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ABSTRACT 
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F'ljT'yiSIIiCf) 

Doctor of Philosophy 

Andrew Neville 

This thesis contains the results of extensive measurements on CePdSb, alloys from the 
CeRu2Si2_a:Gea; series, and some work on CePtSb. The main experimental techniques used 
in the investigation of these materials were neutron scattering and muon spin relaxation 
and rotation, with some additional magnetisation measurements. 

Hexagonal CePdSb is a very interesting ferromagnet with quite a high Curie tempera-
ture, Tc = n .ZK. It displays large anisotropy between the basal plane and c-axis in many 
properties, arising from the crystal field. The most striking property is that there is little 
sign of any cooperative effect in the heat capacity at the ordering temperature, which is 
extremely unusual. Motivated by a desire for an explanation of these properties we have 
been able to determine several new pieces of information. Magnetisation measurements 
show that CePdSb has an anomalous magnetisation curve. Neutron scattering shows that 
CePdSb is not Kondo-like and is an exchange coupled paramagnet above the ordering 
temperature. Spinwaves appear at low temperatures but a diffusive inelastic component 
is apparent for temperatures above 6K. Small angle neutron scattering and /iSR show 
curious results. 

The CeRu2Si2_iGe2: alloys display a range of properties as the composition x is varied. 
CeRugSig is a non-magnetic heavy fermion, while CeRugGeg is a good local moment 
ferromagnet with Ising-like character. Expanding the lattice of CeRu2Si2 by substitution 
of Si by Ge gives an opportunity to examine the changing groundstate across the series 
as a result of altering the competing interactions. Three alloys in the composition range 
1.25 < X < 1.75 have been studied extensively with some other further work on a: = 
1.0 and 2.0 alloys. Magnetisation measurements reveal a rich magnetisation-field phase 
diagram for each alloy. Some of the alloys have two magnetic transitions and all exhibit 
metamagnetism. Above their ordering temperatures all alloys display quasielastic neutron 
scattering. Its linewidth shows that the Kondo temperature decreases only weakly as 
a function of increasing x. The single ion component of the linewidth is linear with 
temperature while the wavevector dependent linewidth is modulated and shows an unusual 
temperature dependence. At low temperatures there is a magnetic excitation for alloys 
2! < 1.5 which cannot correspond to a standard spin wave mode. The excitation is a 
longitudinal spin fluctuation which appears only below ~ 2K and must result from the 
interplay of the Kondo and RKKY interactions. 
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Chapter 1 

Rare earth magnet i sm 

The group of 14 elements from Ce to Lu, the rare-earth elements, sometimes called 

the Lanthanides, are very important in experimental magnetism research. For a 

number of decades these elements, and compounds containing these elements, have 

been a rich source of new and unexpected phenomena which are associated with 

new groundstates of the electronic system. As research continues it is likely that 

new materials will be uncovered which provide yet more interesting effects for the 

theorist and experimentalist to study. 

In the following sections a brief outUne of some important aspects of magnetism 

in rare-earth compounds is given. 

1.1 Free a toms . 

The energy levels of the free atom are filled in sequence. The groundstate configu-

ration of electrons in the last unfilled subshell is given by Hund's rules. In Ce the 

last unfilled shell is the 4f. Hund's rules can be stated [1, 2]; 

i. Arrange the electrons to maximise the total spin S. 

ii. Arrange the electrons to maximise the total orbital angular momentum L, 

consistent with maximum total spin S, and the PauH exclusion principle. 

A filled shell has 5 = 0, Z = 0, so that only the unfilled electron shells or 

unpaired electrons contribute to the magnetic moment of the free atom. 
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After this initial step it is necessary to consider what the ground state will 

be when extra perturbations are applied to the free atom. If the free atom is 

incorporated into a solid lattice the effects of the band structure, spin orbit coupling, 

crystalline electric fields, exchange interactions, the Kondo effect and possibly other 

effects should be taken into account. 

1.2 I t i ne ran t e lect ron magne t i sm 

In some compounds the magnetic electrons on each ion overlap considerably in the 

solid and they will form a band. When effects of different interactions between the 

electrons are taken into account it may be possible for the electron band to form 

a magnetically ordered groundstate. Chromium is a band antiferromagnet (more 

properly a spin density wave antiferromagnet) and nickel is band ferromagnet. The 

opposite limit to itinerant magnetism is that in which the magnetic electrons are 

more localised at the atomic sites. These localised electrons will retain some of their 

atomic character. Of course real materials often fall into a category intermediate 

between the two extremes. In this thesis the compounds studied are better described 

in terms of localised magnetic moments and so the following sections of this chapter 

focus on this aspect in greater detail. 

1.3 T h e local momen t p ic tu re 

Atoms of the rare earths series have an electron configuration consisting of [Xe]4f"5d^6s^ 

where n is the number of electrons in the 4f level. As a starting point it is possible 

to assume that the local moment which exists on the free atom also exists on the 

ion incorporated into a lattice. The magnetic electrons of the rare earths are in the 

4f level which is not close to the outer edge of the atom. Electrons of the 5d^ and 

6s^ levels participate in bonding, or form the conduction bands in metals. The fiUed 

5s^ and 5p® shells have charge densities lying predominantly outside that of the 4f 

electrons so that the 4f electrons are well screened from the local environment, and 

retain much of their atomic-Uke character [3]. Typical rare earth 4f shell radii are in 

the range ~ 0.2 -4- O.sA [4] whereas lattice spacing are of the order of 4 A . It follows 

that direct 4f-4f electron overlap is small, so 4f band-widths are generally negligible. 

The charge densities of the relevant levels in gadolinium are shown in figure 1.1. 

The effects of perturbations on the 4f level have to be considered according to the 
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Figure 1.1: Calculated charge densities for outer electron shells in Gd. Reproduced 
from ref. [2] 

strength of each interaction, the strongest first. 

1.3.1 Magnetic susceptibility of free ions 

The general definition of the magnetisation of a collection of non-interacting ions is 

where V is the volume occupied by the ions, ff is the applied magnetic field and JF 

is the free energy of the system. A field apphed to a material causes a splitting of 

the energy levels and in thermal equilibrium the equilibrium magnetisation is 

(1.2) 

where n labels the energy levels En and iV/„ is the magnetisation of energy level En 

given by equation (1.1). The susceptibility is defined as 

% (1.3) 
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which in the limit of f i s H k s T can be written as \ = M / H . For a collection of 

N free atoms occupying volume V the susceptibility is given by Curies law, 

X = (1-4) 

(1.5) 

J is the total angular momentum quantum number, is the Bohr magneton and 

g is the Lande factor for J. 

1.4 Spin-orbi t coupling 

In rare earth compounds the spin orbit interaction is generally much stronger than 

other interactions such as the crystal field. It acts on the Hunds Rule ground state 

to combine L and S into a total angular momentum, J , according to two conditions: 

i. J = \L + S\ i£ the electron sheU is over half full or 

ii. J = |L — S| if it is less than half full. 

The states of different produced by this relativistic interaction, are normally split 

by a large amount so that the lowest lying J level can be considered to be isolated 

from the others so that the other interactions can be taken to operate only on the 

groundstate multiplet J [3]. The spin orbit levels of different total J are generally 

separated by > O.leV [4] while overall crystal field splittings are of the order of 

~ 30meV. 

1.5 T h e crys ta l field 

If we consider a rare-earth ion in a lattice, the 4f electrons on this ion have certain 

spatial configurations depending on which sub level, labeled by m j , of the J ground 

state multiplet, they are in. In the free atom these levels are all degenerate but 

when there is a non spherically symmetric external electrostatic potential due to 

near neighbour ions in a crystal, the degeneracy is removed. The degree of Lifting 

of the degeneracy of the m j multiplet depends on the symmetry of the rare earth's 

environment. 
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The effect on the ground state multiplet of the potential, VCF, due to the ar-

rangement of near neighbour ions, needs to be calculated. It takes the form, 

where r, is the position of 4f electron i, R labels the electrons on the near neighbour 

or hgand atoms, p{R) is the charge density due to the hgand and the other symbols 

are the usual physical constants. It is possible to rewrite equation (1.6) as an 

expansion, in spherical harmonics (or tessera! harmonics) which operate on the co-

ordinates (r, (9, o) of each 4f electron. Stevens [5] showed that the spherical harmonics 

can be transformed to polynomials in terms of angular momentum operators using 

the Wigner-Eckart theorem. This is a favourable transformation to make because 

it is easier to work with angular momentum operators. In terms of this operator-

equivalent method the crystal field Hamiltonian is [5], 

•Hcf = Y,^T(^')0T , (1.7) 
l,m 

(r') is an average over the positions of the 4f electrons and the labels l,m indicate 

the order of the term. Op are Stevens operators, which may be found in tables [6]. 

The factors Af are the intrinsic crystal field parameters. 

The crystal field parameters contain the information about the magnitudes of 

different splittings but they are difficult to calculate because the charge distribution 

p{R) in equation (1.6) is unknown. 

The Hamiltonian equation (1.7) must have the same symmetry as the crystal 

and this Emits the number of terms. In general only terms for / < 2 J (or / < 6 

whichever is smaller) will be present and many of these may be zero. 

As an illustration, the calculation of the crystal field for CePdSb is outlined in 

section 4.2 of chapter 4. 

1.5.1 Magnetic susceptibility including t h e crystal field 

Now we consider the susceptibility of a collection of ions with energy levels, En. de-

termined by the crystal field. The susceptibility of the free ion was given previously 

as equation (1.3). In the presence of a field the crystal field levels are no longer en-

ergy eigenstates because the field introduces matrix elements between crystal field 

eigenstates. 
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Recall from equation (1.1) that the susceptibility is defined as 

= 4 m (L») 
^ / H^O 

1 1 / a z 
(1.9) 

where the free energy T = —NkBTln Z and Z is the part i t ion function of an ion. 

The second term in equation (1.9) is oc and in the limit of if ^ 0 we expect 

M -4 0 so we neglect the second term as being small. Essentially we need to evaluate 

the partition function Z which we can do if we know where the different energy levels 

are. We can apply perturbation theory to find the energy levels in an appUed field. 

The presence of the field introduces several extra parts to the Hamiltonian [7] but we 

retain only the terms linear in the field hence the perturbat ion is %' ~ qubJ-H. 

The perturbation expansion suggests we can write En = + En^ H + En^H'^ +.... 

Where En°^ is the zero field unperturbed crystal field level n. The second derivative 

of Z with respect to H is 

/dF \ 1 A2 F 
e x p ( - E » / A ; g T ) - — - ^ ^ e x p ( - E n / t B r ) (1.10) 

The first and second derivatives of En with respect to H in the Umit H Q are 

En^ and E'n'' respectively. So that 

iV [n\H'\n)\'^ \{n\'H'\n' 
exp(—En/ArgT) ( l -H) 

The first term in this equation is the Curie term and the second is the Van Vleck 

paramagnetic term which only depends on temperature through the Boltzmann pop-

ulation factors. We have not included the Lamor diamagnetic term in equation (1.11) 

because it is generally much smaller than the Curie term [1]. 

1.6 T h e R K K Y in terac t ion 

Many of the rare-earth metals show magnetic ordering, as do a large number of 

their compounds. The Heisenberg-Dirac direct exchange mechanism cannot apply 

in rare-earths since there is no direct overlap of the wave-functions of the magnetic 

4f electrons from different ions. Ruderman, Kittel, Kasuya and Yoshida are credited 

with the formalism of an indirect exchange mechanism between rare-earth ions which 

can explain the origin of magnetic ordering in the rare-earths and their compounds. 
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o 
-a 
c 
"5-

& Q. 

R (Distance from rare-earth ion) 

Figure 1.2: The spin density of conduction electrons as a function of distance, r, 
from a rare-earth. 

The basic mechanism involves an effective exchange interaction between the local 

moments and the conduction electrons with a Hamiltonian of the form 

T-L = —JSFIG — L)^.S, (1.12) 

where Jsf is the exchange integral, J is the local moment angular momentum and 

s is the conduction electron spin. 

A perturbation calculation gives the spin density, p, of conduction electrons as a 

function of distance from the rare earth ion. In the Hmit of free electron behaviour 

of the conduction electrons the form of this is shown in figure 1.2 and it is given by 

[8] 

with 

9irn^Jsf{g - 1 ) 7 

4Ef 

X cos{x) — sin{x) 

F ( z ) (1.13) 

(1.14) 

where n is the number of free electrons. Bp is the Fermi energy and x = 2kpR. 

The Fermi wave-vector is hp and the distance from the ion is denoted R. The 

polarisation of conduction electrons is oscillatory and extends over many lattice 

spacings. Each rare-earth ion sits in the polarisation cloud due many neighbours 
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and an effective Hamiltonian can be written in the form of an interaction between 

different rare-earth sites [7, 9], 

T^rkky = J, (1.15) 

with 

- l)^j7,}(0)F(z) (1.16) 

Where Jxj{R) is the effective exchange between sites i and j separated by R. n is the 

number of conduction electrons and Jsf{^) is the wave-vector dependent exchange 

between rare-earth ion and conduction electron, in this case the approximation 

JsfiQ) = &%,/(0) is used. D[EF) is the density of conduction electron states at EP. 

A more realistic model should consider the effect of wave-vector dependent ex-

change and a more realistic band structure for the conduction electrons. The net 

coupling between sites can be antiferromagnetic or ferromagnetic and complicated 

modulated order can result [9]. 

1.6.1 Magnetic susceptibility including exchange 

The susceptibility calculated for the case of ions with crystal field splittings made no 

account of the fact that there can be interactions between the ions. When the RKKY 

interaction is present we must modify the uniform susceptibility. We must add the 

Hamiltonian, given by equation (1.15), to the main Hamiltonian. The appropriate 

terms are now 

^ - 1)'J, J ; + . (1.17) 

This is difficult to work with theoretically because every local moment can interact 

with aH the others and it becomes a many body problem. The mean field approx-

imation is a common approach to tackling this problem in which fluctuations of 

the local moments are neglected. It is convenient to use Fourier transforms when 

working with intersite interactions. In particular we can define the susceptibility to 

a spatially varying field with wavevector Q as x{Q) ~ M{Q)/H{Q). We introduce 

the Fourier transforms of J and J [7], 

J (Q) = ^ e x p ( - , Q . E , ) J , (1.18) 

- ^j)exp(- iQ.(;2 , - ^y)) (1.19) 
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and now define the exchange Hamiltonian as 

9^ = J ( - Q ) J ( Q ) . J ( - Q ) , (1.20) 

with the approximation that if a spatially varying field H{Q) is apphed to otir system 

it responds with a magnetisation with one Fourier component, with wavevector Q, 

the same as the applied field. This is valid above the ordering temperature [7]. 

We make the approximation that each Fourier component in equation (1.20) is 

independent. This constitutes the random -phase approximation and is equivalent to 

the mean field approach. From this definition the susceptibility becomes [7] 

1 --:%o — 

We can use equation (1.4) as the definition of Xo in which case, 

m _ cy(gj-ipy(Q) ' (1-22) 

where V is the volume of the system. We can see that x{Q) wiU diverge at a critical 

temperature Tc = where Q is the wavevector for which S{Q) is maximum [7]. 

Equation (1.21) is equivalent to the Curie-Weiss law. We could use equation (1.11) 

for the definition of %o if appropriate. For a ferromagnet we expect that J{Q) wiU 

be a maximum for Q = Q. 

The form of the susceptibility above was based on the RKKY model but it 

does provide a qualitative explanation of the properties of many materials in the 

temperature range above the ordering temperature. 

1.6.2 de Gennes scaling 

de Gennes calculated the the ordering temperature for a lattice of interacting ions 

and found the critical temperature 6, across a family of compounds with different 

rare-earth ions should scale with {g — 1 ) ^ J ( J + 1) [3, 8]. 

In the previous section we derived a result that the ordering temperature 

Tc = If we write out the Curie constant, C, in full this leaves 
B 

T'coc J ( 0 ) ( ^ j - l ) V ( J - H ) , (1.23) 

which shows the presence of the de Gennes factor. Generally the family member 

containing Gd should have the highest ordering temperature since it has the highest 
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value of the de Gennes factor. This behaviour is observed in some series e.g. RE-Pdg 

[10] but not in others e.g. RE-PdSb [11]. From equation (1.23) we can see that any 

discrepancy could arise from either J{Q) not being constant across the series or the 

crystal field, which may change the ground state moment. 

1.7 T h e K o n d o effect 

In this section we briefly examine the Kondo effect which is an important consider-

ation in the study of magnetic materials. 

Experiments in the 1930's suggested that the resistivity of pure samples of some 

metals showed a minimum at low temperatures [12, 13]. It was found that this 

strange behaviour could be attributed to the presence of a dilute amount of impuri-

ties. In particular, alloys of dilute* amounts of transition metals in the noble metals 

and later CeLa^ alloys were found to show a number of physical anomalies which 

were attributed to a new phenomenon. These anomalies were found in: 

i. Resistivity. Historically the most well known anomaly, the resistivity was 

found to increase logarithmically at low temperatures. When combined with 

the decreasing phonon contribution this gave a minimum at a characteristic 

temperature. 

ii. Magnetic susceptibility. This was Curie-Weiss Hke at high temperatures but 

tended to a temperature independent value at lower temperatures. 

iii. Heat capacity. The magnetic heat capacity showed a peak at a characteristic 

temperature. 

iv. Thermopower. This also showed a peak at a characteristic temperature. 

The positions of these anomalies roughly defined a characteristic temperature , Tk', 

now called the Kondo temperature and collectively this behaviour constitutes ev-

idence of the Kondo effect. These anomalies generally indicate a departure from 

paramagnetic behaviour of the impurities which is observed at higher temperatures. 

To understand why this behaviour occurs we begin by examining the Anderson 

Hamiltonian. 

* Dilute means a few parts per million. 
^The underlined element indicates the host and the other is the dilute impurity. 

10 



CHAPTER 1. Rare earth magnetism 

1.7.1 The Anderson Hamiltonian 

The Anderson Hamiltonian is a model for treating the conditions under which mag-

netic moments form on impurity atoms in a metallic host. Many theoretical calcu-

lations for the effect of impurities in metals start from the Anderson Hamiltonian 

[13]; the simplest form is [13, 14] 

^ ] ^k^kcr 4" ^ ] EQUJct 4" ^ ^ 4" • (1.24) 
k<T f<T k,f,a 

The first term is the sum of the kinetic energy, of Uka- conduction electrons of 

wavevector k and spin a . The second term describes the important electrons on the 

impurity ion, e.g. the 4f electrons for Ce. Eq is the energy of the 4f level and Uf^ is 

the number of 4f electrons with spin a. The third term models the interaction energy 

between conduction electrons and the electrons due to the impurity, and Cka- are 

creation and annihilation operators for a conduction electron and and c/o- are 

creation and annihilation operators for 4f electrons. When this hybridisation term 

in the Hamiltonian acts on a wavefunction it will destroy a conduction electron and 

create a 4f electron and vice versa. It is the presence of this term which introduces the 

possibility of novel behaviour such as the Kondo effect. The fourth term represents 

the energy associated with coulomb repulsion when more than one unpaired electron 

is localised at the impurity. This acts only between electrons with opposite spins, 

because of the Pauli exclusion principle. 

The solutions of the Anderson Hamiltonian have several regimes corresponding 

to the relative strengths of the different terms. The general effect of the hybridisation 

term is to broaden the localised 4f level. If the broadening is large and the position 

of the 4f level is close to the Fermi energy then fluctuations in the occupancy of 

the 4f level would be energetically possible. The 4f electron could transfer back and 

forth between the conduction band. In the extreme case the 4f level could lie above 

the Fermi energy. In this situation it would be unoccupied and hence the impurity 

would be non-magnetic 

When the 4f level lies below the Fermi energy and the effects of hybridisation are 

not so severe the 4f level wiU resemble a broadened atomic 4f level. This localised 

level then gives rise to a magnetic moment on the impurity. In this scenario we find 

that the Kondo effect becomes important. To understand it we should consider the 

s-d Hamiltonian. 

11 
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1.7.2 The Schrieffer-Wolff transformation and the s-d Hamil-
tonian 

SchriefFer and Wolff were able to apply a transformation to the above Anderson 

Hamiltonian and show that it is equivalent to the s-d Hamiltonian, in the limit that 

U is very large and Vkj is weak [15, 16]. These requirements ensure that we are in 

the magnetic regime of the Anderson Hamiltonian, where there is a well localised f 

or d electron. 

The s-d Hamiltonian is 

== , (1/25) 

where J ' is an effective exchange interaction between 5, the spin of an impurity ion 

and s is the spin of a conduction electron. From the SchriefFer-Wolff approach the 

exchange parameter in the s-d Hamiltonian is 

where \ Vkf\ is the hybridisation parameter from the Anderson Hamiltonian. Eo is the 

energy of the 4f level measured from the Fermi energy. This equation is appropriate 

to a single impurity with only spin degeneracy i.e. in an orbital singlet state. We 

can see that a large exchange parameter would result from either a large value for 

or if the 4f energy level, Eq, was close to the Fermi energy. 

1.7.3 Kondo's resistivity calculation 

In 1964 Kondo [17] published a calculation of the resistivity of a metal with mag-

netic impurities, based on the s-d Hamiltonian. Kondo treated the s-d interaction 

within the framework of perturbation theory, up to third order. He found that for 

negative Xd, there was an anomalous contribution to the resistivity, Pimp, due to 

the impurities which was 

iPirnp CC --In 2". (1 27) 

This resistivity is due to resonant scattering of conduction electrons by the local 

moment impurity for conduction electrons near the Fermi surface. The effect can 

be traced to the hybridisation which results when the localised level lies within the 

conduction band. When this contribution is combined with a decreasing phonon 

12 
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contribution at low temperature the result is a minimum in the resistivity at a 

particular temperature. When J is negative equation (1.25) shows that the lowest 

energy state is given by opposite i.e. antiferromagnetic coupling of the conduction 

electron and impurity spin. We can expect that the groundstate is one in which 

the conduction electrons compensate the impurity moments. This is effectively a 

singlet state and explains why the susceptibility is independent of temperature in 

the low temperature limit. Kondo's calculation identified the cause of the anomalous 

resistivity as due to the interaction of magnetic impurities with the conduction band 

of the host. The calculation gave a resistivity diverging as T 0 so the problem at 

that stage was by no means completely understood. 

1.7.4 The Coqblin-Schrieffer model 

For rare earth impurities the crystal field does not normally completely remove the 

orbital degeneracy of the ground state. In this case the s-d spin Hamiltonian is not 

sufficient. Coqblin and Schrieffer [18] generalised the problem to that of a crystal 

field split rare earth ion in the presence of the Kondo effect. A calculation of the 

resistivity on the basis of their solution lead to somewhat different results from the 

spin I impurity case. The resistivity showed a broad maximum at a temperature 

A, which was the overall order of the crystal field sphtting. For temperatures well 

below or above A the resistivity showed the usual — ln(T) behaviour [14]. This 

behaviour is observed in many Kondo compounds [19]. 

1.7.5 Summary of single impurity behaviour 

In the single impurity case the situation is believed to be well understood. Well above 

Tk the impurities have a localised moment and behave paramagneticedly. Close to 

T;{ the interaction of the localised electrons and conduction electrons begins to dom-

inate. The conduction electrons act to compensate or screen the impurity spin. The 

groundstate is a singlet formed from a composite of localised and conduction elec-

trons which is of course non-magnetic. The hybridisation between the two electron 

systems broadens the localised level and leads to a resonance in the density of states 

at the Fermi energy. This is due to the extra many-body states of the system which 

result from the conduction electrons screening the local moment. The resonance in 

the density of states at the Fermi energy is known as the Abrikosov-Suhl resonance. 

Nozi&es realised that in the low temperature singlet state he could treat the 

13 
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electron system as quasi-particles and could apply Fermi Liquid theory [15, 16, 20]. 

Wilson was able to tackle the properties of Kondo systems close to T^- using 

a sophisticated renormalisation group technique [21, 22] which circumvented the 

problems of logarithmic divergences encountered when using perturbation theory. 

Wilson's technique has been used to examine the cross over from the magnetic to 

non-magnetic behaviour. Wilson's work also leads to a definition of the Kondo 

temperature as 

(1.28) 

where D{EF) is the density of conduction electron states at the Fermi energy and 

Jsf is the exchange parameter. Theoretical calculations have been made for the 

whole temperature range and the single impurity Kondo scenario is well understood 

for the 5 = 1 Kondo Hamiltonian [15, 16, 13]. 

1.7.6 The Kondo lattice 

In rare earth compounds for which the rare earths are one of the major constituents 

the situation is more complicated. We now have a lattice of impurities. A Kondo 

lattice is any lattice of impurities which show single ion Kondo properties, and 

the term is used more generally for any concentrated lattice of ions which show 

some Kondo properties. Physical properties which are dependent on the density 

of conduction electron states are enhanced below the Kondo temperature because 

of the formation of the Kondo resonance near the Fermi energy. Enhanced Pauli 

paramagnetism and large Sommerfeld coefficients are some of these features. 

We can expect two things for these Kondo lattice compounds [15, 23] 

i. The Kondo effect will compete with the RKKY exchange, which tends to order 

the magnetic moments. This will suppress the Kondo screening. 

ii. The Kondo screening clouds of conduction electrons from different sites might 

overlap which would lead to interference effects. 

In the first case we observe that the Kondo effect and the RKKY interaction both 

depend on the combined parameter g = D{EF)J. see equation (1.28) and equa-

tion (1.16). Doniach [24] made the first theoretical study of a Kondo lattice using 

a one dimensional chain of spins. His results are still used as a guide in classifying 

14 
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Kondo 
RKKY 

Igl 

Figure 1.3: Relative strengths of the Kondo and RKKY characteristic energies as a 
function of the coupUng parameter g. 

compounds. He found that the groundstate of the Kondo lattice could be non-

magnetic (dominated by the Kondo effect) or magnetic (dominated by the RKKY 

mechanism) according to the strength of D{EF)J. Figure 1.3 shows the variation 

of the energy of the two interactions as a function oi g — D[EF)J- Above the 

critical value the compounds are dominated by the Kondo effect and below they 

are dominated by the RKKY interaction. Compounds close to gc are said to be close 

to a magnetic instability. 

As a means of studying the interplay of different effects experimentally, it is 

possible to control the hybridisation parameter given in equation (1.26) by changing 

the unit cell volume using pressure. External pressure applied to a material increases 

the hybridisation and drives the material to the right of figure 1.3. This effect can 

also be achieved by substituting for one of the components of the material with an 

element of smaller ionic radius. This 'chemical pressure' can also be made negative 

by substituting with an ion of larger radius which decreases the hybridisation and 

pushes the material to the left of figure 1.3. 

15 
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1.7.7 Heavy Fermions and coherence 

When the second condition of section 1.7.6 is true there will be a characteristic 

temperature for which the lattice of Kondo ions becomes coherent. That is, the 

properties of the system are not weU described as a collection of single ion impurities. 

The composite conduction electron localised electron system can be described as a 

band of quasi-particles. These quasi-particles are usually observed with effective 

masses greatly enhanced from that of a bare electron. This phenomenon is related 

to the formation of the Abrikosov-Suhl resonance in the density of states at the 

Fermi energy. 

The exact nature of this band can lead to a variety of interesting groundstates 

such as: 

i. Heavy Fermion. 

ii. Kondo Insulator. 

iii. Superconductor. 

Heavy Fermions 

In the low temperature regime weU below T^' some Kondo lattice compounds show 

coherence. In this state they can be described in terms of Fermi liquid theory. The 

Fermi liquid state [1] is characterised by its resistivity, p, 

(L29) 

and in addition the heat capacity of a Fermi liquid, C, is 

(Tp = 7 7 

and the magnetic susceptibility, %,is a constant. These compounds are called heavy 

fermions because the quasi-particle fermions have a mass which is greatly enhanced 

compared to that of a bare electron. 

The large effective mass is evident in transport, de Haas van Alp hen, and heat 

capacity measurements. Heavy fermion compounds often show metamagnetic tran-

sitions and neutron scattering often reveals magnetic correlations with no ordering. 

Examples of Heavy Fermions are CeCug and CeRugSig [25]. 

16 
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Kondo Insulator 

In Kondo insulators [26] the hybridisation of the localised electrons and the conduc-

tion electrons leads to a quasi-particle band with a gap in the density of states at 

the Fermi energy which forms below a certain temperature. This gap is not likely 

to open over all the Fermi surface hence we have pseudo gap. The best examples of 

Kondo insulators are SmBg, CeNiSn [27], CeRhSb [28] and CesPtgBi^. 

At high temperatures these materials behave like paramagnets but at low tem-

peratures coherence develops which leads to semiconductor-like properties and hence 

the name insulator. 

Superconductor 

There are a number of heavy fermion rare earth compounds which show supercon-

ductivity. The mechanism which causes superconductivity is not well understood 

but it is thought to be an exotic pairing mechanism involving the heavy fermion 

quasi-particles. In some cases spin density wave antiferromagnetism appears to co-

exists with superconductivity in the heavy fermion band. 

The main heavy fermion superconductors are CeCugSig, UPts and UBeis. These 

materials superconduct at very low temperatures under ambient pressure, other 

materials can be made to superconduct with the application of external pressure 

[29]. This usually occurs close to the critical pressure for the suppression of magnetic 

order. 

1.8 Valence fluctuation and i n t e r m e d i a t e valence 

In the situation where the hybridisation of 4f and conduction electrons is strong 

the solution of Anderson Hamiltonian shows that the 4f level is severely broadened 

such that it does not lie whoUy below the Fermi energy. This 4f state need not be 

occupied and in this case the 4f electrons can be considered to fluctuate between 

a local and itinerant state. For cerium this means that the valence of the ions is 

intermediate between and Ce^+. Compounds displaying this behaviour can 

be considered to have a very large Kondo temperature and are termed intermediate 

valence or valence fluctuating compounds. For a review see ref. [30]. 

Experimental techniques with a fast enough response, such as XPS, show the 
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presence of two valence signatures for the 4f electrons. 

1.9 General ised magne t ic suscept ib i l i ty 

In the previous sections an outline of the definition of the magnetic susceptibility in 

different cases has been given. The susceptibility of a system to a spatially varying 

magnetic field has been considered but we could also examine the susceptibiUty of 

a system to a field which varies in time with angular frequency w. This requires a 

general definition of the susceptibility which has a real and imaginary part. Using 

perturbation theory we define the frequency dependent single ion susceptibility [31, 

321 

e - i - 0 + E i S P S ' . . -
" • ' l ' « f - (131) 

where = exp(/3£',)/ exp{f3Ei) is a thermal population factor, and the sums are 

over the crystal field levels E, 

In the presence of exchange interactions the generalised frequency and wavevector 

dependent susceptibility is written [31, 32, 33], 

which requires use of the random phase approximation. Note that j i f f ) is the 

Fourier transform of the exchange interaction. In this approximation the frequency 

and wavevector dependences are separated, and determined respectively by the sin-

gle ion characteristics and the two-ion interactions [31]. The poles of equation (1.32) 

indicate the magnetic excitations of our system [32]. 

As an example of the use of equation (1.31) and equation (1.32) consider the 

low temperature Emit, where only the groundstate crystal field state is occupied. 

For Ce "̂̂  ions in a uniaxial crystal for example, this would be a doublet state with 

energy E, = Eq. The quasielastic response (for uj Ei — Eq) due to the groundstate 

|0) will then be 

= Um (1.33) 
e-S-0+ i K g l W + ze J 
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As will be seen in section 2.4 of chapter 2 the inelastic neutron scattering cross-

section is proportional to the imaginary part of the dynamical susceptibility. 

In Kondo lattice compounds it is common to include the dynamics by making 

a single pole approximation [33], where instead of taking the Hmit e 0"*" in the 

above, the imaginary term e is taken to be the relaxation ra te F of the 4f electrons. 

It follows that 

. (1-34) 

where 

,Yo°''(0) = ^ ( 0 | r | 0 > { 0 1 J ' ' | 0 > n „ . (1.36) 

We can also see that the imaginary part of %o^(w) is given by 

If we insert equation (1.34) into equation ( 1 . 3 2 ) this leads to 

^%(Q)r(Q) 
w + i r ( Q ) 

where 

( 1 . 3 8 ) 

l - J ( Q ) W O ) 

r ( Q ) = r o [ l - J ( Q ) % o ( 0 ) ] . (1.40) 

r ( Q ) is the wavevector dependent hnewidth and both T(Q) and x{Q) wiU be tem-

perature dependent. Notice that the product %(Q)r(Q) is independent of Q [33]. 

1.10 Cr i t ica l behaviour 

Materials undergo changes in state as different constraints are altered. These phase 

transitions such as solid to liquid, superconductor to normal conductor or ferromag-

net to paramagnet can be roughly classified as first order or continuous transitions. 

We can draw a phase diagram which shows what state a material will be in, given 

certain conditions of temperature, pressure or other constraints. 
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(b) A phase diagram for a ferromagnet. 

Figure 1.4: Two example phase diagrams. 

Figure 1.4(a) shows a phase diagram for a material with solid, liquid and gas 

phases. Taking a piece of this material across any of the phase lines will result in 

first order phase transitions. If we go through the point at the end of the liquid gas 

phase line a continuous transition would result. This point on the phase diagram 

is called the critical point. In figure 1.4(b) the phase diagram for a ferromagnetic 

material is shown and for this case the critical point lies on the temperature axis. 

An experiment which takes a ferromagnetic material through the critical point will 

show critical behaviour in measured properties. 

The critical behaviour of continuous transitions is demonstrated by divergences 

in physical properties which are second order derivatives of the free energy, T . 

For example, in magnetic systems this means the heat capacity, susceptibility and 

thermal expansion will diverge near the critical point, 

( 1 . 4 1 ) 

( 1 . 4 2 ) 

a = I I ( 1 . 4 3 ) 

Ch _ 

T 

X = -

1 

B r \ a y 8 T 

where \ is the magnetic susceptibility, Ch is the heat capacity, and a is the co-

efficient of thermal expansion. Bt is the bulk modulus. For first order transitions 

discontinuities in physical properties are expected and there will be a latent heat 
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associated with the transition from one phase to another. 

Generally magnetic order-disorder transitions are continuous. In ferromagnets 

the transition is continuous in zero field, as we can see from figure 1.4. When 

examining continuous phase transitions it is helpful to choose an order parameter. 

The order parameter tells us which phase we are in. The order parameter should 

be chosen so that it is zero above the critical point, at the critical point the order 

parameter should start to increase and below the critical point the order parameter 

should reflect how far we are into the new phase. For ferromagnets we choose 

the spontaneous magnetisation as the order parameter and for antiferromagnets we 

choose the spontaneous sublattice magnetisation. 

1.10.1 Correlation functions 

In magnetic materials we are interested in the way different moments interact with 

one another as a function of time. We can measure this by means of a correlation 

function. For example, at absolute zero in a ferromagnet two neighbouring magnetic 

moments would be perfectly aUgned at all times. The correlation function would 

be equal to one. At temperatures well above the Curie point the moments would 

behave completely independently, the correlation function would be zero. Near Tc 

the correlation between spins would increase and the correlation function should 

reflect this. 

Static correlation functions give an instantaneous picture of a system. They show 

how correlated different magnetic moments are as a function of distance between 

them. We define the static magnetic corelation function as 

C(;Z) = (^0 . - ( S o X S a ) (1.44) 

where So is a moment at the origin and Sr is a moment at a distance R from the 

origin. The angled brackets indicate a thermal average. The Fourier transform of 

the previous equation is 

C(Q) = ^ exp(iQ . A) [(go - 5̂ %) - ( 5 o ) ( g a ) ] (1-45) 

R 

This correlation function in reciprocal space can be measured directly by small angle 

neutron scattering. 

For a ferromagnet well above Tc there is no net magnetisation: strong thermal 

fluctuations prevent any ordering. Closer to Tc the magnetic interactions have 

21 



CHAPTER 1. Rare earth magnetism 

the same order of strength as the thermal fluctuations. The motion of individual 

moments becomes highly correlated which is known as critical slowing down. There 

will be large regions of ordered material which fluctuate in time. 

It is possible to observe the transition through these critical fluctuations, for 

example, the heat capacity shows a sharp peak and the fluctuations give an enhanced 

neutron scattering cross-section. 

1.10.2 Critical exponents and scaling laws 

The divergences in physical properties observed at continuous phase transitions can 

usually be described by power law variations. In the magnetic case this means that 

close to Tc various physical properties follow power law variations of the form 

(14:6) 

c( ( 1 . 4 7 ) 

(7 cc f - " ( 1 . 4 8 ) 

Tkf oc j f i / * ( 1 / 1 9 ) 

f CK f - " (1X)0) 

where t = {T — Tc)/Tc. In addition the correlation function follows 

C ( j Z ) - ( 1 . 5 1 ) 

where d is the number of spatial dimensions of the material i.e. 1 for a line, 2 for a 

plane and so on. The exponents q, f3, 7, 8 and 77 are called the critical exponents. 

It is found that they take the same values in many materials. It appears that things 

such as lattice type, type of atom or number of electrons do not determine the 

values of the critical exponents. Only the dimensionahty of the material and the 

dimensionality of the order parameter are of importance [34, 35]. Materials can be 

put into universality classes according to the last two criteria. This means that all 

the materials in the same universality class wiU have the same critical exponents. 

In this way they are said to show universal behaviour [36, 35]. 

There are laws which relate the values of different critical exponents to one an-

other. These laws are called scaling laws where they link values of critical exponents 

and they are called hyperscaJing laws when they also involve the dimensionality of 

the system [34]. 
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Any attempts to calculate the properties of a system in the critical region will be 

difficult because the problem is one of many body physics. However, the mean field 

approach gives the results 7 = 1, and a = 0. The values do not agree with 

measured values usually because the mean field approach neglects the all important 

fluctuations. 

Sophisticated renormalisation group calculations allow for predictions of the val-

ues of critical exponents and give an understanding of the different types of critical 

points [36, 37, 38]. 

Arret plots 

A method of analysing magnetisation data due to Arrot [39] makes use of critical 

exponents. Arrot's idea was to combine various critical exponents which leads to 

the equation 

which should be valid close to the critical temperature and in low fields. T is the 

temperature, H is the magnetic field and M is the magnetisation. 

If we have some measurements of magnetisation versus field we can use equa-

tion (1.52) to plot ( ^ ) versus M ? which should yield straight lines. The isotherm 

at Tc will intercept at zero. Plots of this type are called Arrot plots and one of 

their uses is to find Tc by looking for the isotherm with intercept at the origin. The 

other use for Arrot plots is in finding values of the critical exponents j3 and 7. 

1.11 Magne t i c order ing 

At absolute zero the groundstate of a ferromagnet is one in which aU the moments are 

aligned in the same spin state. The total moment would be g / J s N J , for N moments. 

We would like to know what the excitations out of the groundstate are. Changing 

one spin from J to ( J — 1) does not constitute a true excited state because this spin 

flip will move from site to site under the influence of the exchange interaction. The 

first excited state can be formed by distributing the energy associated with a spin 

flip over the whole sample. We have to consider the xy components of the spins. A 

lower energy excited state can be formed by an arrangement of spins with a gradual 
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Figure 1.5: A spinwave is a gradual variation of the xy phase between moments. 
The effect is to reduce the total spin by one. 

change of xy phase between successive spins, as shown in figure 4.16. The total spin 

can be reduced by one. N J — constituting the first excited state. The spin wave 

state is an eigenstate of the Heisenberg Hamiltonian. 

Spin waves can be treated as quantized particles with a definite energy and 

wavevector. We can think of the reason why the magnetisation drops to zero at 

the ordering temperature as due to a large thermal population of spinwaves which 

destroy the magnetisation. 

A calculation by Bloch on the basis of the spinwave idea found that at low 

temperatures the magnetisation should vary as 

M oc MQ t2 ( 1 . 5 3 ) 

where MQ is the zero temperature saturation magnetisation and T is the tempera-

ture. 

The energy of the spin waves depends on the exchange interaction, crystal field 

anisotropy and other terms in the Hamiltonian. There will be a dispersion relation 

connecting the energy and wavevector of the spin wave. 
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1.12 Magne t i c models 

We can compare the behaviour of a material with what is expected from different 

theoretical models. The are three classic magnetic models: the Heisenberg model, 

the Ising model and the XY model. We briefly examine each of these models. In one 

dimension there is no phase transition to long range order because entropy plays a 

large role in determining the state of lowest free energy. Some of the models have 

been examined in two dimensions and show interesting results. In three dimensions 

there are only partial solutions because the situation is very complex. 

1.12.1 The Heisenberg model 

The Heisenberg model has three dimensioned spins which may point in any direction. 

It is spatially isotropic. The characteristic Hamiltonian is 

%eisenb«rg = g ^ 

In two dimensions this model wiU not show long range order [7]. In three dimensions 

this Hamiltonian is expected to show long range order. A mean field solution gives 

ferromagnetic order with spin wave excitations having energies corresponding to 

W = 5 [ J ( 0 ) - J ( Q ) ] (1.55) 

where J{Q) is the Fourier transform of the exchange parameter in the Hamiltonian, 

equation (1.54). 

1.12.2 The Ising model 

The Ising model has been solved exactly in two dimensions by Onsager. There is a 

phase transition at a characteristic temperature. The characteristic Hamiltonian is 

= (1.56) 

This model treats the magnetic moments in spin up or spin down states with 

no xy component. This means that there cannot be any spin waves in the normal 

sense. 
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1.12.3 The X Y model 

The XY model consists of spins which lie in the x-y plane, they have no z component. 

The model is described by the Hamiltonian 

. ( 1 . 5 7 ) 

It has analogs in binary alloys and superfluid helium. In two dimensions this model 

does not show long range order but there is a phase transition into an unusual state. 

At low temperatures the spins form a set of topological vortices. That means a static 

arrangement of spins which look like a two dimensional vortex. A phase transition 

occurs when the vortices become bound together in pairs [34]. This phase is often 

referred to as the Kosterlitz-Thouless phase. 

Approaching the phase transition from above in two dimensions the w'ork of 

Kosterlitz and Thouless shows that the correlation length should follow 

^ e x p ^ 6 j ( 1 . 5 8 ) 

where the exponent u = 1/2 and the susceptibility should be 

X ^ exp(6i2'^""'^') (1.59) 

where the exponent q is temperature dependent but has the value 77 = ^ at Tc-

The XY model does show spinwave excitations in the Kosterlitz-Thouless phase 

in combination with vortices. A peak in the specific heat is predicted to occur at a 

temperature slightly above the transition temperature. This peak is related to the 

onset of vortex binding and has been observed in simulations [40]. 

A three dimensional XY model is expected to show normal critical behaviour in 

that the usual powerlaw behaviour of % and ^ is expected [41]. 
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Neutron Scattering 

2.1 Basic concepts 

The first neutron diffraction experiments were performed using bench top beryllium 

neutron sources in 1936. Todays neutron sources aie powerful reactors or spallation 

sources and the experimental instruments are highly sophisticated. Neutrons from 

reactor or spallation sources can be produced so that their energies and wavelengths 

are in the right range to match the static and dynamic processes which occur in all 

condensed matter. 

The theory behind neutron scattering has been throughly constructed and there 

are many text books on the subject. The experimentally measured quantity in a 

neutron scattering experiment is the cross-section of the sample and the theory seeks 

to provide a description of this cross-section. An incident neutron has energy Ei 

and wavevector fc,. After scattering from the sample the neutron has final energy 

Ei and final wavevector k f . It is useful to define some relevant relations between 

these quantities, 

hu = Ei — Ef , (2.1) 

Q = ki — kf ^ (2.2) 

and Q'^ = kf + kj — 2kikf cos o , (2.3) 

where i;6 is the scattering angle. 

In order to calculate the cross-section a few assumptions axe made. We treat 

the incident and outgoing neutrons as plane waves and we assume the interaction 

between the sample and the neutron is weak. Calculating the cross-section involves 

the first order Born approximation [42]. We use Fermi's golden rule for calculating 
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the probability of a scattering event. Then, the cross section is [43]: 

= If (&) - e.. + E, - e,). (2.4) 

The parameter V describes the interaction of the neutron with the sample. A and 

A' are the initial and final states of the sample. The delta function in equation (2.4) 

ensures we have energy conservation. Equation (2.4) gives the cross-section for a 

specific transition between states A and A' of the sample. To calculate the cross-

section in different cases we have to know the form of the interaction, V. Neutrons 

interact with a sample in two ways, the strong nuclear force, and the magnetic 

dipole-dipole interaction. We first look at the cross-section for nuclear scattering 

only. 

2.2 Nuclear sca t te r ing cross-sect ion 

To calculate the nuclear scattering cross-section we have to find the right potential, 

V, from equation (2.4). The potential we use is called the Fermi pseudo potential, 

the potential for a single nucleus is 

y ( r ) = ^ W ( r ) , (2.5) 

where S{r) is the Dirac delta function, m is the mass of the neutron and b is the 

scattering length. 

This potential is not actually Hke the real nuclear potential (which is generally 

unknown) but it is chosen because it circumvents the problem of treating a very 

strong interaction i.e. the nuclear force by perturbation theory and gives the correct 

result of isotropic scattering [43]. We expect isotropic scattering because the typi-

cal nuclear dimension is ~ 10~^^m and typical neutron wavelengths are ~ 10~^°m 

which makes the nucleus look like a point particle as far as the incident neutron is 

concerned. 

The parameter b in equation (2.5) is the important number in characterising a 

particular nucleus. The scattering length varies with each element and isotope and 

there are no apparent systematics across the periodic table. In general b can be 

of either sign and may be a complex number in the presence of absorbtion. For 

most nuclei absorption of neutrons is small and b can be t reated as a real number. 

This is not true in the case of some strongly absorbing nuclei e.g. Cd and Gd. The 
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scattering length will be different for different isotopes and if the nuclei has spin will 

depend on the orientation of the nuclear and neutron spin. The scattering lengths of 

each element can be found in tables in many text books and particularly in ref.[44]. 

In general we use the bound scattering length, which is the scattering length of a 

nuclei which is held stationary. 

Making use of equation (2.5) in equation (2.4) we find [43] 

E 
j 

bj{X\ exp{iQ.Rj)\X') 

2 

(2.6) 

for the scattering by an array, j, of nuclei with scattering lengths bj. We have ignored 

the spin of the neutron in the calculations of the cross-section so far and in fact the 

cross-section is independent of the neutron spin when the nuclear spins are randomly 

oriented [42]. In getting to equation (2.6) we have taken the incident and scattered 

waves to be to be plane waves with wave numbers k and k'. To proceed further we 

assume the array of target atoms are rigidly bound and do not have their quantum 

states changed so that |A) = |A') and hence E\ = Ex' which means, because of the 

delta function in equation (2.6), the cross-section is only non-zero when huj = 0 i.e. 

the scattering is elastic and also k = k'. This now gives us 

^ = $ 3 e x p ( i Q . ( J i , - R,.))b-,b,. (2.7) 

33' 

Since we do not know which nuclei sits on which site and there will typically be a 

very large number of nuclei in any target sample is it sufficient to replace b*,bj by 

b'ybj and this leads to two cases for the sum over the latter quantity [42], 

= |6 |^ 

In the above we have dropped the complex conjugate since we are taking b as real. 

We see now that the sum in equation (2.7) can be rewritten as 

E 
n' 

exp(*Q.(Aj - A,,))6;,6, = ^ 16^ exp(2Q.(B, - A;.)) ^ |6|2 
j 

^ |6|"exp(2Q.(A; - -Ry)) + 
33' 

This makes the cross-section the sum of two parts, 

coherent \ / incoherent 
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So now there are rwo distinct contributions to the cross section of an array of nuclei 

a so called coherent and incoherent part where the coherent part is, 

^ ^ |6|^exp(%Q.(A; - -Rj')) (2-11) 
coheren t 

and the incoherent part is, 

, = E W - | 5 ^ (2.12) 
/ incoheren t j 

where the essential difference is that the coherent cross-section involves a sum over 

J and j' so there is a possibility of interference between the scattering from different 

sites while the incoherent cross-section has no interference effects and so measures 

isotropic scattering. 

2.2.1 Nuclear Bragg scattering 

If we write I = R, — R j then make use of the result 

exp(2Q.f) = TV ^ - T ) . (2.13) 
! T 

for a regular crystal lattice, where VQ is the unit cell volume and r is a reciprocal 

lattice vector. We substitute this result into equation (2.11) and the coherent cross-

section becomes [42] 

(2.14) 

where 

Pn{t) = ^ \bd\exp{iQ.d) (2.15) 
d 

which is known as the nuclear- unit cell structure factor. We have also generalised 

to the case of a crystal with more than one atom in the basis. N is the number of 

unit cells, vo is the volume of the unit cell, d i s a position vector of an atom in the 

unit cell, r is a reciprocal lattice vector and bd is the bound scattering length for 

atom d. 

The right hand side of equation (2.14) wiU be zero except for the case when 

Q = T = k — k'. So, according to the cross-section the scattering will be sharply 
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peaked for scattering vectors which match the reciprocal la t t ice vectors i.e. we get a 

set of Bragg peaks. The positions of these Bragg peaks in terms of scattering angle 

6 will conform to Braggs Law 

2(f s i n 6 — n \ , ( 2 . 1 6 ) 

here d is the plane spacing for a given Bragg reflection and A is the wavelength of 

the neutron. The structure factor, equation (2.15), acts to modulate the intensity 

of different Bragg peaks because of the sum over the atoms in the unit ceU. 

The Debye-Waller factor 

In a real crystal it is unreahstic to treat the atoms as bound because thermal excita-

tion causes displacements of the atoms from their mean positions and also permits 

neutrons to transfer energy to the sample by exciting phonons. So fax we have ne-

glected this fact. If this feature is taken into account the result for the coherent 

cross-section is that there will be both elastic and inelastic terms. If we look at the 

elastic terms only i.e. the Bragg scattering we find that t he cross-section is identi-

cal to equation (2.14) but with an additional factor of exp(—2W). This additional 

factor is called the Debye-Waller factor and [43] 

( 2 . 1 7 ) 

where u is the displacement of a nuclei from its mean position (UQ) is the mean 

square displacement of atoms in the direction of Q. Essentially this term will act 

to reduce the intensity of Bragg peaks at larger Q values. This effect wiU be most 

pronounced at higher temperatures because (wg) will larger where there is more 

thermal energy. 

2.3 Magne t i c sca t te r ing 

To calculate an expression for the magnetic cross-section we must use the correct 

form for the interaction potential in equation (2.4). The magnetic interaction be-

tween the neutron and sample is written as [45], 

= (2.18) 

where 7 is the gyromagnetic ratio of the neutron, & is the PauU spin matrix of 

the neutron, /.î v is the nuclear Bohr magneton, and H represents the magnetic field 
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produced by the electrons in the sample. To evaluate the cross-section we substitute 

equation (2.18) for the potential V in equation (2.4). Now the problem is knowing 

the form of I I , which depends on the spin and orbital parts of angular momentum of 

each electron in the sample. A single electron produces a magnetic field on account 

of its dipole moment and also a field because of its motion. The total field is the 

sum of these two contributions. 

If we now look at the resulting form of equation (2.4) as result of using the 

magnetic potential we find [43] 

|('7''A'|cr.nj.|<jA^j S{Ex — Ey + hu) ^ (2.19) 

where, here, we have a and a ' as the initial and final spin states of the neutron* 

respectively. 

The quantity £} is the magnetic interaction vector and the component of this 

vector projected onto the plane perpendicular to the scattering vector is 0 j_ , given 

bv 

= y^exp (zQ . r , ) Q X {si X Q) + — (p,- X Q) (2.20) 

The sum over i is over all the unpaired electrons in the sample and r , is the position of 

the z-th unpaired electron with spin s,. The vector £3 is related to the magnetisation 

density at position r by^ 

2^8D = M ( Q ) , (2.21) 

M(Q) = y M ( r ) e x p ( 2 Q . r ) d r . (2.22) 

The first term in equation (2.20) comes from the interaction of the neutron and 

electron dipole moments and the second term is due to the interaction of the neu-

tron with the magnetic field due to the motion of the electron. They are commonly 

called the spin and orbital parts respectively. The subscript, _1, in equation (2.19) 

is important because it tells us that the cross-section only depends on the magneti-

sation perpendicular to the scattering vector. There is no magnetic scattering if the 

magnetisation lies along the scattering vector. A geometrical explanation for this 

feature is given in ref. [46] in terms of dipolar fields. 

'This notation is not to be confused with da which is an elemental area of cross section, 
'some authors have an additional minus sign in this definition e.g. ref.[43] 
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To continue we need to work out the form of the squared matrix element in 

equation (2.19). We also need to sum over all the final spin states of the neutron 

and the final states of the target and average over the initial neutron spin state 

and initial target state because we cannot measure a specific scattering event . In 

doing this we notice that cr acts only on the neutron co-ordinates and 0 j . acts 

only on electron co-ordinates. For an unpolarised neutron beam all dependence on 

the neutron spin factors out to one and so disappears f rom the cross-section [45]. 

The matrix element involves terms like £2i..nj_ and we can write this in terms of 

Cartesian components as 

, ( 2 . 2 3 ) 

al3 

where a , — x.y ov z and is the Kronecker delta. Now we can write the 

cross-section in terms of the Cartesian components of Q. so that , 

id9ude^ ~ ~ QaQ/j) ^PA(A|na|A')(A' |n^|A)(^(£^A — exi + hio). 

( 2 . 2 4 ) 

p\ is the probability that the sample is in state A. 

2.3.1 Cross-section for ions with spin only 

If we look at what forms £3 can take, remembering it is related to the magnetisation 

by equation (2.21), there are a number of forms the cross-section can take. In 

the case where the magnetic electrons are localized to regular lattice sites (the 

Heitier-London model) with LS coupling the form of 0 is reasonably simple. The 

cross-section will be written as 

T E E F'AQ)Fm ZfA 

X (A| exp(—zQ.JRi/d')'S'/?d/|A')(A'| e-x.^{—iQ.Rid)Sf^\\) 
( 2 . 2 5 ) 

x<^(EA — + W ) , 

where the labels l.d label the position, I, of the unit cell and the position, <i, of 

the atom in the cell. Sf^ is the operator which gives the spin for ion Id. The 

factor Fd{Q) is the form factor, this will be explained in the following section. 
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Extens ion to ions wi th spin and orbital angular m o m e n t u m 

Equation (2.25) is valid only for magnetic ions with spin only. Where the ions 

have spin and orbital angular momentum, which is the case for rare-earth ions 

in many compounds, the form of 0 in equation (2.24) is more complicated but the 

cross-section can be calculated according to the dipole approximation. This assumes 

[Q\~^ is much greater than that the mean radius of the wavefunction of the unpaired 

electrons*. In this case equation (2.25) has a small modification in that 

F{Q) = IsF(Q) = + jJiO'n + A ) (2-26) 

where g is the Lande factor for the ion with g = gs + gi and 

f oo 
/ Jn(Qr)[/^(r)47rr^(fr, (2.29) 

Jo 

with U(r) as the radial wavefunction of the unpaired electrons on the ion and J„ is 

the n'^ order Bessel function. Form factors and the functions have been calculated 

using Dirac-Foch wavefunctions for the ions [47, 48]. Form factors can also be found 

from tabulated approximations [49] to the calculations and so the form factor is 

simple to obtain. 

2.3.2 The form factor 

The function F{Q) in equation (2.25) is called the form factor. This factor tells 

us that the scattering from a single magnetic ion will have a dependence on Q. If 

we compare this to what we expect for the scattering f rom a single nucleus there 

is clearly a difference. The nucleus is effectively a point particle so the scattering 

is isotropic. A magnetic ion, however, has a spatial extent comparable to typical 

neutron wavelengths and so we have to treat the scattered neutron wave as the sum 

of the scattering from elemental units of the volume. This will lead to interference 

and at large values of |Q| the scattered wave wiU be weak. Figure 2.1 shows the 

variation in the form factor for Cê "*" ions. On the IN6 time-of-flight spectrometer 

at the ILL the measurable elastic wavevector transfers extend up to Q = 2.2A~^. 

'Mean 4f electron radii are ~ 0.2 — 0.3 (see section 1.3). On the IN6 spectrometer the largest 
wavevector transfer is Q % 2A~^ then = 0.5 so the approximation seems reasonable. 
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Figure 2.1: Form factor for the Cê "*" ion. The form factor reduces the cross-section 
with increasing wavevector transfer. 

2.4 Cor re la t ion func t ions and the cross-sect ion 

It is possible to work to a more useful definition of equation (2.25) by introducing 

time dependent angular momentum operators and by writing the delta function in 

integral form. In addition we make the assumption that there is no correlation 

between the electronic spins and the positions of the nuclei so that now, 

(J 
dQdE' 2trh 

2^F(Q) - QaQ/3) ^ exp(zQ.Z) 
a/3 

X / (exp(%Q.Mo(0))exp(zQ.uz(f)))(jQJ;''^(f))exp(— 

( 2 . 3 0 ) 

where t is time. This cross-section describes a number of different scattering events 

including events which are elastic in the spin system but inelastic in the nuclear sys-

tem (magneto-elastic scattering), magnetic elastic events, magnetic inelastic events 

and scattering events inelastic in both the spin and nuclear systems. We concern 

ourselves with scattering which is elastic in the nuclear system so that the correla-

tion function in equation (2.30) which is function of u will eventually become the 

Debye-Waller factor. 

Manipulation of equation (2.30) leads to the final form of the partial differential 
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cross-section for magnetic scattering, 

- (7^0) e x p ( - 2 : y ) w) 
a/3 

(2.31) 

rhere ^°^(Q,w) = -—r / ( j Q j f Q ( ( ) ) e x p ( — ( 2 . 3 2 ) 
2nh 

Now we have a very important result. The function S"^{Q^lo) is sometimes called 

the scattering law and it is important because it may be related to the imaginary part 

of the dynamical susceptibility via the detailed balance factor using the fluctuation 

dissipation theorem so that, 

w) = [1 + »(w)] — , (2.33) 

and n{u)) + 1 = ^ . (2.34) 

X°'^{Q-,to) is the wavevector and frequency dependent susceptibility of the sample 

as introduced in section 1.9 and niuj) is the detailed balance factor. 

2.5 Elast ic magne t i c sca t te r ing 

If we look at equation (2.30) the elastic part will be given by the limit of the 

correlation functions at infinite time, 

to (J„"(0) (i)) = (J„">( J f ) . (2.35) 

We must integrate equation (2.30) over energy and if we make the assumption we are 

dealing with a ferromagnet where we choose the moments to lie along the direction 

77 then equation (2.35) would be equal to ( s i n c e the value of J is the same at 

each site. Referring to equation (2.30) again we may now write [43, 42] 

y ] exp(zQ.Z) = ^ S(Q - T) Y2 exp(iQ.d), (2.36) 
/ r j 

where d is the position in the unit cell of the magnetic ion , r is a reciprocal 

lattice vector and I'o is the unit cell volume. 

The sum over a,3 in equation (2.30) will only have one non-zero value when 

a = j3 — T] and in this case the orientation factor wiU be (1 — (/c^)^) and since 
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equation (2.36) has the delta function only the values k = r wiU give a contribution. 

This means = T.TJ. Finally, we may write the cross-section for Bragg scattering 

from a ferromagnet as 

= ( 7 . o ) ^ V e x p ( - 2 P V - ) ( ^ ( / ' > 

(2^7) 

2.5.1 Extracting magnetic moment from diffraction data 

To extract the magnetic moment from neutron diffraction in a ferromagnet we use 

the ratio of the cross-sections for nuclear Bragg scattering and magnetic Bragg 

scattering. If we do this for a ferromagnet, where the magnetic and nuclear Bragg 

peaks coincide, we find using equation (2.14) and equation (2.37) 

h, _ lfm?f{qn-,r,r{lgj-)'{l-f,.q} , , 

7^ " [TvF • ' ' 

is the intensity of the magnetic and nuclear scattering together. In is the nuclear 

scattering only, Fv/ is the magnetic cell structure factor, F{Q) is the magnetic form 

factor, 7 is the gyro-magnetic ratio of the neutron, PQ is the classical electron radius, 

g is the Lande factor and for the magnetic rare earth ion, J is the angular momentum 

of the quantum number of the ion, 77 is a unit vector in the direction of the magnetic 

moment of the ion and Q is the scattering vector. 

2.5.2 Small angle neutron scattering 

In equation (2.32) the function S{Q,ui) is the Fourier transform of the magnetic 

correlation function. To get information about the static correlations only we want 

to integrate over energy. This cannot be done analytically because the form of the 

function ( Jg is not known. If however we do an experiment in which we 

make no condition on the energy of the neutrons we detect, we are then measuring 

the partial cross-section which is in fact the integral we wanted. This experimental 

method will only be accurate if the neutrons are not scattered much in energy away 

from their incident value. This is called the quasi-static approximation. 

If we do integrate equation (2.31) over energy with the condition that hw ^ E 
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we find 

do Ew 
a/s 

- Qa!0a)(^Q J f g ( 2 . 3 9 ) 

For ferromagnets the correlation function near Q = 0 will be interesting be-

cause it provides information on long range correlations. At the critical point for 

a magnetic phase transition we expect that there wiU be fluctuations in the mag-

netisation. The correlation function should represent this and the partial scattering 

cross-section will be enhanced. 
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M u o n Spin Rotat ion and 
Relaxat ion 

Muon spin rotation relaxation and resonance, or /iSR, is the title given to a group 

of experimental techniques which use muons as a microscopic probe of condensed 

matter. A positive muon may be regarded as a light proton and it may be used 

to mimic the behaviour of hydrogen in many materials or, because of its magnetic 

magnetic moment, it may be used to discern magnetic properties of a material into 

which it is implanted. Two pSR experiments have been performed on materials 

studied as part of this thesis and so the focus of the rest of this chapter is on the 

magnetic aspects of ^SR. 

3.1 Typical expe r imen ta l detai ls 

The production of muons in large quantities is a task for a large scale facility. The 

ISIS pulsed proton source, as well as generating neutrons, is used to produce muons. 

A graphite target placed in the extracted proton beam is used to produce pions which 

decay into muons. Muons are charged and so they may be directed using electric 

and magnetic fields. However, the half life of the muon is 2.2/l/s so experiments have 

to be performed with this time frame in mind. 

Muons are not detected directly: it is their decay products which provide the 

information. A beam of muons is guided onto a sample and once implanted each 

muon is sensitive to the local magnetic environment. An important feature of this 

technique is that the muons thermahse in the sample keeping their spins in the same 

direction as when they were traveling along their flight pa th . The initial polarisation 
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P(8)=l+aQC0s(8) 
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Figure 3.1: Emission probability, P(0), of the positron as a function of angle to the 
muon spin. The value of P(0) is represented by the length of the radius vector in 
the plot and ao is the polarisation factor. 

of each muon is typically opposite to the direction of the beam. 

When a muon decays it emits a positron preferentially in the direction of its spin. 

The emitted positron distribution, as a function of time after implantation of the 

muon, can give information about the time development of the muon polarisation. 

The decay distribution is shown in figure 3.1. The distribution is a function of 

the parameter ao which is determined from the kinetic energy of the positron. For 

the range of muon momenta at ISIS, ao is one third. In a typical experimental set 

up there wiU be two sets of detectors positioned at either end of the sample. The 

measured polarisation is given by 

Np(t) — aNgi^t) 
( 3 . 1 ) 

A'ir(i) and are the total count rates as a function of time in the forward and 

backward groups of detectors respectively and a is an experimentally determined 

factor to normalise the performance and efficiencies of the two detector groups. The 

count rate as a function of time, in any detector, will decay exponentially simply 

because the number of muons remaining shows a radioactive exponential decay. 

With the definition of the asymmetry in equation (3.1) the radioactive exponential 

decay cancels out. 
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3.2 Transverse field /iSR. 

Muons hit a sample, loose their momentum near the surface, then diffuse slightly 

deeper before stopping at an interstitial site. In a metallic or intermetaUic compound 

the positively charged muon will be surrounded by a polarisation cloud of conduction 

electrons. It is also likely that the lattice expands locally to accommodate the muon 

but these effects are not considered to have a significant effect on the measured 

properties of the material. 

At ISIS, a pulse of muons is implanted with polarisation directed opposite to the 

beam momentum. The direction of the muon polarisation is the z-direction and if 

a field is apphed transverse to this the muons wiU be in a coherent super position 

of quantum spin states and precess about the field with angular frequency 

, (3.2) 

where 7^ = 0.013o5MHz/G is gyromagnetic ratio of the muon and Bq is the apphed 

field. The asymmetry as a function of time wiU oscillate, as the muons rotate from 

pointing forward to backward. If there is a decay envelope to the polarisation there 

must be fields in the sample with components in the direction of the appKed field, 

nominally called the x- direction. If these local fields are static they increase or 

decrease the total field a muon sees at any given site so tha t individual muons wiU 

precess at slightly different frequencies, and hence the asymmetry of the ensemble 

win decay as the individual muons get out of phase. If the loccd fields are dynamic 

then fluctuations will flip muons and again the ensemble wiU dephase. 

The decay or damping of the rotation of the muons is described by a relaxation 

function, Gx(t). In general, if the fields at the muon sites are random, static and 

have Gaussian distribution the function will also have a Gaussian form, 

Gx{t) = exp( — , (3.3) 

with CTa- = 7^(5^). When the muon is mobile, or if the field at the muon site is 

fluctuating with correlation time ,rc, the form of Gx{t) is an exponential, 

Gi(t) = exp(-A() , (3.4) 

with A = TcCTj;. In the limit between fast and slow fluctuation rates the Abragam 

form can be found. 

G:r(f) = exp I exp — — 1 -I 
TR TR 
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Hayano et al [50] calculated Gx{t) for a range of fluctuation rates. The work shows 

that when TC is small aU the depolarisation curves tend to lie on top of one another. 

Hence it would be difficult to extract information from transverse field muon spin 

rotation data in this limit. Zero field fiSR is more sensitive for small fluctuation 

rates. The form of Gx{t) can be more complex than anything outlined here, for 

example, in type II superconductors the form of can yield the field profile at 

the muon site in the flux lattice where there is a broad distribution of internal fields 

in the mixed state. 

3.3 Zero field muon spin re laxa t ion . 

With no appKed field, each muon sees the local field at its site. At each of these 

sites the fields can have arbitrary direction and strength so each muon wiU precess 

about its individual field. The general effect is that the muons precess with different 

frequencies in different directions and so the ensemble is depolarised. 

For the case of static, random fields with a Gaussian distribution we find the 

Kubo-Toyabe form for the relaxation function, G,{t), 

1 2 / 
^ (3.6) 

In this case Gz{t) shows a recovery to characteristic of this type of behaviour. 

Initially the muons are fuUy polarised but they de-phase and after some time the 

polarisation will be spread evenly over every random direction. What we see at 

long times is the average polarisation in the measurement direction. For a random 

distribution the average in any direction is | and this is what the measurement 

shows. 

If a longitudinal field is applied equation (3.6) is modified. 

(;,(() = 1 
2A 

Wo 
1 — exp( —— A^i^) cos 

4 f t 2A , 
• i A V ' 
2 

sin LOordr, 

(3.7) 

with LAJO defined by equation (3.2) and A^ = 

A Kubo-Toyabe type behaviour has been observed in CeNio.62Coo.38Sn, shown in 

figure 3.2. In this compound the behaviour does not follow equation (3.6) in zero 

field. 

42 



CHAPTER 3. Muon Spin Rotation and Relaxation 

.62^°0 .38^^ 

0 . 2 2 

0 . 2 

J J 
0) 

0 . 1 8 

0 . 1 6 

m < 
0 . 1 4 

0 . 1 2 

0 . 1 

X %xxx 

z e r o f i e l d 
1 0 G 
2 0 G 
3 0 G 

0 1 2 3 4 5 6 7 8 
Time (|J,s) 

Figure 3.2: Kubo-Toyabe behaviour of polarisation in CeNio.62Coo.38Sn as a function 
of applied field. The lines are guides to the eye. 

When magnetic order occurs in a material it is possible to observe oscillations 

in the asymmetry at short times as the muons precess about the internal field. The 

oscillations are normally only visible in the first few microseconds before they are 

damped out. 

3.4 Longi tud ina l field muon spin re laxa t ion . 

If we have an applied field in the direction of the muon spins each muon starts in a 

stationary quantum | + | ) state. If the polarisation changes as a function of time 

some of the muons must be flipping into a | — | ) state. This implies that the fields in 

the sample are supplying the necessary quantum of energy to flip the muons between 

their two Zeeman states, so the fields must fluctuate with a component at frequency 

w, which corresponds to the right energy. 

3.4.1 Decoupling nuclear moments 

In longitudinal field (LF) muon spin relaxation it is possible to get rid of any relax-

ation due to nuclear moments. The nuclear fields fluctuate, or relax, on a typically 

much longer time scale than fields due to unpaired electrons and hence the nuclear 

magnetic fields do not operate at high enough frequencies to supply a sufficiently 
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large quanta of energy to flip the muons. In this way the nuclear moments are 

said to be decoupled from the muons, leaving only electronic effects to work on the 

muons. Typically a longitudinal field of a few miUi-tesla is needed to decouple the 

nuclear moments. 

3.4.2 Relaxation functions in LF /iSR. 

The forms of the relaxation function G.{t) LF yuSR can be quite complicated and 

there are not a great deal of theoretically calculated functions. However, there 

Eire some typical cases. If the fields at the muon site fluctuate rapidly, or if the 

muon is diffusing rapidly an exponential depolarisation can be observed. For slower 

fluctuation rates a Gaussian form for Gz{t) may be seen. 

In general there may be more than one component to the relaxation and, for 

example, 

Gz{i) — exp(—Ai^) + e x p ( — , (3 8) 

where Ai and A] are two different depolarisation rates. In spin glass materials a 

stretched exponential function can be observed, 

(?,(() = (3.9) 

where the parameter /3 has been related to a critical exponent. 

3.5 D a t a f i t t ing 

In /iSR experiments the measured quantity is the count-rate in a set of detectors. 

Usually the decay of millions muons are counted over an hour. In the first few 

microseconds of the decay of each pulse of muons the count rate wiU be high because 

most of the muons axe decaying. The rate can be limited by the "dead-time" of 

the detection equipment. The dead-time is defined as the minimum separation, in 

time, between two positrons hitting a detector for which the two positrons will be 

counted separately. Consider a positron hitting a detector, the finite response time 

of the detector means that if a second positron arrives too soon it will not register 

separately. In practice the dead-times of the detection system can be measured and 

standard programs exist to make a small correction to the data set. 
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When fitting ^SR data a flat background should be considered. The sample 

holder is typically masked with silver, and silver does not depolarise muons so any 

muons which stop in the mask wiU give a time independent contribution to the 

polarisation. 

Typical forms for the asymmetry as a function of time, in an LP experiment, 

would be, 

A[t) ~ AoG'j(i) + flat background , (3.10) 

with Aq the initial asymmetry at i = 0 and G,(^) is a function which best describes 

the observed data. For TP data we would fit, 

A{t) = AoGj;{t) cos{u!t + (j)). (3.11) 

where cp is a phase and w is the observed frequency, not necessarily that given by 

equation (3.2) which implies a Knight shift due the presence of an internal field. 

3.5.1 Maximum Entropy method for transverse field data 

Maximum entropy is a data analysis technique which can be used to process trans-

verse field /iSR data. A /iSR experiment reveals measurements of the depolarisation 

Pi at certain values of time we expect that the depolaxisation is related to the 

time via 

Pj i Gi — G(̂ t{ ,(2]^,<32'**^A:), (3.12) 

where e, is a random error and Ok are parameters. To process the data parameters are 

chosen so that the function G closely represents our data, P,. The best representation 

is usually defined to be the one with the particular set of parameters which gives a 

minimum defined by 

e? 

In transverse field /iSR the parameters represent the microscopic fields at the 

muon sites. We want to know which field strengths are present and this becomes a 

problem because we anticipate that there will be a range of fields. Our parameter 

set ak becomes a continuous distribution a{k). 

In effect, the number of parameters has become very large and we cannot de-

termine them all uniquely from our hmited data set using a test. This is called 
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an inverse problem. We can assume a{k) to be the frequency distribution of the 

precession of the muons, a{iv), because the field strength is related to the precession 

frequency". 

There is no unique solution to this inverse problem, which means there are 

multitudes of distributions a{u) which w i l l give a reasonable representation of the 

data. Maximum entropy is a way of picking out one paxticulai" solution, which is 

consistent with the data. We think of the magnitude of a[w) as the probability of 

having a precession at frequency at w,-. 

The entropy, 5, of a solution is given by 

5" = ^ a ( w , ) l o g , ( 3 . 1 4 ) 

where the interval between w, and coi+i defines the resolution which is better than 

the experiment could determine and the values 5, are default values which could all 

be set to unity. When the data has very large error bars and therefore gives no clear 

information the maximum entropy solution given by maximising equation (3.14) is 

simply a(w:) = We can therefore understand the values 6, to be the value 

the maximum entropy solution will approach for regions of w, where there is no 

information. We can use the 6,'s as a default starting point for the maximum 

entropy search if we already have an idea of the form of a(uji). 

Theoretical work [51, 52] shows that the distribution which has the maximum 

entropy, 5, will be a good general solution to the problem. In particular the max-

imum entropy method produces a distribution which is as uniform as possible and 

which automatically gives Httle weight to parts of the distribution which are not 

weU determined from the data. 

In practice the a maximum entropy routine finds a distribution with large S and 

compares this to the data using the test. The distribution a(w) is the Fourier 

transform of our depolarisation G{t) and so the maximum entropy routine suitable 

for /iSR has to do this transform to check that the solution is consistent with the 

data. 

The find the most practical solution the maximum entropy routine searches pa-

rameter space in order to maximize the quantity S — where A is a Lagrange 

'Working with the field distribution is equivalent to working with the frequency spectrum of 
the precession of the muons because the field and precession frequency are simply related by 
equation (3.2) 
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multiplier. This technique is used in the analysis of muon spin rotation data for 

CePdSb in section 4.6 of chapter 4. 
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Chapter 4 

C e P d S b 

4.1 I n t r o d u c t i o n 

Malik and Adroja [53] initiated the investigation of CePdSb when they made sus-

ceptibility, magnetisation and resistivity measurements on a polycrystalline sample. 

They found the compound to be unusual for a number of reasons: 

• It was a ferromagnet. There are only a few Ce based intermetallic ferromagnets 

but many hundreds of antiferromagnets. 

• The Curie temperature (Tc) of 17K was much higher than predicted, according 

to de Gennes scaling* from the ordering temperatures of the other rare-earth 

R-PdSb compounds. 

• The resistivity measurement showed a drop at 17K indicating magnetic order-

ing. More interestingly, there was a broad maximum at 150K with — ln(T) 

behaviour in the high temperature regime. This is a characteristic of a dense 

Kondo system. The interplay between crystal field effects and the Kondo effect 

can give rise to this behaviour^ 

They concluded that this compound was an example of a ferromagnetic Kondo 

compound. These materials are quite rare and there remain only a few examples, 

e.g. YbNiSn [54], CePd2Ga3 [55] and CeRh3B2 [56]. 

CePdSb has been investigated by zero field NMR, A C. susceptibility, neutron 

diffraction and inelastic scattering [57]. Well defined crystal field excitations were 

"de Gennes scaling is discussed in section 1.6.2 
*see section 1.7.4 
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found by neutron scattering. NMR and neutron diffraction confirmed the ferromag-

netic state below Tc ~ 17K [57]. A.C. susceptibility measurements found that Tc 

increased under pressure [57]. 

Following this work Trovarelli et al [58] published results for measurements of 

the heat capacity. They found some extremely interesting behaviour; 

• The Sommerfeld coefficient, 7, was quite small and close the value for a normal 

metal. On the basis of this they suggested that there was no Kondo-type effect 

involved in this material. 

• They found that there was no cooperative anomaly at Tc in the heat capacity. 

However, they saw a rounded maximum centered near lOK which accounted 

for almost | i21n2 of the entropy. See figure 4.1 

0.6 M 

Figure 4.1: Heat capacity data of Trovarelli et al [58]. Tc is at 17K. The shape of 
the anomaly centered near lOK is Shottky-like not a A-type anomaly. 

CePdSb is a planar magnetic with Ce moments lying in the basal plane. Many 

properties of CePdSb are anisotropic. It is simpler to make measurements using a 

cartesian co-ordinate system, rather than using hexagonal axes. In the rest of this 

chapter the directions a, b and c refer to a cartesian axis system. The a and b axes 

lie in the basal plane and the c axis is perpendicular to the basal plane. 

It is important to stress the uniqueness of the heat capacity data. Magnetisation 

and A.C. susceptibility measurements were made in [58] which quite clearly indicated 
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Figure 4.2: Single crystal susceptibility of CePdSb and CePtSb. This data is taken 
from [59]. The CePdSb data shows a small discontinuity at Tc which is suppressed 
by an applied field in the c direction. 

a ferromagnetic transition at Tc- Since the ferro-to-paramagnetic phase transition 

is second order there should be a sharp divergence in the heat capacity [34]. A 

subsequent measurement [59] by another group using a single crystal sample found 

the same behaviour but with a small discontinuity at Tc- This data is shown in 

figure 4.2. The discontinuity was suppressed by a IKOe magnetic field applied in 

the a direction [59]. Clearly in CePdSb there is a large amount of remaining entropy 

or disorder below the ordering temperature. This entropy is only removed below 

lOK. 

Thermal expansion measurements [60] on poly crystalline samples indicate a large 

peak centered near lOK. In an 8T applied field the peak moves upward 3.5K in 

temperature. This data is shown in figure 4.3. In single crystal measurements [60] 

the expansion along the c-axis was found to dominate and showed a small anomaly 

at Tc with a larger rounded peak at lOK. An anisotropy between the expansion 

along orthogonal a and b axes in the basal plane was also found. See figure 4.4. 

Nuclear magnetic resonance (NMR) [61] measurements found a well defined hy-

perfine splitting at the antimony nuclei sites. The effects of pressure on the effective 

field at the antimony nuclei showed an increase in effective field under higher pres-
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Figure 4.3: The thermal expansion coefficient of a polycrystalline sample of CePdSb 
in zero field and an 8T magnetic field. Data taken from [60]. 
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Figure 4.4: Single crystal thermal expansion data, reproduced from [60] 
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sures [61]. We might expect the transferred hyperiine field at the Sb nuclei to be 

suppressed with increasing pressure if CePdSb were subject to the Kondo effect. 

CePdSb has a hexagonal structure with space group PGsmc. The cerium ions 

sit on a simple hexagonal lattice with lattice parameters a = 4.59A, c = 7.89A. 

A unit cell of CePdSb is shown in figure 4.5. There was initially some debate 

in the literature about this structure because the Pd and Sb ions could be either 

ordered or disordered on their sublattice, their scattering lengths are too similar to 

be separated by neutron dif&action. On the basis of crystal field Unewidths [62] and 

NMR splittings [57, 61] the sublattice is thought to be ordered. 

Figure 4.5: GeGaLi type structure. In this figure the Ce ions are the largest with 
the Pd ions second largest and the Sb ions are the smallest. The relative sizes of 
the different ions is artificial. 

AH other work on this alloy has focused on trying to explain the low temperature^ 

behaviour. Presented here are results of several experiments. We have conducted 

single crystal neutron diffraction, polycrystaHine neutron diffraction, small angle 

neutron scattering, magnetisation, muon spin rotation and relaxation, and low en-

ergy neutron scattering measurements. 

*here low temperature means less than ^ 20/sr 
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atom position 
Ce ( 0 , 0 , 1 / 4 ) 
Pd (1/3 ,2/3 ,%) 
5b (2 /3 ,1 /3 , %) 

Table 4.1: Positions of ions for the basis of CePdSb. u and v are structural param-
eters measured by neutron diffraction as [62] u=0A9, t;=0.51 respectively. 

4.2 Crys t a l field for C e P d S b 

Crystal fields were discussed in section 1.5 of chapter 1. An example is given here 

of the calculation of the crystal field for CePdSb. 

The first step in the calculation is to determine the relative positions of the 

various ions. The unit cell, shown in figure 4.5, shows tha t the cerium ions lie on 

a simple hexagonal sublattice. The positions of the three atoms in the basis which 

when attached to every lattice point gives the correct structure are given in table 4.1. 

We use hexagonal coordinate axes and lattice parameter units. 

It is most convenient to work in spherical polar coordinates. For the crystal field 

calculation the cerium ion at the center of the middle layer in figure 4.5 is taken to 

be at the origin and </> = 0 is set so that the first Ce ion in the plane is at <i» = | . 

The spherical polar co-ordinates of all the nearest neighbours are given in table 4.2. 

The radial and polar co-ordinates, Rpi, #pi, of the three palladium ions above 

the central cerium are given by 

api = tan 
V3(« - 7)c 

and the co-ordinates Rsi, ^si for the three upper Sb ions can be obtained by replacing 

•ii by u in the above equations. 

Three palladium ions below the central cerium have radial and polar co-ordinates. 
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Type co-ordinates 
R 9 

Ce c/2 0 0 

Ce c/2 n 0 

Ce a 7r/2 7r/6 

Ce a 7r/2 7r/2 

Ce a TT/2 TTTG 
Ce a 7r/2 97r /6 

Ce a 7r/2 lln/6 
Pd Rpi ^ P i 5^/3 
Pd Rpi d-pi 7r/3 
Pd Rpi (9pi TT 

Pd RP2 ^P2 0 

Pd Rp2 ^P2 4^/3 
Pd Rp2 dp2 2%Y3 
Sb Rsi 9si 0 

Sb Rsi ^S1 2n/3 
Sb Rsi ^S1 4n/3 
Sb Rsi Ŝ2 57r/3 
Sb Rsi Ŝ2 TT/3 
Sb Rsi ^S2 TT 

Table 4.2: Positions of near neighbours in CePdSb structure with respect to the 
central Ce ion in figure 4.5. The lattice parameters are a and c and the parameters 
Rpi, Rp2, and 0p2 are defined in the text. 

Rp2, P2 

RP2 

TT ^P2 = — + arctan 
| ) c 

and the co-ordinates Rgg, ^S2 for the three lower Sb ions can be obtained by replacing 

•ii by f in the above equations. 

At this point we are in a position to consider the crystal field Hamiltonian equa-

tion (1.7). It is useful to use part of the superposition theory of crystal fields to 

ease the determination of the non-zero terms in equation (1.7). The superposition 

model can be used to separate the geometrical and physical information in the crys-

tal field parameters and make it possible to calculate t h e parameters. Here we are 
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T^cf |5/2> |3/2) PV2) 1-1/2) 1-3 /2) 1-5/2) 

(5/2| 
lOBO-H 
60B4 0 0 0 0 

(3/2| 0 
- 2 g ° -
180B° 0 0 0 0 

(1/2| 0 0 120B° 0 0 -3\ / iOB^ 

( - 1 / 2 I 3\/iOB^ 0 0 
-8gO-k 
120B° 0 0 

( -3 /21 0 0 0 0 
- 2 B ^ -
180B° 

0 

( -5 /21 0 0 - S / l O B S 0 0 
10B° + 

Table 4.3; Matrix elements (ajT^cFl/?) for the crystal field Hamiltonian for CePdSb. 

only interested in the form of the Hamiltonian. The superposition model states 

= (4.1) ^ ; - ( r 

where the sum is over the l Hgands. The factors Kimi&L, ^ l ) are tabulated functions 

in terms of the angular co-ordinates of the different ligands defined in a common 

co-ordinate system. By performing the sum in equation (4.1) we find that some of 

the are zero and hence do not appear in the Hamiltonian. 

For CePdSb only the terms A®, and are non-zero which makes the crystal 

field Hamiltonian 

hCF = + B j o ; + blol, (4.2) 

where the are the parameters to be determined from experiment and the OJ" 

are Stevens operators introduced in section 1.5 

In the free ion the 2j + 1 angular momentum states are defined in terms of 

spherical harmonics and to calculate the effect of the perturbing crystal field we 

must find the eigenvalues and eigenstates of the Hamiltonian, equation (4.2). The 

matrix elements (J; J ; mj , ) are known and tabulated for most values of J 

[6], and using these tables we can find the matrix elements (ccI'Hc'fI/?)? where for 

cerium J = | so that the [a) and |/3) states are from the set | | ) | | ) | | ) | ^ ) | ^ ) | ^ ) . 

Table 4.3 shows the resulting matrix. 

By diagonalising this matrix we can find the eigenvalues and the eigenstates. In 
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this case the result is six eigenstates, which are 

^4 = COS 0 |±5/2) ± sin ^|q=l/2) 

= cos ^1^1/2) ^ sin ^ |±5/2) (4.3) 

= |d=3/2). 

We can see that the crystal field has produced three doublets, labeled A, B and C. 

One of the doublets consists of which is simply two of the original states. The 

other two doublets are admixtures of our original states. The degree of admixture 

is determined by the parameter 0, the mixing parameter. The eigenvalues for the 

three doublets are 

Ayi = + 30B)2 + 90(^3)2 

As = go + 90B° - ' \ / ( - 9 g o + 30g)2 + 90(^^)2 (4.4) 

Ac; = - 180B° 

To determine the parameter 0 we know that hcf is diagonal in the new eigen-

functions so we look at, for example, {a\'HcF\P) for an off diagonal element and set 

it equal to zero then solve for 9. 

At this point we do not know which of the doublets is the groundstate and 

we require experimental evidence to tell us which is which. Since equation (4.4) 

characterises the relevant states for the cerium ions it is possible to calculate the 

expected neutron scattering cross-section for inelastic transitions between the states. 

Calculated intensities for all allowed transitions between the different states can 

be compared with measured intensities to determine the order of the states. In 

addition, calculating the magnetic moment for each state, given by 

and comparing with experimental values can determine the groundstate. 

Neutron scattering measurements [62] of the crystal field excitations indicates 

that the level scheme is as shown in figure 4.6. The measured neutron scattering 

cross-section is shown in figure 4.7. The line in this figure is a fit using the crystal 

field Hamiltonian with parameters Bg = 1.36meV, = —0.054meV and = 

0.857meV [62]. This procedure gives the mixing parameter 0 | and predicts 

a moment of 1.2^g per Ce lying in the basal plane [62]. The planar nature of the 

moments suggest that the X-Y model (see section 1.12) is applicable to this material. 
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32.1meV 

cos0|±5/2>±siQe|+ l/2> 

3/2) 

26.5 meV 

cos 0 |±l/2> ±sin 0 1+5/2) 

Figure 4.6: Crystal field level scheme for CePdSb, showing three doublets with 
allowed transitions labelled by arrows. 

CePdSb 20K 

25 30 35 
ENERGY TRANSFER (meV) 

Figure 4.7: Crystal field excitations for CePdSb. Two peaks can be seen which 
represent the transition between the doublets in figure 4.6. The line represents the 
fitted neutron scattering cross-section, calculated on the basis of the crystal field 
Hamiltonian. 
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4.3 Low field magne t i sa t ion and Suscept ib i l i ty 

The magnetisation of a small poly crystalline piece of CePdSb was measured in a 

small field (100 Oe) using a VSM. The result is shown in figure 4.8. The curve 

looks like a standard mean field magnetisation curve with T c clearly around 17K. 

We note that this data does not show any indication of unusual behaviour below 

Tc- There are a few scattered points near 12K but they are due to temperature 

instability in the apparatus when the measurement was made and so are not sig-

nificant. Some additional measurements were made using a SQUID magnetometer. 

The measurements were nominally made in zero field but the residual field of the 

magnetometer is known to be IG. As a small piece of material was cooled it began 

to develop a spontaneous magnetisation below ~ 18K. This gives confirmation of a 

ferromagnetic transition at this temperature. 

12 16 20 
T(K) 

Figure 4.8: Magnetisation of polycrystaUine CePdSb in a small field as a function 
of temperature. 

A small fragment of a single crystal was used in a measurement of the suscepti-

bility as a function of temperature. Measurements of the susceptibility were made 

along the a, b, and c-directions using a VSM. The crystal field model predicts the 

susceptibility along the c-axis to be small and very weakly temperature dependent. 

The data for the a and 6-directions showed a sharp rise at 18K signalling ferromag-

netism. Plots of the reciprocal susceptibihty showed that the a and 6-directions had 

the same susceptibilities while the c-direction was clearly different. It was possible 

to fit this anisotropic behaviour to the susceptibility • calculated on the basis of the 
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crystal field model [62]. The sample used was very small and so was difficult to 

align accurately and this misalignment had to be included in the fit [62]. Katoh et 

al [63] have also made measurements of the susceptibility of a single crystal and it 

was possible to fit their data to the crystal field model also. 

CePdSb single crystal susceptibility 

500 

400 

^ 300 
o 
E 

200 

100 

0 

c-axis 
a-ax s 

Data of K. Katoh et al. SCES 1995 

100 200 
Temperature 

300 

Figure 4.9: Single crystal susceptibility of CePdSb. This data is taken from ref.[63] 
Lines are fits using crystal field model. 

Recall that the crystal field Hamiltonian is 

+ BfO: 4 ; (4.5) 

as calculated in section 4.2 where the Op are Stevens operators and the bj" are 

the crystal field coefficients. The single ion susceptibility %o was calculated on the 

basis of this crystal field Hamiltonian, for the a and c-directions. The single ion 

susceptibility at a temperature T, is calculated using the Boltzman probabilities of 

occupation of the different crystal field levels following the procedure outlined in 

section 1.5.1 of chapter 1. 

59 



CHAPTER 4. CePdSb 

The effects of exchange were included by a molecular field parameter A so that 

the measured susceptibility in a direction ( is 

==, ( 4- ;(c.^ (4.6) 

where Xo is the single ion susceptibility given in section 1.5.1 by equation (1.11) and 

Yc.e. is a constant contribution due to conduction electrons. Different molecular field 

parameters were fitted for the a and c directions on the basis that the material is 

very anisotropic. The fit parameters were xa, Ac, 6 the crystal field mixing parameter 

and ^c.e." 

The fit indicated that Ac was about three times as large as A .̂ This means 

the exchange interactions are much stronger along the c-axis and since the Ce-Ce 

distance is shortest in this direction it indicates that nearest neighbour exchange is 

quite dominant. This has been confirmed in recent measurements of the magnon 

dispersion relations in a single crystal [64]. The fit was improved by including an 

alignment angle as a fitting parameter which gave the best fit when the c-axis was 

assumed to be 8.9° away from the vertical. 

Figure 4.9 shows the results. This fit gave Xc.e. as a small negative contribution 

and 0, the mixing parameter, to be 0.3292 rad (roughly ^ ) while the crystal field 

calculation gave 0 The fit supports the validity of the crystal field model. 

Note that because the Ce moments lie in the plane we can examine CePdSb with 

the XY model in mind, but we should also allow for dominant exchange along the 

perpendicular c-axis which necessitates the use of a three dimensional model. 

4.3.1 Magnet isat ion 

A number of magnetisation isotherms were measured for a small polycrystalline piece 

again using a Vibrating Sample Magnetometer. Figure 4.10 shows the results in the 

form of an Arrott plot^. The isotherm at 17.5K goes through the origin which is 

taken to be Tc- Isotherms were measured at temperatures in between those shown 

on the plot but are not included in an attempt to improve the clarity of the figure. 

Magnetisation hysteresis loops taken below Tc from zero to positive field and back 

to zero showed hysteresis of only a few miUitesla and a tiny remanent field. The 

inset to figure 4.10 is an attempt to extract the spontaneous magnetisation from 

these data using the extrapolation of the linear portion of each isotherm to zero 

§The Arrot plot method is outlined in section 1.10.2 of chapter 1 
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field. The low field portion of the Arrot plot was used for the extrapolation and 

there is some uncertainty in the result because the isotherms on the Arrot plot are 

not Hneai". 

0 lOOOO 200DO 300W 400M) 500W) 60mX) 7MXX) 80000 900DO KXXWO 

B / M (gauss / fig) 

Figure 4.10: Arrot plot of polycrystaUine CePdSb magnetisation data. Inset shows 
the spontaneous magnetisation derived from this data by extrapolating the low field 
part of the isotherms back to zero field. 

Figure 4.11 shows data for the magnetisation along the 6-axis of a single crystal 

again in the form of an Arrot plot. These data are very similar to the poly crystalline 

measurement. The zero temperature limit of the extrapolated spontaneous moment 

(~ 1.2/is) agrees weU with other estimates in this thesis. The polycrystalline value 

is depressed because the applied field is in different directions in different crystallites, 

giving an average over the crystallite orientations. 

Careful examination of the Arrot plots reveals a change in curvature of the lines 

around 14K. Below 14K the lines have concave curvature b u t above this temperature 

they take on a slight convex curvature. It was not possible to find values of the 

critical exponents 0 and 7 which made aU the isotherms linear and so the mean 

field values have been used. 
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Arrot plot for b-axis single crystal CePdSb 

3 0. 

6 8 10 
B/M(T/^B) 

Figure 4.11: Arrot plot of single crystal magnetisation da ta for field applied along 
the 6-axis in the basal plane. Inset shows the spontaneous magnetisation derived 
from this data by extrapolating the Linear linear low field part of the plot back to 
zero field. 

4.4 N e u t r o n Di f f rac t ion 

A neutron diffraction experiment was performed using the D l B neutron diffractome-

ter at ILL, Grenoble. The DIB spectrometer has a detector bank covering an angle 

of ~ 80°. A crushed polycrystaUine sample was used and was placed in a cylindrical 

vanadium can. Neutrons with incident wavelength A = 2 .52A were used for this 

study. 

Figure 4.12 shows the pattern obtained at 21K. This temperature is above Tc 

and so there will be no magnetic Bragg peaks corresponding to long range order. 

AH the major peaks could be indexed on the basis of the hexagonal structure. The 

lattice parameters found using a simple refinement program were a = 4.591(14), 

c = 7.921(27). These values are in good agreement with previous reports [53]. There 

were a few low intensity peaks which could not be attributed to the hexagonal lattice 

of CePdSb which indicate a small amount of impurity in the sample. 
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Figure 4.12: The nuclear Bragg pattern at 2lK, this was used to subtract from lower 
temperature data. Note that the intensity of these Bragg peaks is fax greater than 
those of figure 4.13. The arrows indicate unidentified peaks due to impurity phases. 

Measurements of the diffraction pattern were made at a number of temperatures 

below Tc- To facilitate analysis of these patterns the intensity due to nuclear Bragg 

scattering was removed by subtracting the 22K pattern f rom all the other data, 

leaving only the magnetic part. Figure 4.13 shows magnetic Bragg patterns at 

four temperatures below Tc. At each of these temperatures the pat tern can be 

indexed assuming the hexagonal structure. There are no additional peaks at any 

temperature which shows that we have purely ferromagnetic ordering. However, it 

is to be remembered that we are working with a powder diffraction pat tern so that, 

for example, very long range helical order would not be resolved by this experiment. 

It is clear from figure 4.13 that the intensity of the magnetic peaks increases 

steadily as the temperature is lowered. We have used the intensity of the 002 

magnetic Bragg peak to extract a value for the spontaneous magnetic moment as a 

function of temperature following the prescription of section 2.5.1 and this is shown 

figure 4.14 in combination with other data. The intensity of the 002 Bragg reflection 

at different temperatures was determined by fitting a Gaussian function to the data. 

This gave good fits and the area of the Gaussian was used as the intensity of the 

reflection. We have assumed that the moment lies wholly in the basal plane and any 
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magnetic domains have their magnetisation confined to the basal plane. The 002 

reciprocal lattice vector is then perpendicular to the magnetic moment so that the 

orientation factor in the cross-section for this peak is equal to one for all domains. 
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Figure 4.13: The magnetic Bragg pattern of a poly crystalline sample at a number 
of temperatures. The nuclear Bragg intensity has been subtracted. 
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4.4.1 Single crystal diffraction 

Prior to the powder diffraction experiment we made measurements of three Bragg 

peaks as a function of temperature in a single crystal, using the TAS7 triple axis 

spectrometer at Ris0, Denmark. The single crystal was large but had a very poor 

mosaic, which precluded any experiments other than diffraction. We were able to 

measure the temperature dependence of the (110), (112) and (002) Bragg peaks. The 

temperature dependence of the intensity of the (002) peak was used to determine the 

temperature dependence of the magnetic moment, in the same manner as the powder 

diffraction data. The result is shown in figure 4.14 which includes the data from 

the powder diffraction work and the spontaneous moment taken from the Arrot plot 

(figure 4.10). Figure 4.14 shows good agreement between the three data sets. By 

comparing with figure 4.8 we see that the spontaneous moment shows a somewhat 

unusual behaviour. The spontaneous moment approaches zero relatively slowly. The 
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Figure 4.14: Spontaneous moment in CePdSb as measured by different techniques. 

magnetisation in a small field (figure 4.8) indicates a much sharper drop off close to 

Tc- The derived spontaneous moment shows a linear drop with a small 'foot' just 

below T'c where the magnetisation drops to zero. 
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In a small applied field the magnetisation below Tc develops much more rapidly 

than the spontaneous moment shown in figure 4.14. 

4.5 Low energy n e u t r o n sca t te r ing 

The IN6 spectrometer at I.L.L. was used to measure the low energy response in a 

poly cry staUine sample. Temperatures in the range I.o-IOOK were studied and the 

data was merged into 19 detector groups with elastic wavevectors ranging from 0.26 

to 2.05 The data was corrected for background scattering, sample absorbtion 

and self shielding, and was normalized to the scattering from a vanadium plate. No 

corrections were made for phonon scattering because we are working in an energy 

window close to zero, at small wavevectors and at low enough temperatures for there 

to be only minimal phonon scattering. 

At temperatures of 17K and above the scattering response is weU described by 

a quasi-elastic Lorentzian hneshape and an elastic line representing the incoherent 

elastic scattering. Figure 4.15 shows the scattering for a number of detector groups 

at lOOK. Quasielastic scattering can be seen in the figure and the elastic scattering 

is also indicated. 

Figure 4.17 shows the variation of the quasielastic linewidth as a function of 

wavevector transfer for different temperatures. At these temperatures we are in the 

paramagnetic regime and the linewidth is clearly wave-vector dependent implying 

spin-spin interactions between Ce ions, as expected for a localised ferromagnet. 

The response remains quasielastic down to lOK, weU below Tc but below this 

temperature inelastic features begin to appear. At 6K and 4K we observed inelastic 

scattering from spinwaves which is most intense in the lowest angle detector groups. 

4.5.1 Low temperature response 

As the sample was cooled through Tc the quasielastic scattering persisted, with no 

evidence of inelastic scattering. However, at lOK, the response in the low angle 

detectors was not a simple quasi-elastic Lorentzian. There was some evidence of 

inelastic scattering. 

At 6K and 4K there is pronounced inelastic scattering in the low angle detectors 

only. Figure 4.16 shows contour plots of the scattering as a function of energy 
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Figure 4.15: This figure shows the measured scattering in detector groups one to 
six for CePdSb at lOOK. The data was fitted using a Lorentzian lineshape for the 
quasielastic part. The fitted elastic scattering is indicated by the dashed line. 
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transfer and wave vector transfer. 1 fie plots sliow tfie region of Q and w space which 

IS accessible with tlie defecfor bank on the IN6 spectrometer. 

(Asuij rajscrerx ABiaug 

Figure 4.16: Spinwave scattering in CePdSb. The lOK and 13K figures show only 
a qnasielastic response. Note that the plots do not include the origin, simply to 
exclude the intense elastic scattering. The line in the 2K plot indicates a spinwave 
disDersion curve as discussed in the text. 
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Below lOK it appears that the lowest angle detector is jus t grazing a spinwave 

dispersion curve. At small wavevectors the Heisenberg model gives a quadratic 

spinwave dispersion, hu: — DQ^, where D is the spinwave stiffness constant. We can 

use this as a guide and the line on the 2K plot of figure 4.16 shows the dispersion 

curve corresponding to D = 10 meVA^. This dispersion curve lies close to the 

edge of the detector range and it would appear that the scattering we see is due to 

the edge of some spinwave scattering. This means that the spinwaves should have 

stiffness of at least D = lOmeVA^. However we note that this is based on data from 

a polycrystalline sample. 

At lOK and 13K we can see from figure 4.16 that there appears to be only 

quasielastic scattering with no spinwave scattering. However, a recently performed 

triple axis neutron scattering experiment [64] has confirmed that there are spin-

wave excitations at these temperatures. The triple axis da ta shows that the spin-

waves soften as the temperature approaches Tc and additionally that an anomalous 

quasielastic component develops above ~ 6K. The IN6 data shown in figure 4.16 is 

dominated by this quasielastic central peak component above 6K. 

In the following chapter we show data for isostructural CePtSb which is ferro-

magnetic at ~ 4.5K. The measurements show that in contrast to CePdSb spinwave 

excitations can be seen right up to Tc • 

4.5.2 Analysis of intersite interactions 

The quasielastic scattering for T > Tc can be analysed to give information on 

the strength of intersite interactions, however it is difficult to calculate an analytical 

form for the response function in an exchange coupled paramagnet. Two approaches 

can be used: the method of moments or the random phase approximation (RPA) 

approach. 

The method of moments due to de Gennes [65] is appropriate for a localised mag-

netic system with Heisenberg-like exchange. It describes the form of the response 

function in terms of ratios of its moments, in the Umit of infinite temperature. The 

moments of the scattering response function are defined as [7]. 

y* oo 
A4n= / , ( 4 J ) 

where F(w) is the response function. The method of moments uses a ratio of two 

moments, and M4. The ratio used is M4/(iV/2)^, which will have different values 
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depending on the form of function F{uj). Calculations indicate that the ratio wiU 

be close to one if f (w) is Lorentzian-Hke and equal to three if F(w) is Gaussian-like 

^ ,65 ] . 
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Figure 4 . 1 7 : Quasielastic linewidth in CePdSb. 

Following ref. [65] the second moment of the scattering in the limit of infinite 

temperature is , 

1 
ovi 

(4.8) 

where the %/, is the number of neighbours at distance r, with exchange interaction 

Ji. The fourth moment, M4, can also be calculated and has a much more complex 

form [ 6 5 ] 

In ref. [ 6 5 ] a general prediction suggests that the response function should be 

Lorentzian like at small wavevector transfer and Gaussian like at large wavevector 

transfer. The parameter which determines where this cross over should take place 

is the product of the wavevector, Q, and the lattice parameter, for which we use the 

nearest neighbour distance, r,-. For Qr, < 4 we expect Lorentzian lineshapes and 

for qvi > 4 we expect Gaussian lineshapes. For r i = 3 .945A the cut off is Q ~ l A . 
In this case our lineshape appears to be always Lorentzian, though we only consider 

the data up to Q ~ l A for fitting purposes. 

The Lorentzian function actually has infinite moments, so it must be used in a 

cut off form. We use an approximation by taking the squared width of the fitted 
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Lorentzian to be the second moment of the scattering. Using equation (4.8) the 

form of the width which has been used to fit the data is 

r ( Q ) = ( ~ j { j + i m ' +<')". (4.9) 

where r ( Q ) is the width of the fitted Lorentzian. Only the nearest neighbour inter-

action has been used and d is a constant to account for single ion anisotropy. The 

fits to equation (4.9) are shown in figure 4.17. 

At lOOK and 5OK the data are not significantly different so both sets were fitted 

with a common set of parameters. The same approach was used to fit the 20K 

and 17K data. The fitting procedure indicated that it was sufficient to consider 

only the nearest neighbour interactions at all temperatures. At lOOK and 50K it 

was necessary to use a non-zero value for d in equation (4.9) which gives a non-zero 

intercept of the linewidth at Q = 0. At lOOK and 50K the exchange constant for the 

nearest neighbours was ~ 0.26meV and the fits are reasonably good. The spinwave 

energy dispersion relation given is section 1.12.1 of chapter 1 was 

(4.10) 

For nearest neighbours only, in a hexagonal lattice, ^"(0) and J[Q) are 2Ji and 

2J i cos(Qri) respectively. At small Q, using the approximation for the cosine we 

find that the dispersion relation is 

fLj = jrjrir;<22, (4.11) 

where J J\r\ = D is the spinwave stiffness. If J = | , = 0.26meV and ri = 3.945A 
then D % lOmeVA^, which is the fine shown in figure 4 . 1 6 indicating the fits to the 

quasielastic linewidth are consistent with the spin waves. 

The alternative approach is to use the RPA theory which correctly gives the 

Lorentzian lineshape (refer to section 1.9 of chapter 1). The RPA fits give a non-

zero linewidth at Q = 0 and it was necessary to include second nearest neighbour 

exchange to improve the fits. 

Since it is not clear whether the method of moments or the RPA approach is the 

correct way to treat this data table 4.4 outlines a comparison of the two methods. 

It shows that neither gives fuU agreement with the results. Our measured linewidth 

shows Q dependence and the lineshape is Lorentzian out to large Q, aU in agreement 

with the RPA approach. The similarity of the lOOK and 50K linewidths suggests 
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Feature Results Predictions Feature Results 
Method of moments RPA 

Lineshape. Lineshape is always 
Lorentzian. 

Lorentzian at small 
Q only. Gaussian at 
large Q. 

Always Lorentzian. 

Width The width is Q 
dependent. At 
lOOK and 50K the 
hnewidth is not very-
different implying T 
independence. 

Q dependent but T 
independent (valid 
at T = oo). 

Q dependent and T 
dependent. 

Table 4.4: Comparison of two approaches for examining the quasielastic neutron 
scattering data. 

that there is little temperature dependence which is in agreement with the method 

of moments predictions in the infinite temperature limit. 

A proper treatment of the spin dynamics in the paramagnetic phase of CePdSb 

would have to take account of the XY nature of the magnetism. We are not aware of 

any theoretical predictions for the form of the scattering law for a three dimensional 

XY model. 

4.6 yuSR 

Two series of experiments were carried out on the longitudinal geometry EMU spec-

trometer at ISIS. For both experiments the sample was in the form of a crushed poly-

crystalline button mounted on a flat aluminium plate. The edges of the aluminium 

plate were masked with silver. The data were corrected for detector deadtimes using 

a standard ISIS program. 

In the first experiment Muon Spin Relaxation measurements both in zero field 

and with applied longitudinal fields (LF) were made using a closed cycle refrigerator 

(CCR) temperature environment. The CCR gives a minimum temperature of ~10K. 

In addition to the LF measurements we were able to apply a transverse field (TF) of 

lOOG using the small transverse field coils and TF measurements were made using 

the longitudinal geometry. 

In the second experiment the zero field and LF measurements were made using 

a helium flow cryostat environment which gave a minimum temperature of ~2K. 
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4.6.1 Longitudinal field measurements 

In CePdSb the antimony nuclei have a non zero spin which contribute to the muon 

depolarisation. To eliminate the effects of this a longitudinal field was apphed (see 

section 3.4.1). At oOK the polarisation had an exponential decay and the apphcation 

of a 50G LF field reduced the damping rate but lOOG had no additional effect. We 

attribute this reduction to the decouphng of the Sb nuclei. AH the measurement 

were made with either a 50 or lOOG LF field apphed. 

From 50K to 11.oK the longitudinal field spectra were fitted to, 

= aoexp(-A^) + 6, (4.12) 

with qq the initial asymmetry, A the damping rate and b a flat background to account 

for muons which stopped in the silver mask. 

The background, 6, was determined from the fit to the lowest temperature data 

and was then held constant. 

For temperatures between 50K and 11.5K the depolarisation was well represented 

by equation (4.12). but at lOK it was qualitatively different. At this temperature 

there is a two component depolarisation and there is drop in the initial asymmetry. 

Figure 4.18 shows the data for 50K and lOK. It is clear that there is a big difference. 

c/: < 

10.5K 

Time ((j,s" ) 

Figure 4.18: Depolarisation at 10.5K and 50K, in 50G LF. The Unes are fits to a 
simple exponential for 50K and the sum of two exponentials at 10.5K. 
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Figure 4.19 shows the damping rate parameter, A, as a function of temperature. 

Since these measurements were made using a CCR the data does not extend below 

lOK. The damping rate shows a weak peak at 15.5K followed by a drop. The data at 

lOK was fitted to the sum of two exponentials and the point on figure 4.19, for lOK, 

is for the component with the smallest damping rate. The initial asymmetry begins 

to drop near 19K, shown in figure 4.20, as the damping ra te begins to increase. 
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Figure 4.19: Damping rate as a function of temperature, for two different longitu-
dinal fields. 

In these measurements the onset of slower dynamic behaviour is seen, roughly 

at Tc but there is no strong enhancement of the depoleirisation at Tc as we might 

expect at a ferromagnetic phase transition. We also note that at lOK there is a two 

component damping. Two component behaviour in /iSR da ta is sometimes explained 

in terms of two muon sites where the local fields are different. The muon site is not 

known in this case, but we might expect two components if magnetic fluctuations 

in CePdSb were different in different directions, in particular it is possible that the 

fluctuations along the c-axis have a different character to those in the basal plane. 

Measurements in different strength longitudinal fields 

The appHcation of longitudinal fields of increasing strength at lOK removed the 

second rapidly decaying component. Figure 4.21 shows the measured depolarisation, 

at lOK, with increasing applied field. A 300G field is sufficient to suppress the rapidly 
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Figure 4.20: Total initial asymmetry, sum of all the fitted components. The initial 
asymmetry begins to drop below Tc-

damped component and to recover some of the initial asymmetry. With 4KG the 

initial asymmetry is recovered to the 50K level but a significant relaxation still exists. 

From this data appears that there are two types of relaxation. There is clearly 

a rapidly damped component, responsible for the loss of initial asymmetry, that is 

suppressed by the application of the field. There is also a slower relaxation which 

is not affected by the field. Fitting an exponential decay to the 300-4KG field data 

shows that the relaxation rate is not affected by the field, but the initial asymmetry 

is recovered. This relaxation must result from highly dynamic processes since it is 

not suppressed by an applied field up to 4KG. 

4.6.2 Transverse field measurements 

In the first experiment transverse field measurements were made. The experimental 

conditions were identical to those for the LF measurements. Measurements were 

made between lOOK and lOK with one additional point at 250K. 

The applied transverse field causes aU the muons to precess and the result is an 

oscillating signal, as described in section 3.2. Figure 4.22 shows a summary of the 

data. The oscillating signal was described by 

Gx{t) = ao cos {2nf't + (l>)e - \ t (4.13) 
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Figure 4.21: Depolarisation at lOK with increasing applied field. 

where gq is the initial asymmetry, / ' is the precession frequency, (j) is the initial phase 

of the oscillation and A describes the damping rate of an envelope function which is 

taken to be an exponential in this case. Fits of equation (4.13) are shown as solid 

lines in figure 4.22. We can determine the transverse field strength from a given 

oscillation frequency using equation (3.2). At 250K the frequency was 1.374MHz 

so that the field is 101.4G - in good agreement with the strength of the external 

appHed field. 
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Figure 4.22: Transverse field data at several temperatures. Solid lines are fits to 
equation (4.13). 
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Figure 4.23: Oscillation frequencies from direct fitting and using maximum entropy. 
The maximum entropy value is the centroid of the frequency spectrum. 

Equation (4.13) gives a reasonable description of the da ta for temperatures down 

to 17K. For temperatures below 17K the signal starts to oscillate about a non-zero 

value and to fit these data it was necessary to add an additional component to 

equation (4.13). The data below 17K were fitted to 

Gx{t) = ai cos {2Tr f t + (/))e + Oge (4.14) 

where 02 ai^d A2 are the asymmetry and damping rate of the additional exponential 

component. This component arises from muons in crystallites where the internal 

field of increasing strength is not in a transverse direction. The polarisation of these 

muons decays as for a longitudinal field measurement. The damping rate of this 

component could be held constant at O.l^us"^ and the asymmetry associated with it 

increased as the temperature decreased. 

The frequency of the oscillation determined by fitting equations (4.13) - (4.14) 

showed only a very small increase between lOOK and 30K and then rose more rapidly 

down to lOK, as shown in figure 4.23. This figure also shows the frequency derived 

from maximum entropy data processing, which is discussed in the next section. The 

data in this figure indicate that the muons do not experience a critical slowing down 

of the magnetic moments on the Ce ions at Tc-

The Knight shift of the frequency away from the high temperature value is 

equivalent to ~16.6G at lOK. 
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The damping rate, A, showed the same properties as the frequency: increasing 

slowly from lOOK down to 30K and then more rapidly as the temperature was 

lowered towards lOK. Magnetic transitions in other materials tend to show a sharp 

increase in the damping rate at the transition temperature but that is not the case 

here. The transition temperature is not apparent from either the muon Larmor 

frequency or the damping rate but there is an indication of some change from the 

extra component which appears below 17K. 

As mentioned previously the damping rate of the new component is not temper-

ature dependent but its asymmetry is. At lOK the asymmetry is roughly 17% of 

the full high temperature initial asymmetry. This part of the signal may be due to 

muons processing around local internal fields, not aligned with the applied field. 

Maximum entropy analysis 

Maximum entropy analysis of the transverse field data reveals the frequency dis-

tribution or equivalently the field distribution in the sample. The centroid of the 

distribution was found according to 

ce„ t rc id= V (-^haund - 1) X weight 
E weight 

where only channels which have a weight above the default are considered. At 

250K the centroid of the frequency distribution was found to be at a frequency 

corresponding to an applied field of 103.3G which is consistent with the lOOG appUed 

field and the value found from directly fitting the data. Note that the two methods 

of obtaining the frequency give values which differ by a few tenths of a MHz. In 

figure 4.23 this looks quite significant but the difference only translates to a few 

gauss in field strength. The larger value from the maximum entropy analysis is 

probably due to the tail of the frequency distribution. 

At 250K the maximum entropy distribution is not symmetrical and this remains 

the case down to 17K. The distribution is quite sharp on the low frequency side 

but with an extended tail on the high frequency side. This may be due to an 

intrinsic feature of the apphed field. For this experiment the TF20 coils on EMU 

were used; these do not have a high degree of homogeneity. As the temperature 

is lowered the centroid of the distribution shifts upward as shown in figure 4.23. 

Below Tc where the oscillation starts to be heavily damped, the maximum entropy 

distributions start to have extra weight at low frequencies. The main line shifts 
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Figure 4.24: Maximum entropy spectra for different temperatures. P(f) is the weight 
for each frequency channel. Fig. 4.24(d) shows the default level used in accordance 
with equation (3.14). Note that the vertical scale changes dramatically over the four 
figures. 
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to higher frequencies at lower temperatures corresponding to an increasing internal 

field. At lOK the oscillation is barely recognizable so the maximum entropy routine 

produces a distribution with weight close to zero frequency to try to reproduce the 

d-c component. 

4.6.3 Second / iSR experiment 

The second /iSR experiment was also conducted on EMU, but with a helium flow 

cryostat so that measurements could be extended down to lower temperatures. A 

complete set of zero field measurements were obtained and some additional LF 

measurements were made. 

Longitudinal field measurements 

Measurements made with a 50G longitudinal field at 30K and between 11.oK and 

4.5K confirmed the previous results. At 11.5K the depolarisation could be fitted by 

the sum of two exponential decays. One decay component was much more rapid 

than the other. The faster component had a damping rate A ~ 2.5/iS"'^ compared 

to A RjO.l^s"^ for the slower component. At lower temperatures the asymmetry 

associated with the rapid component decreased until it was only possible to distin-

guish a single component. The smallest damping rate was observed at 4.5K. At this 

temperature the dynamics of the Ce moments should be increasingly frozen by the 

ferromagnetic molecular field, although at this temperature there is considerably less 

initial asymmetry than at 30K. Increasing the strength of the apphed field recovered 

the initial asymmetry. At 30K even in 4KG field a significant amount of damping 

remains, and the same is true at 14.5K. 

Zero field measurements 

The zero field data between 30K and 4.5K were fitted to a stretched exponential of 

the form, 

= + (4.16) 

where OQ is the initial asymmetry, A is the damping rate and /3 is a temperature 

dependent exponent and b is the fixed flat background. There is no specific reason 

a priori for using this form other than that it gives a reasonable description of the 
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Figure 4.25: Zero field /iSR data for CePdSb at three different temperatures. The 
Hnes are fits using equation (4.16). 

data and therefore a means to parameterise it. Some data is shown in figure 4.25 

where the hnes indicate fits using equation (4.16). Attempts to use a two component 

Lorentzian decay, as for the longitudinal field data below lOK, did not give as good 

fits as the stretched exponential. 

Tc is quite apparent in the zero field data. The initial asymmetry drops rapidly 

at Tc and the damping rate shows a step. The exponent (3 shows that the depolar-

isation is an exponential from 30K to Tc but below Tc the depolarisation changes 

form. The values for the fitted parameters are shown in figure 4.26. 

We would expect to be able to see a sharp increase in the value of the parameter 

A on the approach to Tc- This would indicate rapid fluctuations in the internal 

fields acting on the muons at the ferromagnetic critical point. This is not the case 

but the transition is clearly seen from the rapid drop of the initial asymmetry. This 

loss of asymmetry is a typical feature of magnetic phase transitions. 
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Figure 4.27: /iSR data for CePdSb in a 2KG longitudinal field. There is only a weak 
loss of asymmetry below Tc-

The background parameter, b, was held fixed at 0.03 for all of the fits. If we take 

this background into account it would appear that roughly two thirds of the true 

initial asymmetry are rapidly lost below Tc-

The temperature dependence of the parameter f3 is unusual. The data was also 

fitted using a simple exponential function. This requires only two parameters, a 

damping rate and the intial asymmetry. The temperature variation of these two 

parameters was very similar to the corresponding parameters for the stretched ex-

ponential. The stretched exponential fits were marginally bet ter , according to the 

least squares minimisation test (%^). It is not clear what the variation of the pa-

rameter P indicates, it may be an artefact. 

D a t a for s trong longitudinal field 

In the second experiment a sequence of measurements were made with a 2KG ap-

plied longitudinal field. The data was treated in the same way as the zero field 

measurements and the stretched exponential form was used to parameterise the 

data. Figure 4.27 shows some example data. There is only a very slight change in 

initial asymmetry below Tc and hence these data he very close together. 
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Figure 4.28; Fit parameters for stretched exponential fit t o ^SR data in an applied 
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Figure 4.28 shows the temperature variation of the three parameters, ao, A, 3. 

The fitted damping rates are smaller than in zero field but the overall behaviour is 

similar to that observed in zero field. The initial asymmetry does not show a sharp 

drop at Tc with only a weak decrease at lower temperatures and the exponent 0 

tends to one as the temperature is lowered from Tc-

Other measurements in an applied field show that anomalies at lOK move to 

higher temperatures under the influence of the field. Here the field smears out the 

details seen in zero field, but there is a steady drop in the damping rate below Tq. 

This indicates either more rapid magnetic fluctuations in the sample or an increase 

in the field width of the fluctuations. 

4.7 Small Angle Sca t te r ing 

A single crystal of CePdSb was used for a small angle neutron scattering (SANS) 

experiment using the D17 instrument at ILL, Grenoble. The crystal, approximately 

Icm^ in volume, was mounted in a helium flow cryostat with quartz windows. The 

crystal was mounted with the c-axis approximately vertical and a 6-axis along the 

beam. This gave scattering vectors in the a-c plane. An incident wavelength of 

I2A was used for most of the study and the scattering was measured on a 2-D 

multi-detector. The detector was normalised using a standard water run. 

It is important to remember the effect of the orientation factor in the magnetic 

cross-section. Neutron scattering measures components of magnetic fluctuations and 

correlations perpendicular to the scattering vector. Referring back to equation (2.31) 

in chapter 2 we can write the sum in this equation as 

- Q«Qj)^"^(Q,w) = (1 - Q ^ ) ^ - + (1 - Q g ) ^ ^ + (1 - Q f ) ^ -
a/3 

SO that when q lies along one of the cartesian directions x, y or z the magnetic cor-

relations and fluctuations in that direction do not scatter neutrons. In the following 

we analyse data for and directions. In each case the cross-section is 

fs"(g) + 5"(g) for Q, 
dn \s"{q) + s"{q) for q . 

where the s{q) is s{q,u!) integrated over energy. The function s(q) only gives 

information on instantaneous static correlations. For example, correlations in the 
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a-h plane of CePdSb would give a response for wave vectors with a component along 

Qz. 

Measurements were made between 1.6K and 30K with two points at 60K. The 

majority of the measurement were made warming the sample. A small electromagnet 

was used to apply fields up to 0.4T in the 6-direction. 

4.7.1 S A N S response 

An overview of the small angle scattering data is given in figure 4.29, in the form 

of contour plots. The contours are on an arbitrary vertical scale but the individual 

levels are the same in every plot. Above Tc the scattering is very slightly anisotropic, 

as we can see from the slight oval shape of the contours for 24K in figure 4.29. Below 

Tc a very anisotropic response builds up to a maximum at around 8K. Figure 4.29 

shows that the form of this anisotropic response has an X-shape in the a-c plane. 

Below 8K the response changes again and the X-shape disappears. In figure 4.29 

the plot at 1.6K shows the largest response to be along the c-direction, as we would 

expect if the fluctuations were confined to the a-h plane. 

The total scattering summed over all the detector is shown in figure 4.30. The 

peak scattering is close to 8K with no sign of critical scattering actually at Tc-

The position of this peak compares well with the heat capacity anomaly [58]. In an 

applied field the peak in the scattering moves upward in temperature as does the 

heat capacity peak [58]. The peak in the scattering coincides with the temperature 

showing the lar gest X-shape response. In the case where the magnetic field is applied 

the peak total scattering is reduced in size and it is the same on either side of the 

peak. In the the zero field case there is more scattering at low temperatures. 

At 8K the crystal was rotated about the c-axis ~ 1 5 ° clockwise and anti-clockwise 

with no affect on the measured response. This suggests that the scattering is cyhn-

drically symmetric about the c-axis. Also at 8K measurements were made with 8.5A 

and 2 0 A neutrons, which gave different Q ranges, and there was no difference in the 

observed scattering. 

The existence of the arms of this pattern suggest moment fluctuations are oc-

curring with a small component out of the basal plane. However, the moments 

would appear to be locked into the basal plane because of the strong crystal field 

anisotropy so there must be another effect competing with the crystal field. 
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4.7.2 Correlation lengths 

Correlation lengths can be measured from the variation of the small angle scatter-

ing with increasing wave-vector transfer. It is reasonable to assume that for any 

ferromagnet the correlation length will be very small in the paramagnetic phase and 

should increase as T'c is approached from above. In the ordered phase the correla-

tion length should be immeasurably large. Since the small angle scattering measured 

here is highly anisotropic it is clear that the correlations between magnetic moments 

in different directions is highly anisotropic also. 

In order to try to analyse the response we have examined slices through the 

data. The data for six central rows and six central columns of detector pixels were 

averaged so that we have slices, through the centre of the detector, along the 

and QZ directions respectively. The two dimensional slices, intensity vs. Q, can be 

visualised more readily than the three dimensional data. 

Q, direction, Q parallel to c* 

Attempts to fit the data for shces in the direction showed that a Lorentzian was 

not a good description for a significant number of temperatures. It was found that 

the squared Lorentzian was more widely applicable. The squared Lorentzian takes 

the form 

where I{Q) is the measured intensity at wave-vector Q, IQ is an area parameter, AQ 

is a small offset from zero, 6 is a flat background and k is the inverse correlation 

length of magnetic fluctuations. 

Initial fitting showed that centre of the data, given by AQ, shifted below Tc, 

by an amount corresponding to roughly one pixel on the detector. The background 

showed signs of a small peak at Tc suggesting that there is a component of critical 

scattering underlying the data which appears as a flat background because it is 

associated with a small correlation length. The background parameter was held 

fixed in subsequent fits to remove this degree of freedom. 
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The best method to use for fitting the squared Lorentzian function is to rearrange 

equation (4.18) 

and then plot the data as ^ The data will lie on a straight hnes if 

the squared Lorentzian is the correct model. The square root of the ratio of the 

intercept and gradient of the straight Hue yields k. Fitting straight lines in this way 

gives a more sensitive measure of the viability of the squared Lorentzian. 

Figure 4.31 shows the data plotted as ^ vs. and also shows fits using 

equation (4.19). For the data outside |Q| = 0.022A~^ the background level is a 

significant percentage of the scattering and the choice of the level adjusts the data 

on the plot considerably so this region was not included in the fit. Only the region 

for Q"̂  between 0 and 0.5 x 10"^A~^ has been fitted. 

There appear to be three regimes in the data. Between 30K and ~ 23K the 

squared Lorentzian appears to be a good description, shown by the straight lines 

in figure 4.31. In the range 23-16K the data does not lie on straight lines so the 

squared Lorentzian is not the correct form in this range. Below 16K the data lies on 

straight lines indicating that the squared Lorentzian is a good fit, the data below 5K 

bends slightly above the straight line indicating a small departure from the squared 

Lorentzian again. 

The data in the range 20-17K appears to be a function intermediate between 

a Lorentzian and a squared Lorentzian. However the limiting form in the small Q 

regime appears to be well described by a squared Lorentzian so we can examine the 

temperature dependence of the correlation length determined in this way over the 

whole temperature range. 

The area of the squared Lorentzian function for the slices showed the same 

behaviour as the total scattering in figure 4.30. The inverse correlation length, k, 

found by fitting is shown in figure 4.32. From figure 4.32 the correlation length 

appears to diverge in the a-b plane below ~ 5I\. This can be contrasted with what 

is found from the data in the x direction. 
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are quite poor and therefore data above lOK is unreliable. 

Qx direction, Q parallel to a* 

Data for slices through the measured response in the direction were analysed in 

the same manner as the data. The background was held fixed at an appropriate 

average value and straight line fits were applied to the data. 

Figure 4.33 shows the data and fits. In the temperature region around Tc the 

squared Lorentzian form is not well suited to the data as figure 4.33 shows. However 

at 9.7K and lower temperatures the fits are much better showing that the squared 

Lorentzian is a good description. 

The variation of the centre parameter was not significant and the area parameter 

showed a small increase below Tc ' 

Attempts to fit a simple Lorentzian over the whole temperature regime did not 

give good fits but the derived variation of k with temperature was qualitatively the 

same as found by using the squared Lorentzian. The temperature dependence of k 

for the Qx data is shown in figure 4.32. 
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fits which produced this data were quite poor above lOK, hence that region of the 
figure is not reliable. 

4.7.3 Magnetic Field Measurements 

A field was apphed in the a-direction and measurements were made at several tem-

peratures and at different fields. We would expect that fluctuations in the direction 

of the field to be suppressed. 

One effect of the field was to reduce the overall intensity of the scattering. Fig-

ure 4.30 shows the reduction in intensity compared to zero field. The peak scattering 

is shifted slightly upwards in temperature with the applied field. The heat capacity 

[58, 59] and the thermal expansion [60] peaks also shift upwards in an applied field. 

The strongest applied field was ~ 0.38T and contour plots of the data taken in this 

field were the same as those of figure 4.29. 

The data was analysed by taking Qx and Q. slices, the small Q limit of which was 

fitted to the squared Lorentzian formalism as described previously. The variation 

of the inverse correlation length in the two directions as a function of temperature 

is shown in figure 4.34. 

With a field applied the scattering in the z direction revealed that the inverse 

correlation length in this direction showed similar behaviour to that in zero field. 

However, the maxima in figure 4.34 is at a higher temperature than in figure 4.32 and 

there is no clear indication of the inverse correlation length going to zero. The inverse 
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correlation lengths are larger with the field applied implying a smaller correlation 

length than in zero field. 
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Figure 4.35; Contour plots of SANS data in different applied fields. The field reduces 
the total intensity. At 1.6K the field makes the scattering isotropic. 
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In the x direction the field suppressed any temperature dependence of k. The 

inverse correlation length remained constant through Tc and down to the lowest 

measured temperature. 

In zero field the maximum scattering is at 8K and at this temperature the applied 

field tends to reduce the total scattering. The X-shape pattern remains up to the 

largest field measured. Figure 4.35(a) shows contour plots of the scattering at 8K 

in different fields up to 0.42T. 

Figure 4.35(b) shows the effect of an applied field of increasing strength at 1.6K. 

The pattern becomes more isotropic with increasing field. If we refer back to equa-

tion (4.17) it is possible to understand this effect. If were negligible and the 

applied field in the ^-direction suppressed the fluctuations in this direction i.e. 5** 

then only a response due to would remain and this would correspond to corre-

lations which were always perpendicular to any scattering vector on the detector. 

Hence, an isotropic pattern. This scenario only holds for the temperatures below 

4K the next available data set is at 6K and the applied field does not have such a 

dramatic effect at this or any higher temperature. If this analysis is correct it sug-

gests that CePdSb is displaying two dimensional behaviour below ~ 6K, whereas 

we would expect that at lower temperatures full three dimensional ordering should 

take place. 

4,7.4 Discussion of SANS data 

The SANS data is highly anisotropic and this makes analysis difficult. Attempts to 

analyse the data have shown that it is difficult to find a model which fits adequately 

over the fuU temperature regime studied. 

Some features of the data are clear. The total scattering does not show any 

signs of critical scattering at Tc in agreement with other data. As an additional 

test of this the data for 25K was subtracted from the lower temperature data and 

this showed that there was almost no additional scattering until below Tc-

At low temperatures, roughly < 5K, the data suggests that CePdSb is two 

dimensional. The values of k derived from fitting data in different directions suggest 

that correlations in the basal plane are very long ranged, while those along the c-axis 

are finite. The effect of an applied field on the SANS patterns at low temperatures 

can be interpreted by assuming only two dimensional planar correlations are present. 

97 



CHAPTER 4. CePdSb 

However, the magnetic susceptibility data presented in section 4.3 appear to indicate 

that exchange interactions are strongest along the c-axis which would invoke three 

dimensional correlations. 

In the temperature range between 5K and Tc the implications of the small angle 

scattering data are less clear. The values of k in different directions as found from 

fitting seem to show that at Tc the correlation length along the c-axis is a minimum 

and the in the basal plane the correlation length actually decreases below Tc leveUng 

off at 14K. The analysis of the data is compUcated by the anisotropy in its shape. 

Since CePdSb has planar moments it may be possible to describe its behaviour 

in terms of the XY model. The theoretical behaviour of the XY model in two dimen-

sions (2D) has been widely studied both analytically and in simulations. In three 

dimensions (3D) the XY model is less well studied so far. Theoretical predictions 

show that the 3D XY model will display a phase transition with normal critical 

behaviour and an associated set of critical exponents. However planar vortices as 

predicted in 2D are not expected to be observed in 3D. 

The hne in figure 4.32 is a fit to the expected behaviour of the 2D XY model. 

Equation (1.58) from chapter 1 has been used. Only data in the range 4.5-lOK 

was used in the fit and we can see that the fit does not work outside of the chosen 

range. The transition temperature was used as a parameter and the best fit gave 

Tki = 4.6K. The same range of data could be equally well fitted by a powerlaw with 

exponent v = 0.4 and a sUghtly larger T k t - Powerlaw behaviour is expected in the 

3D XY model, although v = 0.67 is expected [41]. 

In the 2D XY model vortex diffusion above T k t is predicted to lead to quasielastic 

dynamics [66, 67]. This behaviour has been bourne out experimentally in some 

model systems [68]. In CePdSb we do see that the spin waves apparently give way 

to a quasielastic response at ~ 5-6K in the IN6 data. If the quasielastic response 

were due to diffusing vortices then the SANS pattern might be showing some details 

of this. Gouvea et al [67] have examined the anisotropic Heisenberg model in 2D. 

In this model planar vortices are allowed to have an out of plane spin component 

which can be stabilized when vortices are in motion. This could could give rise to 

the diagonal arms in the SANS patterns, though detailed calculations are required 

to verify this speculation. 

Finally we should note that small angle neutron scattering is sensitive to fluctua-

tions and static correlations. It is not a simple matter to separate critical scattering 
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from small angle scattering from other sources. Figure 4.30 shows a peak centred 

at 8K but it still unclear if this is true critical scattering associated with a phase 

transition. There is certainly no sign of critical scattering at Tc but details of the 

behaviour at lower temperatures are still not well understood. The precise origins 

of the observed anisotropic pattern still remain undetermined. 
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4.8 S u m m a r y and conclusions 

This section gives a brief summary and some further discussion on the data presented 

in this chapter. 

The interest in CePdSb stems from a missing anomaly in the heat capacity. 

CePdSb shows many signatures consistent with ferromagnetism at 17K but the 

heat capacity is not dominated by the normal lambda type anomaly at the Curie 

temperature. The main feature of the heat capacity is a large rounded anomaly 

centered at lOK. The implications are that the ground state entropy is not removed 

at the ferromagnetic ordering temperature so that some sort of disorder remains. 

The work in this chapter has been motivated by the desire for an understanding of 

this unusual material. 

Our magnetisation measurements show that the Curie temperature in CePdSb is 

marked by an increase in susceptibility. Below Tc the magnetisation as a function 

of field behaves like that of a ferromagnet. Neutron diffraction reveals magnetic 

Bragg peaks which begin to appear at the Curie temperature. The magnetic Bragg 

pattern contains only ferromagnetic peaks. 

An extrapolation from magnetisation data plotted as an Arrot plot reveals a 

spontaneous magnetisation curve for the basal plane which agrees with that pro-

duced from single crystal and polycrystaUine neutron diffraction. The spontaneous 

magnetisation curve for the basal plane is in fact somewhat unusual, the magneti-

sation increases fairly slowly below Tq. In contrast the magnetisation measured in 

a small field for a polycrystal is quite rapid below Tc. 

Magnetic susceptibility data can be well fitted by a crystal field model which 

shows that the groundstate of this material is a doublet in which both states are 

admixtures of |o/2) and |3/2). The crystal field has been shown [62] to lead to a 

considerable anisotropy which makes CePdSb an easy plane system. 

Low energy neutron scattering measurements find that the quasielastic scatter-

ing above the ordering temperature is well described by a Lorentzian lineshape. The 

fitted linewidth is wavevector dependent implying spin-spin relaxations. The tem-

perature and wavevector dependence of the linewidth does not fit completely within 

either a RPA or de Gennes approach. However, an analysis based on the de Gennes 

approach reveals some interesting information about the wavevector dependence of 

the linewidth. The fit indicates that nearest neighbour exchange is dominant. This 
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is confirmed by fits to the single crystal susceptibility data which demonstrates that 

the molecular field is strongest along the c-axis. 

We should examine any parallels between the XY model and CePdSb because 

of the planar nature of CePdSb. Strong exchange along the c-direction means that 

CePdSb is a true 3D XY system. 

The 3D XY model has not been extensively studied yet and the literature is 

lacking detailed theoretical studies. It is clear that CePdSb is a strongly 3D XY 

system but there appear to be several features of the magnetic correlations which 

are reminiscent of the 2D XY model. 

Theoretical predictions and numerical work [68, 67, 66] suggest that in the 

Kosterhtz-Thouless phase of the 2D XY model there will be spin wave excitations 

and above this phase there will be some correlated diffusive motion of topological 

vortices. This diffusive motion should lead to quasielastic neutron scattering of the 

type seen above 6K in the IN6 data. 

A recent neutron scattering study [64] on a single crystal of CePdSb found that 

in addition to spin wave scattering, above ~ 6K a quasielastic component of scatter-

ing began to develop. In the 2D XY model the spin wave energy is predicted to drop 

discontinuously to zero at the KT phase transition but only a smooth renormali-

sation in the energy was observed in the neutron scattering study [64]. The small 

angle scattering data shows that the correlation length in the basal plane is large 

below ~ 5 K but it decreases above this. In the region between 5-lOK the inverse 

correlation length can be described by the 2D XY model, although this region of 

the data can be fitted equally well by a power law. 

We can interpret the small angle scattering data below ~ 6K by assuming that 

the magnetisation is confined to the basal plane and the application of a magnetic 

field in the a-direction makes the scattering isotropic. 

The small angle scattering data has a squared Lorentzian profile in the basal 

plane below Tc and this has been predicted theoretically for vortex motion in the 

2D XY model. 

It is possible that in CePdSb, despite the strong interplanar interactions that 

there is some cross over between 3D and 2D character. Aspects of this have been 

examined in simulations [41] but we are not aware of any predictions which we could 

compare with our data. 
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Muon spin relaxation experiments in zero field show that Tc is marked by a 

drop in initial asymmetry. Fits to a stretched exponential model show that the 

damping rate has only a weak peak at Tc where we might expect to see a sharp 

divergence. The exponent of the stretched exponential starts at ~ 1.05 above T q 

and falls between Tc and ~ 12K. Below 12K the exponent increases once more and 

at ~ 5K it appears to drop rapidly. This parameter indicates that there is some 

anomalous change taking place below Tc- At lOK the damping rate shows two 

component behaviour but there is no spontaneous precession of the muons below 

the ordering temperature. A transverse field measurement down to lOK shows that 

the precession frequency of the muons does not show any features at Tc but it 

increases sharply down to lOK. 

4.8.1 Further Work 

The anomalous phase transition in CePdSb is still not understood. It appears that 

17K is clearly fixed as a transition to ferromagnetism yet there is only a very small 

or minor indication of this in the specific heat. It is not clear what maintains the 

entropy below Tc we would expect that the doublet groundstate should be split by 

the exchange field therefore removing disorder from the system. 

So far it is not clear if there is any anisotropy in the basal plane, magnetisation 

measurements suggest not but thermal expansion finds a clear anisotropy. Mag-

netisation measurements using a torque magnetometer on single crystals would help 

resolve this. 

/iSR experiments using single crystals would be more useful than poly crys-

talline data. In general any further work should use single crystals because of the 

anisotropic properties of CePdSb. Using a /iSR spectrometer with better resolution 

on the sub microsecond time scale might test if there is in fact any spontaneous 

precession of the muons in zero field below the ordering temperature. 

In the next chapter on CePtSb we suggest that alloys the form CePdi_a;Pta;Sb 

would be interesting to study also. Pt and Pd are isoelectronic and the structure 

of the two parent compounds is the same also. Compounds such as CeRhSb and 

CePdSn which have one different element from CePdSb have a different structure 

and very different properties. 

Since the properties of the exchange interactions between different Ce ions is one 
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of the main devices that controls CePdSb it may be worthwhile to examine these 

more closely. In particular a measurement of the form factor in a single crystal might 

help to determine the role of the antimony or palladium ions in superexchange with 

neighbouring ceriums. A comparison with the same data for CePtSb might be useful 

also. 

A number of effects exist which might be contributing to the anomalous be-

haviour in CePdSb. Magneto-elastic effects might be important. Since the Ce-Ce 

ions are closest in the c- direction these chains might show low dimensional prop-

erties. The planar nature of the magnetic moments might make this material a 

candidate for an example of the three dimensional X-Y model. An energy gap of 

0.4meV in the magnetic excitation spectrum has been suggested from the heat ca-

pacity data, but very recent single crystal measurements of the dispersion relations 

find only a much smaller gap, O.lmeV. 
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CePtSb 

CePtSb has the same crystal structure as CePdSb [69] with very similar lattice 

parameters. The hexagonal lattice parameters are a = 4.5327, c = 8.0580 [19]. 

Some experimental work on CePtSb is presented here to be used to make some 

comparisons with the behaviour of that of CePdSb. 

CePtSb is a ferromagnet with a Tc of 4.5K. It has a normal metallic resistivity 

and shows a standard A-type anomaly in the heat capacity at Tc [70, 59], see 

figure 4.2. CePtSb has the same crystal field Hamiltonian as CePdSb and the fitted 

crystal field parameters are comparable to those of CePdSb [69]. The crystal field 

model predicts a low temperature moment of ~ slightly smaller than that of 

CePdSb. 

Experiments on single crystal samples have found that the resistivity is highly 

anisotropic [59]. The resistivity along the c-axis is larger than in the basal plane. The 

same result was found for the isostructural compounds CePdSb, LaPdSb and LaPtSb 

which indicates that the anisotropic resistivity is probably due to the conduction 

band structure. The resistivities are relatively large which indicates low carrier 

concentrations. 

Optical conductivity measurements find that there is a larger carrier density in 

the a-c plane which accounts for the resistivity behaviour [71]. 

There have been no reports of Kondo lattice behaviour in CePtSb and while 

it shows the same structural features as CePdSb the transition to ferromagnetism 

appears to be quite normal. The next sections contain descriptions of neutron 

scattering and magnetisation measurements on CePtSb which can be compared 

with the results of the previous chapter. 
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5.1 Magne t i sa t ion 

Magnetisation experiments were carried out on a small poly crystalline piece of 

CePtSb using a Vibrating Sample Magnetometer. Magnetisation isotherms are 

shown in figure 5.1. The lowest temperature isotherm shows a sharp increase from 

zero, clearly indicating a ferromagnetic state. It also shows a saturation value of 

~ O.dfjB per Ce at 5T. Magnetisation loops from zero to positive field and back 

to zero showed that there was a small hysteresis with a small remnant field, as for 

CePdSb. 

Fitting the data for the critical isotherm, at 5K, using h oc \mf gives a reason-

able fit in the field region above lOOOOG. For H< lOOOOG the fit did not have the 

right curvature. The critical exponent 5 was found to be ~ 4.9. 

The same magnetisation data is shown in the form of an Arrot plot in figure 5.2. 

The arrot plot shows the 5K data goes through zero which indicates T q . The hnes 

on this Arrot plot are curved, but the difference from CePdSb is that the curvature 

is concave throughout. This is suggestive that the normal case is to have the same 

type of curvature for each hne of the Arrot plot*, data for the ferromagnets CeAgGa 

and CeRuzGez support this fact. Consequently, the change of curvature in the Arrot 

plot for CePdSb would seem to be anomalous. 

It is possible to get reasonable fits to the magnetisation data using an Arrot 

plot with the critical exponents (3 — 0.3 and 7 = 1.5. The extrapolated spontaneous 

magnetisation is consistent with power law behaviour with critical exponent (3 = 0.3. 

This indicates that the ferromagnetic transition in CePtSb can be described by 

normal critical behaviour. The modified Arrot plot is shown in figure 5.3. The effect 

of the demagnetising field can be seen as the apparent shift of the data away from the 

origin. The inset to the figure shows the derived spontaneous magnetisation. This 

Hne on this inset corresponds to a powerlaw with critical exponent (3 — 0.3. The 

good agreement indicates that the derived spontaneous magnetisation is consistent 

with the exponent used for the Arrot plot. 

*the curvature comes from using the mean field critical exponents 
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Figure 5.1: Magnetisation isotherms in CePtSb. The bottom data line corresponds 
the the last temperature in the Hst and so on. The data has not been corrected for 
demagnetising factor effects. 
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Figure 5.2: Arrot plot of CePtSb magnetisation data. 
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Figure 5.3: Arrot plot of CePtSb magnetisation data. Plotting '' vs. 
with 7 = 1.5 and (3 = 0.3. The inset shows the spontaneous magnetisation found by 
fitting straight hnes to the data below Tc, the line is a power law fit M oc {Tc — TY 
with /3 = 0.3 and Tc = 5.03K. 
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5.2 N e u t r o n sca t te r ing 

Low energy neutron scattering from a poly crystalline sample was measured on the 

IN6 spectrometer at I.L.L. Measurements were made using 3.12meV incident energy 

neutrons. The sample was mounted in a helium flow cryostat and measurements 

were made at 50, 20, 4.5 and 1.5K. The data was corrected for various effects as 

described in the previous chapter. 

5.2.1 Quasielastic scattering 

At 50K and 20K wave-vector dependent quasielastic scattering was observed in all 

detector groups. The quasielastic scattering appeared to be intermediate between 

a Lorentzian and a Gaussian. The fitting procedure showed that the Lorentzian 

gave marginally better results and so the data was fitted to a Lorentzian. The fits 

indicated that the width of the quasi-elastic line was wavevector dependent. 

The modulation of the width with wave-vector indicates spin-spin interactions 

in the paramagnetic phase as we expect for a material with exchange interactions. 

Figure 5.4 shows the variation of the half-width of the quasielastic Lorentzian at 

20K and oOK. It was possible to fit the wave-vector dependence according to the 

method of moments [65, 45] as used in section 4.5 using only the interaction between 

nearest neighbours. The linewidth of CePtSb is smaller than that of CePdSb. The 

value of the exchange constant between nearest neighbours found from the fits was 

J = O.llmeV. 
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Figure 5.4; Quasi-elastic linewidth in CePtSb. Lines are fits using equation (4.9). 
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Figure 5.5: Spin waves in CePtSb. 

5.2.2 Low temperature scattering 

At the lowest temperature we observe a clear inelastic distribution indicative of spin 

waves. Contour plots over the whole energy transfer wave-vector transfer grid are 

shown in figure 5.5. The spin wave dispersion relation shows up clearly and at the 

larger wave-vector transfer values it is even possible to see the dispersion relation 

splitting into two branches. However, this is a poly crystalline measurement so for 

wave-vectors outside the first BriUouin zone we a seeing an average over something 
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which is not necessarily isotropic. 

Figure 5.5 has a line on the diagram for 2K corresponding to a simple dispersion 

curve. The dispersion curve is given by 

huj = J (viJi — viJi cos(Qri)) , (5.1) 

with = O.llmeV and = 4 .03A. J\ has been taken from the quasielastic 

line fits. Equation (5.1) is over simplified but figure 5.5 shows a rough agreement 

with the data. Bearing in mind that the data is for a polycrystaUine sample the 

dispersion curve shows that the quasielastic linewidth fits are roughly correct. 

The dispersion relation is visible right up to Tc which is what we might expect 

in a normal ferromagnet and in contrast to what we have observed in CePdSb. 

5.3 Compar i son 

CePtSb has the same structure as CePdSb and there is only a slight difference 

between their lattice parameters.The crystal field Hamiltonian is the same for both 

and the parameters are quite similar. 

Neutron scattering shows that in the paramagnetic state the two materials are 

similar in that they both have wavevector dependent quasielastic scattering. This 

indicates spin-spin relaxations which is what we expect knowing that there must be 

exchange interactions which wiU lead to magnetic ordering at lower temperatures. 

Both are ferromagnets but CePtSb has a much lower ordering temperature. It 

seems to be possible to describe the behaviour of magnetic properties of CePtSb by 

critical exponents. The crude estimates of the critical exponents are consistent with 

those expected for the three dimensional Heisenberg and XY models [34]. CePtSb 

also has a typical anomaly in the heat capacity at Tq. 

The difference in ordering temperatures suggests much stronger exchange in 

CePdSb. It would appear that one of the main differences between the two com-

pounds is in fact the strength of the exchange interactions. One interesting fact from 

NMR data [61] for CePdSb showed that the effective field at the Sb site increased 

under pressure implying that the Curie point should increase under pressure too. 

The unit cell volume of CePtSb is only around lA~^ smaller, almost identical, to 

that of CePdSb. The lattice parameters for the two compounds show that the unit 

cell of CePtSb is expanded along the c-axis by a few tenths of an A and contracted 
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along the c-axis by a few hundredths of an A. Pressure dependent studies of single 

crystals of the two compounds might reveal interesting results. A study of alloys of 

the form CePdi-^-Pt^Sb might produce useful information also. 

If we compare the crystal field groundstates of CePdSb and CePtSb there is an 

interesting difference. The anisotropy of the magnetisation of the groundstate can 

be described by two effective Lande factors, and g± for the c-axis and basal plane 

respectively. This is done by equating the moments {/Jx) and (fiz) to the values 

expected for a spin half groundstate using the two effective g factors. 

The ground state for CePdSb is cos^ |±l /2) ± sin^|=F5/2) with 9 % tt/S. This 

leads to ^|| = 0.104 and g±_ = 2.194 so that 

(/;,) = 0.052;fg (5.2) 

{Hx) = 1.097/jg (5.3) 

where the ratio of the two effective Lande factors is 21.1, which shows considerable 

anisotropy. 

For CePtSb the groundstate is the same except that 9 = 0.49 rad [69, 72]. This 

gives 1̂1 = 0.2876 and g±_ = 2.549 which leads to 

(^,) = 0.1438/,a (5.4) 

(^^)== 1.2746pg (&5) 

with the ratio of the Lande factors equal to 8.86. This raises two interesting com-

parisons, firstly CePtSb is anisotropic but less so that CePdSb and CePtSb has 

a relatively larger value for (yu )̂. This suggest that CePtSb is less XY-like than 

CePdSb. 
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CeRu2Si2_a;Ge2; alloys 

6.1 I n t r o d u c t i o n 

The family of CeRTi2Si2_];Ge ,̂ alloys are part of the vast number of compounds 

which have the ThCr2Si2 type structure; the so-called rare earth ternary silicides. 

The characteristic structure is shown in figure 6.1. Many different compounds of 

Figure 6.1: The ThCr2Si2 type tetragonal structure 

the form CeT2X2 (T=:transition metal, X=Group III or IV element) have this body 
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centred tetragonal structure (space group I4/mmni) with two formula units per unit 

cell". One compound in particular, CeCu2Si2, was responsible for generating huge 

interest in compounds of this type when it was shown to be the first 'heavy fermion 

superconductor'[74]. Of the Ce compounds discovered so far with this structure 

there is a rich variety of properties from intermediate valence to heavy fermion 

behaviour and long range order. In the following paragraphs we briefly review the 

properties of CeRu2Ge2, CeRu2Si2 alloys of the CeRugSig-arGez series and other 

related alloys. 

CeRu2Ge2 lies at one end of the composition range and it displays quite distinct 

character to CeRu2Si2. Measurements of the heat capacity [75, 76] show a prominent 

A-type anomaly at ~ 8K, with a Shottky anomaly at higher temperature consistent 

with ferromagnetic ordering at 8K and a large crystal field splitting. The first excited 

crystal field levels lies at ~ 35meV and the second at ~ 42meV [77]. The value of 

the Sommerfeld coefficient, 7 = 20mJ/mol K^, is only slightly enhanced compared 

to a normal metal. Magnetisation and neutron diffraction [75] give a moment of 

~ 2fiB per Ce which has been determined to He along the tetragonal c-axis. The 

crystal field groundstate makes CeRu2Ge2 an Ising-hke magnet. The quasielastic 

linewidth, as measured by neutron scattering, shows linear temperature dependence 

(Korringa-hke [78]) over a wide temperature range with a small low temperature 

intercept [79]. This and the low value of 7 suggest hybridisation effects are not very 

important in this compound. CeRu2Ge2 is a good local moment ferromagnet with 

a Curie temperature reported to He around 7.5K [80, 81]. 

CeRu2Si2 is a good example of a heavy fermion compound. It has been widely 

studied by many experimental techniques. It shows no magnetic ordering or super-

conductivity down to milH-Kelvin temperatures [82] but does show a large linear 

term in the low temperature heat capacity, 7 = 350 mJ/mol K^, characterising a 

Fermi liquid state of heavy quasi-particles [82]. The susceptibility follows the Curie-

Weiss law at high temperatures with an effective moment close to the Cê "̂  free ion 

value [83]. The effects of a large crystal field splitting can be seen in the heat ca-

pacity [83]. Neutron scattering has shown that antiferromagnetic spin fluctuations 

exist at low temperatures, saturating below ~ 15K [84]. /iSR measurements suggest 

that there may be ultra small Ce moments of order O.OOS/ig [85, 86]. CeRu2Si2 

is very anisotropic and magnetisation measurements show a meta-magnetic step 

at a field of 8T appHed parallel to the c-axis [83, 87]. de Haas-van Alphen mea-

• Structural parameters of over 500 compounds are given in ref.[73] 

114 



CHAPTER 6. CeRu2Si2_:rGe^ alloys 

surements show a change in character of the Fermi surface above and below the 

metamagnetic transition. This difference can be ascribed to the behaviour of the 

4f electrons. Below the transition the observed frequency branches can be related 

to itinerant 4f electrons but above the assumption of localised 4f states is required 

[88]. The metamagnetic transition appears to be associated with the collapse of the 

antiferromagnetic correlations with increasing field [89]. 

Many studies of the effects of alloying on CeRugSig have been made. Substitution 

at the Ce site with La drives the system to magnetic order, while substitution with 

Y has the opposite effect and increases the Kondo temperature [90, 87]. Studies 

of the effects of replacing Ru by Rh, Au, Fe[81], 0s[80] and Mo are also reported 

in the literature. In general increasing the unit cell volume by alloying, even by a 

small amount, induces magnetic order confirming that CeRu2Si2 is very close to an 

antiferromagnetic instability. 

In Cei-rLaa^RugSig with smaU amounts of La doping (0.08 < x < 0.13) mag-

netisation measurements show that the same metamagnetic transition is observed 

in the paramagnetic state, but at lower fields. In fact these alloys show a coexis-

tence of static order and fluctuations [91]. Y doping decreases the unit cell volume 

and no ordering is induced, a metamagnetic transition occurs as for CeRu2Si2 but 

it is at higher fields [87]. Neutron diffraction studies on Cei_zLarRu2Si2 reveal a 

complex phase diagram with at least three different regions of commensurate and 

incommensurate magnetic ordering [92]. An interesting point is that the zero field 

antiferromagnetic ordering wavevector is the same as the wavevector of the antifer-

romagnetic fluctuations in CeRugSig. In Ceo.8Lao.2Ru2Si2 an additional transition 

to another phase has been found by transport and heat capacity measurements [93]. 

This phase boundary does not show up in neutron diffraction measurements [94]. 

CeRu(Rui_a;Rhx)2Si alloys have been studied by several experimental techniques. 

The substitution of Rh into the lattice causes expansion which results in magnetic 

order as for La substitution. pSR measurements indicate that short range magnetic 

correlations are present. An alloy with x = 0.15 showed a drop in the initial asym-

metry at 5.5 K and the presence of a highly inhomogeneous field at the muon site 

indicating antiferromagnetism. 

The CeRu2Si2_z Ge ;̂ alloys is an attractive series to study because the two parent 

compounds lie at opposite extremes of the physical properties scale. Ge and Si are 

isoelectronic, with Ge having the larger atomic radius. The lattice parameters vary 

linearly across the series and it is considered that the main effect of substitution of 
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Si by Ge is to change the hybridisation of 4f electrons with conduction electrons, 

through the increase in the unit cell volume. This is sometimes called 'negative 

chemical pressure'. We may study the change in magnetic properties in this system 

as the nature of the 4f electrons changes across the series. It has been shown 

[77, 95] that for x = 0.1 magnetic order is induced. Neutron diffraction in zero field 

has shown that aUoys with z < 1.0 show sinusoidaUy modulated antiferromagnetic 

order with modulation wave vector q % (0.3,0,0) [95]. The magnetic moment on 

the Ce ion increases sharply as x increases and begins to saturates around x = 1.0. 

Magnetisation measurements on the Si rich compounds show metamagnetic steps 

[95, 77] which have been related to changes in the magnetic order [96], in parallel 

with the behaviour in the La substituted alloys [92]. The ground state in these alloys 

is a virtually pure | ± | ) doublet [97] with strong crystal field anisotropy aligning 

the moment in the tetragonal c-direction. This | ± | ) groundstate coupled with the 

large crystal field spUttirig forces the system to be Ising-Hke. An unusual consequence 

of the Ising-like groundstate in these alloys is that the transverse susceptibility is 

negligible, only is important. 

Neutron scattering experiments on some alloys with x < 1.0 found a quasielastic 

line in aU the compounds. The hneshape was Lorentzian at all temperatures and 

was found to be highly modulated as a function of wavevector transfer. Analysis of 

the hnewidths showed the single ion Hnewidth was largest in the compositions with 

smallest x. with an unusual temperature dependence. The low temperature intercept 

of the single ion linewidth, used as a measure of the hybridisation, showed a decrease 

with increasing x and roughly exhibited scaling behaviour. An inelastic excitation 

was observed in the alloys for one temperature below ~ 3K. This excitation was not 

a spinwave because of the Ising groundstate. Instead, it was thought to be a novel 

longitudinal spin fluctuation in the sinusoidaUy modulated groundstate [97]. 

While the Si rich end of this family has received a lot of attention the Ge rich end 

has received comparatively less. Presented here is a study of some properties of the 

Ge rich alloys with x = 1.0, 1.25, 1.5, 1.75 and 2.0. The change from a ferromagnetic 

to antiferromagnetic groundstate is studied using magnetisation measurements and 

/iSR and we examine the novel low temperature magnetic excitation in this end of 

the series using neutron scattering. 
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Table 6.1: Lattice parameters for CeRu2Si2_rGea; alloys as a function of Ge compo-
sition. z. 

X G(A) c(A) reference 

0.1 4.19(5) 9.78(7) [77] 
0.2 4.2(1) 9.80(2) [77] 
0.35 4.2(6) 9.82(0) [77] 
0.5 4.2(9) 9.83(5) [77] 
1.0 4.22(8) 9.90(9) [77] 
1.25 4.228(3) 9.947(7) this work 
1.5 4.236(20) 9.96(52) this work 
1.5 4.245 9.968 [8^ 
1.75 4.238(20) 9.973(54) this work 
2.0 4.26(7) 10.0(3) [77) 

6.2 Synthesis . 

Some samples were already available from previous work but polycrystalline buttons 

of the alloys with x = 1.25, 1.5 and 1.75 were made by arc melting stoichiometric 

amounts of the elements on a water cooled Cu health in an argon atmosphere. 

Xray diffraction conArmed the samples were single phase. The Xray patterns were 

indexed on the basis of the tetragonal unit cell and the lattice parameters found 

using a simple refinement program are shown in table 6.1 in conjunction with other 

values taken from the literature. Xray microprobe measurements at ten spots on a 

small piece of the CeRu2Sio.75Ge1.25 alloy showed that there were fluctuations in the 

composition of germanium and silicon from spot to spot. The variation from spot 

to spot is shown in table 6.2. The composition of cerium and ruthenium was close 

to stoichiometric. 

6.3 Magne t i s a t i on D a t a 

When the polycrystalline buttons were crushed many small shiny platelets were 

seen along with other granular fragments. We were able to remove some of the 

small platelets which were taken to be small single crystals with c-axes normal to 

the plane face. These platelets had masses of around Img and after examination 

under a microscope the flattest ones were chosen for magnetisation measurements. 

For each sample magnetisation versus field isotherms were measured at several 

temperatures between 1.7K and 20K. A measurement of magnetisation in a small 
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Percentages by mass 
Ce Ru Si Ge 

21.16 42.05 20.48 16.31 
21.59 41.53 7.20 29.68 
22.09 43.40 17.61 16.91 
19.94 42.03 18.72 19.31 
21.76 42.03 15.77 20.44 
20.53 42.02 17.03 20.41 
20.64 40.87 17.33 21.16 
22.43 43.41 13.93 20.22 
23.31 39.20 12.35 25.14 
20.27 43.65 9.04 27.04 
20.94 41.16 12.72 25.18 

Table 6.2: The results of microprobe of analysis at ten random spots on a piece of 
CeRu2Sio.75Ge1.20- The percentages by mass for the exact composition would be Ce 
20%, Ru 40%, Si 15% and Ge 25%. 

field as a function of temperature was also made for each sample. AH the measure-

ments were made with a vibrating sample magnetometer (VSM). Since the experi-

ments used flat samples we expect that demagnetising effects would be considerable. 

6.3.1 Low field magnetisation 

The magnetisation of a small platelet of each alloy was measured. The platelets 

were aligned with the plane face parallel to the field. This orientation gave a mea-

surement in the c-axis direction. A 100 Oe applied field was used for most of the 

measurements. The data are shown in figures 6.6—6.2. The y-axis of each plot 

shows the magnetisation divided by the apphed field, in units of emu/mol. This 

quantity is referred to as the susceptibility. 

The CeRu2Ge2 sample clearly shows a sharp upturn in the susceptibility at 

around 8K, indicating a ferromagnetic transition, with a slight residual increase at 

lower temperatures, see figure 6.2. In the CeRu2Sio.25Ge1.75 alloy there is a maximum 

in the susceptibifity at around 9K which is followed by a sharp increase where, again, 

the susceptibihty saturates, see figure 6.3. We may take this as evidence of an, 

initially, antiferromagnetic phase which quickly becomes ferromagnetic. Figure 6.3 

also shows the measured susceptibility perpendicular to the c-axis. A 5000 Oe field 

was used for this measurement and the susceptibihty is seen to be very small giving 

confirmation that the magnetic moments lie in the c-direction and that the sample 
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Figure 6.2: Molar susceptibility for CeRugGeg. 
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is well aligned. 

In the other alloys (x = 1.0, 1.25, 1.5) a peak is observed near lOK followed 

by a steady rise at lower temperatures. Ref. [80] reported the susceptibility of 

CeRugSii.oGei.o and CeRu2Sio.25Ge1.75. Their data for CeRugSii.oGei.o is very sim-

ilar to that presented here but for CeRu2Sio.25Ge1.75 their data does not show the 

initial antiferromagnetic transition found here. 

From these measurements it clear that CeRugGeg is a ferromagnet. The x = 1.75 

alloy shows two transitions, and from heat capacity measurements the authors in 

[98] infer that an alloy with x = 1.6 shows the same behaviour. The significance of 

the rising susceptibility at low temperature for the z = 1.0, x = 1.25 and x = 1.5 

alloys is not clear. Additionally, for x = 1.0 and x = 1.25 there is a change in slope 

around 3K. In a recent publication the authors in [99] consider that fluctuations 

in the local concentration of Si and Ge in polycrystaUine samples can give rise to 

spurious effects. In particular the low temperature rise in the susceptibility could 

be due to a ferromagnetic contribution from clusters of Ge. Their work shows 

that single crystals show much sharper heat capacity anomalies and metamagnetic 

steps. A single crystal of CeRu2Sii.oGei.o does not show the low temperature rise 

in susceptibility found here. Microprobe analysis of our samples with r = 1.0 and 

X — 1.25 did show fluctuations in concentration but there is no indication of portions 

of the sample which have excessive concentrations of Ge. 
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There is much speculation about the existence of an unknown low temperature 

phase in these alloys. Heat capacity and resistivity measurements on alloys with 

concentrations up to x = 1.2 show anomalies at ~ 2K [98, 99]. Neutron diffrac-

tion studies have not found a change in magnetic structure except for a very small 

anomaly in the third harmonic of the modulation wavevector. A similar picture has 

emerged from studies on the Cei_arLaa;Ru2Si2 alloys. 

At present it is uncertain at which composition the double transition behaviour 

disappears. CeRu2Sio.25Ge1.75 has an antiferromagnetic transition followed by a 

ferromagnetic transition but the question remains whether the lower composition 

alloys do also. 

The data of figures 6.6—6.3 show the initial transition at Tjv, represented by the 

maximum in the susceptibility, is remarkably composition independent. We would 

expect TiV to move down in temperature as the hybridisation increases but in fact 

Tj\ shows a slight increase with decreasing x in the compositions studied here. The 

ordering temperatures including the ferromagnetic transition in CeRu2Sio.25Ge1.75 

are in good agreement with the data of ref. [99]. 

6.3.2 High field magnetisation 

Magnetisation isotherms were measured for each alloy at several temperatures up 

to high fields. The data is plotted in figures 6.7—6.11 where for the alloys x = 1.5, 

1.75 and 2.0 a correction for the demagnetising factor has been made by estimating 

a value from fitting the initial slope of the lowest temperature data. For the alloys 

X = 1.0 and 1.25 it is not easy to estimate the demagnetising factor because there 

is no clear region of the data which appears to be hmited by the demagnetising 

factor. The average of the values for the other samples was used on the basis that 

the samples were similar sizes and shapes. 

The magnetisation saturates at ~ 2.1^b in all the compositions measured which 

is a little higher than previously reported. If the groundstate were a pure | | ) state 

then we would expect the magnetic moment to be gjf iaJz = = 2.14fiB- The 

data reveals meta-magnetic steps in all but the x = 2.0 alloy, de Haas van Alphen 

measurements have shown the meta-magnetic step in CeRugSig is associated with a 

large change in the character of the 4f electrons and neutron scattering has shown 

that antiferromagnetic correlations which are present below the metamagnetic step 

are not found above. It is thought that the 4f electrons in CeRu2Si2 become more 
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localised above the (pseudo) metamagnetic step. 

In this data the metamagnetic steps are due to a spontaneous change in the 

antiferromagnetic order. In ref. [96] a phase diagram for an x — 0.2 single crystal 

was reported, where the phase diagram was produced from neutron diffraction in an 

apphed field. The zero field phase was found to correspond to a modulated structure 

with q = (0.309,0,0) and two other regimes were found, at different temperatures 

and fields, with mixtures of new incommensurate and commensurate modulated 

structures. Zero field neutron diffraction on x = 1.0 found only one antiferromag-

netic transition and for z — 1.6 there was an antiferromagnetic transition followed 

by a crossover to ferromagnetic ordering [99]. 

To make this magnetisation data more clear the derivative, ( ^ ) , was taken 

for every isotherm of each sample. This technique makes the data much more 

revealing and a novel representation of ^ as a function of field and temperature for 

CeRu2Sii.oGei.o is presented in figure 6.12. This can be compared with the original 

data in figure 6.7 which shows that the lowest temperature isotherm has a kink 

at low field and a metamagnetic-like step near IT. Figure 6.12 shows the kink as 

a sharp step and the other feature as a relatively broad peak. The peak quickly 

separates into two as the temperature increases slightly and the peak at higher field 

moves in a broad arc as the temperature is raised while the original lower field peak 

stays at a roughly constant position but begins to bend to lower fields near Tjv-
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Figure 6.7: Magnetisation in an applied field up to 2T. There are possibly three 
metamagnetic steps in this data. 

1 2 4 



CHAPTER 6. CeRugSiz-^rGe:, alloys 

CeRu2SiQ y^Gej 25 

i 
§ 

c/) 
1) 

& 

1 1.5 2 
^applied (Tesla) 

Figure 6.8: Magnetisation in an applied field up to 2T. There are three meta-
magnetic steps in this data with no evidence of a ferromagnetic phase at the lowest 
temperature. 
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Figure 6.9: Magnetisation for CeRugSio.gGei.g in an applied field up to 2T. 
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Figure 6.10: Magnetisation in an applied field up to 2T. There is just one meta-
magnetic step in this data which corresponds to a jump into the a ferromagnetic 
state. 
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Figure 6.11: Magnetisation isotherms of the ferromagnet CeRu2Ge2. This data 
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roughly follows the scaling law H oc M^, with S ~ 7.5 whereas the Ising model with 
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Figure 6.12: The data of figure 6.7 are plotted here on a three dimensional grid. 
The vertical a x i s is the derivative of the figure 6.7 data. The ridges are where there 
are meta-magnetic steps in the magnetisation and hence separate different regions 
of the phase diagram. 

By taking the centre of the peaks and steps in ^ as the boundary between 

different phases we can plot a rough phase diagram from the magnetisation data. 

For X = 1.0 and x = 1.25 phase diagrams are shown in figure 6.13 and the phase 

diagrams of the x = 1.5 and x = 1.75 alloys are shown in figure 6.14. The ends 

of the lines indicate where it becomes impossible to determine any features from 

the magnetisation and its derivative. It is not possible to determine from the mag-

netisation data exactly what changes take place in these systems as we go through 

the various phase boundaries, however, looking at the diagrams, figs. 6.13(a) and 

6.13(b), we note that the line Ha corresponds to a kink in the magnetisation but 

the hnes Hy and He correspond to metamagnetic steps. The kink at Ha was also 

found in an magnetisation measurement on a poly crystalline alloy with x = 1.2 but 

did not appear in measurements on a piece of a Czochralski grown single crystal 

with X = 1.0 [99]. It is not clear how this kink can be explained by concentration 

fluctuations in polycrystaUine samples but it may be related to this problem. 

We expect that the line He corresponds to the transition into a polarized ferro-

magnetic state since the magnetisation saturates above this. So far there have not 

been any neutron diffraction experiments in an applied field on alloys with these 

compositions. Work on lower Ge compositions and the La substituted alloys show 
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(a) Phase diagram of CeRu2Sii.oGei.o de-
rived from magnetisation data. Several 
phase boundaries are seen. 

(b) Phase diagram of CeRu2Sio.75Ge1.25 
derived from magnetisation data. Phase 
lines are shifted slightly compared to fig-
ure 6.13(a). 

Figure 6.13; Two approximate phase diagrams derived from magnetisation data. 
Three regions can be identified in each and the dividing lines are labeled Ha, Ha and 
He. Figure 6.13(b) shows that the region between H^ and He is squeezed out as x 
increases. 

modulated order in zero field with wavevector Q % (0.309, 0, 0) and it is likely that 

the same occurs in these alloys. This means that the lines Ha and Hb most likely 

divide phases with different types of modulated order. It interesting that the line 

Ha does not continue up to T n implying that it goes to zero field near 6K, approxi-

mately where the low field susceptibility starts to increase. In figure 6.14(a) we see 

that the effect, on the phase diagram, of adding Ge is to squeeze out the region be-

tween Hb and so that the line Hy is the boundary to the polarized ferromagnetic 

state. On increasing the Ge content to x = 1.75 the majori ty of the phase diagram 

is ferromagnetic. Figure 6.14(b) shows a small region bounded by the line Hy which 

must be the only region with antiferromagnetic order. This diagram ties in nicely 

with the low field susceptibility if we consider what happens as we decrease the tem-

perature in zero field - near T n we enter an antiferromagnetic phase then at ~ 6K 

we cross into a new regime. Figure 6.3 shows that Hb bounds an antiferromagnetic 

phase which quickly goes over to a ferromagnetic one at ~ 6K. 
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(b) Phase diagram of CeRu2Sio.25Gei,75 
derived from magnetisation data. 

Figure 6.14: Two approximate phase diagrams derived from magnetisation data. 
Three regions can be identified in each and the dividing lines are labeled H5 and 
He- Figure 6.14(b) shows that the region between and He is squeezed out as x 
increases. 
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6.4 N e u t r o n sca t te r ing m e a s u r e m e n t s . 

Neutron scattering measurements were carried out on the IN6 time of flight spec-

trometer at ILL. France, with an incident energy of S. lmeV. Crushed polycrys-

talline alloys x = 1.25, 1.5 and 1.75 were studied in detail over the temperature 

range 150 - 1.6K and the response in the x — 1.0 alloy for temperatures T < lOK 

was closely examined also. The raw time of flight spectra were corrected for sample 

absorbtion, self shielding and background scattering and converted to energy trans-

fer. The spectra were normalised to the scattering from a vanadium plate, which 

also corrected for difl'erent detector efficiencies. 

The data from the bank of detectors on IN6 were grouped so that 19 effective 

detectors were analysed with elastic Q's from 0.264-2.046 A~^, at roughly O.lA"^ 

intervals. The elastic scattering from the vanadium plate was fitted for each detector 

group. A Gaussian hneshape plus a small Lorentzian was used to represent the 

resolution function of the instrument and hence the elastic scattering. The widths 

of the Gaussian and Lorentzian and the ratio of their areas for each detector group 

were used as a constant par ameters when fitting the elastic line in all the other data. 

Detector groups 11, 14, and 15, at Q = 1.27, 1.57, 1.68 respectively, con-

tained Bragg peaks. The positions of these peaks were consistent with the (103), 

(112) and (004) nuclear Bragg reflections of the tetragonal structure. 

Dakin et al [62, 77] studied alloys with concentrations up to x = 1.0 previ-

ously. They found a Lorentzian quasielastic line in all the alloys. The linewidth of 

the quasielastic scattering was modulated with wavevector transfer indicating the 

presence of intersite interactions. They also saw an inelastic excitation in one low 

temperature measurement. This excitation was unexpected because these alloys are 

Ising-like and no spinwave excitations are allowed in this case. The experiments 

carried out here have investigated the nature of this excitation in more detail, in 

order to determine how it changes with composition and to look at its energy and 

wavevector dependence. 

For temperatures, T, such that 10K<T<150K we find quasielastic scattering in 

aU the alloys. Each of the spectra were fitted to the sum of the resolution function 

described above, representing the elastic scattering and a Lorentzian, convoluted 

with the resolution function. The Lorentzian was also multiplied by the detailed 

balance factor. This formalism gave excellent fits for the first 12 detector groups 

but became more unreliable for the larger Q groups, because the parameters for the 
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resolution function fitted from the vanadium data appeared to be too large. It is 

worth noting that all the data have been treated as constant Q data when in fact it 

is constant scattering angle, data. If the scattering varies smoothly with Q this 

wiU not introduce significant errors. 

In section 1.9 an expression for the generalised susceptibility was given. The 

imaginary part of the generalised susceptibility is what we measure with neutron 

scattering and we see that equation (1.36) in section 1.9 describes a quasielastic 

Lorentzian which is what obtains here. The hnewidth was largest in the alloys closest 

to CeRugSig and decreases with an increase in Ge content x. This is consistent with 

the hybridisation decreasing with increasing x. 

In aU the alloys the half width, F, of the quasielastic Lorentzian was both tem-

perature and wavevector dependent. This was previously observed in alloys at the 

other end of the composition range [97]. Figure 6.15 shows an example of the fits 

for the first six detector groups with data for CeRu2Sio.75Ge1.25. Labels in the figure 

indicate the average elastic wavevector and average scattering angle, 2^, for each 

group. 

It was possible to fit the wavevector dependence by assuming a form for the 

wavevector dependent linewidth as 

r (Q) = r o [ i - % o j r ( Q ) ] , (6.1) 

with J ( ( 5 ) = ^ j7'„exp(zQ.r„), (6.2) 

as defined in section 1.9, where n labels near neighbours in the lattice at a distance 

r„ corresponding to exchange parameter Jn- Equation (6.2) needs to be spherically 

averaged because we are dealing with a poly crystalline sample and this leads to, 

so that r ( Q ) is now, 

siii(Qrn) 
r ( Q ) = Po 1 — ^ X0v7n- ( 6 . 4 ) 

We may fit the form of P(Q) using F q and as parameters. Within RPA, as 

shown in section 1.9, the product P(Q)%(Q) = FqXo is independent of Q. 

'The value of x^n must be fitted as one parameter because since only the value of the product 
will be unique and not the individual values of % and . 
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Figure 6.15: Neutron scattering in CeRu2Sio.75Ge1.25 in different detector groups. 
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line shows the elastic line used as part of the fit. 
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Figure 6.16: Quasielastic linewidth in CeRu2Sio.75Ge1.25. The lines show fits to 
equation (6.4) using three parameters. Only the data up to Q = I.OA"^ was used 
in the fit. 

The data was fitted up to Q % lA~^ corresponding to the edge of the Brillouin 

zone. Two parameters and X0'J2 were used. It was possible to include many 

more parameters, XoJm to fit a line through every data point but that was not 

considered sensible since there was no unique combination. Because only XoJi and 

X0J2 were used there is considerable uncertainty in the value of J n but this 

cannot be avoided. An example of some of the fits are given in figure 6.16, which 

shows the variation of the quasielastic linewidth in CeRu2Sio.75Ge1.25 as a function 

of wavevector and temperature. The lines are fits to equation (6.4). The fits give 
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values of F q at different temperatures and the values of and XoJ2- If, from the 

original fits of the Lorentzian quasielastic Hne, we plot the value of r ( Q ) and x{Q) 

as a product this should be independent of Q. This has been done in figure 6.19. 

Where x{Q) was given by the area of the fitted Lorentzian. We can find the value 

of FoXo and since Fq has been found separately we can also obtain Xo-

6.4.1 Single ion behaviour 
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Figure 6.17; Behaviour of single ion linewidth as a function of temperature. The 
straight lines are fits using equation (6.6). The T = OK intercept gives a measure of 
the Kondo energy. 

The single ion behaviour is revealed by the parameters F q and xo- The single ion 

linewidth for x = 1.25, x = 1.5, and x — 1.75 as a function of temperature is shown 

in figure 6.17. Kondo lattice compounds are often found to have a linewidth which 

goes as [32] 

FocxSr?. (6.5) 

The alloys studied by Dakin et al were found to have a temperature dependence of 

the form 

1 
Fo(r ) = Jcoth (6.6) 

with I as the T = 0 intercept and G as the gradient. It was found that equation (6.6) 

gave good fits to the data for x = 1.75 and x = 1.5, however, a simple straight line 
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fit was superior for the x = 1.25 alloy. In order to compare this work with that of 

ref. [77] the form of equation (6.6) has been used for all the data. The fits are shown 

as lines in figure 6.17. The figure shows the intercept decreasing with an increase in 

Ge content. 

The Kondo temperature, T k may be taken to be the zero temperature intercept 

of To = Dakin et al [77, 97] found the Kondo temperature to scale reasonably 

well with the change in coupling parameter p X / as derived from the high tempera-

ture slope of To vs. T. For compositions between x = 1.0 and x = 2.0 this scaling 

does not appear to be followed, the Kondo temperature measured by the quasielastic 

linewidth is only weakly dependent on the concentration of Ge. Figure 6.18 shows 

how the Kondo temperature changes across the series. 
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Figure 6.18; The Kondo temperature as a function of Ge content in the alloy. The 
Kondo temperature does not change much beyond the composition x = 1.0. 

Figure 6.19 shows the product %(Q)r(Q) as a function of Q for CeRu2Sio.75Ge1.25, 

the product does appear to be independent of Q as indicated by the lines. The single 

ion susceptibility at a given temperature is found by dividing the value of XoFo by 

To- The single ion susceptibility closely follows the Curie law for the three alloys 

studied, the data is presented in figure 6.20. The same Curie law behaviour was 

observed at the lower Ge composition range [77]. 
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Figure 6.19: Variation of x{Q)^{Q) in CeRu2Sio.75Ge1.25. The value is independent 
of Q at any temperature. 
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6.4.2 Intersite interactions. 

In the preceeding sections the analysis of the neutron scattering data has yielded 

information on single site properties but we can also get information on intersite 

properties. In particular we can determine the uniform susceptibility, that is x{Q = 

0), and also the Q = 0 hnewidth. We expect that these quantities should behave 

like those of typical magnets. 

U n i f o r m Suscep t ib i l i ty 

The uniform susceptibility, x{Q = 0), should follow the susceptibility measured in, 

for example, a VSM. For these alloys, which order magnetically, we would expect 

x{Q = 0) to follow the Curie-Weiss law. xiQ) is defined as 

( ' " I 

when 0 = 0 . (6.8) 
1 ~ YlnXoJn 

where the value XaJn is extracted by summing the parameters used in equa-

tion (6.4). 

In practice this gave reasonable fits to the data but the Curie temperatures were 

very small, typically between —IK and zero. The Curie temperatures should be 

~ — lOK. This is most hkely due to the considerable error in YlnXoJfi- However 

we can see from equation (6.8) that the ordering temperature is determined by the 

condition that 1 — XoJ{Qma.x) = 0 where Qmax is the wavevector for which J is 

a maximum. These alloys order at an incommensurate value of Q so the uniform 

susceptibility will not necessarily diverge at the correct Tc-

Linewidth r ( Q = 0). 

The Q = 0 linewidth was found to be linear with temperature. Figure 6.21 shows 

the measured behaviour in the x = 1.25, 1.5 and 1.75 alloys. The intercept for the 

X = 1.75 and 1.5 alloys is not zero. There will be some uncertainty in the values 

of r ( 0 ) because of the ambiguity of Y^„Xo^7n- As for xiQ) we are probing the 

linewidth at Q = 0 which is not at the ordering wavevector, this might make r ( Q ) 

intercept at a non zero temperature. 
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6.4.3 Low Temperature response, 

Dakin et al observed an inelastic response in the x = 1.0 alloy for one measurement 

below ~ 3K. The Ising nature of these systems means t ha t there should be no 

transverse component to each magnetic spin and hence there can be no transverse 

spin-waves. The inelastic peak observed in the neutron cross-section must be due to 

a longitudinal spin fluctuation. In the alloys studied here only the x = 1.0 and 1.25 

alloys show this excitation, and only at temperatures below approximately 2K. 

All the alloys showed a large increase in the intensity of the elastic scattering 

for detector group number three below their ordering temperatures . The average 

wavevector for group number three is Q = 0.469A~^. We can assume that this ad-

ditional elastic intensity is due to Bragg scattering from the sinusoidally modulated 

magnetic structure. Work on other alloys has shown that the ordering wavevector 

is Q % 0.3 and therefore we would expect that the same should be t rue here. It is 

not clear why there is a difference. 

In the X = 1.5 and x — 1.75 alloys the intensity of the elastic scattering in 

detector group three showed a decrease at lower temperatures indicating that the 

magnetic structure was changing. None of the other detector groups indicated any 

increase. This suggests that the modulation wavevector was not changing to rep-

resent another antiferromagnetic state but was changing to Q = 0. This is in 

agreement with our magnetisation data in which there is an apparent crossover to 

ferromagnetism at lower temperatures. 

The following sections outlines a brief summary of the neut ron scattering results 

for temperatures below the ordering temperature of each alloy. 

CeRu2Sio.25Gei,75 

For CeRugSio.zsGei 75 figure 6.22 shows the quasielastic scattering collapsing below 

Tc- At the lowest temperatures the scattering was well described by the elastic 

line with no other peaks present. This is consistent with t h e low tempera ture phase 

of the Ising system, for which there should be no dynamics and hence no inelastic 

scattering. The width and area of the quasielastic peak collapse below the ordering 

temperature. 
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Figure 6.22; Temperature dependence of the quasielastic line for x = 1.75 alloy. The 
intensity collapses below Tg. Solid Hnes are fits to a Lorentzian lineshape 
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CeRu2Sio sGei.s 

In the lowest temperature regime for CeRu2Sio.5Gei,5 the data can be fitted ac-

ceptably well with a single elastic line, in a similar- manner to the behaviour of 

CeRu2Sio.25Ge1.75. This again suggests an Ising groundstate with no dynamics. 

However, if we refer forward to figure 6.24 which shows grouped data, covering a 

large angle of the available detector, there is some evidence of inelastic scattering. 

This scattering was too weak to be fitted in any individual detector group. In the 

next paragraph CeRu2Sio.75Ge1.25 is discussed, this alloy does show inelastic scat-

tering therefore the concentration range between x = 1.25 and .-c = 1.5 is the cutoff 

for the novel low temperature behaviour. 

CeR,U2Sio TsGei 25 

In C e R u 2 S i o . 7 5 G e 1 . 2 5 an inelastic peak was observed below ~ 2K. The peak was 

centered around O.SmeV energy transfer with a width of ~ 0.26 meV. 

An attempt was made to fit the data by including a symmetrised Lorentzian 

Hneshape to account for scattering in energy loss and energy gain. The fits showed 

that the position, width and intensity of the excitation was only weakly wavevec-

tor dependent. Contour plots of the scattering over the whole wavevector transfer 

energy transfer grid did not show any clear dispersion. This is a result of the spher-

ical average from the polycrystaUine sample: we have measured the average over 

all possible crystallite orientations which conceals the t rue behaviour of a wavevec-

tor dependent excitation. However the observation of a well defined peak in this 

circumstance must mean that any dispersion is weak. 

The excitation is extremely sensitive to temperature. At 3K there is no sign of 

any inelastic scattering but at 2.IK the excitation becomes visible. At 1.9K and 

1.7K the excitation is clearly present. 

CeRu2Si i oGrCi.o 

A clear inelastic peak was observed in CeRu2Sii.oGei.o also. Measurements were 

made at several temperatures and at 2.5K the peak is just visible. At slightly 

lower temperatures it becomes more prominent. The evolution of the peak with 

temperature is shown in figure 6.23. 
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Figure 6.23; Neutron spectrum for the x = 1.0 alloy as a function of temperature, 
showing the collapse of the inelastic excitation. This figure shows grouped data 
averaged from several detector groups. 
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At the lowest temperature the peak is well defined, it moves closer to the elastic 

line as the temperature increases until it merges into a quasielastic response. As for 

CeRu2Sio.75Ge1.25 attempts to fit this peak showed it to be independent of wavevector 

which is taken to be a sign that the polycrystalline sample has averaged out any 

information. Recent work [100] using a single crystal sample of CeRu2Sii.oGei.o 

has shown that this excitation is indeed wavevector dependent. The excitation has 

different intensity for different wavevectors in the basal plane and its position shows 

dispersion, with a wavevector dependent width also. The excitation was measured 

at several points in the Q=(1,1,0) direction and along the (1,0,0) direction also. The 

peak was less intense in the (1,0,0) direction [100]. 

6.4.4 Comparison and model 

Figure 6.24 shows a comparison between three of the alloys where the data has been 

grouped to improve the statistics. This figure shows clearly that the excitation is 

most prominent for the alloy with the lowest Ge concentration. The temperature 

scale for the excitation to appear is ~ 2K. We also recall tha t there are anomalies in 

the heat capacity and resistivity at ~ 2K for this alloy with which have been used 

to question the existence of an unknown low temperature phase [99]. 

The occurrence of the excitation in some of these alloys is unexpected. The 

temperature at which the excitation occurs is well below the magnetic ordering 

temperature, therefore, we anticipate the presence of an exchange field which should 

spHt the crystal field doublet ground state. As remarked above the excitation cannot 

be a spin wave, because of the Ising nature of the ground state. Neutrons cannot 

induce transitions between the split ground state since the magnetic dipole selection 

rules do not allow transitions between the |±5/2) states. Hence this splitting wiU not 

produce an observable excitation. This corresponds to the situation for CeRu2Ge2 

with its ferromagnetic groundstate. 

To shed more hght on this excitation we need to consider the possibility that the 

two components of the ground state are hybridised together, by the Kondo effect, 

with the conduction electrons. This conjecture is supported by mean field solutions 

to the slave-boson treatment of the Anderson Model [101]. For the present purpose 

we can imagine that the Kondo effect is represented by an off diagonal matrix 

element between the |+5/2) and |—5/2) states. This results in two basis states 

which have singlet character. 
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In CeRu2Si2 for example the situation would be two states 

^ a = ^ ( | + 5 / 2 ) — | — 5 / 2 ) ) ( 6 . 9 ) 

= ( 1 + 5 / 2 ) + 1 - 5 / 2 ) ) ( 6 . 1 0 ) 

which are symmetric and antisymmetric combinations of |±5 /2 ) separated by an 

energy A, which is a measure of the strength of the off diagonal matrix element. 

We now consider the effects of an applied field (or internal field due to magnetic 

order). A magnetic field, 5 , gives rise to diagonal matrix elements in the |±5/2) 

basis, which are ±o/2gnBB. This introduces a Zeeman splitting, and changes the 

degree of hybridisation between the |±5/2) states.The new basis states are 

l^i) = cos 6\il)s) + sin 0|^a) (6.11) 

1^2) = cos ^l^a) — sin ^l^g) (6.12) 

where tan26' = ag '^gB/A, and a = (^a| 

In the limit where a g n s B )§> A, that is the appUed field or exchange field is 

large compared to the Kondo effect, the wavefunctions revert to the |±5 /2) basis. 

This would be the case for CeRu2Ge2. 

Within this simple model it is straight forward to calculate the neutron scattering 

cross-section using RPA as in section 1.9. The result is 

oc cos (2g)tanh ( ) x r r 
|_(w-E)2 + n (w + E)2 + r 2 j 

r ( 6 . 1 3 ) 

where e is the exchange spitting of the two states. The main features of this equation 

are 

i. the first term on the right hand side represents inelastic excitations centred 

at ±£, the exchange splitting of the two hybridised states. The weight of this 

term is a maximum for zero exchange field and its temperature dependence 

has the normal form expected for a crystal field excitation: tanh(£/2A:sT). 

ii. the second term on the right is a quasielastic response (as found in CeRu2Ge2). 

This term is a maximum when sin 20 = 1, corresponding to A = 0 or the limit 

agfisB <C A. The temperature dependence in this case is oc sech.^{e/2kBT). 
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This function falls rapidly to zero at low temperature, and gives the correct 

qualitative behaviour for the inelastic response in CeRu2Ge2 and CeRu2Sio.25Ge1.75 

This simple mean field approach can be extended to the case of the saturation 

magnetisation and the ordering temperature, as a function of the relative strength 

of the Kondo effect to the exchange field. The predictions are in good qualitative 

agreement with the experimental results for CeRugSig.rGea; alloys. 

The identification of this mode as a new type of excitation in a Kondo lattice 

depends crucially on the Ising nature of the ground state. 

6.5 M u o n spin re laxat ion m e a s u r e m e n t s . 

Muon spin relaxation measurements were carried out on the MuSR spectrometer 

at ISIS. A hehum flow cryostat was used to reach temperatures down to ~ 1.5K. 

Crushed polycrystaUine samples were mounted on an aluminium plate masked with 

silver. The MuSR spectrometer was used in longitudinal mode so that longitudinal 

fields could be appUed. Samples with x = 1.0, 1.5, 1.75 and 2.0 were measured in 

the temperature range 1.5K - 20K. Aspects of /uSR experiments are discussed in 

chapter 3. 

The aim of these experiments was to examine the behaviour of the low temper-

ature phases of these alloys. Our magnetisation measurements suggest the presence 

of two low temperature phases. The results of these experiments help us to study 

this more closely. 

The general behaviour for each of the alloys was similar. Above the ordering 

temperature each alloy showed a weak Lorentzian depolarisation of the muon asym-

metry over long times. The total initial asymmetry showed a sharp decrease from 

the very high value of ~ 0.35 to ~ 0.24 over the first O.l^s. This initial value is too 

large, a value of 0.25 is more common for the MuSR spectrometer, and it it likely 

to be due to some noise at the start of the muon pulse. As a result of this the first 

O.l/js have been ignored in all the data. 

AH the alloys showed similar features in that above the ordering temperature we 

see an exponential decay of the polarisation with a damping rate that increases on 

approaching the magnetic ordering temperature. The initial asymmetry associated 

with the exponential component dropped sharply at the ordering temperature. Be-
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low the ordering temperature the polarisation showed a spontaneously precessing 

component indicating a coherent internal field. This is unusual because the ground-

state is sinusoidally modulated which we would expect to produce a broad field 

distribution at the muon site. 

Some previous attempts have been made to locate the muon stopping site in the 

I4/MMM tetragonal structure. A /iSR study on URu2Si2 [102], which has the same 

structure, found it difficult to determine unambiguously any specific stopping site. 

Comparisons of the measured and calculated depolarisation due to dipolar fields in 

CeRu2Si2 [85] concluded that the muon site was (1/2,1/2,0). 

The following sections describe the data for each of the alloys and a comparison 

is made at the end. 

6.5.1 CeRii2G62. 

At temperatures above Tc the decay of the asymmetry can be fitted with a Lorentzian 

depolarisation. The damping rate increases to a peak value at 8K, which gives a 

rough measure of Tc, in agreement with our magnetisation data. The approach to 

Tc is clearly indicated by the critical slowing down of magnetic fluctuations which 

enhances the depolarisation of the muons and CeRu2Ge2 shows typical ferromag-

netic behaviour in this respect. The initial asymmetry drops rapidly at 8K also 

indicating the magnetic transition. Below the ordering temperature the decay of 

the asymmetry is more comphcated. A clearly defined oscillation is observed, see 

figure 6.25, which is damped out leaving an almost flat level. 

The approach to Tc from above is indicated by the damping rate of the single 

exponential component, shown in figure 6.26. The hne on figure 6.26 is a fit to 

A(r) = CO 

where CQ = 0.05, 7 = —0.69 and Tc = 7.8K. The fit indicates critical behaviour in 

the damping rate parameter A. 

Below Tc the data has been fitted to the form 

P{t) = Qi cos{27Tut 4- -f- a2e~^^* + bck , (6.15) 

with ai and 02 asymmetries, Ai and Ag damping rates, u the frequency of the oscil-

lation (in MHz) with a phase shift (f) and hck is a background. 
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Figure 6.26; Damping rate of simple exponential term in CeRu2Ge2. 
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Figure 6.27: Frequency of oscillating part of asymmetry for CeRugGeg. 

Equation (6.15) gave good fits, some of which are indicated as lines in figure 6.25. 

The frequency of the oscillation as a function of temperature is plotted in figure 6.27. 

The frequency of the oscillation can be converted into an estimate of the average 

field at the muon site using equation (3.2). This gives a maximum internal field of 

~ 250G at the muon site. The frequency decreases smoothly as the temperature is 

increased consistent with a reduction in the ordered moment. 
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Figure 6.28: Increase in damping of muon polarisation near 9K in CeRu2Sio.25Ge1.75. 
A partial period of one oscillation is visible at 8K. The lines are fits, see text. 

6 . 5 . 2 C e R u 2 S i o . 2 5 G e 1 . 7 5 a l l o y 

Measurements on this alloy show a Lorentzian depolarisation of muons at higher 

temperatures with a highly damped spontaneous oscillation appearing below the 

ordering temperatme. A general overview of the data is given in figure 6.28 which 

shows the change in the depolarisation on approaching 8K. The exponential damping 

rate increases to a maximum at 8K although figure 6.28 shows that at 9K the 

damping rate is changing dramatically. 

The damping rate in the paramagnetic phase shows a divergence as was found in 

CeRu2Ge2 but it did not fit a powerlaw behaviour as well as the data for CeRugGeg. 

The damping rate is shown in figure 6.29 

At 9K and below equation (6.15) was used to fit the data. At 9K the fit re-

quired two exponential components which corresponds to equation (6.15) with zero 

frequency and phase shift. For temperatures below this the data could be fitted 

with the full equation. Since we are entering a modulated antiferromagnetic state 

in CeRu2Sio.25Ge1.75 below the ordering temperature we would expect the muon to 
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Figure 6.29: Increase in damping rate of muon polarisation n e a r 9K in 
CeRugSio g^Gei and CeRu^Sio ^Ge^ 5. 

experience a distribution of fields. Given that CeRugGeg shows clear oscillations 

the fact that the oscillation in this composition is not well defined can be taken as 

evidence of a wide field distribution at the muon site. The frequency found from 

fitting equation (6.15) must correspond to an average value. 

Figure 6.30 shows the polarisation at short times for the lower temperatures. 

The oscillation reaches a peak frequency before dropping close to zero and then 

increasing once more. In order to get equation (6.15) to fit some of these data 

it was necessary to add an extra exponential component with an extremely large 

damping rate, (A % 30//s~^), to fit the decay of the polarisation for times < O.l/zs. 

This extra component improved the fit outside that range. The variation of the 

fitted frequency parameter for CeRugSio.zsGei,75 is shown in figure 6.31. The very 

large error bar on the point at 6.7K indicates the the oscillation was not really 

resolved in the fitting procedure. This indicates severe damping of the spontaneous 

precession of the muons, which is likely to be due to highly dynamic fluctuations 

on the phase boundary between the ferro and antiferromagnetic states. Comparison 

with figure 6.14(b) in section 6.3.2 shows a phase boundary at 6K consistent with 

the sharp change in the frequency of the oscillation found here. It is not clear 

why the frequency should drop to zero at the transition between the ferro and 

antiferromagnetic phases. 
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Figure 6.31: Frequency of oscillating part of asymmetry in CeRu2Sio.25Ge1.75. 

6 . 5 . 3 C e R u 2 S i o . 5 G e i . 5 a l l o y 

CeRu2Sio.5Gei.5 shows many features in common with CeRu2Sio.25Ge1.75. A single 

exponential is sufficient to fit the data for temperatures above Tc but below the 

ordering temperature equation (6.15) was needed to describe the data. The damping 

rate in the paramagnetic phase showed similar behaviour to C e R u 2 S i o . 2 5 G e 1 . 7 5 , see 

figure 6.29. 

The damping rate of the single exponential showed an increase towards lOK and 

the asymmetry of this component dropped rapidly at lOK indicating magnetic order. 

At lower temperatures there was a spontaneous oscillation in the polarisation. As in 

CeRu2Sio .25Ge1.75 this o s c i l l a t i o n was highly damped but it was possible to perform 

fits to equation (6.15) to get an average value of the frequency. The spontaneous 

o s c i l l a t i o n of a component of the polarisation increased in frequency initially before 

dropping rapidly to a value near zero at roughly 6K before increasing once more, in 

the same manor as figure 6.31. 

Our magnetisation measurements presented earlier (see section 6.3) found fea-

tures in the magnetisation and susceptibility which suggested that ferromagnetism 

occurs at some temperature below the Neel temperature of this alloy. Figure 6.32 

shows the variation of the frequency of the oscillation in the muon polarisation. We 

can compare this with the behaviour for CeRu2Sio.25Ge1.75 and find that they are 

very similar. 
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Figure 6.32: Frequency of oscillating part of polarisation in CeRugSio.sGei s. This 
figure is very similar to figure 6.31. 

The oscillations in the polarisation are highly damped in CeRu2Sio.5Gei.5, even 

at the lowest temperatures measured. There are no convincing oscillations like those 

in CeRugGeg or CeRu2Sio.25Ge1.75 so it is difficult to say tha t ferromagnetism does 

develop. Figure 6.32 show the fitted frequency. This figure does indicate that there 

is some significant change in the fields acting on the muons. Since the muons are a 

microscopic probe it does suggest that there are two transitions. 

The data presented in the next section shows that in CeRu2Sii.oGei.o the muons 

do not experience the two transition behaviour at the microscopic level. 

It is not clear whether the lowest temperature phase is ferromagnetic in this alloy. 

The low field susceptibility data did not show as sharp a rise as for CeRugGe^ and 

CeRu2Sio.25Ge1.75at the ferromagnetic transition temperature, but this data seems 

to be very similar to that of CeRu2Sio.25Ge1.75 which is a ferromagnet at the lowest 

temperatures. 

6 . 5 . 4 C e R u 2 S i i . o G e i . o a l l o y 

For temperatures above Tq the muons show an exponential depolarisation as do all 

the other alloys. At 21K a 200G LF field reduces the damping rate but higher fields 

have no additional effect. At lOK there is a rapid loss of initial asymmetry and a 

more complex depolarisation appears. The damping rate of the exponential is shown 
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Figure 6.33: Damping rate of exponential component in CeRugSii.oGei.o 

in figure 6.33. It does not s h o w a clear divergence at the ordering temperature and 

the points below Tc correspond to the damping rate of the second component in 

equation (6.15). 

As with the other alloys the form of equation (6.15) was used to fit the data below 

the ordering temperature. The polarisation indicated a heavily overdamped oscilla-

tion. As with CeRu2Sio.23Ge1.T5 and CeRugSio.gGei.g the oscillation results because 

the muons sit in the magnetic field due to antiferromagnetically ordered moments, 

which cause the muons to precess. The heavily damped oscillation demonstrates a 

broad field distribution. The frequency found from fitting equation (6.15) is plotted 

as a function of temperature in figure 6.34. 

Figure 6.34 shows an increase in frequency up to a roughly constant value of 

~ 0.27, there is no indication in this figure of a drop in the frequency after the 

initial increase. This shows evidence that there is only one phase transition. It also 

suggests that CeRu2Sio.5Gei.5 does exhibit two transitions. 

At the lowest temperature the modulated magnetic s t ructure should begin to 

"square up" to remove entropy. The data for CeRu2Sii,oGei.o does not show any 

features of this. The lowest temperature reached was 1.5K and the signal from the 

muons is almost at background level so it is difficult to see any effects associated 

with the development of the inelastic excitation in this alloy. 
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Figure 6.34: Oscillation frequency in CeRugSii.oGei.o-

6.6 S u m m a r y and Fu r the r work 

The CeRu2Si2_arGea; family of alloys are interesting and challenging to study because 

they exhibit a wide variety of properties. CeRu2Si2 is dominated by the Kondo effect 

and is a heavy fermion, CeRu2Ge2 on the other hand is dominated by the RKKY 

interaction and is a normal ferromagnet. In the intermediate alloys the competition 

between the two effects produces novel behaviour. Any expansion of the unit c e l l of 

CeRugSig reduces the hybridisation between 4f and conduction electrons and results 

in magnetic ordering of reduced moments at low temperatures. A contraction of the 

unit cell volume of CeRu2Ge2 induces an additional antiferromagnetic state which 

is stable at a higher temperature than the ferromagnetism. AU the alloys have an 

Ising like groundstate due to the action of the crystal field on individual moments. 

The magnetisation measurements presented in this chapter have confirmed that 

for alloys with Ge content of a; = 1.5 or above have a ferromagnetic groundstate 

at the lowest temperatures measured. The antiferromagnetic state, a few degrees 

Kelvin higher in temperature, is unstable in a magnetic field and many metamag-

netic steps are seen in data measured in different field strengths. The positions of 

the various features in the magnetisation data were use to mark phase boundaries 

on field temperature phase diagrams. A neutron diffraction study in different ap-

phed fields would give more detailed information on the particulars of the various 

antiferromagnetic phases. 

1 5 9 



CHAPTER 6. CeRuzSig-^Ge^ alloys 

Neutron scattering has found that there is quasielastic scattering in all of these 

alloys above the ordering temperature. Using a RPA approach the data has be 

fitted and analysed. The analysis has shown that wavevector dependent width of 

the quasielastic scattering and the derived zero wavevector susceptibility conform 

to normal behaviour for materials which order magnetically. 

The single ion linewidth does not follow a T^/^ form, which is common for mate-

rials where the Kondo effect is at work. It is linear at high temperatures with a low 

temperature intercept, as for equation (6.6). The Kondo temperature for CeRiigSiz 

is of the order of 22K and it has been shown to decrease with an increase in Ge 

doping. From the analysis of the quasielastic linewidth we have shown that the 

Kondo temperature is small, and does not change appreciably in the alloys with 

compositions x = 1.25,a; = 1.5 and x = 1.75. 

The neutron scattering experiments have also revealed that an inelastic excita-

tion occurs in some of these aUoys. CeRugSii.oGei.o was found to have the most 

intense peak and in CeRuzSio.gGei.g the excitation disappeared. This excitation 

cannot correspond to a spinwave mode since the groundstate in all the alloys is 

Ising like. A simple mean field model explains various features of this excitation. It 

disappears when the exchange field is larger than the effects of the Kondo screening, 

as in CeRu2Ge2and CeRu2Sio.20Ge1.75. This novel excitation warrants more detailed 

investigation and a neutron scattering experiment on CeRu2Sii.oGei.o has recently 

been performed. The dependence of the excitation on the composition of the alloys 

reflects the underlying role of hybridisation between 4f and conduction electrons in 

its formation. It would be interesting to find out more about the formation of the 

state which produces this excitation. There are other anomalies which occur in the 

resistivity [93] and heat capacity [98] at roughly the same temperature and hence 

the suggestion is that there is a new novel low temperature phase in some of these 

alloys. 
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Chapter 7 

Summary and Conclusions 

This thesis contains the results of experimental work on CePdSb, CePtSb and alloys 

from the CeRii2Si2-a;Gea; series. A brief summary of the work on each of these 

materials is given here. 

7.1 S u m m a r y of C e P d S b e x p e r i m e n t s 

The most striking feature of this ferromagnetic compound is the lack of a co-

operative anomaly in the heat capacity at the ordering temperature. This work 

has at tempted to gain some insight into this phenomenon. The main results and 

conclusions are: 

• The crystal held, determined from inelastic neutron scattering, produces an 

X-Y groundstate with cerium moments confined to the basal plane. 

• Magnetisation measurements on small polycrystaUine pieces of CePdSb show 

that the compoud is clearly ferromagnetic with a Curie temperature of ~ 

17K. Similar measurements on a sample cut from a single crystal also confirm 

this. The spontaneous magnetisation extracted f rom Arrot plots shows an 

anomalous temperature dependence. 

• Neutron diffraction measurements confirmed the simple ferromagnetic struc-

ture. The temperature dependence of the spontaneous moment derived from 

the magnetic Bragg peaks was in agreement with the magnetisation measure-

ments. 
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• Inelastic neutron scattering on CePdSb showed quasi-elastic scattering above 

the Curie temperature, as expected for an exchange coupled paramagnet. This 

is strong evidence that CePdSb is not a Kondo lattice compound. Spinwave 

excitations were only observed below lOK. 

• Small angle neutron scattering produced some interesting results. Below the 

ordering temperature the scattering developed into a diagonal cross pattern 

in the a*-c' plane. The highly anisotropic pattern was difficult to analyse but 

the correlation length in the basal plane, derived from fitting the data to a 

squared Lorentzian profile, appears to diverge at around 5K. Above 10 - 15K 

fits were much poorer and so the analysis produced confusing results. 

• Muon spin relaxation measurements showed a considerable loss of asymme-

try at the ordering temperature but the muons were apparently not severely 

damped until a much lower temperature. This is surprising since a ferromagnet 

w i t h a l ^ g moment should produce strong damping of the muon polarisation. 

When CePdSb was first discoverd it was thought that it might be a ferromagnetic 

Kondo lattice compound, this does not appear to be the case since there are no 

indications of Kondo behaviour in any of this work. The strange behaviour of 

CePdSb is stiU not well understood. Further investigation of high quality single 

crystals using a range of experimental techniques will be very worthwhile. 

7.2 S u m m a r y of C e P t S b e x p e r i m e n t s 

CePtSb, like CePdSb, is a ferromagnet with a Curie temperature of 5K. This com-

pound has the same structure as CePdSb and similar lattice parameters but it 

behaves like an ordinary local moment ferromagnet. CePtSb has been investigated 

here to provide a standard against which the unusual properties of CePdSb can be 

compared. The main results of the experiments are listed below. 

• Magnetisation work shows the Curie temperature of CePtSb to be 5K. Arrot 

plots of the data do not show the same anomalies found in CePdSb. 

• Neutron scattering found that spinwave excitations can be seen just below the 

ordering temperature, in contrast to CePdSb. 
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CePtSb appears to be a normal ferromagnet. Further work on this compound would 

be useful, in particular an interesting comparison could be made if small angle 

neutron scattering data was available for CePtSb. 

7.3 S u m a r y of work on CeRii2Si2_^Ge( alloys 

The CeRugSig-rGe^ alloys show a range of properties across the series. The alloy 

with the composition x = 1.0 is one of the most interesting since inelastic neutron 

scattering shows it has an anomalous longitudinal excitation at low temperatures. 

A number of alloys from the Ge rich end of the series were investigated with a view 

to discovering more details of the changes which take place across the series. The 

main experimental results are l i s t e d below. 

• Magnetisation measurements on a l l o y s CeRu2Sio.75Ge1.25 and CeRu2Sio.5Gei.5 

showed several metamagnetic features. In CeRu2Sio.25Ge1.75 there was only 

one apparent feature, in zero field this alloy orders antiferromagneticaUy at 

lOK then becomes ferromagnetic at ~ 6K. Phase diagrams have been derived 

for aU three alloys.. 

• In inelastic neutron scattering measurements all the alloys showed quasielas-

tic scattering at higher temperatures, with a Lorentzian Hneshape. The low 

temperature intercept of the linewidth was used as an estimate of the Kondo 

temperature. This was around 2K for all the alloys studied. 

• In CeRu2Sii.oGei.o and CeRu2Sio.75Ge1.25 an inelastic excitation developed be-

low ~ 2K. The excitation was composition dependent because it was not 

observed in the alloys with higher Ge content. 

• A simple mean field model can account for the qualitative behaviour of this 

series of alloys. The action of an internal field combined with the effects 

of Kondo mixing of the two components of the Ising doublet groundstate is 

believed to be a possible cause of the excitation in some a l l o y s . 

Single crystals were not available for the studies in this thesis but great benefits 

could be derived from having crystals, suitable for neutron scattering, in composi-

tions around CeRu^Sii.oGei.Q. Inelastic studies on single crystals would allow the 

d i s p e r s i o n a n d s t r u c u t r e f a c t o r o f t h e l o n g i t u d i n a l e x c i t a t i o n t o b e s t u d i e d a c r o s s 
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the Brillouin zone. The model outlined in this thesis predicts that a magnetic field 

applied p a r a l l e l to the c-axis should destroy the excitation. Experiments to test this 

would give an excellent indication of the v a l i d i t y of the model. 

1 6 4 



Appendix A 

Neutron scattering t ime-of-f i ight 
data 

Time of flight measurements are a routinely used method for conducting inelastic 

neutron scattering experiments. The time-of-flight of neutrons between the sample 

and detector is measured. The time-of-flight of neutrons is r = ^ where t is the 

flight time and L is the flight path, r is actually the reciprocal velocity. 

For neutrons with fixed incident energy the time-of-flight between sample and 

detector characterises the scattered energy. The raw data in a time-of-flight experi-

ment is a histogram of neutron counts in time of flight bins or channels. A example 

histogram for one of the detectors on the IN6 instrument is shown in figure A.l . 

Chapter 2 introduced various ways of writing the partial differential cross-section. 

In time-of-flight experiments we measure 

(f̂ cr No. of neutrons scattered into cffi per unit time with t-of-f between r and T + dr 

dDudr dVldr x incident flux 
(^Ll) 

note that the cross-section per unit energy transfer and this cross-section are related 

by 

{A.2) 
dOc/r dVtde 

In terms of the number of counts Cj in channel j , the cross-section per formula unit 

is 

/ ( f a \ 1 Cj 

\dndT ) M, ArAilTV, 
(A.3) 
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Figure A.l : Typical time of flight histogram for IN6. The inset shows quasielastic 
scattering on a much reduced scale. 

where Ms is the monitor counts for the run, Ns is the number of formula units 

in the mass of sample used, AT is the time-of-flight width of one of the channels 

in figure A.l and AH is the soHd angle defined by the detector, which we do not 

necessarily know. Equation (A.3) is actually the cross-section per incident monitor 

count. Using equation (A.2) 

f/2 a 

dO.dc 

1 Cv 

AL AoAQN. 
(A.4) 

with 

E, 
m 

(A.5) 

then 

As Ar -
m 

(A.6) 

Note that the width of our channels in time-of-flight is a constant but from equa-

tion (A.6) the width in energy transfer of the channels depends on ^ which will make 

the channels at short time of flight very much wider in c than the later channels. 

We can get the cross-section on an absolute scale using the scattering from a 

vanadium plate. The total scattering integrated over all t ime of flight for a given 
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Figure A.2: Scattering from an elemental volume of sample, dV. 

detector is Pel- And the differential cross-section for vanadium will be 

d(J \ ^nt ^ii 

471 
(A.7) 

since the scattering from vanadium is dominated by the isotropic incoherent cross-

section, (Jinco- Rearranging the above equation gives an expression for L/AFI, which 

can be substituted into equation (A.4) to give 

\dQ,de 
c , <7;nco A';, 

AeM, 
(A.8) 

int 

A . l correc t ing d a t a 

Generally at the time of the experiment we must make additional measurements: 

scattering from the empty sample holder, a measurement of the scattering from the 

empty sample holder with an absorbing cadmium mask in place of the sample and a 

measurement of the scattering from a vanadium plate in place of the sample. These 

will be used to get the true scattering from the sample. 

To get the best measurement of the cross-section we need to know the ratio of the 

intensity of the scattered beam to that of the incident beam. Consider figure A.2, 

with a beam of incident intensity Jq. We want to know the ratio of the incident and 

scattered intensity. We could work this out for an elemental volume dV then sum 

dV over all the sample. However, the incident intensity at dV is not IQ because any 

scattering or absorbtion processes which occur before reaching dV reduce the beam 
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Figure A.3: Scattering picture. 

intensity. This is called self shielding. The measured scattered intensity is not the 

true scattered intensity because any second scattering process or absorbtion on the 

path out of the sample will again reduce the intensity of the scattered beam. 

We can in principle correct for this effect because we know the scattering and 

absorbtion cross-sections. The correction for an arbitrary shaped sample however 

is not easy and so exact analytical forms only exist for planar samples, numerical 

techniques should be used in other circumstances. 

For a plate sample at angle 7 to the incident beam the attenuation coefficient is 

given by [103] 

ex-p{ —Nat sec j ) — exp [—iYcr't sec(^ — 7)] 
(yi.9) 

Na't sec{4> — 7) — Ncrt sec 

where N is the number of formula units per unit volume, a is the cross-section of 

a formula unit at the incident energy, a ' is the attenuation at the scattered energy. 

The angle 7 is the angle of the plate defined in figure A.3 and 4> is the scattering 

angle. There are two terms one for attenuation at the incident energy and one for 

attenuation at the scattered energy. For the reduction in the intensity of the incident 

and scattered beams we can replace a and a ' by crtotai = <̂ inco + ^coh, which is the 

total scattering cross-section. 

The true scattered counts wiU be given by 

C ' t o t a l 
o T r u e 

Ass'^a AssAa 
Bo (A.IO) 
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where Ctotai is the total measured counts, Bi is the background counts for neutrons 

which have passed through the sample position and B2 is the counts from neutrons 

which reach the detector without passing through the sample position. 

The number B2 is given by the run with a cadmium mask in the sample position 

and Bi is given by the difference between the run with the empty sample can and 

the run with the sample masked with cadmium. B2 will typically be very small and 

Bi will only have counts near the elastic line. 

A.2 Absolu te t ime-of-fi ight 

We need not measure the absolute time-of-flight of our scattered neutrons. We 

must now the width of our time-of-flight bins AT = At/L. Neutrons with infinite 

final energy will arrive at r = 0 and for elastically scattered neutrons we find from 

equation (A.5) that 

so that the elastic channel number should be Tgi/Ar. For the INS spectrometer 

Ei = 3.12mev, L = 2.48m and At = 9.625/is which gives the elastic channel as 

number 333.5 whereas the data in figure A.l show that the elastic channel is number 

309. The difference is —24.5, infinite energy neutrons would arrive in channel —24.5 

and this defines r = 0. We write the shift due to the infinite energy channel as Aco-

Our conversion from time-of-flight to energy transfer is now 

T; = D - A r e = Ei - )2 ( ^ 1 2 ) 

A.3 Absorb t ion cross-section 

We work out the cross-section per unit cell. There are tables which give the ab-

sorbtion cross-section for the specific 2200m/s neutrons. We should convert to our 

energy by assuming that the cross-section is directly proportional to the velocity. 

F == <72200™/, X (Vl .13) 

where v is the velocity of our neutrons. The unit cell cross-section is the sum of all 

atoms in the unit ceU. There may be more than one formula unit per unit cell so we 

1 6 9 



CHAPTER A. Neutron scattering time-of-fiiglit data 

should remember this. The number of unit cells per unit volume is the reciprocal of 

the unit cell volume. We are left with 

yVcr = 14) 
n 

for n atoms in the unit cell. The units of equation (A. 14) should be cm"^ and the 

value is ~ 0.5 for most compounds studied in this thesis. 
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