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Abstract

This paper develops inventory models to help answer strategic questions concerning whether plan-

ning for shortages offers financial benefits. A production-inventory system producing a deteriorating

product in batches at a finite production rate with partial backordering is considered. Customers

pay a deposit when placing a backorder. Backordered items receive a discount on the sales price.

As lost sales may lead to customers not returning, the demand rate may depend on the fraction of

lost sales. We develop a cash-flow based profit maximising Net Present Value (NPV) model without

the inventory cost parameters commonly used in this context: unit holding cost, unit backorder cost,

unit deterioration cost, and unit lost sales cost. The model finds the optimal inventory policy just

like NPV models that discount the traditional parameters but has the advantage of not needing to

estimate the value of the traditional parameters. It is shown that in models based on discounting

the traditional parameters, the parameters are not exogenously determinable but are non-trivial func-

tions of non-financial endogenous system parameters such as the production rate, annual demand

rate, and backorder rate. Extensive numerical experiments illustrate how cash-flow NPV models pro-

vide insights into the value of planning for shortages and strategic choices about the design of the

production-inventory system. It also provides insight into the classical problem of how to interpret

unit backorder cost and unit lost sales cost. The study indicates that these insights cannot be reliably

obtained from NPV models based on discounting unit backorder costs and unit lost sales costs.
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1 Introduction

This paper looks into the question of how deterministic inventory models can provide quantitative insights

into the financial merit of system design choices, in particular whether a firm can derive financial benefits

from planning for shortages. In the process the paper also addresses a long outstanding question in the

literature about how to interpret the classic inventory parameters unit backorder cost and unit lost sales

cost.

Should a firm plan its inventory replenishments such that shortages purposefully occur? Intuition

says that since shortages affect revenues it might make sense to minimise their occurrence. On the other

hand, backorders reduce inventory holding costs and therefore the answer relies on a trade-off. In order

to capture this trade-off, inventory models are to allow for the possibility of shortages. To establish the

financial value of planning for shortages, the model should price the cost of shortages with some degree of

accuracy. This issue has not received much attention in the literature despite being of crucial importance

for applying models to practice.

Deterministic inventory models from the literature which allow for shortages to occur indicate that it

may be worthwhile to plan for backorders even if some of the demand during a period of shortages is lost,

see e.g. Pentico and Drake (2009). The value of such predictions, however, relies on the accuracy of the

numerical values of the model parameters, in particular on the values used for the unit backorder cost hb

and unit lost sales cost hl. It further depends on the definition of these parameters, in particular whether

hb is taken to be a cost per unit of product and unit of time or a cost per unit of product1. While it is

recognised in the literature that ‘quantifying these parameters in practise is difficult’ (Winston, 1994), the

inventory literature does not address the question of what these parameters actually represent, i.e., how to

set their values accurately in some particular application. The findings in this paper support the view that

without additional guidelines, these models remain somewhat inadequate for finding an optimal inventory

1For example, if in the classic Economic Order Quantity model hb is defined per unit of product, then depending on its
value the optimal strategy is either not to have stockouts or not to perform the activity at all. This requires an estimate
of whether hb is above or below a threshold value determined by classic EOQ model parameters. When adopting the more
widely used definition that hb is a cost per unit of product and unit of time, an optimal policy always plans for backorders if
there are no lost sales, and to know the optimal backorder level requires having an accurate estimate of hb. See e.g. Zipkin
(2000).
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policy for a particular firm or for deriving insights into the potential financial benefits of shortages or other

system design choices.

This paper contributes to the literature by demonstrating the value of inventory models based on

cash-flow functions. Cash-flow based models do not make use of the difficult to determine traditional

inventory cost parameters such as hb and hl. Instead, revenue and cost cash-flows expressed as functions

of the logistics design and the payment structures that a firm adopts with external parties form part of

an objective function that maximises the Net Present Value (NPV) of this activity. We demonstrate that

such models are more suited to determine the financial worth of strategic design choices of an inventory

system, and that from a comparison with NPV models using the traditional parameters instead insight

into the nature of these traditional parameters can be obtained. Parameters in a model, in the strict sense,

should be exogenously determinable. In the system examined in this paper, we find that the traditional

parameters hb and hl would be non-trivial functions of other endogenous system parameters. In contrast,

all parameters in the cash-flow based NPV model developed are still exogenously determinable.

We consider a production-inventory system where a deteriorating product is produced in batches at

a finite production rate and where a stock-out can result in either a backorder or a lost sale. This case

is interesting since intuition tells us that these features will in general affect the value of planning for

shortages and in particular that if a product deteriorates the incentive to disinvest in inventory and use

the mechanism of backorders will increase.

The management of an inventory of deteriorating items has been widely addressed in the literature.

Surveys of deterministic and stochastic models include Nahmias (1982), Raafat (1991), Goyal and Giri

(2001), Li et al. (2010) and Bakker et al. (2012). Papers studying deterioration with partial backlogging

with an NPV objective function can be partitioned into profit maximising versus cost minimising models.

The first class includes Wee and Law (2001); Hou (2006); Dye et al. (2007); Singh et al. (2009); Yang

et al. (2010); Hsieh and Dye (2010); Hou and Lin (2011) and Yu (2013). As demand is either price-

or stock-dependent, it is natural to consider revenue streams explicitly and adopt the objective of profit

maximisation. Cost minimising NPV models include Jaggi and Aggarwal (1994); Aggarwal and Jaggi

(1995); Liao et al. (2000); Sarker et al. (2000); Chung and Liao (2006); Chang et al. (2010); Liao and
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Huang (2010); Balkhi (2011) and Taleizadeh and Nematollahi (2014). Single warehouse situations are

considered, with or without an element of credit or permissible delays in payment. Other papers deal

with a two-warehouse setting, as in Yang (2004, 2006, 2012); Wee et al. (2005); Hsieh et al. (2008) and

Singha et al. (2013). A small minority of work concerns inventory management across multiple echelons

in the supply chain, see e.g. Law and Wee (2006) and Lo et al. (2007). Provided that the potential

changes on revenues are considered, e.g. that a revenue loss is accounted for as a cost, the objective of

cost minimisation will be equivalent to profit maximisation.

In a context of item deterioration, backorders and lost sales, classic inventory theory principles indicate

that next to the unit holding cost h, other relevant inventory parameters are the unit deterioration cost

hd, the unit backorder cost hb and the unit lost sales cost hl. We indeed find these four classic parameters

in the above literature, where their impact on the NPV objective function is found from discounting these

costs over relevant inventory functions and time periods. A distinction can be made between models that

include the opportunity cost of holding stock in h, as in e.g. Yang (2004, 2006, 2012), and models that

do not include the opportunity cost in h, as in e.g. Moon et al. (2005); Jaggi et al. (2006); Law and Wee

(2006); Lo et al. (2007); Hsieh et al. (2008); Taleizadeh and Nematollahi (2014) and Chern et al. (2008).

In the latter case, the effect of the unit production cost is explicitly included in the formulation. (These

approaches are further illustrated in Section 4.1 and Section 4.2, respectively.)

In contrast to the existing literature in this field, the main model in this paper derives its NPV

objective function from cash-flow functions, excluding the use of the classic parameters h, hd, hb and hl.

This approach requires modelling what triggers costs and revenues, and their timing, more accurately. In

particular, we consider the situation in which customers may pay a deposit for backordered items or may

receive a reduction on the sales price as a compensation for having incurred the backorder. Based on our

experience, we can find these elements as part of backorder policies in real situations, including in the

hand-made production and sales of chocolates by some artisanal Belgian chocolatiers where customers pay

deposits for their backorder in order to secure the order, and in the situation of firms in military supply

chains who are subject to financial compensation rules for backorders in their contract with the armies

they supply.
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The main draw-back of using classic inventory cost parameters is that it does not produce insight

into what these parameters actually represent and how to find good numerical values for them. The

first clear evidence of this is given in the article of Grubbström (1980), which together with Grubbström

(1967) also laid the foundations of a cash-flow based Net Present Value (NPV) approach to studying

production-inventory systems. Grubbström (1980) shows how this technique leads to a specification of h

as a function of financial system parameters, and that in some systems this functional relationship deviates

significantly from the convention that h is to be based on money invested into stock. An extension of this

approach is made in Beullens and Janssens (2011), who introduce the Anchor Point in a model and show

that its placement in a supply chain may affect the specification of h. In Beullens and Janssens (2014),

the technique of using these NPV models as a reference to gain insight into classic inventory models

is formalised as NPV Equivalence Analysis (NPVEA). Its application has led to refinements to classic

inventory theory when applied to certain contexts, see Boyaci and Gallego (2002); Teunter and van der

Laan (2002); and Beullens (2014). To our knowledge, NPVEA has not been applied to find interpretations

of models that use the four parameters h, hb, hl and hd. In fact, no NPV interpretations are available for

any of these parameters but h, and only one has been identified for hb, see Grubbström (1998), in a system

without item deterioration. In the context of the NPVEA literature, this paper contributes by showing

that hb and hl in the system studied in this paper are also functions of non-financial system parameters.

The application of NPVEA in this paper shows that if customers would be financially compensated

for incurring a backorder, hb and hl not only depend on financial parameters but also on non-financial

system parameters such as the production rate, the demand rate and the probability of whether a shortage

would produce a backorder or a lost sale. We also find that the unit lost sales cost hl is a function of

the financial compensation given to customers with backorders. These findings motivate us to develop

and promote cash-flow based NPV models as a viable alternative to models based on discounting classic

inventory parameters.

The paper is further organised as follows. Section 2 introduces the system under study, and Section 3

develops the corresponding mathematical equations specifying the cash-flow based NPV reference model.

In Section 4 we derive two NPV models based on discounting the classic inventory parameters. It is shown
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that equivalence of these modelling approaches with the NPV reference model holds, subject to a set of

conditions from which a useful specification of the classic cost parameters follows. Numerical examples in

Section 5 illustrate how the cash-flow NPV model can be used to gain insight into the value of planning for

shortages, and into the impact of other system design choices. The equivalence theorems obtained indicate

that such insights cannot be reliably obtained from an NPV model based on the classic parameters when

their functional relationships with other system parameters are not known. Conclusions are presented in

Section 6.

2 Description of the system

Notation:

• p, sales price per unit of product;

• y, demand rate per unit of time when product is in stock;

• β, fraction of demand during stock-outs resulting in backorders (0 ≤ β ≤ 1), the remaining part are

lost sales;

• s, set-up cost to initiate a production run;

• c, cost to produce a unit of product;

• R, finite production rate of production process per unit of time (R > y);

• Ti, component of inventory cycle time T ,i = {1, 2, 3, 4} (decision variables);

• T , inventory cycle time, T = T1 + T2 + T3 + T4;

• θ and γ, scale and shape parameters of Weibull deterioration rate distribution;

• d, unit cost to dispose of a deteriorated product (could also be negative, i.e. a unit salvage value);

• g, deposit paid by customers to secure backordered product (g ≥ 0);
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• r, compensation paid to customers for backordered product (r ≥ 0);

• f , out-of-pocket warehouse costs per unit of product and unit of time (f ≥ 0);

• b, out-of-pocket cost per unit of outstanding demand backordered and unit of time (b ≥ 0);

• π, out-of-pocket cost per unit of demand lost (π ≥ 0);

• α, opportunity cost of capital rate.

2.1 The activity

When the product is in stock, the demand rate2 is y. Whenever the item is not in stock, the demand rate

drops to βy; this fraction of demand is met with backorders. The remaining fraction (1 − β)y are lost

sales.

Figure 1: Inventory level of the system

Figure 1 displays the stock position of serviceable products as a function of time. The system starts at

time t = 0 with zero inventory and with the initiation of the first production run which generates products

at rate R for a time T1, during which all demand is met and since R > y stock I(t) > 0 is built up. At

time t = T1 the production stops. During the period T2 demand is met from stock.

The inventory level I(t) in period T1 increases and in T2 decreases in a non-linear fashion due to an

increased number of items in stock deteriorating. This process is modelled, in a deterministic fashion, as

follows. Items that have deteriorated are immediately removed from serviceable inventory, and demand

2The model is easily extended to consider this rate to be a function of sales price y(p)
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from serviceable stock is met in a First-Come-First-Serve (FCFS) manner. Given a non-negative inventory

level I(t), where t measures the time from the production run initiation, the rate of deterioration is

θγtγ−1, where θ and γ are two suitably chosen constants. This corresponds to the failure rate of a Weibull

distribution f(t) = θγtγ−1e−θt
γ
, where θ and γ are the scale and the shape parameter, respectively. In case

that γ = 1, the failure rate is constant and characterises a negative exponentially distributed deterioration

process.

At t = T1 + T2 stock has reduced to zero and the demand rate drops to βy, and this demand is

backlogged. A shortage level B(t) = −I(t) > 0 is built up according to the rate βy for a length of time

T3. Note that the dashed line in the time segment T3 in Figure 1 indicates the level of backorders when

there would be no lost sales, i.e. in the case that beta = 1. At time t = T1 + T2 + T3 the production

process is re-initiated. During T4 the demand that arises at rate βy is instantaneously satisfied from this

production process, while the excess production capacity at rate (R − βy) goes towards satisfying the

backlogged demand in a FCFS manner and hence at this rate the shortage level B(t) is being reduced. At

t = T1 + T2 + T3 + T4 ≡ T the inventory position is back at zero, at which point all demand that occurred

in the past has been satisfied. The logistics process is back in a state it was in at the beginning t = 0 safe

the fact that production has already started. This process repeats itself at infinitum.

2.2 The cash-flows

The objective is to maximise the Net Present Value of relevant future cash-flow functions associated with

the activity described in Section 2.1. For this purpose we examine how the firm exchanges cash-flows with

the outside world. These are assumed to be as follows; see also Figure 2.

For any demand that arises when the stock position is strictly positive, customers pay the unit price

p instantaneously. This produces an income at the annuity stream level py during the periods associated

with T1 and T2. Payment is also immediate during the period associated with T4 for the demand generated

at rate βy during that period, providing an income at the annuity stream level pβy. During the period

of stock-out associated with T3, demand is partially backlogged. Customers may pay a deposit g ≥ 0 the

moment they raise the demand. In addition they may be promised a reduction r ≥ 0 on the sales price
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Figure 2: Cash-flows of the profit maximisation model

as a compensation for the waiting. A customer for which a backorder of a product was created will thus

pay p − g − r when receiving the product. In T4 the backlog is reduced at the rate (R − βy) and the

corresponding annuity stream level income is (p− g − r)(R− βy).

The firm incurs the set-up cost s the moment production initiates. As production occurs at rate R,

the firm’s variable unit production cost c is incurred at the annuity stream level cR for a time spanning

the period T1 in the first production run, and for a time spanning T4 + T1 for any subsequent production

run. During the period spanning T1 +T2 the items that deteriorate at any time t are immediately removed

from stock and disposed of for a cost of d per unit of product, immediately paid out to e.g. a recycling

company.

During T1 + T2 the firm incurs an out-of-pocket warehouse cost f ≥ 0 per unit of product and unit

of time, paid out instantaneously. During T3 + T4 an out-of-pocket cost π ≥ 0 per unit of demand lost

is incurred as a continuous outflow of cash at the annuity stream level (1 − β)πy. During T3 and T4 an

out-of-pocket backorder cost b ≥ 0 per unit of outstanding demand and unit of time is instantaneously

incurred.

3 Mathematical model of the system

3.1 Inventory and shortage levels

At the start of the inventory cycle, production accumulates inventory while deterioration and demand

decrease the inventory level. This pattern starts at time zero (for the first period) until the production
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stops at time T1. The following differential equation represents the inventory level in this period:

dI(t)

dt
= R− y − θγtγ−1I(t), 0 ≤ t ≤ T1, I(0) = 0. (1)

By solving the differential equation (1), the inventory level in this period is obtained:

I(t) = (R− y)e−θt
γ

∫ t

0

eθu
γ

du, 0 ≤ t ≤ T1. (2)

At time T1 the production stops and the demand is covered using the produced items; this pattern

continues until the inventory level reaches zero at T1 + T2:

dI(t)

dt
= −y − θγtγ−1I(t), T1 ≤ t ≤ T1 + T2, I(T1 + T2) = 0. (3)

The inventory level in this interval is hence as follows:

I(t) = ye−θt
γ

(∫ T1+T2

T1

eθu
γ

du−
∫ t

T1

eθu
γ

du

)
, T1 ≤ t ≤ T1 + T2. (4)

As I(t) takes on a unique value at t = T1, there hence holds a relation between T1 and T2 obtained from

(2) and (4); we further consider T1 as a function of T2, or T1 = g(T2), as implicitly given by this condition.

(For an approximate solution, see Appendix A.)

During the out-of-stock period and before the production starts again, the shortage level increases as

a percentage of the demand is backordered:

dB(t)

dt
= βy, T1 + T2 ≤ t ≤ T − T4, B(T1 + T2) = 0. (5)

The shortage level within this period is therefore:

B(t) = βy(t− T1 − T2), T1 + T2 ≤ t ≤ T − T4. (6)
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When the production starts at T −T4 as the inventory level is zero a percentage of the demand (1−β)

is lost and the rest is met with no delay. The excess production capacity is used to satisfy the backorders

accumulated between T1 + T2 and T − T4 and decreases the shortage level:

dB(t)

dt
= −(R− βy), T − T4 ≤ t ≤ T,B(T ) = 0. (7)

The corresponding shortage level is:

B(t) = (R− βy)(T − t), T − T4 ≤ t ≤ T. (8)

Considering the continuity at t = T − T4, or that (6) and (8) should take the same unique value at this

point, the following equation is obtained:

T4 =
βy

R− βy
T3, (9)

therefore

T = g(T2) + T2 +
R

R− βy
T3. (10)

In conclusion, we can take T2 and T3 as the independent decision variables for the firm since T1, T4 and

T then follow from above relationships. In particular: T1 = g(T2) is obtained from equating the right-hand

sides of (2) and (4) for t = T1; T4 from using (9); and T from (10).

3.2 Annuity streams of cash-flows

As shown in Figure 2, a revenue at the rate of py is continuously received between 0 and T1 + T2. The

present value of this revenue for the first inventory cycle only, is given by:

R1 =py

∫ T1+T2

0

e−αtdt

=
py

α
(1− e−α(T1+T2)).

(11)
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The equivalent annuity stream of all such revenues received over an infinite of future inventory cycles, is:

ASR1 =R1

∞∑
i=0

αe−iαT

=py
1− e−α(T1+T2)

1− e−αT
.

(12)

During the interval T1 +T2 ≤ t ≤ T −T4, due to the out-of-stock situation, a percentage of the demand

is backlogged and the customers pay a deposit g to receive their item later when the production starts

again. The corresponding annuity stream of this revenue is hence:

ASR2 =gβy

∫ T−T4

T1+T2

e−αtdt
∞∑
i=0

αe−iαT

=gβy

[
1− e−α(T−T4)

1− e−αT
− 1− e−α(T1+T2)

1− e−αT

]
.

(13)

Revenues are also received in the first inventory cycle when production restarts at T − T4, and until

T . The first part of this revenue is to be associated with the delayed fulfilment of backlogged demand

that arose in the interval T1 + T2 ≤ t ≤ T − T4, and as this is sold at a discount, it generates revenue

at the rate (p − g − r)(R − βy); the second part with the immediate fulfilment of demand that arises in

T − T4 ≤ t ≤ T , and thus produces revenue at rate pβy. The annuity stream of this revenue is given by:

ASR3 = ((p− g − r)(R− βy) + pβy) e−α(T−T4)
∫ T4

0

e−αtdt
∞∑
i=0

αe−iαT

= ((p− g − r)(R− βy) + pβy)

[
1− 1− e−α(T−T4)

1− e−αT

]
.

(14)

The set-up cost of production s is incurred at t = 0 for the first production run, and then at a time T4

earlier relative to the start of every subsequent inventory cycle. The relevant annuity stream is as follows:

SC =αs(1 + e−α(T−T4) + e−α(T−T4)e−αT + e−α(T−T4)e−2αT + ...)

=αs

(
1 +

e−α(T−T4)

1− e−αT

)
.

(15)

11



The cost of production at rate cR is incurred between nT − T4 and nT + T1 (n = 1, 2, 3, ...) except

for the first period in which the production takes place between 0 and T1. The annuity stream of the

production cost is:

PC =αcR

∫ T1

0

e−αtdt+ αcRe−α(T−T4)(1 + e−αT + e−2αT + ...)

∫ T1+T4

0

e−αtdt

=cR

[
1 +

1− e−αT1
1− e−αT

− 1− e−α(T−T4)

1− e−αT

]
.

(16)

The cost of warehouse space in the first period consists of two parts and considering the inventory level

presented in (2) and (4), the corresponding present value of these costs are (for approximate solutions, see

Appendix A):

HC1 =f

∫ T1

0

I(t)e−αtdt (17)

and

HC2 =f

∫ T1+T2

T1

I(t)e−αtdt. (18)

The warehouse cost over all future periods gives the annuity stream:

HC =
α

1− e−αT
(HC1 +HC2). (19)

Outstanding (unsatisfied) demand arises between T1+T2 and T , during which a backorder penalty cost

b per unit of item and time in incurred. Using the shortage levels presented in (6) and (8), the present

value of this cost in the first inventory period is:

BC1 =bβy

∫ T−T4

T1+T2

(t− T1 − T2)e−αtdt

=
bβy

α
e−α(T1+T2)

[
1

α
(1− e−αT3)− T3e−αT3

] (20)
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and

BC2 =b(R− βy)

∫ T

T−T4
(T − t)e−αtdt

=
b(R− βy)

α
e−α(T−T4)

[
T4 −

1

α
(1− e−αT4)

]
.

(21)

Thus the annuity stream of this cost over an infinite horizon is:

BC =
α

1− e−αT
(BC1 +BC2)

=
bR

α

[
1− e−α(T−T4)

1− e−αT

]
− bβy

α

[
1− e−α(T1+T2)

1− e−αT

]
− b

α
(R− βy).

(22)

A penalty of π per unit of lost sale is also due with immediate effect. The annuity stream of this

out-of-pocket lost sale cost is:

LC =
α

1− e−αT
πy(1− β)

∫ T

T1+T2

e−αtdt

=πy(1− β)

[
1− 1− e−α(T1+T2)

1− e−αT

]
.

(23)

A deteriorated item incurs a net cost d ≥ 0 for the firm to cover the disposal or recycling fees, or

represents a net revenue d < 0 if the deteriorated item retains a salvage value that other industries are

willing to pay. The annuity cost for disposal is given by:

DC =
α

1− e−αT
d

∫ T1+T2

0

θγtγ−1I(t)e−αtdt. (24)

Hence, the firm’s annuity stream profit function to be maximised is:

ASP = ASR1 + ASR2 + ASR3 − (SC + PC +HC +BC + LC +DC), (25)

where T2, T3, and p are the firm’s decision variables.
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3.3 Special case: γ = 1

This section presents the special case that γ = 1 (negative exponential deterioration) for which explicit

analytical solutions, to be used in Section 4, can be obtained. The shortage level equations (6) and (8)

and boundary condition (9) remain unaltered. Now the inventory levels as previously given by (2) and (4)

are:

I(t) =
(R− y)

θ
(1− e−θt), 0 ≤ t ≤ T1 (26)

and

I(t) =
y

θ
(eθ(T1+T2−t) − 1), T1 ≤ t ≤ T1 + T2. (27)

Continuity at T1 for (26) and (27) results in the following boundary condition:

eθT2 =
R

y
− (

R

y
− 1)e−θT1 . (28)

The deterioration cost, previously (24), is now:

DC =
α

1− e−αT
dθ

∫ T1+T2

0

I(t)e−αtdt

=
d(R− y)

1− e−αT

[
1− e−αT1 − α

α + θ
(1− e−(α+θ)T1)

]
+

dy

1− e−αT

[
α

α + θ
e−αT1(eθT2 − e−αT2)− e−αT1 + e−α(T1+T2)

]
=

dθ

α + θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
.

(29)

The annuity stream of the holding cost can be found in a similar way:

HC =
f

α + θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
. (30)

The firm’s annuity stream profit function is the sum of (12), (13), (14), minus the sum of (15), (16),

(22), (23), (29), and (30):
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ASP =(p− c)R− (g + r)(R− βy) +
b(R− βy)

α
− π(1− β)y − αs

(
1 +

e−α(T−T4)

1− e−αT

)
+y

[
p− gβ +

dθ + f

α + θ
+
bβ

α
+ π(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− c− g − r)R + rβy +

bR

α

]
1− e−α(T−T4)

1− e−αT
−R

[
c+

dθ + f

α + θ

]
1− e−αT1
1− e−αT

.

(31)

3.4 Generalised demand

The model so far has assumed that during a period of shortages the demand rate drops to βy, a fraction of

the demand rate y that holds in periods when there is positive stock. As such, it accounts for measuring

what we call a direct financial effect of postponing income received (through backorders) as well as not

realising a sale (through lost sales). Firms may in general, however, be also worried about what we

call an indirect financial effect of shortages. This may arise when in the face of competition, alternative

options would exist for customers to purchase the product. The exact nature of this effect will be context-

dependent, and we can imagine many plausible ways of modelling it.

In this section we present one such an approach. It is based on the idea that a fraction of lost sales, say

ε (0 ≤ ε ≤ 1), would result in corresponding customers finding alternative options to purchase the product

and not returning in the future. Those lost sales occur at a rate (1− β)y during the period T3 + T4 of an

inventory cycle of length T . A simple approach to capturing this effect is to set the actual demand rate

y(ε) as follows:

y(ε) = (1− ε(1− β)
T3 + T4
T

)y,

where y would be the demand rate when there are never shortages. Using (9) this simplifies to:

y(ε) = (1− εT3
T

)y. (32)

This generalised demand function does not alter any of the previous calculations, and the profit function

is still given by (25) when substituting y(ε) for y.
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4 Equivalence Analysis

Conditions are derived under which a cost minimising NPV model constructed from discounting the classic

inventory parameters h, hd, hb and hl will identify the same optimal inventory policy as a model based on

maximising the NPV of the cash-flow functions derived in Section 3.3, i.e. for the case that γ = 1.

4.1 Opportunity holding cost models

This section represents the approach found in models from the literature in which the opportunity cost

of investments in stock is incorporated in the unit holding cost h (see also Section 1). We construct an

NPV cost minimisation model for the activity as described in Section 2.1 from discounting costs of holding

stock, backorders, lost sales, and deterioration, using parameters h, hb, hl, and hd:

HC =

[∫ T1+T2

0

hI(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
h

α + θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
,

(33)

BC =

[∫ T

T1+T2

hbB(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
hbR

α

[
1− e−α(T−T4)

1− e−αT

]
− hbβy

α

[
1− e−α(T1+T2)

1− e−αT

]
− hb
α

(R− βy),

(34)

LC =

[∫ T

T1+T2

hl(1− β)ye−αtdt

] ∞∑
i=0

αe−αiT

=hly(1− β)

[
1− 1− e−α(T1+T2)

1− e−αT

]
,

(35)

and

DC =

[∫ T1+T2

0

hdθI(t)e−αtdt

] ∞∑
i=0

αe−αiT

=
hdθ

α + θ

[
R

1− e−αT1
1− e−αT

− y1− e−α(T1+T2)

1− e−αT

]
.

(36)

The units of the classic parameters can be derived from these equations since each component calculated
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has to result in monetary units per unit of time. It follows from (33) that h is a cost per unit of product

and unit of time, from (34) that hb is a cost per unit of product and unit of time, from (35) that hl is a

cost per unit of product and from (36) that hd is a cost per unit of product.

In addition, the annuity stream cost of set-ups is calculated in the same way as in the reference model

and produces the result (15). The objective function is the sum of these components:

ASC =hl(1− β)y − hb(R− βy)

α
+ αs

(
1 +

e−α(T−T4)

1− e−αT

)
−y
[
hdθ + h

α + θ
+
hbβ

α
+ hl(1− β)

]
1− e−α(T1+T2)

1− e−αT

+
hbR

α

[
1− e−α(T−T4)

1− e−αT

]
+
R(hdθ + h)

(α + θ)

[
1− e−αT1
1− e−αT

]
.

(37)

Note that the model (37) captures the traditional inventory modelling approach, exemplified in its

most simple form by the EOQ model (Harris, 1913), in which neither variable purchasing costs nor revenue

streams are explicitly considered. We must hence for obvious reasons assume that demand y is constant.

Theorem 1. Sufficient conditions for equivalence are:

hdθ + h = (d+ c)θ + αc+ f, (38)

hb = α(p− c)− αg − αr(1− βy

R
) + b, (39)

hl = (p− c) + r
β

1− β
(1− βy

R
) + π. (40)

Proof. The proof is based on a variation to the algebraic derivation method developed in Grubbström

(1996), or alternatively, to the difference approach in Grubbström (1998). Let Σ be the sum of (31) and

(37), i.e.:
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Σ =(p− c)R− (g + r)(R− βy)− 1

α
(hb − b)(R− βy) + (hl − π)(1− β)y

+y

[
p− gβ +

(d− hd)θ + f − h
α + θ

− (hb − b)β
α

− (hl − π)(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− c− g − r)R + rβy − (hb − b)R

α

]
1− e−α(T−T4)

1− e−αT

−R
[
c+

(d− hd)θ + f − h
α + θ

]
1− e−αT1
1− e−αT

.

(41)

We now seek for the conditions under which Σ is independent of the decision variables. It is observable

that this is so when (38)–(40) hold: the coefficient in the last term of (41) is zero only when (38) holds,

and the coefficient of the second to last term of (41) is zero only when (39) holds. Substitution of (39) into

the coefficient of the third to last term of (41) then leads to (40) as the condition to make this coefficient

zero. Hence, under these conditions it holds for sure that a policy that minimises ASC will also be optimal

for maximising ASP . �

Some parts of the conditions (38)–(40) correspond to intuition reasonably well, as explained further

below, but the exact function specifications for hb and hs in particular are very hard to establish if not

having been explicitly derived. This underlines the value of NPVEA.

We now discuss the equivalence conditions in more detail. From (38) we see that there is a degree of

freedom in how to set h and hd in relation to each other. The most obvious solution is to take h = αc+ f

as this corresponds to the classic interpretation of this parameter, see Silver et al. (1998), from which

it follows that hd = d + c. The relevant disposal cost for every deteriorated item includes the initial

purchasing cost c. Note that in case that d < 0 (a salvage value), its absolute value will typically be

smaller than the cost price c, and hence hd > 0, as otherwise it would be economical to produce/purchase

items for supplying a market of deteriorated items with a net marginal profit.

The first component of the unit backorder cost according to (39) is α(p−c), i.e. a capital cost of deferred

marginal profits. Such a result has previously been found to hold in Grubbström (1998) in a stochastic

setting. Our reference NPV model, by its inclusion of g and r, shows that the functional form of hb can be

more complicated. Any non-zero deposit g reduces the capital loss on backordered sales and this is quite

intuitive. Any non-zero r for backordered items reduces the capital cost of hb (since 1− βy/R > 0). This
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is perhaps less intuitive at first sight. The unit backorder cost, however, only measures the opportunity

cost of r. Because it is a deferred cost, it must indeed be that this opportunity cost is negative and hence

that an increase in r reduces hb. The reason why the overall effect of an increasing r will negatively affect

a firm’s profits is because it also appears in the constant cost terms in (31). Finally, there is a cost b that

is similar in interpretation as the f in h: an out-of-pocket backorder cost the moment the backordered

demand occurs. Since it must be that p − g − r − c > 0 for backordering to make economical sense, we

find hb > 0.

The lost sales cost hl as given by (40) demonstrates the importance to account for the loss in profits

through p− c, but shows in addition the somewhat peculiar impact from the cost r that is experienced for

items that are sold with backordering. There is no easy interpretation of this result, as discussed in Section

4.3: it is a mathematical construct needed to ‘correct’ the approach of discounting classic parameters as

to ensure that it will optimise the NPV of the profit function of the firm. Similar counter-intuitive results

also occur in the context of remanufacturing, see e.g. Çorbacioğlu and van der Laan (2007).

Note that, while sufficient, we have not proven the mathematical necessity nor uniqueness of the

derived conditions (38)–(40) for equivalence to hold for only optimal solutions. Given the reasonably

intuitive explanations for most of the components in the identified equivalence conditions, we did not

investigate the existence of other potential (and then probably exotic) solutions under which equivalence

may hold in the strict sense. The equivalence conditions derived do preserve the relative comparison of

any solution to an optimum, and are hence arguably of practical relevance. Numerical experiments in

which the derived equivalence conditions are used confirm the accuracy of these equivalence conditions,

see also Section 5.3.

4.2 Holding cost models excluding opportunity costs

In this section a cost minimising NPV model is derived following the stream of models in the literature

(see also Section 1) that model the purchasing/production costs explicitly. Exactly the same calculations

(33)–(36) are used as in Section 4.1 for the costs related to parameters h, hb, hl, hd, and (15) related to s.

In addition, the annuity stream production cost is explicitly modelled as in (16). We again assume in our
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model that y is constant, and that revenue streams are not explicitly modelled.

Theorem 2. Sufficient conditions for equivalence are:

hdθ + h = dθ + f, (42)

hb = αp− αg − αr(1− βy

R
) + b, (43)

hl = p+ r
β

1− β
(1− βy

R
) + π. (44)

Proof. Details are omitted, as it follows the approach as before based on:

Σ =pR− (g + r)(R− βy)− 1

α
(hb − b)(R− βy) + (hl − π)(1− β)y

+y

[
p− gβ +

(d− hd)θ + f − h
α + θ

− (hb − b)β
α

− (hl − π)(1− β)

]
1− e−α(T1+T2)

1− e−αT

−
[
(p− g − r)R + rβy − (hb − b)R

α

]
1− e−α(T−T4)

1− e−αT

−R
[

(d− hd)θ + f − h
α + θ

]
1− e−αT1
1− e−αT

.

(45)

End of proof. �

Interpretations can be derived as previously in Section 4.1. From (42) we take h = f and hd = d. The

opportunity cost of capital is no longer to be included into the unit holding cost, and the unit deterioration

cost only accounts for the disposal cost/salvage value (hence, hd < 0 is now possible). As the impact of

purchasing/production is explicitly modelled its impact should not only be excluded from h but also from

hb and hl.

20



4.3 The non-triviality of the equivalence results

It should be emphasised that the equivalence results obtained are non-trivial. Indeed, the general expres-

sion for discounting classic cost parameters as in (33) is:

∫ ∞
0

hI(t)+αe−αtdt. (46)

This is not conform to the standard definition of calculating an annuity stream value, which requires that

it should be based on: (A) only real cash-flows, and (B) the exact timing of these real cash-flows. However,

discounting h as above satisfies neither of these conditions. Indeed, we have just found that, for equivalence

to hold, it must be that h = αc + f , and hence by virtue of containing a capital cost αc this does not

satisfy condition (A). Furthermore, (46) does also not respect condition (B): for R→∞, for example, the

purchasing/production cost occurs at the start of a cycle and not continuously throughout the cycle. It is

therefore surprising that these two wrong assumptions about the cash-flow structure are able to neutralise

each other so that the end result can still be made compatible with the standard NPV criterion. Similarly,

we should be surprised to have found that a similar operation on e.g. the unit backorder cost, as in (34)

still works, despite the fact that the equivalence conditions again state that hb should include capital costs

in its formula and hence also violates both conditions (A) and (B). We note that the discounting of classic

parameters is not restricted to the literature on deterioration but occurs in other fields as well.

5 Numerical examples

5.1 Financial impact of shortages under constant demand

This section illustrates the use of the NPV cash-flow model developed in Section 3 to examine the financial

implications of shortages when y is constant. A factorial design is set-up testing for five factors, of which

p is set at four levels and the other four factors are set at two levels each: p at 3c, 2c, 1.5c and 1.3c; β

at 0.9 and 0.5; θ at 0 (i.e. no deterioration) and 0.05; g at 0 and 0.1p; and r at 0 and 0.1p, respectively.

This produces 64 experiments, where in each case the other parameters are set at the following values:
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α = 0.08; y = 100; s = 80; f = 2.3; b = 1; c = 5; π = 0; d = 0; γ = 1, and R = 160.

We consider two models: the first is the reference model of Section 3 in which shortages are allowed, the

second is the same model but in which shortages are ‘ex-ante’ prohibited (i.e. T3 = T4 ≡ 0 per definition).

As the independent parameters are T2 and T3 only, see Section 3.2, we have set up a simple exhaustive

search routine in two nested loops, whereby values for these parameters are incremented across a range.

While not expecting this to produce the most efficient running times, all scenarios are solved fairly quick

even with small stepsizes.

For each of the 64 scenarios, we calculate δ = 100(ASP ∗NS −ASP ∗)/ASP ∗, the percentage optimality

gap between the profits of reference model’s optimal solution ASP ∗ and the profits ASP ∗NS of the no-

shortages-allowed version’s optimal solution. The more negative the value of δ, the larger the financial

benefit of planning for shortages. A summary of main results is given in Table 1. If the profit margin is

high (p = 3c), the reference model indicates that in 12 out of the 16 experiments it is financially best not

to plan for shortages, and in the other 4 cases the benefit of doing so is less than 1% (i.e. δ ≥ −1.00).

For prices set at the two intermediate levels (p at 2c and 1.5c), the most important factor is the fraction

of shortages that leads to backorders (β). For β = 0.5, the financial benefit of planning for shortages is

zero in 12 out of the 16 scenarios, and in the remaining four cases (for p at 1.5c) the benefit remains

significantly smaller than 1%. At modest lost sales ratios (β = 0.9), however, the profit margin is an

important consideration: a modest benefit from shortages occurs for prices set at p = 2c, in particular

when no reduction on sales price has to be given (r = 0.0), however this benefit grows to larger values

and up to about 25% for r = 0.0 when the price is set at p = 1.5c. The parameters with no significant

impact are g and θ. In all scenarios tested at these price settings, the benefit reduces when customers place

deposits (g = 0.1), but the impact on δ value changes always remains smaller than 0.5%. The impact of θ

is somewhat larger but still quite small: if the product deteriorates it is somewhat more beneficial to plan

for shortages but in all scenarios this impact remains below 2.5%.

If the profit margin is modest (p = 1.3c), the benefit of planning for shortages ranges between about

24% to 78% and other factors come into play. The second most important factor in those cases is β since

the financial benefit of shortages will increase the less shortages result in lost sales. More specifically, when
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Table 1: Summary of experiments of Section 5.1

p β r θ g Average δ(%)
3c − − − − −0.11
2c 0.5 − − − −0.00
2c 0.9 0.1 − − −2.07
2c 0.9 0.0 − − −6.08
1.5c 0.5 − − − −0.16
1.5c 0.9 0.1 − − −16.88
1.5c 0.9 0.0 − − −25.34
1.3c 0.5 0.1 − − −30.69
1.3c 0.5 0.0 − − −49.51
1.3c 0.9 − 0.0 − −65.08
1.3c 0.9 − 0.05 − −73.91

shortages lead to high lost sales (β = 0.5), it then largely depends on a third factor r. If customers receive

10% off the price when experiencing a backorder, the average financial benefit of shortages is 30.69%, but

this increases to an average of 49.51% when no financial compensation has to be given (r = 0.0). Whether

or not the product deteriorates is still quite significant: if the product deteriorates (θ = 0.05%) it will add

on average about 12% to the gap. If shortages lead to low lost sales (β = 0.9), the most important factor

is not r but whether or not the product deteriorates. If products do not deteriorate, planning for shortages

produces on average a financial benefit of 65.08%, but if products deteriorate (θ = 0.05) this increases to

73.91%. The impact of r is now on average about 7%, and is therefore still almost as important as the

product’s deterioration characteristic.

Note that in the experiments above there is no cost for the disposal of deteriorated items (d = 0).

Naturally, for larger values of d the financial benefit of planning for shortages when the product deteriorates

will increase. We therefore repeated the above experiments for d = 0.2c, but found that its impact on

affecting δ values remains below 1%.

In conclusion, the experiment illustrates how an NPV model based on cash-flow functions can be

used to examine the potential financial benefits of planning for shortages. For the parameter settings

investigated, it appears that if products are sold at large profit margins of 3c, then planning for shortages

is not meaningful under all circumstances. For lower profit margins, the fraction of shortages leading to

backorders (β) is the most important factor. The benefit of planning for shortages becomes significant for
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prices around 1.5c to 1.3c, with the benefit increasing the lower the price margin, the higher β, and the

smaller the discount customers will receive on the backordered item. If products are sold at a lower mark-

up of 30%, and if there is evidence that most customers will accept backorders, planning for shortages

carries a significant financial benefit which increases the more the product deteriorates. The area in which

it is most difficult to predict the financial benefit of shortages is when products are sold at modest profit

margins and when shortages result in a reasonable fraction of lost sales. It will then also be significantly

influenced by any discount on the backordered item. In all cases, whether or not the customers pay a

deposit has very little financial consequences (the main effect of g is less than 1%). However in practise

it may be a worthwhile mechanism as a means to secure the backorder so that customers will not change

their mind and become a lost sale. The impact of the unit cost to remove deteriorated items remains

small.

5.2 Financial impact of shortages for generalised demand

The assumption of constant demand is relaxed and replaced by the demand function presented in Section

3.4. We use the set-up of Section 5.1, but since the impact of g appeared to be very small, we drop this

factor in the analysis and keep it constant at g = 0.0, and replace it with the factor ε, set at three levels:

0.20, 0.1 and 0.01, respectively. We restrict sales price to its two extremes, p = 3c and p = 1.3c. This

leads in total to 48 experiments.

The results are summarised in Table 2. For p = 3c, the reference model indicates that in 22 out of the

24 experiments it is financially best not to plan for shortages, and in the other 2 cases the benefit of doing

so is less than 0.5%. Comparing with the results in Table 1, we can infer that the benefit of planning for

shortages becomes negligible for p = 2c and ε ≥ 0.10. For p = 1.3c, the benefit of planning for shortages

ranges between about 1.2% to 74%. Results support the intuition that this demand sensitivity reduces

the benefit of planning for shortages the larger the fraction of lost sales, i.e., the smaller the value of β.

When shortages lead to high lost sales (β = 0.5), the impact of a higher sensitivity of demand to lost

sales (ε ≥ 0.10) quite significantly interacts with r, i.e., whether or not the customers receive 10% off the

price. When shortages lead to low lost sales (β = 0.9), the impact of ε in the tested range is approximately
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of equal magnitude to the impact of θ and r, but in any case the financial advantages for planning for

shortages remains high.

Table 2: Summary of experiments of Section 5.2.

p β r θ ε Average δ(%)
3c − − − − −0.03
1.3c 0.5 0.1 − 0.20 −4.78
1.3c 0.5 0.1 − 0.10 −18.52
1.3c 0.5 0.1 − 0.01 −29.29
1.3c 0.5 0.0 − 0.20 −31.84
1.3c 0.5 0.0 − 0.10 −41.69
1.3c 0.5 0.0 − 0.01 −48.53
1.3c 0.9 − 0.0 0.20 −58.43
1.3c 0.9 − 0.0 0.10 −61.91
1.3c 0.9 − 0.0 0.01 −64.55
1.3c 0.9 − 0.05 0.20 −68.49
1.3c 0.9 − 0.05 0.10 −72.16
1.3c 0.9 − 0.05 0.01 −73.48

To conclude, the experiment illustrates the importance of accounting for the indirect financial effect of

shortages when the profit margins are modest and when a significant fraction of shortages lead to lost sales.

In those circumstances the interaction effect with the discount level offered to backorders is significant.

Planning for shortages has potential in the presence of lost sales-level demand sensitivity for low profit

margins and high backorder rates, but its impact depends much on the interaction with both the discount

level and the product’s deterioration characteristics.

5.3 Using a model based on unit cost parameters h, hb, hl and hd

All previous experiments were conducted with the cash-flow based profit maximising NPV model developed

in Section 3. For negative exponential deterioration (γ = 1), we can instead use one of the two cost

minimising NPV models based on discounting the classic inventory cost parameters presented in Section

4. We have hence repeated the experiments for a constant demand while setting the four cost parameters

h, hb, hl, and hd to values given by Theorems 1 and 2, respectively, and found that the optimal inventory

policies derived as such are indeed exactly equal to those found from the cash-flow NPV model. This
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provides a numerical confirmation that the equivalence conditions are accurate.

When calculating δ values based on the cost functions of these models, it was found that the relative

cost savings achieved do not at all correspond to the profit savings found from the cash-flow based NPV

reference model and which are reported in the above sections. If not interpreted carefully, it will lead to the

wrong insights. For example, the cost minimising model indicates that logistics costs reduce by increasing

r. This does not mean it is beneficial to increase r at all, since overall profits would go down, as discussed

in Section 4.1. The reasons for this are that important terms that affect profits are still not incorporated

into the cost minimising models. This is also clear from e.g. the difference equations (41) and (45), of

which the first four terms are not represented in the cost minimising models. Reliable recommendations

are hence difficult to achieve with cost minimisation models based on the unit cost parameters, even if

equivalence conditions are known.

If the equivalence conditions are not known, then the power of an NPV model discounting these unit

cost parameters is very poor. In particular for the system studied in this paper, such models will not

correctly identify how the optimal policy changes for different values of R, β, or y, if hb and hl are treated

as exogeneous parameters and are kept constant. This is unfortunately the approach adopted in the

current literature. We prove in this paper that obtaining the correct insight into the sensitivity to R, β

and y requires knowledge about their relationship to hb and hl. We have shown how this can be done via

NPVEA. Since this means constructing also a cash-flow based NPV model, however, one can in effect use

this model rather than a model based on hb and hl.

We also conducted a series of experiments for general Weibull-based deterioration. The aim was to test

whether the equivalence conditions derived in Section 4 for the special case that γ = 1 would reasonably

work for more general deterioration patterns. In particular, we tested for the case that γ = 1.5 and

compared the profits and cycle time values obtained from the cash-flow NPV model with that obtained

from a cost minimising model in which we still use Theorems 1 and 2 to set the cost parameters h, hb,

hl, and hd. We found that these equivalence conditions now do no longer produce an accurate match

and that the numerical values of in particular h and hb are to be set differently in order to minimise the

error with the cash-flow based NPV model. This tells us that these classic parameters are now very likely
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also a function of the endogeneous parameters that govern the deterioration. As equivalence conditions

for γ 6= 1 are much harder to establish, we did not attempt to find these relationships. These findings,

however, provide further indirect evidence in support of the view that if classic inventory parameters are

discounted in NPV models, one cannot be sure that these parameters are in general exogeneous to the

model. Adopting cash-flow based NPV models altogether in this sense offers a route towards a more

reliable inventory theory.

6 Conclusions

How can deterministic inventory models provide quantitative insights into the economics of system design

choices, such as whether a firm would derive financial benefits from planning for shortages, or what the

impact would be from changing its production rate, or of the discount offered on backorders? This paper

has reinforced that cash-flow based Net Present Value (NPV) models are more reliable for deriving such

insights than models based on the classic inventory parameters. We have done this by showing that, in

the system studied in this paper, hb and hl ought to receive specific values as specified through non-trivial

functions of other parameters in the model in order to find the optimal inventory policy. Cash-flow based

NPV models have the advantage of not having to rely on these classic parameters.

A cash-flow based NPV model is developed for the case of a deteriorating item produced at a finite

production rate. Regarding the value of planning for shortages, results show that the value of planning for

shortages is most significant when the profit margin is small and when the fraction of backorders remains

high. In those situations, it is also important to know the level of the discount offered on backorders, the

item’s deterioration characteristics, and the degree to which lost sales leads to lost demand in general.

For high profit margins of twice the unit purchase or production cost of a product, planning for shortages

does not offer significant financial benefits. Whether or not customers pay a 10% deposit for backordered

items, and whether or not there would be a 20% disposal cost for deteriorated items, appear insignificant.

These findings may not generalise to other firm-specific situations, and we recommend the use of cash-flow

based NPV models as developed in this paper.
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Further research in this area should concentrate on increasing our understanding of how backorders for

items with low-profit margins influence future demand. Despite the potential value of planning for back-

orders identified in the model in such situations, it is intuively clear that if stockouts are not appreciated

by customers, models need further refinement as to take this aspect into account but without resorting to

artificial tweaking of parameters3.

The model developed was in addition used to gain insight into the nature of classic parameters hb

and hl. This can be done since the model is based on cash-flow functions and does not rely on these

classic parameters. This approach captures the essence of NPVEA as described in Beullens and Janssens

(2014). While the equivalence conditions derived in Section 4 show that it is possible to use an NPV model

based on h, hb and hl to calculate an inventory policy that is also optimal for the NPV cash-based model,

these equivalence relationships also indicate that the classic inventory parameters are not exogenously

determinable. As hb and hl depend on both financial and non-financial system parameters, no reliable

insights from sensitivity analysis would result from models using these parameters if these equivalence

conditions are not known.

The derived functional specifications in Section 4 for h, hb, hd and hl should not be taken to hold firmly

in all models which use them. In deriving these results, NPVEA has to rely on both a cash-based reference

NPV model, and another model which uses the classic parameters. If one of these two models change,

then so may the equivalence conditions needed. What this also means is that different models which use

the classic parameters h, hb, hd and hl may in fact also need a different interpretation of these parameters.

This complicates the proper comparison of classic models as well as makes it very hard to derive any insight

into these parameters. The findings in this paper clearly support the observation made in Winston (1994)

about the difficulty of quantifying these parameters in practise, as discussed in Section 1, but shows in

addition that NPVEA can also explain why this is so difficult. The difference between Theorems 1 and 2,

as well as the experiments for different deterioration patterns in Section 5.3 illustrate this point. Further

research is to be conducted to see how the equivalence conditions look like when comparing the reference

model in this paper with average cost models.

3For example, while increasing hb is a easy ‘fix’ to reduce backorders in the ‘optimal’ policy, this approach offers no
satisfactory solution as the policy is then only optimal in a mathematical sense and the model looses its explanatory power.
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The findings of this paper support a general message found in the NPVEA literature which, at this

point, still seems somewhat undervalued. The paper contributes to an increasing body of evidence that

inventory theory suffers from its reliance on traditional parameters h, hb, and hl to capture economic trade-

offs, a concept that is central to any theory of inventories. In particular this paper shows that the theory

suffers from the (implicit) assumption that these classic parameters are independent and exogeneous to

the model, because they may not be. Another general contribution of the paper is specifically adressing

the body of NPV literature based on discounting these classic parameters. This approach is not an

improvement over average cost models as it still relies on these difficult to interpret parameters. This

method further violates the standard assumptions of NPV theory, as discussed in Section 4.3. The cash-

flow NPV approach does not suffer from these drawbacks. It has been available to us for at least half

a century, and shown its relative value in comparison to using classic inventory parameters as early as

Grubbström (1980).

References

Aggarwal, S.P., C.K. Jaggi. 1995. Ordering policies of deteriorating items under permissible delay in

payments. The Journal of the Operational Research Society 46(5) 658–662.

Bakker, M., J. Riezebos, R.H. Teunter. 2012. Review of inventory systems with deterioration since 2001.

European Journal of Operational Research 221 275–284.

Balkhi, Z.T. 2011. Optimal economic ordering policy with deteriorating items under different supplier

trade credits for finite horizon case. International Journal of Production Economics 133 216–223.

Beullens, P. 2014. Revisiting foundations in lot sizing - Connections between Harris, Crowther, Monahan,

and Clark. International Journal of Production Economics 155 68–81.

Beullens, P., G.K. Janssens. 2011. Holding costs under push or pull conditions - The impact of the Anchor

Point. European Journal of Operational Research 215 115–125.

29



Beullens, P., G.K. Janssens. 2014. Adapting inventory models for handling various payment structures

using Net Present Value Equivalence Analysis. International Journal of Production Economics 157

190–200.

Boyaci, T., G. Gallego. 2002. Coordinating pricing and inventory replenishment policies for one wholesaler

and one or more geographically dispersed retailers. International Journal of Production Economics 77

95–111.
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A An approximation for inventory holding cost

One may use the following Maclaurin expansion approximations for (2) and (4) as in Wee and Law (2001):

I(t) = (R− y)e−θt
γ

(
t+

θtγ+1

γ + 1

)
, 0 ≤ t ≤ T1, (47)

I(t) = ye−θt
γ

(
T1 + T2 − t+

θ

γ + 1

(
(T1 + T2)

γ+1 − tγ+1
))

, T1 ≤ t ≤ T1 + T2. (48)

If we use the approximations (47) and (48), then T1 = g(T2) is implicit in:

(1− y

R
)T1 +

θT γ+1
1

γ + 1
=
y

R

(
T2 +

θ

γ + 1
(T1 + T2)

γ+1

)
(49)

and the values for HC1 and HC2 are given by:

HC1 =f

∫ T1

0

I(t)e−αtdt

≈f(R− y)

(
T 2
1

2T
− αT 3

1

3T
− θγT γ+2

1

(γ + 1)(γ + 2)T
+
αT 2

1

4

) (50)
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and

HC2 =f

∫ T1+T2

T1

I(t)e−αtdt

≈fy[
T2(T1 + T2)

T
+
αT2

2
(T1 + T2)−

1

2

(
1

T
+
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2

)(
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(51)
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