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Abstract

In this work, we study the design of a controller using system data. We present three
data-driven approaches based on the notion of control as interconnection. In the first
approach, we use both the data and representations to compute control variable trajecto-
ries that impose a prescribed path on the to-be-controlled variables. The second method
is completely data-driven and we prove sufficient conditions for determining a controller
directly from data. Finally, we show how to determine a controller directly from data in
the case where the control and to-be-controlled variables coincide.

Keywords: Data-driven control, Behavioral approach, Interconnection, Annihilators.

1. Introduction

Over the years, several authors have proposed different methods for using system data
in the design of a controller. For example, in [1, 2, 3] system data is used to find suitable
control inputs and in [4] data is used to falsify a control law. Furthermore, data-driven
control techniques have been applied in different applications and processes such as real-
time, fault-tolerant controller design for electrical circuits [5], on-line data-driven control
switching [4] and data-driven fault tolerant control design, see [6].

In this paper, we show how to find a controller directly using system data. Our
solutions are based on the behavioral framework like in [3], but we do not assume a priori
an input/output partition of variables. We use the interconnection paradigm, see [7, 8].
Most importantly, in our approach one can also identify a controller representation under
suitable conditions which will be specified, while in [3] the aim was to design a control
input. Furthermore, we do not have a prior assumption that the set of admissible control
laws is known, as in [4]. Our solutions are off-line, non-iterative and summarised by a
step-by-step algorithm.

This paper is organized as follows. In Section 2, we cover some relevant background
material. In Section 3, we state formally the problems solved in this paper. In Sections
4, 5 and 6, we present our solutions. In Section 7, we provide some conclusions. All the
necessary lemmas and proofs are gathered in Appendix A and Appendix B, respectively.

Notation. R,C,Z and Z+ denote the set of real numbers, complex numbers, integers and
positive integers, respectively. The space of w dimensional real vectors is denoted by Rw

and that of g×w real matrices by Rg×w. When both dimensions are not specified but finite,
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we write R•×•. The space of real matrices with g rows and an infinite number of columns
is denoted by Rg×∞ . Iw, 0w×w denotes w × w identity and zero matrices, respectively.
colspan(A) and leftkernel(A) denotes the column span of A ∈ R•×• and the subspace
spanned by all vectors v such that vA = 0, respectively. col(A,B) is the matrix obtained
by stacking A ∈ R•×w over B ∈ R•×w, and col(Ai)i=1,...,l := col(A1, . . . , Al). The ring of
polynomials with real coefficients in the indeterminate ξ is denoted by R[ξ] and the set of
g× w matrices in the indeterminate ξ is denoted by Rg×w[ξ]. Let R = R0 + · · ·+RLξ

L ∈
Rg×w with RL 6= 0 then L is the degree of R and is denoted by deg(R). R ∈ Rg×w[ξ],
is closely associated with the coefficient matrix R̃ := [R0 . . . RL 0g×w . . . . . . ]. R̃ has
an infinite number of columns, which are zero everywhere except for a finite number of
elements. Notice that R = R̃col(Iw . . . Iwξ

L 0 . . . ). σRR̃ := [0g×w R0 . . . RL 0g×w . . . ]
is the right shift of R̃ and σkRR̃ denotes k right shifts of R̃ where k ∈ Z+. The set of all
maps from Z to R is denoted by (R)Z. The collection of all linear, closed, shift invariant
subspaces of (R•)Z equipped with the topology of pointwise convergence is denoted by
L •. The backward shift operator σ is defined by (σf)(t) := f(t+ 1).

2. Linear discrete complete system

We define a dynamical system by Σ := (Z,Rw,B) with Z the time axis, Rw the signal
space and B ⊆ (Rw)Z the behavior. Let ∆ ∈ Z+, then the restriction of B on the interval
[1,∆] is defined by

B|[1,∆] := {w : [1,∆]→ Rw|∃w′ ∈ B s.t. w(t) = w′(t) for all 1 6 t 6 ∆}.

Σ is linear if B is a linear subspace of (Rw)Z, time-invariant if σB ⊆ B and complete if
[w ∈ B]⇔ [w|[1,∆] ∈ B|[1,∆] for all ∆ ∈ Z]. Moreover, B ∈ L w if and only if there exists
R ∈ Rg×w[ξ] such that B := {w : Z → Rw|R(σ)w = 0}, i.e. B = ker(R(σ)). R is called
a kernel representation of B and is minimal if no other kernel representation of B has
less than g rows. ΣL := (Z,Rw,Rl,Bfull) is a dynamical system with latent variables.
Bfull is called the full behavior and consists of all trajectories (w, `) with w a manifest
variable trajectory and ` a latent variable trajectory. Let R ∈ Rd×w[ξ] and M ∈ Rd×l[ξ]
then Bfull ∈ L w+l admits a representation of the form R(σ)w = M(σ)`, called a hybrid
representation. It has been shown in [9] that Bfull induces a manifest behavior defined by
B := {w ∈ (Rw)Z | ∃` ∈ (Rl)Z s.t. (w, `) ∈ Bfull}. B is obtained by using the projection
operator πw : (Rw × Rl)Z → (Rw)Z defined by w := πw(w, `), hence B = πw(Bfull).

Let w1, w2 ∈ B, then B is controllable if there exists t1 ≥ 0 and w ∈ B such that
w(t) = w1(t) for t ≤ 0 and w(t) = w2(t − t1) for t ≥ t1. Equivalently, B = ker(R(σ))
is controllable if and only if R(λ) is full row rank for all λ ∈ C. We denote by L w

contr

the collection of all controllable elements of L w. Let (w1, w2) ∈ B, w2 is observable from
w1 if there exists f : (Rw1)Z → (Rw2)Z such that w2 = f(w1). Let B be described by
R1(σ)w1 = R2(σ)w2, with R1 ∈ Rg×w1 [ξ] and R2 ∈ Rg×w2 [ξ], then w2 is observable from
w1 if and only if R2(λ) is full column rank for all λ ∈ C, see [10].

B is associated with a number of integer invariants, [10]. The following are of interest
in this paper. Let w ∈ B, then a partition of w := (w1, w2) is an input/output partition if
w1 is maximally free, i.e. πw1(B) = (R•)Z and w2 contains no free components. w1 is the
input and w2 output. We denote by p(B) and m(B) the output and input cardinality (the
number of outputs or inputs), respectively. The smallest integer L such that [w|[t,t+L] ∈
B|[t,t+L] for all t ∈ Z] ⇒ [w ∈ B] is called the lag and denoted by L(B). n(B) denotes

2



the McMillan degree, i.e. the smallest state-space dimension among all possible state
representations of B. Finally, l(B) denotes the shortest lag described as follows. Let
B = ker(R(σ)) and define the degree of each row of R to be the largest degree of the
entries. Then the minimum of degrees of the rows of R is the minimal lag associated with
R. l(B) is smallest possible minimal lag over all R such that B = ker(R(σ)).

2.1. Annihilators and fundamental lemma

The module of annihilators associated with B is defined by NB := {n ∈ R1×w[ξ]|n(σ)B =
0}. If B = ker(R(σ)) then NB equals the R[ξ]-submodule of R1×w[ξ] generated by the
rows of R, see [11]. We denote the set of annihilators of B of degree less than j ∈ Z+

by Nj
B := {r ∈ R1×w[ξ]|r ∈ NB and r has degree 6 j}. Let r1, . . . ri ∈ Nj

B and r̃1 . . . r̃i be

the coefficients of r1, . . . ri; then Ñj
B denotes the set containing r̃1 . . . r̃i.

Definition 1. Let L ∈ Z+. The Hankel matrix associated with a vectors w(1), . . . w(T )
for T > L is defined by

HL(w) :=


w(1) w(2) . . . w(T − L+ 1)
w(2) w(3) . . . w(T − L+ 2)

...
... . . .

...
w(L) w(L+ 1) . . . w(T )

 .
HL,J(w) is the Hankel matrix with L block rows and J columns.

Definition 2. A vector ũ = ũ(1), ũ(2), . . . , ũ(T ) is persistently exciting of order L if
HL(ũ) is full row rank.

Now we state the “fundamental lemma” cf. [12].

Lemma 1. Assume B ∈ L w
contr. Let w̃ = w̃(1), w̃(2), . . . , w̃(T ) := col(ũ, ỹ) ∈ B|[1,T ]

such that ũ(k) ∈ Rm(B) is an input and ỹ(k) ∈ Rp(B) an output, for 1 6 k 6 T . Finally,
let L ∈ Z+ be such that L > L(B). If ũ is persistently exciting of order at least L+ n(B),
then colspan(HL(w̃)) = B|[1,L] and leftkernel(HL(w̃)) = ÑL

B.

Proof. See Theorem 1 of [12].

Under the conditions of Lemma 1, then for all w̃′ ∈ B|[1,L] there exists υ̃ ∈ RT−L+1

such that w̃′ = HL(w̃)υ̃. Moreover, we can recover from w̃ the laws of the system that
generated w̃. This leads us to the following definition.

Definition 3. w̃ ∈ B is sufficiently informative about B if colspan(HL(w̃)) = B|[1,L].

2.2. Interconnection

We introduce some relevant concepts of control by interconnection, see [7, 8]. Let c
and w denote the control and the to-be-controlled variables, respectively. Let the to-be-
controlled plant full behavior be defined by

Pfull := {(w, c) : Z→ Rw × Rc | (w, c) satisfies the plant equations}
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and the plant manifest behavior by

πw(Pfull) = P := {w : Z→ Rw|∃ c s.t. (w, c) ∈ Pfull}.

Finally, let a controller acting on the control variables be described by the control behavior

C := {c : Z→ Rc|c satisfies the controller equations}.

The interconnection of the plant and the controller through the control variables denoted
by Pfull ∧c C is defined by the full controlled bebavior,

Kfull := {(w, c) : Z→ Rw × Rc |(w, c) ∈ Pfull and c ∈ C}.

Kfull induce a manifest controlled behavior defined by

K := {w : Z→ Rw|∃ c ∈ C s.t. (w, c) ∈ Pfull} = πw(Pfull ∧c C).

K is said to be implementable with respect to Pfull if there exists a controller C such
that K = Pfull∧cC. It has been proven in Theorem 1 of [13] that C such that K = Pfull∧cC
exists if and only if N ⊂ K ⊂ P, where N := {w ∈ P|(w, 0) ∈ Pfull}. In this paper
we are interested in the case when N = 0. Hence, we assume that any sub-behavior
of P is implementable. Moreover, a special interconnection case of interest, called full
interconnection arises when w = c. Under full interconnection the interconnection of the
plant and the controller through w is denoted by P∧wC and induces a controlled behavior
defined by K := {w : Z→ Rw |w ∈ P and w ∈ C}.

3. Problem Statements

In this section, we define formally the problems solved in this paper. Let the to-be-
controlled system full behavior be

Pfull = {(w, c)|R1(σ)w = M1(σ)c} (1)

with R1 ∈ Rp×w[ξ] and M1 ∈ Rp×c[ξ]. Assume R1(σ)w = M1(σ)c is minimal and that c
is observable from w. Let the manifest behavior and the desired controlled behavior be

P = {w|R2(σ)w = 0} (2)

K := {w|D1(σ)w = 0} (3)

respectively, with both R2 ∈ Rg×w[ξ] and D1 ∈ Rt×w[ξ] being minimal. Assume that
P ∈ L w

contr and let a to-be-designed controller that implements K be C. We present a
solution for the following problems.

Problem 1. “Prescribed path” case. Given

• an observed infinite trajectory col(w, c) ∈ Pfull;

• a prescribed trajectory wpre ∈ K|[t0,t1] with t0, t1 ∈ N, t0 6 t1; and

• R1,M1 in (1) and D1 in (3).
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Find a control variable trajectory cd ∈ C, such that there exists wd : Z→ Rw such that

a. col(wd, cd) ∈ Kfull

b. wd|[t0,t1]
= wpre.

To find cd, we use D1 to compute wd such that wd|[t0,t1]
= wpre. Then, under the

assumption that c is observable from w, we find cd using R1 and M1.

Problem 2. General interconnection case. Given observed infinite, sufficiently informa-
tive col(w̃, c̃) ∈ Pfull and w̃d ∈ K, find a controller C such that Pfull ∧c C = K.

To solve this problem, we find a control variable trajectory c̃d ∈ C using the given
trajectories and determine under which conditions c̃d is sufficiently informative about C,
such that standard procedures can be applied to find a representation of C.

Problem 3. Full interconnection case. Given observed w̃ ∈ P and w̃d ∈ K, find a
controller C such that P ∧w C = K from w̃ and w̃d.

Let NC be the module of annihilators of C. We aim to use w̃ and w̃d to find a set of
generators for NC .

Remark 1. We assume that observed trajectories are infinitely long. In practical ap-
plications the observed trajectories have finite length. The problem of consistency, i.e.
the convergence of the identified system to the “true system” as the length of observed
trajectories tends to infinity, is of paramount importance. This is a matter for future
research.

4. “Prescribed path” solution

We present a solution to Problem 1, which is summarized in Algorithm 1 on p. 7.
To find a solution, it is necessary to verify that K ⊆ P using the given information.
Following from Theorem 2.5.4 in [14], K ⊆ P if and only if there exists F ∈ Rg×t[ξ]
such that R2 = FD1, otherwise there is no solution to Problem 1. Notice that standard
procedures can be applied to compute R2 from (1), see for example elimination in [14].

Now, we show how to find wd such that wd|[t0,t1]
= wpre using D1 in (3) and w ∈ P.

First we introduce the following important results.

Theorem 1. Let K = ker(D1(σ)), with D1 minimal, and w ∈ P. Assume that K ∈
L w

contr and let a left prime matrix Q ∈ Rw×t[ξ] be such that D1Q = It. Then Im((Iw −
QD1)(σ)) = ker(D1(σ)). Define w′d by

w′d := (Iw −QD1)(σ)w, (4)

then w′d ∈ K.

In the following result we prove conditions under which w′d is sufficiently informative
about K. Notice that w ∈ P and w′d ∈ K need not necessarily have the same input/output
structure, as we show in Lemma 2 in Appendix A. Therefore, we define col(u, y) =: Πw and
col(ui, yi) =: Πiw

′
d, where Π,Πi ∈ Rw×w and u, ui are inputs. Partition Πi = col(Πiu,Πiy)

compatibly with the partition of w′d = col(ui, yi) and define Fu(ξ) := Πiu − ΠiuQD1.
Finally, Denote by Fu the R[ξ]-submodule of R1×•[ξ] generated by the rows of Fu, and
by NP the module of annihilators of P.
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Theorem 2. Assume P ∈ L w
contr and that w ∈ P is sufficiently informative about P.

If Fu ∩ NP = {0} and u is persistently exciting of order at least L(P) + n(P) then ui
persistently exciting of order at least L(K) + n(K).

Remark 2. The lags L(K), L(P) and McMillan degrees n(K), n(P) are not known a priori.
Therefore, all observed trajectories must be generated with input variable trajectories
persistently exciting of some sufficiently high order. Moreover, in the rest of the paper L
greater than L(K) or L(P) is chosen to be “sufficiently large”.

Let L > L(K), we find wd ∈ K such that wd|[t0,t1]
= wpre using w′d. Recall that if

w′d is sufficiently informative then for all w′ ∈ K|[1,L] there exists a vector υ such that

w′ = HL(w′d)υ (see Lemma 1). Therefore, given wpre ∈ (Rw)[t0,t1] with 1 6 t0 6 t1 6 L,
the computation of wd such that wd|[t0,t1]

= wpre amounts to finding υ if it exists such

that wd = HL(w′d)υ. Define H := HL,J(w′d) with J ∈ Z+ such that J � L and H1 as the
block partition of the rows of H from row wt0 to row wt1. Then solve for υ in

H1υ = wpre. (5)

If (5) has no solution then wpre 6∈ K|[t0,t1], hence we can not compute wd ∈ K such that
wd|[t0,t1]

= wpre. Otherwise, wd ∈ K such that wd|[t0,t1]
= wpre is defined by

wd := H(w′d)υ (6)

where H(w′d) ∈ R∞×J . Since J � L then H1 has more columns that rows, if υ exists
such that (5) holds then it is not unique. Let A be a matrix whose columns are a basis
of ker(H1) and ῡ be a particular solution of (5). Then the set of all possible solutions for
(5) is defined by S := {ῡ + A v|v ∈ RG} where G is the number of columns of A .

Theorem 3. Assume that w ∈ P is sufficiently informative about P and that Fu∩NP =
{0}. Then w′d in (4) is sufficiently informative about K. Moreover, if wpre ∈ K|[t0,t1] then
wd defined in (6) belongs to K with wpre as the prescribed path.

Now, we find a control variable trajectory cd corresponding to wd. Under the assump-
tion that c is observable from w then there exists O ∈ Rc×w[ξ] such that

col(w, c) ∈ Pfull ⇒ c = O(σ)w. (7)

Let M1 and R1 in (1) be minimal. Since c is observable from w, then M1(λ) is full column
rank for all λ ∈ C, hence M1 admits a left inverse K ∈ Rc×p[ξ]. Define O := KR1,
then O satisfies (7). Consequently, cd corresponding to wd is defined by cd := O(σ)wd.
Furthermore, if C implements K then cd ∈ C as shown in Lemma 4 in Appendix A.

4.1. Example

Consider a system with a hybrid representation
σ + 1

2 1 0 1
0 σ + 1

3 1 0
0 0 σ + 1

4 1
0 0 0 σ + 1

5


︸ ︷︷ ︸

R1



w1

w2

w3

w4


=


1 0
0 1
1 0
0 1


︸ ︷︷ ︸

M1

c1

c2

, (8)
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Input : R1,M1,D1, col(w, c) ∈ Pfull, t0, t1 and wpre

Output : cd
Assumptions: Theorem 3

1 Verify K ⊆ P. If K 6⊆ P, stop. Otherwise go to step 2.

2 Compute Q such that D1Q = It.

3 Define w′d := (Iw −QD1)(σ)w.

4 Choose L and J such that L > L(K) (see remark 2) and J � L.

5 Define H := HL,J(w′d) and H1 as a partition of rows of H from row wt0 to row wt1.

6 Solve H1υ = wpre for υ.

7 if no solution for υ then
8 wpre 6∈ K|[t0,t1] [No Solution for cd]. Stop.

9 else
10 Build H(w′d) ∈ R∞×J ;
11 Define wd := H(w′d)υ;
12 Compute K such that KM1 = Ic;
13 Define O := KR1;
14 Compute cd = O(σ)wd.

15 end
Algorithm 1: Solution for Problem 1

the desired controlled behavior K with a representation

σ + 1
2 1 −σ − 1

4 0
0 s+ 1

3 1 −σ − 1
5

0 0 σ + 1
6 1


︸ ︷︷ ︸

D1


w1

w2

w3

w4

 = 0 (9)

and

wpre =


0 0 −0.3090 −0.4256 −0.7408 −0.7841
0 0.1545 0.2733 0.5267 0.6490 0.7386
0 0 −0.1545 −0.2681 −0.3598 −0.4156
0 0.1545 0.2939 0.4045 0.4755 0.5000


with t0 = 1 and t1 = 6. By eliminating the control variables in (8) then P = ker(R2(σ))

with R2 =

[
σ + 1

2 1 −σ − 1
4 0

0 σ + 1
3 1 −σ − 1

5

]
. Therefore, F :=

[
1 0 0
0 1 0

]
such that

R2 = FD1 exists, hence K is implementable. We generate col(w, c) of length T = 50000
by simulation of (8) in Matlab, with input c1, c2 a realization of white Gaussian noise
process to guarantee persistency of excitation (see [9] for details on how to determine
transfer functions from (8)). Using Singular, rightInverse command we compute Q,
then compute QD. In Matlab we compute w′d = w − Q̃Dw where Q̃D is the coefficient
matrix of QD with 4 block columns. We chose L = 100 and J = 4000 and H1 as the first
28 rows of H := HL×J(w′d). Then we solve υ as in step 6 of Algorithm 1. Continuing
with the algorithm, we find wd in step 11 with H(w′d) ∈ R45000×4000. A left inverse of M1
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is K =

[
1 0 0 0
0 1 0 0

]
and O :=

[
ξ + 1

2 1 0 1
0 ξ + 1

3 1 0

]
. We obtain cd with cd|[1,6] which

imposes wpre as

cd|[1,6] =

[
0 0 −0.0129 −0.0223 −0.0300 −0.0346

0.1545 0.3248 0.4633 0.5564 0.5951 0.5755

]
.

5. General interconnection solution

In this section, we present a solution to Problem 2. The solution is summarized in
Algorithm 2 on p. 9. The starting point is to verify K ⊆ P using col(w̃, c̃) and w̃d. Let L ∈
Z+ such that L > L(P) and L > L(K). Since col(w̃, c̃) and w̃d are sufficiency informative
then colspan(HL(w̃)) = P|[1,L] and colspan(HL(w̃d)) = K|[1,L]. Therefore, to verify that
K ⊆ P it is suffice to show that colspan(HL(w̃)) ⊇ colspan(HL(w̃d)). This is done by
computing principal angles (see [15]) between colspan(HL(w̃)) and colspan(HL(w̃d)). If
the largest principal angle is equal to zero then K ⊆ P (see Theorem 12.4.2 of [16]).

Now, to find a control variable trajectory that corresponds to the given w̃d ∈ K, we
find an observability map O ∈ R•×• using col(w̃, c̃) ∈ Pfull. First we prove necessary and
sufficient conditions for an observability map Y ∈ Rc×w[ξ] such that given w ∈ K we can
reconstruct a corresponding c ∈ C.

Proposition 1. Let Pfull = ker([R1(σ) −M1(σ)]), K = ker(D1(σ)) and a controller
that implements K be C = ker(C1(σ)). Assume c is observable from w, then the following
statements are equivalent

1. Y ∈ Rc×w[ξ] defined by Y (ξ) := N(ξ)R1(ξ) + G(ξ)D1(ξ) where G ∈ Rc×•[ξ] and
N ∈ Rc×•[ξ], induces an observability map,

2. there exists F ∈ R•×•[ξ] such that N(ξ)M1(ξ) = I + F (ξ)C1(ξ).

Let Y ∈ Rc×w[ξ] satisfy the conditions of Proposition 1 and L ∈ Z+ satisfy L > L(P),
L > L(K) and L� deg(Y ). Let HL(c̃), HL(w̃) be the Hankel matrices associated with w̃
and c̃, respectively, both with L block rows and an infinite number of columns. Then a
solution for O ∈ RL×L in

HL(c̃) = OHL(w̃) (10)

induces an observability map, as we show in Lemma 5 in Appendix A. Consequently, the
Hankel matrix of the control variable trajectory c̃d corresponding to w̃d is defined by

HL(c̃d) := OHL(w̃d). (11)

Furthermore, if a controller C implements K then c̃d ∈ C, see Lemma 6 in Appendix A.
In the following result we prove sufficient conditions for c̃d to be sufficiently informative

about C. Let Πd ∈ Rc×c,Π1 ∈ Rw×w be such that (c̃u, c̃y) = Πdc̃d and (w̃u, w̃y) =: Π1w̃d

where c̃u and w̃u are inputs. Partition Πd := col(Πdu,Πdy) compatibly with partitions of
c̃d. Now, let Y satisfying conditions of Proposition 1. Define Yu := ΠduY and denote by
Yu the R[ξ]-submodule of R1×•[ξ] generated by the rows of Yu and by NK the module of
annihilators of K. Finally, let Ỹ be the coefficient of matrix of Y with finite number L
block-columns where L > L(C).
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Theorem 4. Assume that a controller C implements K, that c is observable from w and
that O induces an observability map. Let K ∈ L w

contr, w̃d ∈ K and c̃d ∈ C whose Hankel
matrix is defined in (11). If Yu ∩ NK = {0} and w̃u is persistently exciting of order at
least L(K) + n(K) then c̃u is persistently exciting of order at least L(C) + n(C).

Remark 3. Note that it is not straightforward to verify the assumption of Theorem 4
from data. Therefore verifying that c̃u is persistently exciting can be done by determining
which rows of HL(c̃d) corresponds to the input variables (see steps 1)-3) of Algorithm 2
of [17]). Now let H•m(C)(c̃u) be the rows of HL(c̃d) corresponding to the input variables, if
H•m(C)(c̃u) is full row rank then c̃u is persistently exciting.

Input : col(w̃, c̃) ∈ Pfull and w̃d ∈ K.
Output : c̃d ∈ C.
Assumptions: Theorem 4.

1 Choose L to be sufficiently large (see remark 2).

2 Build the Hankel matrices: HL(w̃),HL(c̃),HL(w̃d).

3 Verify K ⊆ P
4 if K ⊆ P then
5 Solve HL(c̃) = OHL(w̃) for O;
6 Compute HL(c̃d) = OHL(w̃d).

7 else
8 K * P {No solution for c̃d}.
9 end

Algorithm 2: Solution of Problem 2

5.1. Example

Consider a system in subsection 4.1. We generate col(w̃, c̃) and w̃d both of length
T = 50000 by simulation of (8) and (9) in Matlab, with inputs (c1, c2 and w4 in (8) and
(9), respectively) a realization of white Gaussian noise process to guarantee persistency
of excitation. We choose L = 100 and compute the largest principal angle to be 1.2363×
10−14 which is approximately zero, therefore we continue with the rest of the Algorithm.
Under the assumption of the algorithm, c̃d is sufficiently informative and can be used to
find representations of C.

To find a representation of C, we build Hl+1(c̃d), where l ∈ Z+ is the lag of C, l = 2.
Then we compute the singular value decomposition (SVD) of Hl+1(c̃d) := UΣV >. Let r
be the rank of Hl+1(c̃d). Partition U into

[
U1 U2

]
where U1 has r columns then U>2 is

the left kernel of Hl+1(c̃), and we obtain a kernel representation[
−0.9356σ2 − 0.3430σ − 0.0312 −0.0780

] [c1

c2

]
= 0. (12)

For comparison, we use polynomial operations to compute a controller representation from
(8) and (9). This is done by computing the syzygy of col(R1, D

′
1) where D′1 = [0 0 ξ+ 1

6 1].
We obtain [

−σ2 − 0.3667σ − 0.0333 −0.0833
]︸ ︷︷ ︸

C2

[
c1

c2

]
= 0. (13)

9



Equations (12) and (13) represent the same behavior because there exists a nonsingular,
square matrix with constant determinant U ∈ R•×•[ξ] such that C2 = UC1, see [8]. In
this case U = [1.0688].

6. Full interconnection solution

Finally, we present a solution to Problem 3. As in Section 5 we verify that K ⊆ P
using principal angles. Now, let NP ,NK and NC denote the module of annihilators of
P,K and C, respectively. To find a set of generators of NC using w̃ and w̃d, consequently
finding C, under conditions of Lemma 7 in Appendix A we find bases generators of NP
and NK using w̃ ∈ P and w̃d ∈ K, respectively. Then determining basis generators of NC
using bases generators of NP and NK . This procedure has been summarized in Algorithm
3 on p. 11. Note that in Algorithm 3 we denote by Nn

C a set of annihilators of C of degree
n.

In the following result we prove the correctness of Algorithm 3.

Proposition 2. Let w̃ ∈ P and w̃d ∈ K be sufficiently informative about P and K.
Assume that P,K ∈ L w

contr. Also assume that r1, . . . , rg and a1, . . . , at in Algorithm 3 are
minimum lag bases of NP and NK, respectively. If a controller C implements K via full
interconnection, then NC in Algorithm 3 is the module of annihilators of C.

7. Conclusions

We have shown how to compute control variable trajectories that impose a “prescribed
path” on the to-be-controlled variables, using both observed trajectories and system rep-
resentations, this is summarized in Algorithm 1. We also presented a method of comput-
ing control variable trajectory, corresponding to an “example” trajectory of the desired
controlled behavior (Algorithm 2). We proved sufficient conditions for such control vari-
able trajectory to be sufficiently informative about a controller, consequently using them
to find a controller representation . Finally, we showed how to find generators of the
module of annihilators of the controller given to-be-controlled variable trajectory and an
“example” trajectory from the desired controlled system (Algorithms 3).

Appendix A. Lemmas

Lemma 2. Let P = ker(R2(σ)), where R2 ∈ Rg×w[ξ] induces a minimal representation.
Assume K ⊆ P. Then there exists D′ ∈ R(t−g)×w[ξ] such that D1 = col(R2, D

′) induces a
minimal representation of K. Moreover, p(K) ≥ p(P).

Lemma 3. Let Πi ∈ Rw×w such that col(ui, yi) =: Πiw
′
d where w′d ∈ K. Define a partition

of Πi := col(Πiu,Πiy) compatibly with the partition of w′d. Then Πiu(Iw−QD1) is full row
rank.

Lemma 4. Let wd ∈ K defined in (6) and define cd := O(σ)wd. Under the observability
assumption, if a controller C implements K then cd belongs C. Moreover, cd imposes the
prescribed path wpre on the to-be-controlled variable trajectory for the time interval [t0, t1].

Lemma 5. Assume that col(w̃, c̃) ∈ Pfull is sufficiently informative about Pfull and that
Y ∈ Rc×w[ξ] satisfy the conditions of Prop. 1. Then O in (10) is an observability map.

10



Input : w̃ ∈ P and w̃d ∈ K
Output : NC
Assumptions: Lemma 7

1 Verify K ⊆ P. If K ⊆ P continue to step 2 else end.

2 Determinations of bases of NP and NK

i. Using Algorithm 2 of [17] determine minimum lag bases r1, . . . , rg and a1, . . . , at of
NP and NK, respectively.

ii. Define dm := deg(am) for m = 1, . . . , t, t := {1, 2, . . . , t} and g := {1, 2, . . . , g}. Let
d = max(d1, . . . dm).

3 Compute steps 4-5 recursively starting from n = 0 to d.

4 Classifying r1, . . . , rg and a1, . . . , at by their lags

i. choose l1, . . . lk ∈ g such that rl1 , . . . , rlk are all of lag n. If there is no rl1 , . . . , rlk of
lag n set k = 0 . Choose l′1, . . . l

′
q ∈ t such that al′1 , . . . , al′q are all of lag n. If there is

no al′1 , . . . , al′q of lag n set q = 0.

5 Compute Nn
C

if k = q then
Nn
C := {0}

else if k = 0 and q 6= 0 then
al′1 , . . . , al′q are annihilators of C of degree n hence Nn

C := {al′1 , . . . , al′q}.
else if k < q then

Define the matrix A whose columns are the coefficient of rl1 . . . rlk by

A :=

r̃0l1
. . . r̃0lk

... . . .
...

r̃nl1
. . . r̃nlk

 ;

Define a projection matrix P := A[A>A]−1A>;
Define H := [ãl′1 − P ãl′1 , . . . , ãl′q − P ãl′q ];

Compute x rank of H and compute the SVD of H = UΣV >;
Partition U = [U1 U2] where U1 has x columns;

The columns of U1, ũ>1 , . . . ũ
>
x defines the coefficients of annihilators of C of

degree n hence Nn
C := {u1, . . . , ux}.

6 Specification of NC

i. Define NC :=
d⋃

k=0

Nk
C

Algorithm 3: Solution of Problem 3

11



Lemma 6. Let col(w̃, c̃) ∈ Pfull and w̃d ∈ K be sufficiently informative about their re-
spective behaviors. Assume K ⊆ P and let O satisfy conditions of Lemma 5. Under
the observability assumption if a controller C implements K, then the control variable
trajectory c̃d in (11) belongs to C.

Lemma 7. Let r1, . . . , rt and c1, . . . , cj be bases generators of NP and NC, respectively,
where t, j ∈ Z+. If C implements K via full interconnection, then r1, . . . , rt, c1, . . . , cj is
a set of generators of NK. Moreover, r1, . . . , rt, c1, . . . , cj is a basis generators of NK if
and only if NP ∩NC = {0}.

Appendix B. Proofs

Proof of Theorem 1. The existence of Q such that D1Q = It follows from the fact that
D1 is minimal and K ∈ L w

contr, consequently D1(λ) is full row rank for all λ ∈ C, therefore
D1 admits a right inverse. To show the inclusion Im((Iw−QD1)(σ)) ⊆ ker(D1(σ)), for all
w ∈ P define w′ := (Iw−QD1)(σ)w. Now compute D1(σ)w′ = D1(σ)((Iw−QD1)(σ)w) =
D1(σ)w −D1QD1(σ)w. Since D1Q = It it follows that D1(σ)w′ = D1(σ)w −D1(σ)w =
0. Hence Im((Iw − QD1)(σ)) ⊆ ker(D1(σ)). To prove the converse inclusion, assume
by contradiction that there exists w′ ∈ K such that w′ 6∈ Im((Iw − QD1)(σ)). Now
(Iw − QD1)(σ)w′ = w′ − (QD1)(σ)w′ = w′, which implies that w′ ∈ Im((Iw − QD1)(σ)).
Therefore, Im((I −QD1)(σ)) = ker(D1(σ)). To prove w′d ∈ K, notice that since Im((Iw −
QD1)(σ)) = ker(D1(σ)) and K = ker(D1(σ)) it follows that w′d ∈ K.

Proof of Lemma 2. Let NK and NP denote the module of annihilators of K and P, re-
spectively. By the assumption that K ⊆ P then NP ⊆ NK. Define R2 := col(r1, . . . , rg).
Since R2 is minimal then r1, . . . , rg is a basis of NP . Now since NP ⊆ NK, then
there exists r′g+1, . . . r

′
t such that r1, . . . , rg, r

′
g+1, . . . r

′
t is a basis of NK. Define D′ :=

col(r′g+1, r
′
g+2, . . . r

′
t). Now the rows of D1 = col(R2, D

′) span NK and are a basis of NK
hence D1 is minimal. Now notice that p(P) = g and p(K) = g + (t− g) = t hence t > g

means that K has more output variables.

Proof of Theorem 2. Let L ∈ Z+ be such that L − deg(Fu) > L(K) + n(K). Denote
by F̃u the coefficient matrix of Fu with a finite number L of block-columns. Define
HL−deg(Fu)(ui) := col(σkRF̃u)k=0,...,L−1−deg(Fu)HL(w). Assume by contradiction that ui is

not persistently exciting, then there exists a non-zero vector α̃ ∈ R1×(L−deg(Fu))m(K) such
that α̃HL−deg(Fu)(ui) = 0. Consequently, α̃col(σkRF̃u)k=0,...,L−1−deg ∈ leftkernel(HL(w)).

Now let α ∈ R1×•[ξ] to be the polynomial vector whose coefficient matrix is α̃. Since u is
persistently exciting and P ∈ L w

contr then leftkernel(H(w)) = NP . Therefore, αFu ∈ NP
moreover, αFu 6= 0 (see Lemma 3), which contradicts Fu ∩NP = {0}.

Proof of Lemma 3. From Theorem 1 the fact that Im((Iw − QD1)(σ)) = ker(D1(σ))
implies that ΠiuIm((Iw − QD1)(σ)) = (Rm(K))Z. Now, since ΠiuIm((Iw − QD1)(σ)) =
Im(Πiu(Iw−QD1)(σ)) then Πiu(Iw−QD1) is full row rank. Furthermore, Πiu(Iw−QD1)(σ)
is surjective (see [10]).

Proof of Theorem 3. The fact that w′d in (4) is sufficiently informative about K follows
from Theorem 2, therefore colspan(H(w′d)) = K. Now since wpre ∈ K|[t0,t1] then υ ∈ S

12



exists such that (5) holds, therefore H(w′d)υ = wd. Let H1 as in (5) and H(w′d)|[t0,t1] be
the block rows of H(w′d) from row wt0 to row wt1. Then H(w′d)|[t0,t1] = H1 which implies
that wd|[t0,t1]

= wpre.

Proof of Lemma 4. The fact that wd ∈ K follows from Theorem 3. By observability,
cd corresponds to wd ∈ K and since C implements K then cd ∈ C. cd imposing wpre follows
from the fact that cd corresponds to wd such that wd[t0,t1]

= wpre.

Proof of Proposition 1. To show 2) ⇒ 1) let (w, c) ∈ Pfull such that w ∈ K then
R1(σ)w = M1(σ)c, moreover C1(σ)c = 0. Now,

R1(σ)w = M1(σ)c

(NM1)(σ)c = (NR1)(σ)w

= (NR1)(σ)w + 0

(NM1)(σ)c = (NR1)(σ)w + (GD1)(σ)w.

Since N(ξ)M1(ξ) = I + F (ξ)C1(ξ) then

c+ (FC1)(σ)c = (NR1)(σ)w + (GD1)(σ)w

c+ 0 = (NR1)(σ)w + (GD1)(σ)w

c = (NR1)(σ)w + (GD1)(σ)w

Therefore, Y induces an observability map. To prove 1)⇒ 2), let (w, c) ∈ Pfull such that
w ∈ K. By the assumptions that c is observable from w and Y induces an observability
map, it follows that c = (NR1)(σ)w + (GD1)(σ)w. Since w ∈ K then D1(σ)w = 0.
Hence c = (NR1)(σ)w. Now since (w, c) ∈ Pfull then R1(σ)w = M1(σ)c. It follows that
c = (NR1)(σ)w = (NM1)(σ)c hence c = (NM1)(σ)c. Consequently (NM1 − I)(σ)c = 0.
Now recall that the controller C = ker(C1(σ)) implements K, therefore C1(σ)c = 0. Since
(NM1− I)(σ)c = 0 and C1(σ)c = 0, this implies that F exists such that NM1− I = FC.

Proof of Lemma 5. Let L ∈ Z+ satisfy L > L(P), L > L(K) and L � deg(Y ) and
denote by Ỹ the coefficient matrix of Y with finite number L of block-columns. Under
the assumption that Y induces an observability map, then Ō := col(σkRỸ )k=0,...,L−1 is a
solution of (10), therefore HL(c̃) := ŌHL(w̃). Now since col(w̃, c̃) is sufficiently informative
then leftkernel(HL(w̃)) 6= 0. Therefore, (10) has infinitely many solutions. Let K ∈ RL×•

be a matrix whose columns are a basis of leftkernel(HL(w̃)). Then the set of solutions of
(10) is defined by G := {Ō+K T |T ∈ R•×L}. Let O ∈ G, then O := Ō+K T . Compute
OHL(w̃) = (Ō + K T )HL(w̃) = ŌHL(w̃) + K T HL(w̃). Notice that K T HL(w̃) = 0.
Therefore, OHL(w̃) = ŌHL(w̃) + 0 = HL(c̃). Hence, O induce an observability map.

Proof of Lemma 6. Let Ō and K as in Lemma 5. Now since O satisfies conditions
of lemma 5 then O := Ō + K T where T ∈ R•×L. Compute OHL(w̃d) = ŌHL(w̃d) +
K T HL(w̃d). Now since K ⊆ P, then leftkernel(HL(w̃)) ⊆ leftkernel(HL(w̃d)). Therefore,
K T ∈ leftkernel(HL(w̃d)). Consequently, OHL(w̃d) = ŌHL(w̃d) + 0 = HL(c̃d). Now
under the observability assumption and the fact that Ō := col(σkRỸ )k=0,...,L−1 where Y
induces an observability map, then c̃d belong to a controller C that implements K.
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Proof of Theorem 4. The fact that O induce an observability map follows from Lemma
5 and that c̃d ∈ C follows from Lemma 6. Therefore, HL(c̃d) = OHL(w̃d) = ŌHL(w̃d) + 0
where Ō := col(σkRỸ )k=0,...,L−1. Now define Ou ∈ R•m(C)×L by Ou := col(σkRỸu)k=0,...,L−1,
furthermore define H•m(C)(c̃u) := OuHL(w̃d). Assume to the contrary that c̃u is not per-

sistently exciting, then there exists α̃ ∈ R1×•m(C) such that α̃H•m(C)(c̃u) = 0. Therefore,
α̃Ou ∈ leftkernel(HL(w̃d)). Now since K ∈ L w

contr and w̃u is persistently exciting then
leftkernel(HL(w̃d)) = ÑL

K, hence α̃Ou ∈ ÑL
K. Let α ∈ R1×•[ξ] be the polynomial vector

whose coefficient matrix is α̃ then αYu ∈ NK. Since Im(Yu(σ)) = (Rm(C))Z then Yu is full
row rank, hence αYu 6= 0. Consequently, αYu ∈ NK and αYu 6= 0 hence a contradiction.

Proof of Lemma 7. Define R1 := col(r1, . . . , rt) and C1 := col(c1, . . . , cj) then P =
ker(R1(σ)) and C = ker(C1(σ)). Under full interconnection K = P ∩ C, therefore
K = ker(R1(σ)) ∩ ker(C1(σ)). Consequently, r1, . . . , rt, c1, . . . , cj is generators of NK.
Furthermore NK = NP + NC . Now to prove (IF), let r1, . . . , rt, c1, . . . , cj be a basis gen-
erators of NK. Assume to the contrary that there exists a non-zero α ∈ R1×•[ξ] such
that α ∈ NP ∩ NC . Now since r1, . . . , rt and c1, . . . , cj are bases generators of NP and
NC , respectively, then α = β1r1 + · · · + βtrt moreover, α = β′1c1 + · · · + β′jcj where
β1,...,t, β

′
1,...,j ∈ R[ξ]. Therefore β1r1 + · · ·+βtrt = β′1c1 + · · ·+β′jcj ⇒ β1r1 + · · ·+βtrt−

β′1c1−· · ·−β′jcj = 0. Now by the assumption that r1, . . . , rt, c1, . . . , cj is a basis generators
of NK then β1r1 + · · ·+βtrt−β′1c1−· · ·−β′jcj = 0 implies that β1,...,t, β

′
1,...,j = 0. Conse-

quently α = 0 , therefore NP ∩NC = {0}. To prove the converse, assume NP ∩NC = {0}.
Suppose r1, . . . , rt, c1, . . . , cj is not a basis generators of NK then there exist non-zero
β1,...,t, β

′
1,...,j ∈ R[ξ] such that β1r1 + · · ·+βtrt+β′1c1 + · · ·+β′jcj = 0. Now since r1, . . . , rt

and c1, . . . , cj are bases generators of NP and NC , respectively, and by the assumption
that NP ∩NC = {0} then β1r1 + · · ·+ βtrt + β′1c1 + · · ·+ β′jcj = 0 ⇒ β1,...,t, β

′
1,...,j = 0.

Hence r1, . . . , rt, c1, . . . , cj is a basis of NK.

Proof of Proposition 2. The fact that r1, . . . , rg and a1, . . . , at in Algorithm 3 are
minimum lag bases of NP and NK, respectively follows from Theorem 14 of [17]. De-
note by Nn

K, Nn
P and Nn

C the set of annihilators of degree n. From Algorithm 3 let
al′1 , . . . , al′q ∈ Nn

K and rl1 , . . . , rlk ∈ Nn
P . Since r1, . . . , rg and a1, . . . , at are bases gen-

erators of their respective modules then al′1 , . . . , al′q and rl1 , . . . , rlk are bases generators
of Nn

K and Nn
P , respectively. Moreover, the fact that a1, . . . , at is a basis implies that

NP ∩ NC = {0}. Consequently, Nn
P ∩ Nn

C = {0} and Nn
P + Nn

C = Nn
K. Therefore, in

Algorithm 3 if k = q then al′1 , . . . , al′q ∈ Nn
P , hence Nn

C = {0}. Furthermore, if k = 0 and
q 6= 0, then al′1 , . . . , al′q ∈ Nn

K such that al′1 , . . . , al′q /∈ Nn
P implies that al′1 , . . . , al′q ∈ Nn

C ,
therefore Nn

C = {al′1 , . . . , al′q}. Finally k < q means Nn
K has more annihilators of degree n

than Nn
P , therefore some of them belong to Nn

C . Denote by Ñn
P and Ñn

K the sets containing
ãl′1 , . . . , ãl′q and r̃l1 , . . . , r̃lk , respectively. Now Nn

C ∩Nn
P = {0} and Nn

P +Nn
C = Nn

K implies

that Ñn
C ∩ Ñn

P = {0} and Ñn
P + Ñn

C = Ñn
K. Moreover, since r̃l1 , . . . , r̃lk is a basis of Ñn

P
then the projection matrix P exists. Consequently, ũ>1 , . . . ũ

>
x are the coefficient vectors

of annihilators of C of lag n. Hence Nn
C = {u1, . . . , ux}.
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