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PINNING IN YBA2CU3O7.5 SINGLE CRYSTALS 

by Konstantinos DeUgiannis 

This thesis presents magnetisation studies in the vortex state of high purity YBa2Cu307.6 
single crystals. 

We present magnetic hysteresis results of twinned and detwinned crystals which 
demonstrate that contrary to previous reports, twin planes can limit the critical current in 
a broad field and temperature region by facilitating vortex channeling. Twin planes 
provide easy paths, within which vortices can move decreasing the sample's overall 
pinning. A detailed angular study of the magnetisation reveals the existence of two 
critical angles, 9^ and 0^: for 8 < 8^ vortices lock-in to the twin planes; for 9l < 0 < 0k 
a kinked structure occurs; for 8 > 8% the magnetic hysteresis loops reproduce the 
magnetic response of the untwinned regions, where pinning is produced by random 
point defects. The two critical angles 0^ and 0^ are shown to depend crucially on the 
disorder in the untwinned regions. 

Comparing magnetic to transport data we demonstrate for the first time that the 
magnetisation peak line in the phase diagram of YBa2Cu307_g exhibits an impressive 
similarity with the equivalent line for Bi2Sr2CaCu20g. Our results reveal the existence 
of a voltage criteria independent, sharp, magnetisation peak which correlates to the 
multicritical point. By increasing temperature or oxygen content the magnetisation peak 
surprisingly shifts to higher fields maintaining its correlation to the critical point. At 
high temperatures we observe a previously unreported splitting of the magnetisation 
peak. Our data support the existence of a field-driven transition which separates two 
different solid regimes: a quasi-ordered lattice (Bragg glass) and a highly disordered 
phase of entangled vortices. 

Finally, we use the presence of lock-in oscillations in the magnetic hysteresis of 
YBa^Cu^O^^ single crystals to study pinning by the layered structure in the quasi-2D 
region. We illustrate how random point disorder can affect the oscillations. A systematic 
study of the temperature dependence of the magnetisation for parallel applied fields 
shows that the critical current does not decrease monotonically with temperature. This is 
a result of the reduced dimensionality of thermal fluctuations of the locked-in between 
the layers Josephson vortices and their interaction with the extrinsic point defects. 
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1 . iRnTRCXDUCTICMV 

1.1 HIGH TEMPERATURE SUPERCONDUCTIVITY 

The high operating temperatures, the small Ginzburg-Landau coherence length the 

large magnetic penetration depth X , and the layered structure characterizing the high 

temperature superconducting oxides, gave breath to novel aims and perspectives of 

Superconductivity research. Since the prime feature of most applications considered is 

the dissipation-free flow of current and the motion of vortices causes dissipation, the 

role of pinning became more important in the High Temperature Superconductors 

(HTS) than it ever had been. Indeed, the enhanced strength of thermal fluctuations as 

given by the Ginzburg number [1] Gi oc Tg"*, which compares thermal to condensation 

energy in the coherence volume leads to smoothing of the pinning potential arising 

from materials defects. In HTS Gi is six orders of magnitude higher than in 

conventional superconductors. Dissipation is furthermore assisted by the thermal 

activation of vortices over their pinning barriers. 

Though every member of the HTS family has a number of individual characteristics, 

all of them possess a layered structure based on CUO2 planes; this is not irrelevant to 

their sharing of a largely common phenomenology [2], as well. The layered structure is 

unveiled in a number of important properties and exotic vortex states: for example a 

transition from a 3D to a 2D vortex lattice has been predicted in certain magnetic field 

and temperature regions, leading to new vortex pattern structures. 

It is, thus, self evident that the technological development which the discovery of 

High-Tg Superconductivity made possible and attainable in the near future, can be 

underpinned only by a thorough understanding of vortex dynamics. 



1.2 THE YBA2CU3O6+X COMPOUND 

1.2.1 STRUCTURE 

YBa2Cu306+x (widely known also with the abbreviations YBCO or 123) was the first 

of the HTS discovered with a Tg of approximately 90 K, above the liquid nitrogen 

boiling point of 77 K. Superconductivity in YBCO was discovered almost 

simultaneously by 3 groups in 1987 [3-5]. 

chains 
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\ 

Figure 1.1: fAg YBCO ybr oxygen, # 
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(j'wpe/'coMJwcfmg) YBa2Cu307^. 

The oxygen content in YBazCu^Og+x, x, can take any values between 0 and 1 -

equivalently and respectively the oxygen deficiency of YBa2Cu30y_g, 5, varies between 

1 and 0. Higher or lower oxidization of YBCO has not been succeeded [6]. As a typical 

perovskite it has a layered crystal structure. The oxygen exists in ordered form, joining a 

planar structure with the copper atoms. YBa2Cu307.5 is tetragonal for low x - high 5, 

with a = b, see figure 1.1(a). However, this symmetry is destroyed with oxygen doping, 



due to the resulting oxygen ordering and the formation of linear chains, characteristic of 

YBagCu^Oy.g (fig. 1.1(b)). The first fragments of chains are created at low x values and 

grow with increasing oxygen doping; when they are sufficiently organized to all align to 

the same direction, a transition from the tetragonal to an orthorhombic structure is 

sustained. Now, the two axes a and b of the original tetragonal cell are no more the 

same: a = 0.383 nm, b = 0.388 nm, c = 1.171 nm [6,7]. As seen in the schematic 

presentation of figure 1.2, YBa2Cu30y_g is tetragonal for 0.6 < 5 < 1 and it is only for 5 

less than almost 0.6 that a transition to the orthorhombic state takes place. In addition, 

YBa2Cu307.5 contains Y and Ba isolation or separation planes. 
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.85 -

;.80 

Figure 1.2: The transition of the lattice parameters a and b from the 
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The effect of oxygen stoichiometry, which will be discussed in more detail in chapter 

3, is dramatic, as the transition from the tetragonal to the orthorhombic phase is joined 

by a transition from a non superconducting to a superconducting state. 

Indeed, oxygen doping in YBCO increases the fraction p of holes per Cu atom in the 

CuO^ layer. This increase of the hole concentration p happens specifically in the CuOg 

layers where the "seat" of superconductivity lays. Positive holes are in most HTS the 

itinerant charge carriers. When 5=1 (p=0) YBazCu^Og is an antiferromagnetic insulator 

(fig. 1.3), but as 6 decreases (p increases) the oxide becomes, in sequence, a non-



magnetic insulator and a superconductor for 8 less than approximately 0.6 (or a normal 

conducting metal above TJ. This bewildering complexity of YBCO is common in all 

HTS oxides and made these materials to seem very improbable superconductors before 

1986 [7]. 
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Figure 1.3: Structural phase diagram of YBa2Cu306+x based on the data of 

1.2.2 PHYSICAL PARAMETERS 

As a genuine member of the HTS family, YBCO is an extreme type-II 

superconductor. This means that it has a very short coherence length ^ and a very large 

magnetic field penetration depth X. Due to the arrangement of the atoms in parallel 

planes there is a strong anisotropy present both in the superconducting and the normal 

state properties [10]. In the ab plane direction, i.e. parallel to the atomic planes, the 

superconducting properties are much stronger than in the perpendicular direction (c-

axis) [10]. Thus, if characterises screening by currents flowing in the layers and 



screening by currents across the layers, it is A,ai,(0) 150 nm while 1^(0) ~ 600 nm. On 

the other hand, if is the transverse coherence length, within the layers, and the 

coherence length across the layers, it is ^ab(O) «« 1.5 nm and ^,.(0) « 0.3 rnn [2,11,12]. In 

result the Ginzburg-Landau constant K is much bigger along the layers; » 100 

compared with iĉ t, « 500 along the c-axis. 

The anisotropy parameter y, defined as the square root of the ratio of the charge 

carriers effective mass along the c-axis m,. and in the ab plane mgy, y = has a 

value 4-10 as measured by torque magnetometry [13,14] and Bitter decoration technique 

[15]. Note that the anisotropy can be also defined as a ratio of the penetration depths or 

of the coherence lengths along the c-axis and in the ab plane, namely y = (^ab/^c) = 

Finally, for an applied field parallel to the ab plane estimates for the upper critical 

field give an H'|,2(0) % 650 T, while the lower critical field was found to be of the order 

of H'|,](0)« 180 Oe; for a perpendicular to the layers applied magnetic field the 

corresponding values are « 130 T and H^i(O) « 530 Oe [12,16,17]. 

1.3 OUTLINE 

This thesis is the outcome of an experimental work which started in October 1994 

and lasted for three years. The bulk of the experiments was carried out on a variety of 

high quality single crystals of YBCO. 

Chapter 2 introduces and briefly discusses some basic phenomenological 

approximations governing vortex dynamics in the HTS family. The reader is 

familiarized with some of the most useful models and tools which are of frequent use in 

the interpretation and discussion of experimental results. 

Chapter 3 gives a brief account of the main experimental rigs used to produce the 

results of the next chapters. Simultaneously, the synthesis and the variation of the 

oxygen content of the studied YBCO single crystals is discussed. Certain very specific 

and important points on the prepar ation of the samples used in the experiments, which 

affect their physical properties, are presented. 



In Chapter 4, we show by means of magnetic measurements, at a time when twin 

boundaries were predominantly considered only as strong pimiing centres, that easy 

vortex motion can occur in paths created by the twin planes, with serious consequences 

in the critical current density. A study of this channeling behavior in a large temperature 

and magnetic fields regime reveals the competitive nature of planar and point defects. 

By combining vibrating sample magnetometry and magnetotransport data, new 

features of the vortex phase diagram are revealed in Chapter 5. A vertical phase 

transition is traced in the solid region of the vortex state and is studied systematically, 

whereas oxygen deficiency is shown to have a dramatic effect in the H-T diagram. The 

obtained results are compared with those recently found in the Bi2Sr2CaCu20g 

compound. 

Intrinsic pinning in the layered HTS is examined in Chapter 6. The observation of 

lock-in oscillations in magnetic measurements allows the study of the quasi-2D regime. 

The detailed mechanism which produces the oscillations is presented and discussed. 

Lock-in oscillations are shown to be a reliable way of extracting valuable information 

both for the structure of the vortex lattice and the sample. The critical importance of 

thermal fluctuations and of point disorder in the observation of the lock-in transition is 

also demonstrated. 

Finally, Chapter 7 offers a brief summary of the presented work and reiterates the 

main conclusions. 

The work in this thesis was funded throughout its duration by the Bodosaki 

Foundation in Greece and in periods by the University of Southampton and E.P.S.R.C. 

(Engineering and Physical Sciences Research Council) in Great Britain. The author 

gratefully acknowledges the support of the above institutions and organisations. 
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2.1 TVCMRTE2[IWk)TlCWf 

As mentioned in chapter 1, the key question in the study of vortices is whether these 

flux carrying entities move or not. In the imaginary case of a pure, isotropic, type II 

superconductor, in the mixed state, one expects the formation of the famous triangular 

Abrikosov lattice [1,2]. If, now, a current density J is passed through the material and B 

is the local flux density, vortices will experience a Lorentz force equal to: 

= J X B (2 1) 

Under the influence of this Lorentz force, vortices will move in a direction 

perpendicular to both the current and the applied field (figure 2.1), facing only an 

impedance of viscous nature [3]. 

Figure 2.1: Vortices forming a hexagonal, periodic lattice (Abrikosov lattice). 

Under the influence of an applied current J, a Lorentz force moves vortices in a 

This motion of vortices and consequently of their normal cores generates an electric 

field [4], produces a voltage drop and yields a finite and linear flux flow resistivity, 



Pf - Pn 
H, 

H 

Chapter 2: Dynamics of Vortices 

(2.2) 
c2 

where pf is the flux flow resistivity, p„ the normal state resistivity, H, the applied field 

and Hc2 the upper critical field. 

The above conditions lead to a reversible magnetic response of the superconductor 

in an external magnetic field (figure 2.2). For an applied field of strength up to the 

superconductor exhibits perfect diamagnetism; for higher fields, vortices invade in the 

interior of the sample and the magnitude of the magnetisation drops until it disappears, 

together with superconductivity, at Both transitions at Hg, and Hg2 are predicted to 

be of second order. 

-47IM 

Figure 2.2: Magnetisation curve for a type II superconductor, in the absence of 

However "purity" is an unknown term in the science of material synthesis. Real 

materials often contain a rich variety of point or extended, structural, crystal defects; in 

the case of superconductors the defects (which can be for example non superconducting 

impurities, voids etc.) lower the local condensation energy and cause the well-known 

and very essential immobilisation mechanism called pinning of vortices. 

Pinning changes and complicates the situation considerably. Now the Lorentz force 

has to be larger in magnitude than the pinning force exerted on a vortex, for the latter to 

move; > Fp. Early models trying to incorporate this fact, as the Bean model [5,6], 



defined a state called the "critical state": vortices arrange themselves in such a way in 

the sample, that the produced flux profile results to a global equalization of and Fp. 

In other words, the achieved balance satisfies vortices enough so as to no longer move. 

The resulting current density is called critical current density, Jg. 

In the limit of zero temperature and given the condition F^ = Fp holds, according to 

the critical state model vortices should stay pinned and flux motion (flux creep) should 

remain zero. However reality is different; due to quantum tunneling effects, vortices are 

able to tunnel through the pinning barriers even for Lorentz forces smaller than the 

opposing pinning ones (quantum creep) [7-10]. 

Returning to more "realistic" situations (at finite temperatures), thermally assisted 

effects were accounted for first in the Anderson-Kim model [11,12], In high temperature 

superconductors thermal effects are not restricted to the vicinity of T^ as in 

conventional superconductors, but are extended in a large temperature regime below the 

critical temperature. As mentioned in the introduction (chapter 1) and successfully 

accounted for by the Ginzburg number', the small coherence length the large 

magnetic penetration depth X and the large anisotropy of HTS, all greatly enhance 

thermal fluctuations. The result is the observance of flux creep even at current values 

lower than the critical one, due to thermal activation over the pinning barriers. 

The Anderson-Kim model describes this hopping over the potential barriers 

considering motion of characteristic flux volumes, the vortex bundles [11-13]. The 

formation of bundles is energetically favorable, since the range of the repulsive vortex-

vortex interactions X is much larger than the separation of neighboring vortices, 

[11-13]; vortices, members of the same bundle, act in cooperation and move as a unit^. 

In its simplicity, the model makes some important assumptions. It assumes: a) the 

bundle volume V and its jumping distance d to be constant and current independent, b) 

the shape of the pinning potential well to be triangular with a maximum, current 

independent, value and c) elastically independent flux bundles . 

1 In YBa2Cu307.5, Gi - lO'Z. 

2 More precisely, vortices in one bundle are mutually coupled via the interaction of their magnetic fields and their 

wavefunctions [11,12], 

10 



Assuming that the centre of the bundle sits in a potential well (figure 2.3(a)), 

where Ug is the Gibbs energy diSerence between the pinned and the unpinned state [14] 

in the absence of any driving forces, it is possible due to thermal excitation for the 

bundle to overcome the barrier in a rate: 

R = Q„ • e KgT 
(2 3 ) 

Figure 2.3; Flux bundles jumping over pinning barriers, after ref.[3]. The 

force due to an applied current or a flux gradient, favors jumps in one, the 

where icg is the Boltzmann constant and is the average attempt frequency of hopping 

(-10^-10^^ Hz) [3], due to the thermal motion of the pins which causes fluctuations in 

time of the pinning force [15,16], From eq.(2,3) it is clear that the rate R crucially 

depends on temperature. However no net motion can be observed, since the rate is the 

same for both directions of hopping (fig,2.3(a)), 

Assuming that each bundle of volume V is intersected by one pinning site, the 

pinning energy per unit volume should be UyV and thus = Fp Vd = BVd, where d 

is the distance the bundle jumps once it is unpinned; one can assume that this distance d 

is approximately equal to the vortex separation = (Og/B)'^ [14], is the critical 

11 



current in the absence of creep. On the other hand, applying a driving force Fl = JB, 

produces an external stress AW = JBVd = UQ (J/JJ. Now, hopping out of the potential 

well is clearly favorable in one direction (fig.2.3(b)) and the net hopping rate R 

becomes, after summing up the two rates for jumping in the opposite directions [11,12]: 

^ \wl 
(24) Rnet = 2.Q, .s inh 

1C.T 

Anderson analyzed the case of large current J ~ Jc and high imposed stress or, 

equivalently, of very low temperatures, AW » KgT, the so-called flux creep regime 

[11,13], He supposed that the trapping barrier U is finite when the applied current 

density J tends to 0, depending linearly on J: 

U(J) = U , 

J —> 0 

1 
=> U(J) ^ U. (2 5) 

With the above conditions, the net hopping rate becomes: 

R = Q • e (2.6) 

The opposite case, of low current and imposed stress or, equivalently, of high 

temperatures AW « KqT, was studied much later, only with the appearance of the first 

high temperature superconductors. Modeling of this regime, often called the thermally 

assisted flux flow (TAFF) regime, came in the late eighties [14,15,17,18]. 

The TAFF model is essentially an extension of the Anderson-Kim model to the new 

conditions described above. Again the assumption of a current independent pinning 

potential at very low currents J « Ĵ . is made, see also eq.(2.5) above. The net rate of 

hopping is now: 

KoT (2.7) 

The resulting electric field from the vortex motion is E = Bv, where v is the average 

velocity of the motion v = R^gjd = R êt leading to: 

12 



Chapter 2: Dynamics of Vortices 

U J - — 
E = (2.8) 

This yields a TAFF resistivity Ptaff = E/J, equal to: 

a„ • B • U 
P T A P F = 2 ""; " ( 2 . 9 ) 

Substituting for and then for leads to a TAFF resistivity linear with magnetic 

induction B; this linear, ohmic resistivity is always nonzero, even if it is exponentially 

small. Note that the upper limit of P t a f f is the flux flow resistivity, pf. 

2.2 VORTEX LATTICE ELASTICITY 

The elasticity the vortex lattice possesses, is expressed via the elastic moduli: c,, 

describes the rigidity of the vortex lattice against uniform compression and is called the 

bulk modulus; C44 describes the stiffness against tilt of the lattice with respect to the 

applied field and is called the tilt modulus; finally the shear modulus, Cgg, expresses the 

lattice's resistance to shear. 

The elastic moduli were first calculated by Brandt [19] using linear elasticity theory, 

for the case of a continuum, uniaxial, elastic medium. Due to the long range interaction 

of vortices, extending to distance X often much larger than a^, the character of the 

elastic interactions becomes nonlocal: the elastic energy of a local distortion of the 

lattice will be contained in a sphere of radius' of the order of A,. As a result two of the 

elastic coefficients, the bulk and the tilt modulus, for the isotropic superconductor case, 

are dispersive, that is they have a k-dependence. Assuming that H « 11̂ 2 aiid the 

Ginzburg-Landau constant^ K » 1, the elastic coefficients are [21]: 

1 Actually of radius of several X, according to Brandt [20]. 

2 See section 1.2.2 for values of K in YBa2Cu30'7_g. 
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Bf . Bf 

8 0 ^ 

1 Inic 

1 + k" • A? kg2 ' ̂  
(2.10) 

c, 
1671.pi,.A? 

In the above expressions, X is the planar penetration depth and kgz = 2 4 ^ I i s the 

radius of the Brillouin zone. It turns out that k^ = (k* , ky) < kgz , a condition that 

protects the continuum limit approximation [22]; in the expression of C44(k), K is a 

function of the tilt k^ component of the wave vector: 

with b = (B/Bc2)- Though k^ can be in theory arbitrarily large due to the continuity of 

vortices along the c-axis, in practice it is limited by the vortex core radius: the shortest 

tilt waves that pinning can excite have k^ < 1/^ [22]. As seen in eq.(2.10), C44 is written 

as the sum of two terms: C44(k) = C44°(k) + C44'̂ (k). The first term is of collective origin 

and stands for the bulk contribution while the second term represents the single or 

isolated vortex contribution. Note that Cgg becomes dispersive at very short wavelength 

scales [23]. 

The dispersion of c^ and C44 means that the lattice is much more susceptible in short 

wavelength compressional and tilt distortions than to uniform ones. Indeed, contrary to 

the uniform distortions case, where the wavelength 1 00 and, thus, k —> 0, now the 

dispersion of the elastic moduli allows a suppression factor of (k A,)̂  for shorter 

wavelengths, i.e. for a non-zero wavevector k. 
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This suppression becomes even larger for k near the Brillouin zone limit, kg^. 

Simultaneously, at this limit, C44(kgz) is dominated by the isolated vortex contribution, 

C4/(kgz) and Cn(kgz)is of the order of [23] (see figure 2.4). 

B / A,"u 

Figure 2.4: Elastic energies for compressional, tilt and shear distortions of the 

The parabolic dashed line gives the local contribution for tilt and compressional 

gMergzgf, ybr k « 1 cwrve gYvej- f/ze 

ref/M C44(k), C44°(k). 7%g q/ fAe f/ze foW C44(k) z.y a 

rĝ z/Z/̂  /̂ze ẑ oZâ ec/ vor/gx coM ẑAzzfzoM, C44̂ (k). aMcf Cgg are ^erzocZzc ZM 

k-space. Remarkably, although Cgg is much smaller than c^, it recovers at kg^. 

At very small field values, B « Bg,/lnK, the bulk and shear moduli become 

exponentially small, with c^ = Scgg and [23,24]: 

"66 

TC- A, 

.6 

\ l /2 

X 
(2.12) 

where is the line self energy, a very frequently used and basic energy scale. At this 

low field limit C44(k) is also dominated by the single vortex contribution. At the opposite 

limit of large fields, B » B^/lnK, one has Cgg « c^ « C44 ~ , and the lattice bears 

the characteristics of an incompressible solid [4] (figure 2.5). 
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Elastic 
moduli 

K C66 

B . . B 

Figure 2.5: The elastic coefficients as a function of the magnetic flux density, B as 

For an anisotropic superconductor, the main difference is the dramatic dependence of 

C44 and Cgg on the anisotropy. 

For an applied field || c-axis' and a uniaxially anisotropic superconductor, with 

penetration depths along the c-axis and in the ah plane, one has [21]: 

C„(k): 

Cw(k) 

l + k" ^ 

Ho (l + k^ lib) + 
(2 13) 

1̂ 0 

InK 

The shear modulus, Cgg, is not altered from expression (2.10), with X being replaced 

by the penetration depth lab- The same cutoff limits for k hold as for the isotropic case. 

The results apply as long as b < 0.25 and K > 2. For fields approaching the 

penetration depths in the above expressions should be corrected [20] to account for their 

increase as the Cooper pairs density goes to zero. 

Comparing to the isotropic case, C44 is smaller by a factor of y ,̂ an effect of the much 

longer range of the interactions, X̂ . It is, therefore, obvious that uniaxially anisotropic 

1 Interesting!}', for a general orientation of H with respect to the c-axis, a rotation modulus also appears [25]. 
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high temperature superconductors, as YBa2Cu30y_g, allow far larger distortions for the 

same expense of elastic energy. 

For fields along the ab plane, it is straightforward to estimate the elastic moduli using 

the scaling arguments of Blatter et al, see ref.[23,26]. The essential modification is the 

splitting of the shear and tilt moduli into hard and soft components [25]. For c^g, the 

hard component, c^, corresponds to shear direction along the c-axis, while the soft one, 

Cgg, parallel to the layers (figure 2.6). Their ratio is; 

^66 
"66 with c%q = y • c 66 (2 .14 ) 

Soft Shear 

Hard Shear 

2 6 ; TTze cg/Z q / fAe vorfex Zaffzcg aw Aefween fAe 

.yq/f a W q / a j ' A g a r w o v e . 

The tilt modulus, now, due to the splitting of the bulk term, C44°(k), in hard and soft 

components, is affected and has a hard component, c^, for out-of-plane tilt and a soft 

one, C!,4, for in-plane distortions. The scaling approach leads to the following 

dependencies [23]: 

(k) = y . c% (k) with (k) = (k) (2 .15 ) 
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2.3 COLLECTIVE PINNING 

The collective pinning theory developed by Larkin and Ovchinnikov [27,28] came to 

interpret experimental situations which were in serious contradiction with the strong and 

weak pinning concepts, as these were distinguished until then by the metastability or 

Labusch criterion [29]. According to the metastability criterion, if a vortex displacement 

u(0) causes greater variation of the elementary pinning force fp exerted on it than that of 

the elastic force due to vortex-vortex interactions, then pinning dominates (strong 

pinning regime, figure 2.7) [16]; 

d f d ' E . 
> 

du(0) du(0)" 

where Eg, is the elastic energy of the lattice associated to the displacement field u(0). 

(2.16) 

Figure 2.7: Visualisation of the metastability criterion, (a) Strong pinning; a 

(ffjpZace/MgMf q / a vorfex fo a Zarger varzafzoM q/" fAe p m n m g 6 f p 

fAan f/zaf q / fAe zMferacffOM _/brce ofAer vorf/cgj', 6f^|. fAg 

The metastability criterion, called Labusch criterion when the displacement fields of 

neighboring pimiing centres do not overlap [16], was regarded as the definition of the 

absolute threshold below which macroscopic pinning cannot exist. However, the weak 

18 



Chapter 2: Dynamics of Vortices 

pinning "landscape" realised in high temperature superconductors, soon gave results 

which could not be understood in the aforementioned frame. 

Collective pinning came to accommodate the pinning paradox, emerging due to the 

interplay of a random pinning potential and the vortex lattice elasticity, much enhanced 

in the anisotropic HTS. Indeed, a perfectly periodic and rigid lattice, or line, cannot be 

pinned by a random collection of pinning centres [3,23]: taking the case of a volume of 

the flux line lattice V, containing N pinning centres, the Lorentz force for any applied 

current density J grows linearly with V, as JV. On the other hand, the summation of the 

random pinning forces on V grows only sublinearly as V n , or as V v , since N == nV, 

where n is the pinning centres density. It is straightforward to see that the critical current 

density J, at which the Lorentz force is equal to the total pinning force, drops as 

vanishing at large V. 

In other words, the summation of the random pinning forces fp in the volume V has 

as a result the summation, due to their randomness, of opposing pinning forces and, 

thus, the total pinning force is smaller than 2 j f p , what a direct summation would give -
V 

an effect known as "frustration" [16]. 

Solving this discrepancy, the collective pinning theory [27,28] suggests the 

description of the vortex lattice distortions in terms of correlated volumes, Vg. The main 

idea of the collective pinning theory is that there are two competing energies for any 

lattice distortions: the elastic energy and the pinning energy. Vortices will prefer to pass 

from certain pinning sites, lowering their free energy; such a departure from the perfect 

periodic arrangement, though, has to be paid for at the expense of the elastic energy. 

The sum of these two energies will be a minimum for the equilibrium configuration, 

allowing correlated volumes of the lattice, V ,̂ to be pinned independently from each 

other. Vc corresponds to the smallest scale above which a direct summation of the 

random pinning forces is justified, or else is the desired cutoff limit for the sublinear 

growth of the pinning force, resulting from the statistical summation. 

According to the above, there are two main conditions which the new theory brings 

forward: 
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1. At scales smaller than Vg the vortex lattice can be considered as perfectly rigid 

(figure 2.8). More precisely, the maximum pinning-caused mean-square vortex 

displacements g ( f ) = < |u(r)-u(0)p > are smaller than the pinning force range rp 

squared, g(r) < 

2. The existence of a large density of weak, random, point pinning centres, nV,. » 1, 

where n is the pinning sites density. 

B 

R . 

Figure 2.8: The correlation volume concept. In the absence of pinning, vortices 

a /̂ grzo^y/c (^ . Tn fAg 

presence of a large density of weak, random pins (open circles) they deviate from 

the field and break the positional order of the lattice, to profit from the pinning 

energy (b). Periodicity, in this case, according to collective pinning theory, is 

approximately preserved within a correlation volume, Vg = L^. Within Vg the 

a r g M g g / f g ; 6 / g r a / i g g 

The dimensions of the correlated volume, V^, along and perpendicular to the field 

direction, for an applied field normal to the layers, are Lg and Rg, respectively: 

Vg = Lg Rg .̂ Due to the presence of pinning centres, the net free energy change per unit 

volume of the vortex lattice can be found by subtracting the pinning energy gained from 

the accommodation to these centres from the elastic energy, at zero current density. 

Pinning forces statistically sum, inside Vg, to (nVj '^fp [27,28]; taking into account the 

range of the pinning forces r « the amplitude of the pinning energy is that 
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is per unit volume. The elastic energy, now, is estimated as a sum of the 

shear and tilt energy - we consider only the shear and tilt elastic moduli [4]. For the 

shear energy, the relevant length scale is the transverse correlation length R ,̂ while for 

the tilt energy it is the longitudinal correlation length L,. The elastic energy is usually 

given as: 

1 
+0^.^44^] (2.17) 

where and CT44 are the shear and tilt fractional distortions (strains), respectively. 

Since maximum deformations' ar< 

energy change per unit volume is: 

Since maximum deformations' are of the order of the final outcome for the net free 

1 

L ' 4 - s -

/ \U2 n 

\ cV 
(2 18) 

Minimising this expression in respect to Lg and % yields an ellipsoid or cigar-shaped 

Vc of radius = (2c44)'^C6/^^^/W and length L,. = with W = n<fp>^ being 

the total average pinning force per unit volume squared, a characteristic parameter of the 

pirming strength. Thus ,̂ 

A softer, more elastic, lattice would offer better adjustment to the pinning sites and, 

consequently, provide smaller correlation volumes. Similar effects would result from 

stronger pinning. For pinning energies large enough for to become comparable to a^, 

the collective pinning of bundles gives its place to the collective pinning of individual 

vortices (single vortex collective pinning). Further increase of pinning can lead to a 

shrinking of to length scales comparable to rp or ^ and validate a direct summation of 

the pinning centers, having as unique criterion the spacing of the pins compared to 

[4]. 

The zero temperature critical current can be easily defined by the maximum 

Lorentz force density that can be sustained: 

1 In the estimation of the critical current, maximum deformations are the relevant ones. 

2 A more accurate calculation of Vg at 3D requires to approximate it as a spherical volume: Vg = (4/3) 71 Lg 
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At this point, some remarks should be made on the elasticity theory used. First, the 

elastic moduli expressions omit any corrections arising due to nonlocality, unless 

R(. < A,. Second, collective pinning theory as this described uses linear elasticity theory 

which breaks down with the Cgg vanishing at the melting line, see chapter 5. 

2.4 COLLECTIVE CREEP 

All the above discussion is valid as long as thermal activation is zero, i.e. for T = 0. 

As soon as we depart from this condition, T > 0, collective pinning theory gives way to 

the theory of collective creep. In its attempt to explain the giant flux creep observed in 

high temperature superconductors in the frame of collective pinning by weak disorder, 

collective creep considers a new current dependence of the correlation volume and the 

activation energy. In this way, a large departure from the more or less "classic" models 

of creep, like the Anderson-Kim model and its derivative TAFF model, is made. 

The transition between metastable states is due to thermal activation and the free 

energy barriers that are opposing these transitions, U(J), are estimated down to very 

small current densities, J « [30,31]. Furthermore, collective creep theory considers 

the correlation between the jumping flux unit and the surrounding ones. The new current 

dependent correlation lengths, Rj and Lj, define the smallest possible volume Vj which 

can jump while the neighboring lattice is kept fixed. The balance of the elastic energy 

Eg| and the energy produced by the Lorentz force, El = JBVjdj, determines this jumping 

volume V j and consequently defines the stable configuration. The jumping distance dj is 

an also current dependent quantity. Unlike the case of collective pinning, the 

compression modulus Cn plays an active role in the physics of collective creep, since it 

is the main mechanism of interaction between the jumping flux bundles, or correlated 

volumes. 
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An estimation of Vj in this way by Feigel'man et al. [30] yields a correlated volume 

that increases with J decreasing, becoming infinite at J —> 0. The divergence of Vj obeys 

a power law, Vj oc with > 0. 

The estimated current dependence of U(J) is the most important result of the 

collective creep approach [30-32], While the Anderson-Kim condition of U(J) = Ug + 

f(J) led to the recovery of a finite barrier even at zero applied currents, now, due to the 

current dependence of Vj, U(J) grows with the decrease of J following a power law: 

U(J) oc Vj oc This results in a free energy barrier which is infinite at zero current - in 

other words in a resistivity p which is truly zero in the limit J —> 0. 

The exponent ji varies depending on the size of Vj or, equivalently, the applied 

current density. According to Feigel'man et al. [30], for a bundle consisting of a 

segment Lj of a vortex line, p, = 1/7. For small J, Vj acquires a transverse size Rj < 

and for this small bundle regime p, = 3/2. For even lower current densities, Rj > A, and 

l-i = 7/9. Also in this large bundle limit, as in the case of collective pinning, the elastic 

moduli loose their nonlocality corrections. Blatter et al. [23] give a still wealthier 

analysis of the variations of the exponent p. 

Following the above, collective creep gives a non-linear current-voltage (I-V) 

characteristic, of the form: 

E(J) oc exp 
kT \ J / 

(2.20) 

There is an important limitation to the reliability of collective creep. Collective creep, 

like collective pinning, considers only elastic procedures and at high temperatures or 

very low currents there is always the danger that U(J) grows enough to surpass the 

threshold for plastic deformations, Up]. Then the activation energy should remain finite 

even in the limit J—>0, since it is plastic procedures that control the creep and Up] is 

essentially current independent [30]. 
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2.5 VORTEX GLASS 

Similarly to collective creep, the Vortex Glass model predicts the destruction of long 

range order in the vortex lattice, in the presence of disorder and infinite activation 

barriers for zero densities of applied currents [33,34], of the form U oc recovering, 

thus, truly superconductive properties in the limit of zero current density. As a result, 

like in the collective creep case, non-linear I-V characteristics are obtained: 

E(J) cc exp , 0 < p < l C2 21) 

where Jy » zf / KgT sets the current scale [35], being the line tension of the single 

vortex. 

One of the main changes the Vortex Glass theory brings forward is its starting point: 

it provides a very general approach to the problem of quenched disorder. Thus, 

although, as in the collective creep model, it reaches the conclusion that disorder 

completely destroys the long range periodicity of the Abrikosov lattice and positional 

order survives only at small scales [33,34], now there is no need to start by assuming 

elastic properties for the vortex lattice and their preservation in the presence of weak 

disorder [23]. 

The model introduces a certain temperature Tg: as the temperature approaches Tg 

from below, a characteristic correlation length ^q, the size of the jumping volume in the 

vortex lattice, diverges as oc |T - Tg|̂ , v being a critical exponent. Furthermore, Tg 

separates linear (ohmic) resistance, for T > Tg, from non-linear (exponentially small), 

for T < Tg, at the limit of vanishing current densities; the transition from one regime to 

the other is continuous. For the boundary T = Tg a power-law I-V characteristic is 

predicted by Fisher et al. [33,34]. 

Finally, the Vortex Glass theory predicts universal scaling laws: physical quantities 

should scale with an appropriate power of (T-Tg). Indeed, scaling of the I-V curves has 

been one of the most frequently used tools in the quest of a Vortex Glass phase, e.g. in 

the work of Koch et al. in thin films of YBa2Cu307.5 [36,37] or Gammel et al. in single 

crystals [38]. 
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The core of the presented work has been performed using three experimental setups. 

The bulk 'of the experiments was carried out in a Vibrating Sample Magnetometer 

(VSM). An important part of the magnetic measurements was executed in a 

rf Superconducting Quantum Interference Device (SQUID) magnetometer. Finally a 

home-made torque magnetometer was also used. All the experiments were carried out 

on single crystals of YBa2Cu30y_8, grown in McGill University, Canada. 

3.1 VIBRATING SAMPLE MAGNETOMETER 

The commercial (Oxford Instruments 3001) VSM, achieves dc fields up to 12 T and 

temperatures from 1.7 K - 300 K. The main components of the system, depicted in the 

schematic representation of figure 3.1, are: 

a) VSM main cabinet. It consists of a transducer mounted below a platform which 

can be raised or lowered vertically, by means of a stepper motor, along two ballscrew 

shafts. 

b) The superconducting magnet, consisting of a number of concentric solenoid 

sections together with compensating coils including shimming coils (to achieve 

specified levels of homogeneity). Each section is wound from multifilamentary 

superconducting wire from NbTi filaments. These are surrounded by a stabilising 

copper matrix. Copper is an electric insulator compared to a superconductor; however, it 

has much larger electronic mean free paths, that is, thermal conductivity. In this way it 

provides excellent thermal conduction and problems of thermal instability due to flux 

creep are avoided [1]. The magnet is fitted with inner coil sections of Nb^Sn. The 

homogeneity is 0.1% over a sphere of 10mm diameter (DSV). The magnet's power 

supply, an Oxford Instruments PS 120, gives operating currents with an upper limit of 

approximately 105 A, at a variable voltage of +10 V. The magnetic field can be cycled 

from plus to minus 12 T. The field's sweep rate can be set between 10 and 200 Oe/sec. 
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The remnant field of the magnet is approximately 5mT. As the setup does not have a 

superconducting (persistent mode) switch, in order to maintain a constant applied field, 

the power supply has to remain "on". 

Needle 
valve 

Platform drive 
vertical 

Ballscrew 
'shaft 

Vibration 
transducer 

IS 

Sample rod 

-Sampleholder 

-Superconducting 
magnet 

~Pick-up 
coils 

Figure 3.1: Side diagram of the 12 T Oxford Instruments VSM-3001. 

c) The sense coil arrangement mounted in the magnet system employs two coils, 

separated by a distance of 5mm. The coils are wound in the opposite way, forming a 

first order gradiometer and are positioned coaxially with the magnet. 

d) As seen in fig.3.1, the magnet is surrounded by a helium reservoir of a nearly 30 It 

useful volume, which maintains the magnet temperature at 4.2 K. For reasons of 
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improved insulation, there is a nitrogen dewar around it and further out multilayer 

super-insulation which minimises the evaporation rate. Finally, the whole assembly is 

surrounded by a stainless steel vacuum vessel. Due to the standards of the provided 

shielding, a full He reservoir is sufficient for experiments in high fields for a duration of 

five full days. 

e) The variable temperature insert (VTI), is loaded from the top of the cryostat. He 

gas is drawn from the LHe dewar through a needle valve, which controls the gas flow, 

and enters the sample space of the VTI, where a gold-iron/chromel thermocouple for 

temperature measurement and a heater situated close to the sample are fitted. An Oxford 

ITC-4 temperature controller regulates the power to the heater. To achieve the target 

temperature, the controller sets the heater's output so as to balance the cooling effect of 

the helium gas flow. In this way the sample's temperature is adjusted in the VTI heat 

exchanger. For the range 4.2 K-lOO K it is the flow rate that defines the temperature, 

adjusted by using the needle valve. Temperatures between 1.7 K - 4.2 K are achieved by 

reducing the vapour pressure of LHe after it passes from the needle valve. 

Samples are fitted with vacuum grease on sampleholders made of tufnol (see e.g. 

fig.3.2). For the measured single crystals, the sample mass can be anything between 

100 ]ig and 3 g. Wrapping the sample with P.T.F.E. thread seal tape, ensures that it does 

not move or drop in the VTI space, during the measurement procedure. 

c-axis 

\ 
H. 

Tufnol samploholder 

Figure 3.2: The VSM sampleholder configuration for introducing the sample with 

its c-axis in a 7° angle with the applied magnetic field (measurement presented in 

The sampleholder is screwed onto a carbon fibre rod (tube section of approximately 

6 mm in diameter) which is both extremely rigid and light. Thus, lateral vibration of the 
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sample is avoided. The rod is attached to the vibration transducer (fig.3.1), which is 

locked to the frequency of the mains supply. 

The heart of the system's automation, the VSM electronic sub-rack, is connected to a 

PC via serial interfaces; this enables the control of the setup, with the transmission and 

reception of VSM control characters. Using AEROSONIC written software, a complete 

set of measurements can be defined through a combination of low level VSM control 

codes and high level pre-defined routines. The magnetic moment can be measured and 

recorded as a function of temperature, field, sweep rate or time. 

During the measurement, the sample, after it has been positioned (within 0.1 mm) at 

the centre of the pick-up coils with the use of a calibration routine, vibrates vertically 

through a distance of 0.7 mm in the space between the two sense coils. The vibrator 

transducer produces a highly stable sinusoidal motion with a frequency of 66.66 Hz. 

Two weights on spring sections around the transducer ensure that there is the necessary 

damping to minimise transmitted vibrations to the magnet and the sense coil assembly. 

Due to the sample' s vibration, the first order gradiometric configuration gives 

effectively the output of a second order's one. 

The vibraton of the sample in the magnetic field induces an emf in the coils. The 

output voltage of the pick-up coils, which is directly proportional to the sample's 

magnetic moment, is amplified and compared to the well known saturation 

magnetisation value of a nickel sample, which is used for calibration. The final output is 

the sample's magnetic moment, in emu. The VSM has a resolution of 10"̂  emu. 

3.2 S Q U I D MAGNETOMETER 

The Cryogenics Limited 6T rf SQUID susceptometer, allows studies in dc magnetic 

fields of ranges up to 6 T. Structurally, see figure 3.3, it is similar to the VSM: 

The superconducting magnet is installed in a LHe bath dewar with a N2 dewar 

around it, for insulation from the ambient temperature. In the outer shells of the cryostat 

there is a vacuum shield followed by super-insulation. Finally, the cryostat is 

surrounded by a |j,-metal shield which reduces the ambient field within the cryostat 
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down to a few jixT. With an average boil-off of 3-4 litres per day, a full He reservoir is 

sufficient for six full days of high fields measurements. 

V 

\ 

mm 
— Stepper 

motor 

Super-insulation 

— 

K77 

SQUID sensor 

Superconducting 
magnet 

Figure 3.3: Main features of the 6 T rf SQUID magnetometer configuration. 

The sense coil arrangement consists of a set of three pick-up coils, located centrally 

in the bore of the magnet, with a distance of few mm between them: two identical coils 

wound in the same direction and a third one, in between them, having twice the number 

of turns of the first two, wound in the opposite direction. Thus, a second order 

gradiometer is formed, which gives an output only when the second derivative of the 

magnetic field is changing, ensuring much better protection from unwanted signals (e.g. 

magnet's drift). Only the asymmetry of the configuration can limit its ability; the field 

of the magnet is rejected to typically 0.1%. The pick-up coils are, in the case of the 

SQUID susceptometer, fabricated from superconducting wire. The sense coils are 

coupled to the input coil of the SQUID, forming the flux transformer. 
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The magnet's power supply is capable of delivering 80 A at 5 V. An installed 

superconducting switch, across the terminals of the magnet, allows the circulation of 

large currents in the magnet, without the need of continuous support from the power 

supply. Apart from the heater attached to the superconducting switch, a second heater is 

used to drive the sense coils normal whenever the set field is change, to avoid any flux 

change through them. A zero oscillations option oscillates the magnet about zero field in 

ever decreasing steps, impressively reducing the remnant field in the magnet down to 

5 Oe (figure 3.4). 

Field, Oe 

2 0 

A . • 

' / \ / ' v , 
/ / \ 0 
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Pick-up coils centre ^ 

! \ 

Pick-up coils centre ^ 

- 2 0 1 I I I 1 
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Figure 3.4: The field profile in the 6 T SQUID susceptometer (Magnetic field in 

Oe as a function of the distance from the VTI bottom, in cm). The dashed and 

solid lines give the field profile at 0 Oe, respectively without and with the 

performance of zero oscillations. As seen, zero oscillations increase the field 

homogeneity and reduce the remnant field, within a 5 Oe margin. The dotted line 

g/vef f / z g A y a 3 6 ) ) a Og. f/ze 

applied field is nearly homogeneous over a distance of approximately 4 cm. 

A Lakeshore DRC-91CA temperature controller is used. It monitors two different 

rhodium-iron thermometers, located within the VTI, one close to the sample (sensor B) 

and another several cm away (sensor A), on the heat exchange space. The sample space 

is cooled with a continuous flow of helium gas driven from the LHe reservoir. This time 

the needle valve operates automatically, while the temperature controller adjusts the 
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heater's output. Contrary to the VSM, a system of valves controlling the gas flow in the 

VTI allows the sample's removal keeping the VTI's temperature stable at any value, 

within the accessible range. 

The sample (single crystals in the present case) is confined in a cylindrical tube of 

quartz, 18.5 cm long and of 3 mm diameter, which gives negligible magnetic signal and 

is mounted on an oxygen-free copper wire. The tube is fitted with P.T.F.E. tape in the 

end of a brass (Cu-Zn) rod. The sample is positioned 5 cm from the bottom of the quartz 

tube and 12.5 cm from the brass rod, to avoid a finite length signal. 

The thin film rf SQUID sensor measures relative changes in magnetic flux and for 

this reason it is necessary to move the sample through the pick-up coils. A stepper 

motor (fig.3.3) controls and defines the movement of the rod; thus, the sample can be 

smoothly moved any distance between 1-12 cm. The sample's motion sets up a 

screening current in the flux transformer circuit to oppose the resultant alteration in the 

flux threading the pick-up coils. The SQUID detects this current, which is strictly 

proportional to the sample's induced magnetic moment. The output from the SQUID 

electronics then gives a voltage, directly proportional to the signal detected at the 

SQUID sensor. 

The choice of the appropriate scan length depends on the nature of the measurement 

and can be very crucial, especially when a very homogeneous magnetic field is 

desirable. As depicted in fig.3.4, at the relatively low applied field value of 830 Oe, the 

field is, within 1%, homogeneous over a scan length of less than 4cm (with the central 

position of the sample being the centre of the pick-up coils). However, for each data 

point a number of scans are averaged and the background signal is automatically 

subtracted by the control software. It is worth, also, to note that the very useful 1 cm 

scan length option is not easily met in other, home-made or commercial, SQUID 

magnetometers. 

The setup is fully automated (PC controlled) and able to perform measurements of 

the sample's magnetic moment as a function of temperature, within the range of 

1.7 K - 325 K, applied field and time. The control software is also capable of fully 
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compensating for any residual drift signal coming from the magnet circuit during a 

measurement routine. 

At the expense of measuring time, the SQUID magnetometer has a much larger 

resolution than the VSM, detecting magnetic moments down to 10"̂  emu, that is, 1000 

times smaller than the VSM. 

3.3 TORQUE MAGNETOMETER 

As a result of the collaboration with Dr. L. Friichter in the Universite Paris-Sud, in 

Orsay, a certain set of measurements has been performed by using a home-made torque 

magnetometer. 

Figure 3.5 shows a schematic representation of the rig. A superconducting coil 

provides fields up to 4 T. The magnet's power supply is an Oxford Instruments MK3 

with a maximum current output of 120 A at 4 V. 

The rotation of the magnetic field, necessary for a torque measurement, is executed 

with the help of a stepper motor. The field rotates in the horizontal plane, in minimum 

steps of 0.037°. In addition to this, two smaller transverse coils, which can give 0.3 T at 

10 A, are adjusted in the setup. In conjunction with the principal coil they can produce 

an even more precise orientation of the applied field. 

The whole configuration is installed in a LHe reservoir, with a liquid nitrogen bath 

surrounding it. These two spaces are separated by a vacuum shield, while another one 

isolates the LN2 bath from the outer space. 

The temperature in the sample area is varied by a usual helium gas flow mechanism 

and a heater installed close to the sample (figure 3.6). Monitoring and control of the 

temperature is achieved via two complementary thermometers. A Carbon-Glass 

thermometer is used for the region from 4 to 40 K, with a resistance varying from 700 to 

20 Q, respectively. In the high temperature region of 40 to 300 K, a Platinum resistance 

thermometer is used, with the corresponding range of resistances varying between 20 

and 120 Q.. The temperature is regulated with a precision of 0.05 K. Before the 

34 



Chapter 3: Instrumentation and Materials 

insertion of the measurement probe in the VTI, it is thoroughly pumped down to 10"̂  

mbar. 

Thermometer and 
Aea/er coMMgcfor 

Aepper 
motor 

Vacuum • 
air-LN2 

Vacuum • 
LN2-LHe 

03 r 
transverse 

-27X̂2 

-z,jyg 

transfer 

-sample 
space 

- 4 T coils 

Figure 3.5: The main characteristics of the 4 T torque magnetometer. 

The method followed in the present work is based on the deflection measurement of 

an elastic system. It is the most frequently used method, easily realised and performed. 

It has a very good sensitivity, down to 10"̂  erg. In its most common application a flat 

metallic capacitor is used, which is the present case, as well. One of the two plates is 

mobile and supports the sample. The sample is attached to the plate with grease and a 

protective copper cover is fixed above the sample-capacitor system. 

In an applied magnetic field, the superconducting (YBa^C^O^^) sample's anisotropy 
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y results in a torque' on it [2] and the attached plate of the capacitor deflects from its 

initial parallel position. Under the condition of small deflection angles, a linear relation 

holds between the torque on the sample and the variations of the capacitance due to the 

presence of this torque, finally leading to the estimation of the sample's anisotropy. 

Carbon-Glass 
thermometer Copper cover 

Sample 

Copper head 
ofprobe 

Platinum 
thermometer Heater Metallic 

Capacitor 

Figure 3.6: The configuration of the sample bearing head of the measuring probe. 

The measurement of the capacitance is carried out with the use of a capacitance 

bridge General Radio 1615A, which in turn is equilibrated with use of a lock-in 

amplifier. The setup is PC controlled and fully automated. The software provides the 

user the facility to compose one or series of measurement sequences, the only limit 

being the LHe autonomy of the cryostat. 

3.4 MATERIALS 

Experiments were performed on single crystals of YBa2Cu30y.g grown in the 

University of McGill, in Canada, by R. Gagnon and L. Taillefer. The synthesis of the 

crystals was based on a self-decanting flux method [3] using yttria-stabilised zirconia 

crucibles [4-6]. The method is known to give crystals of high purity. 

1 See c h ^ t e r 6. 
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The initial mixture is composed of powders of Y2O3 (99.9999%), BaCOg (99.999%) 

and CuO (99.9999%) with a Y ; Ba : Cu molar ratio of 1 : 1 8 : 45 [5]. Then the mixture 

is reacted above 900° C in yttria-stabilised zirconia crucibles. It has been shown [6-8], 

that this kind of crucible contaminates the fabricated YBa2Cu307.g crystals to a very 

small degree, since it is very difficult for the Zx̂ '̂  ions to be incorporated into the 123 

crystals. Indeed, ions have a much larger charge compared to the Cu ions in 

YBa2Cu30y_g and cannot substitute for them [7]. In addition, their ionic radius of 0.84 A 

is much smaller than the 1.02 A of Y^^ so they are unable to replace Ŷ "̂ , as well [7]. 

Thus, the few impurities are mostly Al, Fe and Zn atoms [7], 

After cooling, the crystals have to acquire an increased oxygen content, since the 

tetragonal YBa2Cu307.g (0.6 < 5 < 1) is not superconductive. Therefore, they are 

oxygenated for 10 days at low temperatures, at 500° C, below the temperature of the 

tetragonal-to-orthorhombic structural phase transition [3,9], in flowing O2, and 

quenched to room temperature. 

The procedure yields highly oxygenated YBa2Cu30y.g single crystals with an oxygen 

content of 7-5 = 6.91, according to the existing diffusivity studies [10] and a high 

critical temperature, T^ = 93.6 K. The magnetic width of the superconducting transition 

of the crystals is sharp: ATg < 0.3 K. It is defined as the temperature range over which 

the zero field cooled magnetisation, in a field of 0.1 mT, varies from 10% to 90%. The 

crystals have a typical size of the order of 0.7 x 0.7 x 0.05 mm^; crystal thickness 

throughout this work is estimated using the mass and the theoretical density of 

6.8 g/cm^. The specific details of the crystals will be given in the description of the 

various experiments they were used in, in the sections to follow. 

As a result of the internal stresses which are experienced during the low temperature 

annealing described above, at the transition between the tetragonal and the orthorhombic 

state' [3,11], extended, planar defects called twin planes are formed, see figure 3.7. 

Twin planes or twin boundaries, as they are called, accommodate these internal stresses 

and separate regions where the Cu-0 chains^ run alternately along the a and b axes of 

the original tetragonal cell [12]. They have a typical width of 50 A ; their separation 

1 See chapter 1. 

2 The creation of the Cu-0 chains is the cause of the appearance of internal stresses. 
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varies, and in our samples is in the range of 0.5-5 |Lim. In polarised light microscopy 

they show up as straight, bright red lines along the [110] or [1 1 0] direction (fig.3.7). 

Figure 3.7: Photograph of a part of a microtwinned YBa2Cu307.5 crystal in a 

polarising light microscope; the different domains of twin planes and the 

randomness of the distance between successive twins is clearly illustrated. 

The crystals are detwinned by applying about 50 Mpa of uniaxial stress at 550° C in 

air for 30 minutes and then reoxygenating for one day at 500° C in flowing oxygen [13]. 

The procedure is highly successive and gives detwinned crystals for which polarising 

light microscopy reveals a surface fraction of misaligned phase of much less than 1% 

[14] (figure 3.8). 

Generally, along with the twin boundaries other common defects in YBa2Cu30;^ 

single crystals are copper and oxygen vacancies [15,16], interstitials [17] and non-

superconducting impurities of Mg, Zn, Al, Fe, Mn, Ti, Au, La, Sr or Zr, depending on 

the synthesis method. Also possible are screw dislocations and voids. Point or extended 

(linear) pinning centers can be artificially introduced in YBazCu^O^.g crystals by 

electron or heavy ion irradiation, e.g. ref.[18,19] and references therein. The technique 

is very promising for the future applications of high temperature superconductors, since 

it can enhance very efficiently the sustained critical currents. 
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Figure 3.8: Photograph of a detwinned YBa2Cu307.5 crystal under polarised light 

conditions. 

3.5 OXYGEN CONTENT VARIATION 

As it was mentioned in section 1.2.1, oxygen doping in YBa2Cu307.5 increases the 

fraction p of holes per Cu atom in the CuO? layer [20]. Positive holes are the itinerant 

charge carriers in HTS and by doping oxygen is added in the Cu-0 chains [21]. Previous 

studies [22,23] have revealed that the chains play the role of charge reservoirs for the 

Cu02 layers, controlling T .̂ The dependence on p has been shown experimentally by 

Tallon et al. [20] to obey a generic phase behaviour in all the high temperature 

superconductors, expressed by the parabolic dependence: 

^ = 1-82.6-(p-0.16) ' (3.1) 
T 

where âx is the optimum accessible when p = 0.16. 

Tallon and coworkers also established the relationship of p and 6 in YBa2Cu307.g. 

They demonstrated [20] that for 5 < 0.55: 

p = 0.187-0.216 (3.2) 

Using these two relationships, Tallon et al. [20] reproduced satisfactorily the 

experimental results and the crucial Tg dependence on 5. Indeed, as previous studies of 
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the effect of oxygen concentration on T,. in the case of YBagCugO?^ have revealed 

[20,23,24] there exist two plateaus in T(.(5), as figure 3.9 shows. 

The first plateau (the "60 K plateau") stretches in the underdoped region between 

0.6 < 5 < 0.4 with a Tg almost constant at around 60 K. Then, with the enhancement of 

p, Tg increases with the oxygen content until the point of optimum doping around 

6 ~ 6.90 where it is maximised. What follows is the overdoped region, where T^ remains 

almost constant, with only a very slight decrease from its maximum value. This "90 K 

plateau" is the peak in the parabolic curve of Tg(p) [20]. 

" 70 

6.6 6.7 6.8 

oxygen content 

Figure 3.9: Dependence ofT^ on oxygen content in YBa2Cu30;_5, after Cava et 

Coming to our case, to produce different oxygen concentrations, crystals were 

subject to different annealing treatments under oxygen pressure of 1 Atm. To achieve a 

homogeneous oxygen content, the annealing time was approximately 10 days. 

Subsequently the samples were quenched in room temperature. 

As it has been established, e.g. ref [25-28], the final oxygen concentration of the 

samples depends systematically on the annealing temperature; more precisely, the 

oxygen content decreases for increased annealing temperature. Thus, determination of 

the new oxygen stoichiometry x (or deficiency 5) can be based on previously published 

diffusivity studies which provide a calibration between the annealing temperature and 
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the oxygen content in YBa2Cu307.g [10]. This is the method we have followed 

throughout the present work. Though it is difficult for 5 < 0.1 to provide accurate values 

of 5 [23,24,29] the distinctively different annealing temperatures allow us to be 

consistently precise. The oxygen content of the received crystals with 7-5 = 6.91 

corresponds to a T^^ 96.3 K. For this initial oxygen content of 6.91, annealing 

temperatures of 450°, 485° and 520° C lead respectively to oxygen contents of 6.96, 

6.93, 6.90. The optimum oxygen doping is observed at 7-5 = 6.93 with T^ = 93.8 K. 

It worths noticing that there are also other ways to estimate the oxygen concentration 

of an YBa2Cu307.g crystal, e.g. with measurement of the c-axis lattice parameter and use 

of the relation 7-5 = 74.49 - 5.78 c(A) [30]. 
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4. 

4.1 THEORY OF EXTENDED DEFECTS 

4.1.1 VORTEX STRUCTURE IN THE PRESENCE OF TWIN PLANES 

Soon after the discovery of YBa2Cu30y_g it was realised that the extended, planar 

defects naturally created in this compound, namely the twin boundaries, can have a 

dramatic effect on vortex pinning. As a result, an important part of the subsequent 

theoretical investigations was focused on verifying the role of twin planes. The 

complications arising from the presence of the twin planes became evident right from 

the beginning. The first theoretical studies were inconclusive on whether the 

superconducting order parameter is suppressed in the twin planes, as Deutcher and 

Miiller suggested [1] (see also Kes et al, ref [2]) or not, as Khlusticov and Buzdin [3] 

and Abrikosov estimated [4], 

However, the tendency of regarding the twin planes as strong pinning centres soon 

prevailed, especially after the careful analytical work of Blatter et al. [5,6] where the 

enhanced pimiing properties of twin boundaries for magnetic fields aligned or applied at 

small angles with the planar defects are discussed. Furthermore, it was conceived [5,7,8] 

that the strain fields associated with the twin boundaries make them an ideal place for 

accumulation of atomic defects and impurities, weakening superconductivity in the twin 

planes and attracting vortices. 

The equilibrium configuration of a single vortex in the presence of twin planes can 

be derived in a straightforward way, considering a simplified model [5,6]. The pinning 

potential of the twin planes is represented by a periodic array or lattice of extended 2D 

pinning structures. Although in reality the distance d^p between the twin planes varies 

(randomly spaced defect boundaries, see fig.3.7), djp can be satisfactorily approximated 

as a constant. A pivotal point is, of course, the assumption that the order parameter is 
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suppressed within the twin planes, reinforced as we will later see, by the experimental 

observation of vortex attraction to the twin boundaries. Finally, in a first approximation, 

all the effects of point disorder can be neglected [5]. 

Assuming, thus, a suppression of the order parameter in the twins, the vortex with its 

normal core will be attracted to them and adjust in such a way, as to accommodate to the 

planar defects and gain from the pinning energy. Blatter et al. [5,6] studied the situation 

when the applied field lies within the ab plane. For an external field making an angle 

9 with the twin boundaries, three different vortex structures can arise, depending on the 

value of 9 (figure 4.1): straight vortices collinear with the magnetic field, vortices 

forming a kinked structure or, finally, straight vortices locked-in to the planar defects. 

More precisely, when the field is applied at large angles to the twins, above a 

threshold value 9^ called the trapping angle, vortices are straight and aligned to the 

direction of the external field, see figure 4.1(a). In other words, 9K is the critical angle 

above which it is unfavorable for a flux line, in terms of elastic energy, to adjust to the 

planar defects. Considering the single vortex case, this critical angle is given as a 

function of the line tension and the pinning potential of the twin boundaries Sjp: 

2-6 

Note the expected dependence of 8^ on Syp: the value of the trapping angle decreases 

as the pinning potential s^p of the twin boundary weakens. 

When the direction of the external field, relatively to the twins, drops below 9^, 

vortices are deformed (fig.4.1(b)); a kinked structure arises, with the vortex being 

aligned to a twin plane for a certain distance L (the kink length) and, thus, pointing 

along the magnetic field only on average in one period of the periodic pirming array 

(fig.4.1(b)). 

By balancing the tilt energy (line tension for the single vortex case) with the twin 

boundaries pinning potential Sxp, Blatter et al. [6] estimated the length of the vortex 

trapped segment in the defect, always for in-plane rotation of the applied field. The 

number n of kinks per vortex is shown to increase linearly with 9: 
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(4 2) 
T̂P 

where s is the sample's dimension along the field. 

(c) 

Figure 4.1: Vortex structure (thick lines) for different angles 9 of the applied 

magMgfic Hg reZafive fo f/ie fwm (Y/iiw (q) v4 coZZmear pAcwe 

8 > 8^, (%) a AzwAecf vorfex _/br 8^ < 8 < 8^ a vorfex 

for 8 < GL- Within the kinked structure, the linking vortex segments make an angle 

9K with the twin planes [5,6], 

Finally, the presence of the planar defects leads to a lock-in transition when the 

magnetic field is applied at angles, relatively to the twin planes, smaller than a critical 

angle 8^ (8^ < 9^) [6], Now the vortex is accommodated throughout its whole length in 

the twin plane: it is locked-in to the twin boundary (fig.4.1(c)). The lock-in angle 9^ is 

equal to: 

8, 
4-%-E, 

0 . H. 
•9, 013) 

Abandoning the single, isolated vortex approximation and considering the vortex-

vortex interactions, as in the case of high magnetic fields, the trapping angle 9K is 

reduced due to the increased elastic energy and is given by the relation [6]: 
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In eq.(4.4) a,, is the vortex lattice constant, K the GL constant and the parameter 

s = 1/y expresses the anisotropy. As in the single vortex case, the calculation is based on 

the balance of tilt energy and pinning energy, assuming that a fraction of the vortices is 

trapped by the twin planes [6], It is worth noting that in the tilt energy used for the 

estimation of the trapping angle in the collective case, the wave vector corresponding to 

fluctuations perpendicular to the twin planes k, has a cutoff limit given by the spacing 

of the twin planes d̂ p, at k = (Tr/dyp). 

Lowering the value of the external field, the above result eq.(4.4) goes over to the 

single vortex result, eq.(4.2). 

4.1.2 B o s E GLASS MODEL 

Simultaneously with the Vortex Glass model, developed for systems with random 

disorder, a pinning model for correlated disorder, e.g. twin planes, grain boundaries, 

forests of screw dislocations or columnar defects, was proposed [9,10]. The essential 

difference in the case of correlated disorder is that the extended defects produce pinning 

forces which add up coherently and not in a random way, as happens with point 

disorder. Thus, a strong rise of pinning energies can occur, which is particularly crucial 

for the high temperature superconductors. 

Considering an external field H, parallel to the extended defects, the situation is 

mainly characterised by the attraction of vortices by the defects, for similar reasons to 

those analysed above, in the case of the twin boundaries. Similarly to the Vortex Glass 

model, there is a well defined transition temperature, Tg^. Above Tgq, the thermal 

energy is sufficient to cause wandering of the flux lines among the defects on an 

unconfmed diffusive path [11] resulting in a linear (ohmic) resistance as a response to 

an externally imposed Lorentz force. 

Below TgQ the strong pinning conditions, valid for the type of disorder under 

discussion, restrict and localise vortices within, at most, the limit of a few neighboring 
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defects [11]. The phase is called Bose or Boson Glass phase, since the statistical 

mechanics of vortex localisation in a 3D extended defect can be mapped onto the 

quantum mechanics developed for the problem of the localisation of a boson particle in 

a potential minimum at 2D. The linear resistance is now zero at low currents, J « 

and non-linear I-V curves are expected, of the form: 

E oc exp ' 6 ' 
J V 

(4 5) 

J2 sets the current scale and is a function of the distance between the defects and the 

distribution function of the vortex pinning energies [12]. Assuming a short range 

repulsive vortex-vortex interaction, the predicted value for the exponent |a is 1/3 for low 

currents [13] and 1 for higher ones. 

Contrary to the existence of only one characteristic length, ^Q, in the Vortex Glass 

model, in the Bose Glass model two important localisation lengths can be defined, 

namely the /y and expressing the distances within which the localised vortex 

fluctuates, parallel and perpendicular to the z axis (Hg direction), respectively (see figure 

4.2). Both these two characteristic lengths diverge as the temperature approaches Tgo: 

Figure 4.2: Vortex localised in a tube of radius Zj_; /p is the distance along z that it 

takes the vortex to "diffuse " across the diameter of the localisation tube. 
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Figure 4.3: Superkink configuration, with the flux line tongue of transverse length 

r and extension along the magnetic field z, seeking a convenient low energy pin to 

h » : ( T . o - T ) 

' , l » ( T „ o - T r ,V|| = 2vj_ 
(4.6) 

The main transport mechanism of vortices in the Bose Glass phase, at low currents, is 

tunneling between defect sites. For reasons of optimum tunneling probability, usually 

the vortex tunnels to a distant defect with similar pinning energy. This 

variable-range-hopping (VRH) transport mechanism, as it is called, is achieved via the 

formation of double kinks or, at even lower current densities, of superkinks, as depicted 

in figure 4.3. 

An essential characteristic of the Bose Glass phase is the infinite value of the tilt 

modulus, C44, resulting from the vortex confinement. Furthermore, a Mott insulator 

phase has been predicted [13], buried deep inside the Bose Glass phase, at low 

temperatures. This occurs at vortex densities that match the density of the defects; note 

that the Mott insulator phase has been explicitly worked out for the case of columnar 

defects. At these matching conditions both the tilt modulus, C44, and the compressional 

modulus, Cjj, acquire infinite values. The Bose Glass model gives similar universal 

scaling laws to the Vortex Glass and physical quantities scale now with an appropriate 
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power of (T-TBG) [11]; the main difference is the slightly different scaling exponents 

expected for each of these two glass models [6], 

As in the Vortex Glass model at Tg, at Tg^ one expects power-law I-V 

characteristics. The phase transition from the Bose Glass to the phase above TBQ, which 

is believed to be an entangled liquid of delocalised vortices, is predicted to be sharp and 

of second order [12]. Due to the directional character of the correlated pinning a strong 

angular dependence of the position of the irreversibility line in the phase diagram has 

been also predicted [13]. This dependence is not expected in the isotropic Vortex Glass 

case, being therefore the most pronounced and distinguishing difference between these 

otherwise similar models. 

4.2 EXPERIMENTAL STUDIES OF TWIN PLANES 

Preceding and following the theoretical developments, the experimental studies of 

twinned YBa2Cu30y_g samples, from the earlier stages till recently, were focused on 

investigating the strong pimiing properties of the twin boundaries. 

First Vinnikov et al. [14] and Dolan et al. [15] using the Bitter decoration technique 

managed to demonstrate, at low magnetic fields, the attraction of vortices in the defect 

boundaries; the vortex density appeared to be larger within the twin planes than in the 

bulk. This was also evidence for the suppression of the order parameter within the twins. 

Transport data of Worthington et al. [16] in bulk and twinned YBa2Cu30y_g showed a 

characteristic shoulder in the resistivity above the melting point of the solid. They also 

showed an abrupt increase of the viscosity at the temperature this shoulder starts - on 

lowering T. Marchetti and Nelson [17] explained the data in a frame of vortex 

entanglement and strong pinning by twin planes. Due to entanglement the viscosity of 

the vortex liquid is increased. Twin planes, acting as pinning centres and taking 

advantage of the flux liquid's enhanced viscosity, manage to anchor a large portion of 

the vortex liquid. 

SQUID magnetometry measurements in a wide temperature and field regime by 

Welp et al. [18], both in untwinned and in twinned crystals containing a dense pattern of 
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opposite twin planes domains, demonstrated an increased critical current in the case of 

the twinned samples. This increase occured for both orientations of the applied field: 

parallel to the c-axis and within the ab plane. At about the same time, Kaiser et al 

[19], again by means of magnetic measurements, also concluded that twin planes 

enhance pinning and subsequently critical current densities in YBa2Cu307.5. The strong 

pinning picture was also supported by torque measurements by Gyorgy et al. [20], with 

the applied field's direction being rotated relatively to the extended defects. 

A study of the angular dependence of the resistive transition curves in simply 

twinned' single crystals of YBa2Cu307.5 was performed by Kwok et al. [21]. This 

confirmed, at the time, the strong pinning character of twin planes, for orientations of 

the magnetic field parallel, and a transport current applied at 45° with the planar defects. 

This careful experimental work showed that resistivity is minimum for applied fields 

orientated within 1 ° of the twins, giving a critical angle between the field and the twin 

planes of the order of 1° - 3°, the angle above which the kinked structure ceases to exist, 

see figure 4.4. 

T = 91.26 K 

H = 1.5T 

H II twin planes 

50 150 

Figure 4.4: Angular dependence of the resistivity, after Kwok et al. [21]. 9 is the 

angle between the applied field and the measuring current which flows in the ab 

plane [21 J. 

We will call throughout this work simply twinned the crystals that contain twin planes oriented in only one 
direction. 
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Similar results were presented in a follow-up work by the Argonne group [22]. 

Fleslier and coworkers used a number of simply twinned crystals. The applied field was 

rotated from the c-axis to the ab plane whereas the transport current was applied in the 

ab plane. They succeeded in having a variety of different Lorentz force directions: 0°, 

45° and 90° relative to the twin boundaries. For all the different geometries studied, twin 

boundaries enlianced vortex pinning both in the locked-in regime (vortices parallel to 

the defects) and in the kinked structure regime, for the trapped length of the flux lines. 

The angular variation of the resistivity verified the results of Kwok et al. [21]. 

Evidence for the existence of a kinked structure came also from the work of 

Grigorieva et al. [23,24], who used the Bitter decoration technique. Twin planes 

appeared to be effective in attracting vortices for a large angle interval between the 

applied field and the planar defects, supporting the kinked structure picture. 

A novel approach to the problem of twin planes was made by Duran et al. [25] who 

used a real time magneto-optical imaging technique to study their effect. Their 

measurements were on lightly twinned YBa2Cu307.5 single crystals and in a restricted 

range of applied fields (up to 500 Oe) and temperatures (around 50 K). However their 

results showed that contrary to previous reports twin planes could also facilitate and 

guide vortex motion. In particular, twin planes provided paths for easier flux penetration 

into the sample, in the case of motion along these extended defects; however, as before, 

for transverse vortex motion the defects acted as strong pinning centres. 

Nevertheless, Dorosinskii et al. [26,27] and Vlasko-Vlasov et al. [28] used the same 

real time imaging technique but with an improved resolution to reach to the opposite 

conclusions. They studied twinned YBa2Cu30y_g crystals with various distances between 

the twins, in low magnetic fields, roughly up to 260 Oe. They concluded that twin 

boundaries are strong pinning centres which never facilitate vortex motion. Flux is 

prohibited to cross the boundaries; when during penetration flux encounters a planar 

defect, the first vortices to "arrive" at the boundary are pinned there blocking, by their 

mutual repulsion, the path of the following vortices. Thus, the latter ones promptly 

change the direction of their motion and start moving along the boundary. In this way, 

an increased flux density builds up on the side of the twin plane facing the flux motion, 

the so-called "shadow effect". Motion along the twin boundary, contrary to Duran et al. 
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[25], is not easier and is not guided, since it is realised in the presence of only one twin 

boundary and not a pair [28]. Vortex motion does not occur, either, within the boundary: 

Vlasko-Vlasov et al. [28] propose that within the planar defect itself vortices are pinned 

against both parallel and transverse motion and do not move. 

The contradicting interpretations of the magneto-optical imaging results proved the 

necessity for clear experimental evidence on the existence of easy vortex motion along 

twin planes. Furthermore, the technique's intrinsic weakness of being restricted in very 

low magnetic fields was another complicating factor. Inevitably, even if any definite 

conclusions could be drawn from such measurements, it would be difficult to apply 

them in the case of external fields higher by orders of magnitude. Our magnetic 

measurements aimed exactly there, to clearly detect a possible existence of easier vortex 

motion due to the presence of twin planes and study this effect in an extended field and 

temperature regime. 

4.3 RESULTS AND DISCUSSION 

The experiments in the University of Southampton were carried out in a variety of 

twinned and detwinned YBa2Cu307.g single crystals, using both the 12 T VSM and the 

6 T rf SQUID magnetometer [29-31]. Samples were first zero field cooled at the desired 

temperature and then subjected to a magnetic field H^. 

The dimensions, mass and the nature of the crystals (twinned and detwinned) are 

shown below, in table 4.1, with a^, ay and being, respectively, the length, width and 

thickness. All crystals have' an oxygen content of 6.91 and Tg of 93.6 K, unless 

otherwise specified. The microtwirmed crystals investigated are either multi-domained 

containing a pattern of domains with twin boundaries of different orientation or they are 

simply twinned, containing twin planes oriented in a unique orientation, see figure 4.5. 

The twin planes separation varies in the micrometer scale, between 0.5 and 5 pm. 

1 Chapter 3, section 3.5, for more details. 
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Figure 4.5: Photograph of simply twinned crystal L under polarised-light. 

Crystals a , (mm) ay (mm) ocz (urn) m (pg) Twinning 

A 1.15 0.80 57 363 twinned 

A1 0.71 0.47 53 120 simply twinned 

A2 0.75 0.50 61 155 twinned 

A3 0.70 0.35 48 80 twinned 

B 0.88 0.80 13 64 twinned 

C 0.90 0.70 112 483 twinned 

D 0.72 0.70 52 179 detwinned 

E 0.78 0.79 20 81 simply twinned 

F 1.04 0.80 52 293 detwinned 

L 0.67 0.63 24 . 70 simply twinned 

Table 4.1: Details of the investigated YBa^Cu^O^^ single crystals. Simply twinned crystals 

contain only one orientation of twin planes (see text). 
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Figure 4.6 [29,30] shows a set of comparative VSM magnetic hysteresis 

measurements, hysteresis loops, at 60 K, for twinned crystals A, B, C (figure 4.6(a)), 

and detwinned D (fig.4.6(b)). The measurements have been carried out with a magnetic 

field sweep rate of 5 mT/sec; the field was applied parallel to the c-axis, avoiding the 

complication of the layered structure. In order to make a direct comparison between the 

signals the different crystals produce, the magnetisation of each one is divided by its 

characteristic size R, where R is: 

3 a , 
R = ^ I -

3 a , 
, a%>c^ (4w3 

The Bean model predicts that for crystals with similar pinning properties, all M/R 

curves are identical [32]. Indeed, comparing data of microtwinned crystals A, B, C with 

data of detwirmed D, these first measurements demonstrate that we can experimentally 

define two field values (shown in fig.4.6(a)), Hj and H;. The existence of twin planes 

has little effect on the hysteresis width AM (and, thus, on the critical current J J at high 

fields: a satisfying agreement exists, for H, > H2, as fig.4.6 shows. However, they 

seem to substantially increase AM and therefore effective pinning at low fields, for 

Hj, < Hi, in a region which also includes the so called magnetisation's "neck". 

Our interest is focused on the intermediate fields regime, indicated on fig.4.6(a) 

between Hj and H2, where the width of the hysteresis varies and for crystals A and B an 

unexpected flattening occurs instead of the well expected "fishtail" peak. As seen in 

table 4.1, crystals A, B, C contain both types of twins, [110] and [110]. However, 

polarising light microscopy showed that crystal C has many (more than 10) domains 

with twins of opposite orientation, while crystals A and B have only a few such domains 

(less than 4). As seen in fig.4.6 and repeatedly verified, a well defined magnetisation 

peak is only observed in the case of multi-domained microtwinned crystals and for 

detwinned ones; in the case of microtwinned crystals with few domains, though, a 

depression in the hysteresis width and of the critical current is observed, always for 

intermediate fields, Hj < H^ < Hj. 
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Figure 4,6: Magnetic hysteresis for twinned crystals A, B, C, and for detwinned 

D. Hi and li2 are the empirical boundaries of the intermediate field region, where 

a depression of the magnetisation occurs. Occasionally, they appear either as 

(e.g. or a cAawge m .y/qpe q / fAe 
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A more careful study of samples A and C under the polarising light microscope, 

shows that many twin planes of one type cross the whole crystal (as depicted for crystal 

A in fig.4.7). Thus, our measurements seem to support the channeling picture given 

earlier by Duran et al. [25], but in a much broader field regime. The depression of the 

hysteresis width can be explained as a result of the easier motion of the flux through the 

behaving as channels twin planes, leading to the reduction of the sample's overall 

pinning. This preferential motion means that vortices feel in the twin planes a reduced 

pinning force per unit length fpp, compared to the equivalent pinning force f^ they 

experience in the untwinned regions. Indeed, as fig.4.6(a) shows, the depression of the 

hysteresis is observed around the magnetisation fishtail peak, where one expects f^ to be 

larger. Nevertheless, in multi-domained twinned crystals this channeling mechanism is 

expected to be far less plausible. The boundaries between the different domains 

constitute strong, columnar-like, extended defects which hinder flux motion and 

immobilise vortices. 

To verify further that vortex channeling along the twin boundaries causes the 

magnetisation depression, we cut crystal A into three pieces, Al , A2 and A3, with 

crystal Al containing a unique twinned domain, while in crystals A2 and A3 there are 

small regions with twin planes of the opposite direction. The sketch in fig.4.7 indicates 

the distribution and orientation of twins in all samples. At low and high fields, the 

magnetisation loop of all the pieces, once scaled by R, has exactly the same width as 

that of the "mother" crystal A. However, in agreement to the discussion above, in the 

intermediate field region where the flattening is observed, a remarkable further decrease 

of AM takes place. Moreover, in all the parts, A2, A3 and especially Al, the plateau is 

much more prominent and extended. As a result, unexpectedly, parts of a single crystal 

exhibit a lower critical current density than the whole. The limited number or the 

absence of any intersections of different twinned domains gives a chance for faster and 

easier channeling to vortices, decreasing even further the sample's overall pinning. The 

same experiment on crystal C, gave similar results. 

This vortex channeling situation is in a sense similar to the more recent experimental 

findings of Pastoriza and Kes [33] who artificially - by irradiation - created weak 

pinning channels and observed flow of vortices through them; also to the numerical 
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results of Brass et al. [34] and Jensen et al. [35], where a preferential motion of vortices 

along easy paths was demonstrated. Here these easy paths are (naturally) provided by 

the twin planes. Later measurements by other groups led to the verification of our 

results and conclusions, for instance similar magnetic measurements of ref [36]. In 

addition, more recent, high resolution magneto-optical studies in applied fields up to 1 T 

support the conclusion that vortices penetrate inside the planar defect, and are not 

guided along it [37]. 

I 

T = 6 0 K 

(I) 

A3 A2 Al 
Figure 4.7: Comparison of the scaled to size magnetic hysteresis for twinned 

Since channeling takes place in directions along the twin planes it should rely 

crucially on vortices being locked-in to the twin planes. It follows that removing the 

effect of the twin boundaries, by for example tilting the applied field H^, channeling as a 

mechanism should weaken; on the contrary, pinning should increase. Therefore to 
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further investigate the validity of the above drawn conclusions, we carried out a 

thorough angular study of the magnetisation in the presence of twin planes [31], in 

fields up to 6 T and temperatures up to 70 K. 

For this purpose we used the 6 T rf SQUID magnetometer. To mount the sample into 

the quartz tube, we created a step of oxygen-free copper wire under the microscope, 

giving to the step the desired inclination for our measurements (figure 4.8(a)). The 

sample was mounted on this step. In this way we applied the field at angles 9 relatively 

to the crystal c-axis between 0° and 20°, the uncertainty in the angle being less than 

0.5°. The applied field is rotated in the plane defined by the c-axis and the normal to 

the twin planes, as depicted in figure 4.8(b). 

c-axis ^ 8 

Copper wire • 
Quartz tube 

(a) 

c-axis 

(b) 

Figure 4.8: Representation of (a) a sample mounted in the quartz tube for the 

SQUID measurements and (b) of the way the magnetic field was tilted for the 

Crystals D and E were used (table 4.1). In the simply twinned crystal E the twin 

planes make an angle of 45° to the samples edges. In order to avoid problems of field 

inhomogeneity the measurements were performed using an excursion length of the 

sample equal to the minimum available, namely 1 cm. 
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Figure 4.9: Isothermal magnetisation M(H) at the indicated temperatures and 

angles for microtwinned crystal E. 

Figure 4.9 [31] represents a detailed angular analysis of the magnetisation, for crystal 

E. When is tilted away from the c-axis the measured magnetisation M arises mainly 
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from the projection of the component along the c-axis of the magnetisation, [38]. It 

is given by: 

M(H^) = Mj^(H^cos9)-cos9 (4.8) 

Thus, figure 4.9 shows Mĵ  = M / cos0 as a function of the component of along the c-

axis, Hĵ  = Ha cosG, at the indicated angles and temperatures. 

Indeed, consistently with the idea of channeling, at a given temperature and in the 

field region where the hysteresis flattening occurs, the width AM increases as is tilted 

away from the planar defects. As we will explain, this is expected from the theoretical 

predictions [6] for the existence of a kinked structure. It is important to emphasize that 

in our case the locked-in situation and the kinked structure are revealed through 

channeling of the trapped vortex segments in the twin planes, thereby leading to a 

depression of the magnetisation. 

From fig.4.9 two characteristic angles of the applied field with respect to the planar 

defects can be defined: an angle 8^ above which AM starts to increase and an angle 8% 

above which AM stops increasing with the tilt angle. At small tilt angles between and 

the c-axis, 9 < 9^, lock-in of vortices to twin planes is expected [6]; twin planes trap the 

whole length of a vortex and exert on it a pinning force fpp(9<9L) = frp(O). Theoretically 

[6], a region of kinked vortices follows; in our measurements this is demonstrated via 

the increasing of the magnetisation with 8, for 8^ < 8 < 8^. The channel produced by the 

twin planes will obviously be less effective when vortices are only partly trapped. The 

kinks [39] organise themselves into chains so that the twin boundaries are still fully 

occupied, but this time by vortex segments. Vortex segments, which feel an increased 

pinning force in the twin planes since they are anchored by the parts of the vortices 

which lie in the untwirmed regions, with the stronger pinning force Finally, at still 

larger tilt angles, 9 > 9^, vortices intersect twin planes at points, the magnetisation 

saturates and thereafter the untwinned regions are expected to dominate the crystal's 

magnetic response. Let us emphasize the fact that this was the first work, at the time, to 

produce experimental evidence for the (theoretically predicted) existence of two critical 

angles, the lock-in angle 9^ and the trapping angle 9k. Until then only one of these two 
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angles was experimentally reported, which sometimes carried the meaning of 6^ and 

sometimes the meaning of 8^ (e.g. ref.[22]). 

H cos8=4T 
0 a 

E, 19.6 

o D,(f 

T(K) 

Figure 4.10: (a) Temperature dependence of the hysteresis width at the indicated 

angles and at a constant applied field of 4 T along the c-axis. (B) A comparison 

Eybr 8 > 8x^(7) a W fAg defw/mMgcf Dybr 8 = 0° 

Figure 4.10(a) presents the temperature dependence of the hysteresis width AM at the 

indicated angles and at the applied field of 4 T. As the angle 9 increases, the temperature 

dependence of AM(T) evolves gradually into the curve for 9 = 19.6°. It is clear that by 

removing the effect of the planar defects the critical current gradually builds up. It is 

worth noticing that the value of 9^ above which the magnetisation saturates, increases 

with decreasing temperature, i.e. with increasing the pinning force in the untwinned 

regions oc AM(9K). Our results show' that at 5 K, 8^ is approximately 12° whereas at 

See also figure 4.11 (a). 
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30 K it becomes equal to 7.9° and at 60 K it is a mere 3.7°. Going back to fig.4.9, we 

have observed a similar magnetic field dependence of 8^, its value increasing with f„ 

increasing: the angle 6^ increases as the difference between the outer hysteresis loop 

(9 > 9K) and the inner hysteresis loop (0 = 0) increases, i.e. with the increase of 

AM(0 = 9K) - AM(9 = 0). This behavior is clearly seen at T = 30 K. 

For 9 < 9K, not only the hysteresis width is reduced due to channeling, but also its 

temperature dependence is deteriorating, as 9 tends to 0°. The weakest temperature 

dependence of AM is observed at 9 = 0°. This supports earlier theoretical investigations 

of the twin boundaries [6]. The twin planes are planai- defects and therefore the pinning 

potential along them is less sensitive to thermal fluctuations: twin planes are expected to 

reduce the dimensionality of thermal fluctuations, restricting fluctuating vortices in 2D. 

As a result the critical current's decrease with temperature is expected to obey a power 

law [5,6]. On the contrary, for random point disorder, due to the 3D character of thermal 

fluctuations, this decrease is theoretically expected [6] and experimentally observed [40] 

to be exponential with T. 

The observed decrease of channeling with the reduction of f^ with temperature, is in 

agreement with a later report on computer simulations by Groth et al. [41], who verified 

the critical role of the relative strength of f^p and fy on the vortex motion along the twin 

planes. The results of Groth and coworkers suggest that due to the reduced 

dimensionality of thermal fluctuations in the twin planes, a temperature increase will 

have a much more dramatic effect on f^ and therefore, above a certain "threshold" 

temperature, channeling will cease. As seen in fig.4.10(a), our measurements show 

vortex channeling up to a temperature of around 70 K; thus, according to what was 

mentioned, above this temperature regime we expect 4 to become small enough for the 

twins to no longer provide an easy and preferable vortex path. The same conclusions on 

the relative temperature sensitivity of fpp and were also drawn in a number of other 

theoretical [42] and experimental works [20,43]. 

Also illustrated in fig 4.10(b) is a comparison of the temperature dependence of the 

width of the hysteresis for microtwinned crystal E, at 9 = 19.6°, and detwinned crystal 

D, at 9 = 0°, for the same applied field of 4 T. Normalization of the data of detwirmed D 

to the size of twinned E allows a direct comparison to be made. As seen in fig.4.10(b), 
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although there is some extra amount of disorder in the case of the microtwinned crystal, 

once 8 > 6% the magnetic behavior of the twinned sample is dominated by the 

untwinned regions, and we get a close quantitative and qualitative match with the 

behavior of the detwinned sample. 

Even more revealing is figure 4.11(a) [31], shown below. It shows the angular 

dependence of the magnetic hysteresis width AM(9) at low (5 K), intermediate (30 K) 

and high (60 K) temperatures, at a constant applied field of 4 T along the c-axis. For 

each temperature the respective critical angles, 6^ and 8^, are shown; data are 

normalised by the maximum hysteresis width, AM^ax, obtained for 8 > OK-

Figure 4.11(a) supports what was stated above: the trapping angle 6^ increases as the 

pinning force in the untwinned regions f^ increases, when temperature is lowered. This 

temperature dependence is an important experimental finding. Previous theoretical 

investigations of the interaction of vortices with twin planes [13,39,44] showed that as 

the order parameter is suppressed within the extended defect, there exists an energy 

barrier s-pp which impedes transverse motion. Because of this barrier [13,6] vortices are 

locked-in for angles of the applied field relatively to the twins smaller than the lock-in 

angle; for larger angles, yet lower than the trapping angle, it is s-pp that causes the kinked 

structure. On the other hand, the trapping angle 6^ has been theoretically estimated [6] 

to vary as (8xp)°^ (see relations (4.1) and (4.4)) and to depend weakly on temperature, in 

the temperature regime that we study; this temperature dependence becomes stronger 

only when approaching Tg [6]. What our results strongly suggest, however, is a fairly 

strong temperature dependence of the trapping angle. 
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Figure 4.11: (a) Angular dependence of the normalised AM to its maximum value, 

at the indicated temperatures and at the fixed applied field of UgHgCOsO = 4 T. 
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As clearly seen in fig.4.11(a), the hysteresis width AM(8) varies linearly with 8 for 

0L < 0 < BK- In order to understand this, we must recall that at this stage, the kinked 

structure stage, fractional vortices feel an increased pinning force due to their parts lying 

in the untwinned regions. The average force per unit length exerted on the vortices will 

increase with the number of kinks, produced by the increase of 9 as predicted by 

equation (4.2). This is a direct result of the decrease of the size of the trapped segments 

in the twin planes [6]. We can express this force in terms of the relative variation of the 

length of the trapped segments 5L / L, where L is the initial trapped length for the limit 

6 = 9L s 0 and 5L = L - L(6): 

fn.(8) - f^ (8J « [fn.(8^) - fn.(8J] - — (4.9) 
L 

In relation (4.9) (^(8^) = 4, the pinning force in the untwimied regions, is assumed 

to be angle independent, since in the magnetic field range of interest and for small 

angles only the component along the c-axis is relevant for the magnetic response of the 

untwinned regions [38]. For the angular variations considered here and from simple 

geometrical reasoning (fig.4.1(b)), 5L / L can be approximated as: 

S (4.10) 

L &n8K 

In addition, the relative decrease of the width of the magnetisation can be writen as: 

AM(e)-AM(9,) 
* /UV%8K)-/UW(8L) 

Thus, combining relations (4.9) - (4.11) and taking into account that 4 oc AM(9K), 

fTp(0L) AM(9L) and FRP(9) oc AM(9), one finds that: 

f n . ( 8 ) - f ^ ( 8 J 8 

f , - f ^ ( 8 J " 8 

in agreement with the experimentally observed linear behavior of 5R depicted in 

fig.4.11(a). 

Figure 4.11(b), on the other hand, shows a striking scaling of the curves represented 

in fig.4.11(a). The relative decrease 5R, as defined by eq.(4.11), is plotted as a function 

of 9 / [AM(9k)]'''^ at the indicated temperatures. As shown, also, in figure 4.12, a similar 
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analysis at T = 30 K for various applied fields leads to the same results. All the curves at 

all the temperatures for magnetic fields above 2 T converge into one. 

From the above it is evident that 8^ and 0^ have the same temperature and field 

dependence. Furthermore, the successful scaling with AM(9K) OC f̂ , proves that the two 

critical angles depend only on the disorder in the untwinned regions. This behavior 

further supports that only the current density flowing in the untwinned regions, J, is 

relevant for the effectiveness of the trapping potential of the twin planes. It seems that 

the increase or decrease of the strength of the point disorder in the untwinned regions 

and consequently of 4, is followed by changes in the effective potential barrier 

produced by the twin planes. 

Vortex dynamics in the presence of extended defects has been the focus of a number 

of important, recent, theoretical works [10,12,13,39,44-49]. As discussed before, point 

disorder is theoretically expected to promote flux line wandering, while correlated 

disorder' to "inhibit wandering and promote localisation" [13], establishing the Bose 

Glass phase. In particular, in the case these two kinds of disorder coexist, weak random 

point disorder has been shown to destabilise the Bose Glass phase, inducing roughening 

of vortices. The angular study we performed is the indicated tool to distinguish which is 

the dominant pinning structure [13]. Nelson and Vinokur [13] but also Brandt [44] 

showed that in the presence of a Lorentz force perpendicular to a twin plane, segments 

of a vortex can be unpinned, forming half loops. These half loops extend for a distance 

L|| and Lj_ in the directions parallel and perpendicular to the twin boundary, see fig.4.13. 

Our experimental data verifies these theoretical predictions. Indeed, if w is the width 

of the potential barrier Sjp of the twin plane, when we consider that a vortex is confined 

to a width Lj_ instead of w, we can renormalise Ĝ p [50]. Thus the effective potential 

barrier responsible for the vortex lock-in, is now: 

/ A 
W 

8 j p — G y p 

vLx y 
(4 13) 

• For directions of the applied field parallel to the extended defects. 
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Figure 4.13: Schematic representation of the half loop excitation of a vortex line 

Recalling the theoretical dependence of 8^ on gyp as found by Blatter et al. [6], 

6k (Gyp) ' but using the effective potential barrier we have: 

8^ oc 
\0 5 

W 

'TP L 
(4.14) 

a / 

Furthermore, Nelson and Vinokur [13] demonstrated that the peipendicular 

confinement length is inversely proportional to the current density J which produces the 

Lorentz force exerted on the trapped vortex (in our case J is the current density in the 

untwinned regions, J oc AM(8pJ), Lj_ oc 1/J. Relation (4.14) then automatically gives. 

Gg oc J°^ =:> 8^ oc [aM(6]^)] 
0.5 

CL15) 

explaining the expirementally observed scaling. Consequently, our data verified for the 

first time, the theoretical predictions for the behavior of a vortex localised in an 

extended defect, in the presence of random point disorder. 

Finally, the importance of the pinning strength in the untwinned regions for vortex 

channeling means that there should be two consequences. First, at low fields, at the 

magnetisation's neck, one should not expect channeling to be favorable, due to the 

much smaller value of 4 (of the hysteresis width). We have seen before that indeed this 

seem to be the case (fig.4.6(a)), but it is difficult to easily distinguish any effects there, 
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since the hysteresis "neck" extends up to only about 1 T. Thus, we carried out 

measurements on the simply twinned crystal L (table 4.1), with an oxygen content of 

6.96 (Tj, = 93.4 K). For this crystal the low field part of the hysteresis extends up to 

around 3 T, for a temperature of 50 K. The twin planes are at 45° to the sample's edges. 

We compared thi-ee different orientations of the applied field': parallel to the c-axis, 

tilted at 7° within the twin planes (denoted as 'in') and tilted at 7° in the plane defined 

by c-axis and the normal to the twin planes (denoted 'out'). As our previous results 

showed, a measuring angle of 7° is higher than the trapping angle at 50 K; thus, we can 

make a safe comparison of the aligned to the extended defects vortices case with the 

response of the bulk. Figure 4.14 presents the magnetic hysteresis of L at 50 K, for the 

three orientations. The contrast of the lower field behavior to that of the field region 

around the peak effect is clear. Tilting the applied field in the twin planes leaves 

unaffected the hysteresis width throughout the whole field range from 0 to 12 T, since 

the trapped in the twin planes vortices do not experience any change of the pinning 

force exerted on them. However, by tilting the applied field out of the twin planes, there 

is a double change. At fields above 3.6 T and around the peak effect vortex channeling 

is stalled, returning the pronounced magnetisation peak. However, at low fields, below 

around 3.6 T, AM and consequently the critical current are decreased, demonstrating 

that as expected twin planes act as strong pinning centres in this low f^ regime. 

The second consequence the critical role of on channeling should have, is that we 

should be able to observe pronounced changes on the vortex channeling mechanism in 

the same sample, by altering the oxygen concentration. Indeed, it has been shown (for 

example ref [51,52]) that for high quality, pure samples the dominant pinning centres 

are oxygen vacancies; thus, an increased oxygen content reduces the existing 

microscopic point defects and, consequently, pinning in the untwinned regions, 4 . As a 

result, one should expect that in the field and temperature regime channeling is observed 

in a certain sample, this to be quenched with an adequate reduction of f^ by doping. 

See figure 3.2 for a schematic represantation of the sampleholder. 
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T=50K 

|i H cos9 (I) 
o a 

Figure 4,14; Magnetic hysteresis of simply twinned crystal L for three different 

orientations o/Hg in respect to the twin planes: at 0° aligned with them, tilted at 

7 ° within the planar defects and tilted at 7° in the normal to the twins plane. 

To verify this, we have changed by annealing the oxygen content of twinned crystal 

A3 which exhibits vortex channeling. Figure 4.15(a) shows the isothermal magnetic 

hysteresis of sample A3 at 60 K for an oxygen content of 7-5 = 6.90 where channeling 

clearly occurs. Increasing the oxygen content to 6.96, as fig.4.15(a) vividly 

demonstrates, vortex channeling disappears. For comparison, scaled to size data of the 

detwinned crystal F at the same oxygen contents are presented. According to what was 

stated before, for a given oxygen content of a sample (and thus for A3 with the new 

oxygen content of 6.96) we can strengthen the pirming force 4 of the untwirmed regions 

by lowering the temperature (as discussed before, due to the screening of thermal 

fluctuations by twin planes fpp is much less sensitive to temperature variations than f^). 

As a result, an adequate decrease of temperature should introduce again the flattening of 

the magnetic hysteresis (vortex channeling) in our results. Indeed, by lowering now the 

temperature from 60 K down to 40 K for sample A3 at the oxygen content of 6.96, the 
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characteristic for vortex channeling shape of the magnetic hysteresis depression appears 

again, as figure 4.15(b) shows. 

T = 6 0 K 

4 

2 

0 

- 2 

-4 

A3 

7-6=6 .96 

4 0 K 

60K 

0 6 8 

(I) 

10 12 

Figure 4.15: Hysteresis loops (a) at 60 K for oxygen contents of 7-8 = 6.90 and 

6.9^ yor j AMff F (iyee ^0 A T ^ 4 J wzfA an oxyggM 

7-6 = (f.Pd. 

Unavoidably, our measurements led to the clarification of the seemingly 

contradicting previous works. Thus, the strong pinning behavior of twin planes as this 

was demonstrated in transport measurements [21,22] can be easily explained in 
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accordance to the discussion above, in terms of the competition of the pinning force in 

the untwirmed regions and in the twin planes. It is important to note the restriction of the 

magnetotransport measurements at high temperatures, around 85 - 90 K. At the elevated 

temperatures the transport technique is employed, f^ is expected to be much weaker than 

fj-p and therefore channeling is not feasible. On the other hand, previous works based on 

magnetisation measurements did not consider the strong pimiing role of the intersections 

of different twin planes domains [18] or focused in the temperature and field regimes 

where channeling is not anticipated [19]. Furthermore, under the light of the undeniable 

existence of vortex channeling and in an effort to bridge the initial discrepancy of their 

results [25-28], the Argonne-Chernogolovka and the Bell groups in more recent 

magneto-optical reports [53-55] attributed this discrepancy to the angle of the twin 

planes with the natural flux gradient. For flux entering the sample, i.e. applied fields 

near Hd, twin boundaries can prohibit or facilitate vortex motion depending on their 

angle to the edge of the sample and thus to the flux gradient; late numerical results by 

Groth et al. [41] backed their conclusion. 

4.4 (̂ CWfCLUSICMVS 

By studying the magnetisation of YBa2Cu30j_g single crystals in a broad regime of 

temperature, magnetic field and angle, we have shown that twin planes can indeed act as 

channels for easier vortex motion and consequently limit pinning and critical currents. 

This depression of the magnetic hysteresis width due to vortex channeling is favorable 

only when the pinning force in the untwinned regions is stronger than the pinning force 

in the twin planes, up to a temperature of the order of 70 K and at fields centered around 

the magnetisation peak. At low applied fields, away from the peak region, twin planes 

enhance both pinning and critical current density. Of major importance is also the 

existence of intersections of different domains of twin boundaries in the sample, which 

can provide strong columnar-like pinning centres, inhibiting channeling and hence 

preventing the decrease of the critical current. 

Our results present clear experimental evidence for the existence of two critical 

angles. Below a lock-in angle 8^ vortices are locked-in to the twin planes while above a 
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trapping angle (8^ < 0K) point defects dominate pinning. In the case of fractional 

vortices (8^ < 6 < 9^) AM grows linearly with 9. Our results demonstrate that as the 

pinning force in the untwinned regions increases, either by temperature or by field, 9^ 

increases. 

We demonstrate that the two characteristic angles 6^ and 8̂ ; scale with the hysteresis 

width obtained for 0 > 9^. This scaling suggests that contrary to theoretical 

expectations, the two critical angles depend critically on the disorder in the untwinned 

regions. The scaling of the data can be explained in terms of vortices being localised in 

a width larger than the potential well produced by the twin planes and fixed by the 

current flowing in the untwinned regions. 
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5. a PHASE DIAGRAM 

5.1 THEORETICAL BACKGROUND 

The conventional mean field vortex phase diagram for a pure system consists merely 

of a Meissner phase for < Hg, and a mixed (Shubnikov) phase for < H, < 

Above Hc2 the superconducting-to-normal transition occurs. Continuous second order 

phase transitions were predicted at Hgi and H(.2 (figure 5.1). 

Normal Phase 

Mixed Phase 

Meissner Phase 

Figure 5.1: Phase diagram for conventional type II superconductors. 

In this rather simplified picture, thermal fluctuations and their effects on the vortex 

matter were ignored. Indeed, though it was early conceived that thermal fluctuations can 

melt the Abrikosov lattice [1], at the time of the low temperature type II 

superconductors this melting line H,^(T) lied unobservably close to Hc2(T) [2,3]. 

However, in high temperature superconductors, due to the higher anisotropics, the 

high operating temperatures, the shorter coherence lengths and the nonlocality of the 

vortex-vortex interactions, the role of thermal energy becomes pivotal and is manifested 

in an enhanced value of the Ginzburg number Gi. Consequently [2] the destruction of 

the Abrikosov lattice due to thermal agitation in the H-T phase diagram occurs much 
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deeper in the Shubnikov phase, being clearly distinguishable and far from the 

superconducting-to-normal transition. This possibility was first expressed by Brezin et 

al. [4] and by Nelson [5]. 

Theoretically, the destruction of the Abrikosov lattice via melting has certain 

characteristics; total loss of translational order and a vanishing shear modulus [2]. 

However, a complete melting theory is still not available [2,6]. Similarly, the position 

and the shape of the melting line in the H-T diagram cannot be predicted. It is only the 

semiquantitative criterion of melting, expressed by Lindemann [7] in 1910 for a 

crystalline lattice, which covers this theoretical gap of understanding. 

According to the Lindemann criterion, a crystalline lattice looses its stability under 

the influence of thermal fluctuations of its constitutive elements (which can be atoms, 

vortex lines, etc.) and melts when the mean-squared amplitude of fluctuations <u^(T)>th 

increases beyond a certain fraction c^ of the lattice constant a^: 

(5.1) 

The same criterion has been used first by Houghton et al. [8] and since then 

established to estimate the melting temperature of the vortex line lattice. The so called 

Lindemann number c^ has an approximate value of CL ~ 0.1 - 0.2; this value of c^ should 

depend only weakly on the specific material of the crystalline lattice [2]. 

In addition, the Lindemann criterion can be expressed in terms of characteristic 

energies. The vortex lattice undergoes a melting transition when the thermal agitation 

energy equals the elastic energy barriers keeping vortices confined in the cage their 

nearest neighbours produce, at the lattice equilibrium positions (figure 5.2): 

KBTm = E„ (5.2) 

Nevertheless, there are serious questions concerning not only the order of this 

melting transition but also the vortex phases it separates; recently these problems have 

been the subject of a hot debate. 
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Figure 5.2: A vortex confined in the cage potential produced by its nearest 

In a clean system, above the melting transition there exists a vortex liquid phase, 

consisting of weakly confined vortex lines and exhibiting linear I-V characteristics. 

Vortex motion yields the well known flux flow resistivity (eq.(2.2)) which is a field 

dependent fraction of the normal resistivity and thus the vortex liquid state cannot be 

characterised as a truly superconducting state. The exact description of vortices in the 

liquid phase is still an open experimental and theoretical question with possibilities such 

as entangled or disentangled vortices, pinned or unpirmed liquid arising [2]. 

/ 
H 

V 1 
1 
\ 

1 
i 
1 
1 

liquid 
\ phase 

H^(T) 

solid phase liquid 
\ phase 1 

1 

Hci(T) 1 

Figure 5.3; A general form of the H-T diagram in the case of high temperature 
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Below the melting transition, always considering the clean limit, vortices freeze in 

the usual hexagonal Abrikosov lattice configuration (see figure 5.3). Brezin et al. [4] 

predicted that a transition of this kind is a first order transition. Strong numerical 

evidence for a first order melting transition was given by the Monte Carlo simulations 

of Hetzel et al. [9]. 

Making use of the Lindemarm criterion at moderate magnetic fields 

He] « Hg « Hc2, Blatter et al. [2,10] estimated the temperature dependence of the 

melting line, H,„(T). They achieved this by determining the mean-squared amplitude of 

fluctuations <u^(T)>th using the shear and tilt elastic moduli as given in chapter 2. The 

estimated temperature dependence of the melting line is then [2]; 

4 f 
CL 

H.(T) H„(0). (5.3) 

where ~ 5.6. Blatter et al. [2] derived an exponent n ~ 2, i.e. a quadratic dependence 

of Hrn on T(. - T, valid as long as the temperature T lies outside the fluctuation regime 

[2], that is 1 -1 > Gi, with t = T/T^. In addition, for YBa2C%0y_g the simple square 

power-law relation (5.3) holds only several kelvin below T^ as Blatter and Ivlev [11] 

have shown, due to the approach at lower temperatures of the melting line close to Hg2 

and the subsequent suppression of the order parameter. 

The introduction of disorder in the system complicates the problem. Weak, random, 

point disorder\ which is present in all the "real life" high temperature superconductors, 

should alter the low temperature Abrikosov lattice - but how? The Vortex Glass model, 

described in chapter 2, was believed to give a satisfying answer to the above question 

[12-15]. Pinning causes an exponential decay of translational order and destroys the 

long range periodicity of the lattice, producing a Vortex Glass phase. Simultaneously 

lattice dislocation defects are favored by disorder [13-15]. However, shear stiffness 

survives and thus critical currents too. A similar glassy behavior, as we have seen, was 

predicted by Feigel'man et al. [16] in the frame of the collective creep model. 

Nevertheless, soon a number of contradictions emerged. Noteably, decoration 

experiments of the vortex lattice revealed large dislocations-free regions [17]. 

Which will be the case in this chapter. 
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Simultaneously, new theoretical calculations suggested a slower (logarithmic) growth of 

disorder induced deformations [18]. 

Giamarchi and Le Doussal have recently proposed a new possibility for the low 

temperature solid phase [19,20]. They demonstrated that while disorder induces an 

algebraic growth of displacements at short length scales, when the lattice's periodicity is 

correctly taken into account, it takes over at large length scales and leads to a decay of 

the translational order at most algebraic. Furthermore, the authors [20] demonstrated 

that for weak disorder in the 3 dimensional case, dislocations are not favorable. The 

result is a solid phase which is free of dislocations, retains quasi-long range order and 

which is predicted to exhibit Bragg peaks in neutron scattering experiments. This weak 

glass state was therefore termed Bragg Glass phase. In agreement with the above, a 

number of other recent theoretical works verify the existence of this "rather ordered 

quasilattice" at low fields and temperatures, for example the works of Ertas et al. [21] 

and of Vinokur et al. [22]. 

A reference should be made to a few theoretical works which seem opposed to the 

streamline acceptance of a solid-to-liquid first order transition in the vortex phase 

diagram. Most notable, Radzihovsky [23,24] shows that the transition at H,„(T) should 

be continuous. Also Moore [25] suggests that the observed first order transition is in fact 

a crossover from 3D to 2D behavior once the phase correlation length along the field 

direction in the liquid^ state becomes comparable to the sample's dimensions. Finally in 

a very recent work, Canuzzo et al. [26] give an elegant alternative interpretation of this 

first order transition as a supersoftening transition of the vortex lattice^. 

1 According to Moore [25] the liquid phase exists over the whole mixed state in the H- T diagram. 

2 According to Carruzzo et al. [26] the solid phase exists over the whole mixed state in the H - T diagram. 
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5.2 EXPERIMENTAL EVIDENCE OF A MELTING TRANSITION 

5.2.1 YBCO 

The first evidence of a melting transition came from Gammel et al. [27], in vibrating 

reed experiments on YBa2Cu307.g crystals, where they found a sharp peak in the 

damping of the oscillatory motion, along a field dependent line in the phase diagram, 

Tm(H). However, it was shown that such results can also be explained naturally, by 

thermally activated depinning [28]. In this early time of rather dirty samples, transport 

and ac susceptibility measurements of Worthington et al. [29], and low-frequency 

torsional oscillator data of Farrell et al. [30] and Beck et al [31], also gave useful hints 

about a possible melting transition. 

An important step of understanding came with the transport data of Charalambous et 

al. [32], Safar et al [33], and Kwok et al. [34], on high quality single crystals. A series 

of reproducible jumps in the resistive transition at low currents, accompanied by 

hysteresis in the temperature dependence were the first signs of a first order transition. 

At these jumps (or kinks) the resistivity sharply drops to zero (upon freezing) within a 

temperature interval of a width of the order of 100 mK. This transition is shown to be 

suppressed by extended defects such as the twin planes [34,35]. 

Safar et al. [36], found in high field transport measurements in untwinned samples, a 

well defined point H p̂ in the phase diagram, on the HM(T) line, above which, H > H^P, 

the resistive transition broadens and the melting line becomes voltage criteria 

dependent. The magnetic field H p̂ plays the role of a multicritical point where the first 

order transition terminates, being replaced by a continuous, possibly second order, 

solid-to-liquid transition [36]. 

With the same technique, Kwok et al. [37] demonstrated an asymmetric hysteresis 

behavior at which they attributed to the different way the melting and the freezing 

mechanisms are realised within a pure enough sample. In a following work, Kwok et al. 

[38] detected a precursor to the melting transition peak effect. Upon melting, just below 

the solid-to-liquid transition, the resistivity decreases before it sharply increases to the 
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flux flow value pf (see eq.2.2). They interpreted this as a result of shear softening of the 

solid prior to melting and of the better adjustment of vortices to the pirming sites - a 

rather classical explanation [39]. Fendrich et al. [40], demonstrated how the first order 

transition can be suppressed by increasing point disorder. In high quality samples with a 

sharp liquid-to-solid phase transition, controlled point defects were introduced by 1 

MeV electron irradiation. The result was a smearing out of the resistive transition and 

vanishing of the resistive hysteresis. 

However, in some nice work by Jiang et al. [41], it was shown that since resistivity is 

not a thermodynamic quantity, it cannot be a safe criterion of a first order transition. 

They demonstrated that the observed resistive hysteresis can in fact be attributed to a 

current-induced nonequilibrium effect rather than to a first order transition. Indeed, if 

the scenario of a first order transition were true convincing thermodynamic evidence 

like a discontinuity of the entropy S(T,H) and of the magnetisation M(T,H), both first 

derivatives of the Gibbs free energy G, should be forced out of hiding. 

The first unambiguous such evidence came from Liang et al. [42] who reported a 

discontinuity of reversible magnetisation in untwinned YBa2Cu307.5 single crystals, by 

means of SQUID magnetometry. The sample was moved in a minimum length of 1 cm. 

Liang et al. estimated the entropy jumps ASy per vortex per CUO2 layer in units of Kg 

and found good agreement with the numerical results of Hetzel et al. [9]. It is: 

where d is the c-axis lattice constant and H,̂  the melting field. Hetzel et al. [9] 

numerically estimated a value of ASy = 0.3iCg at H,„ = 10 T, while Liang and coworkers 

estimated that at melting fields of 1 and 4 T, ASy is respectively 0.8KB and 0.6KB. 

Welp et al. [43] using SQUID magnetometry showed that the discontinuous jumps of 

the magnetisation, found in high quality untwinned YBa^CuaOy^ single crystals, 

coincide in the H - T plane with the position of the resistive kinks, convincingly 

supporting the existence of a melting transition in the vortex phase diagram of 

YBazCugO^^. In order to get these results, Welp et al. [43] used not only moving but 

also stationary-sample SQUID magnetometry, by measuring the SQUID voltage as the 
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temperature of the sample drifts, showing that the observed magnetisation jumps are not 

a side effect of any field inhomogeneities. Remarkably, Welp and coworkers found that 

the solid phase becomes denser on melting: this "icelike" melting can be due to the 

entropy gain of flexible entangled vortices in a denser liquid with long range 

interactions [44,45]. They estimated a constant with temperature value of ASy = 0.65% 

below 88 K, which rapidly decreased to zero above this threshold temperature. 

The most direct and impressive evidence of a first order transition, however, came by 

Schilling et al. [46], who performed calorimetric measurements in a high purity 

untwinned YBa2Cu30y_g single crystal and observed an entropy discontinuity (latent 

heat) which appears as a peak in the measured specific heat C. Schilling et al. estimated 

the entropy jumps ASy per vortex per superconducting layer and found close agreement 

with the values extracted in the same sample by the magnetisation measurements of 

Welp et al. [43] (fig.5.4). An approximately constant value of ASy = 0.45KB was found. 
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Figure 5,4: Entropy jump AS (in text ASy) per vortex per superconducting layer 

as estimated by Schilling et al. [46] for YBa2Cu30;^. 

A region of solid and liquid coexistence was found by Fendrich et al. [47], who 

carried out simultaneous magnetisation (stationary-sample SQUID magnetometry) and 

transport measurements in the same sample. This region is enclosed in the width of the 

magnetic transition. The magnetic and resistive melting transitions are shown to start, 

upon freezing, at the same temperature; however the first is completed at a much lower 
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temperature than the second one. Authors based their interpretation on the influence of 

the existing chemical inhomogeneities in the sample. They also showed that the melting 

transition is independent of the motion of the vortex matter. 

Finally Wu et al. [48], attempted to investigate the collapse at the first order 

transition, by measuring the complex resistivity of the vortex system. Modelling of their 

results gave a collapse of the shear modulus at by a factor of 400. 

5.2.2 B S C C O 

Together with YBa2Cu307.5, Bi2Sr2CaCu20g is the only high temperature 

superconductor whose the phase diagram has been the focus of so many experimental 

and theoretical studies. The essential difference in this case is that Bi2Sr2CaCu20g has a 

substantially greater anisotropy y than YBa2Cu30y.g. Because of the large anisotropy the 

various phase transitions in the Bi2Sr2CaCu20g phase diagram occur at particularly low 

fields, compared to YBa2Cu307.g, of the order of a few hundred Oe. Furthermore, while 

for YBa2Cu307.5, as we have seen, the first order transition is theoretically and 

experimentally considered to be a solid-to-liquid melting of vortex lines, in 

Bi2Sr2CaCu20g other possibilities also arise. 

Theoretically, Glazman and Koshelev [49] proposed the existence of a temperature 

independent critical field, 620- Below 820 pancake vortices in different layers coupled 

via electromagnetic (EM) and Josephson interactions, are lined up and form vortex 

lines. Above 820 the energetic cost of in-plane shear deformation is bigger than that of a 

tilt deformation on the scale of the interlayer distance d [49,50] and the flux lattice 

decomposes into weakly interacting 2D lattices. Taking the parameter k^ax ~ 1/^ab, it is 

[6,49]: 

- d) 
yZ.d: 

13,0 = 2 . ° .X / C5.5) 

In addition, Glazman and Koshelev [49] predicted that for strongly layered 

superconductors and B < 820, with increasing temperature first a 3D solid-to-liquid 

melting transition occurs followed by a decoupling transition from a vortex line liquid 

86 



Chapter 5: The YBa^Cu^Oy g Phase Diagram 

to uncorrelated vortex pancakes. The latter marks the vanishing of the tilt modulus C44. 

For fields higher than B2D where 2D lattices exist, a melting transition to a hexatic phase 

is predicted with simultaneous vanishing of C44 and Cgg - this hexatic phase is turned into 

a liquid at higher temperatures. 

Experiments of small-angle neutron diffraction (SANS) by Cubitt et al. [51] were the 

first to show a flux line lattice in Bi2Sr2CaCu20g and a rapid drop of the diffraction 

intensity at T,„(H) with a simultaneous appearance of finite resistance in the mixed state. 

At the time this result was interpreted as a 3D vortex lattice melting. The diffraction 

intensity disappeared also at low temperatures with increasing the applied field, due to 

the flux lattice decomposition above a field B2D as described earlier. 

)LISR measurements by Lee et al. [52] also showed a sharp transition of the flux line 

lattice, determined from a sudden sign change of the asymmetry of the field distribution, 

which they associated with flux lattice melting. In addition the low temperature 

decomposition transition in field was observed. 

Magnetic and susceptibility measurements of Pastoriza et al. [53] gave the first 

thermodynamic evidence for the order of the observed transition. An abrupt change in 

the magnetisation and a frequency and amplitude independent peak of the in-phase 

component of the ac susceptibility witness a first order transition. The authors found 

good agreement of their results with the Glazman-Koshelev model [49] and they 

attributed the first order transition to decoupling. They estimate a ASy ~ 0.06kb. Similar 

work by Doyle et al. [54] with a miniature mutual inductance technique led to the same 

conclusion. 

In an elegant work, Pastoriza and Kes [55] suggested that in Bi2Sr2CaCu20§ melting 

and decoupling can be a simultaneous event. Using a partially masked and irradiated 

crystal they detected a sharp voltage drop at the freezing temperature due to the 

appearance of shear vortex-vortex interactions. 

An important step was taken by Zeldov et al. [56] who used miniature Hall probes to 

measure the local vortex density. They have shown a discontinuous field and 

temperature dependent decrease of a thermodynamic quantity, the flux density (dc 

magnetic induction) which can be directly attributed to a first order transition. Zeldov et 
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al. found an unexplained flattening of the transition line at low temperatures and further 

down its termination in a critical point. They also observed the freezing expansion of 

vortex matter and estimated a value of ASy which increased with temperature, figure 

5.5. They attributed the transition to sublimation, that is simultaneous melting and 

decoupling of a solid lattice to uncorrected pancakes. 
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Figure 5,S: The entropy jump AS (in text ASyJ per vortex per superconducting 

aj' ef a/. ybr Bi2Sr2CaCu20g . 

It is worth mentioning that the thermodynamic origin of the results of Zeldov and his 

coworkers was challenged by Farrell et al. [57], who claimed that the observed jump in 

local and global magnetisation can be attributed (in the case of Bi2Sr2CaCu20g only) to 

artifacts such as flux inhomogeneities caused by geometrical barriers. Farrell and 

coworkers demonstrated that the entropy jump is controlled by the magnetic 

irreversibility, making it difficult to relate it to a true phase transition. 

Finally, it was shown by Blatter et al. [10] that when one incorporates the EM 

interactions in the study of the vortex system at high anisotropies, as in the case of 

Bi2Sr2CaCu20g, the transition is best described by the power law of eq.(5.3) with n=3/2; 

Hm(T) H,,(0) 1-
T 

3/2 

(5.6) 
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5.3 PEAK EFFECT 

Another intriguing feature is the magnetic hysteresis anomaly observed in these high 

temperature superconducting oxides, namely the increase of the magnetisation with the 

magnetic field. Contrary to the peak effect in conventional superconductors, observed 

close to Hc2, in the high-T^ oxides the anomaly is evident well below 

In the past, proposed explanations have attributed this peak in the magnetisation to a 

percolating network of normal zones, like Daeumling et al. [58], or reversible zones, 

like Klein et al. [59]. Sample inhomogeneities provide new pinning centers and cause 

the increase of the critical current with the field. After the peak maximum they turn 

normal or reversible, the crystal acquires a granular structure and the magnetisation 

decreases. 

A 3D to 2D vortex lattice transition has been also considered, e.g. by Hardy et al. in 

Tl-based single crystals [60]. G. Yang et al. [61], working in Bi2Sr2CaCu20g suggest a 

matching effect between the decoupled 2D pancake vortices and dislocations networks 

present in the crystal, to be the cause of the observed peak effect. Another possible 

explanation was a crossover between bulk pinning and surface barriers, as Kopylov et 

al. [62] have proposed. 

Other possible interpretations of the peak effect are based on the clasical approach of 

Pippard where the increase of current with magnetic field is due to an improved 

adjustment of vortices to the pinning potential. This can be a result of elastic softening 

of the vortex lattice (e.g. work by Zhukov et al. [63]). 

It was only recently that the peak effect was attributed to a sharp phase transition by 

Khaykovich et al. [64]. As we will analyse in the next session, in their study of the 

vortex phase diagram in Bi2Sr2CaCu20g, the authors suggest that the peak effect there 

is produced by an unprecedented thermodynamic phase transition of the flux line lattice, 

between two distinct solid phases. 

Coming to the specific case of the less anisotropic YBa2Cu307.6 the peak in the 

magnetisation reported until now, commonly called the "fishtail" peak, has two main 

characteristics: firstly, it is very broad and thus unlikely to result from a relatively sharp 
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thermodynamic vortex phase transition and secondly, its field position Hp(T) decreases 

with temperature. 

5.4 RESULTS AND DISCUSSION 

Magnetic measurements were performed in the 12 T VSM in Southampton [65]. 

Transport measurements were carried out in the cryostat of the VSM [65]. The samples 

were zero field cooled at the desired temperature and then the magnetic moment was 

measured as a function of the magnetic field, which was applied at a constant sweep 

rate. 

Transport measurements were performed by S. Pinfold. A conventional four point 

AC method was used, with an AC current source and a Stanford SR530/830 Lock-in 

Amplifier to measure the voltage drop. The technique had a resolution of 5 nV and was 

applied in a field range up to 12 T. Contacts to the samples were made by applying 

narrow pads of Ag epoxy on the crystal, after its thorough cleaning. The epoxy was 

Dupont silver conductive composite 7838. For a four point measurement, the current 

pads covered the two opposite edges of the crystal, so as to provide a uniform current 

density. The voltage pads were placed on the upper surface of the crystal. Care was 

taken to avoid any contact between the different pads. The crystal was then placed in the 

furnace with an oxygen flow. The curing temperature was chosen equal to the annealing 

temperature, in order to prevent any change of oxygen content. After curing for 1 h the 

crystal was quenched to room temperature. Gold wires of 50 pm diameter were attached 

to the pads with Ag epoxy and then dried at 120° C. The resistance of the contacts is 

typically less than 1 Q. For the measurements we used a transport current of 0.1 mA. A 

schematic representation of a crystal with the employed electrical contact configuration 

can be seen in figure 5.6. 

Details of the crystals used can be found in table 5.1, below. DT and TW stands for 

detwinned and twinned crystals, respectively; is the length, tty the width and the 

thickness of the sample. As explained in section 3.5, to produce oxygen concentrations 

of 7-5 = 6.90, 6.93, 6.96 we annealled the samples at 520°, 475° and 450° C 

respectively, in the presence of oxygen flow. 
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Figure 5.6: A schematic representation of a sample with the attached electrical 

contacts for resistive measurements. 

Crystals (mm) Oy (mm) a , (nm) m(Hg) 7-5 Te 

DTI A 1.04 0.80 52 293 6.90 92.6 

DTIB // // // // 6.93 93.8 

DTIC // // // // 6.96 93.4 

DT2 1.52 0.85 65 495 6.91 93.6 

DT3B 0.70 0.70 52 179 6.93 93.8 

DT3C // // // // 6.96 93.4 

TWl 2.3 0.80 38 478 6.91 93.6 

TW2 1.16 1.00 287 2267 6.91 93.6 

TW3 0.58 0.45 180 319 6.91 93.6 

Table 5.1: The studied crystals; DT stands for detwinned, TWfor twinned. 
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Figure 5.7(a) [65] shows magnetic isotherms for crystal DTI A, from 60 K to 78 K in 

steps of 2 K and for magnetic field || c-axis, up to 12 T. These data are consistent 

with all previous reports for the magnetisation peak effect in YBa2Cu30y_8, e.g. ref.[66-

69]. The position of the, broad, main peak in magnetisation goes to lower magnetic field 

values with increasing temperature. 

7-8=6.90 

6 0 K T 0 7 8 K 

7-6=6.93 

60K' I07ZK 

(I) 
12 

Figure 5.7: Magnetic isotherms at the indicated temperatures with a step of 2 K 
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Figure 5.7(b) shows similar data for the same crystal but with a higher oxygen 

concentration (DTIB). The hysteresis loops in this case are taken from 60 K to 72 K, 

again in 2 K steps. The magnetisation peak position occurs at higher field values as 

compared to figure 5.7(a). At T = 60 K the peak position is shifted by as much as 2 T; 

this large variation is a result of only a small change in the oxygen concentration. In 

addition, at high temperatures and at fields lower than the position of the main peak, Hp, 

another smallish peak in the magnetisation appears. A "bump" appearing at 66 K 

marks the "birth" of peak P .̂ At a temperature higher by 2 K, the new peak is clearly 

distinguishable. For detwinned crystals P̂  is observed only in a narrow temperature 

range, approximately 4 K. But what is more surprising in the data of fig.5.7(b), is that 

the main magnetisation peak (which we call hereafter P^ - high field peak), narrows 

with increasing temperature and its position shifts to higher magnetic field values. 

L I H ( 1 ) 

o a 

Figure 5.8: Hysteresis width applied field at the indicated temperatures for 

sample TWl. 

Figure 5.8 demonstrates how the fishtail magnetisation evolves with increasing 

temperature for the twinned crystal TWl. As depicted, the magnetic field anomaly is a 
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two step process. We see how the two peaks and P^ evolve with decreasing 

temperature. Contrary to detwinned crystals, the peak P̂  in microtwinned samples is 

more prominent; it survives and is observed in a broader temperature range, in some 

cases up to 5 K below T .̂ 

A closer look at the main magnetisation peak P^ reveals some impressive features. 

Figure 5.9 [65] illustrates the temperature impact on P^ . It represents the magnetisation 

peak at T = 72 K and T = 74 K. The peaks are remarkably sharp for global 

magnetisation measurements and the maximum hysteresis width, which is proportional 

to the critical current density J ,̂ is strongly temperature dependent: 

AM_,(72K) ^ 

AM_(74K) 
(5.7) 

7-6=6.93 

LIH (T) 

Figure 5.9: Hysteresis loops for DTIB at 72, 74 K. The globally measured 

magnetisation peak appears only after 6 T and is sharper than anything shown 

ybr YBa2Cu307^. 

Figure 5.10 [65] depicts the width of the magnetic moment. Am, for three hysteresis 

loops of crystal DT2, at a temperature of 74 K and 76 K. These loops were performed 
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Figure 5.10: Hysteresis width vs applied field for three different magnetic field 

(vo/fage ^ 7̂ ^ AT aW 76 W D!r2. 
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2mT/s 

^iH ( I ) 

Figure 5.11: Hysteresis width for two different sweep rates, for crystal TW2. 

with different sweep rates: 3, 10 and 20 mT/s. Due to the equivalence of applied field 

sweep rate and electric field, dH^/dt oc E, these three loops correspond to different 

voltage criteria. As is clearly seen, the peak separates two different relaxation 

regimes. However the position of the remarkably sharp high field peak P^ is voltage 

criteria independent. Furthermore, the maximum magnetic moment producing the peak 

P^ is not only temperature dependent, as we have shown in fig.5.9, but also bears a 

strong time dependence. Figure 5.11 exhibits an identical response of the two peaks, but 

for a twinned crystal. In our measurements we have varied the field sweep rate in the 

maximum available window, 3 to 20 mT/s, obtaining always the same result: the lower 

field peak P̂  marks the onset of an increased relaxation rate, while the position of the 

high field peak P^ is independent of the voltage criteria. 

In contrast to our studies, previous studies on YBa2Cu30y_g reported either resistivity 

measurements where a sudden resistivity drop at T,„ was found due to vortex 

solidification, or magnetic measurements which showed a "fishtail" peak in the 
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magnetisation. It is one of the key features of the present work that for the first time 

both techniques have been combined to study the same crystals. 

Shown in figure 5.12 are the magnetisation peak positions of detwinned and 

micro twinned crystals with the same oxygen concentration, namely 7-5 = 6.91. In 

agreement with the discussion in chapter 4 concerning the suppression of the 

magnetisation peak due to vortex channelling, in order to get the magnetic peak 

positions of microtwinned crystals at low temperatures, T < 65 K, hysteresis loops have 

been carried out with a magnetic field tilted away from the twin planes by an angle of 

10°. As we have shown, this angle is enough at this temperature range for vortices to 

break loose from twin planes and interact with them at points. At high temperatures the 

positions of both peaks and P^ are represented. 

Also shown in figure 5.12 is the melting line of crystal DT2 deduced from 

magnetotransport measurements, as done by Safar et al. [33]: a rapid drop of resistance 

observed at a well defined point (H,„, T,̂ ) in the H - T plane for < H p̂ was assigned 

to a first order transition. We also find a critical point H p̂ where the first order transition 

terminates, being replaced by a continuous, probably second order, solid-to-liquid 

transition [22,33,70]. For applied fields larger than H^p, similarly to Safar and coworkers 

[70] we observe a broadening of the resistive transition, and the melting line becomes 

voltage criteria dependent. Furthermore, the expression (5.3) gives an excellent fit to the 

experimental melting line, for a fitting exponent n = 1.45: 

H. (T) =132- (5.8) 

This exponent is in the range estimated in previous published works: with an upper 

limit of n = 2 [30] from Farrell's torque data, a fit to Safar's transport data [33,34] gives 

n = 1.39 and similarly to Kwok's transport data [34] n = 1.41. From magnetisation 

measurements, Liang et al. [42] find a melting exponent n = 1.34 while Welp et al. [43] 

estimate n =1.36. 

As illustrated in fig.5.12, for crystal DT2 the broadening of the resistive transition 

takes place at fields above fJ-oHcp = 4.5 T. We observe that this value is about the same 

as the magnetic field position of the peak P^ close to the melting line. This is a result 
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which has not been previously reported for YBa2Cu30y_g. Measurements on twinned 

crystals, but with tilted away from twin boundaries by an angle of 7.5° for the 

reasons explained above, lead to similar results. 

^ T W l 

Figure 5.12: Hi„(T) line for DT2, defined with different voltage criteria (0.05, 

0.7 J, 0. j //PP a W f/ze /me ybr D r 

oxygen content, 7-5 = 6.91. Arrows indicate the critical point H^p above which 

H„,(T) becomes voltage criteria dependent and the last data point of Hp(T) for 

Recently it was shown experimentally that the peak effect in YBa^Cu^O^^ is due to 

an elastic to plastic creep crossover [71], marking the activation of topological defects in 

the vortex system. These authors considered dislocation mediated plastic creep of 

vortices, similar to the diffusion of dislocations in atomic solids [72]. In this frame, the 

plastic deformations of the flux line lattice are due to the motion of dislocations over the 

Peierls barriers associated with the periodic structure of the lattice [72]. This is not 

expected to be a thermodynamic transition [73]. Our results clarify even further the 

situation. As shown in figure 5.13(a), we obtained a perfect fit for the position of the 
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peak Py in the phase diagram, with the theoretical temperature dependence of the peak 

position resulting from this dislocations mediated plastic creep model [71], with a = 2: 

a 

(a) F(t) = 8.5 (l-t*)2 
i=i/r 

C 

0 
0.8 

O 

0.9 1.0 

t = T/T 
C 

Figure 5.13: Fitting of data for crystal TW2 with the dislocations mediated 

creep /MoakZ, TTze aY/zowM fAe 

perfect for the peak (b) but it is totally unsuccessful with the main 

jpeaA; P^. 
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H J T ) oc 1-
vT.y 

(5.9) 

However, the fit is unsuccessful at lower temperatures, before the splitting of the 

fishtail peak (fig.5.13(b)). Indeed, Abulafia et al. [71], who used weakly twinned 

crystals [73], considered the model in the temperature regime that only the peak 

appears, that is above 80 K, as our data in twinned crystals show. 

Thus, it becomes clear that the aforementioned model cannot account for the 

appearance of the peak at lower temperatures, before its splitting, and P^. This resulting 

crossover line in the vortex phase diagram, Hp(T), exhibits on its own a surprising 

similarity with the equivalent peak effect line in Bi2Sr2CaCu20g. Lately it has been 

proposed [19-22] that the Bragg Glass can be "melted" not only by thermal fluctuations, 

but also by quenched disorder. In this picture, Hp(T) separates two distinct solid phases: 

a weakly disordered quasilattice associated with the Bragg Glass phase [19,20] and a 

highly disordered solid at higher fields [21,22]. These two phases, together with the 

liquid phase connect to a multicritical point (Hq^Tcp) [21,22]. In Bi2Sr2CaCu20g, due to 

the sharpness of this vertical transition it was suggested that it represents a second order 

thermodynamic transition [64]. As further evidence, it was also shown by Khaykovich 

et al. [64] that the magnetisation peak correlates to the multicritical point. The same 

impressive results in Bi2Sr2CaCu20g were produced by Tanegai et al. 74] and Ooi et al. 

[75], with local magnetisation measurements. Coming back to our particular case, the 

additional observation of a voltage criteria independent peak, which also correlates to 

the multicritical point, seems to reinforce this scenario. 

In the comparison with Bi2Sr2CaCu20g one should also take into account the striking 

similarity in the temperature behaviour of Hp(T) in the phase diagram (fig.5.13). As in 

Bi2Sr2CaCu20g [64] the same non-monotonic temperature dependence is observed. The 

astonishing similarity of the temperature dependence between the peak effect in 

YBa2Cu30y_g and in Bi2Sr2CaCu20g is more apparent when one compares with the 

results in the latter compound presented in refs. [74,75]. 

To test this observed identical behaviour of Hp(T) in YBCO and in Bi:2212, we went 

further and studied its response to different oxygen stoichiometry. Oxygen doping 
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decreases the out-of-plane anisotropy y, leading to more isotropic samples. It has been 

also shown that it can affect the microscopic pinning, by reducing the number of oxygen 

vacancies [63,76]. In Bi2Sr2CaCu208 it was demonstrated by Khaykovich gf a/. [64] that 

oxygen doping shifts both the first order transition line and Hp(T) to higher fields in the 

phase diagram. Numerous other reports have since then confirmed this result for 

Bi2Sr2CaCu20g [74,75,77,78]. 

OJ &8 
T/T 

Figure 5.14: Position in the H-T plane of the magnetisation peak line, Hp(T), and 

the melting line terminated at the multicritical point, for crystals with different 

Figure 5.14 [65] illustrates the magnetic peak positions in the phase diagram for 

different oxygen concentrations. Data are from (two) crystals DTI A, DTIB, DTIC and 

DT2. As depicted, Hp(T) shifts systematically and reversibly up and down in magnetic 

field, with the oxygen concentration increasing and decreasing respectively. As for 

Bi2Sr2CaCu20g, the non-monotonic temperature dependence of Hp(T) strengthens with 

oxygen doping. Also in fig. 5.14 is the melting line for two different oxygen 

concentrations of crystal DT3: DT3B and DT3C. At an oxygen content of 6.93 the 

multicritical point is found at 7 T, in agreement with Hp(T). By doping the melting line 
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is pushed upwards. We varied the field up to 11T; however, no sign of broadening of the 

resistive drop at the first order transition was observed. Identically with 

Bi2Sr2CaCu20g, Hp(T) is pushed by oxygen doping upwards in the vortex phase 

diagram coherently with the multicritical point. This response provides impressive 

evidence for the universality of the phase diagram in the high-Tg superconducting 

oxides with weak random point disorder. 

Theoretically, the field-driven transition of the vortex lattice between a quasi-ordered 

and a highly disordered solid phase is still not fully understood [21,22,79,80]. At some 

characteristic field the pinning energy becomes equal to the elastic energy barriers of the 

vortex lattice: 

Epm = I^ (5 10) 

At this point the destruction of the quasilattice occurs. At the present [20,21] 

suggestions are that it involves disorder induced relative displacements (transverse 

wanderings) of the order of a^, the vortex lattice spacing, and finally permutation of 

neighbouring vortices. The resulting frozen configuration of twisted vortices can be 

characterised as an entangled solid, see fig.5.15 [21,22]. Loss of translational and 

topological order of the vortex matter leads to the domination of dislocations. On the 

contrary, the existing Bragg Glass phase below the transition retains translational order 

at long distances and perfect topological order [19,20,79,80]. Using the relation (5.10), 

Vinokur and coworkers [22] have shown explicitly that for YBa2Cu30y_g the magnetic 

field values at which this transition is expected to occur vary proportionally to (y A)'̂  , 

where y is the anisotropy and A is the strength of the point disorder, in agreement with 

the obtained experimental results [65]. 

Very recently it was pointed out that for the destruction of the Bragg Glass not only 

the appearance of dislocations is important, but also the length scales at which these 

dislocations appear relatively to [81]; in this frame, a scenario was proposed for 

YBa2Cu307.5 which explains the peak effect at fields lower than the multicritical point. 

Our measurements strongly suggest that exactly as predicted by Giamarchi et al. [81], at 

high temperatures, thermally induced unbound dislocations can invade* the vortex 

1 If the translational order is sufficiently weak. 
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system first at large length scales compared to a^, affecting the critical current and 

producing a peak effect (Pp. However, the first order transition and the field-driven 

transition to the entangled state remain unaffected, since the relevant and important 

length scale for these transitions is In any case, at higher fields, massive large scale 

plasticity due to multiple creation of topological defects at the disorder induced field-

driven transition occurs, with destruction of the quasi-ordered lattice at all length scales, 

down to a ,̂. The main magnetisation peak (Pp marks the transition to the highly 

disordered vortex state. The picture of this field-driven transition is similar to the one 

given by numerical simulations results of Ryu et al. [82], who found a highly disordered 

solid phase above a threshold field, with an "explosive invasion of infinite defect loops 

meandering across the layers and colliding with each other" [82]. 

Figure 5.15: The mechanical entanglement transition: increasing the external 

field the initially confined in its cage potential vortex (a), switches positions and 

twists with its neighbours (b), ending up in a configuration of entangled flux lines. 

Since the necessary condition for both the first order and the field-driven transition is 

the existence of the basic hexagonal vortex lattice cell, extended defects such as the twin 

planes should not affect the position in the H - T plane of Hp(T). Indeed, this is evident 

in figure 5.12, where we observe Hp(T) to be the same for detwinned and twinned 

crystals, with the same oxygen content. For the transition to the "frozen liquid" (i.e. 

entangled solid) to occur, the relative displacements of the nearest neighbors in the cage 
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potential have to be of the order of [22,81]. Twin planes pin a certain number of 

vortices and enhance the critical current; however their pinning range is quite limited, 

10-50 A, see for example ref.[83]. Unlike point defects such as oxygen vacancies which 

are randomly distributed, a relatively low density of twins cannot affect the decisive 

local ordering and therefore twins can leave the field-driven transition unaffected [84]. 

As mentioned in section 4.3, the distance between the twin planes d^p varies in our 

samples between 0.5 and 5 |_im. Thus, for example, at a field of = 4 T, the vortex 

lattice constant is a ,̂ ~ 22.7 nm. Considering an average value of d-j-p ~ 2 jim, means that 

the untwinned region between two adjacent twin boundaries can accomodate across its 

width around 90 delocalised vortices, which are positioned in a proper hexagonal lattice 

formation and undergo the transitions. On the other hand, the presence of extended 

defect structures (e.g. twins) is predicted to weaken the translational order [84,85] 

making the quasi-ordered Bragg Glass more unstable to dislocations. This explains what 

we observe as an enhancement of in the twinned samples. 

In agreement to the above, the non-monotonic temperature dependence of Hp(T) can 

be naturally understood by considering the combined effect of disorder induced 

wandering and thermal fluctuations displacements on vortices [21,22]: the decrease of 

the pinning energy Epî  with temperature, due to the softening of the pinning potential in 

the presence of thermal fluctuations, leads to an increase of the solid-to-solid transition 

fields [21,22], This increase occurs above a certain temperature T* which is equal to the 

depinning temperature [21]. Our results (fig.5.13) show a T* ~ 70 K, in good agreement 

with the theoretical estimations for the depinning temperature in YBa2Cu30).g (for 

example Blatter et al. [2]), see figure 5.16. 

Our phase diagram depicted in fig.5.16(b) is in accordance with the recent theoretical 

suggestions [20-22,79-82]. Two solid phases, a quasi-ordered Bragg Glass phase and a 

highly disordered entangled solid phase, are separated by an entanglement transition, 

see figure 5.16(a). Liquidification occurs via two different transitions: a first order 

transition for the Bragg Glass and a second order transition for the entangled solid. All 

phases, solid and liquid, meet in a critical point. 
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Figure 5.16: (a) Er/aa' 

Phase diagram for DT2 as derived by our combined magnetic and transport 
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5.5 CONCLUSIONS 

In conclusion, our results in high purity single crystals of YBa2Cu30y_g reveal the 

existence of a sharp, voltage criteria independent magnetisation peak. The magnetisation 

width at the peak is observed to be strongly dependent on temperature and sweep rate. 

Combining transport and magnetic data we have shown that the resulting magnetisation 

peak line Hp(T) in the vortex phase diagram of YBa2Cu307.5 represents a well defined 

crossover which shifts to higher fields with increasing oxygen doping and temperature, 

always correlating with the multicritical point. 

We have shown that our results can naturally be fitted in the recently suggested 

picture of the existence of two distinct solid phases, a quasi-ordered lattice at low fields 

and a highly disordered solid at higher fields. By its turn, this picture suggests the 

existence of a generic phase diagram for all the high temperature superconductors. 

Moving in this direction, our results show an apparent and remarkable similarity with 

results obtained for the highly anisotropic Bi2Sr2CaCu20g. 

Finally, our results demonstrate that low densities of extended defects, in this case 

twin boundaries, cannot affect the position of the field-driven transition in the vortex 

phase diagram, or suppress it. This transition is based on the existence of a quasi-

ordered vortex lattice in the presence of random, weak, point defects such as oxygen 

vacancies. Given the limited pinning range of twin planes, these conditions are still met 

in the untwinned regions, that is the regions enclosed between a pair of planar defects. 

Consequently, the resulting magnetisation peak line Hp(T) in the phase diagram remains 

for detwinned and twinned crystals of equal oxygen content, virtually the same. 
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6. LOCK-IN OSCILLATIONS 

6.1 VORTEX STRUCTURE PARALLEL TO THE LAYERS 

In a layered structure of Josephson coupled superconducting planes, the interlayer 

distance d is by far the most important length scale when considering the vortex 

structure. As predicted back in the seventies [1,2], when is smaller than the interlayer 

distance d (more precisely when ^c(T) < d/V2) the assumption of a smooth variance of 

the order parameter T from layer to layer is not valid and new effects are expected. The 

temperature at which this dimensional crossover occurs is denoted as T ; in 

YBa2Cu30y_g the condition ^c(T) < d/V2 is valid for temperatures up to 80K [3], As a 

result, the 3D anisotropic Ginzburg-Landau and London models become inapplicable, 

since they describe anisotropic but uniform superconductors, ignoring any effects of 

discreteness. Thus the need for a new model emerges, a model that will implement the 

discrete nature of the order parameter. 

A simple model of this type is the Lawrence-Doniach (LD) model, which describes a 

stack of superconducting layers weakly connected via Josephson coupling [1]. 

Containing the 3D anisotropic models as a limiting case for > d/Vz, the LD model 

assumes a 2D order parameter ^„(x,y) which does not vary smoothly from one layer to 

the other but on the contrary vanishes in the region between the layers [4]. In this 

approach, the layered structure can be visualised as a stack of alternating 

superconducting and insulating planes (SIS structure) [3,5]. Thus, in the free energy 

functional, the LD model replaces the gradient of the order parameter along the z axis 

by a finite difference. The LD model introduces a new length scale, which depends on 

the anisotropy y, the Josephson length = yd. The Josephson length is a measure of the 

"shear stiffness" of the order parameter, large differences of the order parameter 

between two adjacent layers, are allowed only within a range equal to Ij. 

The free energy functional in the anisotropic Ginzburg-Landau case reads [3,6]: 

' % ' j ' 
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(6.1) 

where a(T) and p(T) are two temperature dependent coefficients, A the vector potential, 

A//= (Ax, Ay, 0) and B = curl A. Instead, within the LD frame, taking into account the 

Josephson coupling of the layers fj, the proposed phenomenological functional now 

becomes: 

F = d j d / 

a(T )W '+^P(T )KR+-^ 
2 4m 
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ab 
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leading to some important conclusions. First and foremost, it was realised that the 

modulation of the order parameter along the c-axis gives to the layers the features of a 

periodic pinning structure of extended defects [7]. Thus, secondly, the direction of the 

applied field Hg with respect to the layers is crucial for the structure and the 

characteristics of vortices. 

Indeed, for fields applied at an angle 9 with the ab plane below a critical angle 8 , 

vortices lock-in between the layers, running parallel to them [3]. Lock-in is 

accompanied by a "transverse Meissner effect": contrary to the predictions of the 3D 

anisotropic models, the component of B perpendicular to the planes is zero [3], resulting 

in a complete screening of the perpendicular component of the applied field. In this 

locked-in situation, the strength of the interlayer superconducting coupling, as 

characterised by affects crucially the structure of the vortex core. The resulting 

vortices are cdHQd Josephson vortices ox Josephson strings [4]. Compared to Abrikosov 

vortices, Josephson strings are similar but with a different core size and structure. The 

112 



Chapter 6: Lock-In Oscillations 

vortex core prefers to run parallel and in-between the layers, having a width parallel and 

perpendicular to the planes equal respectively to Ty and d [8], figure 6.1. This 

confinement in between two adjacent superconducting layers, grants to the string a 2D 

morphology. The usual Ginsburg-Landau (normal) core is absent and the amplitude of 

the order parameter in the adjacent layers is either not at all suppressed or merely 

weakly suppressed but not zero, depending on temperature [3,8,9], These new cores are 

called Josephson cores or nuclei or phase cores since they sustain large layer-to-layer 

phase differences. Surrounding the core, similarly to Abrikosov vortices, there is a 

region of exponentially decaying screening currents flowing around the axis of the 

string at lengths lab and perpendicular and parallel to the ab plane, respectively. 

Figure 6.1: Structure of the Josephson vortex lattice - the case of a parallel to the 

layers applied field. Dark areas represent the section of the Josephson nuclei. 

In the case of a magnetic field applied at angles larger than 0 , a staircase structure 

succeeds the locked-in state. Vortices consist of 2D pancake vortices on each layer, with 

the usual normal core, connected via portions of Josephson-like cores with width 

parallel to the planes equal to Py [8]. With the direction of the applied field approaching 

even closer to the c-axis, the staircase structure gives in to a tilted vortex lattice [3,8,9]. 

Above T one enters the quasi-SD regime. The coherence length perpendicular to the 

layers is large enough > d/V2 ) for the discreteness of the layered structure to weaken 

but not completely disappear and an effective anisotropic 3D description to be 
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applicable again. As in the quasi-2D case, the centre of the vortex core prefers to be 

positioned between the layers. The essential difference is that the core now consists of 

two components: a normal core of section ^ab^c including in its centre a Josephson 

nucleus of cross section I jd [3]. The amplitude of the order parameter is now readily 

suppressed in the layers, within the complex core section of ^ab^c [3], figure 6.2. 

Figure 6.2: Vortex core structure for a parallel to the layers external field, in the 

case of elevated temperatures, T > T (stable configuration). Bold lines show the 

reduced order parameter on the layers; the dark area is the Josephson nucleus. 

6.2 EXPERIMENTAL EVIDENCE OF LOCK-IN 

In this frame new, exotic vortex structures and lattices have been predicted, leading 

to a very rich phenomenology. The existence of vortex chains, for example, has been 

theoretically discussed [10,11] and experimentally observed [12,13] for magnetic fields 

close to Hci, applied at an angle to the c-axis. Predictions of a decomposed or a 

combined lattice [14-16] have also been experimentally verified [13,17]. 

A great deal of experimental interest has been directed at detecting the locked-in 

vortex state with the theoretically predicted, accompanying, intrinsic pinning. An 

anomaly in torque measurements, observed on an untwinned YBa2Cu307_g single crystal 

by Farrell et al. [18], was attributed to a transition to the locked-in state [19]. More 

114 



Chapter 6: Lock-In Oscillations 

precisely, as the applied field Ha rotates towards the ab plane, at 6* due to the lock-in of 

the vortices their angle with Hg increases, resulting in a torque larger than the 

conventional anisotropic London model predicts [8]. A similar anomaly was observed in 

single crystals of Bi2Sr2CaCu20g by Steinmeyer et al. [20] and of Tl2Ba2CaCu208 by 

Chung et al. [21]. Transport measurements in YBa2Cu307.5 on the other hand, exhibit an 

abrupt, impressive drop of resistivity for fields applied in the ab plane and flux motion 

geometry vertical to the layers [22,23], due to intrinsic pinning. In detecting the lock-in 

transition, vector magnetisation measurements [24,25] can be also useful, by monitoring 

the accompanying transverse Meissner effect. 

The aforementioned techniques have certain limitations. Torque measurements are 

unable to give any essential information on the dynamics that govern the behavior of 

locked-in vortices. Even their apparent use in finding out the angular boundaries of the 

locked-in state can be restricted due to thermal fluctuations and extrinsic pinning effects 

which can mask or extinguish the transition [26,27]. Coming to magnetotransport 

studies, their confinement to high temperatures, above 80 K, makes the study of the 

quasi-2D regime and consequently the detection of the 2D to 3D transition temperature 

T impossible. Furthermore, in interpreting a transverse Meissner effect one has to be 

aware of possible electrodynamic and not thermodynamic (vortex lock-in) origins [25]. 

In any case, these techniques, for different reasons, were not in a position to enlighten us 

about the behavior of the 2D Josephson strings system or verify the existing theories for 

the vortex lattice structure and behavior in the quasi-2D regime. 

6 .3 RESULTS AND DISCUSSION 

We investigated high purity untwinned YBa2Cu307^ single crystals with an oxygen 

content 7-5 = 6.91. Magnetic hysteresis measurements were carried out on the 12 T 

Vibrating Sample Magnetometer in Southampton, in collaboration with Dr. M. Oussena. 

Samples were first zero field cooled at the desired temperature and then subjected to a 

magnetic field H .̂ Unless specified, in our measurements the direction of is in the 

plane defined by either the a-axis or the b-axis and the normal to the ab plane. The angle 
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that Hj, makes with the basal plane is measured with the accuracy of our setup, 6 < 1°. 

Measurements were performed with a constant sweep rate of 5 mT/sec. 

Table 6.1 shows the relevant details of the studied YBa2Cu307.g samples. 

Crystals Oi (mm) OLy (mm) Oz (pm) m (|ig) 7-5 Tc(K) 

DTO L45 1.2 125 1479 6.91 93 6 

DT3 1.69 LOS 91 1129 6.91 9 3 ^ 

Table 6.1: Details of the two crystals used in our experimental studies with a^, Oy and being 

the length, width and thickness, respectively. 

In the locked-in state the known shape of the magnetic hysteresis changes 

fundamentally, as first observed by Oussena et al. [28]. Shown in figure 6.3 are the 

magnetisation curves at different temperatures, up to 60 K, for crystal DTO, in an 

increasing applied field up to = 12 T. The applied field is parallel to one of the 

principal axis of the ab plane (each separate case is indicated on fig.6.3); in order to see 

the effects clearly we shifted the curves along the vertical axis, a procedure that does not 

qualitatively affect the signal. As it is clear, the magnetic isotherms exhibit a strong 

oscillatory behavior, with oscillations whose periodicity increases with field. As 

demonstrated in fig.6.3, and below we will show in much more detail, the maxima of 

these oscillations are temperature independent. The observed oscillations are a direct 

consequence of the interaction of the locked-in Josephson vortex lattice with the 

periodic pinning structure that the layers represent and hence we will refer to them as 

lock-in oscillations. The observation of lock-in oscillations allows us to probe the nature 

of the lattice and the mechanism of vortex motion at the low temperature quasi-2D 

regime. 

Here we give a full account of the mechanism, pictured in fig.6.4, comparing the 

theoretical predictions to the experimental results as mapped in figure 6.3 [29]. The 

anisotropic London model predicts for nearly parallel fields a hexagonal vortex lattice 
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compressed along the c-axis and expanded in the plane direction of the crystal [3,30], 

with a field independent ratio all = 2y/V3, see also fig.6.1. Here a and / stand for the 

average vortex distance parallel and perpendicular to the ab plane, respectively, see 
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Figure 6.3: Magnetisation results for an increasing up to 12 T applied field in the 

ab plane, at the indicated temperatures, for crystal DTO. 

fig.6.4(a). The vortex lattice with the all ratio predicted by the anisotropic London 

model is a state of minimum vortex-vortex interaction energy. This state in the layered 

cuprate superconductors will be commensurate with the order parameter modulation 
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along the c-axis, for certain only values of the applied field, For = H,,, I = nd, 

where n = 1, 2, 3... and the cores of the strings, members of the compressed hexagonal 

lattice, lie in between the layers. This is the case in the dips of the magnetic hysteresis 

(e.g. points A and E in figure 6.3). 

Increasing but staying near H„, any changes in the vortex density can be 

accommodated with motion of the cores parallel to the layers (fig.6.4(b)). There are only 

two factors opposing such a guided motion: firstly the repulsive vortex-vortex 

interaction, which initially, for the commensurate values of a, is expected to be 

minimum and secondly the pinning of Josephson vortices by extrinsic defects. Taking 

into account the absence of a normal core, one expects Josephson strings to be much 

less effectively pinned by extrinsic defects; this was explicitly shown by Blatter et al. 

[6], who demonstrated the reduction of the elementary pinning force acting on a 

Josephson vortex, compared with the force acting on an Abrikosov one, by a factor of 

approximately both for 8Tg and 51 pinning. We should also remember that as 

analysed in section 2.2 (eq.2.16) for the case of vortices laying parallel to the layers 

there is a dramatic softening of the component of the shear modulus parallel to the basal 

plane, Cgg. Due to the aforementioned reasons, the motion of the strings is facilitated for 

directions parallel to the layers. This explains the extremely weak irreversibility 

measured for the field lying in the ab plane: the scaled to size width of the hysteresis for 

transverse geometry (Hg // c-axis) increases up to around 30 times. Thus, returning to 

our description, any increase of will lead to a decrease of the vortex spacing a and an 

accompanying enhancement of the mutual repulsion of the strings (points of upward 

curvature like B in figure 6.3). 

Nevertheless, in order to proceed from one commensurate state, H^+i with I = (n+l)d, 

to the next, H„ with / = nd , changes in I have to occur for field values in the 

intermediate region of H^+i and H„. This is illustrated in figure 6.4(c) and has been a 

theoretical suggestion long before the observation of lock-in oscillations [3,31]. The 

increase of leads to a point where the parallel motion of the cores is prohibited due to 

strong repulsion applied by the other cores in the same "channel"; now it is favorable 

for the nuclei to actually cross the CuOz layers by the creation and motion of pairs of 

kinks and antikinks. A fast reorganisation of vortices from the n+1 to the n 
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commensurate state begins. In the quasi-2D regime, which is the case for the 

temperature regime discussed here, the kink - antikink pair is a 2D Abrikosov vortex -

antivortex pair in the ab plane [3], In this incommensurate state, the pair has to face the 

enhanced pirming interactions present in the CUO2 plane. Thus, one expects the effective 

pinning force to maximise resulting to a peak in the magnetic hysteresis. This is the case 

in our lock-in oscillations for points as C in figure 6.3. 

As it is obvious from the geometry of the problem [3], the kink-antikink pair faces a 

force parallel to the ab plane and once it is nucleated, it also moves in the direction 

parallel to the layers (points of downward curvature like D in fig.6.3). In this way, the 

whole vortex line is "transported" to the neighbouring interlayer spacing. Finally the 

vortex system arrives at the new commensurate state and the circle is then repeated 

(fig.6.4(d)). 

a 

increasing 
field 

(a) Commensurate 
state n=4 

(b) Vortices between 
planes are only 
weakly pinned. 

(c) Formation of 
kinks and anti-
kinks; domains 
with n=4 and 
n=3. 

(d) Commensurate 
state n=3 

Figure 6.4: A schematic representation of the transition between two successive 

Interestingly, the above description is valid up to magnetic fields of the order of 

HQ = Og/yd^ ~ 200 T, in YBa2Cu30Y_G. Above HQ, all the interlayer spaces are occupied 

and any further increase of results to a mere further stacking of nuclei in each of the 

interlayer spaces [3,15]. 
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Figure 6.5: Magnetic hysteresis loops for // b-axis and two orientations 62 

(see text) for (a) T = 60 K and (b)T = 5 K. 

Figure 6.5 [29] illustrates the competitive nature of point disorder and layered 

structure, critical for the appearance of the lock-in transition. Pictured are the magnetic 

hysteresis loops for crystal DTO, for two different temperatures, 5 K and 60 K. is 

parallel to the b-axis. In one case the misalignment from the ab plane is Gj < 1° while in 

the other we intentionally created a misalignment of 82 « 2°. For 6, lock-in oscillations 

appear at 60 K, indicating that we are below the critical angle for lock-in, 6*. On the 

other hand, for 8 = 82 at 60 K the absence of oscillations in the magnetic hysteresis 

verifies that this second angle is above the critical one. As Blatter et al. [6] have shown. 
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0 can be considered either temperature independent, or even weakly increasing with 

decreasing temperature. Therefore, we expect to observe lock-in oscillations also at 5 K, 

for 9 = Gj. However, as fig.6.5(b) shows, no oscillations appear at this temperature and 

the magnetic hysteresis is essentially the same as for the second, misaligned, orientation. 

At these very low temperatures, even for our high purity samples, the pinning energy of 

the random point disorder background is quite large and, as Tachiki [32] predicted, 

kinks can be nucleated at the defects. The creation of such kinks destroys the alignment 

of vortices [32] and spoils the lock-in transition between the layers [3] and hence the 

absence of oscillations. The purity of the samples is therefore an important factor in the 

determination of the lock-in transition and the observation of lock-in oscillations. 

One has to note that the theoretical prediction of jumps in the magnetisation existed 

long before their observation in our group. They were one of the possible consequences 

considered of commensurability effects between the interlayer distance and the vortex 

lattice spacing along the c-axis [3,31,33] . Bulaevskii and Clem [31] estimated, using 

the anisotropic London model, the field dependence of / to be: 

/ = B, (63) 

with Bg = . Considering, next, the existence of the layered structure and 

incorporating their results in the LD model, they predicted that the transition from one 

commensurate to another commensurate state by jumps in I (and consequently' in a), is 

accompanied by jumps in the measured magnetisation. In addition, lock-in oscillations 

allow us to monitor the position of the Josephson strings along the c-axis in the sample 

in a very accurate way. From eq.(6.3) it is straightforward to show that: 

2 H , y 

Taking, for example, the data for crystal DTO (pictured in figure 6.3), we find one of 

the commensurate states at T = 50 K, for Ha parallel to the a-axis, at H„ = 3.45 T. For 

this value equation (6.4) gives n = 7.94 that is, by taking the integer part of the result, 

n = 8. This means that the Josephson vortex lattice has a spacing perpendicular to the ab 

1 The unit cell of the Josephson vortex lattice is given by al = <l>o^a P ' l -

121 



Chapter 6: Lock-In Oscillations 

plane of / = 8d; in other words a buffer zone of 7 empty interlayer spaces separates 

every occupied one. 

I, 

- 8 

H //a axis 
a 

H//baxis 

0.828 

0.78 

[|LLH]-0-5(T-FL-5) 
o a 

Figure 6.6: Lock-in oscillations for DTO, for along the a-axis (a) and along the 

b-axis 

The periodicity that characterises the layered structure and the succession of the 

commensurate states, together with the field dependence of I as given by eq.(6.3), are 

the reasons for the periodicity of the magnetisation in the space, as depicted in 

figure 6.6. Data are for DTO, at temperatures of 30, 40, 50 and 60 K with Hg applied 

122 



Chapter 6: Lock-In Oscillations 

parallel to a-axis and b-axis and increasing (data corresponds to these of figure 6.3). 

Again the curves have been moved vertically for clarity. We observe a remarkable 

periodicity of the lock-in oscillations with their period being the same for all 

temperatures. The temperature independence of the periodicity of the lock-in 

oscillations is in agreement with the case of pinning caused by matching of the 

perpendicular vortex lattice spacing I with the layered structure. 

We should mention that the magnetic loops for T > 60 K display some additional 

characteristics, namely a slight shift of lock-in oscillations towards lower fields, which 

we discuss below, and the appearance of additional peaks at high fields (e.g. between 

0.345 and 0.414 T"̂ ^ for H, // a-axis). The existence of these additional peaks has not 

yet been elucidated. They are observed for any orientation of the applied field within the 

ab plane. They are also observed at field values comparable to the VSM's accessible 

range, aiound 10 T (fig.6.3), which makes their study problematic. Though one could 

speculate that at this point other regular vortex structures which do not have minimal 

free energy (with a/l ratio other than 2y/V3) become energetically favorable, in the field 

range we can access these extra peaks appear only when increasing the magnetic field. 

Importantly, lock-in oscillations can be used as an accurate tool for measuring 

essential physical parameters of YBa2Cu307.g as is the out-of plane and in-plane 

anisotropy. From eq.(6.3) and the periodicity of the lock-in oscillations in the 

space, it is straightforward to extract y as: 

Y = (T) 
2 ^ V d 

(&5) 

In eq.(6.5), we took into account that in each period of the magnetisation oscillations 

/ is changing by d. Using the reported value at T = 120 K of d = 1.164 x 10"̂  m 

[34], = 2.067 x 10"̂ ^ Vs and that for crystal DTO is equal to 0.069 and 

0.065 T for the direction of the applied field parallel to the a-axis and b-axis, 

respectively, we end up with: 

j HI 
ĉb - if—^ = 6.3+0. Hg // a-axis (6.6) 

v rtik 
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Yea = = 5.6 + 0.1 //b-axis (6.7) 

The difference of the anisotropy factors Ygy and ŷ a, expected from the observed 

difference of the periodicity of the lock-in oscillations for // a and H, // b-axis 

(fig.6.6), verifies previous measurements of in-plane anisotropy in YBa2Cu307_g [12], 

where by a Bitter decoration technique a factor ranging from 1.11 to 1.15 was 

obtained. In our case is estimated as the ratio of ycb/yca and is equal to 1.13 ± 0.04. 

The values of the out-of-plane anisotropy parameter reported in the literature until 

now for YBa2Cu30y.g by means of various techniques, are scattered between 3-10 [35-

39]. One of the techniques for extracting y, suffering by fewer ambiguities, has proved 

to be measurements of torque magnetisation [40]. Based on torque measurements, 

reports in the literature give for YBazCugO?^ single crystals of similar critical 

temperature with the ones presented here (T^ > 90 K, near the optimum doped regime) 

values of y between 4-10 [39,40]. 

While our out-of-plane and in-plane y values, extracted from lock-in oscillations, are 

in good agreement with all the aforementioned cases, we went further and performed 

another check: we carried out measurements of torque magnetometry on one of the 

crystals which exhibited lock-in oscillations, namely crystal DT3. For this reason, we 

collaborated with Dr. Luc Friichter, in the Universite Paris-Sud in Orsay, who has a long 

standing expertise in torque measurements in YBa2Cu307_g and other layered high 

temperature superconductors [41,42]. 

As Kogan [43] pointed out, the fact that in high-Tg oxides the screening current loops 

have the tendency to flow preferentially close to the ab plane has an important 

consequence: the magnetisation has a normal to the applied field component. The result 

is the existence of an anisotropy torque x given by: 

I - - , 
(6.8) 

V is the volume of the sample and (j) is the angle between the external field Hg and the c-

axis. For temperatures close to Tg, by an anisotropic London treatment, equation (6.8) 

can be translated to a more practical relation, yielding the angular dependence of the 
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reversible torque [43]: 

< ( | ) ) _ (Dp IP- H t z f T ) . ? 

<54 y 
(6.90 

Ha E W 

where p is a constant of the order unity, the upper critical field measured along 

the c-axis, perpendicularly to the layers, and s((|)) = ^jsin^^ + y^ -cos^^. As Farrell has 

demonstrated [18] in YBazCu^Oy^ the above equation is valid for temperatures 

T > 80 K; there is also a field requirement [43], namely » Hg,. In our measurements 

we worked in temperatures T > 87 K with an applied field = 1 T, satisfying both 

conditions. 

Figure 6.7 [29] shows torque data for sample DT3. In the case of fig.6.7(a) was 

rotated from the c to the a-axis, while in fig.6.7(b) to the b-axis. For each orientation 

T ( { j ) ) was measured at a number of different temperatures, in the [0°,90°] interval. The 

measurement regime is completely reversible. To eliminate the contribution of the 

normal state, arising from the normal susceptibility of the sample and the sampleholder, 

we used the usual procedure: we subtracted from the raw signal the measured torque in 

the same applied field, but at a temperature T = 99 K. 

To deduce the anisotropy, we fitted each of the experimental curves of fig.6.7 with 

eq.(6.9), using as fitting parameters y, A,ab(0) and PH^2(T)- As clearly seen, eq.(6.9) 

provides an excellent fit. The resulting values for y, for both orientations, are shown in 

figure 6.8. For rotation of in the ca plane, we find [43] an average anisotropy factor 

Ycb = 7.56 ± 0.14 while for rotation in the cb plane the average out-of-plane anisotropy is 

Yea = 6.51 ± 0.22. This leads to an in-plane anisotropy ŷ ,̂ = 1.16 ± 0.05. On the other 

hand, for the same crystal, we find the periodicity of the lock-in oscillations to be 0.071 
-1/2 

and 0.063 T for // a and // b-axis, respectively (see also fig.6.9). From eq.(6.4) 

we estimate the anisotropy factors to be, correspondingly, ŷ b = 6.57 ± 0.20 and 

Yea = 5.24 + 0.20, i.e. an in-plane anisotropy of ŷ y = 1.22 ± 0.06. The results are in 

reasonable agreement with those obtained by torque with the maximum deviation from 

them being ~ 14% in the case of ŷ .̂ It is interesting to note that this small deviation 

may point towards a possible temperature dependence of y. The slightly increased y 

values come from torque, which was employed in the temperature regime around 90 K, 
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whereas we extract y from lock-in oscillations at much lower temperatures. A similar 

temperature dependence of y for YBa2Cu307.5 single crystals with Tg = 91 K was found 

by Pugnat et al. [44], from magnetisation vector measurements. However, further 

systematic studies are needed to examine this possibility. 

87.5 K 

89.5 K 

88 K 

88.5 K 
89 K 

89.5 K 

40 60 

4 ) ( d e g . ) 

Figure 6.7: The measured torque for the indicated temperatures and Ĥ  rotated in 

(a) the ca plane and (b) the cb plane. Angles are measured from the c-axis. 

Symbols are the experimental data and lines represent the theoretical fits, using 
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Thus, lock-in oscillations provide an alternative reliable way of estimating the in-

plane and out-of-plane anisotropy factors for YBa2Cu30y_g. Due to the great impact of 

the anisotropy parameters on vortex dynamics (e.g. elastic moduli), it is obvious that the 

lock-in oscillations can be extremely useful in extracting valuable information on a 

variety of other research problems (e.g. the phase diagram of Abrikosov vortices); this is 

especially true in YBa2Cu307_g, where the additional complication of in-plane 

anisotropy can introduce new effects. 
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Figure 6.8: The anisotropy values extracted from fitting the experimental data of 

7 WZY/Z GG. 

Figure 6.9 displays lock-in oscillations for DT3, at 60 K and // ab plane, at 3 

different orientations: for the applied field along the two principal axes (a and b) of the 

basal plane and at an angle of 41°+ 2° with the b-axis [29]. For the last orientation of 

the applied field, tilted at an angle 8 (in our case 8 = 41°) from the b-axis within the ab 

plane, and the geometry of the flowing supercurrents the relevant effective mass will be 

an average of m, and [43]: 
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H//a axis 

H//baxis 

H at 41° 

wthbaxis 

&268 &536 

0.852 

0.756 

0.804 

Figure 6.9: Lock-in oscillations for DT3, with Hg in the ab plane and (a) parallel 

to the a-axis (b) parallel to the b-axis and (c) in an angle ^ ~ 41 °with the b-axis. 

m(d) = m, • COSTS' + • sin^S (6.10) 

This leads to: 

m„ 
7 4 1 = m(4r) coŝ 41 + YL sin2 41 

(6 11) 
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Taking into account that, as mentioned before, the values of the anisotropy 

parameters extracted from the oscillations are ŷ b = 6.57 ± 0.20 and = 5.24 ± 0.20, 

from eq.(6.11), one expects to be approximately equal to 5.71 ± 0.15. From lock-in 
-1 /2 

oscillations now, we find the periodicity for (H ,̂ b-axis) = 41° ± 2° to be 0.067 T , i.e. 

using eq.(6.5) = 5.95 ± 0.20, in good agreement with the expected result. 

Since, according to the above, the periodicity of the lock-in oscillations depends only 

on the characteristics of the layered structure, it should be unaffected by the angle of the 

applied field with the ab plane, as long as this remains below the critical angle 9*. 

Figure 6.10 illustrates magnetic hysteresis loops at 60 K, for crystal DTO, with Hg 

parallel to the b-axis and at three different angles with the ab plane. Angles Gj and 62 ^re 

all less than 1°. In all these measurements lock-in oscillations are present. We also 

created a misalignment between the sample and the layered structure of 63 = 2° ± 0.5°; 

as seen in figure 6.10, for this angle the oscillations disappear. Thus, our results indicate 

the existence of a critical angle of the order of 1°. Furthermore, figure 6.10 verifies the 

independence of the position of the maxima and minima of the oscillations from the 

orientation of H ,̂ in the locked-in state. 

' 1 ' 1 
a 

I 

e 
2 ; 

1 1 
0 4 8 1 

S -3 

(1) 

Figure 6.10: Lock-in oscillations for different angles (see text), at 60K, for DTO 

and Hg // b-axis. 
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In figure 6.11 we present for the first time [29] the temperature development of the 

magnetisation lock-in oscillations for crystal DT3, with along the a-axis, at an angle 

8 smaller than 1° from the ab plane. Measurements for temperatures up to 80 K are 

pictured. 

Between 30 K and 40 K the width of the hysteresis Am is decreasing with 

temperature; the oscillations are weak. They appear, with a small amplitude, at high 

magnetic fields larger than approximately 6 T. As demonstrated before, at lower 

temperatures the pinning energies of the random point disorder prevent vortices from 

being locked between the CuOg planes; kinks consisting of 2D vortex pancakes with 

normal cores are created in the ab planes and pinned by point defects [32]. As a result, 

the oscillations are expected in this case to be either absent or weak. 

In the temperature interval 42-52 K two are the major findings. First, we observe an 

enhancement in the amplitude of the oscillations. This is expected: having moved away 

from low temperatures, in this temperature regime, the creation of kinks at the point 

defects is less favorable due to the depression of the elementary pinning energies. 

Therefore, an increased number of vortices becomes now locked-in. This increased 

number of locked-in vortices can account for the increase in the amplitude of the 

oscillations. 

However, we also find that the total width Am of the hysteresis unexpectedly 

increases with temperature. Indeed, figure 6.12 depicts the temperature dependence of 

the width of the magnetic hysteresis Am (proportional to the critical current) for two 

constant applied fields of 3.3 T and 8.4 T. We verified this result for all crystals that 

give lock-in oscillations and for both orientations of the applied field within the ab 

plane, i.e. parallel to both principal axes, a and b. For the increase of the total width of 

the hysteresis, one has to consider another possible effect. For a parallel to the layers 

applied field Hg, due to the easy entrance of vortex cores between the layers, the 

irreversibility measured by magnetisation is weak and reflects the extrinsic pinning, i.e. 

pinning of the Josephson cores from the extrinsic defects [3]. As we mentioned before, 

this piiming for Josephson vortices is, in the absence of a normal core, also weak. 

Feinberg theoretically predicts that raising the temperature this source of pinning can 

actually strengthen, due to the increased suppression of the order parameter in the phase 
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core, leading to an increase of the measured magnetic hysteresis width. Indeed, Blatter 

et al. [6], have calculated that the suppression of the order parameter in the centre of a 

Josephson nucleus increases with temperature proportionally to Thus, we consider 

our results to be the first experimental evidence in single crystals, of the anomaly 

predicted by Feinberg [3]. In addition, one can take into account that the layered 

structure offers now to an increased number of locked-in strings an enhanced screening 

of thermal fluctuations and effectively makes these fluctuations 2D (vortex waving 

between two adjacent layers), restricting dissipation. 

Increasing the temperature further, Am is reduced. At these elevated temperatures, 

the energy to create kinks is reduced [3,6]. Thermal energy is now sufficiently strong to 

spontaneously activate vortex kinks-antikinks pairs, introducing another important 

mechanism of dissipation [3,8]. Experimentally, the oscillations are no longer observed 

above 80 K. Taking this temperature as the temperature T* at which vortices enter the 

quasi-3D regime and the lock-in transition is not any more realisable due to the increase 

of above the d/V2 limit [18,25], one can extract ^c(T=0) from the temperature 

dependence of the transverse coherence length [3,6,8]: 

SC(T) = SC(0) 
~ x . 

(6.12) 

For T = T* we have ^c(T*) = d/V2. In YBa2Cu30y.5, with the spacing between the 

superconducting layers being equal to d = 11.64 A [33], we estimate from eq.(6.12) that 

ĝ(O) = 3.14 A. The result agrees with estimations of ^c(O) by other methods. For 

example, estimating ĉ(O) from the thermodynamic critical field H,. derived from 

specific heat measurements, results in a value of ĉ(O) = 3.2 A [45]. Welp et al. [46] 

using dc magnetisation measurements have found ̂ (̂0) = 3 A. 
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H//a-axis 

30K-38K 

42K-52K 

^ 0.0 

54K-80K 

0.284 0.426 0.568 0.710 
[|IH(T)]-0-5 T-FL-5 

Figure 6.11: Temperature development of the lock-in oscillations in the range SO-

SO K, for crystal DT3, / / a-axis. 

]32 



Chapter 6: Lock-In Oscillations 

& 

Figure 6.12: Temperature dependence of the width of the magnetisation at two 

dijferent applied fields, 3.3 and 8.4 T, as derived for the data depicted in fig. 6.11. 

54K-80K 

0.284 0 4 2 6 &568 0.710 

Figure 6.13: A slight shift of the period of the lock-in oscillations at elevated 

temperatures. Data are for DT3, with // a-axis. 
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Finally, figure 6.13 [29] offers a closer look at the data presented in fig.6.11 for 

crystal DT3 and // a-axis, at elevated temperatures. As mentioned before the 

magnetisation isotherms at higher temperatures, T > 50 K, display a slight shift of the 

lock-in oscillations at lower fields. This is because at elevated temperatures and as the 

temperature rises, the periodic pinning potential of the layered structure weakens [3,33] 

and the nucleation of pairs of kinks, necessary condition for the crossing of the layers, is 

now favorable for the Josephson cores at slightly lower fields. Note that in a recent 

numerical study of the lock-in oscillations, Ichioka [47] verified this slight lowering of 

the critical fields with the increase of temperature. 

6 .4 CONCLUSIONS 

To conclude, we have presented a magnetic study for a large range of magnetic fields 

and temperatures, using longitudinal geometry, i.e. with the external field in the basal 

plane of the samples. We have demonstrated that, for fields applied parallel to the 

layers, the observation of lock-in oscillations in the magnetic hysteresis loops of 

YBa2Cu307_5 can be a powerful tool for the study of the low temperature quasi-2D 

regime. 

The method offers considerable advantages over other techniques, especially since it 

covers an extended temperature regime. We can accurately map the position of 

Josephson vortices - their spacing along the c-axis - in the sample and the structure of 

the Josephson strings lattice. We can reliably extract essential parameters, such as the 

out-of-plane and in-plane anisotropy, ^^(0) and the temperature T the dimensional 

crossover from the quasi-2D to the quasi-3D region occurs. 

We have also illustrated the competing nature of point disorder and layered structure. 

The first tends to destroy the lock-in transition and quench lock-in oscillations, by 

offering to vortices favorable locations for the creation of kinks and spoiling their 

perfect alignment between the layers, even for an external field applied at an angle 

below the lock-in critical angle. Thus, the need for high purity samples is essential in 

order to observe the magnetisation oscillations. 
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Finally, we have presented the temperature dependence of lock-in oscillations up to a 

temperature of 80 K. Our results show a surprising non-monotonic temperature 

dependence of the width of the magnetisation curve and consequently of the measured 

critical current: these two - proportional - quantities increase with temperature, at 

intermediate temperatures. Our results can be explained by considering the interaction 

of Josephson vortices with extrinsic pinning centres, as random point defects, together 

with the reduced thermal dimensionality of the locked-in vortices. 
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7. SUMMARY 

The measurements described in this thesis represent an investigation into the 

magnetic phase diagram and pinning properties of high purity YBa^CusO^^ single 

crystals, in the vortex phase. The use of a high field Vibrating Sample Magnetometer 

(VSM) allowed the study of this compound in applied fields up to 12 T and in a large 

temperature regime. A 6 T SQUID magnetometer was also employed, while torque data 

was obtained for one of the samples. This chapter reiterates and collects together the 

main conclusions of our research in a brief summary. 

7.1 VORTEX CHANNELING 

By measuring the dc magnetisation of YBa2Cu30y_g single crystals in a broad 

temperature and magnetic field regime, we demonstrate that, contrary to previous 

reports, twin planes can actually decrease the magnetic hysteresis width and the critical 

current density, by providing easy paths for vortex motion. Our measurements show that 

of major importance is the existence of intersections of different colonies of twin planes 

in the samples, which provide strong columnar-like defects and prevent vortex 

channeling. 

We illustrate that chamieling of vortices along the twin planes occurs only when the 

pinning force in the untwinned regions is stronger than the pinning force in the twin 

planes. When this condition is not met, twin planes enhance the critical current by 

acting as strong pinning centres. 

By measuring the magnetisation for different angles 6 of the applied field with the 

twin planes, we experimentally demonstrate, for the first time, the existence of two 

critical angles, a lock-in angle 8^ and a trapping angle 0^- For 8 < 8^ vortices are 

locked-in the twin planes. For 9L < 9 < 9^ vortices form a kinked structure with parts 

lying in the untwinned regions and parts locked in the twin planes; in this phase the 
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Figure 7.1: (a) Angular dependence of the normalised AM to its maximum value, 

at the indicated temperatures and at a fixed applied field q/ PgHgCosG = 4 T along 

the c-axis. Note the existence of two characteristic angles 8^ and 8^. (b) Scaling 

of the curves illustrated in (a), with 5R being the relative decrease o/AM. The 

/mgj' are a gw/cfe 
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width of the magnetisation grows linearly with 0. Finally, for 0 > vortices intersect 

twin planes at points and the influence of twin boundaries is negligible. 

Furthermore, our results show that both these two angles, 8^ and 0^, have the same 

temperature and field dependence and evidently they are controlled by the disorder in 

the untwimied regions. We show that the two critical angles surprisingly scale with the 

hysteresis width obtained for 8 > 8% (fig.7.1). Our results verify the theoretical 

predictions for the existence, in the case of vortices trapped in the twin planes, of a 

localisation width larger than the width of the twin boundaries. 

7.2 THE YBA2CU3O7.5 VORTEX PHASE DIAGRAM 

Our results demonstrate the existence of a remarkably sharp, voltage criteria 

independent magnetisation peak in YBazCu^O?^. We show that the magnetic field 

values this peak occurs when mapped onto the vortex phase diagram result to a well 

defined crossover line, Hp(T). This line exhibits a surprising non-monotonic temperature 

dependence, shifting to higher fields at elevated temperatures. 

By using magnetotransport measurements, we also detect the solid-to-liquid first 

order transition in the phase diagram, which terminates in a critical point. Combining 

resistivity and magnetisation data, we demonstrate that FIp(T) correlates to this critical 

point. By oxygen doping we observe both the magnetisation peak line in the phase 

diagram Hp(T) and the critical point to shift upwards maintaining their correlation. 

We show that our data verify and can naturally fit in the newly proposed frame of the 

coexistence of two distinct solid phases; a well ordered solid phase at lower fields, 

associated with the Bragg Glass phase, and a highly disordered solid phase at higher 

fields, associated with a mechanically entangled vortex phase. Theoretical reasoning 

suggests that these two phases together with a liquid phase connect, in the vortex phase 

diagram, at the critical point, in agreement with our results (fig.7.2). 
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Figure 7.2: (a) Theoretical vortex phase diagram for high temperature 

superconductors, after Ertas and Nelson, (b) Phase diagram for YBa2Cu307.g as 

This picture suggests the existence of a generic vortex phase diagram for all the high 

temperature superconductors. Unification of the phase diagrams of all layered 

superconductors in a single picture has been a major challenge for vortex physics, for 

years now. Our results, moving in this direction, provide strong evidence on the 

existence of such a phase diagram. Indeed, our data in the moderately anisotropic 
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YBa2Cu307.g exhibit a surprising qualitative similarity and agreement with recent 

results for the very anisotropic Bi2Sr2CaCu20g compound. 

Finally, since the existence of a well ordered hexagonal lattice in the presence of 

random point disorder is the reason of the observed field-driven transition, extended 

defects at low densities should not suppress this vertical crossover. Our results 

demonstrate that in the presence of twin planes the position of Hp(T) in the phase 

diagram remains virtually the same. 

7 . 3 LOCK-IN OSCILLATIONS 

For an applied field Hg parallel to the CuO^ layers, oscillations are observed in the 

measured magnetisation. We show that these oscillations are temperature and 

orientation independent and that they are induced by a succession of transitions between 

states for which the vortex lattice is commensurate with the layered structure of 

YBa2Cu307.5. Due to the restriction of the quasi-2D regime at low temperatures, the 

observation of lock-in oscillations in the magnetisation is a valuable tool for the study of 

Josephson vortices. 

Indeed, our measurements verify the existence of a compressed Josephson vortex 

lattice, with the predicted by the the anisotropic London model vortex lattice spacings 

parallel and perpendicular to the c-axis. Furthermore, for every value of the magnetic 

field we can map the position of the 2D Josephson vortices along the c-axis. 

Even more important is the fact that using the theoretically expected and 

experimentally exhibited periodicity of lock-in oscillations in we can estimate 

essential physical parameters. We demonstrate that lock-in oscillations are a reliable 

tool for the calculation of both the out-of-plane and in-plane anisotropy factors. In 

addition, lock-in oscillations indicate the temperature at which the dimensional 

crossover from the quasi-2D to the quasi-3D regime occurs. This allows us an accurate 

estimation of the zero temperature transverse coherence length, ,̂.(0). 

Our data illustrates the competing nature of point defects and layered structure in the 

lock-in transition. The first destroy the vortex alignment between the layers and 
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consequently the lock-in state, by offering favorable sites for the creation of kinks. 

Therefore, purity is a basic condition for the experimental observation of lock-in 

oscillations. 

Finally, we present a systematic study of the temperature dependence of the 

magnetisation in the longitudinal geometry, in a large temperature regime. Our results 

show a surprising anomaly at intermediate temperatures: the critical current increases 

with temperature. We explain our results considering the interaction of the Josephson 

cores (appropriate in the case of parallel fields) with the extrinsic (point) defects and the 

reduced thermal dimensionality of the locked-in vortices. 
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