and river flow that is able to adjust for non-138

linear effects of the chosen water quality properties. Here the two macronutrients, nitrate and139

phosphate, are modelled separately, although it is possible to model them jointly. Joint modelling140

of the two macronutrients nitrate and phosphate, is not of interest here since our objective is not to141

study their inter-relationships, which is seen to be rather weak (correlation –0.16 in Table 1), but142

to predict their individual daily and annual fluxes into the estuary.143

The model is developed for data yt, which denotes the natural logarithm of the observed144

macronutrient concentration at day t, for t = 1, . . . ,T = 393. We construct a Bayesian hierar-145

chical model, which encompasses the model for the observed data, the dynamics of the process146

and the specification of parameters and hyperparameters (Berliner, 1996). At the first stage of the147

modelling hierarchy, we assume an independent Gaussian measurement error model:148

yt ∼ Normal(µt, σ
2), t = 1, . . . , 393 (1)

where µt denotes the time varying mean and σ2 is the variance assumed to be constant at all time149

points. We do not consider time varying variances as we do not have replicated data at each time150

point to estimate them. Rather, our effort is dedicated to finding the best model for the mean151

concentration µt at time t in the next stage of modelling hierarchy.152

The second stage of the hierarchy defines the model for µt. To incorporate nonlinear effects of153

each of the p water quality properties, we incorporate a nonparametric smoothing function g j(xt j)154

of xt j at each time point t, where xt j denotes the value of the jth water quality property at the tth155

time point. The choice of the g j(·) functions ranges from linear to nonparametric penalised splines156

(Eilers and Marx, 1996; Ruppert et al., 2003) which are well-known to be very flexible. In our157

implementation, following Crainiceanu et al. (2005), we construct the splines using radial basis158

functions, which provides a more stable fit than traditional truncated linear basis. By denoting x159

to be a generic covariate, we define a set of K knots, k1 < k2 < · · · < kK taken to be equally spaced160
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over the range of x. We consider a low-rank thin-plate spline representation given by:161

g(x) = β0 + β1x +

K∑
k=1

bk(x − kk)d
+ (2)

where we treat β0 and β1 to be fixed but unknown parameters and assume b = (b1, . . . , bK)′ to be162

the vector of random parameters corresponding to the set of basis functions (x − kk)d
+, that is equal163

to (x − kk)d if (x − kk)d >0 and zero otherwise, and d is the degree of the spline. Each component164

of b is assigned an independent normal prior distribution with mean zero and unknown variance,165

σ2
b, to be estimated from the model.166

Model (2), assumed for the jth covariate at tth time point, xt j, is given by:167

g j(xt j) = β0 j + β1 jxt j +

K∑
k=1

bk j(xt j − kk j)d
+, j = 1, . . . , p, t = 1, . . . ,T. (3)

Here, we consider a model with the same set of knots and the same degree for the splines for all

the covariates that have been normalised already, see Section 2.3.1. Assuming an additive model,

we obtain the total contribution:

p∑
j=1

g j(xt j) =

p∑
j=1

β0 j +

p∑
j=1

β1 jxt j +

p∑
j=1

K∑
k=1

btk j(xt j − kk j)d
+, t = 1, . . . ,T.

However, the p separate intercept terms will not be identified and hence we only take one global168

intercept β0 in place of the sum
∑p

j=1 β0 j. For ease of notation we shall write β j = β1 j for j =169

1, . . . , p. Now, each bk j for k = 1, . . . ,K and j = 1, . . . , p is given an independent normal prior170

distribution with mean zero and unknown variance, σ2
b as mentioned above.171

Ruppert (2002) and Crainiceanu et al. (2005) recommends a number of knots that is large172

enough to ensure flexibility. In our application we choose the number of knots to be 5 for the cubic173

splines, (i.e. d = 3), which is judged to be sufficient for model fitting and prediction purposes. The174

knots are chosen at equal spaced quantiles of each water quality variable.175

Now we turn to modelling the step changes in nitrate and phosphate concentrations due to176

temporal changes and discontinuities river flow. The exploratory analysis in Section 2.3 has made177

it clear that the nutrient concentration, especially nitrate, is severely impacted upon by not only178

river flow but also seasonality. However, it is likely that variations in river flow will have different179
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effects on concentration in different temporal windows. Moreover, natural rain fall, and hence river180

flow, does not strictly adhere to the calendar dates. That is why, we let the parameter τ denote the181

switch-point in time that serves as the unknown boundary between the end of the winter high flow182

season and the start of the low flow season spanning the rest of the year. Since τ is unknown we183

estimate it along with all other parameters. To allow for interactions between seasonal windows184

and river flow levels we imagine that there are two change thresholds in river flow which occur185

once during the winter and the other during the rest of the year. Let ϕ1 and ϕ2, denote these flow186

threshold parameters. Hence, we introduce the following four terms in the model:187

1. δ1I(t < τ)I( ft < ϕ1)( ft − ϕ1) describing the effect of incremental flow less than ϕ1 before the188

switch-point in time,189

2. δ2I(t < τ)I( ft ≥ ϕ1)( ft − ϕ1) describing the effect of incremental flow greater than ϕ1 before190

the switch-point in time,191

3. δ3I(t ≥ τ)I( ft < ϕ2)( ft − ϕ2) describing the effect of incremental flow less than ϕ2 after the192

switch-point in time,193

4. δ4I(t ≥ τ)I( ft ≥ ϕ2)( ft − ϕ2) describing the effect of incremental flow greater than ϕ2 after194

the switch-point in time,195

where I(A) = 1 if A is true and 0 otherwise. For model identifiability reasons, we set δ3 = 0 so196

that the three remaining parameters, δ1, δ2 and δ4 measure incremental slope relative to the one for197

low river flow after the switch-point in time.198

Putting the above discussions together, we arrive at the following model for µt:199

µt = β0 +

p∑
j=1

β jxt j +

p∑
j=1

K∑
k=1

bk j(xt j − kk j)d
+ +

4∑
h=1

δhvth (4)

where vth denotes the product of the two indicator functions and the incremental river flow corre-200

sponding to δh for h = 1, . . . , 4. In subsequent discussion we denote this general model by M1.201

We compare this model with the following sub-models of interests:202
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• M2. A linear regression model for the water quality properties, but with no change-point203

structures, that allows us to compare the proposed modelling innovations with a straw204

method:205

µt = β0 +

p∑
j=1

β jxt j (5)

• M3. A linear regression model for the water quality properties, with only a switch-point in206

time:207

µt = β0 +

p∑
j=1

β jxt j + δ1I(t ≥ τ) (6)

• M4. A linear regression model for the water quality properties, with only a change threshold208

in river flow:209

µt = β0 +

p∑
j=1

β jxt j + δ1 ft + δ2I( ft ≥ ϕ)( ft − ϕ) (7)

• M5. A linear regression model for the water quality properties, with change-point structures210

for time and river flow:211

µt = β0 +

p∑
j=1

β jxt j +

4∑
h=1

δhvth (8)

• M6. A regression model via penalised splines for the water quality properties, but no212

change-point structures:213

µt = β0 +

p∑
j=1

β jxt j +

p∑
j=1

K∑
k=1

bk j(xt j − kk j)d
+ (9)

To account for temporal dependence that is expected to occur between measurements collected214

on consecutive days, we also evaluated the additional inclusion in (4) of a random intercept, mod-215

elled as a linear stationary first-order autoregressive process, ηt, which is a very popular choice in216

time series analyses. Thus, the model for ηt assumes the form: ηt = ρηt−1 + ut, where the error ut217

is white noise, that is normally distributed with mean 0 and variance σ2
η, and the parameter ρ is218

assumed be in the interval [−1, 1]. However, we were not able to fit this model to the data due to219

lack of identifiability.220

The Bayesian model is completed by assuming prior distributions for all the unknown param-221

eters. We assume that the switch-point in time, τ, is uniformly distributed on [1, 2, . . . ,T ]. Note222
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that τ = 1 and τ = T does not imply any change. We also assess a discrete uniform prior for the223

switch-point in time, that showed lead to a better convergence for the phosphate model, though224

requiring a higher computational effort. Similarly, we adopt uniform prior distributions for the two225

change thresholds on river flow ϕ1 and ϕ2, in the interval [1.995, 4.631], which are the minimum226

and maximum values of the river flow on the logarithmic scales. The precision parameters (i.e.227

inverse of the variance parameters) specific for each macronutrient, σ−2, are assumed to follow228

a Gamma distribution Ga(c, d) independently, with shape parameter, c, and expectation, c/d. In229

particular, we assume a proper prior specification by taking c = 2 and d = 1 for these parame-230

ters. We assume normal prior distributions for β0 and the fixed effect parameters β specified as231

Normal(0, 104). Moreover, as previously mentioned, an independent normal prior distribution,232

centered at zero, is chosen for the random effects parameters b associated with the splines for the233

water quality properties. For σ2
b, which controls the amount of smoothness of the water quality234

properties, we consider two different prior distributions: (i) a widely accepted Gamma distribution235

for the precision parameter, σ−2
b ∼ Ga(ab, bb), with ab = 1 and bb = 0.001, and (ii) a half-Cauchy236

distribution for the standard deviation parameter, σb ∼ half-Cauchy(A), with A = 25 as suggested237

by Marley and Wand (2010). Using a half-Cauchy, in fact, we can restrict the standard deviation238

parameter, σb, to be away from very large values (Gelman, 2006), that could bias the distribution239

against zero. By comparing model fits under both of these prior distributions, we adopt the first240

parameterization for the nitrate model and the latter for the phosphate model. Finally, we assume241

a normal prior distribution for the δ parameters associated with the change-point structures.242

Fig. 5 presents the Directed Acyclic Graph (DAG) of our more complex model M1, that is243

a simplified graphical representation of the hierarchical modelling structure. In this graph each244

quantity is represented by a node and links between nodes show direct dependence. The ellipses245

represent stochastic nodes (that is, variables that have a probability distribution) or logical nodes246

(that is, deterministic relationships or functions). The small squares identify nodes that are con-247

stants. Stochastic dependence and functional dependence are denoted by solid and dashed arrows,248

respectively. Finally, the large square plates represent repetitive structures (i.e. the ’loop’ from249

t = 1 to T ).250

To compare the quality of the model fit of the proposed modelling approach in comparison251
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to the above described simpler statistical models, we adopt the predictive model choice criterion252

(PMCC; Laud and Ibrahim (1995); Gelfand and Ghosh (1995)) defined by:253

PMCC =

T∑
t=1

{
yobs

t − E
(
yrep

t

)}2
+

T∑
t=1

Var(yrep
t ) (10)

where yrep
t denote the future replicate of the observed macronutrient concentrations yobs

t . The254

PMCC essentially quantifies the fit of the model by comparing the posterior predictive distribution255

obtained from the assumed model p(yrep
t |y

obs
t ) with the observed data. The first term of (10) gives a256

goodness of fit measure (G) which will decrease with increasing model complexity and the second257

term of (10) is a penalty term (P) which tends to be larger for complex models. The model with258

the smallest value of PMCC is the preferred model.259

To facilitate model comparisons using the traditional coefficient of determination (often termed260

as adjusted R2), we consider the analogus Bayesian statistic R2
B = 1 − σ2

S 2
Y
, where S 2

Y is the sample261

variance of Y (i.e. the macronutrient concentrations) and σ2 is the model variance (Ntzoufras,262

2009). The R2
B quantity can be interpreted as the proportional reduction of uncertainty concerning263

the macronutrient concentrations, Y , achieved by incorporating in the model the water quality264

properties and the change-point structures. Alternatives to the R2
B are the estimating model skill265

methods proposed by Jolliff et al. (2009), and the traditional Nash-Sutcliffe calculation (see e.g.266

Krause et al., 2005). However, these are not considered any further in the paper. Instead, we use267

simple to interpret and use out-of-sample validation tests as noted below in Section 3.2.268

3.1. Computation269

Our Bayesian model fitting and computations are based on Markov chain Monte Carlo (MCMC)270

methods (e.g. Gilks et al., 1996). In particular, using MCMC, we obtain a sample of the model271

parameters from the target posterior distribution. MCMC samples are used to obtain summaries272

of the posterior distributions, such as mean, median and quantiles which were used to construct273

the 95% credible intervals (CI).274

The implementation of the models has been performed using the freely available software275

package WinBUGS (version 1.4.3; Lunn et al. (2000)), that was executed in batch mode using276

the R library R2WinBUGS (version 2.1-19; Sturtz et al. (2005)). WinBUGS code for the model277
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M1 is available in the Supplementary material. We have run two parallel MCMC chains indepen-278

dently starting at two very different initial values for 50,000 iterations with 20,000 burn-in, and279

we thinned the Markov chains by a factor of 10, resulting in samples of size 6,000 to estimate the280

posterior distributions for the parameters of interest. Convergence was assessed by checking the281

trace plots of the samples of the posterior distribution and the estimated autocorrelation functions282

and the Monte Carlo standard errors.283

3.2. Prediction and estimation of macronutrient fluxes284

To assess the quality of the probabilistic predictions of macronutrient concentrations, which285

can be obtained using the proposed model, we use out-of-sample validation techniques. Here,286

we remove a set of consecutive observations from the sample and then use the remaining data287

to fit the models. Using the fitted model we predict the set aside data based on their posterior288

predictive distributions. These predictions are compared with the actual observations to validate289

the model. In particular, we remove the last 20 days (from 30/11/2014 to 19/12/2014) data from290

the macronutrient time-series and compare these set aside samples with model based predictions.291

The Bayesian methods allow us to estimate the daily total deposit (mass flux) of each macronu-292

trient as follows. Note that macronutrient flux is defined as the product of concentration times river293

flow rate (Sigleo and Frick, 2003; Quilbé et al., 2006), measured in Kg/day, i.e. flux at day t, de-294

noted by ξt is µt × ft where µt is converted to be measured in Kg/m3 and river flow is converted295

in m3/day. We estimate ξt and its uncertainty by using ξ(`)
t = µ(`)

t ft where ` = 1, . . . , 6000 indexes296

the thinned MCMC iterates.297

We predict macronutrient fluxes for the 20 days used in the out-of-sample validation test to298

assess the predictive accuracy of the model. We also estimate daily and total fluxes for the entire299

study period using the whole data set available. Finally, to allow a comparison with similar liter-300

ature contributions, we quantify the annual macronutrient fluxes, from 22/11/2013 to 21/11/2014,301

computing catchment-normalised estimates (that is, our estimated annual macronutrient fluxes are302

divided by the total area of the catchment).303

13



4. Results304

Table 3 presents the values of the PMCC and the Bayesian statistic R2
B that inform us about the305

quality of the fit and predictive abilities of each model. From this analyses, we are able to judge306

the worth of each of the modelling strategies: change-point structures, penalised splines and linear307

regression model for the water quality properties. Model M5 based on the linear regression model308

for the water quality properties provides almost equal performance but shows a worse goodness-309

of-fit as expected, since the spline based models are more flexible. Interestingly, the straw method310

based on simple linear model, M2, without any modelling innovation does not perform well as311

expected. We also note that both the PMCC and R2
B choose the same model M1 as the best model,312

which is adopted henceforth in this paper.313

To assess the adequacy of the chosen model M1 for the macronutrients data, we have checked314

the residuals plots. Fig. 6 illustrates the median of the posterior distributions of the standardised315

residuals plotted against the time period for nitrate and phosphate. No discernible pattern is present316

for nitrate, with a random scattering of points. For phosphate, the residuals scatter around zero317

randomly with a few large values. This result supports an overall adequacy of the model for the318

data.319

4.1. Parameter and flux estimates320

Parameter estimates for the chosen model M1 are presented in Table 4. The switch-point in321

time for nitrate, estimated to occur on 08/03/2014 (95%CI: 05/03/2014, 13/03/2014), identifies322

essentially two seasonal periods that are, clearly, winter and summer times. The change thresh-323

olds before and after this switch-point captures two regimens in river flow, occurring at 27.87324

m3/s (95%CI: 16.26, 43.64) and 10.64 m3/s (95%CI: 7.64, 13.41) in winter and summer times325

respectively. Taking low flow conditions in summer as reference category, the results suggest that326

a higher level of river flow in winter, as well as in summer, is associated with increased concen-327

trations of nitrate, such that a difference of 1 in river flow corresponds, on original scale, to an328

increase in nitrate of about 1.17 mg/L in winter, and about 1.22 mg/L in summer.329

Phosphate shows a considerable different change-point structure, with a no clearly identifiable330

seasonal variation. The switch-point in time for phosphate is estimated to occur on 24/01/2014331
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(95%CI: 22/01/2014, 28/01/2014). Because of this early identification of the switch-point in time,332

during which the Hampshire Avon is still experiencing extremely high flow levels, the associated333

estimation of the change thresholds in river flow lacks of precision. This is clearly showed in a334

larger uncertainty in the estimation of the change threshold parameters, occurring at 66.35 m3/s335

(95%CI: 7.89, 100.28) before the switch-point in time and at 34.29 m3/s (95%CI: 29.19, 40.32)336

after the switch-point in time. The increase in phosphate before the switch-point in time, associated337

with high river flow is not significant, however after the switch-point in time, a higher level of river338

flow seems associated with a dilution of phosphate of about 0.29 mg/L.339

Figs. 7 and 8 show the different change-point regimes in the macronutrient dynamics and river340

flow as estimated by the model. Between regime variations in macro-nutrients can be clearly seen341

from these two graphs, although the variations are more pronounced in the case of nitrate than342

phosphate as expected.343

The fixed effects for the water quality properties in the model for nitrate show a negative344

relationship with temperature and a positive relationship for conductivity and turbidity. A nega-345

tive fixed effect of dissolved oxygen is estimated for phosphate. However these relationships are346

nonlinear as confirmed by the estimated four standard deviations of penalised splines, that are347

non-zero. The estimates of the measurement error variance are higher in magnitude for phosphate348

than for nitrate.349

Fig. 9 shows the daily time-series of macronutrient fluxes (Kg/Day) based on the measured350

data (black dots) and estimated by the model (black solid lines; shaded area represent 95% CI),351

along with the fluxes predicted by the model assuming the observed data from 30/11/2014 to352

19/12/2014 as unknown (here plotted within the red rectangle). The 95% CI for the predicted353

fluxes include the actual 20 observed fluxes for the macronutrient data, although these intervals354

are more conservative (that is, wider) for phosphate in comparison to nitrate.355

We also estimate the total macronutrient fluxes from the complete model, according to the356

estimated parameters for the change-point structures. We find strong seasonal effects in the riverine357

nitrate fluxes as shown in Fig. 10. For example, in winter time low-flow conditions (that is, before358

the 08/03/2014) the mean of the daily observed nitrate fluxes is 5,552 Kg/Day (that correspond359

to an estimated daily posterior mean of 5,531 Kg/Day from our model), while in winter time360
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high-flow conditions, the mean increases to 31,696 Kg/Day (that correspond to an estimated daily361

posterior mean of 31,668 Kg/Day from our model). The seasonal structure is not so clear in the362

model for phosphate. From Fig. 11 we can see that most of the days (no. 260), occurring after363

the 24/01/2014, are classified as low-flow conditions. However, we can still estimate the effect364

of high flow caused by extreme rainfall events in the model for phosphate. For example, before365

24/01/2014, the mean of the daily observed nitrate fluxes in low-flow conditions is 197.18 Kg/Day366

(that corresponds to an estimated daily posterior mean of 208.68 Kg/Day from our model), and the367

mean in high-flow conditions is definitively higher, being equal to 605.7 Kg/Day (that corresponds368

to an estimated daily posterior mean of 573.0 Kg/Day from our model).369

Finally, Table 5 presents the posterior median estimates and 95%CI for the catchment area370

normalised annual total nitrate and phosphate fluxes in Kg/Km2 for the year from 22/11/2013 to371

21/11/2014, according to our best model M1 and the linear regression model, M2. We can observe372

that the flux estimates under model M2 are lower than the corresponding estimates under model373

M1. However, the estimates under M2 have higher uncertainties as seen by comparing the lengths374

of the 95% intervals. Hence the estimates under model M1 are seen to be more accurate than those375

under M2 and, hence, the former model continues to be our preferred model.376

The last two rows of Table 5, respectively, provide estimates of mean annual fluxes for the377

Hampshire Avon at Knapp Mill reported by Jarvie et al. (2005) and the UK wide average reported378

by Nedwell et al. (2002). Our estimates are of broadly similar magnitude to both of these sets of379

estimates. However, for nitrate we note that our estimate is for a very unusual year with exception-380

ally high rainfall leading to higher nitrate fluxes. Regarding phosphate, both the other estimates381

are for dates which are more than two decades in the past and during these last two decades sewage382

treatment works have improved significantly reducing phosphate levels. In addition to these points,383

there are substantial differences in the methodologies used to calculate the fluxes. Our estimates384

are based on a detailed model based calculation of daily concentrations and river flow that takes385

advantage of sudden changes in flow levels. On the contrary, the estimates reported by Jarvie et al.386

(2005) and Nedwell et al. (2002) are based on simple calculations of monthly average concen-387

tration levels and monthly average flow levels which are likely to miss peaks and troughs, and388

seasonality in the deposition levels.389
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5. Discussion and conclusion390

The principal aim of this paper consists in understanding how different macronutrient species391

respond to changes in river flow, which can be largely driven by weather pattern and severe weather392

conditions such as storm events. Therefore, we develop a model for riverine data collected dur-393

ing a relatively short study period characterised by unusual frequency of storms and heavy rain-394

fall. We propose to describe the inter-annual variability of these macronutrient species using a395

Bayesian modelling approach featured by an interaction between temporal window and river flow396

via change-point structures. It is also complemented by a flexible representation of the effect of397

the water quality properties, that are modelled free from parametric constrains. In the application398

considered in the paper, we observe that the change-point structures better depict the temporal be-399

haviour of riverine nitrate and phosphate, and that nonparametric spline based model outperforms400

the standard multiple linear regression model. This is coherent with Walther (2010), who also401

noted that the relationships among the components of ecological systems are complex and that402

interactions and feed-back mechanisms can lead to nonlinear and abrupt changes.403

The identification of switch-points or threshold behaviour in hydrological processes is indeed404

an active area of research, which is, in a growing number of examples, accomplished within a405

Bayesian modelling framework (e.g. Fortin et al., 2004; Alameddine et al., 2011; Jo et al., 2016).406

Recently, the importance of encapsulating environmental thresholds behaviour has been also raised407

in context of hydrological process-based models. Wellen et al. (2014) proposed, for example, a408

Bayesian approach for accommodating environmental thresholds and extreme events within SWAT409

models, assuming that the watershed response to precipitation occurs in distinct state, thus allow-410

ing the parameters values to vary between states. In our statistical approach applied to the Hamp-411

shire Avon river’s waters, we did not assess directly the macronutrient response to extreme events,412

but instead we assess their response to the threshold behaviour of river flow, which is, however,413

largely controlled by weather pattern. Therefore, taking advantage of the interaction with distri-414

butional changes in time, we found that the threshold changes in river flow causes very different415

dynamics in nitrate and phosphate time-series.416

An important feature of our model is that it allows the predictions of macronutrient concen-417
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trations and also the quantification of riverine input fluxes to the estuary. We illustrate this by418

providing estimates of daily fluxes and annual totals for nitrate and phosphate along with their419

uncertainties. These daily fluxes can be aggregated to coarser temporal levels, e.g., monthly, quar-420

terly or annually, as demonstrated in our application, where we find that the amount of macronutri-421

ents delivered to the estuary can change dramatically according to the period of the year in which422

river flow experiences larger changes. This is particularly evident for nitrate which shows a clear423

seasonal pattern, while flux estimates for phosphate present a weaker seasonal structure, that leads424

to a higher uncertainty in our modelling approach.425

The Bayesian modelling framework adopted here can be extended in various ways by including426

more relevant covariates, such as wind field that may have a short-term mixing effect on water427

quality, increasing the sediment re-suspension and be a driving force in exporting nutrients in the428

estuary. This can lead to a better estimate of changes in macronutrient concentrations and fluxes.429

Multivariate modelling for both the aquatic pollutants and for data from multiple sites may also430

lead to fruitful research.431

In conclusion, the Bayesian approach introduced here is able to facilitate the description of432

complex and nonlinear environmental processes and is able to assess the associated uncertainties433

of the reported estimates. We present an application for modelling macronutrients dynamics in434

relationship to water quality properties and changes in river flow. Our method can be easily adapted435

to similar data modelling and analysis problems for estuarine pollution using the accompanying436

computer code.437
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Table 1: Summary statistics for macronutrients, physical and chemical properties of water and river flow. Hampshire

Avon at Knapp Mill, 22/11/2013 to 19/12/2014.

Min 1st Q Mean Median 3rd Q Max

Macronutrients

Nitrate (mg/L) 2.48 4.83 5.33 5.21 5.93 7.10

Phosphate (mg/L) 0.01 0.06 0.07 0.07 0.09 0.39

Water properties

Temperature (◦C) 4.71 8.11 12.26 12.21 16.24 21.96

Conductivity (µS/cm) 200.96 340.06 384.60 381.24 439.65 501.94

Dissolved oxygen (%) 77.44 90.04 96.33 94.55 103.40 119.18

Turbidity (NTU) 1.04 2.27 5.96 4.29 7.90 42.95

Chlorophyll (µg/L) 0.89 1.58 2.71 2.40 3.41 8.73

River Flow

Flow (m3/s) 7.35 9.99 30.19 19.82 35.79 102.64

Table 2: Correlation coefficients between pairs of measured data.

Nitrate Phosphate Temperature Conductivity Dissolved oxygen % Turbidity Chlorophyll

Nitrate 1

Phosphate -0.16 1

Temperature 0.06 0.23 1

Conductivity 0.31 0.20 0.92 1

Dissolved oxygen % 0.24 -0.39 0.44 0.50 1

Turbidity 0.16 0.30 -0.13 -0.20 -0.62 1

Chlorophyll 0.02 -0.30 -0.11 -0.27 -0.02 0.25 1
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Table 3: Quality of the model fit and the predictive abilities of the competing models: goodness of fit term (G), penalty

term (P) and overall predictive model choice criterion (PMCC: G+P), along with the Bayesian statistic R2
B.

Nitrate Phosphate

Models G P PMCC (G+P) R2
B G P PMCC (G+P) R2

B

M1. Penalised spline for water quality data + 1.31 3.76 5.07 0.69 33.84 42.61 76.45 0.74

change-point structures

M2. Linear model for water quality data, 3.87 5.97 9.84 0.46 66.79 71.42 138.21 0.47

no change-point structures

M3. Linear model for water quality data + 3.02 5.14 8.16 0.53 73.50 78.58 152.08 0.49

a switch-point in time

M4. Linear model for water quality data + 2.56 4.70 7.26 0.57 67.72 72.42 140.14 0.53

a change threshold in river flow

M5. Linear model for water quality data + 1.56 4.04 5.60 0.65 44.24 50.67 94.91 0.67

change-point structures

M6. Penalised splines for water quality data, 2.37 4.77 7.14 0.58 50.24 57.91 108.15 0.63

no change-point structures

Table 4: Parameter estimations.

Nitrate Phosphate

Parameters Median 95%CI Median 95%CI

Change-point structures

τ (Switch-point in time, occurring in the year 2014) 08/03 (05/03, 13/03) 24/01 (22/01, 28/01)

ϕ1 (Change threshold in flow before switch-point in time) 27.87 (16.26, 43.64) 66.35 (7.89, 100.28)

ϕ2 (Change threshold in flow after switch-point in time) 10.64 (7.65, 13.41) 34.29 (29.19, 40.32)

δ1 (Slope for low flow before switch-point in time) −0.80 (−0.63, −0.88) 0.07 (−0.63, 1.26)

δ2 (Slope for high flow before switch-point in time) 1.17 (1.09, 1.32) 0.06 (−0.74, 1.94)

δ4 (Slope for high flow after switch-point in time) 1.21 (1.16, 1.27) −1.25 (−1.59, −0.97)

Penalised splines

β0 (Global intercept) 4.74 (4.31, 5.18) 0.05 (0.04, 0.09)

β1 (Fixed effect for temperature) −0.18 (−0.29, −0.07) −0.01 (−0.41, 1.25)

β2 (Fixed effect for conductivity) 0.29 (0.17, 0.40) 0.37 (−0.14, 0.87)

β3 (Fixed effect for dissolved oxygen) 0.06 (−0.03, 0.22) -0.47 (−1.13, −0.07)

β4 (Fixed effect for turbidity) 0.10 (0.05, 0.16) 0.15 (−0.09, 0.51)

σb1 (Standard deviation for spline on temperature) 0.02 (0.01, 0.71) 0.12 (0.03, 0.71)

σb2 (Standard deviation for spline on conductivity) 0.03 (0.02, 0.06) 0.14 (0.05, 0.45)

σb3 (Standard deviation for spline on dissolved oxygen) 0.03 (0.02, 0.08) 0.17 (0.04, 0.61)

σb4 (Standard deviation for spline on turbidity) 0.03 (0.01, 0.07) 0.07 (0.01, 0.44)

Other

σ2 (Measurement error variance) 0.01 (0.00, 0.01) 0.10 (0.08, 0.12)
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Table 5: Posterior median and 95% credible interval (CI) for the catchment area normalised total annual macronutrient

fluxes from 22/11/2013 to 21/11/2014 according to models M1 and M2. Values are catchment area standardised with

Kg/Km2 units. The last two rows present comparable estimates from the literature.

Nitrate (N) Phosphate (P)

Models/Methods Annual budget 95%CI Annual budget 95% CI

M1. Penalised spline for water quality data + change-point structures 2978.9 (2937.9, 3016.4) 31.6 (30.2, 33.1)

M2. Linear model for water quality data, no change-point structures 2936.7 (2890.4, 2981.8) 29.8 (28.3, 31.3)

Jarvie et al. (2005): Mean annual load during 1993-2000 2050 – 71 –

Nedwell et al. (2002): UK average during 1995-96 1400 – 152 –
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Figure 1: Map of the study area.
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Figure 2: Daily macronutrient and river flow data (22/11/2013 to 19/12/2014). Data are plotted on original scale:

nitrate (solid line) in mg/L, phosphate (dashed line) in mg/L and river flow (dotted line) in m3/s.

26



Figure 3: Daily water quality data values (22/11/2013 to 19/12/2014). Data are plotted on original scale: temperature

(solid line) in ◦C, conductivity (dashed line) in µS/cm, dissolved oxygen saturation (dotted line) in %, turbidity

(dotdash line) in NTU and chlorophyll (longdash line) in µg/L.
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Figure 4: Scatterplot of macronutrient data versus water quality properties. Data are plotted on original scale: nitrate

in mg/L, phosphate in mg/L, temperature in ◦C, conductivity in µS/cm, dissolved oxygen (DO) in %, turbidity in

NTU and chlorophyll in µg/L.
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Figure 5: Directed Acyclic Graph (DAG) for the model M1, depicting the relationship among macronutrient, river

flow and water quality properties.

In the graph, yt is the observed concentration for a macronutrient in day t. The macronutrient concentrations are assumed to be distributed normally

around the mean µt . The parameter 1/σ2 represents the precision (i.e. 1/variance) of the normal distribution. µt is modelled as a function of: (i) a

global intercept, β0; (ii) the water quality properties, which are parameterised via penalised splines, where β j is the fixed coefficient for each water

quality property, xt j, and b jk are the random coefficients associated with the design matrix with elements zt jk = (xt j − kk j)d
+; (iii) the change-point

structures constructed with interaction terms described by indicator functions: Itτ is the indicator for the switch-point in time, τ, and Itϕ2 and Itϕ2

are the indicators for the two change thresholds in river flow, ϕ1 and ϕ2. Finally, δ1, . . . , δ4 are the coefficients associated with the change-point

structures.
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Figure 6: Time-series plot of the standardised residuals for (a) nitrate and (b) phosphate.
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Figure 7: Relationship between nitrate and river flow using the estimated parameters for the change-point structures:

red dotted vertical line is the switch-point in time and black solid horizontal lines are the change thresholds in river

flow. Data are plotted on original scale: nitrate (black solid line) in mg/L, and river flow (gray dotted line) in m3/s.
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Figure 8: Relationship between phosphate and river flow using the estimated parameters for the change-point struc-

tures: red dotted vertical line is the switch-point in time and black solid horizontal lines are the change thresholds in

river flow. Data are plotted on original scale: phosphate (black solid line) in mg/L, and river flow (gray dotted line) in

m3/s.
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Figure 9: Plots of daily fluxes (Kg/Day) for nitrate (top) and phosphate (bottom). Red rectangle on the right-hand of

the panel contains the predicted fluxes from model M1 for the period 30/11/2014 to 19/12/2014.
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Figure 10: Nitrate fluxes (Kg/Day) for the entire study period using the estimated parameters for the change-point

structures. Black dots are the observed fluxes, black solid line represents the fluxes estimated from model M1 and

shadow area represents the 95% CI for the estimated fluxes.
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Figure 11: Phosphate fluxes (Kg/Day) for the entire study period using the estimated parameters for the change-point

structures. Black dots are the observed fluxes, black solid line represents the fluxes estimated from model M1 and

shadow area represents the 95% CI for the estimated fluxes.
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