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Summary

Conventional models of solute transport in soil consider only soil volumes large enough to average over
microscale heterogeneities, and it is assumed that microscale variations are unimportant at the macroscale. In
this research we test this assumption for cases in which the microscale distribution of solute-sorbing sites is
patchy. We obtain a set of equations at the macroscale that allow for the effect of the microscale distribution with
the mathematical technique of homogenization. We combine these equations with an image-based model that
describes the true microscale pore geometry in a real, structured soil measured with X-ray computed tomography.
The resulting models are used to test the microscale averaging assumptions inherent in conventional models.
We show that, in general, macroscale diffusion is little affected by microscale variation in the distribution of
sorption sites. Therefore, for most purposes the assumption of microscale averaging used in conventional models
is justified. The effects of microscale heterogeneity are noticeable only when (i) the rate of sorption is slow
compared with diffusion, but still fast enough to affect macroscale transport and (ii) the defined macroscale
volume approaches the microscale. We discuss the effects when these conditions are met.

Highlights

• When does microscale variation need to be allowed for in macroscale transport and reaction models?
• We use image-based modelling and homogenization to answer this.
• We find macroscale transport is generally little affected by microscale patchiness of sorption sites.
• The microscale averaging implicit in conventional models is justified in most cases.

Introduction

Soil is heterogeneous at all scales, but the degree of heterogeneity
increases the finer the scale considered. For instance, at the scale of
a root hair or fungal hypha, the distribution of mineral and organic
matter surfaces on which nutrient and pollutant solutes are sorbed
is patchy, and the patches have varying sizes and distributions. With
advances in non-invasive imaging techniques, it is increasingly
possible to quantify such heterogeneities and, in principle, to allow
for them in models of soil processes (Leitner et al., 2010; Blunt
et al., 2013; Keyes et al., 2013; Wildenschild & Sheppard, 2013).
The research in this paper assesses the circumstances in which it is
worth doing this.
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Conventional models of solute transport and reaction in soil
treat the soil as quasi-homogeneous by considering only soil
volumes large enough to average over microscale variation (Tinker
& Nye, 2000). The questions are: what are the limiting volumes
for which this is justified and how do they depend on microscale
heterogeneities and reaction rates relative to transport rates? We aim
to answer these questions below.

We use the mathematical method of homogenization (Hornung,
1997; Pavliotis & Stuart, 2008) to derive macroscale equations
for solute transport and reaction that allow for microscale het-
erogeneities. This method has been used widely to derive soil
hydraulic properties (Keller, 1980; Daly et al., 2015; Tracy et al.,
2015), poroelastic properties (Burridge & Keller, 1981; Lee &
Mei, 1997) and solute effective diffusivities (Ptashnyk et al., 2010;
Zygalakis et al., 2011). We use homogenization in conjunction
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with image-based modelling (Keyes et al., 2013; Daly et al., 2015;
Tracy et al., 2015). Image-based modelling is the use of two- or
three-dimensional images to derive true geometries on which to
base mathematical models. Here we use three-dimensional images,
generated with X-ray computed tomography (X-ray CT), to derive
the true geometric impedance to solute transport in a particular
experimental soil.

By combining image-based modelling with equations for
time-dependent sorption reactions on the soil surfaces, we can
allow for patchy distributions of the sorption sites. The resulting
models enable us to test the assumption of microscale averaging
used in conventional models.

Theory

The nomenclature is explained in Table 1. Table S1 in
Supplementary Information provides further explanation about
the mathematical symbols.

Dimensional model

We consider the transport of a solute through a soil volume across
which there is a concentration gradient of the solute. The solute is
distributed between the soil solution, where it is mobile, and the
surfaces of soil particles, where it is sorbed and immobile. Unlike
conventional models, the spatial distribution of sorption sites is
considered to be patchy (i.e. there are areas of the soil surface where
sorption does occur and areas where it does not). The sorption reac-
tions we consider are either fast or slow in comparison with trans-
port through the soil solution. For simplicity we consider a soil in
which the pores are completely filled with solution and transport is
solely by diffusion. Note, however, that it would be straightforward
to model partially saturated soil by including air spaces in the pores.

To model the effects of a patchy distribution of sorption sites,
we use the method of homogenization. The key requirement of
this method is that the macroscale (observable) properties are,
on average, independent of the microscale properties. Therefore,
at the macroscale we do not need to know the exact paths taken
by the solute. Rather, we need consider only the average solute
flux through a microscale volume of soil. We use the microscale
geometrical details to parameterize a set of macroscale equations
that allow for the microscale detail through a representative ‘cell
problem’ (Hornung, 1997; Pavliotis & Stuart, 2008). If we consider
that the macro- and microscale spatial properties are independent
of each other, we can define the macro- and microscale coordinate
systems as x and y, respectively. This is illustrated in Figure 1.
The characteristic macroscopic length-scale, L, is the length of the
macroscopic unit in Figure 1(a) and the microscopic length-scale,
l, is the length of the microscopic unit cell in Figure 1(b). Formally,
homogenization theory allows us to treat x and y independently if
the scaling ratio 𝜀= l/L is sufficiently small (i.e. 𝜀≪ 1) (Pavliotis
& Stuart, 2008).

We now consider the behaviour of the microscale domain in
detail. Our aim is to derive a set of equations that can be applied

Table 1 Nomenclature

Symbol Definition Units

Af, As Surface area per unit soil volume of fast,
slow sorption sites

cm2 cm−3

Caf, Cas Solute concentration on fast, slow
sorption surfaces

μmol cm−2

Cl Solute concentration in soil solution μmol cm−3

Dl Solute diffusion coefficient in free
solution

cm2 s−1

kaf, kas Rate constant for fast, slow adsorption cm s−1

kdf, kds Rate constant for fast, slow desorption s−1

Kf, Ks Equilibrium solid: solution distribution
for fast, slow sorption sites

–

l Characteristic microscopic length scale cm
L Characteristic macroscopic length scale cm
x Macroscopic space variable cm
y Microscopic space variable cm
𝛼 Ratio of slow to fast sorption surface

areas
–

𝜀 Scaling ratio= l/L –
𝛿af, 𝛿as Dimensionless parameter for fast, slow

adsorption
–

𝛿df, 𝛿ds Dimensionless parameter for fast, slow
desorption

–

D Tensor for the geometric tortuosity of the
solution diffusion path
(dimensionless)

–

E Tensor to represent the effect of random
phase distribution for fast sorption
reaction (dimensionless)

–

f Vector to represent the effect of random
phase distribution for slow sorption
reaction (dimensionless)

–

Γ Domain of total soil particle surface –
Γs Domain of sorption sites on soil surfaces –
Γns Domain of non-sorbing sites on soil

surfaces
–

Ω Domain of soil solution –
∇ Partial differential operator in 3D space

(= 𝜕/𝜕x, 𝜕/𝜕y, 𝜕/𝜕z)
cm−1

to the macroscale and a set of cell problems that capture the
geometrical effects of the microscale domain. We define the soil
solution domain as Ω and the total soil surface domain as Γ; Γ is
subdivided into a domain of solute-sorbing sites, Γs, and a domain
of non-sorbing sites, Γns. Then, the diffusive transport of a solute in
the soil solution is given by:

𝜕Cl

𝜕t
= Dl∇2Cl, x ∈ Ω, (1)

where Cl is the concentration of the solute in the soil solution and
Dl is its diffusion coefficient in free solution.

We define the amount of solute sorbed per unit of soil surface area
in fast and slow reactions as Caf and Cas, respectively. The boundary
conditions at the interface between soil surfaces and the solution for
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Figure 1 The geometry of the model: (a) the macroscopic domain with
characteristic length-scale L; (b) the microscopic domain with length-scale
l. The microscopic domain contains non-uniformly distributed soil solution
and soil surfaces with solute-sorption sites. The microscopic heterogeneity
is repeated and periodic in the macroscopic domain. The figure is taken from
an X-ray CT image of a sandy loam.

sorbing surfaces are:

n · Dl 𝛁Cl = −
𝜕Caf

𝜕t
−

𝜕Cas

𝜕t
x ∈ Γs, (2)

and for non-sorbing soil surfaces

n · Dl 𝛁Cl = 0, x ∈ Γns, (3)

where n is a unit vector that is normal to the soil surface and points
into the soil solution. Mass conservation is accommodated with
linear first-order sorption reactions as follows:

𝜕Caf

𝜕t
= kafCl − kdfCaf , x ∈ Γs, (4)

𝜕Cas

𝜕t
= kasCl − kdsCas, x ∈ Γs, (5)

where kaf, kdf, kas and kds are the spatially-dependent rate constants
for fast and slow adsorption and desorption reactions, respectively.

Non-dimensionalization

To proceed with the analysis, we express Equations (1)–(5) in
non-dimensional forms so that there are fewer parameters to deal
with and it is easier to determine which processes are most impor-
tant for any given parameter regime. We do this by scaling space
with the macroscale length, x= Lx*, and time with the macroscale
diffusion time, t = L2

Dl
t∗, where the asterisks indicate dimension-

less variables. We scale the solution concentrations with unit

concentration as Cl = [C]Cl*, where C is a representative solute
concentration in solution. Likewise, the sorbed concentrations are
scaled as Caf =

(
kaf

kdf

)
[C]C∗

af and Cas =
(

kas

kds

)
[C]C∗

as to balance the
adsorption and desorption terms in Equations (4) and (5).

Next, we non-dimensionalize the equations to reduce the number
of parameters in the model, and then re-scale to estimate the
importance of each of these parameters, as follows (without the
asterisks):

𝜕Cl

𝜕t
= ∇2Cl, x ∈ Ω, (1a)

n · 𝛁Cl = −𝛿af

(
Cl − Caf

)
− 𝜀𝛿as

(
Cl − Cas

)
, x ∈ Γs, (2a)

n · 𝛁Cl = 0, x ∈ Γns, (3a)

𝜕Caf

𝜕t
= 𝜀−1𝛿df

(
Cl − Caf

)
, x ∈ Γs, (4a)

𝜕Cas

𝜕t
= 𝜀𝛿ds

(
Cl − Cas

)
, x ∈ Γs, (5a)

where 𝛿af =
(

L

Dl

)
kaf , 𝛿df =

(
L·l
Dl

)
kdf , 𝛿as =

(
L2

l·Dl

)
kas and

𝛿ds =
(

L·l
Dl

)
kds. We have scaled Equations (1a)–(5a) such that

the parameters in the equations are all of size one. The only
exception is the small parameter 𝜀 that we use in the forthcoming
derivation. The parameters 𝛿af, 𝛿df, 𝛿as and 𝛿ds are all dimensionless
because of the difference in dimensions in the adsorption and
desorption constants; their values are given in Table S1 in the
supporting information.

Homogenized models

We apply the method of homogenization to Equations (1a)–(5a)
to obtain effective macroscale models. Homogenization is a multi-
scale method based on a standard perturbation expansion in which
both the dependent and independent variables (in this case the
concentrations and the spatial coordinates) are expanded. This is
essentially an averaging procedure that allows the effect of the
micro-structure to be determined as a series of effective parame-
ters. A full description of the method and mathematical details are
included in the Supporting Information S1. In short, we consider the
behaviour of Equations (1a)–(5a) on two scales, the micro- then the
macroscale, and consider gradients on the macroscale as a pertur-
bation to the microscale equations. There are three key steps. First,
we show that, as a first approximation, the nutrient concentrations
are independent of the microscale geometry. Physically, this means
that diffusion at the microscale is so fast that the concentration is
effectively constant. Second, we consider that although the concen-
tration may be considered constant at the microscale, it may vary
at the macroscale. If the concentration changes linearly by one unit
over unit distance, it must also change by a quantity of size 𝜀 over a
distance 𝜀. Therefore, we treat any variation in the macroscale con-
centration as a perturbation on the microscale. In addition, we have
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perturbations that arise from reactions at the soil particle surfaces.
The result is that we must solve a set of representative problems
at the microscale that we refer to as cell problems. Typically, these
problems describe how the microscale geometry affects diffusion
at the macroscale and they must be solved numerically for all but
the simplest geometries. Finally, by averaging over the microscale
we can eliminate all effects of the microstructure from the problem
and are left with a series of macroscale equations. These are param-
eterized by a set of effective parameters, which are calculated by
solving the cell problems on the underlying microstructure.

We present two examples; each requires a separate homogenized
model. In Case 1, the fast sorption reaction is effectively instanta-
neous and the slow reaction is slow in comparison with diffusion
through the soil solution (discussed further in Parameter values).
In Case 2, the slow reaction is 100-fold slower (i.e. kas is 100-fold
smaller than in Case 1). We summarize the models for the two
examples in this section and provide full details in the Supporting
Information, SI.

To derive the macroscale equations, we use the following asymp-
totic expansion of the concentration variables with respect to 𝜀 as
follows:

Cl = C0
l (x) + 𝜀C1

l (x) + O
(
𝜀2
)
,

Caf = C0
af (x) + 𝜀C1

af (x) + O
(
𝜀2
)
,

Cas = C0
as (x) + 𝜀C1

as (x) + O
(
𝜀2
)

, (6)

where C0
l (x), C0

af (x) and C0
as (x) are the leading order macroscale

solute concentrations in solution and on the fast and slow sorption
sites, respectively, and O(𝜀2) indicates remainder terms. These lead-
ing order concentrations represent the effect of phase distribution
for uniform distribution of sorbing phases. The concentrations for
the non-uniform sorbing phase distributions on the soil surface are
found as a perturbation to the average concentration and are given
by C1

l (x) ,C
1
af (x) and C1

as (x).
If Equation (6) is substituted into Equations (1a)–(5a) we obtain,

after the mathematical derivation given in Supporting Information
B in Appendix S1, a homogenized macroscale model for Case 1:

𝜏
𝜕C0

l

𝜕t
+ 𝛿as||Γs||C0

l = 𝛁 ·D𝛁C0
l , (7)

where D is a second-rank tensor that accounts for the geometric
tortuosity of the solution diffusion pathway. Its value is obtained by
solving the cell equations for the microscale pore space as shown
in the supporting information. The reaction time constant (𝜏) in
Equation (7) is:

𝜏 = ||Ω|| + 𝛿af

𝛿df

||Γs||, (8)

where ||Γs|| and ||Ω|| are the magnitudes of the non-dimensional
sorbing phase area and soil solution volume, respectively. By con-
sidering terms of higher powers in 𝜀, the macroscale homogenized
model that allows for non-uniform spatial distribution of sorption

phases is:

𝜏
𝜕C1

l

𝜕t
+ 𝛿as||Γs|| (C1

l − C1
as

)
= 𝛁 ·D𝛁C1

l

+ 𝛁 ·E𝛁𝛁C0
l + 𝛁 ·fC0

l +
𝛿af

𝛿2
df

||Γs||𝜕
2C0

l

𝜕t2
, (9)

where E is a third-rank tensor that accounts for the distribution of
fast sorption sites and f is a vector that accounts for the distribution
of slow sorption sites in the microscale domain (detail is provided
in Supporting Information A and B). In addition:

𝜕C1
as

𝜕t
= 𝛿dsC

0
l . (10)

We now present the effective macroscale models for Case 2 where
the slow sorption reaction is 100 times slower than in Case 1. The
effective macroscale model with uniform sorption-site distribution
is the conventional model for macro-scale diffusive transport:

𝜏
𝜕C0

l

𝜕t
= 𝛁 ·D𝛁C0

l , (11)

and the homogenized model at order O(𝜀) is

𝜏
𝜕C1

l

𝜕t
+ 𝛿as||Γs||C0

l = 𝛁 ·D𝛁 C1
l + 𝛁 ·E𝛁𝛁C0

l +
𝛿af

𝛿2
df

||Γs||𝜕
2C0

l

𝜕t2
.

(12)
The diffusive behaviour of the solutes at the macroscale is the

same as for Case 1. In this example however, the slow reaction is
present, to leading order, only through the effective time constant
𝜏, Equation (11). The effect of the slow reaction is described by
Equation (12) and can be seen to contribute to C1

l . In Case 1 the
effect of the non-uniform sorption sites was described by the vector
f, see Equation (9). In this example these terms do not occur until
the next order. In other words, as the reaction is slowed down it
produces a weaker effect on the overall solute concentration.

In summary, the homogenized macroscale equations suggest that
the maximal effect of the spatial distribution of sorption sites occurs
with the parameter regime in Case 1. At this point it is natural to
ask whether there is a reaction rate for which the non-uniformity
of sorption sites has a larger effect on solute transport. If we slow
the reactions down further, then this effect is simply pushed to the
higher orders (i.e. it becomes smaller). Alternatively, if we increase
the speed of the slow reaction then it becomes comparable to,
or faster than, diffusion. If this is the case then we see only the
averaged effects. In all cases, the effect of non-uniform distribution
of sorption sites appears to be at least an order later than that
of averaged or uniform distributions, which indicates that the
non-uniform distribution has a small effect only on the macroscale
diffusion. Physically, this indicates that as the size of the macroscale
domain (i.e. L) increases, the effects of the non-uniform distribution
decrease. We illustrate this point further below.

We rescale the dimensionless terms in the macroscale homog-
enized equations with the corresponding scales given in the
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non-dimensionalization section above. The dimensional forms of
Equations (7) and (9) are:

𝜕
(
𝜃 + Kf

)
C0

l

𝜕t
+ (1∕L) kasC

0
l = 𝛁 ·Deff 𝛁C0

l (13)

and

𝜕
(
𝜃 + Kf

)
C1

l

𝜕t
+ (1∕L)

(
kasC

1
l − kdsC

1
as

)
= 𝛁 ·Deff 𝛁C1

l

+ 𝛁 ·Eeff 𝛁𝛁C0
l + 𝛁 ·f effC

0
l +

Lkaf

Dlkdf

𝜕2C0
l

𝜕t2
, (14)

where Deff =DlD, Eeff =LDlE and f eff = fDl/L are the effective
homogenized model parameters with units cm2 s−1, cm3 s− 1 and
cm s− 1, respectively, 𝜃 is the soil volumetric water content, and
Kf and Ks are the equilibrium distributions of solute between the
surface sites and the soil solution, given by:

Kf =
AfCaf

𝜃Cl

. (15)

and

Ks =
AsCas

𝜃Cl

. (16)

The dimensional form of Equation (10) is:

𝜕C1
as

𝜕t
= kasC

0
l . (17)

Similarly, we can obtain the dimensional forms of the homoge-
nized macroscale Equations (11) and (12) for Case 2; these have
been omitted for conciseness.

Parameter values

We parameterize the model for the sandy loam soil shown in
Figure 1 and a strongly-sorbed solute such as phosphate or many
heavy metal and radionuclide contaminants. The soil is a Eutric
Cambisol (USDA, 2014) from the experimental farm of Bangor
University (properties in Lucas & Jones, 2006, Soil B). It was
sieved to <1.6 mm and the solid matter of the sieved soil was
approximately 0.7 g g−1 quartz, 0.3 g g−1 clay minerals (mainly illite
and feldspars) and <0.03 g g−1 organic matter.

Geometry. We consider an experimental system where the typical
length of a soil column L= 1 cm. We define this as the macroscale
because it is the largest scale length considered in this research. In
addition, we have a scale length that is associated with the soil par-
ticle size distribution. We define this as the microscale l (Figure 1).
We chose l= 0.01 cm to cover a range of particle sizes from fine clay
to coarse sand in the microscale domain. This satisfies the require-
ment that the scaling ratio is 𝜀= l/L≪ 1, so that our two space-scale
approximations are valid. We consider the effect of varying 𝜀 in
‘Results and discussion’ below. We obtained the value of the tensor
D for the geometric impedance to diffusion in the soil pore space

from the X-ray CT image in Figure 1; the value is D= 0.035× I,
where I is the identity matrix (Supporting Information B). For
Dl = 10−5 cm2 s−1, which is typical of a simple inorganic solute,
the effective diffusion coefficient in the soil pore network follow-
ing Equation (13) is Deff = 3.5× 10−7 cm2 s−1. The mathematical
procedure to obtain the effective macroscale parameters (i.e. tensor
E and vector f (for slow reaction)) from the microscale domain is
given in Supporting Information B. From the simulation we find the
components of Eeff take a maximum value of 8.25× 10−9 cm3 s−1

and each of the components of f eff has value 1.1× 10−7 cm s−1.
We calculated the surface area of clay minerals active in

solute sorption as follows. From the X-ray CT image (Figure 1),
the volume of soil solid per unit soil volume is 0.51 cm3 cm−3

and the surface area of the soil solid per unit soil volume is
85.25 cm2 cm−3. Therefore, if the particle density is 2.65 g cm−3,
the mass of quartz, which is largely non-sorbing, per unit soil
volume= 0.7× 2.65× 0.51= 0.95 g cm−3, and the mass of clay
minerals per unit soil volume= 0.3× 2.65× 0.51= 0.41 g cm−3.
Therefore, taking the quartz particles to be spherical with mean
diameter 1.6 mm (the soil sieve size), the quartz specific sur-
face is 14.15 cm2 g−1; therefore, the quartz surface area per unit
soil volume= 0.95× 14.15= 13.43 cm2 cm−3. The clay min-
eral surface area equals the total surface area minus the quartz
surface area. This gives clay mineral surface area per unit vol-
ume= 85.25− 13.43= 71.82 cm2 cm−3 (i.e. the clay minerals
account for 84% of the total surface).

After estimating the surface area of the sorbing phase, we
distributed sorption sites of equal total area over the microscale
soil domain microscale soil domain. This was done by selecting
portions of the soil CT-image surfaces as patches that collectively
occupied 84% of the total surface (see above). We applied the
sorption reactions on these spatially distributed soil surface patches
following Equations (4) and (5). The remaining 16% of the total soil
surface is non-sorbing; therefore, we solved Equation (3) on those
surface areas. We give the mathematical detail of the distribution
patterns (both uniform and non-uniform) of the sorption sites in
Supporting Information A and B.

Sorption. We define the fraction of the total sorption surface
area occupied by slow-reacting sites as 𝛼, such that As = 𝛼Atotal

and Af = (1− 𝛼)Atotal where As and Af are the areas of slow and
fast reacting sites, respectively, per unit volume of soil, and
Atotal =As +Af. To test the effects of varying (i) the ratio of As to
Af and (ii) the rate of the slow sorption reaction, we derived the
relations at equilibrium from Equations (4) to (5) by:

kafCl − kdfCaf = 0 (18)

and
kasCl − kdsCas = 0. (19)

Combining Equations (16)–(19) gives:

Kf =
Afkaf

𝜃kdf

(20)
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and

Ks =
Askas

𝜃kds

. (21)

We tested the effect of varying kas and 𝛼 (i.e. As/Af) while
keeping the other variables constant (see ‘Results and discus-
sion’). For the fast reaction, we used kaf = 1.78× 10−5 cm s−1 and
kdf = 2.57× 10−4 s−1 based on the data of Keyes et al. (2013) for
the short-term (<2 hours) kinetics of phosphate sorption on the
soil in Figure 1 and Af = 71.82 cm2 cm−3 (i.e. 𝜃Kf = 5). For the
slow reaction in Case 1 we used kas = 6.67× 10−7 cm s−1 and
kds = 7.05× 10−8 s−1 based on values in Ptashnyk et al. (2010) and
As = 71.82 cm2 cm−3 (i.e. 𝜃Ks = 680). For the slow reaction in Case
2, kas = 6.67× 10−9 cm s−1 and kds = 7.05× 10−10 s−1.

We compare the time-scales of the fast and slow reactions with
that of diffusion as follows. The half-time for diffusion into a soil
column of length L maintained at a constant surface concentration

is given by
√

Dt1∕2∕𝜋 = L∕4 (after Crank (1979), equation 3.15).

Therefore, for D=D1/Kf = 2× 10−6 cm2 s−1 and L= 1 cm, the diffu-
sion half-time is t1/2 = 27.3 hours. From the integral of Equation (4)
for constant Cl, the half-time for the fast sorption reaction is
t1/2 = ln 2/kdf = 2.7× 103 s or 0.75 hour, which is rapid compared
with diffusion. Likewise, from Equation (5) the half-time for the
slow sorption reaction is t1/2 = ln 2/kds = 9.8× 106 s or 114 days for
Case 1, which is slow compared with diffusion. Similarly for Case
2, the half-time for the slow reaction is 1.14× 105 days. Therefore,
the representations of sorption times in the two Cases are consistent
with the model assumptions.

We ran the model for a constant solute concentration in solution
(representative solute concentration, C) at one end of a soil column
of 10−4 μmol cm−3, with zero transfer of solute across the other end
of the column (L= 1 cm) and zero concentration initially throughout
the column. The results below are for model runs of 25 days.

Model implementation

We used the open-source computational fluid dynamics software
package OpenFOAM (Jasak et al., 2013) for the numerical simula-
tions with the two homogenized models, and to assess their sensi-
tivities to the spatial distributions of sorption sites.

Results and discussion

Figure 2(a,b) shows the effects of allowing for patchy microscale
distributions of sorption sites on solute concentration profiles in the
soil solution and soil surface when all the sorption sites react more
rapidly than rates of diffusion. It appears that microscale patchiness
has little effect on macroscale transport under these conditions. If
sorption is rapid compared with diffusion (i.e. half-times for equili-
bration <∼1 hour), it is acceptable to consider the volume-averaged
distribution of sorption sites without knowing their distribution
patterns.

Figure 2(c,d) shows the effect of both fast and slow sorption
reactions, with the slow sorption being either moderately slower
(Case 1) or much slower (Case 2) than diffusion. The effect of a

patchy distribution of sites is evident for Case 1, although it is only
slight, but is not for Case 2. Evidently there is an interaction between
the reaction rate and the patchiness effect. In Case 2, the slow
reaction is so slow that it does not contribute markedly to sorption
on the time-scale of the model runs; the results are therefore similar
to those in Figure 2(a,b), but with a smaller degree of sorption
(smaller Af) and faster macroscale diffusion. If the slow reaction
is fast enough to affect diffusion, as in Case 1, a small effect of
patchiness is evident in Figure 2(c,d).

Figure 2(e,f) shows the results of when all the sorption sites
react slowly. For Case 1, there is again a small effect of patchiness
only. For Case 2, Figure 2(e,f) shows that there is now effectively
no sorption and macroscale diffusion is correspondingly faster.
Figure 3 shows the effect of a larger sorption surface area with a
relatively fast slow reaction (i.e. Case 1). The concentration profiles
are similar to those in Figure 2(e) (Case 1), which show no marked
effect.

The results show that the effect of non-uniform distribution
of sorption sites on macroscale transport is detectable only for
particular combinations of reaction rate and diffusion rate, as in
Case 1, and then the effect is only slight and probably too small
to be detectable experimentally. Therefore, the averaging assump-
tions used in conventional models with equilibrium reactions
are justified.

We now consider the effect of increasing the micro- to macroscale
ratio, 𝜀. For Case 1 with a slow reaction rate, a tenfold increase
in 𝜀 results in a large increase in the effect of patchily distributed
sorption sites (Figure 4). The distance at which Cl falls to half the
value at the surface of the soil column is 0.014 cm for a uniform
distribution of sites and 0.045 cm for a patchy distribution. This
indicates the parameter range for which the effect of patchiness
is important and correctly predicted. The effect depends on both
𝜀 and the sorption rate relative to the diffusion rate: 𝜀 must
be small enough to satisfy the multiple space-scale perturbation
requirements, but large enough to resolve the effect of patchiness
with the right sorption rate. The reaction half-time is 114 days
(Parameter values). The model suggests that for 𝜀= 0.1, reaction
rates 100-fold faster or slower than this will mean the reaction
is either effectively instantaneous or insignificant compared with
diffusion, and the effect of non-uniform distribution of sorption sites
then becomes negligible. Runs with the model confirmed this (data
not shown).

From a mathematical point of view, when 𝜀 is infinitely small
the model predictions are exact. With an increase in 𝜀, the error of
prediction will also increase. The error is of the order 𝜀2 × 100%; it
is just 1% for 𝜀= 0.1. From a physical point of view, if we consider a
soil column packed with soil particles that are small compared with
the size of the column, the effect of microscale heterogeneities such
as the distribution of sorption sites is insignificant. Likewise, at the
pedon or field scale processes that take place on the micro-aggregate
scale are irrelevant. Clearly, however, when the soil particle or
aggregate size is an order of magnitude different only from the
macroscale dimension that is being considered, the effects of
particle or aggregate scale heterogeneities will be magnified and
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Figure 2 The effect of maintaining a constant concentration of a solute in solution at the surface of a soil column from which it was initially absent: (a, c and e)
are solute concentrations in the soil solution (Cl), (b, d and f) are adsorbed solute concentrations in the soil solid (Caf, Cas for fast and slow reacting sites,
respectively). (a), (b) All sorption sites were fast reacting (i.e. 𝛼 = 0). (c), (d) Half the sorption sites were fast reacting and half were slow (i.e. 𝛼 = 0.5), with
slow reaction slow (Case 1) or very slow (Case 2) compared with diffusion. (e), (f) All the sorption sites were slow reacting (i.e. 𝛼 = 1) with slow reaction slow
(Case 1) or very slow (Case 2) compared with diffusion. Solid lines are for a uniform distribution of sorption sites, points are for a non-uniform distribution
and t= 25 days.

can be important. As the scaling ratio, 𝜀, increases, the microscopic
grain becomes closer to macroscopic soil and therefore imposes an
increasing effect on model predictions.

The above conclusions are consistent with equivalent research on
solute transport in groundwater systems (Bellin et al., 1993; Bosma
et al., 1993; Espinoza & Valocchi, 1997; Dentz et al., 2011). Meile

& Tuncay (2006) showed, based on pore-scale simulations, that in
diffusion-driven transport the effect of non-homogeneity in reaction
rates has only a small effect on the macroscale reactions.

The above conclusions will not necessarily hold if the solute reac-
tion rates or other sources or sinks of the solutes themselves depend
on microscale heterogeneities. The microscale distribution of
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Figure 3 Concentration-distance profiles in the soil solution as in Figure 2
for a tenfold larger sorption surface area (i.e. 1.1×Atotal). All sorption sites
were slow reacting (i.e. 𝛼 = 1), with reaction rates fast enough to affect
diffusion (i.e. Case 1). Solid lines are for a uniform distribution of sorption
sites, points are for a non-uniform distribution and t= 25 days.

Figure 4 Concentration-distance profiles in the soil solution as in Figure
2 for micro- to macroscale ratio (𝜀)= 0.1 (i.e. tenfold smaller than in
Figure 2). All sorption sites were slow reacting (i.e. 𝛼 = 1), with reaction
rates fast enough to affect diffusion (i.e. Case 1). Solid lines are for a uniform
distribution of sorption sites, points are for a non-uniform distribution and
t= 25 days.

sorption sites might then be important. An example is the uptake of
solutes by root hairs, which have lengths comparable to the soil geo-
metric microscale (Keyes et al., 2013). Soil processes at such scales
are increasingly measurable with non-invasive imaging techniques.
Another example is the microbially-mediated turnover of soil
organic matter, which Falconer et al. (2015) show, with a model that
allows for non-linear microbial growth kinetics, depends strongly
on the microscale distribution of both nutrients and microbes and
associated local transport limitations. This implies that macroscale
models of soil carbon turnover should account for microscale het-
erogeneities explicitly. This could be achieved with our modelling
approach by incorporating the microbial growth kinetics in the
microscale equations (the equivalents to Equations 2 and 3).

For simplicity, we considered a water-saturated soil in our
simulations. Our approach could be applied easily to non-saturated
soil, however. The geometry we have used is taken from X-ray CT
images in which air and water can be clearly distinguished. By
treating the air–water interface within a pore as a non-sorbing site,

we could model partially saturated soil in the same way as saturated
soil. The same macroscopic equations will apply, but the model
parameters derived from the pore geometry will be different.

We have not considered advection. In general, for strongly-sorbed
solutes rates of advection are small and diffusion is the dominant
transport process (Roose & Kirk, 2009). Our approach could also
be used, however, for cases where advection is important, such as
for weakly sorbed solutes.

Conclusions

We have found that, in general, the distribution of sorption sites at
the microscale has little effect on diffusion at the macroscale. This
indicates that, in most cases, the assumption implicit in most con-
ventional solute transport models that microscale heterogeneities
are unimportant at the macroscale, is justified. Microscale hetero-
geneities, however, do become important if (i) the ratio of the micro-
to macro-length scales, 𝜀, is large and (ii) solute sorption on soil sur-
faces is slow relative to diffusion, but not so slow that it does not
affect diffusion. Nevertheless, if we consider a small sample of soil,
such as is often used in synchrotron computed-tomography experi-
ments, then the effect of microscale heterogeneities at sorption sites
will be significant. The modelling error will also be amplified, vary-
ing as 100× 𝜀2%. It will, however, remain smaller than the effects
of the distribution of sorption sites.

Supporting Information

The following supporting information is available in the online
version of this article:
Supplementary Information, SI: Further modelling details.
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