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This work concerns the evolution equations of general relativity; their mathematical prop-
erties at the continuum level, and the properties of the finite difference schemes used to 
approximate their solution in numerical simulations. 

Stability results for finite difference approximations of partial differential equations which 
are first order in time and first order in space are well-known. However, systems which 
are first order in time and second order in space have been more successful in the field of 
numerical relativity than fully first order systems. For example, binary black hole simula-
tions are accurate for much longer times. Hence, a greater understanding of the stability 
properties of these systems is desirable. An example of such a system is the NOR (Nagy, 
Ortiz and Reula) [47] formulation of general relativity. We present a proof of the stability 
of a finite difference approximation of the linearized NOR evolution system. The new tools 
used to prove stability for second order in space systems are described, along with the 
simple example of the wave equation. 

In order to implement and compare different formulations of the Einstein equations in 
numerical simulations, the equations must be expanded from abstract tensor relations into 
components, discretized, and entered into a computer. This process is aided enormously 
by the use of automated code generation. I present the Kranc software package which we 
have written to perform these tasks. 

It is expected, by analogy with the wave equation, that numerical simulations of systems 
which are first order in time and second order in space will be more accurate than those 
of fully first order systems. We present a quantitative comparison of the accuracy of 
formulations of the fully nonlinear Einstein equations and determine that for linearized 
gravitational waves, this prediction is verified. However, the same cannot be said for 
other test cases, and it is concluded that certain problems with the second order in space 
formulations make them behave worse than fully first order formulations in these test cases. 
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Chapter 1 

Introduction 

1.1 Numerical Relativity 

The field of numerical relativity is concerned with obtaining approximate solutions to Ein-

stein's equations by making use of numerical analysis and computer simulations (for general 

reviews, see [43, 2]) . The major application is to astrophysics, where the physics of highly 

relativistic bodies is poorly understood. There is an extensive effort underway to detect 

gravitational waves from highly dynamical events. One example of such an event is the 

orbit and merger of two black holes (see review in [12]), which is expected to provide a 

strong gravitational wave signal [48]. Gravitational waves are so weak that a technique 

called matched filtering is required to detect them . This needs a template signal to be 

provided, and this is compared with the detector data to give a probability that such an 

event occurred (e.g. [24]). Numerical relativity simulations can be used to provide such 

templates. 

The early stages of the orbit can be modelled using so-called post Newtonian methods 

[14, 25] which involve using the first few terms in the expansion of the GR solution about 

the Newtonian solution in powers of v/c (where v is some characteristic velocity for the 

system). This technique applies to weak-field situations. After the merger, the resulting 

black hole is approximately the Kerr solution, and Einstein's equations can be linearized 

about this solution and a mode analysis of the perturbations can be performed to extract 

the wave signal [52, 10, 9]. However, between the early stages of the orbit and the aftermath 

of the merger, neither post-Newtonian nor black hole perturbation theory calculations are 

good approximations to the physics. During this period, solutions to the fully nonlinear 



1.2. Stability of numerical implementations of well-posed formulations 

equations are required. 

In numerical relativity, one provides suitable initial data for the metric and stress-energy 

tensor (for example, two orbiting black holes) at a given time [23], and uses the Einstein 

equations to provide a solution at later times, from which the gravitational wave signal can 

be extracted. The work of [22, 18] shows that such a solution will exist (at least for a finite 

time) and will be unique. Whilst apparently straightforward, this procedure is fraught with 

difficulties. 

There are two requirements on the initial data. Firstly, it must be a physically realistic 

model for the astrophysical event under study. Secondly, the data must satisfy the con-

straint equations of general relativity. One must choose which spacelike surface of spacetime 

to use as the initial slice, and what coordinates to use on that slice. Providing physically 

realistic initial data is not straightforward. For example, to provide initial data for two 

orbiting black holes, it is not possible to simply add together two Kerr solutions, as the 

resulting spacetime will not satisfy Einstein's equations, due to their nonlinearity. 

Once initial data in some coordinate system has been provided, it is necessary to specify 

how the coordinates map to different points in the evolved spacetime. Different choices will 

have different properties. For example, some choices may lead to coordinate singularities 

after a finite time. 

There is more than one way to write the Einstein equations as a time evolution problem. 

In addition to the choice of gauge, the evolution equations can be modified by using the 

constraint equations. This leads to a multitude of formulations of the Einstein equations, 

each of which are the same when the constraints are satisfied, but which have different 

solutions when they are not. Some of these formulations are hyperbolic, which means that 

the speeds of propagation of features in the solution are finite, and the initial value problem 

is what is called well-posed (for a review of hyperbolic formulations, see [53]). 

1.2 Stability of numerical implementations of well-

posed formulations 

The Einstein equations consist of a set of ten coupled nonlinear second order partial dif-

ferential equations. In order to solve the initial value (time evolution) problem, the fully 

second order system is usually written as a first order in time system, modelled on the 



1.2. Stability of numerical implementations of well-posed formulations 

Arnowitt-Deser-Misner (ADM) decomposition [7, 65]. Such systems can be evolved di-

rectly [57, 11], or a further reduction from second to first spatial order can be performed 

(see, for example, [29, 36, 6, 38]). 

An important issue is the mathematical well-posedness of a formulation of the Einstein 

equations. A problem is well-posed if a solution exists, is unique, and depends continuously 

on any prescribed data. Local (for finite time) existence and uniqueness have been shown in 

[22, 18]. The requirement of continuity, often called stability, implies that small fluctuations 

in the prescribed data should not lead to arbitrarily large fluctuations in the solution, a 

property essential for a physical theory to have predictive power, and also for numerical 

implementation. Chapter 4 in [34] and Chapter 2 in [39] give comprehensive treatments. 

There are many techniques for obtaining a numerical solution to a system of PDEs. One 

approach is to consider only a finite grid of points, and to replace derivatives in the equations 

with differences between the values of the function at different points. The discretized 

equations are then solved. This approach will be used in this work, and is called the 

method of finite differences. We follow Chapter 5 of [34] for our treatment of this subject, 

and the notation used will be the same. 

The solution of the resulting set of finite difference equations will be an approximation to the 

solution to the continuum problem. It is necessary that the error in the numerical solution 

at a time t tends to zero as the grid spacing is reduced. This is called convergence (for the 

finite difference schemes that we consider, the rate of convergence will be polynomial). 

For linear systems, a necessary condition for convergence is stability of the discretized 

equations. This is the discrete analogue of well-posedness, and means that the norm of the 

discrete solution can be bounded in terms of its initial value, independently of the initial 

data. 

Whereas the theory of Cauchy problems for fully first order systems of partial differential 

equations is understood, in terms of well-posedness at the continuum and the stability of 

finite difference approximations, the theory of second order in space hyperbolic systems 

is less well developed. The recent improvement in the understanding of second order in 

space formulations of Einstein's equations at the continuum [54, 47, 31, 32, 11] has not 

been matched by developments concerning finite difference approximations of such systems 

(see, however, [41, 58]). Given that these systems have fewer variables, fewer constraints, 

and typically smaller errors (see [41] and Section 7.6.1), it is desirable to better appreciate 

their properties. 



1.3. Automated code generation 

For discretizations of linear systems that are first order in time and first order in space, it is 

possible to show stability for various common discretizations. However, there is very little, 

if anything, in the literature concerning proofs of numerical stability for discretizations 

of Einstein-type equations in first order in time and second order in space form. To our 

knowledge, the study of such systems has not been performed before. 

I discuss progress in this area made in collaboration with Gioel Calabrese, and present a 

proof of stability for one particular formulation of Einstein's equations, known as NOR. 

When the equations are linearized about a Minkowski background in Cartesian coordinates, 

the standard discretization of these equations is conditionally stable (i.e. it is stable with a 

small enough Courant factor, k/h, where h and k are the space and time coordinate spacing 

of the numerical grid respectively). The proof is general and relies on a discrete reduction 

to first order in Fourier space, and a set of conditions are derived that can be applied to 

any second order scheme to determine whether or not the system is stable. Stability is 

defined with respect to a discrete norm that contains difference operators. 

1.3 Automated code generation 

In order to calculate solutions of the Einstein equations numerically, the particular equation 

system must be entered into a computer. A typical evolution system (the BSSN equations) 

consists of 18 coupled, nonlinear, partial differential equations. They are algebraically com-

plicated to write down, even using abstract index notation. Before solving the equations, 

they must be expanded into components, which further complicates the problem. It takes 

a long time to write such a system of equations by hand in a traditional programming 

language such as C or Fortran. Further, it is easy to make mistakes, and debugging such a 

code is difficult. To address this problem, we decided to implement a method of taking a 

description of the abstract index initial value problem and converting it automatically into 

the C or Fortran code necessary to solve the equations numerically. We used Mathematica 

as the basis for our system, and we call the resulting package Kranc, for KRanc Assembles 

Numerical Code. This package has been used for all the numerical experiments in this 

work, and it was written in collaboration with a group at the Albert Einstein Institute. 

The Kranc output code is based on the Cactus [30, 5, 59, 19] problem solving infrastructure. 



1.4. Formulation comparison 

1.4 Formulation comparison 

Given the large number of formulations of the Einstein equations that have been proposed, 

for example [7, 38, 57, 11, 29, 27, 54, 55, 47], it is desirable to compare the suitability 

of these formulations for numerical simulations. There is a project [3] underway between 

various numerical relativity groups around the world with the aim of doing this numerically. 

The project is called "Apples with Apples", as the emphasis is on providing standardized 

tests. Care must be taken when comparing different formulations to keep the specifics of 

the test the same, as a comparison between two numerical runs can be influenced by factors 

other than the formulation. 

We use testbeds from this project to perform quantitative comparisons of the accuracy of 

numerical implementations of the NOR, BSSN and ST formulations. The tests are designed 

to model different parts of an astrophysical spacetime, including oscillatory gauge dynamics, 

linear gravitational waves, and the strong field region around a singularity. These testbeds 

are restricted to using periodic boundary conditions so that there are no complications 

arising from the presence of artificial boundaries. A later stage of the project will introduce 

tests with artificial boundaries. The exact solutions to the testbeds are one dimensional 

(i.e. they have plane symmetry) for simplicity. 

We test the numerical convergence of these nonlinear systems about the exact solutions 

in the testbeds; for nonlinear systems stability is not defined and convergence is what is 

ultimately required. We also attempt to determine whether the improvement in accuracy 

exhibited by a finite difference approximation of the wave equation when written in second 

order in space form as opposed to fully first order form is reflected in the Einstein equations. 

1.5 Thesis overview 

In Chapter 2, the 3 + 1 decomposition of Einstein's equations is presented; the equations 

are written in a form (the ADM equations) which is manifestly an initial value problem. 

The important notion of the well-posedness of such a problem is introduced in Chapter 3, 

and modifications to the ADM equations are described which make the problem well-posed. 

In Chapter 4, the technique of finite differencing for numerically solving partial differential 

equations is described, along with definitions of stability and convergence of the associated 

numerical schemes. Chapters 2-4 constitute review material. 



1.5. Thesis overview 

In Chapter 5 we introduce the concept of a discrete symmetrizer and the techniques we 

have developed for showing stability of first order in time, second order in space finite 

difference schemes. The main result is a proof of the stability of the linearized NOR system. 

Chapter 6 describes our Kranc package for automated code generation, and in Chapter 7 

we describe numerical experiments showing results for convergence and accuracy tests of 

several formulations about testbed solutions. 



Chapter 2 

3 + 1 decomposition of Einstein's 

equations 

2.1 Motivation 

Consider a spacetime (M.,gab) where Ai is a four dimensional manifold and gab is the 

spacetime metric on that manifold (see e.g. [35, 64] for an introduction to the theory of 

general relativity). Einstein's equations 

Gab = ^^^Rab — ^9ab = I^^^^Tab (2.1) 

describe geometrically the behaviour of the curvature of a space-time and how this is related 

to its matter content. Gab is the Einstein tensor associated with Qab, ^̂ ^Rab is the Ricci 

tensor, and is the stress energy tensor representing the energy and matter content of 

the spacetime. The indicates that the curvature tensors are those of the four dimensional 

spacetime, as we will be considering three dimensional quantities later. This work will be 

concerned with vacuum general relativity, hence the matter terms Tab will be neglected. In 

this situation, (2.1) is equivalent to 

= 0 (2.2) 

Writing (2.2) in terms of partial derivatives associated with a coordinate basis, the structure 

of the equations becomes apparent: 



2.2. Foliations of spacetime 

Pptr,!/ 9j(T,p) ( 2 - 4 ) 

Due to the symmetry of this is a set of 10 equations. It forms a system of second 

order partial differential equations for the metric components Qab- This is not manifestly 

an initial value problem. For an astrophysical simulation, initial data is provided at a time 

t and the solution to the Einstein equations is required at later times. 

2.2 Foliations of spacetime 

Given a four dimensional spacetime {M., gab), the first step is to introduce a time coordinate. 

This is a slight loss of generality, as only manifolds of the form M x E, or particular patches 

of this form in a general manifold, can be described. It would have been possible to define 

a global one-form Ua and this could have been used to generate a time function locally. We 

will be satisfied with a concept of time which is local. This can be provided by a scalar 

function t satisfying 

(25) 

This is the requirement that surfaces of constant t (called slices) are spacelike. Each of these 

surfaces is the image of a three dimensional manifold Ej under an embedding ; Sf —> 

See Chapter 2 of [35] for more details. The set of surfaces E* is called a foliation, and each 

Et is a spacelike hypersurface. 

The lapse a describes the rate of change of proper time with coordinate time in a direction 

normal to the slices: 

= g^^VatVbt (2.6) 

2.3 Projections in and across the slices 

The unit normal rf' to the slice is defined as 

71* EE (2.7) 

This satisfies nf̂ Ua = —1, and for any vector in the slice (i.e. s" such that s°'Vat — 0), 

riaS" = 0. Such vectors are described as spatial in the context of this decomposition. The 

set of tensors which give zero when contracted with rf- are described as spatial, and these 

8 



2.3. Projections in and across the slices 

tensors can be identified with tensors on 2* by using the map and the metric Qab- Hence 

spatial tensors S can be considered to be objects defined on Et, which means that they 

have only three dimensional degrees of freedom. The remaining degrees of freedom are 

constrained by the condition S • n = Q. 

The four dimensional metric gab induces a metric jab on St via the relation 

Tab = Qab (2-8) 

This metric is spatial = 0) and positive definite. 

7"j, is a projection operator and projects tensors into the slice. We use the notation 

-L (2.9) 

to represent a projected tensor, with the obvious generalization to contravariant and mixed 

tensors. Such tensors give zero when contracted with n". Indices on spatial tensors can be 

raised and lowered with either Qab or jab-

The covariant derivative V on the spacetime can be used to induce a covariant derivative 

on the slice. For spatial tensors S (indices are suppressed here), this covariant derivative 

is defined as 

D a S = ± V a S (2.10) 

It can be shown that 

DaKbc = 0 (2.11) 

hence D is the metric connection of the induced metric jab-

The extrinsic curvature, the tensor representing how the embedded slice curves with respect 

to the spacetime, is defined as 

Kab = - 1- VaTlb (2.12) 

Whilst not obvious from the definition, this tensor is symmetric. This quantity can be 

written as 

Kab = -l^C-nlab (2.13) 

The acceleration vector of the slice is defined as 

o" = (2.14) 



2.4. Coordinate evolution: lapse and shift 

This is also a spatial vector. Starting from V[aVb]t = 0, and using (2.7), then projecting 

with n'' and 7"^, we obtain Dglna = Oc 

2.4 Coordinate evolution: lapse and shift 

In order to define the slice, a time function t has been introduced, = t will be used to 

denote the time coordinate, and spatial coordinates on a particular slice will be denoted 

where i = 1,2,3. Once coordinates have been assigned to the initial slice, they need 

to be propagated to subsequent slices. The integral curves of a timelike vector field t"- are 

used for this purpose. Points on the same integral curve of f are defined to have the same 

spatial coordinates. These curves are parameterized using coordinate time t; hence 

e V a t = 1 (2.15) 

The vector field can be decomposed in terms of the unit normal to the slice and an 

arbitrary spatial vector /3". 

= rri* f f r (2.16) 

The value of r is obtained from (2.15): 

r = a (2.17) 

hence 
= cm* 4- f r (SUMS) 

So the change in spatial coordinates from one slice to the next is completely determined 

by an arbitrarily prescribed spatial vector field /3", which we call the shift vector. 

In these adapted coordinates, the metric can be shown to have the following component 

forms: 

10 



2.5. Projection of Einstein's equations; the ADM formulation 

Spatial vectors have components: 

(2.20) 
/ \ V, 

and spatial tensors have components: 

So spatial tensors are completely determined by their spatial part, and in a time evolution, 

we only need to consider evolution equations for the spatial components; the remaining 

components can be reconstructed if necessary from these. Since 7ah and Kab are spatial, 

they can be represented by their spatial parts and a specification of lapse and shift. So 

these tensors can be described by 3 x 3 symmetric matrices, and %j and Kij have six 

components each. 

2.5 Projection of Einstein's equations; the A D M for-

mulation 

Einstein's equations (2.3) are to be rewritten as an initial value problem on the foliation 

introduced above. The three-metric describes the geometry of a given slice, and the extrinsic 

curvature, a first derivative of the metric in the direction normal to the slice, describes how 

the metric changes from one slice to the next. 

and Kij will be provided on the initial slice, and these quantities will be evolved to later 

times using the Einstein equations. In order to do this, the vacuum Einstein equations are 

projected in directions tangent to the slice. 

The starting point is the vacuum Einstein equations: 

(2.%0 

In order to derive the time evolution equations, this equation is projected on all its spatial 

indices. 

The relation between the Riemann tensor, on the shce and the projection of the 

11 



2.5. Projection of Einstein's equations; the ADM formulation 

Riemann tensor, of the spacetime can be derived as follows. By definition, for a 

spatial vector Y"", 

-- DdjDcr* (2j!3) 

Using (2.10) to write D in terms of V and jab, replacing derivatives of n" with Kab using 

(2.12), and using the fact that V^Ua = 0, the Gauss equation is obtained; 

+ K ' ^ K u (2.24) 

So the Riemann tensors on the slice and in the spacetime are related via the extrinsic 

curvature of the slice. 

Contracting on a and c, the Ricci tensor of the shce is obtained 

" K K u + K ' ^ K ^ (2.25) 

The time-space-time-space projected Riemann tensor is obtained by starting from 

= VkVgM/ - VgVhTi/ (2.26) 

and contracting with Again, derivatives of n" are replaced with Kab using (2.12), 

and rf'VaKbc is replaced using the Lie derivative: 

= ^nKbd + Daa^ + a^ad + Kg^K^ (2.27) 

Substituting this expression into (2.25), the spatially projected 4 dimensional Ricci tensor 

is obtained in terms of 3 dimensional quantities: 

Rfhl\l^d ~ ^^^Rbd — Dddb — O'bO'd + KKm — K^d^ba ~ ^n^bd (2.28) 

Projecting Einstein's equations in the spatial directions yields 

= 0 (2.29) 

Hence, in terms of the Lie derivative in the n" direction, 

^nKbd = Rbd — Dddb — abttd + KKbd — K"'d^ba (2.30) 
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2.5. Projection of Einstein's equations; the ADM formulation 

The Lie derivative with respect to n" can be replaced with a Lie derivative with respect 

to using (2.18). In combination with (2.13), the ADM [7] (Arnowitt, Deser and Misner) 

evolution equations for vacuum general relativity are 

A7ab = —2aKab + (2.31) 

== --DoDbW -- SLRTacJr:,, 4- 4- /ZpJS'd, (2.212) 

This derivation is based upon that presented in [65]. 

The Einstein equations have been projected in the space-space directions to obtain the 

ADM evolution equations. The projections in the time-time and time-space directions 

yield 

EE 4-.ATS -- jfoAjR:** = 0 (2.313) 

jkr* == __ _ 0 (2.314) 

Whilst (2.31)-(2.32) refer to how the metric and extrinsic curvature change from one slice 

to the next (they are called evolution equations), (2.33)-(2.34) are conditions which must 

be satisfied on every slice {constraint equations). It can be shown that if these constraints 

are satisfied on one slice, then the evolution equations guarantee that they will be satisfied 

on subsequent slices. 
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Chapter 3 

Well-posedness of the Cauchy 

problem for PDEs 

When considering a system of partial differential equations in a certain set of variables, 

the Cauchy problem is the following: given values for the variables at an initial time for all 

spatial coordinates, obtain a solution to the equations at a later time. The Cauchy problem 

is called well-posed if a solution exists (at least for a finite time), is unique, and depends 

continuously on the initial data. In a physical theory, changing the initial conditions of a 

process should only change the outcome by an amount that can be controlled by making 

the change in the initial conditions smaller. This property should be reflected in the field 

equations of the theory. Prom the point of view of a numerical simulation, this property is 

essential, as at every time step a small error is introduced. If this could have an arbitrarily 

large effect on the solution, then there would be no guarantee of obtaining an approximation 

convergent to the exact solution. 

By writing the Einstein equations in harmonic coordinates (V"Vaa:^ = 0), it has been 

shown [22] that the system has a well-posed Cauchy problem, as the equations are wave 

equations in these coordinates. However, these coordinates are not suitable for numerical 

simulations as they lead to the formation of coordinate singularities in finite time (however, 

it should be noted that a formulation of the Einstein equations using generalized harmonic 

coordinates has shown a large degree of success in tackling the binary black hole problem; 

see [50, 51]). The ADM formulation of the Einstein equations has been introduced already. 

The combined system of evolution and constraint equations forms a well-posed problem. 

However, numerical evolutions typically use only the evolution equations (this is called 
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3.1. Spaces and norms 

free evolution), and the constraints are monitored to assess the accuracy of the numerical 

solution. The set of ADM evolution equations written in fully first order form has been 

shown [38] to have an ill-posed Cauchy problem. Since convergence of a numerical scheme 

relies on well-posedness of the continuum problem, free numerical evolutions of ADM should 

not converge. 

However, the decomposition of the Einstein equations into evolution and constraint equa-

tions is not unique. Multiples of the constraints can be added to the evolution equations. 

This changes the nature of the free evolution problem, but the physical solutions (those 

satisfying the constraints) remain the same. It turns out (see e.g. [38]) that it is possible to 

make the free evolution problem well-posed by introducing auxiliary variables and adding 

multiples of the constraints to the evolution equations. 

In this chapter, the definition of well-posedness of linear constant-coefficient partial dif-

ferential equations is reviewed, as are algebraic conditions that can be used for testing 

the well-posedness of a given PDE. General systems are considered first, then the spe-

cialization to first order systems is made. The necessary framework for discussing second 

order in space systems like the Einstein equations is then introduced, and an outline of 

the procedure for generalizing the results to variable coefl&cient and nonlinear problems 

follows. A description of three well-posed formulations of the Einstein equations concludes 

the chapter; these are the formulations that will be compared in Chapter 7. 

3.1 Spaces and norms 

The set L2(M'̂ ) {L2 for short) is the set of Lebesgue integrable functions defined on 

= ^ (3.1) 

The L2 norm is defined by 

= \ [ \u{x)\'^dx (3.2) 
V VR' 

It will be necessary to consider vector valued functions u : —> C" ; the above definitions 

are extended by replacing \u{x)\ under the integral by the Euclidean norm (see Appendix 

A) on C" . 
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3.2. Constant coefficient Cauchy problems 

3.2 Constant coefficient Cauchy problems 

In this work we will be dealing with initial value (or Cauchy) problems of the form 

= p ( ^ - ^ ^ u { t , x ) (3.3) 

= /(%) (3.4) 

in d spatial dimensions, where x e u = P is a linear, constant 

coefficient, differential operator of order p. We consider only the cases p = 1 and p = 2. 

Furthermore, we assume that the eigenvalues of the symbol of the differential operator, 

P(iuj), which is obtained by replacing d/dxj in P(d/dx) with iujj, for j = 

have real part uniformly bounded from below and above. We are thus excluding parabolic 

systems, but we are allowing for systems like the wave equation written as a first order 

in time, second order in space system. For simplicity we focus on solutions that are 27r-

periodic in all spatial coordinate directions. Thus the initial data, f{x), is chosen so that 

it satisfies this property. 

Definition 3.2.1. Problem (3.3)-(3.4) is well-posed with respect to a norm || • || if for all 

smooth periodic initial data f there is a unique smooth spatially periodic solution and there 

are constants a and K, independent of f , such that 

IKt,-) l l<ife<"| | / | | (3.5) 

(Definition 4-i-l in [34]) 

Exponential growth must be allowed if one wants to treat problems with lower order terms. 

For first order hyperbolic systems the L2 norm 

\w 
p27r n2-K 

'^ = / ... / \w{x)\^dxi.. .dxd (3.6) 
Jo Jo 

is usually used in (3.5). We will see later that the second order systems we study in this 

work require the use of a different norm. 

This definition of well-posedness is difficult to apply in practice, so there is a theorem in 
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3.2. Constant coefficient Cauchy problems 

Fourier space that is easier to use. Writing u{t, x) as a Fourier series, 

00 

= (3.7) 

problem (3.3)-(3.4) can be written as 

^u{t,uj) = P {iu))u{t,uj) (3.8) 

6(0, w) = /(w) (3.9) 

with formal solution 

6((,w) = e^(^)Y(^) (3.10) 

which in physical space gives the formal solution of (3.3)-(3.4) as 

OO 
t/((,z) = (27r)-'̂ /̂  ^ (3.11) 

Theorem 3.2.1. Well-posedness in the L2 norm is equivalent to there being constants K, 

a such that, for all u), 

where |A| = sup|„|^i \ Au\ is the matrix (operator) norm of a matrix A (see Appendix A). 

(Theorem 4-5.1 in [34]) 

The main result for general systems is presented in the following theorem: 

Theorem 3.2.2. Well-posedness of the Cauchy problem in the L2 norm is also equivalent 

to the existence of constants a, K > 0 and of Hermitian matrices H{u) satisfying, for 

every u, 

<: ffXb/) JCf (31:3) 

#(w)p(2w) + f *(%(^)^('^) < 2aA(w) 

where P* represents the Hermitian conjugate of P. (Theorem 4-5.8 in [34]) 

Inequalities for matrices are defined in Appendix A. The last inequality gives an energy 

estimate for each Fourier mode and the estimate in physical space, (3.5), follows from 
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3.2. Constant coefficient Cauchy problems 

Parseval's relation, 

(3.14) 
W 

As shown in Lemma 2.3.5 in [39], the existence of H{uj) is not affected by the addition of 

a constant matrix to P{iui). Suppose P{d/dx) is a constant coefficient operator, and B G 

Qm,m jg constant matrix, and let Po{d/dx) = P{d/dx) + B. The Cauchy problem is well-

posed for ut — Pu if and only if it is well-posed for ut = Pqu. Therefore, undifferentiated 

terms on the right hand side of the equations can be ignored in the analysis of well-

posedness. 

If (3.3) is modified by adding a forcing (inhomogeneous) term to the right hand side, 

^u{t,x) = P + F{t,x) (3.15) 

then well-posedness of the homogeneous problem (3.3)~(3.4) implies well-posedness of the 

inhomogeneous problem, in the sense that it satisfies the modified estimate 

||u(t,-)|| < K maxJ\F{t, •)\\] (3.16) 

where 

= { (3.17) 
t, if a = 0 

(Theorem 4.7.2 in [34]). 

If (3.13) is satisfied with HP + P*H = 0 then H is called a symmetrizer. Consider the 

time evolution of the quantity E{t,uj) = u*{t,uj)H{uj)u{t,u): 

= 2Re 
at at 

= 2 Re = + (318) 

So for each u>, the following statements are equivalent: 

^ 6 * ^ 6 = 0 

HP + P*H = 0 
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3.3. First order hyperbolic systems 

So if ^ is a symmetrizer, E is a conserved energy of the system. 

To construct H one can proceed as follows. Assume the existence of a matrix T such 

that T~^PT = A is diagonal with imaginary elements. Then the quantity u*Hu, where 

H = and D is a positive definite matrix which commutes with A, is conserved 

by the system dtu = Pu. Defining the characteristic variables oi P to be w = (these 

are individually conserved: = 0), we see that to construct a conserved quantity one 

can take w*D'w. (For D = I this corresponds to adding the squared absolute values of 

the characteristic variables.) For A to be a symmetrizer it remains to be established that 

3.3 First order hyperbolic systems 

For p = 1, system (3.3) can be written as 

dtu{t, x) = A^diu{t, x) + B (3.19) 

where Ai and B are constant matrices. The symbol of the principal part (that part not 

containing derivatives) of system (3.19) is P = iuJiA\ The system is said to be strongly 

hyperbolic if the corresponding Cauchy problem is well-posed in the norm (i.e. if A(w) 

exists). Strong hyperbolicity is equivalent to P being uniformly diagonalizable with imag-

inary eigenvalues (i.e. the matrix T which diagonalizes P satisfies |T||T~^| < C for C 

independent of w). The system is said to be weakly hyperbolic if the eigenvalues of P are 

imaginary. If Hito) = / , the system is said to be symmetric hyperbolic. If H{ijo) = H 

is independent of w, then we say that the system is symmetrizable hyperbolic. Note that 

symmetrizable hyperbolic systems are often also called symmetric hyperbolic by some au-

thors. For a symmetrizable hyperbolic system, the change of variables u = brings 

the system into symmetric hyperbolic form. 

We define the characteristic speeds in the direction w, to be the eigenvalues of P{iui) divided 

by iuj. If H = if is independent of w (i.e. symmetrizable hyperbolicity), and there are no 

lower order terms in (3.3) then there exists a conserved energy in the domain Q. 

E{t) ~ I u*{t,x)Hu{t,x) df'x (3.20) 
Jo. 

at Jn Jn 
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3.4. Second order systems 

== == w'ffvl'itni 0%? (3.21) 
Ju Jan 

where we have used HA^ = A^*H and the divergence theorem, and rij is a unit vector 

normal to the boundary element dS. So the change of the energy in Q is dependent only on 

the solution at the boundary dO,. In the case of periodic boundaries, or Cauchy problems 

where all fields fall off to zero sufficiently rapidly at infinity, the surface integral is zero. 

When artificial boundaries are considered, estimates of this form can sometimes be used 

for symmetrizable hyperbolic systems to prove well-posedness of the initial boundary value 

problem. 

If H depends on ui (only strong hyperbolicity), the translation back to physical space is 

not so straightforward, and a strongly hyperbolic system satisfies the estimate ||'ix(t, •)|| < 

i<'||w(0, •)|| with a constant K > 1. 

3.4 Second order systems 

The ADM evolution equations (2.31)-(2.32) are first order in time and second order in 

space. A model for this system is the first order in time, second order in space, wave 

equation: 

dt(t>{t,x) = 7r(t, a;) (3.22) 

dt'K{t,x) = dl^{t,x) (3.23) 

This is obtained from the fully second order wave equation (f)u{t,x) = 4>xxit,x) by the 

introduction of the variable Tr{t,x) = (j)t{t,x). This mimics the ADM equations with 0 

representing 7 -̂ and TT representing Kij. Consider the initial data 

(l)o{x) = 8in(wz) (3.24) 

7ro(z) = 0 (3.25) 

This generates the solution 

(f){t,x) — sin(wa;) C08(wt) (3.26) 

7r{t,x) = —w sin(wa:) sin(w^) (3.27) 
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3.5. Well-posedness of second order in space systems: first order reduction 

with L2 norm 

(*2'K 
l k (^ ) lP= / I0P + inprfx = ||«(0)||^ [cos^(a;t)+a;^sin^(a't)] (3.28) 

Jo 

hence \\u{t)\\ can be made arbitrarily large in comparison with ||'u(0)|| by choosing large 

enough u, contradicting well-posedness in L2. We will see later that the system is well-

posed in a norm that contains derivatives of (f). 

3.5 Well-posedness of second order in space systems: 

first order reduction 

It is possible for the Cauchy problem for a first order in time and second order in space 

system of equations to be ill-posed in the L2 norm, but well-posed in a norm which contains 

additional derivatives. We analyse the well-posedness of the Cauchy problem for such 

systems by using the analytical tool of a reduction to first order. This will be done in 

Fourier space, so that the number of additional variables being introduced is minimized 

[40], 

Consider system (3.3) with p = 2 and suppose that it can be written in the form 

dtU = Pu u = ( " ) f = (" ^ ^ ^ ) (3.29) 

where the evolved variables have been split into two types. The column vector u represents 

those that are differentiated twice (in space) and v represents those that are not. In P a 

sum over repeated indices is assumed. Not all second order in space systems can be written 

in this form (for example, Ut = Uxx)- This form is general enough to include all the first 

order in time, second order in space systems that we have considered that can be reduced 

to first order in space. Fourier transforming this system, we obtain 

= ^ + ^ ^ (&30) 

where M" = M^rii and uji = \uj\ni and ut = \u}\. We define the second order principal symbol 
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3.5. Well-posedness of second order in space systems: first order reduction 

to be 

P' = 
C 

(3.31) 

We now state the main new result of this subsection. 

Theorem 3.5.1. If there exists H{cu) = H*(uj) such that the energy it*Hit is conserved by 

the principal system 

(3.32) 

and H satisfies 

K % < A < K/o;, = 
0 

0 1 
(3.33) 

where K is a positive scalar constant, then the solution of (3.29) satisfies the estimate 

| « ( < , . ) | | < ^ e ' ^ M O , . ) | (3.34) 

\u\ 
f ° 

= / 1̂ 1̂  + \diu\'^ + \v\^d' 
i=l 

x 

and the problem is well-posed in this norm. (HP' + P'*H = 0 is equivalent to the conser-

vation ofu*Hu.) 

Proof The proof proceeds via a pseudo-differential reduction to first order [47]. This 

involves the introduction of a new variable w = iuiu. By taking a time derivative of 

this definition, we obtain the enlarged system in which the second derivative of u has been 

replaced with a first derivative of w. We reduce the order of the system as much as possible 

so that any occurrence of iuu is replaced with w. This particular first order reduction is 

/ 6 \ 

w 

v 

dtiiR = PRUR , iiR = 

\ " / 

A" C 

0 iwA" + B zwC 

(3.35) 

Pr = 

/ 

V 
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3.5. Well-posedness of second order in space systems: first order reduction 

This system is equivalent to the second order system (3.30) only when the auxiliary con-

straints 

C{t, uj) = w{t, w) — iuju{t, u) = 0 (3.36) 

are satisfied. It can be shown that dtC = BC so if these constraints are satisfied initially, 

then they are satisfied for all time. They are said to be propagated by the first order 

evolution equations. 

If this system admits a matrix Hr satisfying (3.13) then the solutions satisfy the estimates 

|6A((,w)|<;;re"'|6j%(o,w)| (3.37) 

where \ur\^ = \u\'̂  + \w\^ + for arbitrary initial data and u. Specifically, the esti-

mate holds for solutions which satisfy the auxiliary constraints and therefore correspond 

to solutions of the second order system. The estimate in Fourier space, 

ll'"/i(^, OlP = ^ (l^l^ + + l^l^) (3.38) 

= ^ + |%;|A -)ir (3.39) 
W \ 1=1 / 

implies by Parseval's relation the estimate in real space 

M ( , . ) | | < ; ^ e ' ^ M O , . ) | | (3.40) 

|w||^ = J |M|^ + \diu\'^ + \vfd'^x 

So the existence of HR for a first order pseudo-differential reduction implies the well-

posedness of the second order system with respect to a norm containing derivatives. 

We have still to show that we can find an HR for (3.35). Whether or not this is the case is 

independent of the lower order terms PR contains. A calculation similar to Lemma 2.3.5 in 

[39] shows that if P{uj) admits an HR, then so will P{io) + B{u>), where B{uj) is any matrix 

which satisfies \B\ + \B*\ < C for C independent of w. In other words, the terms that are 

not multiplied by iuj can be dropped from (3.35), giving the principal symbol of the first 
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3.5. Well-posedness of second order in space systems: first order reduction 

order reduction 

P'r-= 

/ 0 0 0 

0 

y 0 iwD"" zwG" y 

(3.41) 

without affecting the well-posedness. The principal symbols of the second order system, 

(3.31), and the first order pseudo-differential reduction, (3.41), are related by 

r = (&42) 
0 TFT loj u 

(Note that T~^ does not exist for w = 0. However, in this case, = 0, and admits 

the identity as a symmetrizer.) By assumption, there exists H{uj) = such that 

u*Hu is conserved by the principal system dtU = P'ii and satisfies (3.33). This H satisfies 

HP' + P'*H = 0, and it is straightforward to show that 

H r = I (3.43) 

satisfies HR = and HRP^ + P^HR — 0. Further, by noting that T*T = using (3.33) 

one can show that HR satisfies K~^I < HR < KI. Hence we have found a symmetrizer 

of Pjj and the result has been proved. It can also be shown that P^ is diagonalizable with 

the same eigenvalues as P' , plus as many zeroes as there are components of u. • 

To construct H one can use the characteristic variables of P' , as described at the end of 

Section 3.2. Note that this analysis did not require that the auxiliary constraint propa-

gation problem be well-posed. These constraints are merely a tool for the analysis of the 

system. When evolving the second order system they are identically zero. An alternative 

to the pseudo-differential reduction method is to perform a fully differential reduction by 

introducing a new variable in physical space for each derivative (see, for example, [54, 11]). 
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3.6. Well-posedness of variable coefficient linear Cauchy problems 

3.6 Well-posedness of variable coefficient linear Cauchy 

problems 

Consider a variable coefficient problem 

= (3.44) 
\ / j—i J 

u{0,x) = f{x) (3.45) 

If one freezes the coefficients at a particular spacetime point {to, xq) one obtains a constant 

coefficient problem. The localization principle is the statement that if all such frozen 

coefficient problems are strongly hyperbohc, then the variable coefficient problem is well-

posed. It is not known if this principle holds, but it is known that if the frozen coefficient 

problems are strongly hyperbolic and the symmetrizer of the variable coefficient problem 

is smooth, then the variable coefficient problem will be strongly hyperbolic according to 

the following definition. 

Definition 3.6.1. In the following problem, equation (3-44) ^ called strongly hyperbolic 

if there exists a Hermitian matrix function 

; f ( ( ,2; ,w)>0, z e R ' ' , ( > 0 , w € R ' ' , | w | = l , A : - V < ^ < K 7 (3.46) 

which is C°° smooth in all its arguments, and satisfies 

H(t, x, uj)P{t, x, iu}) + P*{t, x, iu)H{t, x,u) = 0 (3.47) 

(Definition 2 in 2.7.2 in [39]) 

So for first order systems, the definition of strong hyperbolicity is extended to the variable 

coefficient case simply by requiring smoothness of H{t,x,uj). According to Theorem 2.7.1 

in [39], this definition of strong hyperbolicity is sufficient for well-posedness, though it is 

not known whether the requirement for smoothness of the symmetrizer is necessary. 
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3.7. Well-posedness of nonlinear Cauchy problems 

3.7 Well-posedness of nonlinear Cauchy problems 

Consider nonlinear problems of the form 

— = P U,x,u, — \u{t,x) F = ^Aj{t,x,u)-^ -\-F{t,x) (3.48) 
\ / ^ 

u(0,x) = f(x) (3.49) 

Such a problem is called quasi-linear as it is linear in the highest derivatives. 

Definition 3.7.1. The system (3.48)-(3.49) is called symmetric hyperbolic if for all x, t 

andu, the matrices Aj(t,x,u) are Hermitian (Definition 4-9.1 in [34])-

Existence and uniqueness of solutions to (3.48)-(3.49) must be shown on a case-by-case 

basis; this can be done by an iteration scheme for linear problems (see Section 4.9 in [34]). 

Definition 3.7.2. Let u he a smooth solution to (3.48)-(3.49). We call the quasi-linear 

initial value problem well-posed for a time interval 0 <t <T at the solution u, if 

1. there is a neighbourhood M of {F, f ) defined by a suitable norm || • ||iv' 

supIIF-FIIAT < ?7, | | / - / | | i v < ? 7 (3.50) 
t 

where rj is a sufficiently small constant, such that (3.48)-(3.49) has a smooth solution 

for all (F, f ) G M", and 

2. there is a constant K such that 

sup \\u — u\\N<Kri (3.51) 
0<t<T 

(Definition 4-9.3 in [34]) 

Theorem 3.7.1. If the system 

^u{t,x) = P (^,x,u,-^^ u{t,x)-\-F (3.52) 

«(0, x) = f{x), (3.53) 

is symmetric hyperbolic at u, then it is well-posed at u (Theorem 4.9.3 in [34]). 
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3.8. Reformulations of Einstein's equations 

3.8 Reformulations of Einstein's equations 

Since the ADM evolution system is ill-posed, once might ask if there are alternative ways 

of writing the Einstein equations in time evolution form for which the evolution equations 

are well-posed. Typically, this can be done by making changes of variables and modifying 

the evolution equations by adding parameterized multiples of the constraint equations 

to the right hand sides. For certain choices of these parameters, the resulting evolution 

equations have a well-posed Cauchy problem. In this section, three modifications to the 

ADM equations are described. 

The BSSN [11] and [57] system is used by many groups to perform numerical simulations, 

and there is evidence (e.g. [1, 11]) that simulation lifetimes are greater than when ADM 

is used. In [54], the BSSN system with prescribed shift and algebraic lapse condition 

a = (det was reduced to first order and it was shown that the resulting first order 

system is symmetrizable hyperbohc and hence admits a well-posed Cauchy problem (here 

and later, Q represents an a-priori specified function of spacetime, independent of the 

evolved variables). In [13], the result was extended to more general slicing conditions of 

the form dta = —aF{a,K,x^). In [32], symmetrizable hyperbolicity was defined directly 

for second order in space systems based upon the existence of energy estimates, and BSSN 

with an algebraic lapse a — and prescribed shift was shown to satisfy this 

definition. 

The NOR system is a simplification of BSSN and was introduced in [47], where it was 

shown to have a strongly hyperbolic pseudo-differential reduction to first order. This is 

sufficient for the second order system to have a well-posed Cauchy problem. The lapse was 

a = {det'jYQ and the shift was fixed. In [32], the NOR system was shown to satisfy the 

definition of symmetrizable hyperbolicity based on energy estimates. As far as we know, 

the NOR system has not been implemented numerically before this work. We consider two 

parameterizations of the NOR system; NOR-A and NOR-B. In [33], the NOR-B system is 

shown to have a principle part which is essentially the same as that of the BSSN system. 

The ST [55] formulation is a fully first order system and is a special case of one of the 

family of formulations introduced in [38], which in turn is a generalization of the Einstein-

Christoffel formulation of [6]. The hyperbolicity of the ST system can be analysed directly 

using the techniques of the previous sections. With appropriate choices of parameters, it 

is symmetrizable hyperbolic and hence admits a well-posed Cauchy problem. 
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3.8. Reformulations of Einstein's equations 

3.8.1 B S S N 

The BSSN formulation is derived from the ADM equations by defining a new set of variables 

and adding the constraints to the evolution equations. 

The 3-metric 7 -̂ is conformally rescaled to have unit determinant, and the determinant is 

evolved separately. 

(3.54) 

= (det (3.55) 

The extrinsic curvature Kij is rescaled by the same factor, and is split into its trace and 

trace-free parts; these are evolved separately as well. 

Atj = (3.56) 

The resulting evolution equations for (f) and K are 

dt(t> = --aK (3.57) 

a K = D ' A a + + a (3.58) 

where the Hamiltonian constraint has been used to eliminate the Ricci scalar in (3.58). 

and Aij inherit evolution equations from those of 7 -̂ and Kif 

dt^ij — —2aAij (3.59) 
TF 

(xRij + cxRj^j — DiDjCx + Ad(j^(j)Dj^Oi u 

otKA-ij — (3.60) 

+ 

where the superscript TF denotes the trace free part (the trace free part of a tensor Ty with 

respect to a metric 7^ is defined as = Tij — \Tmnl^^lii which imphes 7'^ = 0 

with respect to either metric). The Ricci tensor in (3.60) is computed by splitting it into 

two parts. The first part is the Ricci tensor of the conformal metric 7^-. The second part 

is the contribution from the conformal factor. 

(3.61) 

Eg = + (3.62) 
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3.8. Reformulations of Einstein's equations 

In addition to the conformal traceless decomposition, an important ingredient of the BSSN 

system is the introduction of the conformal connection functions, r \ These are defined by 

r = f ' r k = - a j f J (3.63) 

The are introduced as new evolved variables, and are used to remove derivatives of the 

divergence of 7 -̂ from the system. Whenever such a term appears, it is replaced with a 

derivative of r \ This happens in the computation of the conformal Ricci tensor. 

f + r ^ . r . b ) (3.64) 

This equation for the Ricci tensor is different to the usual one; a term is missing because 

det 7ij = 1. An evolution equation for f ' is obtained by taking the time derivative of (3.63) 

and commuting space and time derivatives. 

+ 2a 
2m 

(3.65) 

In (3.65), the momentum constraint has been added to the right hand side with parameter 

m. Setting m to 1 removes the divergence of We choose to evolve the lapse a (an 

evolved, rather than prescribed, lapse allows greater freedom in choosing slicings). In this 

work, we only consider harmonic slicing ( V V a t = 0). The resulting evolution equation for 

a is: 

dtOL = —o?K (3.66) 

We now present the full set of BSSN evolution equations; 

dtAij 

% 

= —aK/6 

-2,c^A.ij 

+ a I A'^Aij + -K 

— p-4</> c^Rij + cxR ĵ — DiDjOL + Ad{i(f)Dj'jOL + cxKA^j — 'ZocA.̂ f̂ A.j (3.70) 
T F 

-2A'^6|;a + 2a (m — l)dkA ki 2m 

(3.67) 

(3.68) 

(3.69) 

(3.71) 

(3.72) 
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3.8. Reformulations of Einstein's equations 

+ (3.73) 

(%a == --afar (3/Ml) 

The constraint equations in the BSSN variables are: 

j? = (3 75) 

7k% == 6 1 ^ 1 4 , 4 - -- jlotJC (SI.TT)) 

Choosing m = 1 leads to a well-posed Cauchy problem for these equations [13]. 

3.8.2 N O R 

Nagy, Ortiz and Reula suggested modifications to the ADM system such that it can be made 

strongly hyperbolic whilst remaining in second order form. The system we use includes the 

shght adjustments of [32]. Additionally, we use an evolved lapse. 

The variable fi is defined as 

fi = l^Klik,i — gP^w,*) (3.77) 

with parameter p. This introduces the new constraint Q where 

Gi := fi — '')^\'yik,i — -piki,i) (3.78) 

Starting from the ADM evolution equations, an evolution equation for fi is obtained by 

differentiating (3.77) and commuting space and time derivatives. The Hamiltonian and mo-

mentum constraints are added with parameters c and b, and derivatives of the fi definition 

constraint Gi are added with parameters a and a': 

dtlij = —2aKij (3.79) 

dtKij = —DiDja -h — 2Kif.Kij'y''^ + KijK) + —a{Gij + Gj^i) + 

(cH + ci'Gk,n^^)^ij (3.80) 

^ [2(aA'ik),; -/)(a:Arw),i ] -t- (3.81) 

dta = —aF{a,K,x^) (3.82) 
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3.8. Reformulations of Einstein's equations 

The variables 7ij, Kij, fi and a are evolved. Due to the symmetries of 7 -̂ and Kij, this 

leads to 16 evolved variables. We write the Ricci tensor entirely in terms of 7^-; fi is only 

used where it appears as part of Q . 

For harmonic slicing, the lapse source function is 

(3.83) 

We identify two specific sets of parameters. Choosing 

a = 1, 6 = 1 , a' = 0, p = 2/3, c = 0 (3.84) 

we refer to the system as NOR-A. Setting a' = 1 and c = 1/3 leads to a system which we 

call NOR-B. Both of these systems are symmetric hyperbolic, in the sense of [32], as shown 

in [33]. Note that choosing parameters 

a = 0, 6 = 0, a' = 0, p = 0, c = 0 (3.85) 

leads to standard ADM. 

3.8.3 ST 

Instead of leaving the Einstein equations in second order in space form, it is possible to 

introduce new variables for the derivatives of those quantities which are differentiated twice 

and obtain a fully first order reduction. We describe the formulation of Sarbach and Tiglio, 

referred to as ST. 

Starting from the ADM equations, the variables which are differentiated twice are 7 -̂ and 

a. New variables for the first derivatives of these are defined: 

dkij = dk^ij (3.86) 

Ai = diOi (3.87) 

as well as the contractions 

(3 88) 

dk = dkijY^ (3.89) 
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3.8. Reformulations of Einstein's equations 

The definitions (3.86)-(3.87) lead to the constraints 

Ckij = dkij — dk'jij = 0 (3.90) 

Cikij = d[idk]ij — 0 (3.91) 

where the first is the definition constraint of dkij and the second comes from the fact that 

successive partial derivatives of commute. 

An evolution equation for dkij is formed using the ADM evolution equation for ^ij and 

commuting space and time derivatives. The general form for the evolved lapse is 

(3.92) 

where F is an arbitrary function of its arguments. For harmonic slicing (V"Vat = 0) with 

zero shift we have 

F = wK (3.93) 

leading to 

== (ZL&l) 

Taking a time derivative of A, leads to an evolution equation 

(3.95) 

where the momentum constraint Mj = D°^Kai — DiK has been added to the right hand 

side with parameter The evolution equation for 7 -̂ is unchanged: 

dtlij = —2aKij (3.96) 

but the equation for Kij is modified by the addition of Ca{ij)b and the Hamiltonian constraint 

H = \{R — KabK°-^ + K"^). The resulting equation is 

dtKij = a [Rij — 

AiAj — 2KiaKj + KKi j + ' j i jH + (3.97) 

32 



3.9. Summary 

Taking a time derivative of the definition of dkij and adding the constraints Mj leads to 

9tdkij = A [—'̂ •dkKij — 2AkKij + + xiijMk] (3.98) 

The Ricci tensor Rij is 

Rij — "T ( ^ad-bij dad(ij)b ~l~ ^{id\ab\j) 9(^idj'^ab) 

+ i ( 4 - 2bt}r% - (3.99) 

Wherever they appear, the Christoffel symbols are computed according to 

r ' « = i7"(2(i(«)i - d„j) (3.100) 

The choice of parameters 

'y = - l / 2 , C = - l , 77 = 2, ( = -%/2, % = - ! (3.101) 

leads [55] to a symmetric hyperbolic system. 

3.9 Summary 

In this chapter, the notion of well-posedness of the Cauchy problem for a system of partial 

differential equations has been described. For fully first order systems, textbook character-

izations of well-posedness based on algebraic properties of the coefficients in the equations 

have been presented. 

It has been shown here how some systems which are first order in time and second order 

in space can be written in a general form and reduced to first order in space. If the 

reduced system is well-posed, then the second order system will also be well-posed, but in 

a norm containing derivatives. The well-posedness of a second order in space system can 

be analysed by considering the algebraic properties of the second order system, without 

explicitly performing the reduction to first order. 

Three reformulations of the ADM Einstein equations were reviewed, and choices of their 

parameters were given which have been shown to lead to well-posedness of their Cauchy 

problems. 
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Chapter 4 

Finite difference approximations to 

t ime evolution PDEs 

Given a time evolution problem for which there is no known analytical solution, and the 

desired solution is not a perturbation of a known exact solution, numerical methods can 

be used to find an approximate solution. In this chapter, the method of finite differences 

will be introduced. For a finite difference scheme to be useful, it must have the property 

of convergence of the numerical solution to the exact solution as the computational grid 

is refined. The Lax theorem for linear, constant coefficient systems states that this will 

happen if the scheme is consistent with the continuum equation and is stable. These terms 

will be explained below. Essentially, consistency ensures that the finite difference scheme 

approximates the correct continuum equation, and stability controls the growth of the 

solution in time. Consistency is usually easy to show, but stability is not. Some theorems 

are reviewed which make it easier to show stability for various schemes. 

4.1 Notat ion and definitions 

Only problems which are periodic in the spatial coordinates will be considered in this 

work. This means that Fourier series can be used to represent the solutions. Problems 

with artificial boundaries will not be considered. Consider a time evolution problem of the 

form: 

^u{t,x) = P u{t,x) (4.1) 
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4.1. Notation and definitions 

u{0,x) = f{x) (4.2) 

where x G ^ > 0 G M, and u{t, x) G Much of the theory developed below is for 

linear problems with constant coefficients, though Einstein's equations are nonlinear with 

variable coefficients. The results of this section can often be extended to systems with 

variable coefficients [34]. 

The spatial coordinates will be . . . , z^"^) where d is the number of spatial dimen-

sions. The numerical grid is 

= (4!^' ^ 2 ^ ' " , ^ ^2/12,..., jd/id) (4.3) 

for ji from 0 to iVj — 1, and hi the spatial interval between grid points. A time step k is 

chosen so that the time interval over which a solution will be found is discretized into the 

points 0,k,2k,... ,tn = nk. The numerical approximation to the solution of (4.1)-(4.2) 

will be represented by vj G where is a grid function. 

A grid function u i s a member of the space We will be considering discrete 

norms on this space. For example, the discrete l2,h norm is 

Mh (4,4) 

where h'^ is notation for hih2.. -hd and j is a multi-index (see Appendix B) for the grid 

points. A suffix A on a norm indicates that the norm depends on the grid spacing h. 

In order to solve problem (4.1)-(4.2) using finite difference methods, it is necessary to 

construct a scheme. This is an algebraic relation between the values of v at different 

points which—given suitable initial data—is sufficient for determining the grid function at 

every point. There are many such schemes for each equation, and they can have different 

properties. However, it is necessary to be able to make the error (the difference between the 

discrete solution and the continuum solution) arbitrarily small by increasing the resolution 

of the grid (i.e. by decreasing hi and k). A scheme satisfying this property is said to 

converge. 

This work will be concerned with one-step explicit schemes of the form 

= (2%%' (4.5) 
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4.2. Convergence, consistency and stability 

where now j is a multi-index jij2 • • -jd and Q is a C"'*" matrix of grid function operators 

(i.e. Q maps from grid functions to grid functions). The spatial grid point multi-index j 

in will often be dropped if the grid function as a whole is meant, or if a relation can be 

interpreted pointwise. The value of the exact solution evaluated at points on the numerical 

grid will be written as 

u'J = u{tn,Xj) (4.6) 

4.2 Convergence, consistency and stability 

We require that the difference between the solution to the finite difference scheme and the 

solution to the continuum equations should approach zero as the grid spacing is decreased. 

This is called convergence and it is defined as follows: 

Definition 4.2.1. The difference scheme (4-5) approximating the partial differential equa-

tion (4-1) is convergent of order {p,q) in a discrete norm || • || if for any t, as {n + l)k 

converges to t, 

||r" _ = 0(/^P) -K (4.7) 

provided that the initial data is accurate of order p to u{0,x), 

= (4.8) 

in a discrete norm || • ||/i. (See Definition 2.2.3 in [61] and Section 5.1 in [34]) 

It is necessary that the scheme approximates the correct differential equation; i.e. it is 

consistent with the equation. The level to which this holds is called the order of accuracy 

of the scheme to the equation. The local truncation error r " of the scheme is defined by 

= + (4.9) 

Definition 4.2.2. The difference scheme (4-5) is accurate of order {p,q) to the partial 

differential equation (4-1) in a discrete norm || • || if the truncation error satisfies 

K | | „ = 0(/,:')-h0(A;^) (4.10) 

The scheme is called consistent if p > 0 and g > 0. (Definition 2.3.3 in [61]) 
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4.3. Lax equivalence theorem 

This is not enough to prove convergence, however. The extra ingredient necessary is sta-

bility: 

Definition 4.2.3. The difference scheme (4-5) is said to be stable in a norm || • || if there 

exist positive constants hio and ko, and non-negative constants K and a so that 

for tn > 0, 0 < hi < hio and 0 < k < ko (where = (n + l)k) for all initial grid functions 

(Definition 2.4-1 in [61]) 

4.2.1 Forcing terms 

It can be shown (Theorem 5.1.1 in [34]) that if (4.5) is stable, then the addition of a forcing 

term to the right hand side requires the estimate on the solution to be modified. The 

modified scheme 

= + (4.12) 

satisfies the estimate 

lk"lk < K (e°'^"\\v^\\h + ipU<^,t„) (4.13) 
0<z/<n—1 

where 

n~l 

i / = 0 

4.3 Lax equivalence theorem 

The Lax theorem states that a consistent, one-step, difference scheme is convergent if and 

only if it is stable. We will show that consistency and stability are sufficient for convergence. 

Theorem 4.3.1. Consider the continuum problem (4-l)-(4-2) and a finite difference scheme 

(4-5). If the scheme is consistent of order {p, q) with the continuum problem, and it is stable, 

then the scheme will be convergent. (Theorem 5.1.3 in [34]) 
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4.4. Conditions for stability 

Proof. The error, w, is defined to be a grid function which is the difference between the 

numerical and exact solutions, 

(4J^) 

It satisfies the scheme 

^n+l _ = (4.16) 

== (3%^- kr" (4J17') 

So the error satisfies the same scheme as the solution but with a forcing term due to the 

truncation error. If the scheme (4.5) is stable, then the addition of a forcing term leads to 

the estimate 

\\w''\\h< K (e°'*''\\w°\\h + (p*h{a,tn) m a x (4.18) 
\ 0<u<n-l J 

If the scheme is consistent with order of accuracy (p, q), 

K | | k = 0 ( / in + 0(A;<') (4.19) 

and the initial data is accurate of order {p, q) to the exact initial data, 

||w°||A = 0(/^n + 0(A:̂ ) (4.20) 

then we have 

|K | |k = 0(/in+0(A:^) (4.21) 

as required. • 

4.4 Conditions for stability 

4.4.1 Fourier representation 

Definition 4.2.3 is hard to apply in practice, as working with the grid function operator Q is 

awkward. Instead, it is possible to work in Fourier space, where the grid function operator 
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4.4. Conditions for stability 

becomes a simple matrix function of frequency, and can be manipulated using standard 

matrix techniques. Using the material in Appendix C, substituting 

into (4.5), the Fourier transformed difference scheme is obtained: 

= <3(f)«"(f) (4.23) 

The matrix Q(^) can be used in the following theorem: 

Theorem 4.4.1. The difference scheme (4-5) is stable with respect to the || • || norm if and 

only if there exist positive constants hio and ko and non-negative constants K and a so that 

<: (4.2!4) 

for all tn > 0, hr < Ko, k < ko and + 2 7 r / 7 V r , r = 0 , 1 , . . . , d. (Proposition 

4.4.2 The von Neumann condition 

The condition 

cr((2) != (4/25) 

is called the von Neumann condition. For a scalar equation, it is both necessary and suffi-

cient for stability, but for a system of equations, it is only a necessary condition (Theorem 

6.2.2 in [61]). However, if Q is uniformly diagonahzable, it is also sufficient. More precisely, 

assume that there exists a non singular matrix T(^) with |T | | r^^ | < C for C independent 

of such that 

T~^QT = A = diag(gi, ?2, • • •, Qm) (4.26) 

then the von Neumann condition is both necessary and sufficient for stability. 

|Q"| = |rA"T-^| < |r | |T-^||A"| - | T | | T - V ( Q ) " < 

In particular, if Q is normal (i.e. [Q*, Q] = 0 ) , as would be the case if it were Hermitian or 

anti-Hermitian, then it can be unitarily diagonahzed, and the diagonalizing matrix T has 
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4.5. Finite Difference Operators 

unit norm. Hence 

|Q"| = | r ' a " r | = | a r = (7 (q r 

4.4.3 Lower order terms 

As shown in Theorem 5.1.2 in [34], the stability of (4.5) is not affected by replacing Q{^) —> 

(5(0 + B where B does not depend on This means that the stability of a scheme with 

lower order terms can be determined by considering the stability of the scheme with those 

terms removed. This simplifies the analysis. 

4.5 Finite Difference Operators 

In order to construct a numerical scheme consistent with a particular partial differential 

equation, partial derivatives are usually replaced with grid function operators called fi-

nite difference operators. The following definitions are given in ID for simplicity. The 

generalization to 3D is straightforward. 

E+Vj = Vj+i (4.27) 

E^Vj = Vj-i (4.28) 

D+% = (4,29) 

(4.30) 

DcVj EE (4,31) 

All the operators above can be written as polynomials in E+ and E_, which commute. 

Hence all these operators commute. A simple relation is 

jDo == 7̂ (1)4- t JD..) (4.32) 

The difference operators approximate partial derivatives to varying orders of accuracy: 

= ?,'(zj) + 0(/i) (4.33) 

== ,/(%,) 4- OfVi) (41X34) 
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4.6. The Method of Lines 

D^Vj = v'{xj) + 0{h?) (4.35) 

+ (4.36) 

JCioDot,,. == %"(:%,) 4- 0(/a2) (4.37) 

4.6 The Method of Lines 

It is usually very useful to construct a numerical scheme in two stages. The first is the 

discretization of the spatial derivatives occurring on the right hand side of (4.1), and the 

second is the integration in time of the resulting set of ODEs. This is called the method of 

lines. It is not to be confused with the method of lines used for solving PDEs by integrating 

along characteristic curves. 

Firstly, u{t,x) is replaced with a grid function Vj{t) which depends continuously on time, 

and P is replaced with a grid function operator (for notational convenience also called P) 

to obtain: 

W = -P(̂ , ^(t)) (4.38) 

This is called the semidiscrete system of evolution equations. It is necessary that P is a 

consistent representation of the continuum operator (see Section 4.2). A choice of P is 

known as a spatial discretization. For example, the following replacements can be made: 

JOo* (4.39) 

DoiDoj Hi ^ j 

D+iD^i i f i = j 
didj 

We refer to this as the standard second order accurate discretization. (4.38) is a set of 

coupled ordinary differential equations for the grid functions Vj in the variable t. There are 

m x n ^ equations which can be solved approximately by using a standard ODE integrator. 

In this work we restrict our attention to the following three ODE integrators: 3rd and 4th 

order Runge-Kutta (RK3 and RK4), and iterative Crank-Nicolson (ICN) [60]. Consider a 

system of ordinary differential equations 

^ W = /((,2/(()) (4.40) 

where y{t) e C^. The time integrators are: 
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4.6. The Method of Lines 

RK3 

ki = %/") 

^2 = kf{tn-\-k/2,y'^-\-ki/2) 

kz = + 3A;/4,y" + 3A;2/4) 

= y" + {2k\ + Zk^ + 4A;3)/9 

RK4 

ki = 

^2 = kf{tn + k/2, + ki/2) 

ks = kf{tn + k/2,y^ + k2/2) 

k4 = kf{tn + k,y'' + k3) 

2/"^^ = y" + {ki + 2^2 + 2^3 + k^)/^ 

ICN 

ki = kf{tn,y") 

k2 = kf{tn + k/2, + ki/2) 

ks = kf{tn + k/2,y"' + k2/2) 

^"+1 = ^" + ^3 

where the ki are intermediate quantities in C® and k is the time step as usual. (See Section 

4.6.1 for a further discussion of ICN.). ICN, RK3 and RK4 are accurate of order two, three 

and four respectively, i.e. the error at time t is 0{kP) where p is the order of accuracy. 

These time integrators can be used to integrate the semidiscrete equations, and the re-

sulting scheme is fully discrete (both time and space have been discretized) and suitable 

for programming on a computer. The semidiscrete equations (4.38) can be integrated to 

obtain 

= (441) 

We note one useful property of these time integrators, which will be used for the linear 

problems we analyse in the following chapter. If the right hand side of the semidiscrete 
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4.6. The Method of Lines 

system is hnear and has no exphcit dependence on t, then we can write 

== JT,/" (4^12) 

where F is a q x q constant matrix. In this case, we can expand as follows. For ICN: 

+ (4.43) 

and for pth order Runge-Kutta: 

y"*' = ( E 5 ) !*" (4-44) 
^ r = 0 

So in each case the solution operator is a polynomial V in F: 

and the semidiscrete equations (4.38) can be integrated to obtain 

4.6.1 Further discussion of iterative Crank-Nicolson 

Consider again (4.40). The simplest scheme for solving this equation is the Euler method: 

yU+l _ n 

" ^ ^ =f{t„y") (4.47) 

However, this scheme is only first order accurate, and in fact when it is used for solving 

the standard second order accurate discretization of the advection equation Ut = Ux, the 

method is unstable. Note the asymmetry in the equation; the time derivative is evaluated 

at both time steps but the right hand side is evaluated only at time step n. Replacing the 

right hand side with its value averaged over the two time steps leads to the Crank-Nicolson 

scheme, which is stable for a large class of semidiscrete problems; 

yU+l — yn I 
[/(f„+i.»"+') +/{«»•»")] (4.48) 
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4.7. Round-off errors 

Note that this scheme is imphcit; it is not in general possible to solve directly for in 

terms of 2/". One way to solve this algebraic equation is by iteration. A trial solution 

is chosen, and this is used in evaluating the right hand side. The resulting value of is 

used as a better approximation. The iteration scheme is 

n + l „,n 
Vji+i) - y ^ 1 

& 2 
2/g^ ) + /((n, 2/") (4.49) 

We use = y" as initial data for the scheme. In principle, for a small enough value of k, 

this scheme will converge on the exact solution. However, as pointed out in [60], stopping 

after three iterations (using 1/^^ as leads to a stable explicit scheme. This is the 

scheme presented as ICN above. 

4.7 Round-off errors 

Most numerical analysis concerns the properties of exact solutions to finite difference equa-

tions. However, when attempting to solve such equations on a computer, even algebraic 

computations are carried out only approximately, and the result of numerical operations 

is stored with only a finite precision. The method used by modern computers for storing 

real numbers is called floating point representation and the set of mathematical operations 

performed on these approximations is called floating point arithmetic. The error in the so-

lution caused by the use of floating point arithmetic in solving a finite difference equation 

is called roundoff error, as the numbers have been rounded in order to store them with 

finite precision. 

In [34], the effect of roundoff error is said to be equivalent to adding a forcing term to the 

right hand side of the finite difference approximation. Suppose that at each time step, an 

error is made, and the size of the error is characterized by some constant e. For a linear 

system with constant coefficients, 

== (3%/* (/L50) 

becomes 
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4.8. Artificial dissipation 

where e" is the roundoff error grid function. The error due to this forcing term, w" = 

satisfies 

== e!? (4J)2) 

In other words, the error satisfies the same equation as the solution. If (4.50) is stable, 

then (4.52) will satisfy the estimate 

I ITWLLH 5: (JLLIS) 

where C{tn) is some function independent of h and k. Note that as the resolution of the 

simulation is increased, k decreases and ||ty"||/i becomes large. So the effect of roundoff 

error cannot in general be reduced by increasing the resolution of the simulation. One 

way to think about this is to consider that the error is made at each time step, so as the 

number of time steps becomes larger with increasing resolution, the error made becomes 

larger as well. With modern computers, e ~ 10"^®, and for stable linear problems, it is 

rarely significant. However, for nonhnear schemes, it is possible that roundoff error can 

become the dominant contribution to the solution at sufficiently late times. 

4.8 Artificial dissipation 

It is possible that a particular discretization of a PDE will be unstable. Some such dis-

cretizations can be stabilized by the use of artificial dissipation. Extra terms are added to 

the right hand side of the semidiscrete equations which go to zero as the grid spacing is re-

duced with a particular polynomial power (i.e. the consistency of the scheme and the order 

of accuracy are maintained). These terms have the effect of damping high frequencies in 

the numerical solution, and this can sometimes result in a stable scheme. When necessary 

for stability, we use Kreiss-Oliger type artificial dissipation with parameter a: 

dtv{t) F{v{t)-,t, x ) - a ^ h\{D^iDifv (4.54) 
i 

This is for second order accurate schemes. 
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4.9. Summary 

4.9 Summary 

In this chapter, the method of finite differences has been introduced for solving time de-

pendent partial differential equations. Essential for obtaining a solution is the property of 

convergence of the numerical scheme, which for linear systems requires stability. A nec-

essary and sufficient condition for stability in Fourier space has been given, as well as a 

simpler necessary condition (the von Neumann condition). The method of lines for sepa-

rating the spatial discretization from the time integration has been described, as well as 

several difference operators and time integrators. Roundoff errors due to the use of floating 

point arithmetic have been described, and it has been pointed out that these can sometimes 

be important. 

46 



Chapter 5 

Numerical stability for finite 

difference approximations of 

Einstein's equations 

5.1 Introduction 

For systems which are first order in time and first order in space, and which are well-

posed in the L2 norm, much is known about the stability of the associated finite difference 

schemes. However, little can be found in the literature about the stability of "ADM-type" 

systems; i.e. those that are first order in time but second order in space, and are well-posed 

only in norms containing derivatives. As at the continuum, the simplest example is the one 

dimensional first order in time, second order in space wave equation; 

x) = 7c{t,x) (5.1) 

^7r((,a;) = (5.2) 

where t,x E R, (p{t,x),n{t,x) e R. As stated in Section 3.4, this system is ill-posed in 

L2. By introducing new variables sufficient to make the equations first order in space, the 

first order system can be shown to be well-posed in L2. Hence, the second order system is 

well-posed in a norm containing derivatives; 

p2iT 
/ 10P-h | n p + 

Jo 
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5.1. Introduction 

If the spatial derivatives are replaced with finite difference operators (time remains contin-

uous), the semidiscrete problem is 

= Wjit), (5.3) 

(5.4) 

As for the continuum, by providing a suitable family of initial data, the fg.h norm, 

= (5 5) 
3 

of the solution at a time t can be made arbitrarily large, contradicting the existence of an 

estimate 

for all initial data / . 

By following an analogous procedure to that used in the continuum case, it is possible 

to prove stability of the fully discrete system in a norm containing difference operators, 

specifically the norm 

Mh = ^ {(l^i +'^i + h 

In this chapter, we introduce the idea of a discrete reduction to first order. This is used 

to reduce the second order in space finite difference scheme to a fully first order version, 

which can be analysed with standard techniques. As at the continuum, if a first order 

discrete reduction is stable, then the original second order discrete system is stable in a 

discrete norm containing difference operators (we call such norm a D+ norm). This is not 

a necessary condition, but it is sufficient. 

We find it convenient to introduce the concept of a discrete symmetrizer as a tool for proving 

stability for certain systems. Proofs of stability for the standard discretization of the wave 

equation in d dimensions are presented, as well as for the NOR formulation of Einstein's 

equations linearized about Minkowski spacetime in Cartesian coordinates. Courant limits 

for the wave equation and NOR are obtained; these are the maximum values oi k/h that 

give stability. This chapter is based on joint work [20] done with Gioel Calabrese and 
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5.2. Convergence 

Sascha Husa. 

5.2 Convergence 

Ultimately, we require that a numerical scheme converge to the exact solution. The Lax 

theorem (Section 4.3) shows that consistency 

|T"|| = O M + 0(A;^) (5.6) 

and stability 

w"|| < (5.7) 

imply convergence 

11̂ ;" - ,.) 11 = 0(/^P) + C)(A;'') (5.8) 

when the initial data is of the correct order of accuracy 

||^;°-tz(0,.)|| = O(/in (5.9) 

but the norm used must be the same throughout. So consistency and stability in the D+ 

norm implies convergence in the same norm. However, we should note that if 

II-111 <11-lb (5.10) 

then convergence in || • [jg implies convergence in || • ||i, since 

lit;" - %/(r, .)| |i < 11%;" - %/(r, .)||2 < + A )̂ (5.11) 

Since the L2 norm is always smaller than the D+ norm, we see that convergence in the 

JD+ norm implies convergence in the norm. Note however that the initial data must be 

accurate in the D+ norm; this is equivalent to accuracy in the L2 norm for smooth initial 

data, but not for non-smooth data. 
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5.3. Discrete symmetrizer 

5.3 Discrete symmetrizer 

Consider a semidiscrete scheme of the form: 

(5.12) 

By taking the discrete Fourier transform (see Appendix C), 

0(^) = (5.13) 
0 

we obtain 

= (5.14) 

where the symbol of P is P{C), a matrix function of frequency. Consider the case of a time 

integration scheme such that the fully discrete finite difference operator can be written as 

a polynomial in the semidiscrete operator (see Section 4.6) 

0"+i(() = )0"(() = 0(()i)"(^) (5.15) 

with Q{C) = V{kP) the amplification matrix of the fully discrete system. So far, a system 

is stable if and only if there exist K,a > 0 such that 

|Q''(()| < (5.16) 

Further, if the amplification matrix Q(^) is uniformly diagonalizable, then the von Neumann 

condition, 

cr(0) (5.17) 

is both necessary and sufficient for stability. However, it is possible for a discretization to 

be (conditionally) stable without Q being uniformly diagonalizable. 

Lemma 5.3.1. Suppose that H{^) are Hermitian matrices such that 

K-'I < H(i) < KI (5.18) 

IQIg < e"" (5.19) 

where K is a positive constant. Then the scheme is stable. 
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5.3. Discrete symmetrizer 

Proof. Stability using (5.16) is obtained via 

10"! < < Ke"*" (5.20) 

where (A.34), (A.4) and (5.19) have been used. As a corollary, it can be seen that the von 

Neumann condition is satisfied; 

(7(0) = = iQlg < e'"': (5.21) 

which follows from the fact that the eigenvalues of similar matrices are the same, that the 

spectral radius of a matrix is less than or equal to its norm, and (A.23). 

• 

This result is difficult to apply in practice, as matrix norms are difficult to calculate. The 

following shows that if ^ is a discrete symmetrizer of the semidiscrete symbol P, then the 

matrix energy norm required is equal to the spectral radius. 

Lemma 5.3.2. Suppose there exist Hermitian matrices H{^) such that 

(&22) 

(A(^)f(^))' = - # ( e ^ ( ^ ) , (5.23) 

Then we say that H{^) is a discrete symmetrizer of P{^), and \Q\fj = cr{Q)-

Proof Using (5.23), the matrices can be seen to be anti-Hermitian, hence they 

can be diagonalized by unitary matrices S{^). This implies that the matrices 

diagonalize P{^). Since Q(^) is a polynomial in P{^), these same matrices diagonalize 

Q(^). So, 

IQI^ = = (7(Q) (5.24) 

The above calculation has used (A.23), (A.6), and the fact that the diago-

nalize (5(C)- Also, the norm of a diagonal matrix is equal to its spectral radius. • 

So if a discrete symmetrizer exists, and 

<;(<?) e** (fxSK)) 
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5.4. Conserved energy 

then the system is stable. This is still a condition on the fully discrete system; calculations 

can be simplified by considering the semidiscrete system. 

Lemma 5.3.3. For the time integrators considered in this work, using the fact that Q = 

V(kP), one can show that if the eigenvalues of P{^) are imaginary, as is the case for all 

problems we have studied, then 

a{kP) < CKo <=> <y{Q) < 1 (5.26) 

where ao = 2 for ICN, \ /8 for 4RK, \ /3 for 3RK. This condition is called local stability 

on the imaginary axis in [42]. 

Putting together all the above, we obtain the following result: 

Theorem 5.3.1 (Discrete symmetrizer theorem). If all the following are true 

• The eigenvalues of P are imaginary 

• There exists a discrete symmetrizer H; i.e. a Hermitian matrix satisfying (5.22)-

• The semidiscrete symbol satisfies a{kP) < ao 

then 

|(3"(()| <: (5.27) 

which is sufficient for stability. 

5.4 Conserved energy 

Suppose that there exist matrices H{^) which are Hermitian and positive definite. Then 

$1% = 

= 2 Re 

dt 
(5.28) 

(5.29) 

= f *^)t) (5.30) 

So for each frequency the following statements are equivalent: 
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5.5. Discrete reduction to first order 

• HP + P*H = 0 

Since checking (5.23) can be difficult, the requirement = 0 can be used instead. 

To construct H one can proceed as follows. Assume the existence of a matrix T such 

that T'^Pt = A is diagonal with imaginary elements. Then the quantity v*Hv, where 

H = T~^*DT~^ and D is a positive definite matrix which commutes with A, is conserved 

by the system dtv = Pv. Defining the characteristic variables of f to be w = (these 

are individually conserved: = 0), we see that to construct a conserved quantity one 

can take w*Dw. (For D = I this corresponds to adding the squared absolute values of 

the characteristic variables.) For A to be a symmetrizer it remains to be established that 

5.5 Discrete reduction to first order 

In order to analyse the stability of systems such as the second order in space, first order in 

time formulations of Einstein's equations, we introduce a technique which we call discrete 

reduction to first order. This is analogous to the procedure performed at the continuum for 

analysing well-posedness. The reduction is done by introducing auxiliary variables which 

are equal to discrete derivatives of quantities that are differentiated twice. In this way, 

theorems for first order systems can be used. As in the continuum case, only sufficient 

conditions for stability are obtained by this method. Care must be taken when consider-

ing consistency and convergence, as the fact that the auxiliary constraints are identically 

satisfied must be used to obtain the correct orders of accuracy. 

The semidiscrete finite difference approximation of 

dtu = Pu 

A ' a + B 

(5.31) 

C 
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5.5. Discrete reduction to first order 

(this is (3.29)) can be written as 

dt 
V = Pv V = 

u 

v 
(5.32) 

_ A'D^» + B 
^ - • • )(2) 

c 
+ F + J )(i) 

where is a discretization of the first derivative in the i direction and DY,' is a dis-
* V 

cretization of the second derivative in the i and j directions. For example, the standard 

second order accurate discretization would have 

,(2) 

D+iD^i \ii = j 
(5.33) 

The principal symbol of the semidiscrete system is 

P' = 

where 

= DY, (2) y 
^sin^isin^j \i i ^ j 

± s m ^ | i f i = i 

(5.34) 

(5.35) 

for the standard second order discretization. The pseudo-discrete first order reduction is 

obtained by defining 

w = iQ,u ^ \D+i\ 

The reduced system is 

d 
-t4.^r = Prvr vr = 
dt 

1=1 

w 

\ ̂  / 

P> r 

F (m)-XD': 'Dg) + G'Dp) + J ^ 

(5.36) 

(5.37) 
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5.5. Discrete reduction to first order 

The discrete auxihary constraint is preserved by the time integrator, and there is a one-to-

one mapping between solutions of the second order fully discrete system and those of the 

constraint-satisfying reduced system. 

Making use of Theorem 5.1.2 of [34] the terms which correspond to the continuum lower 

order terms can be dropped from Pr without affecting the stability of the fully discrete 

system, provided that and are bounded. This guarantees that 

the assumptions of the theorem are satisfied. This is true for the second and fourth order 

accurate standard discretizations. 

The result for stability of the fully discrete problem is analogous to that for well-posedness 

at the continuum. 

Theorem 5.5.1. If there exists H{^) = H*(^) such that the energy v*Hv is conserved by 

the semidiscrete principal system dtV = P'v and H satisfies 

.Ar-ijrn jy /n =5 (!x3l8) 

where K is a positive scalar constant, then it is possible to construct a discrete symmetrizer 

for the first order reduction with no lower order terms. So if in addition, the principal 

symbol P' satisfies a{kP') < ao, the fully discrete system (including lower order terms) is 

stable with respect to the norm 

d 

\MI,d+ = Mil + Ikllk + ^ \\D+iu\\l (5.39) 
1=1 

i.e. the solution satisfies the estimate 

(5.40) 

Again, H can be constructed from the characteristic variables of P', as described at the 

end of Section 5.4. 
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5.6. Stability of first order strongly hyperbolic systems 

5.6 Stability of first order strongly hyperbolic systems 

It is convenient to define the following quantities, 

= sin? y = Y1 siof & (5 41) 
2 

1=1 1=1 

Consider a constant coefficient first order strongly hyperbolic system in d spatial dimensions 

(5.42) 
k=l 

where x G t eR, u{t, x) G K" .̂ 

We assume that the system is strongly hyperbolic and that it admits a symmetrizer, 

i.e. there exists a matrix Hioo) in Fourier space, such that H{u)P{iuj) + P*{iuj)H(uj) — 0, 

where f (zw) = i The discrete symbol associated with the standard second order 

accurate discretization of this system is 

. d 

A(^) = s i n ^ 
i = l 

where we attached the subscript h to the discrete symbol to distinguish it from that of the 

continuum. We now construct the discrete symmetrizer 

^h( ( ) = sin^) (5.43) 

Conditions (5.22)-(5.23) are satisfied and condition (5.26) is sufficient for stability. The 

latter becomes a{kP) — Xx(T{A{n)) < ao, where A{n) = Yli=iniA\ rii = sin^i, so 

that = 1- Since this inequality must hold for all and the quantity % reaches its 

maximum value y/d at = ±7r/2, we obtain the stability condition 

A < (5.44) 
a{A{n))y/d 

In the symmetrizable hyperbolic case one can take the discrete symmetrizer to be the same 
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5.7. Stability of the first order in time and second order in space wave equation 

as that of the continuum (which, by definition, is independent of ui) 

jGrhOf) = (5^15) 

This analysis of first order strongly hyperbolic systems shows that if the characteristic 

speeds depend neither on the direction nor on the dimensionality of the problem, i.e. if 

a{A{n)) depends neither on n nor on d, then the Courant hmit has a 1/Vd dependence. 

5.7 Stability of the first order in t ime and second or-

der in space wave equation 

In this section we discuss stability properties of an approximation of the d dimensional 

wave equation written as a first order in time and second order in space system 

dt4>{t,x) = (5.46) 
d 

dtYi{t,x) = Y^d1(j){t,x) (5.47) 
i=l 

In the introduction we pointed out that the Cauchy problem for this system is not well-

posed in L2. One can expect that a direct application of Definition 4.2.3, which is based on 

the discrete L2 norm, to a scheme approximating (5.46)-(5.47) would lead to the conclusion 

that the scheme is unstable. The first order reduction, however, is well-posed in (it is 

symmetric hyperbolic), hence the second order system satisfies an energy estimate with 

respect to 
r 

!!'"(•.= y \(t){x,t)\^ + \U.{x,t)\^ + ̂ \di(t){x,t)\^d'^x (5.48) 

In this section we show stability for the standard discretization of this system, both by the 

pseudo-discrete reduction method given in Section 5.5, and by a direct discrete reduction 

in physical space. The two methods give equivalent results. 

Following the method of lines, we first discretize space and leave time continuous, 

== rij(f) (5.419) 
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5.7. Stability of the first order in time and second order in space wave equation 

, d 
~TLi{t) = (5.50) 

i=l 

Using the technique described in Section 5.5, we see that the (principal) symbol of the 

second order semidiscrete problem 

I 

has purely imaginary eigenvalues The matrix T diagonalizes P. The sum of the 

squared moduli of the characteristic variables gives the conserved energy (here D = 1/2J) 

v*{T-^yDT-^v = + |n|2 = + |n|^ (5.52) 

By taking = 1 in (5.38) we see that we have numerical stability with respect to the 

discrete norm ^ 

l|f = Et''"' + n? + (5.53) 
i i=i 

provided that the von Neumann condition 

A < ao/(2V^) (5.54) 

which follows from a{kP) kfl — 2A%2 < CKQ, is satisfied. 

We now illustrate a different method for proving stability of this system. A discrete re-

duction to first order can be performed before going to Fourier space. We introduce the 

quantities 

.X-jO = (5.55) 

and obtain the reduced system 

= nj(t) (5.56) 

(5.57) 
i=l 

(5 58) 

Notice that only if (5.55) is identically satisfied is the reduced system equivalent to the 
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5.7. Stability of the first order in time and second order in space wave equation 

original one. It is important to check whether the evolution equations (5.56)-(5.58) are 

compatible with this requirement. Let — D+i(j)j. If we prescribe initial data 

such that Cj'^(O) = 0, then at later times = 0. This is a consequence of the fact 

that 

- D+i(f)j{t)) = 0 (5.59) 

There is a one-to-one correspondence between solutions of (5.49)-(5.50) and those of (5.55)-

(5.58). Furthermore, one can check that the time integrator does not spoil the propagation 

of the constraints. 

Ignoring lower order terms, the symbol associated with the reduced system (5.56)-(5.58) is 

anti-Hermitian, therefore (5.23) is satisfied with H = 1. The non-trivial eigenvalues of P 

are ±if2, the same as those of the original system (5.49)-(5.50). This proves that (5.54) is 

a necessary and sufficient condition for stability with respect to the discrete norm (5.53). 

This specific discrete reduction to first order, and the pseudo-discrete reduction to first 

order described in Section 5.5 give equivalent results. 

5.7.1 Fourth order accuracy 

In hyperbolic problems a fourth order accurate spatial discretization requires significantly 

fewer grid points per wavelength for a given error (see [34]). The stability proof for the 

fourth order accurate discretization of the d-dimensional wave equation 

ĵ ^4&j(t) == rij(() (fxfio) 

dt 
n,.(t) = ( l - ^ D + i i 5 _ , ) ^ , . ( t ) (5.61) 

- A 2 0 

is similar to the second order accurate case. The discrete symbol and diagonalizing matrix 

are 

where ^ f- (l + | sin^ ^ ) , has purely imaginary eigenvalues ±iA. Taking 

D — 1 /2/ we get the conserved quantity 

-h |n|^ (5.63) 
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5.7. Stability of the first order in time and second order in space wave equation 

Since by taking K = 4/3 in (5.38) we see that we have numerical stability 

with respect to the norm (5.53) provided that the principal symbol P satisfies a{kP) < ao-

This gives a stability limit of A < y^ao/(4\/d). 

5.7.2 A note about the Dq norm and the Dq discretization 

Replacing the one sided difference operators D+i with centred difference operators Doi in 

the norm (5.53) leads to difficulties, as the Dq norm does not capture the highest frequency 

mode. In fact, it is possible to construct a family of solutions of (5.49)-(5.50) proportional 

to (--1)J for which the Dq energy estimate fails. For this purpose it is sufficient to consider 

= {—iycos{2t/h), n^(^) = —2/h{—iysm{2t/h), which gives 

where \\v{t)\\lj)^ = + {Do(j)jY)h. It it not possible to find constants K and a 

such that the ratio is bounded by Ke"*, independently of the space step h. 

It has been suggested that the use of DQ rather than for the second spatial derivatives 

may improve the stability properties of a second order in space scheme [16, 8]. To investigate 

this we study the wave equation in one space dimension discretized as 

= ny{() (5,65) 

| n ^ ( i ) = DgA(() (5.66) 

The eigenvalues of kP are ±zAsin^, which shows that the von Neumann condition is 

satisfied as long as A < ao- Both the stencil and the maximum time step compatible with 

the von Neumann condition are twice what they are for the discretization. However, 

for a given spatial resolution the numerical speed of propagation has an error which is four 

times that of the case (see Section 7.6.1). 

So far, we have only shown that the scheme is unstable if A > ao. By looking at the discrete 

symbol 

we see that there might be a problem for |^| = TT. In this case the symbol is not diago-
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5.7. Stability of the first order in time and second order in space wave equation 

nalizable. To explicitly show that the system (5.65)-(5.66) is unstable with respect to the 

norm 

III-IIId, = E W + ft (5.68) 
j 

it is sufficient to consider the family of initial data 0j(O) = 0,11^(0) = (—!)•', generating 

the solution rij(Z) = (—I)''. As h 0 the ratio 

grows without bound. 

Had we chosen the Do-norm, however, we would have concluded that the scheme satisfies the 

required estimate. This is because this norm does not capture the highest frequency mode 

(j)j = (—!)•' • A desirable requirement of a norm is that if a scheme is stable with respect to 

that norm, then it will remain stable with respect to the same norm when perturbed with 

lower order terms (independently of how these are discretized). The modified problem 

= n x ( ) (6.70) 

- D + * ( ( ) (5.71) 

admits the family of exponentially growing solutions (t>j(t) = (—1)-' exp(-\/2/M), nj(^) — 

(—l)-'\/2//iexp(y^2/M) which leads to unbounded growth in the ratio 

= exp (5.72) 
111'(0)11 ft,Do 

If we want to be able to decide whether a scheme is stable or not just by looking at the 

principal part of the discrete system, then we must conclude that the Do-energy is not a 

suitable energy. 

We note that the requirement that stability should not depend on how lower order terms 

are discretized was crucial. If we restrict ourselves to the perturbation Do(/>j, then the 

scheme is still stable with respect to the Do-energy. If one wants to be able to discretize 

lower order terms freely, as we do, then one is forced to reject the Dq discretization. 

Clearly it is the presence of high frequency modes that makes the Dq discretization unstable 

with respect to the D+ norm. The introduction of a mechanism that damps high frequency 
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5.8. Stability of the linearized NOR system 

modes, such as artificial dissipation, may restore stability. In the system 

d 
l(j)j = — ah {D+DJ) (t)j 

dt 
- U j = Dl4.j - nh\D^D_fYlj 

the same family of initial data used to prove instability of (5.65)-(5.66) gives 

: ^ = (1 + 
||i;(0)||h,D+ 

which does not grow without bound. 

5.8 Stability of the linearized N O R system 

The NOR formulation of Einstein's equations linearized about Minkowski space with zero 

shift and unperturbed densitized lapse (a — •\/det(7ij)) has the form 

dtlij = - 2 K i j (5.74) 

== (Ei.ll)) 

olfiUi === 0 (S.TT)) 

This system corresponds to the one in [32] with the choice of parameters a = b = a = 1. We 

also choose p = 2 as this removes a mixed second derivative term which causes complications 

in the analysis of the semidiscrete system. Fourier transforming the semidiscrete system 

obtained with the standard second order accurate discretization yields 

- ^ l i j = (5-77) 

= - s in%Wj) + (5.78) 

= 0 (6.79) 

Introducing Xij = ^X27ij reduces the system to first order. After dropping lower order 

terms (those not depending on ^j) we get 

- j p i j = 0 (5.80) 
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5.8. Stability of the linearized NOR system 

-Kti - ^ s m e ( . i o , ) - ^ X 2 X « 

Wi = 0 
dt 

d . 2% 
X2Kij 

(5.81) 

(5.82) 

(5.83) 

The eigenvalues of the symbol are imaginary. A conserved energy for this system will lead 

to a discrete symmetrizer. The obvious starting point is 

i i j 

Wi (5.84) 

Prom now on, the summation signs over i and j will be dropped, and these sums will be 

implicit. The time derivative of Eq is 

dEo 
dt 

= ^ 2 R e -A:;; (5.85) 

Hence Eq is not a conserved energy. Defining E = Eq + Ei, the requirement that E is 

conserved is equivalent to 

dEi dEo 
dt dt 

Since Wj is a constant, using (5.83), 

= ^ 2 R e 

€ 

(5.86) 

El = — ^ ^ 2Re X^siii^(tWj)/(2%2) (5.87) 

and 

E — ^ ] ITIJP + + I'^iP ~ 2Re X;;.sin^(tWj)/(2%2) (5.88) 

and dE/dt = 0. Since dtWi = 0, can be multiplied by a constant c > 0 and E will still 

be conserved. The reason for this will become apparent later. E is thus redefined as 

E — ^ — 2Re 8m^iWj/(2x2) (5.89) 
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5.8. Stability of the linearized NOR system 

For E to represent a symmetrizer {E = u*H{^)u), it must be equivalent to the identity. 

Defining 

1 (5.90) 

we require that 3 K such that 

K-^L <E<KL 

The following inequalities will be used: 

2Re[a*6] < 7|a|^ + I&P/7 

2Re [a*b] > —7|a|^ - \bf/^ 

for a,b E C and 7 G M > 0. Using (5.93) multiphed by —1, 

- 2 R e sin ̂ iWj/(2%2) < I + I sin &Wj/(2%2) |' 

Using this with (5.88), we have that 

E < |7ijP + \Kij\'^ + \Xij\'^ + c|wi|^ + \Xij\^ + I singiWj/(2x2)h 

= ^ |7y P + + \Xij\^ + c|u?jp + p + (4X2) 
€ 

= ^ \%? + \^ij? + 2 | ^ i jp + \wj\^ 

By using 

we obtain 

X2 Zi8in^(&/2) 
< 1 

E < + \^i3? + 2 | ^y P + 

- yi + \^ii? + + Wi c + 

< 2 

< 2 

c + 

c + 

y i l7y P + + 

L 

Wi 

(5.91) 

(5.92) 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

(5.102) 
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5.8. Stability of the linearized NOR system 

The other part of inequality (5.91) proceeds as follows. Using (5.93) with a = sin ^iWj/(2x2), 

b = X*j and 7 = 2 , 

-2Re > - 21 sin 7(2x2)1 (5.103) 

Hence 

E > ^ \%\^ + \Kij\^ + \Xij\^ + c 

- ^ liuT + \^ij? + + [^~ x^/(2x2)] 

- y i li'uf + + 

Wiî  - -\Xij\'^ - 2| sin^itt)j/(2x2)P (5.104) 

(5.105) 

(5.106) 
1 

Setting c 3 
2 ' 

E > + 

- o y i i 7 u f + \ K i j \ ^ + + 

Wn 

Wi 

> I I 

Hence 

1 7 
- L < E < - L 
2 - - 2 

2 7 
7 ^ < B < 

as required. 

By theorem 5.3.1, the system is stable provided that the von Neumann condition 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

(5.111) 

A < Oio 

2\/^ 
(5.112) 

is satisfied. 

So the main result of this section is that the standard discretization of the NOR equations 

linearized about a Minkowski background in Cartesian coordinates is stable with respect 

65 



5.9. The ADM system 

to the norm 

E + S Z (5.113) 
dpoints \ i j i j i kij / gridpoints 

provided (5.112) is satisfied. 

5.9 The A D M system 

With a densitized lapse function, a = y/det{'yij), the ADM equations linearized around 

Minkowski in Cartesian coordinates take the form 

dt'Jij — —2Kij (5.114) 

a*ATij = (5.115) 

The symbol P{iuj) of (5.114)-(5.115) is not diagonahzable and neither is that of its dif-

ferential or pseudo-differential reduction. The family of solutions in which the only non 

vanishing components are Jia = sm{ujx)t, Kia = — sin(a;a;)/2, where A = 2,3, can be used 

to show ill-posedness explicitly. It gives 

W, ' ) | | - ( 1 + 4(2 + 4^2^2)1/2 
|w(0>-)|| 

where ||u(i, •)|p = \\lij{t, OIP + li-^u(^i Oil + W^klijit, OIP- The ratio cannot be bounded by 

with K and a independent of u . 

To see that the second order accurate standard discretization is unstable we take 7IA = 

(—l)')f: and Kia = (—1)-'"'" /̂2. As in the continuum, the ratio 

||t^WJkD+ = (̂ 1 + 4(2 + (5.117) 
||'Y(0)|U,D+ V 

cannot be bounded. We can nevertheless compute the von Neumann condition, which is 

given by 

"-Si '"•« 
In [3] stability tests were performed with the nonlinear version of this formulation. The 

domain used consisted of a thin channel, with an even number N of grid points in one 
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spatial direction and 3 grid points in the other two directions. A one-dimensional von 

Neumann analysis gives the limit A < However, this would not capture the fact that 

there could be exponentially growing modes with non trivial dependence in the two thin 

directions. Figure 2 in [3] confirms that with a Courant factor of A = 1/2 there is a von 

Neumann instability. 

We have not yet understood whether the lack of diagonalizability of the symbol, either at 

the continuum or the semidiscrete level, implies that the system will fail to be well-posed 

(stable) in the obvious norms. We suspect that this is the case. 

Although the symbol associated with the continuum system (5.114) and (5.115) has three 

Jordan blocks of size two for any a; 7̂  0, interestingly, the symbol associated with the 

semidiscrete problem obtained with the standard second order accurate discretization can 

have rather different properties. For Fourier modes travelling in directions parallel to the 

axis the continuum result still holds. Thus, ID stabihty tests will exhibit hnear frequency 

dependent growth. Fourier modes for which one and only one of the frequencies vanishes 

(2D case, excluding directions parallel to the axes) have a single Jordan block of size 2. 

Again, one can expect to see frequency dependent linear growth in stability tests, but not 

as clearly. Finally, for Fourier modes with 7̂  0 for z = 1, 2, 3 the symbol is diagonalizable. 

Hence it can be difficult to experimentally see frequency dependent growth in 3D, as the 

fraction of modes which grow in a frequency dependent manner is proportional to 1/N. 

This might be one of the reasons that the ADM system was not immediately dismissed by 

numerical relativists. 

5.10 Summary 

In this chapter, the concept of a discrete symmetrizer has been introduced for proving 

stability of a fully first order finite difference scheme. The concept of the absolute stability 

region of a time integrator has been used to allow conclusions concerning stability of the 

fully discrete scheme to be made from properties of the semidiscrete scheme. 

We have introduced the idea of a discrete reduction to first order in Fourier space by analogy 

with the continuum technique, and have shown how stability properties of a second order 

in space system can be determined. 

As examples, stability is shown for standard discretizations of first order strongly hyperbolic 

systems, as well as the first order in time and second order in space wave equation. The 
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NOR formulation of the Einstein equations has been linearized about Minkowski spacetime 

in Cartesian coordinates, and the standard discretization of this system has been shown to 

be stable. We believe that this is the first time that this has been done for the Einstein 

equations in first order in time and second order in space form. 
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Chapter 6 

The Kranc package for automated 

code generation 

6.1 Introduction 

When programming a computer to solve a system of partial differential equations, a lan-

guage such as C or Fortran is typically used. These languages do not have built-in support 

for abstract mathematical constructs such as tensors. For simple systems such as the wave 

equation, it is feasible to write the necessary computer code by hand. However, when more 

complicated systems, such as the full 3D nonlinear Einstein equations, are required, this 

task becomes daunting. Whilst not impossible, the process is long and error-prone, and 

the resulting code can be difficult to debug and maintain. 

A collaboration between Sascha Husa and Christiane Lechner at the Albert Einstein In-

stitute and myself resulted in a suite of Mathematica packages (about 6000 lines in total) 

which accepts tensorial evolution equations in abstract index notation, and generates either 

C or Fortran code for performing the numerical evolution using the Cactus infrastructure 

(see below). The Mathematica suite is called Kranc for "KRanc Assembles Numerical 

Code". Kranc has so far been used to implement the 3D nonlinear ADM, NOR, BSSN, ST 

and Z4 formulations of the Einstein equations, in addition to standard test cases such as 

the wave equation, the Klein-Gordon equation, and Maxwell's equations. The development 

of the Kranc package is described in [37]. 
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6.2 Cactus 

The Cactus Computational Toolkit is an open-source problem solving environment originally 

developed in the numerical relativity community. It is arranged as a central flesh and a 

collection of modules called thorns which all communicate with the flesh. Many thorns are 

provided, and the user writes additional thorns in C or Fortran which solve their particular 

physics problem. Cactus is particularly suited to the numerical solution of time dependent 

partial differential equations. 

Kranc is concerned with taking an abstract mathematical description of a system of PDEs 

and producing working computer code. It does this by generating Cactus thorns, allowing 

use of all the infrastructure provided by Cactus. 

For example, Kranc makes uses of existing Cactus thorns which provide: 

• Parameter file parsing. 

• Memory management for variables associated with the computational grid. 

• Scheduling of parts of the code based upon parameters. 

• Standard efficient time integrators such as fourth order Runge-Kutta and iterative 

Crank-Nicolson via the MoL thorn written by I. Hawke. 

• Mesh refinement [56]; i.e. using variable resolution across the numerical grid, so that 

the computational resources are focused on interesting parts of the simulation. 

• Automatic parallelization of the code to run across multiple processors on a super-

computer or cluster, both to improve computational speed and to use larger grids 

than can be stored in the memory of a single node. 

• Output of grid variables to permanent storage in a structured format. 

These tasks are completely divorced from the physics and numerical analysis side of the 

problem, but are necessary in most numerical codes. 

6.2.1 Cactus for numerical relativity 

In the context of numerical relativity, any Cactus code can take advantage of thorns pro-

viding: 

70 



6.3. Overview of the Kranc system 

• Initial data for the Einstein equations. For example, the Exact thorn can compute 

initial data for a large number of spacetimes, including Minkowski, Schwarzschild and 

Kerr in various coordinate systems. 

• Algorithms for quickly finding apparent [62] and event [26] horizons in dynamical 

spacetimes. 

• Standard methods for extracting gravitational wave information. 

• Standard ADM grid variables. The ADMBase thorn defines variables for the three-

metric and extrinsic curvature that can be used to communicate data between thorns. 

For example, thorns for calculating initial data can populate these variables, and 

thorns for performing wave extraction or other analysis tasks can use these variables 

to determine details of the spacetime. In this way, these types of thorns do not need 

to be aware of the precise variables used by the time evolution system. The evolution 

system translates between the ADM variables and the evolution variables. 

6.3 Overview of the Kranc system 

There are five types of Kranc thorn: 

• A base thorn defines the grid functions which the simulation will use. 

• A MoL thorn computes the right hand sides of the evolution equations so that the 

time integrator can compute the evolved variables at the next time step. This is 

the most important type of thorn as it determines the system of partial differential 

equations being solved. The time integration methods in Cactus require that those 

grid functions containing evolved variables must be registered as such, and the MoL 

thorn performs this registration. 

• A setter thorn performs a user-specified calculation at each point of the grid. This 

will typically set certain grid variables as functions of others, and can be used for 

various purposes including making a change of variables or computing intermediate 

quantities from evolved variables. 

• A translator thorn is a special case of a setter thorn which converts between the 

evolved variables and some other set of variables (for example, the ADMBase variables 

used by initial data and analysis thorns in the context of numerical relativity) 
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• An evaluator thorn computes quantities such as norms and constraints that are used 

in the analysis of the constructed solution. The calculations are invoked only when 

the quantities concerned are output to permanent storage, which improves efficiency 

when output is not required at each time step. 

These five thorn types allow complete codes to be assembled. 

Common to many of these thorn types is the idea of assigning new values to grid functions 

in a loop over grid points based upon evaluating expressions involving other grid functions. 

To encapsulate this, we define a Kranc structure called a calculation. Calculations contain 

lists of assignment statements for different grid functions, and these are evaluated at each 

point on the grid. Calculations can also contain temporary variables called shorthands into 

which are placed intermediate expressions which are used later in the calculation. Many of 

the thorn types are based around calculation structures. 

6.4 Kranc Design 

Kranc is composed of several Mathematica packages. Each of these human readable scripts 

performs a distinct function. The user only needs to be concerned with calling functions 

from the KrancThorns package. This package contains functions for creating the different 

types of Kranc thorn. 

The diagram in Figure 6.4 illustrates the relationships between the Kranc packages Kranc-

Thorns, TensorTools, CodeCen, Thorn and MapLookup, which are described in the follow-

ing subsections. Separating the different logically independent components of Kranc into 

different packages promotes code reuse. For example, none of the thorn generation packages 

need to know anything about tensors, and none of the packages other than CodeGen need 

to know the programming language in which the thorn is being generated (C or Fortran). 

We have chosen to define several types of thorn (setter, evaluator, etc.) but the mechanics 

of producing a thorn implemented in Thorn and CodeGen are completely independent of 

this decision. 
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M a t h e m a t i c a 
s c r i p t w r i t t e n 
b y u s e r 

\ 

KrancThonis 
CreateBaseThom[] 
CreateEvaluatotllioniE] 
CraateMoLniomH 
CreateSetteiTTiom[] 
CreateTranslatorThoml] 

P r o v i d e s f u n c t i o n s f o r 
c o n s t r u c t i n g s p e c i f i c 
t y p e s of K r a n c t h o r n 

TensoiTools 
MakeExplicltt] 
DefineTensoit] 

P e r f o r m s m a n i p u l a t i o n s o n t e n s o r 
e x p r e s s i o n s a n d c o n v e r t s t h e m t o 
c o m p o n e n t s 

Thom 
CreateThom[] 

C o n s t r u c t s a C a c t u s 
t h o m g i v e n a 
d e s c r i p t i o n i n a h i g h 
l e v e l f o r m 

\ 

CodeGen 
Conditional[] 
GridLoop[] 

C o n t a i n s f u n c t i o n s 
f o r g e n e r a t i n g 
b l o c k s of p r o g r a m 
c o d e i n a h i g h l e v e l 
w a y 

MapLookup 
Lookup!] 
LookupDe&uIt[] 
MapContainsl] 

C o n t a i n s f u n c t i o n s f o r p a r s i n g 
K r a n c d a t a s t r u c t u r e s 

Figure 6.1: Relationships between Kranc packages: Each block rep-
resents a package, with the main functions it provides indicated with 
square brackets. An arrow indicates that one package calls functions 
from another 

6.4.1 Package: KrancThorns 

The different types of Cactus thorn used in a Kranc arrangement are the MoL, setter, base, 

translator and evaluator thorns. The KrancThorns package provides functions to create 

thorns of these types given high level descriptions. These functions are the ones directly 

called by users. Internally the KrancThorns package uses the Thorn package to create the 

Cactus thorns. 

Types of arguments 

Mathematica allows two types of arguments to be passed to a function, positional arguments 

and named arguments (referred to in the Mathematica book as optional arguments). It is 

possible for some named arguments to be omitted from a function call; in this case a suitable 

default will be chosen. Positional arguments are useful when there are few arguments to a 

function, and their meaning is clear in the calling context. Named arguments are preferred 

when there are many arguments, as the argument names are given explicitly in the calling 

context. 

For each type of Kranc thorn, there is a function to create it (Create*Thorn). There is 

a certain set of named arguments ("Common named arguments") which can be passed to 

any of these functions (e.g. the name of the Thorn to create, where to create it, etc). Then, 
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for each type of thorn, there is a specific set of named arguments specifically for that thorn 

type. All of the functions accept some positional arguments as well. 

Common data structures 

Kranc consists of several packages which need to pass data between themselves in a struc-

tured way. Mathematica does not have the concept of a C + + class or a C structure, in 

which collections of named objects are grouped together for ease of manipulation. Instead, 

we have defined a Kranc structure as a list of rules of the form key -> value. We have 

chosen to use the Mathematica rule symbol for syntactic convenience. For example, 

one might describe a person using a "Person" structure as follows: 

alice = {Name -> "Alice", 

Age -> 20, 

Gender -> Female} 

Once a structure has been built up, it can be parsed with the lookup function in the 

MapLookup package, lookup [structure, key] returns the value in structure corre-

sponding to key. For example, lookup [alice. Age] would return the number 20. This 

usage mirrors what is known as an association list (or alist) in LISP style languages. Based 

on this concept a number of data structures have been defined which will be used to describe 

the thorns to construct. Each of these data structures is introduced below. 

Data structure: PartialDerivatives 

The user can define partial derivative operators and associated finite difference approxima-

tions of these operators. This allows different discretizations of the PDE system. 

A finite difference operator maps grid functions to grid functions. We restrict to those 

operators which are polynomials in shift operators. In one dimension, the shift operator 

E+ is defined as 

E+Vj = Vj+i (6.1) 

It is clear that 

= '^j+n (6.2) 
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and negative powers n take on the obvious meaning. In three dimensions, there is one shift 

operator for each dimension: 

E+iVj = fj+(ioo) E+2'i^j = 'Uj+(oio) E+sVj = 'Uj+(ooi) (6.3) 

where here j = is a multi-index. 

The PartialDerivatives structure is a list of definitions of partial derivative operators in 

terms of finite difference approximations: 

{ nameCi-, j_, ...] -> defn, ... } 

where name is the name for the partial derivative, and defn is an algebraic expression in 

shift operators representing the difference operator. The shift operator E+i is written as 

shift [i]. The form spacing [i] can be used in defn to represent the grid spacing in 

the i direction. The parameters i , j , . . . are used in defn to represent the direction 

of differentiation for the first, second, etc. derivatives. Partial derivatives with the same 

name but a different number of arguments (i.e. for first and second derivatives) are allowed 

in the PartialDerivatives structure. 

Since the definitions of the difference operators are written in terms of Mathematica ex-

pressions, higher level operators can be constructed from shift and spacing. For example, 

Kranc predefines 

DPlus[n_] 

DMinus[n_] 

DZero[n_] 

= (shift[n] - 1)/spacing[n]; 

= (1 - 1/shift[n])/spacing[n]; 

= (DPlus[n] + DMinus[n])/2; 

As an example, we give here a PartialDerivatives structure containing the definition of the 

standard second order accurate difference operators, as well as the DQ discretization. 

derivs = { 

PDstandard2nd[i_] -> DZero[i], 

PDstandard2nd[i_, j_] -> DPlus[i] DMinus[j], 

PDzero2nd[i_] -> DZero[i], 

PDzero2nd[i_, j_] -> DZero[i] DZero[j] 

} 
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In a calculation, a partial derivative is written in the form 

name I grid function, i, j, ...] 

For example, a one dimensional advection equation dfU = dxU with semidiscrete form 

dtVj = DoiVj could be described as 

dot[v] -> PDstandard2nd[v, 1] 

The PartialDerivatives structure can also be used to define operators for artificial dissipa-

tion. Given a semidiscrete scheme 

dtv{t)j = Fj{v{t)-,t) (6.4) 

we can add Kreiss-Oliger style artificial dissipation by modifying the scheme to read 

dtVj{t) = Fj{v{ty, t) - a h\{D+iDifvj (6.5) 

i 

We define a differencing operator Diss2nd in the PartialDerivatives structure with no 

directional arguments 

Diss2nd[] -> - sigma Sum[spacing[i]"3 (DPlus[i] DMinus[i])"2, 

{i, 1, 3}] 

using the standard Mathematica function for summations. An evolution equation repre-

senting the advection equation with dissipation could then be written as 

dot[v] -> PDstandard2nd[v, 1] + Diss2nd[v] 

A PartialDerivatives structure is given as an argument to the thorn generation functions. 

Data structure: GroupDefinition 

A GroupDefinit ion structure lists the grid functions that are members of a specific Cactus 

group. A list of such structures should be supplied to all the KrancThorns functions so 

that Kranc can determine which group each grid function belongs to. 
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Data structure: Calculation 

Calculation structures are the core of the Kranc system. The user provides a list of equa-

tions of the form 

variable -> expression 

When the calculation is performed, for each point in the grid, expression is evaluated and 

placed into the grid function variable. Here expression may contain partial derivatives of 

grid functions which have been defined in a PartialDerivatives structure. 

The user may specify intermediate (non-grid) variables called shorthands which can be 

used as variable for precomputing quantities which will be used later in the calculation. 

To identify these variables as shorthands, they must be listed in a Shorthands entry of the 

Calculation. 

The arrangement of the terms in the equations can have a marked effect on both compile 

time and run time. It is often helpful to tell Mathematica to collect the coefficients of 

certain types of term, rather than expanding out entire expressions. To this end, the user 

can include a CollectList entry in a calculation; this is a list of variables whose coefficients 

should be collected during simplification. 

There is the facility for performing multiple loops in a single calculation structure; this can 

be used to set a grid function in one loop, then evaluate derivatives of it in a later loop. 

For this reason, the equations are given as a list of lists of equations. 

Note that the system is not designed to allow the same grid function to be set more than 

once in a single loop of a calculation. 

The following example is taken from the Kranc implementation of the NOR formulation. 

It is a calculation which describes the time evolution equation for the lapse a in harmonic 

slicing. It uses the TensorTools package to represent tensorial quantities. 
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lapseEvolveCalc = { 

Shorthands -> {trK, hlnv[ua,ub]}, 

Equations -> 

{{ 
hlnv[ua,ub3 -> Matrixinverse[hCua.ub]], 

trK -> K[la,lb] hlnv[ua,ub], 

dot[alpha] -> alpha"2 trK 

}} 
} ; 

See Appendix D for further information. 

Data structure: GroupCalculation 

A GroupCalculation structure associates a group name with a Calculation which is used 

to update the grid functions in that group. This is used when creating evaluator thorns, 

where the calculations are triggered by requests for output for specific groups. 

6.4.2 Package: TensorTools 

The TensorTools package was written specifically for the Kranc system, though it is in no 

way tied to it. It is necessary to perform certain operations on tensorial quantities, and 

there was no free software available which met the requirements. 

TensorTools has the following features: 

• It expands covariant derivatives in terms of partial derivatives and Christoffel symbols 

(more than one covariant derivative can be defined) 

• It expands Lie derivatives in terms of partial derivatives 

• Dummy indices can be automatically relabelled to avoid conflicts 

• Abstract tensor expressions can be converted into component expressions 
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Representation of tensor quantities 

Tensorial expressions are entered in the same syntax as is used by MathTensor, a commer-

cial tensor manipulation package which can be used instead of TensorTools. An abstract 

tensor consists of a kernel and an arbitrary number of abstract indices, each of which can 

be upper or lower. Abstract indices are alphabetical characters (a-z, A-Z) prefixed with 

either an 1 or a u depending on whether the index is considered to be lower or upper. The 

tensor is written using square brackets as 

kernel [ indices separated by commas ] 

For example, Tj' would be written as TCla,ub]. There is no automatic index raising 

or lowering with any metric. Entering a tensorial expression causes it to be displayed in 

standard mathematical notation; 

In := T[la,lb] 

Out = Tab 

Internally, tensors are represented as Tensor [kerne/, Tensorlndex [Za6e/, type"] , . ..] 

where label is the alphabetical index, and type is either "u" or "1" depending on the posi-

tion of the index. This representation helps in pattern matching, and allows TensorTools 

to identify whether a certain object is a tensor or not. 

Expansion of tensorial expressions into components 

As an example, the TensorTools function MakeExplicit converts an expression containing 

abstract tensors into a list of component expressions; 

In := MakeExplicit[T[la, lb]g[ub, uc]] 

Out = { g l l T i l + g21 T12 + g31 T13, gl2 T i l + g22 T12 + g32 T13, 

gl3 T i l + g23 T12 + g33 T13, g l l T21 + g21 T22 + g31 T23, 

gl2 T21 + g22 T22 + g32 T23, gl3 T21 -f- g23 T22 -H g33 T23, 

g l l T31 + g21 T32 + g31 T33, gl2 T31 -h g22 T32 + g32 T33, 

gl3 T31 + g23 T32 + g33 T33} 

79 



6.4. Kranc Design 

Note here that there is no distinction made between upper and lower indices in the com-

ponent form. TensorTools was written mainly for automated code generation rather than 

symbolic manipulation; different kernels should be used for the different forms if this is a 

problem. 

Covariant derivatives 

TensorTools allows the user to define more than one covariant derivative. The following 

defines a covariant derivative operator CD with Christoffel symbol H: 

DefineConnection[CD,H] 

The function CDtoPD is used to replace covariant derivatives with partial derivatives in any 

expression: 

In := CDtoPD [CD CVCua] ,1b]] 

C h i t = 1 / * , 

The function MakeExplicit will automatically do this before converting expressions into 

components. In order to convert an expression containing a covariant derivative into com-

ponents, TensorTools first simplifies the expression. In the following, x and y represent 

expressions which may contain tensorial indices. The following steps are performed to 

simplify the expression: 

• Replace any high order covariant derivatives with repeated application of a first order 

covariant derivative. This ensures that we only need to know how to evaluate a first 

derivative. 

v . v . y ' ' ^ v d ( v . y " ) 

• Replace the covariant derivative of a product using the Leibniz rule: 

^a{xy) {VaX)y + x{Vay) 

• Replace the covariant derivative of a sum using the linearity property: 

Va(a: + 2/) VaZ + Vay 
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• Replace the covariant derivative of an arbitrary expression containing tensorial indices 

with its expansion in terms of a partial derivative and Christoffel symbols, one for 

each index in the expression: e.g. 

Lie derivatives 

The Lie derivative of an expression x with respect to a vector V is written 

Lie[x,V] 

where V has been registered using DefineTensor and is written without indices. The 

function LieToPD is used to replace Lie derivatives with partial derivatives: 

In := LieToPD[LieCT[ua,lb], V]] 

O u t = + 

Lie derivatives of products and sums are supported. The function MakeExplicit will 

automatically perform this replacement before converting expressions into components. 

Automatic dummy index manipulation 

When two expressions both containing a dummy index b are multiplied together, one 

dummy index is relabelled so as not to conflict with any other index in the resulting 

expression: 

In := (T[la, lb]g[ub, uc])v[ub. Id, lb] 

Out = e 
de 

This requires that every multiplication be checked for tensorial operands. This can be a per-

formance problem, so the feature can be enabled and disabled with SetEnhancedTimes [True] 

and SetEnhancedTimes [False]. It is enabled by default. 
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6.4.3 Package: CodeGen 

During the development of the Kranc system, we explored two different approaches to 

generating Cactus files using Mathematica as a programming language. Initially, a very 

straightforward system was used whereby C statements were included almost verbatim in 

the Mathematica script and output directly to the thorn source file. This approach has 

two main deficiencies: 

• The same block of text might be used in several places in the code. When a bug is 

fixed in one place, it must be fixed in all. 

• It is not easy to alter the language that is produced. For example, it is difficult to 

output both C and Fortran. 

• The syntax in the Mathematica source file is ugly, with lots of string concatenation, 

making it difficult to read and edit. 

The CodeGen package provides functions to solve these problems. To address the first 

problem, Mathematica functions are used to represent each block of code. This allows the 

block to be customized by giving the function arguments. By making this abstraction, it 

became very easy to change between outputting C and Fortran. 

Fundamental to the system is the notion of a block, in Mathematica terms this can be either 

a string or a list of blocks (this definition is recursive). All the CodeGen functions return 

blocks, and the lists are all flattened and the strings concatenated when the final source 

file is generated. This is because it is syntactically easier in the Mathematica source file to 

write a sequence of statements as a list than to concatenate strings. 

Many programming constructs are naturally block-structured; for example, C f o r loops 

need braces after the block of code to loop over. For this reason, it was decided that 

CodeGen functions could take as arguments any blocks of code which needed to be inserted 

on the inside of such a structure. 

6.4.4 Package: Thorn 

The Thorn package is used by all the different thorn generators to construct the final Cactus 

thorn. It takes care of the mechanics of writing files to storage and parsing the Kranc 

structures necessary for writing parameter configuration files, grid function definitions etc. 

82 



6.5. Implementation of the NOR formulation 

6.5 Implementation of the N O R formulation 

The NOR evolution equations (3.79)-(3.82) are entered in the Kranc system as follows: 

{ 

(* Shorthands *) 

deth -> hDet, 

invdeth -> 1 / deth, 

hlnv[ua,ub] -> Matrixinverse[h[ua,ub]], 

trK -> K[la,lb] hinv[ua,ub], 

gamma[ua, lb, Ic] -> 1/2 hlnv[ua,ud] (PD[h[lb,Id], Ic] 

+ PD[h[lc,ld], lb] - PD[h[lb.lc] ,ld]) , 

R[li,lj] -> 1/2 hlnv[uk,ul] ( PD[h[lk,lj],li,ll] + PD[h[li,ll],lk,lj] -

PD[h[lk,ll],li,lj] - PD[h[li,lj],lk,ll]) + 

hlnv[uk,ul](gamma[um,li,11] gamma[un,Ik,Ij] h[ln,lm] -

gamma[iim,li,lj] gamma[im,Ik, 11] h[lm,ln]), 

G[li,lj] -> PD[f[li],lj] + hlnv[uk,um] hlnv[ul,uii] PD[h[lm,ln], Ij] 

(PD[h[li,lk] ,11] - (1/2) rho PD[h[lk,ll] ,li]) 

- hlnv[uk,ul] 

(PD[h[li,lk],ll,lj] - (1/2) rho PD[h[lk,ll],li,lj]), 

DK[lk,ll,lj] -> PD[K[lk,ll],lj] - gamma[um,lj,Ik] K[lm,ll] -

gamma[um,1j,11] K[Ik,Im], 

RS -> hlnv[ui,uj] R[li,lj], 

norham -> RS + (trK)"2 - K[li,lj] K[lk,ll] hlnv[uk,ui] hlnv[ul, uj], 

M[ui] -> - hlnv[ui,uk] hlnv[uj,ul] DK[lk,ll, Ij] + 

hlnv[ui,uj] hlnv[uk,ul] DK[lk,ll,lj], 

(* The Evolution equations *) 

dot[h[la,lb]] -> 2 alpha K[la,lb] + Diss[h[la,lb]], 

dot[K[la,lb]] -> 

-(-DDalpha[lb,la] + alpha (R[la,lb] - 2 K[la,lc] K[ld,lb] hlnv[ud,uc] + 

K[la,lb] trK) + 

(1/2) a alpha (G[la,lb] + G[lb,la]) + 
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6.6. Summary 

c (alpha norham + aprime alpha G[lk,ll] hlnv[uk,ul]) h[la,lb]) + 

Diss[K[la,lb]], 

dot[f[li]] -> -2 alpha hlnv[uk,uin] hlnv[ul,un] K[lm,ln] PD[h[li,lk] ,11] + 

rho alpha hlnv[uk,uin] hlnv[ul,un] K[lm,ln] PD[h[lk,ll] ,li] + 

2 Dalpha[ll] K[li,lj] hlnv[uj, ul] + 

2 alpha hlnv[uk,ul] PD[K[li,lk], 11] -

rho Dalpha[li] trK -

rho alpha hlnv[uk,ul] PD[K[Ik,11],li] + 

2 b alpha M[uj] h[lj,li] + Diss[f[li]] 

} 

This comes to about 40 hues. The generated C code is over 1200 Hnes long. Note that for 

historical reasons the sign convention for Kij is opposite to that used in the rest of this 

work. 

6.6 Summary 

In this chapter, the Kranc software has been introduced. This software was written to 

allow a user to write an abstract tensorial description of a time evolution PDE and have 

Kranc generate the C or Fortran code necessary for solving the finite difference equations. 

Kranc uses the Cactus problem-solving infrastructure as a basis for the generated code. 

The design of the Kranc system has been discussed, and several of the important data 

structures have been described, including representations of calculations and custom finite 

differencing operators. Representation and manipulation of tensorial quantities via the 

TensorTools package is explained, as well as the abstraction of programming constructs 

provided by the CodeGen package for automatic code generation. Finally, the example of 

the fully nonlinear NOR evolution equations is given in Kranc syntax. 

The Kranc software has allowed us to implement many formulations of the Einstein equa-

tions in a fraction of the time it would have taken to write the code by hand. 
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Chapter 7 

Numerical comparisons between 

formulations of the Einstein 

equations 

7.1 Introduction 

There is a large number of 3+1 formulations of the Einstein equations, many of which 

have been shown to have a well-posed Cauchy problem. In order to choose a formulation 

for performing numerical simulations, it is desirable to understand the properties of the 

different formulations and the numerical schemes used to implement them. 

Whilst well-posedness for many first order in time, first order in space formulations has 

long been established (e.g. [38], [29], [27], [54], [55]), this has only recently been achieved 

for formulations which are first order in time but second order in space (e.g. [13], [47], [32], 

[33]). 

There are several reasons to suspect that second order in space systems may be more suited 

to numerical evolutions than fully first order systems. 

• Second order systems have fewer variables. This means that the storage requirements 

during the computer simulation are lower, so higher resolution can be achieved for 

the same computational resources than is possible with a fully first order system. 
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7.1. Introduction 

• In reducing the Einstein equations to a fully first order form, the solution space is 

enlarged and the reduced system is subject to additional auxiliary constraints. It 

could be argued that having more constraints means that there is more potential for 

error. 

• There are many reductions to first order which can be made, and the choice is usually 

determined by a set of parameters. Different choices of parameters lead to different 

numerical evolutions; dynamical adjustment of the parameters based upon the be-

haviour of the solution has been suggested in [45] in order to improve accuracy. 

Evolving the second order system directly does not lead to this complication. 

• Whilst very high accuracy has been achieved for single black hole spacetimes using 

fully first order systems (e.g. [38]), there have been no results for binaries evolved 

using these systems. All of the recent successes (e.g. [17, 4, 51]) in the solution of 

the binary black hole problem have been achieved through the use of second order in 

space systems. 

• Taking the wave equation in first order in time, second order in space form, and 

comparing it with a fully first order reduction, it can be shown that the standard 

finite difference approximation for the fully first order reduction leads to errors in the 

wave propagation speeds which are four times larger than the second order in space 

system. We investigate numerically in this chapter whether the same is true for the 

full Einstein equations. 

In this work, we consider the ADM [7], BSSN [57, 11], NOR-A, NOR-B [47, 32, 33] and ST 

[55] formulations of the Einstein equations and construct finite difference approximations 

of each. Test cases from the Apples with Apples project [3] are used to obtain quantitative 

measures of the relative accuracy of these formulations. Specifically, we investigate the 

following issues. 

• By performing numerical simulations, we test experimentally the convergence of the 

finite difference approximations to the solutions of the partial differential equations 

for each test case. The initial data is perturbed with random noise (as suggested in 

[3]) in order that the initial data contains all discrete Fourier frequencies. This makes 

it easier to see instability. The material of Chapter 5 is essential when considering 

this type of convergence test for systems which are second order in space, as the 

correct norm must be used when considering the accuracy of the initial data. 
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7.2. The Apples with Apples tests 

• We investigate whether the improvement in accuracy of the second order wave equa-

tion compared with first order is also observed for the fully nonlinear Einstein equa-

tions. 

• The NOR system contains some of the features of BSSN, but it is simpler. We 

compare two variants of NOR (NOR-A and NOR-B) with BSSN, in order to see if 

there is any advantage in using BSSN over the simpler NOR systems. 

7.2 The Apples with Apples tests 

The Apples with Apples project [3] introduces a set of numerical tests which can be applied 

to formulations of the Einstein equations for the purpose of comparing them. As the goal 

was to encourage participation and cooperation by as many groups as possible, these tests 

are designed to be straightforward to implement. Periodic boundary conditions are used so 

that the issue of specifying boundary conditions for artificial boundaries does not complicate 

the test, though in physics simulations artificial boundaries are very important. All of the 

tests have initial data with plane symmetry, leading to essentially one dimensional problems. 

The project is called Apples with Apples as the aim is to compare different formulations in 

a standard setting. 

In this work, we have deviated in several ways from the original test prescription, as 

described in Section 7.4. 

We use fourth order Runge Kutta as the time integrator and, except where otherwise 

stated, we use the standard second order accurate centred finite difference approximation 

for spatial derivatives. We use 50 grid points as the base resolution, as this is sufficient 

to resolve the solutions for each test. We use a multiplier p = 1 ,2 ,4 , . . . when additional 

resolutions are required (e.g. for convergence testing) leading to grids of size 50p. 

7.2.1 Gauge wave 

This test evolves Minkowski spacetime in sinusoidally perturbed Cartesian coordinates. It 

is a nonlinear test, in the sense that the solution is not a small perturbation of Minkowski 

spacetime. 
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7.2. The Apples with Apples tests 

The exact solution is prescribed as follows: 

7xx = 1-A sin = 1 7^^ = 1 

A-ZT = = 0 = 0 (7.1) 

a = \ /de t7 

The oflF-diagonal components of 7 -̂ and Kij are zero. The lapse a is compatible with 

harmonic slicing-, = 0 and the shift /?" is zero. We choose an amplitude oi A = 10~^. 

The evolution is within the nonlinear regime for this amplitude. The coordinate domain is 

x E [—0.5, +0.5), y = 0, 2: = 0 and the grid points have coordinates xj = —0.5 + jh where 

h = 1/N and N = SOp with p = 1, 2,4. 

7.2.2 Linear Waves 

This test is aimed at determining whether a formulation is capable of evolving weak trav-

elling gravitational waves. 

Ixx = 1 1 + 6 7zz — 1-6 

Kxx = 0 Kzz = (7 2) 

a = 1 6 = Asin 

The off-diagonal components of 7̂ ^ and Kij are zero. Note that this is not an exact solution 

to the nonlinear equations. It is a solution to the linearized equations. Only when A is 

small will the two be similar. A = 10~® is chosen to ensure that the quadratic terms in the 

evolution equations are of the order of numerical round-off; hence the numerical solution 

should be a solution of the linearized equations to a good approximation. Similarly, the 

lapse Q. is compatible with harmonic slicing V^Vat = 0 only at the linearized level. The 

shift is zero. The grid and coordinates are the same as for the gauge wave. 

7.2.3 Gowdy 

Gowdy spacetimes are nonlinear cosmological solutions of the Einstein equations. This 

test is a special case called polarized Gowdy. This is a strong gravity test, and it is not 

a perturbation of Minkowski; it is not flat and it is nonlinear. The explicit initial data is 
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7.3. Coordinate conditions 

given below; see [3] for more details. The grid and coordinates are the same as for the 

gauge wave, except that z rather than x is the principal direction. 

7xx = Kxx = + ^-Pt) 

Ivv = (e-f Kyy = -|f/4e-V4g-f (1 _ 

where 

P = Jo(27r() cos(27rz) (7.3) 

A = —2TvtJo{2'Kt)Ji{2Tvt) cos^(27rz) + 27r^t^[Jo(27rt) + (27rt)] 

~2 27r Jo(27r) Ji(27r)} (7.4) 

The off-diagonal components of j i j and are zero. The cosmological singularity is at t = 0 

in these coordinates. The shift /5" is zero, but the lapse a is not compatible with harmonic 

slicing. We evolve from t = 1 to test the behaviour of the scheme when the evolved variables 

grow very large; we call this expanding Gowdy. We also evolve the scheme backwards in 

time from i = 1 to t = 0 to determine how accurately the scheme reproduces solutions close 

to a singularity. This test is called collapsing Gowdy. In [3], the collapsing Gowdy test 

is performed using harmonic slicing, leading to an infinite coordinate time before reaching 

the singularity. We choose to use the lapse associated with the exact solution above so that 

the singularity is reached in finite coordinate time. 

7.3 Coordinate conditions 

With zero shift, the Bona-Masso lapse condition [15] is 

oka = --aSjFfc*);;: (7J5) 

We use a more general shcing condition (see, for example, [55]): 

dta = —aF(a, K, x'^) (7.6) 

89 



7.4. Differences between our tests and the Apples with Apples specifications 

as this is the form used by the ST formulation, and it encompasses all the slicing conditions 

we want to implement. For NOR, harmonic slicing is implemented as 

dta = - a i a ^ ^ K i j ) (7.7) 

and the Gowdy lapse is 

dta = (7.8) 

which is chosen to be compatible with the exact solution for the Gowdy spacetime. For 

BSSN, the same slicing conditions are used, except that is replaced with the evolved 

variable K. For ST, we use 

dta = -a{aY^Kij ) (7.9) 

for harmonic slicing and 

dta = -a{t~^ + a'f^Kij) (7.11) 

6L/L == (*(--!'% (7.12) 

for Gowdy slicing (recall that Ai = dia for the ST formulation). 

7.4 Differences between our tests and the Apples with 

Apples specifications 

Our use of the Apples with Apples tests is slightly diflferent to the prescriptions made in 

[3], 

We use fourth order Runge-Kutta (RK4) as the time integrator instead of iterative Crank 

Nicolson (ICN). Our work has shown that the Courant factor necessary for stabihty (at least 

in the linearized case) of the second order in space formulations of the Einstein equations 

is larger for RK4 than for ICN. We will in future wish to test schemes which are overall 

fourth order accurate; ICN is only second order accurate and hence is unsuitable for these 

tests. It is desirable to use the same time integrator for all tests (for example, the amount 
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7.5. Convergence 

of dissipation added by the time integrator is the same), so RK4 is chosen. 

For convergence testing, the 50p x 3 x 3 grid is used. However, in order to compare accuracy, 

a one dimensional grid is used with a one dimensional finite difference scheme. This gives 

an improvement in efficiency of a factor of 9. At the level of the finite difference equations, 

the two are equivalent for one dimensional initial data. However, when round-off errors are 

considered, the two are no longer equivalent (see Section 4.7). 

For the robust stability test, [3] suggests adding noise of amplitude e with 

e E ( - 1 0 - ^ ° / / , +10-^7p2) (7.13) 

We modify this in two ways. Firstly, the lowest resolution amplitude is changed from 

to 10"^. In [3] it is argued that using very small amplitude perturbations of Minkowski 

causes quadratic terms in the equations to be below the level of round-off error (10~^^), 

leading to a finite difference scheme which is essentially linear. We use a higher amplitude 

so that we test the fully nonlinear scheme, and so that round-off errors do not interfere 

with our interpretation of the results. Secondly, the is replaced with p® where q depends 

both on the order of accuracy of the finite difference scheme, and on whether the variable 

concerned is differentiated twice in the second order in space equations (see Section 7.5). 

The original test specification gives confiicting information about the coordinates of the 

numerical grid. We choose the coordinates so that upon refinement of the grid, the points 

on the refined grid coincide with points on the unrefined grid. This allows convergence 

testing without the need to interpolate points between grids. 

7.5 Convergence 

Given a finite difference approximation which is consistent with a partial differential equa-

tion and is accurate of order p, we require that the solution to the finite difference 

equations converges to the solution u{t, x) to the partial differential equations; i.e. for 

sufficiently high resolution, 

K - u(t. oiu = 0(h') (7.14) 
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7.5. Convergence 

provided that the initial data is accurate of order p to u{0, x), 

K - ? , ( 0 , . ) | k = O M (7.15) 

in a norm || • \\h- We wish to determine under what circumstances schemes for the various 

formulations of the Einstein equations are convergent for the different Apples with Apples 

tests. For a linear system with constant coefficients and no forcing terms, one can consider 

the definition of stability in Section 4.2 and test this experimentally. The Lax theorem 

can then be used to infer convergence. The stability test can lead to conclusions that can 

be used to determine convergence for all initial data. We have not been able to find a 

definition of numerical stability for a nonlinear finite difference scheme that can be related 

to its convergence by a Lax-type theorem. Hence, we directly test convergence for specific 

exact solutions. It is not possible to prove convergence using a finite number of numerical 

experiments for two reasons: 

• It would be necessary to test all resolutions as —> 0; 

• The definition of convergence does not assume exact initial data, so all initial data of 

the correct order of accuracy would have to be tested. 

It has been shown (for example in [21]) that an ill-posed formulation, which does not 

admit a convergent finite difference approximation, may appear to be convergent if smooth 

initial data is used (strictly speaking, initial data where only the lowest frequency discrete 

Fourier modes have non-zero amplitude) or if run times are short. In real simulations, 

high frequency modes can become populated, both due to the effects of round-off error 

and the nonlinearity of the equations causing coupling of Fourier modes. In order to test 

convergence in a more demanding way, we choose initial data which is not smooth, but 

is accurate to the correct order. This is achieved by adding random noise to the smooth 

initial data such that (7.15) is satisfied. 

For second order in space formulations, the norm || • |l/i will contain finite difference operators 

(we refer to it as a D+ norm). Whilst it is true that if (7.14) is satisfied, then the same 

estimate in the norm follows, the requirement (7.15) on the order of accuracy of the 

initial data must still hold in the D+ norm. 

For each system to be tested, we perform short runs at four different resolutions parame-

terized by p = 1, 2,4, 8 where the grid size is 50p x 3 x 3. The grid spacing is h = l/(50p). 
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7.5. Convergence 

We plot the D+ norm of the error multiplied by as a function of time (p is the order 

of accuracy of the scheme; i.e. 2 or 4). If (7.14) is satisfied, then this quantity will be 

bounded above by a function of time that is independent of p. If this is not the case, 

and it appears that the trend is for increasing p to lead to larger rescaled errors, then 

we conclude that the scheme is not convergent. Note that in [3], the robust stability test 

(evolution of Minkowski spacetime with random noise superimposed on the initial data) is 

run until t = 1000 whereas we run until t = 0.1. We have found that it is easier to iden-

tify non-convergent schemes by increasing the number of grid points (and hence increasing 

the highest discrete frequency present) than by increasing the run time with only lower 

frequencies present. 

The norms used for monitoring convergence are as follows. For NOR we use 

gridpoints \ i j i j i kij 

(7.16) 

(h is the grid spacing). This is the Zg.A norm obtained from a discrete first order reduction, 

and is the norm in which the linearized scheme with densitized lapse has been proven to be 

stable. The system that we call ADM is actually a parameterization of NOR, so it includes 

the fi variables. For convenience, we use the NOR norm for ADM. 

For BSSN, we use 

gridpoints \ i j i j i 

ft' (7.17) 
kij i / 

Since the ST formulation is first order in space, we use the standard norm: 

I Q ^ j + ^ Kfj -f- + ^ ( A ) A (7-18) 
gridpoints \ i j i j ijk i / 
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7.5. Convergence 

7.5.1 A D M 

The continuum ADM system is ih-posed, and the finite difference approximation of the 

hnearized system is unstable, so we expect that the nonlinear finite difference approximation 

will fail to be convergent. 

Figure 7.1: Convergence test, ADM, Minkowski 
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7.5. Convergence 
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Figure 7.2; Convergence test, ADM with dissipation parameter a = 
0.2, Minkowski 
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7.5. Convergence 

Figures 7.1 and 7.2 show that both with and without artificial dissipation (see Section 4.8), 

the second order accurate finite difference approximation is not convergent. 

7.5.2 N O R 

Figures 7.3-7.10 show that both NOR-A and NOR-B without artificial dissipation appear 

to be convergent for Minkowski, the gauge wave, and expanding and collapsing Gowdy. 

The figures look identical, but on closer inspection they are not in fact the same. The 

random noise added to the solution is in fact only pseudo-random, and is the same for each 

test. We have verified that changing the random data (by altering the seed value given to 

the random number generator) produces different output. 
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Figure 7.3; Convergence test, NOR-A, Minkowski 
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7.5. Convergence 
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Figure 7.4: Convergence test, NOR-A, gauge wave 
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Figure 7.5: Convergence test, NOR-A, Gowdy 
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Figure 7.6: Convergence test, NOR-A, collapsing Gowdy 
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Figure 7.7: Convergence test, NOR-B, Minkowski 
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Figure 7.8: Convergence test, NOR-B, gauge wave 
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Figure 7.9: Convergence test, NOR-B, Gowdy 
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Figure 7.10: Convergence test, NOR-B, collapsing Gowdy 
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7.5. Convergence 

7.5.3 B S S N 

Figure 7.11 shows that the BSSN system with no artificial dissipation is not convergent 

about Minkowski. Adding a small amount of artificial dissipation [a = 0.02) appears to 

make the scheme convergent for all the tests (Figures 7.12-7.15). 

I 

Figure 7.11; Convergence test, BSSN with a = 0, Minkowski 

Figure 7.12: Convergence test, BSSN, Minkowski 
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Figure 7.13: Convergence test, BSSN, gauge wave 
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Figure 7.14: Convergence test, BSSN, Gowdy 

102 



7.5. Convergence 
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Figure 7.15; Convergence test, BSSN, collapsing Gowdy 
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7.5. Convergence 

7.5.4 ST 

The ST continuum system is symmetrizable hyperbolic, so the results of Section 5.6 imply 

that the standard discretizations of the hnear system should be stable and hence convergent. 

We expect this to apply to the nonhnear case as well, and Figures 7.16-7.19 suggest that 

this is the case. 
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Figure 7.16: Convergence test, ST, Minkowski 
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Figure 7.17: Convergence test, ST, gauge wave 
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7.5. Convergence 
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Figure 7.18: Convergence test, ST, Gowdy 
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Figure 7.19: Convergence test, ST, collapsing Gowdy 
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7.5. Convergence 

7.5.5 Convergence test summary 

The experimental convergence tests indicate that NOR-A, NOR-B and ST are convergent 

about all the test solutions. BSSN requires a small amount of artificial dissipation, but 

when this is used, it is also convergent for all the tests. 
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7.6. Accuracy of first and second order systems 

7.6 Accuracy of first and second order systems 

We aim to investigate whether there is an advantage in using second order in space systems 

as opposed to first order in space systems for solving Einstein's equations. 

7.6.1 The example of the wave equation 

Consider a semidiscrete scheme 

dtVj{t) = Pvj{t) (7.19) 

where P is some finite differencing operator. Taking a discrete Fourier transform, we obtain 

f ) (7SI0) 

Formally, this can be solved by integration: 

= (7.21) 

and transformed back to physical space 

E ^) (7.22) 

Noting that Xj = hj, we obtain 

e 
i)(0,;:) (7.213) 

Assuming that P can be diagonalized with eigenvalues A(^), we can consider the solution 

to be a sum of travelling waves with wavenumber k = ^/h and w = The 

phase velocity of these waves is 

= I = 

We can now compare the wave equation in first order in time, second order in space, form 

with its fully first order reduction. 
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7.6. Accuracy of first and second order systems 

For the wave equation in first order in time and second order in space form 

dt(}> = TT dtir = dl(j) (7.25) 

we use the standard discretization and in Fourier space obtain 

dt^ = 7r dtTT = - ^ sin^ f ^ (7.26) 
\ 2 

The eigenvalues of the semidiscrete symbol are 

leading to phase velocities of 

"? = ± ( 1 - ST + 0(5") I (7.28) 
^ " 24 ' 

The fully first order continuum reduction of (7.25) is 

dtcp = TT dtTT = dxi/j dti} = dxTT (7.29) 

and the standard discretization of this system leads to 

dt^ = TT dt^ = ^ sin^'^ dt^) = ^ sin^^ (7.30) 

The eigenvalues are 

A° = 0 A=*= = ± ^ s i n ^ (7.31) 

leading to phase velocities 

?;° = 0 = + (7.32) 

The continuum speed of propagation is unity, so to leading order in ^ the error in the 

propagation speed for the discretization of the fully first order reduction is four times that 

of the second order in space system. Note that this expansion in assumes that the number 

of grid points is large enough that the solution is well-represented by the lowest frequencies. 
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7.6. Accuracy of first and second order systems 

In the following sections, we perform numerical experiments with the Apples with Apples 

test suite to determine if these results apply to the full nonlinear Einstein equations. 

7.6.2 Testing details 

We use the lowest Apples with Apples resolution {N = 50) and choose to evolve a truly one 

dimensional scheme on a one dimensional grid. From the point of view of the finite difference 

equations, this is equivalent to using a 3D scheme on a 3D grid since the initial data only 

has variation in one direction. However, when round-off errors are taken into account, 

the numerical solutions will be different. Since the exact solution is one dimensional, we 

choose to consider the accuracy of the one dimensional finite difference equations, rather 

than attempting to analyse the effects of round-off error. For the accuracy tests, we do not 

add random noise to the initial data. 

7.6.3 Gauge wave 

We evolve the gauge wave and monitor the metric components. Figure 7.20 shows the 

7a;x component of the solution after ten crossing times. NOR-A, NOR-B and BSSN using 

the standard discretization show a large error which is approximately constant in space. 

Further, the BSSN wave profile is not reproduced accurately. Using the discretization 

for the second order in space formulations as suggested in [8] eliminates the constant in 

space error, and these and the ST formulation are much more accurate. 

The maximum of the exact ^xx is 1.1 for all time. We plot the numerical values in figure 7.21. 

We see that NOR-A with the DQ discretization and ST both preserve the maximum. The 

standard discretization of NOR-A and NOR-B and both discretizations of BSSN quickly 

develop large errors in the maximum. NOR-A shows a worse than exponential growth in 

the maximum. 

Figure 7.22 shows the x coordinate of the maximum of every crossing time as a function 

of time, plotted every crossing time, for each system. For the exact solution, the maximum 

should remain at the same coordinate. The gradients of these lines are the errors in the 

speeds at which the maximum is propagated. The phase error is linear in time for all three 

systems, indicating that the numerical speeds of propagation have constant errors. 
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7.6. Accuracy of first and second order systems 

Exact 

NOR-A standard 

NOR-A D l 

NOR-B standard 

NOR-B Dl 

BSSN standard 

BSSN Dg 
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X 

Figure 7.20: Gauge wave profiles att = 10. NOR-A, NOR-B and 
BSSN using the standard discretization are clearly distinguishable 
from the other lines. 
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t 

Figure 7.21: Gauge wave 'ŷ x maximum 

The phase error lines for NOR-B and BSSN have been truncated in time once the solution 

no longer resembles a travelling wave. 
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Figure 7.22: Gauge wave phase error comparison. The x coordinate 
of the maximum is plotted against time every crossing time. 
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7.6. Accuracy of first and second order systems 

7.6.4 Linear wave 

The errors in the hnear wave test are much smaller. Figure 7.23 shows that NOR and 

BSSN using the standard discretization have very similar phase errors, whereas ST has a 

much larger phase error. 
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Figure 7.23: Linear wave profile t = 200 
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Figure 7.24: Linear wave amphtude comparison 

The error in the amplitude of the wave is more pronounced in BSSN and NOR-A with the 

DQ discretization; for ST and NOR-A standard, the amplitude is maintained very accurately 

(Figure 7.24). This is probably because BSSN and NOR-A with the DQ discretization 

require artificial dissipation which damps the amphtude of the wave. 
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7.6. Accuracy of first and second order systems 

Exact 
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t 

Figure 7.25: Linear wave phase error comparison, NOR and BSSN 
using standard discretization. The x coordinate of the maximum is 
plotted against time every crossing time. For the exact solution, the 
maximum should remain at the same coordinate. 

Figure 7.25 shows the x coordinate of the maximum of ^yy every crossing time as a function 

of time for each system. For the exact solution, the maximum should remain at the same 

coordinate. The phase error is hnear in time for all three systems, indicating that the 

numerical speed of propagation has a constant error in it. NOR and BSSN propagate the 

solution at the same speed, though the error in the speed for ST is much larger. 

7.6.5 Collapsing Gowdy 

We evolve the collapsing Gowdy spacetime and plot the relative error in ^zz as a function 

of time for the different formulations in figure 7.26. Note that data is given at T = 2 and 

the scheme is evolved backwards to T = 0. There is a singularity at T = 0, and ^zz in the 

exact solution is singular there. During the approach to the singularity, ST has a relative 

error of less than 3%. BSSN and NOR-A have errors of less than 15% but NOR-B develops 

an error of order 100%. It seems that only on the final time step do the evolution variables 

attain infinite values; the solution is well-behaved until that point. 
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Figure 7.26: Relative error in 7^^ for the different formulations for 
the collapsing Gowdy spacetime 
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Figure 7.27: Relative error in for the different formulations for 
the collapsing Gowdy spacetime 
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Figure 7.28; Relative error in K^z for the different formulations for 
the collapsing Gowdy spacetime 
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Figure 7.29: Relative error in K^x for the different formulations for 
the collapsing Gowdy spacetime 
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7.6. Accuracy of first and second order systems 

7.6.6 Accuracy comparison summary 

Errors in the propagation speed 

For the wave testbeds, the errors in the propagation speeds are shown in Table 7.1. 

Gauge wave Linear wave 
NOR standard 1.57 X 10-^ -6 .58 X 10-'^ 
NOR £>2 -2.92 X 10-3 -2 .64 X 10-3 
BSSN standard -6 .50 X lO-'^ 
BSSN Dg -2 .63 X 10-3 
ST -2 .17 X 10-3 -2 .64 X 10-3 

Table 7.1: Errors in wave propagation speeds for the Einstein equa-
tions for various formulations 

As discussed in Section 7.6.1, we predict that second order in space systems using the 

standard discretization may have propagation speed errors which are approximately four 

times smaller than fully first order systems. For the linear wave, the standard discretizations 

of NOR and BSSN have speed errors times smaller than ST, in accordance with the 

prediction. The reduction in propagation speed error for the gauge wave when using second 

order rather than fully first order systems is less; the standard discretization of NOR 

has a propagation speed error which is ~1.4 times smaller than the fully first order ST 

formulation. 

For the hnear wave, the DQ discretizations of NOR-A and BSSN have speed errors approx-

imately the same as ST, whereas for the gauge wave, the DQ discretization of NOR-A has 

an error ~1.35 times larger. 

The prediction is verified for the linear wave, but it cannot be extended to the gauge wave. 

Approach to singularity and the strong field regime 

For collapsing Gowdy, only NOR-B shows a substantial diEerence in the behaviour of the 

error, where the relative errors in 7^^ and 7^1 are an order of magnitude larger at the 

approach to the singularity than for the other formulations. 
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7.6. Accuracy of first and second order systems 

N O R and B S S N 

In all the tests performed here, BSSN behaves the same or worse than NOR-A. Additionally, 

it seems that BSSN requires artificial dissipation for convergence, whereas NOR-A and 

NOR-B do not. Real-world simulations involve artificial boundaries and more complicated 

solutions, and it is possible that BSSN has advantages in those situations. NOR-B has 

errors an order of magnitude larger than NOR-A in the collapsing Gowdy test, so there is a 

slight indication that NOR-A may be more suitable than NOR-B for spacetimes involving 

singularities. 

The DQ discretization for second order in space systems 

Using the DQ discretization as suggested for second order in space systems as suggested in 

[8] removes the major source of error in the gauge wave simulations for NOR and BSSN. 

However, using this discretization means that one of the benefits of using a second order 

in space system (reduced errors in the propagation speed) are lost. The fully first order 

ST system behaves the same or better than the Dq discretizations of the second order in 

space systems. It should also be noted (Section 5.7.2) that using this discretization may 

lead to stability problems, and it is unknown whether the use of artificial dissipation can 

fully rectify these problems. 

Overall conclusions 

It has been shown that the second order in space NOR and BSSN systems give errors in 

the propagation speed of a linear gravitational wave which are four times smaller than 

the errors from the fully first order ST system, in agreement with the result for the wave 

equation. However, the same cannot be said of the gauge wave, where the error is only 

1.4 times smaller. For the gauge wave test, the second order in space NOR and BSSN 

systems with the standard second order accurate discretization give rise to a mode which 

grows worse than exponentially with time. On the basis of this test, we must rule out these 

systems. This mode is not present when the Dq discretization is used, but the advantages 

of the second order formulation in terms of reduced propagation speed are also lost. The 

NOR-A system is at least as accurate, and in some cases is more accurate, than BSSN in 

all the tests. 

117 



7.6. Accuracy of first and second order systems 

We conclude that on the basis of these tests the fully first order ST system is the most 

promising, and that when a second order in space formulation is used, NOR is more accurate 

than BSSN. 
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Chapter 8 

Conclusions 

In this work, we have shown how stabihty can be defined for discretizations of second order 

in space linear systems. The textbook definition of stabihty is usually given in the discrete 

l2,h norm. For systems which are first order in time but second order in space, and have 

finite speeds of propagation, it is necessary to use a norm containing difference operators. 

Using these norms for stability, such systems can be shown to converge in the l2,h norm 

as required. This use of norms containing difference operators is analogous to the use of 

norms containing derivatives when proving well-posedness for continuum first order in time 

and second order in space systems. 

We consider a general form for a first order in time and second order in space system and 

show how to perform a discrete reduction to first order in Fourier space. Stability conditions 

for the first order system are then translated into direct requirements on the second order 

system, meaning that it is only necessary to check these conditions on a case-by-case basis, 

and it is not necessary to perform the reduction to first order for every system. 

This technique is applied to discretizations of the ADM and NOR formulations of the Ein-

stein equations, and Courant limits for these systems are derived. The ADM equations are 

shown to be unstable as expected. The linearized NOR system is shown to be conditionally 

stable in an appropriate norm. 

The Kranc computer algebra software package has been developed to study complex non-

linear 3D systems such as the Einstein equations as time evolution problems. This software 

automatically generates computer code for solving the finite difference equations from an 

abstract mathematical description. This greatly reduces the amount of time needed to 

implement these problems numerically. In comparison to writing the code by hand, the 
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task of implementing different formulations of the Einstein equations is vastly simplified 

by using automated code generation. The obvious limitation of the Kranc system is that 

it does not include an easy way to specify boundary conditions at artificial boundaries. 

For first order in space systems, there is well-developed theory in this area, but the theory 

for second order in space systems is more limited. Future work will include enhance-

ments to Kranc to allow the user to specify boundary conditions, as well as the structural 

changes necessary to support the Cactus-based mesh refinement system Carpet. There is 

currently much work being done on using multiple computational grids to cover more than 

one coordinate patch of the spacetime [63, 44]. Kranc can be extended to support these 

systems, which will eventually allow simulation of 3D spacetimes with smooth inner and 

outer boundaries, a capability which will hopefully lead to improvements in accuracy and 

stability of astrophysical simulations. 

The Kranc package has been used to implement the NOR, BSSN and ST formulations, and 

these formulations have been experimentally tested for convergence using a set of standard 

numerical relativity tests. The standard discretization of each of these formulations is 

determined to be convergent for all the tests, though this implementation of BSSN requires 

the use of a small amount of artificial dissipation. A quantitative comparison of the accuracy 

of the different formulations in the standard tests is performed. For the wave equation, 

the numerical error in the speed of propagation of the solution is expected to be four times 

lower for a second order in space system than for a fully first order system. This result 

is reproduced for a hnear gravitational wave, but the same is not true for a gauge wave 

(Minkowski spacetime in sinusoidally perturbed coordinates). Also, the NOR and BSSN 

systems exhibit numerical errors which grow worse than exponentially with time, whereas 

the ST system does not. For these reasons, we conclude that based on these simple tests, 

the ST system is more suitable for numerical evolutions than the NOR or BSSN systems. 

We note however that realistic astrophysical simulations require the use of sophisticated 

boundary treatments which are not modelled in these tests, and in these cases, it is possible 

that the superiority of the ST formulation may be lost. 

Tests of this type can be extended in various ways. Fourth order accurate finite differencing 

has been implemented in Kranc, and it would be interesting to see to what extent this 

improvement in accuracy affects the conclusions concerning first and second order systems. 

The main problem noted for second order systems was the exponentially growing mode in 

the gauge wave test. The origin of this mode has been discussed in [8], and various remedies 

are discussed. A comparison of the use of these remedies with the use of a first order system 
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would give more indication as to whether second order systems are to be preferred. 
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Appendix A 

Some results from linear algebra 

A . l Vector norms 

A mapping 5 —> R, [ on a vector space S is called a norm if it satisfies the following 

properties: 

• |i;| = 0 iflF w = 0 

• \kv\ — \k\\v\ for k E C, where |A:| is the absolute value of the complex number k 

• |w +1;! < \u\ + \v\ 

For example, the I2 or Euclidean norm defined on C" by 

/ n \ V2 

kl = = f Y ] (A.l) 

is usually called "the" vector norm. 

Two norms | • | and | • |' on a space S are said to be equivalent if 3 K such that 

< \v\ < K\v\' (A.2) 

for all D E 5'. This relation between | • | and | • |' is an equivalence relation. For finite dimen-

sional linear spaces, all norms are equivalent. Specifically, all norms on C" are equivalent 

to the Euclidean norm. 

122 



A.2. Matrix inequalities 

A.2 Matrix inequalities 

The following notation for inequalities of matrices will be used: 

A < B = y x, x*Ax < x*Bx (A.3) 

A.3 Matrix norms 

The set of n x n complex matrices forms a vector space, C"'". A norm on this space is 

called a matrix norm if, in addition to the requirements for being a norm on the vector 

space, it satisfies the property 

\AB\ < |/1||B| {A.4) 

A norm on the vector space C" can induce a matrix norm on the space C"'" by the following 

relation: 

\A\ = sup \Av\ (A.5) 
bl=i 

Specifically, the matrix norm induced by the vector I2 norm is usually called "the" matrix 

norm. 

Matrix norms are unaffected by unitary transformations. For U a unitary matrix, 

\U*AU\ = |A| (A.6) 

A.4 Calculating matrix norms 

The norm of a matrix is given by 

\A\ = sup \Av\ (A.7) 
kl=i 

For any matrix, (A.5) can be calculated by 

|yl| == cr(yl*vl)i/2 (/Lg) 
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A.5. Fractional powers of Hermitian positive definite matrices 

where 

cr(M) = sup |m̂ | (A.9) 
1/ 

(A. 10) 

where {m^} are the eigenvalues of M. a{M) is called the spectral radius of M. 

If the matrix A is normal, i.e. [A, A*] = 0, then we have 

|A| = a{A) (A.ll) 

Suppose that Q G C"''̂  is a polynomial in a normal matrix P: 

p 
<2 == a,JO' (71.12!) 

s = 0 

Then Q is also normal. Further, by writing 

== (A.13) 

A = di&g{qi,... ,qm) (A. 14) 

it can be seen that 

\Q\ = sup E 
s = 0 

(A. 15) 

A.5 Fractional powers of Hermitian positive definite 

matrices 

Consider a positive definite Hermitian matrix H which is diagonalized by a unitary matrix 

U and has eigenvalues A;. Write 

j? = [/'VIC/ (Jl.K)) 

where A = diag(Ai,..., Â ). Then a fractional power of H is defined by 

ĵ a = (A. 17) 
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A.6. Energy norms 

where the power of the diagonal matrix is defined component-wise. 

A.6 Energy norms 

Writing the I2 norm on C" as | • |, and given a positive definite Hermitian matrix H, a new 

norm can be defined: 

\v\h = {v*hvy^'^ = \h^^'^v\ (A.18) 

called an energy norm. This vector norm can be used to induce a matrix norm 

sup \Av\h (/Lig) 

sup \H^^^Av\ (/L20) 

sup 0^21) 
|Hl/2t,| = l 
sup 
{1)1=1 

(A.22) 

(A.23) 

where in the penultimate line we have relabelled as v. 

A.7 Relations between norms equivalent to the iden-

tity 

Suppose I • 1// is an energy norm equivalent to the identity; i.e. 

K-^I <H<KI (A.24) 

then one can show 

= (A.25) 

> (A.26) 
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A.7. Relations between norms equivalent to the identity 

and for a matrix A G C"'", 

Similarly, 

Summarizing: 

\A\h = sup \Av\h = sup (A.27) 
\v\n=\ V \v\h 

-

< (A.29) 
% | % | 

|vl|ar >: CAL-31) 

(/L32) 

K~̂ '̂̂\v\ < |w|i/ < (A.33) 

jR-ilvll IvlLff C/L34) 
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Appendix B 

Miscellaneous 

B . l Multi-indices 

Sometimes it is necessary to refer to an arbitrary number of indices, for example when 

an expression involves many spatial dimensions. A multi-index is an n-tuple of integers ji 

where z = 1,..., n. An expression such as 

'^jlj2--jn (B 1) 

can be compactly written 

Uj (B.2) 

The order of a multi-index j is defined to be 

I; I = (B.3) 
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Appendix C 

Discrete Fourier Transform 

C . l Definition 

Let It = {uo,... ,un^i) G C^. The discrete Fourier transform of it is 6 = (wo, • • •,&#-i) E 

defined by 

== ( ( ] . ! ) 

j=0 

Forming the expression 

iV—1 N—1 / N~1 \ 

JL 1)-; / ((3.2) 
^ k=0 k=0 \ j ' = 0 J 

N - l / , iV-1 
]>-; I j tiy ((3.3) 

N 
j'=0 \ fc=0 
N - l 

— U j 

Y 1 ( C . 4 ) 
j'=o 

(C.5) 

it can be seen that given u, u can be recovered with the inversion formula 

N - l 

= (C.6) 
k=0 

We now consider two variations in the notation used for the discrete Fourier transform. 
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C.2. Wavenumber notation 

C.2 Wavenumber notation 

Suppose first that u is a grid function with N points over a coordinate domain [0, L), and 

these points have coordinates Xj — hj with j = 0 , N — 1 and h — L/N. Introducing 

the notation = 27rfc/L, u can be written 

AT-l 

Uj 

k=0 

This can be interpreted as u being the sum of N modes at spatial frequencies (wave num-

bers) 0, 27r/L,..., 2tt{N — l)/L with amplitudes MQ, • • •, Um-i- The function 

N-l 

%(%) = ((3.8) 
fc=0 

is called the trigonometric interpolant of u. It satisfies the property 

u{xj) = Uj (C.9) 

C.3 Grid independent frequency range 

Alternatively, it can be convenient to work with a spatial frequency whose range does not 

depend on the number of grid points or the coordinate size of the grid. The range chosen 

is (—7r,7r]. Define = ̂ nk/N to obtain 

% = (c.io) 

If u is extended using (C.l) to all k EZ, then Uk = Uk+N, i.e. u is periodic with period N, 

and the range of summation in (C.IO) can be changed to obtain 

N/2 

fc=-N/2+l 

129 



C.4. Extension to more than one spatial dimension 

(We have assumed N to be even. For N odd, the range could be chosen to be —(TV + 

l)/2 .. .{N — l)/2.) Hence = —7r + 2tt/N, —tt + An/N,... ,it. The notation 

EE 6k ((].i:2) 

is sometimes used. Further, if Uj — Uj, then 

= (C13) 

To summarize, in the remainder of this work, a grid function and its discrete Fourier 

transform will be related as follows: 

E "«) = E (c- w) 

where j and ̂  take the N values 

j = 0,..., — 1 ^ =—n + 27r/N,—TV + An/N,... ,7r (C.15) 

C.4 Extension to more than one spatial dimension 

These results are generalized to s spatial dimensions via 

= «(?) = (C.16) 
C j 

where N = N1N2 • •. Ns, j and ̂  are now multi-indices (see Appendix B). 

j = JLb. .j, (CI?) 

^ - & (C.I8) 

The components of these take the values 

Jr == - 1 (Ĉ 19) 

= —n + 27r/Nr,—7V + 47v/Nr,...,7V (C.20) 
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C.5. Infinite non-periodic grid 

The inner product is defined as 
N-l 

0,0 = (C.21) 
r = 0 

and the sums are 
Ni — 1 N2 — 1 — 1 

E - E E - E (c-22) 
i ji=o 32=0 js=o 

The sum over ̂  is 
TT TT TT 

E - E E - E («3) 
€ î=—7r+27r/iV2 ̂2=—7i'+27r/Ar2 (s=—7r+27r/% 

C.5 Infinite non-periodic grid 

Finally, when u is a grid function on an infinitely extended uniformly spaced grid, u(̂ ) G 

[—TT, Tx) can be considered as a continuous periodic function, and u as its Fourier series. 
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Appendix D 

Kranc reference 

D . l Data structure specifications 

Here we describe in detail the data structures which are used when calling the KrancThorns 

functions. 

D.1.1 Calculation 

Key Type Description 

Equations list of lists {loopl, loop2} - Each loop is a list of 

rules of the form variable -> expression 

where variable is to be set from expression 

Shorthands (optional) list of symbols Variables which are to be considered as 

'shorthands' for the purposes of this cal-

culation 

Name (optional) string A name for the calculation 

Before (optional) list of strings Function names before which the calcula-

tion should be scheduled. 

After (optional) list of strings Function names after which the calculation 

should be scheduled. 
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D.2. KrancThorns function reference 

D.1.2 GroupCalculation 

A GroupCalculation structure is a list of two elements; the first is the name (a string) of a 

Cactus group and the second is the Calculation to update the variables in that group. 

D.1.3 GroupDefinition 

A GroupDefinition structure is a list of two elements. The first is the name (string) of a 

Cactus group and the second is the list of variables (symbols) belonging to that group. The 

group name can be prefixed with the name of the Cactus implementation that provides 

the group followed by two colons (e.g. "ADMBase::metric"). If this is not done, then the 

KrancThorns functions will attempt to guess the implementation name, usually using the 

name of the thorn being created. 

D.2 KrancThorns function reference 

Here we document the arguments which can be specified for the functions CreateBaseThorn, 

CreateMoLThorn, CreateSetterThorn, CreateTranslatorThorn and CreateEvaluatorThorn. 

Note that we use Mathematica syntax for function-specific section headers. Underscores de-

note function arguments, and OptArguments stands for optional arguments, also referred to 

as named arguments below. These are given in the form myFunction[. . ., argumentName 

-> argumentValue]. 

D.2.1 Common Named Arguments 

The following named arguments can be used in any of the Create*Thorn functions: 
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D.2. KrancThorns function reference 

Argument Type Description Default 

SystemName string A name for the evolution 

system implemented by this 

arrangement. This will be 

used for the name of the ar-

rangement directory 

"MyPDESystem" 

SystemParentDirectory string The directory in which to 

create the arrangement di-

rectory 

ThornName string The name to give this thorn SystemName -f-

thorn type 

Implementation string The name of the Cactus im-

plementation that this thorn 

defines 

ThornName 

SystemDescription string A short description of the 

system implemented by this 

arrangement 

SystemName 

DeBug Boolean Whether or not to print de-

bugging information during 

thorn generation 

False 

D.2,2 Arguments relating to parameters 

The following table describes named arguments that can be specified for any of the thorns 

except CreateBaseThorn. CreateBaseThorn is special because it can be used to define 

parameters which are inherited by each thorn in the arrangement, so the arguments it can 

be given are slightly different. 
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D.2. KrancThorns function reference 

Argument Type Description Default 

RealBaseParameters list of strings Real parameters used in this {} 
thorn but defined in the base 

thorn 

IntBaseParameters list of strings Integer parameters used in {} 
this thorn but defined in the 

base thorn 

RealParameters list of strings Real parameters defined in {} 
this thorn 

IntParameters list of strings Integer parameters defined {} 
in this thorn 

D.2.3 CreateBaseThorn[groups-, evolvedGroupNames_, primitive-

GroupNames-, OptArguments ] 

Positional arguments 

Argument Type Description 

groups list of GroupDefinition structures Definitions of any groups re-

ferred to in the other argu-

ments. Can supply extra 

definitions for other groups 

which will be safely ignored. 
evolvedGroupNames list of strings Names of groups containing 

grid functions which will be 

evolved by MoL in any of the 

thorns in the arrangement. 

primitiveGroupNames list of strings Names of groups containing 

grid functions which will be 

referred to during calcula-

tion of the MoL right hand 

sides in any of the thorns in 

the arrangement. 
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D.2. KrancThorns function reference 

Named arguments 

Argument Type Description Default 

RealBaseParameters list of strings Real parameters defined in {} 
this thorn and inherited by 

all the thorns in the arrange-

ment 

IntBaseParameters list of strings Integer parameters defined {} 
in this thorn and inherited 

by all the thorns in the ar-

rangement 

D.2.4 CreateEvaluatorThorn[groupCalculations_, groups_, OptAr-

guments ] 

Positional arguments 

Argument Type Description 

groupCalculations 

groups 

list of GroupCalculation structures 

list of GroupDefinition structures 

The GroupCalculations to 

evaluate in order to set the 

variables in each group 

Definitions for each of the 

groups referred to in this 

thorn. Can supply extra 

definitions for other groups 

which will be safely ignored. 

136 



D.2. KraaicThorns function reference 

D.2.5 CreateMoLThorn [calculation., groups.. Opt Arguments ] 

Positional Arguments 

Argument Type Description 

calculation Calculation The calculation for setting 

the right hand side vari-

ables for MoL. The equa-

tions should be of the 

form dot igf] -> expression 

for evolution equations, and 

shorthand -> expression iov 

shorthand definitions, which 

can be freely mixed in to the 

list. 

groups list of GroupDefinition structures Definitions for each of the 

groups referred to in this 

thorn. Can supply extra 

definitions for other groups 

which will be safely ignored. 

Named Arguments 

Argument Type Description Default 

PrimitiveGroups list of strings These are the groups con-

taining the grid functions 

which are referred to but 

not evolved by this evolution 

thorn 

{} 
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D.2. KrancThorns function reference 

D.2.6 CreateSetterThorn [calculation-, Opt Arguments ] 

Positional Arguments 

Argument Type Description 

calculation 

groups 

Calculation 

list of GroupDefinition structures 

The calculation to be per-

formed 

Definitions for each of the 

groups referred to in this 

thorn. Can supply extra 

definitions for other groups 

which will be safely ignored. 

Named Arguments 

Argument Type Description Default 

SetTime (optional) string "initiaLand-poststep", 

"initial-Only" or "post-

step_only" 

"initiaLand_poststep" 

D.2.7 CreateTranslatorThorn [groups-, Opt Arguments ] 

Positional Arguments 

Argument Type Description 

groups list of GroupDefinition structures Definitions for each of the 

groups referred to in this 

thorn. Can supply extra 

definitions for other groups 

which will be safely ignored. 
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D.2. KrancThorns function reference 

Named Arguments 

Argument Type Description 

Translator InCalculation 

TranslatorOutCalculation 

Calculation 

Calculation 

The calculation to set the 

evolved variables from some 

other source 

The calculation to convert 

the evolved variables back 

into some other set of vari-

ables 
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