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INVESTIGATIONS OF THE VORTEX PHASE DIAGRAM AND

PINNING IN YBA,CU;0,_; SINGLE CRYSTALS

by Konstantinos Deligiannis

This thesis presents magnetisation studies in the vortex state of high purity YBa,Cu;0,;
single crystals.

We present magnetic hysteresis results of twinned and detwinned crystals which
demonstrate that contrary to previous reports, twin planes can limit the critical current in
a broad field and temperature region by facilitating vortex channeling. Twin planes
provide easy paths, within which vortices can move decreasing the sample’s overall
pinning. A detailed angular study of the magnetisation reveals the existence of two
critical angles, 6; and Og: for © < 6, vortices lock-in to the twin planes; for 6, <6 <06y
a kinked structure occurs; for 6 > 0O¢ the magnetic hysteresis loops reproduce the
magnetic response of the untwinned regions, where pinning is produced by random
point defects. The two critical angles Oy and 8; are shown to depend crucially on the
disorder in the untwinned regions.

Comparing magnetic to transport data we demonstrate for the first time that the
magnetisation peak line in the phase diagram of YBa,Cu;0,_5 exhibits an impressive
similarity with the equivalent line for Bi,Sr,CaCu,Og. Our results reveal the existence
of a voltage criteria independent, sharp, magnetisation peak which correlates to the
multicritical point. By increasing temperature or oxygen content the magnetisation peak
surprisingly shifts to higher fields maintaining its correlation to the critical point. At
high temperatures we observe a previously unreported splitting of the magnetisation
peak. Our data support the existence of a field-driven transition which separates two
different solid regimes: a quasi-ordered lattice (Bragg glass) and a highly disordered
phase of entangled vortices.

Finally, we use the presence of lock-in oscillations in the magnetic hysteresis of
YBa,Cu;0,_5 single crystals to study pinning by the layered structure in the quasi-2D
region. We illustrate how random point disorder can affect the oscillations. A systematic
study of the temperature dependence of the magnetisation for parallel applied fields
shows that the critical current does not decrease monotonically with temperature. This is
a result of the reduced dimensionality of thermal fluctuations of the locked-in between
the layers Josephson vortices and their interaction with the extrinsic point defects.
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1. INTRODUCTION

1.1 HIGH TEMPERATURE SUPERCONDUCTIVITY

The high operating temperatures, the small Ginzburg-Landau coherence length &, the
large magnetic penetration depth A, and the layered structure characterizing the high
temperature superconducting oxides, gave breath to novel aims and perspectives of
Superconductivity research. Since the prime feature of most applications considered is
the dissipation-free flow of current and the motion of vortices causes dissipation, the
role of pinning became more important in the High Temperature Superconductors
(HTS) than it ever had been. Indeed, the enhanced strength of thermal fluctuations as
given by the Ginzburg number [1] Gi oc y2 TC4, which compares thermal to condensation
energy in the coherence volume &3, leads to smoothing of the pinning potential arising
from materials defects. In HTS Gi is six orders of magnitude higher than in
conventional superconductors. Dissipation is furthermore assisted by the thermal

activation of vortices over their pinning barriers.

Though every member of the HTS family has a number of individual characteristics,
all of them possess a layered structure based on CuO, planes; this is not irrelevant to
their sharing of a largely common phenomenology [2], as well. The layered structure is
unveiled in a number of important properties and exotic vortex states: for example a
transition from a 3D to a 2D vortex lattice has been predicted in certain magnetic field

and temperature regions, leading to new vortex pattern structures.

It is, thus, self evident that the technological development which the discovery of
High-T, Superconductivity made possible and attainable in the near future, can be

underpinned only by a thorough understanding of vortex dynamics.
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1.2 THE YBA,Cu;04,, COMPOUND

1.2.1 STRUCTURE

YBa,Cu;04,, (widely known also with the abbreviations YBCO or 123) was the first
of the HTS discovered with a T, of approximately 90 K, above the liquid nitrogen
boiling point of 77 K. Superconductivity in YBCO was discovered almost

simultaneously by 3 groups in 1987 [3-5].

c-axis
planes

b-axis

a-axis

Figure 1.1: Crystal structure of the YBCO compound. @ Stands for oxygen, @ for
copper, O for yttrium and O for barium. (a) Structure of tetragonal and (b) of

orthorhombic (superconducting) YBa,Cu;045 .

The oxygen content in YBa,Cu;Qq., X, can take any values between 0 and 1 -
equivalently and respectively the oxygen deficiency of YBa,Cu;0,, 8, varies between
1 and 0. Higher or lower oxidization of YBCO has not been succeeded [6]. As a typical
perovskite it has a layered crystal structure. The oxygen exists in ordered form, joining a
planar structure with the copper atoms. YBa,Cu;0, is tetragonal for low x - high 6,

with a = b, see figure 1.1(a). However, this symmetry is destroyed with oxygen doping,
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due to the resulting oxygen ordering and the formation of linear chains, characteristic of
YBa,Cu;05 (fig.1.1(b)). The first fragments of chains are created at low x values and
grow with increasing oxygen doping; when they are sufficiently organized to all align to
the same direction, a transition from the tetragonal to an orthorhombic structure is
sustained. Now, the two axes a and b of the original tetragonal cell are no more the
same: a = 0.383 nm, b = 0.388 nm, ¢= 1.171 nm [6,7]. As seen in the schematic
presentation of figure 1.2, YBa,Cu;0, 5 is tetragonal for 0.6 <8 < 1 and it is only for &
less than almost 0.6 that a transition to the orthorhombic state takes place. In addition,

YBa,Cu;0,5 contains Y and Ba isolation or separation planes.

3.90
b,
a,b (A)
3.85 )
T
aO
" | ] |
3.80 5 0.5 1

Figure 1.2: The fransition of the lattice parameters a and b from the
orthorhombic (a, b,) to the tetragonal phase (ay) with oxygen deficiency, 9, in

YBa,Cu,0 5. The diagram drawn is based on data by Jorgensen et al. [8].

The effect of oxygen stoichiometry, which will be discussed in more detail in chapter
3, is dramatic, as the transition from the tetragonal to the orthorhombic phase is joined

by a transition from a non superconducting to a superconducting state.

Indeed, oxygen doping in YBCO increases the fraction p of holes per Cu atom in the
CuO, layer. This increase of the hole concentration p happens specifically in the CuO,
layers where the “seat” of superconductivity lays. Positive holes are in most HTS the
itinerant charge carriers. When 6=1 (p=0) YBa,Cu;0; is an antiferromagnetic insulator

(fig. 1.3), but as & decreases (p increases) the oxide becomes, in sequence, a non-
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magnetic insulator and a superconductor for 8 less than approximately 0.6 (or a normal
conducting metal above T.). This bewildering complexity of YBCO is common in all
HTS oxides and made these materials to seem very improbable superconductors before

1986 [7].

400 — ~ 200
\\\
300 _ tetragonal A\ orthorhombic - 150
| insulating T | T metallic
T(K) T.(K)
200 — = 100
\ e
antiferro .\1 . / :
100 — magnetic T — 50
/ superconducting
i [V | I
0 0.2 0.4 0.6 0.8 1
X

Figure 1.3: Structural phase diagram of YBa,Cu;0q,, based on the data of
ref-[9].

1.2.2 PHYSICAL PARAMETERS

As a genuine member of the HTS family, YBCO is an extreme type-II
superconductor. This means that it has a very short coherence length £ and a very large
magnetic field penetration depth A. Due to the arrangement of the atoms in parallel
planes there is a strong anisotropy present both in the superconducting and the normal
state properties [10]. In the ab plane direction, i.e. parallel to the atomic planes, the
superconducting properties are much stronger than in the perpendicular direction (c-

axis) [10]. Thus, if A,, characterises screening by currents flowing in the layers and A,
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screening by currents across the layers, it is A,,(0) ~ 150 nm while 1,(0) ~ 600 nm. On
the other hand, if £,, is the transverse coherence length, within the layers, and & the
coherence length across the layers, it is £,,(0) # 1.5 nm and £.(0) = 0.3 nm [2,11,12]. In
result the Ginzburg-Landau constant x is much bigger along the layers: ¥, ~ 100

compared with xk,, = 500 along the c-axis.

The anisotropy parameter y, defined as the square root of the ratio of the charge
carriers effective mass along the c-axis m, and in the ab plane my,, y = (mc/mab)”2 has a
value 4-10 as measured by torque magnetometry [13,14] and Bitter decoration technique
[15]. Note that the anisotropy can be also defined as a ratio of the penetration depths or
of the coherence lengths along the c-axis and in the ab plane, namely v = (€,/&.) =

(7\«./ }\‘ab) .

Finally, for an applied field parallel to the ab plane estimates for the upper critical
field give an H',(0) =~ 650 T, while the lower critical field was found to be of the order
of H!,(0)~ 180 Oe; for a perpendicular to the layers applied magnetic field the
corresponding values are H.,(0) ~ 130 T and H:,(0) ~ 530 Oe [12,16,17].

1.3 OUTLINE

This thesis is the outcome of an experimental work which started in October 1994
and lasted for three years. The bulk of the experiments was carried out on a variety of

high quality single crystals of YBCO.

Chapter 2 introduces and briefly discusses some basic phenomenological
approximations governing vortex dynamics in the HTS family. The reader is
familiarized with some of the most useful models and tools which are of frequent use in

the interpretation and discussion of experimental results.

Chapter 3 gives a brief account of the main experimental rigs used to produce the
results of the next chapters. Simultaneously, the synthesis and the variation of the
oxygen content of the studied YBCO single crystals is discussed. Certain very specific
and important points on the preparation of the samples used in the experiments, which

affect their physical properties, are presented.
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In Chapter 4, we show by means of magnetic measurements, at a time when twin
boundaries were predominantly considered only as strong pinning centres, that easy
vortex motion can occur in paths created by the twin planes, with serious consequences
in the critical current density. A study of this channeling behavior in a large temperature

and magnetic fields regime reveals the competitive nature of planar and point defects.

By combining vibrating sample magnetometry and magnetotransport data, new
features of the vortex phase diagram are revealed in Chapter 5. A vertical phase
transition is traced in the solid region of the vortex state and is studied systematically,
whereas oxygen deficiency is shown to have a dramatic effect in the H-T diagram. The
obtained results are compared with those recently found in the Bi,Sr,CaCu,0Oq

compound.

Intrinsic pinning in the layered HTS is examined in Chapter 6. The observation of
lock-in oscillations in magnetic measurements allows the study of the quasi-2D regime.
The detailed mechanism which produces the oscillations is presented and discussed.
Lock-in oscillations are shown to be a reliable way of extracting valuable information
both for the structure of the vortex lattice and the sample. The critical importance of
thermal fluctuations and of point disorder in the observation of the lock-in transition is

also demonstrated.

Finally, Chapter 7 offers a brief summary of the presented work and reiterates the

main conclusions.

The work in this thesis was funded throughout its duration by the Bodosaki
Foundation in Greece and in periods by the University of Southampton and E.P.S.R.C.
(Engineering and Physical Sciences Research Council) in Great Britain. The author

gratefully acknowledges the support of the above institutions and organisations.
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2. DYNAMICS OF VORTICES

2.1 VORTEX MOTION

As mentioned in chapter 1, the key question in the study of vortices is whether these
flux carrying entities move or not. In the imaginary case of a pure, isotropic, type II
superconductor, in the mixed state, one expects the formation of the famous triangular
Abrikosov lattice [1,2]. If, now, a current density J is passed through the material and B

is the local flux density, vortices will experience a Lorentz force equal to:
F =TxB 2.1)

Under the influence of this Lorentz force, vortices will move in a direction
perpendicular to both the current and the applied field (figure 2.1), facing only an

impedance of viscous nature [3].

Figure 2.1: Vortices forming a hexagonal, periodic lattice (Abrikosov lattice).
Under the influence of an applied current J, a Lorentz force F; moves vortices in a

perpendicular to the applied field and current direction.

This motion of vortices and consequently of their normal cores generates an electric

field [4], produces a voltage drop and yields a finite and linear flux flow resistivity,
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H

= 2 2.2
pf pn ch ( )

where py is the flux flow resistivity, p,, the normal state resistivity, H, the applied field

and H,, the upper critical field.

The above conditions lead to a reversible magnetic response of the superconductor
in an external magnetic field (figure 2.2). For an applied field of strength up to H, the
superconductor exhibits perfect diamagnetism; for higher fields, vortices invade in the
interior of the sample and the magnitude of the magnetisation drops until it disappears,
together with superconductivity, at Hy,. Both transitions at H;; and H,, are predicted to

be of second order.

-4nM

>
Hcl ’ HcZ Ha

Figure 2.2: Magnetisation curve for a type Il superconductor, in the absence of

pinning.

However “purity” is an unknown term in the science of material synthesis. Real
materials often contain a rich variety of point or extended, structural, crystal defects; in
the case of superconductors the defects (which can be for example non superconducting
impurities, voids etc.) lower the local condensation energy and cause the well-known

and very essential immobilisation mechanism called pinning of vortices.

Pinning changes and complicates the situation considerably. Now the Lorentz force
has to be larger in magnitude than the pinning force exerted on a vortex, for the latter to

move: F; > Fp. Early models trying to incorporate this fact, as the Bean model [3,6],
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defined a state called the “critical state”: vortices arrange themselves in such a way in
the sample, that the produced flux profile results to a global equalization of F; and Fy.
In other words, the achieved balance satisfies vortices enough so as to no longer move.

The resulting current density is called critical current density, J...

In the limit of zero temperature and given the condition F; = Fp holds, according to
the critical state model vortices should stay pinned and flux motion (flux creep) should
remain zero. However reality is different: due to quantum tunneling effects, vortices are
able to tunnel through the pinning barriers even for Lorentz forces smaller than the

opposing pinning ones (quantum creep) [7-10].

Returning to more “realistic” situations (at finite temperatures), thermally assisted
effects were accounted for first in the Anderson-Kim model [11,12]. In high temperature
superconductors thermal effects are not restricted to the vicinity of T, as in
conventional superconductors, but are extended in a large temperature regime below the
critical temperature. As mentioned in the introduction (chapter 1) and successfully
accounted for by the Ginzburg number', the small coherence length &, the large
magnetic penetration depth A and the large anisotropy of HTS, all greatly enhance
thermal fluctuations. The result is the observance of flux creep even at current values

lower than the critical one, due to thermal activation over the pinning barriers.

The Anderson-Kim model describes this hopping over the potential barriers
considering motion of characteristic flux volumes, the vortex bundles [11-13]. The
formation of bundles is energetically favorable, since the range of the repulsive vortex-
vortex Interactions A is much larger than the separation of neighboring vortices, o,
[11-13]; vortices, members of the same bundle, act in cooperation and move as a unit’.
In its simplicity, the model makes some important assumptions. It assumes: a) the
bundle volume V and its jumping distance d to be constant and current independent, b)
the shape of the pinning potential well to be triangular with a maximum, current

independent, value U, and c) elastically independent flux bundles .

1 In YBapCuzO7.5, Gi ~ 10-2,
2 More precisely, vortices in one bundie are mutually coupled via the interaction of their magnetic fields and their

wavefunctions [11,12].

10
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Assuming that the centre of the bundle sits in a potential well U, (figure 2.3(a)),
where U, is the Gibbs energy difference between the pinned and the unpinned state {14]
in the absence of any driving forces, it is possible due to thermal excitation for the

bundle to overcome the barrier in a rate:

(a) (b)

Figure 2.3: Flux bundles jumping over pinning barriers, after ref[3]. The
continuous line represents the relative total free energy as a function of the
position of the centre of the bundle. (a) Without any driving force (b) A driving
force due to an applied current or a flux gradient, favors jumps in one, the

“downhill”, direction.

where «p is the Boltzmann constant and €, is the average attempt frequency of hopping
(~105-1011 Hz) [3], due to the thermal motion of the pins which causes fluctuations in
time of the pinning force [15,16]. From eq.(2.3) it is clear that the rate R crucially
depends on temperature. However no net motion can be observed, since the rate is the

same for both directions of hopping (fig.2.3(a)).

Assuming that each bundle of volume V is intersected by one pinning site, the
pinning energy per unit volume should be U,/V and thus U, = Fp Vd = J, BVd, where d
is the distance the bundle jumps once it is unpinned; one can assume that this distance d

is approximately equal to the vortex separation o, = (CDO/B)” > [14]. I, is the critical

11
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current in the absence of creep. On the other hand, applying a driving force F; = JB,
produces an external stress AW =JBVd = U, (J/],). Now, hopping out of the potential
well is clearly favorable in one direction (fig.2.3(b)) and the net hopping rate R
becomes, after summing up the two rates for jumping in the opposite directions [11,12]:

R

net

AW 2%
=2-Q, -sinh(——l:j-e Kol (2.4)

Kp

Anderson analyzed the case of large current J ~ J. and high imposed stress or,
equivalently, of very low temperatures, AW >> k3T, the so-called flux creep regime
[11,13]. He supposed that the trapping barrier U is finite when the applied current

density J tends to 0, depending linearly on J:

ud) = U, {1(—@}
I)|t=> Ul > U, 2.5)

J—=0

With the above conditions, the net hopping rate becomes:

AW-Ug
R=Q -e ™' (2.6)
The opposite case, of low current and imposed stress or, equivalently, of high
temperatures AW << xgT, was studied much later, only with the appearance of the first
high temperature superconductors. Modeling of this regime, often called the thermally

assisted flux flow (TAFF) regime, came in the late eighties [14,15,17,18].

The TAFF model is essentially an extension of the Anderson-Kim model to the new
conditions described above. Again the assumption of a current independent pinning
potential at very low currents J << J_ is made, see also eq.(2.5) above. The net rate of
hopping is now:

U,

Lo KT 2.7)

AW
=2.0 -

R, . =
net (o]
Kp

The resulting electric field from the vortex motion is E = Bv, where v is the average

velocity of the motion v =R, d = R,; &,, leading to:

12
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U, J i
E=2-0,-B-Q -—% —.¢™ (2.8)
ke T J,

This yields a TAFF resistivity prapr = E/J, equal to:

UO

e ! (2.9)

o -B-U
Prarr kT,
Substituting for U, and then for oc02 leads to a TAFF resistivity linear with magnetic
induction B; this linear, ohmic resistivity is always nonzero, even if it is exponentially

small. Note that the upper limit of pragr is the flux flow resistivity, py.

2.2 VORTEX LATTICE ELASTICITY

The elasticity the vortex lattice possesses, is expressed via the elastic moduli: ¢y,
describes the rigidity of the vortex lattice against uniform compression and is called the
bulk modulus; ¢4, describes the stiffness against tilt of the lattice with respect to the
applied field and is called the tilt modulus; finally the shear modulus, ¢4, expresses the

lattice’s resistance to shear.

The elastic moduli were first calculated by Brandt [19] using linear elasticity theory,
for the case of a continuum, uniaxial, elastic medium. Due to the long range interaction
of vortices, extending to distance A often much larger than o, the character of the
elastic interactions becomes nonlocal: the elastic energy of a local distortion of the
lattice will be contained in a sphere of radius’ of the order of A. As a result two of the
elastic coefficients, the bulk and the tilt modulus, for the isotropic superconductor case,
are dispersive, that is they have a k-dependence. Assuming that H << H,, and the

Ginzburg-Landau constant” k >> 1, the elastic coefficients are [21]:

1 Actually of radius of several %, according to Brandt [20].

2 See section 1.2.2 for values of x in YBapCu307.§.
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B-®,
Cy=""—— 5
“16-mp, - N
In the above expressions, A is the planar penetration depth and kg, = 27 /a,, is the
radius of the Brillouin zone. It turns out that k; = (k, , ky) < kg , a condition that
protects the continuum limit approximation [22]; in the expression of cy(k), K is a

function of the tilt k, component of the wave vector:

e+
\/+K : @.11)

STV bR
with b = (B/B,,). Though k, can be in theory arbitrarily large due to the continuity of
vortices along the c-axis, in practice it is limited by the vortex core radius: the shortest
tilt waves that pinning can excite have k, < 1/ [22]. As seen in eq.(2.10), c,y is written
as the sum of two terms: cy(k) = ¢4 (K) + c44°(k). The first term is of collective origin
and stands for the bulk contribution while the second term represents the single or
isolated vortex contribution. Note that ¢, becomes dispersive at very short wavelength

scales [23].

The dispersion of ¢;; and ¢4, means that the lattice is much more susceptible in short
wavelength compressional and tilt distortions than to uniform ones. Indeed, contrary to
the uniform distortions case, where the wavelength 1 - < and, thus, k — 0, now the
dispersion of the elastic moduli allows a suppression factor of (k k)z for shorter

wavelengths, i.e. for a non-zero wavevector k.

14
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This suppression becomes even larger for k near the Brillouin zone limit, kg,.
Simultaneously, at this limit, c4(kgy) is dominated by the isolated vortex contribution,

cus (kpy) and ¢ (Kpy) is of the order of c¢q [23] (see figure 2.4).

»

I Keg k

Figure 2.4: Elastic energies for compressional, tilt and shear distortions of the
vortex lattice for unit volume and displacement amplitude estimated in ref [4].
The parabolic dashed line gives the local contribution for tilt and compressional
energies, valid for k << 7y'1. The dashed-dotted curve gives the bulk (collective)
term of cyy(K), cys (K). The difference of the bulk term from the total c, (k) is a
result of the isolated vortex contribution, c,,"(K). Both ¢, and cgg are periodic in

k-space. Remarkably, although cgs is much smaller than c,,, it recovers at Kgz.

At very small field values, B << B./Ink, the bulk and shear moduli become

exponentially small, with ¢;; = 3¢¢ and [23,24]:

- ?\, 1/2 e o,
céﬁ:(@a] i (2.12)

where ¢, is the line self energy, a very frequently used and basic energy scale. At this
low field limit c,4(k) is also dominated by the single vortex contribution. At the opposite
limit of large fields, B >> B, ,/Ink, one has c¢q << ¢ = cyy = B*/1, , and the lattice bears

the characteristics of an incompressible solid [4] (figure 2.5).

15
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Elastic
moduli

>
B, B

Figure 2.5: The elastic coefficients as a function of the magnetic flux density, B as
estimated by Brandt, ref.[20].

For an anisotropic superconductor, the main difference is the dramatic dependence of

C4q4 and cgq on the anisotropy.

For an applied field H, || c-axis' and a uniaxially anisotropic superconductor, with

penetration depths A, along the c-axis and A, in the ab plane, one has [21]:

¢ (=2 Lk’ 2 2.13)
! my (1+K2-22)-(1+ K2 -2 +K2-22,) '

¢ (k)=§i-( 1 . j

“ TSR SIVIES SRV S SR 2

The shear modulus, cg, is not altered from expression (2.10), with A being replaced
by the penetration depth A,,. The same cutoff limits for k hold as for the isotropic case.
The results apply as long as b < 0.25 and « > 2. For fields approaching H, the
penetration depths in the above expressions should be corrected [20] to account for their

increase as the Cooper pairs density goes to zero.

Comparing to the isotropic case, c,, is smaller by a factor of yz, an effect of the much

longer range of the interactions, A.. It is, therefore, obvious that uniaxially anisotropic

I Interestingly, for a general orientation of H with respect to the c-axis, a rotation modulus also appears [25].

16
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high temperature superconductors, as YBa,Cu;0,, allow far larger distortions for the

same expense of elastic energy.

For fields along the ab plane, it is straightforward to estimate the elastic moduli using
the scaling arguments of Blatter ef al., see ref.[23,26]. The essential modification is the
splitting of the shear and tilt moduli into hard and soft components [25]. For cg, the
hard component, cté, corresponds to shear direction along the c-axis, while the soft one,
cl., parallel to the layers (figure 2.6). Their ratio is:

Ces

T=y4 with cp =7 (2.14)

Ce6

y Hard Shear

Soft Shear

Figure 2.6: The unit cell of the vortex lattice for an applied field between the

layers and the two modes, soft and hard, of a shear wave.

The tilt modulus, now, due to the splitting of the bulk term, c,4°(k), in hard and soft
components, is affected and has a hard component, cj,, for out-of-plane tilt and a soft
one, c|,, for in-plane distortions. The scaling approach leads to the following

dependencies [23]:

ch (k)=7y-cl, (k) with cl,(k)=c,(k) (2.15)
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2.3 COLLECTIVE PINNING

The collective pinning theory developed by Larkin and Ovchinnikov [27,28] came to
interpret experimental situations which were in serious contradiction with the strong and
weak pinning concepts, as these were distinguished until then by the metastability or
Labusch criterion [29]. According to the metastability criterion, if a vortex displacement
u(0) causes greater variation of the elementary pinning force f;, exerted on it than that of
the elastic force f, due to vortex-vortex interactions, then pinning dominates (strong

pinning regime, figure 2.7) [16]:

dt,| _ a%E,
du(0)~ du(0)®

(2.16)

where E,, is the elastic energy of the lattice associated to the displacement field u(0).

. \J

(@
4 8 -
$ ~— .\_!/
U, 3T, 8,
(b)

Figure 2.7: Visualisation of the metastability criterion. (a) Strong pinning, a
small displacement of a vortex leads to a larger variation of the pinning force 8t
than that of the interaction force with other vortices, &t,. (b) weak pinning, the

opposile.

The metastability criterion, called Labusch criterion when the displacement fields of
neighboring pinning centres do not overlap [16], was regarded as the definition of the

absolute threshold below which macroscopic pinning cannot exist. However, the weak
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pinning “landscape” realised in high temperature superconductors, soon gave results

which could not be understood in the aforementioned frame.

Collective pinning came to accommodate the pinning paradox, emerging due to the
interplay of a random pinning potential and the vortex lattice elasticity, much enhanced
in the anisotropic HTS. Indeed, a perfectly periodic and rigid lattice, or line, cannot be
pinned by a random collection of pinning centres [3,23]: taking the case of a volume of
the flux line lattice V, containing N pinning centres, the Lorentz force for any applied

current density J grows linearly with V, as JV. On the other hand, the summation of the

random pinning forces on V grows only sublinearly as JN, or as JV , since N = nV,
where n is the pinning centres density. It is straightforward to see that the critical current
density J. at which the Lorentz force is equal to the total pinning force, drops as v

vanishing at large V.

In other words, the summation of the random pinning forces fj; in the volume V has

as a result the summation, due to their randomness, of opposing pinning forces and,

thus, the total pinning force is smaller than pr , what a direct summation would give -
A\

an effect known as “frustration” [16].

Solving this discrepancy, the collective pinning theory [27,28] suggests the
description of the vortex lattice distortions in terms of correlated volumes, V.. The main
idea of the collective pinning theory is that there are two competing energies for any
lattice distortions: the elastic energy and the pinning energy. Vortices will prefer to pass
from certain pinning sites, lowering their free energy; such a departure from the perfect
periodic arrangement, though, has to be paid for at the expense of the elastic energy.
The sum of these two energies will be a minimum for the equilibrium configuration,
allowing correlated volumes of the lattice, V, to be pinned independently from each
other. V. corresponds to the smallest scale above which a direct summation of the
random pinning forces is justified, or else V. is the desired cutoff limit for the sublinear

growth of the pinning force, résulting from the statistical summation.

According to the above, there are two main conditions which the new theory brings

forward:
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1. At scales smaller than V, the vortex lattice can be considered as perfectly rigid
(figure 2.8). More precisely, the maximum pinning-caused mean-square vortex
displacements g(7) = < [u(t )-u(())[2 > are smaller than the pinning force range r,

squared, g(T) < 1‘p2 ~ éz.

2. The existence of a large density of weak, random, point pinning centres, nV,>> 1,

where n is the pinning sites density.

R, >

Figure 2.8: The correlation volume concept. In the absence of pinning, vortices
(thin lines) align perfectly with the field, forming a periodic lattice (a). In the
presence of a large density of weak, random pins (open circles) they deviate from
the field and break the positional order of the lattice, to profit from the pinning
energy (b). Periodicity, in this case, according to collective pinning theory, is
approximately preserved within a correlation volume, V. = RC2 L. Within V_ the

distortions are negligible (short range order).

The dimensions of the correlated volume, V,, along and perpendicular to the field
direction, for an applied field normal to the layers, are L, and R, respectively:
V.=L, Rcz. Due to the presence of pinning centres, the net free energy change per unit
volume of the vortex lattice can be found by subtracting the pinning energy gained from
the accommodation to these centres from the elastic energy, at zero current density.
Pinning forces statistically sum, inside V_, to (nVc)l/zfp [27,28]; taking into account the

range of the pinning forces r,~ &, the amplitude of the pinning energy is é(nVc)l/zfp, that
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is én”zfp/\/'cl/2 per unit volume. The elastic energy, now, is estimated as a sum of the
shear and tilt energy - we consider only the shear and tilt elastic moduli [4]. For the
shear energy, the relevant length scale is the transverse correlation length R, while for
the tilt energy it is the longitudinal correlation length L.. The elastic energy is usually

given as:

E,=5- [066 ’ 6662 +Cy 0-4,42] 2.17

1
el _2_
where o4 and oy, are the shear and tilt fractional distortions (strains), respectively.

Since maximum deformations' are of the order of &, the final outcome for the net free

energy change per unit volume is:

_l iZ —1— 32 il/l
8F—2-c66-(R ) +2-c44-[L ] —fp-c‘;-(vcj (2.18)

4 c

Minimising this expression in respect to L, and R yields an ellipsoid or cigar-shaped
V. of radius R, = (2¢44) 6" "6%/W and length L, = 2c44c465>/W, with W = n<f,>* being
the total average pinning force per unit volume squared, a characteristic parameter of the

pinning strength. Thus?, V.= 404420664§6/W3.

A softer, more elastic, lattice would offer better adjustment to the pinning sites and,
consequently, provide smaller correlation volumes. Similar effects would result from
stronger pinning. For pinning energies large enough for R, to become comparable to o,
the collective pinning of bundles gives its place to the collective pinning of individual
vortices (single vortex collective pinning). Further increase of pinning can lead to a
shrinking of L to length scales comparable to r, or £ and validate a direct summation of

the pinning centers, having as unique criterion the spacing of the pins compared to o,
[4].
The zero temperature critical current J, can be easily defined by the maximum

Lorentz force density that can be sustained:

1 In the estimation of the critical current, maximum deformations are the relevant ones.

2 A more accurate calculation of V¢ at 3D requires to approximate it as a spherical volume: V¢ = (4/3) 7 L¢ Rc2.
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1/2 2 4
w n°-f
J - B=|— J = L 2.1
° [Vj e 2'044'Cé6'§3'B (219)

c

At this point, some remarks should be made on the elasticity theory used. First, the
elastic moduli expressions omit any corrections arising due to nonlocality, unless
R, <. Second, collective pinning theory as this described uses linear elasticity theory

which breaks down with the c¢4 vanishing at the melting line, see chapter 5.

2.4 COLLECTIVE CREEP

All the above discussion is valid as long as thermal activation is zero, i.e. for T = 0.
As soon as we depart from this condition, T > 0, collective pinning theory gives way to
the theory of collective creep. In its attempt to explain the giant flux creep observed in
high temperature supercondudors in the frame of collective pinning by weak disorder,
collective creep considers a new current dependence of the correlation volume and the
activation energy. In this way, a large departure from the more or less “classic” models

of creep, like the Anderson-Kim model and its derivative TAFF model, is made.

The transition between metastable states is due to thermal activation and the free
energy barriers that are opposing these transitions, U(J), are estimated down to very
small current densities, J << J, [30,31]. Furthermore, collective creep theory considers
the correlation between the jumping flux unit and the surrounding ones. The new current
dependent correlation lengths, R; and L;, define the smallest possible volume V; which
can jump while the neighboring lattice is kept fixed. The balance of the elastic energy
E,, and the energy produced by the Lorentz force, E; = JBV,d,, determines this jumping
volume Vy and consequently defines the stable configuration. The jumping distance d; is
an also current dependent quantity. Unlike the case of collective pinning, the
compression modulus ¢;; plays an active role in the physics of collective creep, since it
is the main mechanism of interaction between the jumping flux bundles, or correlated

volumes.
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An estimation of Vj in this way by Feigel’man ef al. [30] yields a correlated volume
that increases with J decreasing, becoming infinite at J — 0. The divergence of V; obeys

a power law, Vj oc J*, with u > 0.

The estimated current dependence of U(J) is the most important result of the
collective creep approach [30-32]. While the Anderson-Kim condition of U(J) = U, +
f(J) led to the recovery of a finite barrier even at zero applied currents, now, due to the
current dependence of V;, U(J) grows with the decrease of J following a power law:
U(J) o« V;oc J*. This results in a free energy barrier which is infinite at zero current - in

other words in a resistivity p which is truly zero in the limit J — 0.

The exponent p varies depending on the size of V; or, equivalently, the applied
current density. According to Feigel’'man et al [30], for a bundle consisting of a
segment L of a vortex line, p = 1/7. For small J, V; acquires a transverse size R; < A,
and for this small bundle regime p = 3/2. For even lower current densities, R; > A and
(L= 7/9. Also in this large bundle limit, as in the case of collective pinning, the elastic
moduli loose their nonlocality corrections. Blatter et al. [23] give a still wealthier

analysis of the variations of the exponent p.

Following the above, collective creep gives a non-linear current-voltage (I-V)

U, (I
E(J) « eXp[- T ( 7 j] (2.20)

There is an important limitation to the reliability of collective creep. Collective creep,

characteristic, of the form:

like collective pinning, considers only elastic procedures and at high temperatures or
very low currents there is always the danger that U(J) grows enough to surpass the
threshold for plastic deformations, U,,. Then the activation energy should remain finite
even in the limit J—»0, since it is plastic procedures that control the creep and U is

essentially current independent [30].
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2.5 VORTEX GLASS

Similarly to collective creep, the Vortex Glass model predicts the destruction of long
range order in the vortex lattice, in the presence of disorder and infinite activation
barriers for zero densities of applied currents [33,34], of the form U oc J*, recovering,
thus, truly superconductive properties in the limit of zero current density. As a result,

like in the collective creep case, non-linear I-V characteristics are obtained:

E() « exp[-(‘]—;-)} ,0<p<l 2.21)

where J; ~ € 12 / xgT sets the current scale [35], / being the line tension of the single

vortex.

One of the main changes the Vortex Glass theory brings forward is its starting point:
it provides a very general approach to the problem of quenched disorder. Thus,
although, as in the collective creep model, it reaches the conclusion that disorder
completely destroys the long range periodicity of the Abrikosov lattice and positional
order survives only at small scales [33,34], now there is no need to start by assuming
elastic properties for the vortex lattice and their preservation in the presence of weak

disorder [23].

The model introduces a certain temperature T,: as the temperature approaches T,
from below, a characteristic correlation length &, the size of the jumping volume in the
vortex lattice, diverges as &g o |T - T,", v being a critical exponent. Furthermore, T,
separates linear (ohmic) resistance, for T > T,, from non-linear (exponentially small),
for T < Ty, at the limit of vanishing current densities; the transition from one regime to
the other is continuous. For the boundary T = T, a power-law -V characteristic is

predicted by Fisher et al. [33,34].

Finally, the Vortex Glass theory predicts universal scaling laws: physical quantities
should scale with an appropriate power of (T-T,). Indeed, scaling of the I-V curves has
been one of the most frequently used tools in the quest of a Vortex Glass phase, e.g. in
the work of Koch et al. in thin films of YBa,Cu;0,5 [36,37] or Gammel e al. in single

crystals [38].
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3. INSTRUMENTATION AND MATERIALS

The core of the presented work has been performed using three experimental setups.
The bulk'of the experiments was carried out in a Vibrating Sample Magnetometer
(VSM). An important part of the magnetic measurements was executed in a
rf Superconducting Quantum Interference Device (SQUID) magnetometer. Finally a
home-made torque magnetometer was also used. All the experiments were carried out

on single crystals of YBa,Cu;0,5, grown in McGill University, Canada.

3.1 VIBRATING SAMPLE MAGNETOMETER

The commercial (Oxford Instruments 3001) VSM, achieves dc fields up to 12 T and
temperatures from 1.7 K - 300 K. The main components of the system, depicted in the

schematic representation of figure 3.1, are:

a) VSM main cabinet. It consists of a transducer mounted below a platform which
can be raised or lowered vertically, by means of a stepper motor, along two ballscrew

shafts.

b) The superconducting magnet, consisting of a number of concentric solenoid
sections together with compensating coils including shimming coils (to achieve
specified levels of homogeneity). Each section is wound from multifilamentary
superconducting wire from NbTi filaments. These are surrounded by a stabilising
copper matrix. Copper is an electric insulator compared to a superconductor; however, it
has much larger electronic mean free paths, that is, thermal conductivity. In this way it
provides excellent thermal conduction and problems of thermal instability due to flux
creep are avoided [1]. The magnet is fitted with inner coil sections of Nb;Sn. The
homogeneity is 0.1% over a sphere of 10mm diameter (DSV). The magnet’s power
supply, an Oxford Instruments PS120, gives operating currents with an upper limit of
approximately 105 A, at a variable voltage of £10 V. The magnetic field can be cycled

from plus to minus 12 T. The field’s sweep rate can be set between 10 and 200 Oe/sec.

27



Chapter 3: Instrumentation and Materials

The remnant field of the magnet is approximately SmT. As the setup does not have a
superconducting (persistent mode) switch, in order to maintain a constant applied field,

the power supply has to remain “on”.

Platform drive
""" vertical

Ballscrew

L shqft

Vibration

Wy """ transducer

Needle

valve

/Sample rod

LHe

LN

/—

Sampleholder
// p

Superconducting

-l "I R VY I magnet

coils

O O

0.9m

Figure 3.1: Side diagram of the 12 T Oxford Instruments VSM-3001.

c) The sense coil arrangement mounted in the magnet system employs two coils,
separated by a distance of Smm. The coils are wound in the opposite way, forming a

first order gradiometer and are positioned coaxially with the magnet.

d) As seen in fig.3.1, the magnet is surrounded by a helium reservoir of a nearly 30 It

useful volume, which maintains the magnet temperature at 4.2 K. For reasons of
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improved insulation, there is a nitrogen dewar around it and further out multilayer
super-insulation which minimises the evaporation rate. Finally, the whole assembly is
surrounded by a stainless steel vacuum vessel. Due to the standards of the provided
shielding, a full He reservoir is sufficient for experiments in high fields for a duration of

five full days.

e) The variable temperature insert (VTI), is loaded from the top of the cryostat. He
gas 1s drawn from the LHe dewar through a needle valve, which controls the gas flow,
and enters the sample space of the VTI, where a gold-iron/chromel thermocouple for
temperature measurement and a heater situated close to the sample are fitted. An Oxford
ITC-4 temperature controller regulates the power to the heater. To achieve the target
temperature, the controller sets the heater’s output so as to balance the cooling effect of
the helium gas flow. In this way the sample’s temperature is adjusted in the VTI heat
exchanger. For the range 4.2 K-100 K it is the flow rate that defines the temperature,
adjusted by using the needle valve. Temperatures between 1.7 K - 4.2 K are achieved by

reducing the vapour pressure of LHe after it passes from the needle valve.

Samples are fitted with vacuum grease on sampleholders made of tufnol (see e.g.
fig.3.2). For the measured single crystals, the sample mass can be anything between
100 pg and 3 g. Wrapping the sample with P.T.F.E. thread seal tape, ensures that it does

not move or drop in the VTI space, during the measurement procedure.

Tufnol samploholder

Figure 3.2: The VSM sampleholder configuration for introducing the sample with
its c-axis in a 7° angle with the applied magnetic field (measurement presented in

chapter 4).

The sampleholder is screwed onto a carbon fibre rod (tube section of approximately

6 mm in diameter) which is both extremely rigid and light. Thus, lateral vibration of the
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sample is avoided. The rod is attached to the vibration transducer (fig.3.1), which is

locked to the frequency of the mains supply.

The heart of the system’s automation, the VSM electronic sub-rack, is connected to a
PC via serial interfaces; this enables the control of the setup, with the transmission and
reception of VSM control characters. Using AEROSONIC written software, a complete
set of measurements can be defined through a combination of low level VSM control
codes and high level pre-defined routines. The magnetic moment can be measured and

recorded as a function of temperature, field, sweep rate or time.

During the measurement, the sample, after it has been positioned (within 0.1 mm) at
the centre of the pick-up coils with the use of a calibration routine, vibrates vertically
through a distance of 0.7 mm in the space between the two sense coils. The vibrator
transducer produces a highly stable sinusoidal motion with a frequency of 66.66 Hz.
Two weights on spring sections around the transducer ensure that there is the necessary
damping to minimise transmitted vibrations to the magnet and the sense coil assembly.
Due to the sample’ s vibration, the first order gradiometric configuration gives

effectively the output of a second order’s one.

The vibraton of the sample in the magnetic field induces an emf in the coils. The
output voltage of the pick—up coils, which is directly proportional to the sample’s
magnetic moment, is amplified and compared to the well known saturation
magnetisation value of a nickel sample, which is used for calibration. The final output is

the sample’s magnetic moment, in emu. The VSM has a resolution of 107 emu.

3.2 SQUID MAGNETOMETER

The Cryogenics Limited 6T rf SQUID susceptometer, allows studies in dc magnetic

fields of ranges up to 6 T. Structurally, see figure 3.3, it is similar to the VSM:

The superconducting magnet is installed in a LHe bath dewar with a N, dewar
around it, for insulation from the ambient temperature. In the outer shells of the cryostat
there is a vacuum shield followed by super-insulation. Finally, the cryostat is

surrounded by a p-metal shield which reduces the ambient field within the cryostat
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down to a few pT. With an average boil-off of 3-4 litres per day, a full He reservoir is

sufficient for six full days of high fields measurements.

Stepper
motor

Super-insulation

LN?

VTl

7

x
NS

LHe

SQUID sensor

Superconducting
magnet

Figure 3.3: Main features of the 6 T rf SQUID magnetometer configuration.

The sense coil arrangement consists of a set of three pick-up coils, located centrally
in the bore of the magnet, with a distance of few mm between them: two identical coils
wound in the same direction and a third one, in between them, having twice the number
of turns of the first two, wound in the opposite direction. Thus, a second order
gradiometer is formed, which gives an output only when the second derivative of the
magnetic field is changing, ensuring much better protection from unwanted signals (e.g.
magnet’s drift). Only the asymmetry of the configuration can limit its ability; the field
of the magnet is rejected to typically 0.1%. The pick-up coils are, in the case of the
SQUID susceptometer, fabricated from superconducting wire. The sense coils are

coupled to the input coil of the SQUID, forming the flux transformer.
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The magnet’s power supply is capable of delivering 80 A at 5 V. An installed
superconducting switch, across the terminals of the magnet, allows the circulation of
large currents in the magnet, without the need of continuous support from the power
supply. Apart from the heater attached to the superconducting switch, a second heater is
used to drive the sense coils normal whenever the set field is change, to avoid any flux
change through them. A zero oscillations option oscillates the magnet about zero field in
ever decreasing steps, impressively reducing the remnant field in the magnet down to

5 Oe (figure 3.4).

Field Oe
eI “
[\ /N,
20 7N /%
'I \ / \ ‘\
N \ / :
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-20 | [ | | |
4 8 12 Distance, cm

Figure 3.4: The field profile in the 6 T SQUID susceptometer (Magnetic field in
Oe as a function of the distance from the VTI bottom, in cm). The dashed and
solid lines give the field profile at 0 Oe, respectively without and with the
performance of zero oscillations. As seen, zero oscillations increase the field
homogeneity and reduce the remnant field, within a 5 Oe margin. The dotted line
gives the field profile (scaled by a factor of 30) for a set field of 830 Oe: now the

applied field is nearly homogeneous over a distance of approximately 4 cm.

A Lakeshore DRC-91CA temperature controller is used. It monitors two different
rhodium-iron thermometers, located within the VTI, one close to the sample (sensor B)
and another several cm away (sensor A), on the heat exchange space. The sample space
is cooled with a continuous flow of helium gas driven from the LHe reservoir. This time

the needle valve operates automatically, while the temperature controller adjusts the
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heater’s output. Contrary to the VSM, a system of valves controlling the gas flow in the
VTI allows the sample’s removal keeping the VTI’s temperature stable at any value,

within the accessible range.

The sample (single crystals in the present case) is confined in a cylindrical tube of
quartz, 18.5 cm long and of 3 mm diameter, which gives negligible magnetic signal and
is mounted on an oxygen-free copper wire. The tube is fitted with P.T.F.E. tape in the
end of a brass (Cu-Zn) rod. The sample is positioned 5 cm from the bottom of the quartz

tube and 12.5 cm from the brass rod, to avoid a finite length signal.

The thin film rf SQUID sensor measures relative changes in magnetic flux and for
this reason it is necessary to move the sample through the pick-up coils. A stepper
motor (fig.3.3) controls and defines the movement of the rod; thus, the sample can be
smoothly moved any distance between 1-12 c¢cm. The sample’s motion sets up a
screening current in the flux transformer circuit to oppose the resultant alteration in the
flux threading the pick-up coils. The SQUID detects this current, which is strictly
proportional to the sample’s induced magnetic moment. The output from the SQUID
electronics then gives a voltage, directly proportional to the signal detected at the

SQUID sensor.

The choice of the appropriate scan length depends on the nature of the measurement
and can be very crucial, especially when a very homogeneous magnetic field is
desirable. As depicted in fig.3.4, at the relatively low applied field value of 830 Oe, the
field is, within 1%, homogeneous over a scan length of less than 4cm (with the central
position of the sample being the centre of the pick-up coils). However, for each data
point a number of scans are averaged and the background signal is automatically
subtracted by the control software. It is worth, also, to note that the very useful 1 cm
scan length option is not easily met in other, home-made or commercial, SQUID

magnetometers.

The setup is fully automated (PC controlled) and able to perform measurements of
the sample’s magnetic moment as a function of temperature, within the range of

1.7 K - 325K, applied field and time. The control software is also capable of fully
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compensating for any residual drift signal coming from the magnet circuit during a

measurement routine.

At the expense of measuring time, the SQUID magnetometer has a much larger
resolution than the VSM, detécting magnetic moments down to 10 emu, that is, 1000

times smaller than the VSM.

3.3 TORQUE MAGNETOMETER

As a result of the collaboration with Dr. L. Friichter in the Université Paris-Sud, in
Orsay, a certain set of measurements has been performed by using a home-made torque

magnetometer.

Figure 3.5 shows a schematic representation of the rig. A superconducting coil
provides fields up to 4 T. The magnet’s power supply is an Oxford Instruments MK3

with a maximum current output of 120 A at 4 V.

The rotation of the magnetic field, necessary for a torque measurement, is executed
with the help of a stepper motor. The field rotates in the horizontal plane, in minimum
steps of 0.037°. In addition to this, two smaller transverse coils, which can give 0.3 T at
10 A, are adjusted in the setup. In conjunction with the principal coil they can produce

an even more precise orientation of the applied field.

The whole configuration is installed in a LHe reservoir, with a liquid nitrogen bath
surrounding it. These two spaces are separated by a vacuum shield, while another one

isolates the LN, bath from the outer space.

The temperature in the sample area is varied by a usual helium gas flow mechanism
and a heater installed close to the sample (figure 3.6). Monitoring and control of the
temperature is achieved via two complementary thermometers. A Carbon-Glass
thermometer is used for the region from 4 to 40 K, with a resistance varying from 700 to
20 Q, respectively. In the high temperature region of 40 to 300 K, a Platinum resistance
thermometer is used, with the corresponding range of resistances varying between 20

and 120 Q.. The temperature is regulated with a precision of 0.05 K. Before the
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insertion of the measurement probe in the VTI, it is thoroughly pumped down to 10™

mbar.
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Figure 3.5: The main characteristics of the 4 T torque magnetometer.

The method followed in the present work is based on the deflection measurement of
an elastic system. It is the most frequently used method, easily realised and performed.
It has a very good sensitivity, down to 10 erg. In its most common application a flat
metallic capacitor is used, which is the present case, as well. One of the two plates is
mobile and supports the sample. The sample is attached to the plate with grease and a

protective copper cover is fixed above the sample-capacitor system.

In an applied magnetic field, the superconducting (YBa,Cu;05_5) sample’s anisotropy

35



Chapter 3: Instrumentation and Materials

y results in a torque1 on it [2] and the attached plate of the capacitor deflects from its
initial parallel position. Under the condition of small deflection angles, a linear relation
holds between the torque on the sample and the variations of the capacitance due to the

presence of this torque, finally leading to the estimation of the sample’s anisotropy.

Carbon-Glass c Sample
thermometer opper cover
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Copper head thermometer Heater Metallic

of probe Capacitor

Figure 3.6: The configuration of the sample bearing head of the measuring probe.

The measurement of the capacitance is carried out with the use of a capacitance
bridge General Radio 1615A, which in turn is equilibrated with use of a lock-in
amplifier. The setup is PC controlled and fully automated. The software provides the
user the facility to compose one or series of measurement sequences, the only limit

being the LHe autonomy of thé cryostat.

3.4 MATERIALS

Experiments were performed on single crystals of YBa,Cu;0,5 grown in the
University of McGill, in Canada, by R. Gagnon and L. Taillefer. The synthesis of the
crystals was based on a self-decanting flux method [3] using yttria-stabilised zirconia

crucibles [4-6]. The method is known to give crystals of high purity.

I See chapter 6.
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The initial mixture is composed of powders of Y,03 (99.9999%), BaCO; (99.999%)
and CuO (99.9999%) with a Y : Ba : Cu molar ratio of 1 : 18 : 45 [5]. Then the mixture
is reacted above 900° C in yttria-stabilised zirconia crucibles. It has been shown [6-8],
that this kind of crucible contaminates the fabricated YBa,Cu;0,5 crystals to a very
small degree, since it is very difficult for the Zr*" ions to be incorporated into the 123
crystals. Indeed, Zr*" jons have a much larger charge compared to the Cu ions in
YBa,Cu;0_5 and cannot substitute for them [7]. In addition, their ionic radius of 0.84 A
is much smaller than the 1.02 A of Y°* so they are unable to replace Y, as well [7].

Thus, the few impurities are mostly Al, Fe and Zn atoms [7].

After cooling, the crystals have to acquire an increased oxygen content, since the
tetragonal YBa,Cu;0,5 (0.6 < 8 < 1) is not superconductive. Therefore, they are
oxygenated for 10 days at low temperatures, at 500° C, below the temperature of the
tetragonal-to-orthorhombic structural phase transition [3,9], in flowing O,, and

quenched to room temperature.

The procedure yields highly oxygenated YBa,Cu;0_s single crystals with an oxygen
content of 7-8 = 6.91, according to the existing diffusivity studies [10] and a high
critical temperature, T, = 93.6 K. The magnetic width of the superconducting transition
of the crystals is sharp: AT, < 0.3 K. It is defined as the temperature range over which
the zero field cooled magnetisation, in a field of 0.1 mT, varies from 10% to 90%. The
crystals have a typical size of the order of 0.7 x 0.7 x 0.05 mm?; crystal thickness
throughout this work is estimated using the mass and the theoretical density of
6.8 g/cm3. The specific details of the crystals will be given in the description of the

various experiments they were used in, in the sections to follow.

As a result of the internal stresses which are experienced during the low temperature
annealing described above, at the transition between the tetragonal and the orthorhombic
state’ [3,11], extended, planar defects called twin planes are formed, see figure 3.7.
Twin planes or twin boundaries, as they are called, accommodate these internal stresses
and separate regions where the Cu-O chains” run alternately along the a and b axes of

the original tetragonal cell [12]. They have a typical width of 50 A; their separation

1 See chapter 1.

2 The creation of the Cu-O chains is the cause of the appearance of internal stresses.

37



Chapter 3: Instrumentation and Materials

varies, and in our samples is in the range of 0.5-5 um. In polarised light microscopy

they show up as straight, bright red lines along the [110] or [1 1 0] direction (fig.3.7).

polarising light microscope; the different domains of twin planes and the

randomness of the distance between successive twins is clearly illustrated.

The crystals are detwinned by applying about 50 Mpa of uniaxial stress at 550° C in
air for 30 minutes and then reoxygenating for one day at 500° C in flowing oxygen [13].
The procedure is highly successive and gives detwinned crystals for which polarising
light microscopy reveals a surface fraction of misaligned phase of much less than 1%

[14] (figure 3.8).

Generally, along with the twin boundaries other common defects in YBa,Cuz0.5
single crystals are copper and oxygen vacancies [15,16], interstitials [17] and non-
superconducting impurities of Mg, Zn, Al, Fe, Mn, Ti, Au, La, Sr or Zr, depending on
the synthesis method. Also possible are screw dislocations and voids. Point or extended
(linear) pinning centers can be artificially introduced in YBa,Cu;045 crystals by
electron or heavy ion irradiation, e.g. ref.[18,19] and references therein. The technique
is very promising for the future applications of high temperature superconductors, since

it can enhance very efficiently the sustained critical currents.
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Figure 3.8: Photograph of a detwinned YBa,Cu;0,_5 crystal under polarised light

conditions.

3.5 OXYGEN CONTENT VARIATION

As it was mentioned in section 1.2.1, oxygen doping in YBa,Cu;0,_5 increases the
fraction p of holes per Cu atom in the CuO, layer [20]. Positive holes are the itinerant
charge carriers in HTS and by doping oxygen is added in the Cu-O chains [21]. Previous
studies [22,23] have revealed.that the chains play the role of charge reservoirs for the
CuO, layers, controlling T.. The T, dependence on p has been shown experimentally by
Tallon et al. [20] to obey a generic phase behaviour in all the high temperature

superconductors, expressed by the parabolic dependence:

(% 2
= =1-82.6-(p-0.16) (3:1)

C, max

where T, is the optimum T accessible when p = 0.16.

Tallon and coworkers also established the relationship of p and § in YBa,Cu;0,;.

They demonstrated [20] that for & < 0.55:
p=0.187-0.215 3.2

Using these two relationships, Tallon ef al. [20] reproduced satisfactorily the

experimental results and the crucial T, dependence on &. Indeed, as previous studies of
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the effect of oxygen concentration on T, in the case of YBa,Cu;0,; have revealed

[20,23,24] there exist two plateaus in T(9), as figure 3.9 shows.

The first plateau (the “60 K plateau™) stretches in the underdoped region between
0.6 <8 < 0.4 with a T, almost constant at around 60 K. Then, with the enhancement of
p, T, increases with the oxygen content until the point of optimum doping around
& ~ 6.90 where it is maximised. What follows is the overdoped region, where T, remains
almost constant, with only a very slight decrease from its maximum value. This “90 K

plateau” is the peak in the parébolic curve of T (p) [20].
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Figure 3.9: Dependence of T, on oxygen content in YBa,Cu3045 after Cava et

al., ref [23].

Coming to our case, to produce different oxygen concentrations, crystals were
subject to different annealing treatments under oxygen pressure of 1 Atm. To achieve a
homogeneous oxygen content, the annealing time was approximately 10 days.

Subsequently the samples were quenched in room temperature.

As it has been established, e.g. ref.[25-28], the final oxygen concentration of the
samples depends systematically on the annealing temperature; more precisely, the
oxygen content decreases for increased annealing temperature. Thus, determination of
the new oxygen stoichiometry x (or deficiency &) can be based on previously published

diffusivity studies which provide a calibration between the annealing temperature and
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the oxygen content in YBa,Cu3O,5 [10]. This is the method we have followed
throughout the present work. Though it is difficult for 8 < 0.1 to provide accurate values
of & [23,24,29] the distinctively different annealing temperatures allow us to be
consistently precise. The oxygen content of the received crystals with 7-8 = 6.91
corresponds to a T,=96.3 K. For this initial oxygen content of 6.91, annealing
temperatures of 450°, 485° and 520° C lead respectively to oxygen contents of 6.96,
6.93, 6.90. The optimum oxygen doping is observed at 7-6 = 6.93 with T, = 93.8 K.

It worths noticing that there are also other ways to estimate the oxygen concentration
of an YBa,Cu;30,5 crystal, e.g. with measurement of the c-axis lattice parameter and use

of the relation 7-8 = 74.49 - 5.78 ¢(A) [30].
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4. VORTEX CHANNELING

4.1 THEORY OF EXTENDED DEFECTS

4.1.1 VORTEX STRUCTURE IN THE PRESENCE OF TWIN PLANES

Soon after the discovery of YBa,Cu;0, it was realised that the extended, planar
defects naturally created in this compound, namely the twin boundaries, can have a
dramatic effect on vortex pinning. As a result, an important part of the subsequent
theoretical investigations was focused on verifying the role of twin planes. The
complications arising from the presence of the twin planes became evident right from
the beginning. The first theoretical studies were inconclusive on whether the
superconducting order parameter is suppressed in the twin planes, as Deutcher and
Miiller suggested [1] (see also Kes et al., ref.[2]) or not, as Khlusticov and Buzdin [3]

and Abrikosov estimated [4].

However, the tendency of regarding the twin planes as strong pinning centres soon
prevailed, especially after the careful analytical work of Blatter et al. [5,6] where the
enhanced pinning properties of twin boundaries for magnetic fields aligned or applied at
small angles with the planar defects are discussed. Furthermore, it was conceived [5,7,8]
that the strain fields associated with the twin boundaries make them an ideal place for
accumulation of atomic defects and impurities, weakening superconductivity in the twin

planes and attracting vortices.

The equilibrium configuration of a single vortex in the presence of twin planes can
be derived in a straightforward way, considering a simplified model [5,6]. The pinning
potential of the twin planes is represented by a periodic array or lattice of extended 2D
pinning structures. Although in reality the distance dpp between the twin planes varies
(randomly spaced defect boundaries, see fig.3.7), dp can be satisfactorily approximated

as a constant. A pivotal point is, of course, the assumption that the order parameter is
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suppressed within the twin planes, reinforced as we will later see, by the experimental
observation of vortex attraction to the twin boundaries. Finally, in a first approximation,

all the effects of point disorder can be neglected [5].

Assuming, thus, a suppression of the order parameter in the twins, the vortex with its
normal core will be attracted to them and adjust in such a way, as to accommodate to the
planar defects and gain from the pinning energy. Blatter ef al. [5,6] studied the situation
when the applied field lies within the ab plane. For an external field H, making an angle
0 with the twin boundaries, three different vortex structures can arise, depending on the
value of 6 (figure 4.1): straight vortices collinear with the magnetic field, vortices

forming a kinked structure or, finally, straight vortices locked-in to the planar defects.

More precisely, when the field is applied at large angles to the twins, above a
threshold value Oy called the frapping angle, vortices are straight and aligned to the
direction of the external field, see figure 4.1(a). In other words, Oy is the critical angle
above which it is unfavorable for a flux line, in terms of elastic energy, to adjust to the
planar defects. Considering the single vortex case, this critical angle is given as a

function of the line tension €, and the pinning potential of the twin boundaries erp:

2.
0, = :TP (4.1)
7

Note the expected dependence of O¢ on epp: the value of the trapping angle decreases

as the pinning potential ep of the twin boundary weakens.

When the direction of the external field, relatively to the twins, drops below 6,
vortices are deformed (fig.4.1(b)); a kinked structure arises, with the vortex being
aligned to a twin plane for a certain distance L (the kink length) and, thus, pointing
along the magnetic field only on average in one period of the periodic pinning array

(fig.4.1(b)).
By balancing the tilt energy (line tension € ; for the single vortex case) with the twin

boundaries pinning potential ep, Blatter et al. [6] estimated the length of the vortex
trapped segment in the defect, always for in-plane rotation of the applied field. The

number n of kinks per vortex is shown to increase linearly with 0:
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Figure 4.1: Vortex structure (thick lines) for different angles © of the applied
magnetic field H, relative to the twin planes (thin lines). (a) A collinear phase for
0 > O, (b) a kinked vortex phase for 6, <0 <0k and (c) a locked-in vortex phase
for © <0, Within the kinked structure, the linking vortex segments make an angle

Oy with the twin planes [5,6].

Finally, the presence of the planar defects leads to a lock-in transition when the
magnetic field is applied at angles, relatively to the twin planes, smaller than a critical
angle 0, (0, < 0g) [6]. Now the vortex is accommodated throughout its whole length in
the twin plane: it is locked-in to the twin boundary (fig.4.1(c)). The lock-in angle 0y is

equal to:

_4-m-g
o -H ~

(o] a

0, 4.3)

Abandoning the single, isolated vortex approximation and considering the vortex-
vortex interactions, as in the case of high magnetic fields, the trapping angle 6y is

reduced due to the increased elastic energy and is given by the relation [6]:
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In eq.(4.4) a, is the vortex lattice constant, k¥ the GL constant and the parameter

e = 1/y expresses the anisotropy. As in the single vortex case, the calculation is based on
the balance of tilt energy and pinning energy, assuming that a fraction of the vortices is
trapped by the twin planes [6]. It is worth noting that in the tilt energy used for the
estimation of the trapping angle in the collective case, the wave vector corresponding to
fluctuations perpendicular to the twin planes k, has a cutoff limit given by the spacing

of the twin planes dp, at k = (7t/dp).

Lowering the value of the external field, the above result eq.(4.4) goes over to the

single vortex result, eq.(4.2).

4.1.2 BOSE GLASS MODEL

Simultaneously with the Vortex Glass model, developed for systems with random
disorder, a pinning model for correlated disorder, e.g. twin planes, grain boundaries,
forests of screw dislocations or columnar defects, was proposed [9,10]. The essential
difference in the case of correlated disorder is that the extended defects produce pinning
forces which add up coherently and not in a random way, as happens with point
disorder. Thus, a strong rise of pinning energies can occur, which is particularly crucial

for the high temperature superconductors.

Considering an external field H, parallel to the extended defects, the situation is
mainly characterised by the attraction of vortices by the defects, for similar reasons to
those analysed above, in the case of the twin boundaries. Similarly to the Vortex Glass
model, there is a well defined transition temperature, Tpg. Above Tpg, the thermal
energy is sufficient to cause wandering of the flux lines among the defects on an
unconfined diffusive path [11] resulting in a linear (ohmic) resistance as a response to

an externally imposed Lorentz force.

Below Tpg the strong pinning conditions, valid for the type of disorder under

discussion, restrict and localise vortices within, at most, the limit of a few neighboring

47



Chapter 4: Vortex Channeling

defects [11]. The phase is called Bose or Boson Glass phase, since the statistical
mechanics of vortex localisation in a 3D extended defect can be mapped onto the
quantum mechanics developed for the problem of the localisation of a boson particle in
a potential minimum at 2D. The linear resistance is now zero at low currents, J << J;

and non-linear I-V curves are expected, of the form:

E SXp[ -(%2—):' 4.5)

J, sets the current scale and is a function of the distance between the defects and the
distribution function of the vortex pinning energies [12]. Assuming a short range
repulsive vortex-vortex interaction, the predicted value for the exponent p is 1/3 for low

currents [13] and 1 for higher ones.

Contrary to the existence of only one characteristic length, &g, in the Vortex Glass
model, in the Bose Glass model two important localisation lengths can be defined,
namely the /; and [, expressing the distances within which the localised vortex
fluctuates, parallel and perpendicular to the z axis (H, direction), respectively (see figure

4.2). Both these two characteristic lengths diverge as the temperature approaches Tyg:
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Figure 4.2: Vortex localised in a tube of radius 1 ; I is the distance along z that it

takes the vortex to “diffuse” across the diameter of the localisation tube.
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Figure 4.3: Superkink configuration, with the flux line tongue of transverse length
r and extension along the magnetic field z, seeking a convenient low energy pin fo

spread [13].
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The main transport mechanism of vortices in the Bose Glass phase, at low currents, 1s
tunneling between defect sites. For reasons of optimum tunneling probability, usually
the vortex tumnels to a distant defect with similar pinning energy. This
variable-range-hopping (VRH) transport mechanism, as it is called, is achieved via the
formation of double kinks or, at even lower current densities, of superkinks, as depicted

in figure 4.3.

An essential characteristic of the Bose Glass phase is the infinite value of the tilt
modulus, ¢4, resulting from the vortex confinement. Furthermore, a Mott insulator
phase has been predicted [13], buried deep inside the Bose Glass phase, at low
temperatures. This occurs at vortex densities that match the density of the defects; note
that the Mott insulator phase has been explicitly worked out for the case of columnar
defects. At these matching conditions both the tilt modulus, c,4, and the compressional
modulus, ¢, acquire infinite values. The Bose Glass model gives similar universal

scaling laws to the Vortex Glass and physical quantities scale now with an appropriate
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power of (T-Tgg) [11]; the main difference is the slightly different scaling exponents

expected for each of these two glass models [6].

As in the Vortex Glass model at T, at Tpg one expects power-law I-V
characteristics. The phase transition from the Bose Glass to the phase above Ty, which
is believed to be an entangled liquid of delocalised vortices, is predicted to be sharp and
of second order [12]. Due to the directional character of the correlated pinning a strong
angular dependence of the position of the irreversibility line in the phase diagram has
been also predicted [13]. This dependence is not expected in the isotropic Vortex Glass
case, being therefore the most pronounced and distinguishing difference between these

otherwise similar models.

4.2 EXPERIMENTAL STUDIES OF TWIN PLANES

Preceding and following the theoretical developments, the experimental studies of
twinned YBa,Cu;0,.5 samples, from the earlier stages till recently, were focused on

investigating the strong pinning properties of the twin boundaries.

First Vinnikov et al. [14] and Dolan ef al. [15] using the Bitter decoration technique
managed to demonstrate, at low magnetic fields, the attraction of vortices in the defect
boundaries; the vortex density appeared to be larger within the twin planes than in the

bulk. This was also evidence for the suppression of the order parameter within the twins.

Transport data of Worthington ef al. [16] in bulk and twinned YBa,Cu;0,_5 showed a
characteristic shoulder in the resistivity above the melting point of the solid. They also
showed an abrupt increase of the viscosity at the temperature this shoulder starts - on
lowering T. Marchetti and Nelson [17] explained the data in a frame of vortex
entanglement and strong pinning by twin planes. Due to entanglement the viscosity of
the vortex liquid is increased. Twin planes, acting as pinning centres and taking
advantage of the flux liquid’s enhanced viscosity, manage to anchor a large portion of

the vortex liquid.

SQUID magnetometry measurements in a wide temperature and field regime by

Welp et al. [18], both in untwinned and in twinned crystals containing a dense pattern of
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opposite twin planes domains, demonstrated an increased critical current in the case of
the twinned samples. This increase occured for both orientations of the applied field: H,
parallel to the c-axis and H, within the ab plane. At about the same time, Kaiser et al.
[19], again by means of magnetic measurements, also concluded that twin planes
enhance pinning and subsequently critical current densities in YBa,Cu;0;.. The strong
pinning picture was also supported by torque measurements by Gyorgy et al. [20], with

the applied field’s direction being rotated relatively to the extended defects.

A study of the angular dependence of the resistive transition curves in simply
twinned' single crystals of YBa,Cu;0, 5 was performed by Kwok et al. [21]. This
confirmed, at the time, the strong pinning character of twin planes, for orientations of
the magnetic field parallel, and a transport current applied at 45° with the planar defects.
This careful experimental work showed that resistivity is minimum for applied fields
orientated within 1° of the twins, giving a critical angle between the field and the twin
planes of the order of 1° - 3°, the angle above which the kinked structure ceases to exist,

see figure 4.4.

T=9126K

H=15T

p (UQcm)

500 50 100 150 200
0 (Deg)
Figure 4.4: Angular dependence of the resistivity, after Kwok et al. [21]. 0 is the

angle between the applied field and the measuring current which flows in the ab

plane [2]1].

I we will call throughout this work simply twinned the crystals that contain twin planes oriented in only one
direction.
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Similar results were presented in a follow-up work by the Argonne group [22].
Flesher and coworkers used a number of simply twinned crystals. The applied field was
rotated from the c-axis to the ab plane whereas the transport current was applied in the
ab plane. They succeeded in having a variety of different Lorentz force directions: 0°,
45° and 90° relative to the twin boundaries. For all the different geometries studied, twin
boundaries enhanced vortex pinning both in the locked-in regime (vortices parallel to
the defects) and in the kinked structure regime, for the trapped length of the flux lines.

The angular variation of the resistivity verified the results of Kwok et al. [21].

Evidence for the existence of a kinked structure came also from the work of
Grigorieva et al. [23,24], who used the Bitter decoration technique. Twin planes
appeared to be effective in attracting vortices for a large angle interval between the

applied field and the planar defects, supporting the kinked structure picture.

A novel approach to the problem of twin planes was made by Duran et al. [25] who
used a real time magneto-optical imaging technique to study their effect. Their
measurements were on lightly twinned YBa,Cu;0,5 single crystals and in a restricted
range of applied fields (up to 500 Oe) and temperatures (around 50 K). However their
results showed that contrary to previous reports twin planes could also facilitate and
guide vortex motion. In particular, twin planes provided paths for easier flux penetration
into the sample, in the case of motion along these extended defects; however, as before,

for transverse vortex motion the defects acted as strong pinning centres.

Nevertheless, Dorosinskii et al. [26,27] and Vlasko-Vlasov et al. [28] used the same
real time imaging technique but with an improved resolution to reach to the opposite
conclusions. They studied twinned YBa,Cu;0-_5 crystals with various distances between
the twins, in low magnetic fields, roughly up to 260 Oe. They concluded that twin
boundaries are strong pinning centres which never facilitate vortex motion. Flux is
prohibited to cross the boundaries; when during penetration flux encounters a planar
defect, the first vortices to “arrive” at the boundary are pinned there blocking, by their
mutual repulsion, the path of the following vortices. Thus, the latter ones promptly
change the direction of their motion and start moving along the boundary. In this way,
an increased flux density builds up on the side of the twin plane facing the flux motion,

the so-called “shadow effect”. Motion along the twin boundary, contrary to Duran ef al.
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[25], is not easier and is not guided, since it is realised in the presence of only one twin
boundary and not a pair [28]. Vortex motion does not occur, either, within the boundary:
Vlasko-Vlasov et al. [28] propose that within the planar defect itself vortices are pinned

against both parallel and transverse motion and do not move.

The contradicting interpretations of the magneto-optical imaging results proved the
necessity for clear experimenfal evidence on the existence of easy vortex motion along
twin planes. Furthermore, the technique’s intrinsic weakness of being restricted in very
low magnetic fields was another complicating factor. Inevitably, even if any definite
conclusions could be drawn from such measurements, it would be difficult to apply
them in the case of external fields higher by orders of magnitude. Our magnetic
measurements aimed exactly there, to clearly detect a possible existence of easier vortex
motion due to the presence of twin planes and study this effect in an extended field and

temperature regime.

4.3 RESULTS AND DISCUSSION

The experiments in the University of Southampton were carried out in a variety of
twinned and detwinned YBa,Cu;0-_5 single crystals, using both the 12 T VSM and the
6 T rf SQUID magnetometer [29-31]. Samples were first zero field cooled at the desired

temperature and then subjected to a magnetic field H,.

The dimensions, mass and the nature of the crystals (twinned and detwinned) are
shown below, in table 4.1, with a,, ., and o, being, respectively, the length, width and
thickness. All crystals have' an oxygen content of 6.91 and T, of 93.6 K, unless
otherwise specified. The microtwinned crystals investigated are either multi-domained
containing a pattern of domains with twin boundaries of different orientation or they are
simply twinned, containing twin planes oriented in a unique orientation, see figure 4.5.

The twin planes separation varies in the micrometer scale, between 0.5 and 5 pm.

1 Chapter 3, section 3.5, for more details.
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Figure 4.5: Photograph of simply twinned crystal L under polarised-light.

Crystals o,(mm) o, (mm) o, (um) m(ug) Twinning
A 1615 0.80 57 363 twinned
Al 0.71 0.47 53 120 simply twinned
A2 0.75 0.50 61 155 twinned
A3 0.70 0.35 48 80 twinned
B 0.88 0.80 13 64 twinned
C 0.90 0.70 112 483 twinned
D 0.72 0.70 52 179 detwinned
E 0.78 0.79 20 81 simply twinned
F 1.04 0.80 52 293 detwinned
L 0.67 0.63 24 . 70 simply twinned

Table 4.1: Details of the investigated YBa,Cu;0,5 single crystals. Simply twinned crystals

contain only one orientation of twin planes (see text).
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Figure 4.6 [29,30] shows a set of comparative VSM magnetic hysteresis
measurements, hysteresis loops, at 60 K, for twinned crystals A, B, C (figure 4.6(a)),
and detwinned D (fig.4.6(b)). The measurements have been carried out with a magnetic
field sweep rate of 5 mT/sec; the field H, was applied parallel to the c-axis, avoiding the
complication of the layered structure. In order to make a direct comparison between the
signals the different crystals produce, the magnetisation of each one is divided by its

characteristic size R, where R is:

R=_ y(l— yj , 0> 0 (4.7)

The Bean model predicts that for crystals with similar pinning properties, all M/R
curves are identical [32]. Indeed, comparing data of microtwinned crystals A, B, C with
data of detwinned D, these first measurements demonstrate that we can experimentally
define two field values (shown in fig.4.6(a)), H; and H,. The existence of twin planes
has little effect on the hysteresis width AM (and, thus, on the critical current J.) at high
fields: a satisfying agreement exists, for H,> H,, as fig.4.6 shows. However, they
seem to substantially increase AM and therefore effective pinning at low fields, for

H, < H,, in a region which also includes the so called magnetisation’s “neck”.

Our interest is focused on the intermediate fields regime, indicated on fig.4.6(a)
between H; and H,, where the width of the hysteresis varies and for crystals A and B an
unexpected flattening occurs instead of the well expected “fishtail” peak. As seen in
table 4.1, crystals A, B, C contain both types of twins, [110] and [110]. However,
polarising light microscopy showed that crystal C has many (more than 10) domains
with twins of opposite orientation, while crystals A and B have only a few such domains
(less than 4). As seen in fig.4.6 and repeatedly verified, a well defined magnetisation
peak is only observed in the case of multi-domained microtwinned crystals and for
detwinned ones; in the case of microtwinned crystals with few domains, though, a
depression in the hysteresis width and of the critical current is observed, always for

intermediate fields, H; < H, <H,.
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Figure 4.6: Magnetic hysteresis for twinned crystals A, B, C, and for detwinned
D. H, and H, are the empirical boundaries of the intermediate field region, where
a depression of the magnetisation occurs. Occasionally, they appear either as
small peaks (e.g. case of sample A) or as a change in the slope of the

magnetisation curve (sample B).
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A more careful study of samples A and C under the polarising light microscope,
shows that many twin planes of one type cross the whole crystal (as depicted for crystal
A in fig.4.7). Thus, our measurements seem to support the channeling picture given
earlier by Duran ef al. [25], but in a much broader field regime. The depression of the
hysteresis width can be explained as a result of the easier motion of the flux through the
behaving as channels twin planes, leading to the reduction of the sample’s overall
pinning. This preferential motion means that vortices feel in the twin planes a reduced
pinning force per unit length fip, compared to the equivalent pinning force f, they
experience in the untwinned regions. Indeed, as fig.4.6(a) shows, the depression of the
hysteresis is observed around the magnetisation fishtail peak, where one expects f, to be
larger. Nevertheless, in multi-domained twinned crystals this channeling mechanism is
expected to be far less plausible. The boundaries between the different domains
constitute strong, columnar-like, extended defects which hinder flux motion and

immobilise vortices.

To verify further that vortex channeling along the twin boundaries causes the
magnetisation depression, we cut crystal A into three pieces, Al, A2 and A3, with
crystal Al containing a unique twinned domain, while in crystals A2 and A3 there are
small regions with twin planes of the opposite direction. The sketch in fig.4.7 indicates
the distribution and orientation of twins in all samples. At low and high fields, the
magnetisation loop of all the pieces, once scaled by R, has exactly the same width as
that of the “mother” crystal A. However, in agreement to the discussion above, in the
intermediate field region where the flattening is observed, a remarkable further decrease
of AM takes place. Moreover, in all the parts, A2, A3 and especially Al, the plateau is
much more prominent and extended. As a result, unexpectedly, parts of a single crystal
exhibit a lower critical current density than the whole. The limited number or the
absence of any intersections of different twinned domains gives a chance for faster and
easier channeling to vortices, decreasing even further the sample’s overall pinning. The

same experiment on crystal C, gave similar results.

This vortex channeling situation is in a sense similar to the more recent experimental
findings of Pastoriza and Kes [33] who artificially - by irradiation - created weak

pinning channels and observed flow of vortices through them; also to the numerical
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results of Brass ef al. [34] and Jensen ef al. [35], where a preferential motion of vortices
along easy paths was demonstrated. Here these easy paths are (naturally) provided by
the twin planes. Later measurements by other groups led to the verification of our
results and conclusions, for instance similar magnetic measurements of ref.[36]. In
addition, more recent, high resolution magneto-optical studies in applied fieldsup to 1 T
support the conclusion that vortices penetrate inside the planar defect, and are not

guided along it [37].

MR (108 A/m?)

A3 A2 Al
Figure 4.7: Comparison of the scaled to size magnetic hysteresis for twinned

crystal A and its pieces A1, A2, A3.

Since channeling takes place in directions along the twin planes it should rely
crucially on vortices being locked-in to the twin planes. It follows that removing the
effect of the twin boundaries, by for example tilting the applied field H,, channeling as a

mechanism should weaken; on the contrary, pinning should increase. Therefore to
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further investigate the validity of the above drawn conclusions, we carried out a
thorough angular study of the magnetisation in the presence of twin planes [31], in

fields up to 6 T and temperatures up to 70 K.

For this purpose we used the 6 T rf SQUID magnetometer. To mount the sample into
the quartz tube, we created a step of oxygen-free copper wire under the microscope,
giving to the step the desired inclination for our measurements (figure 4.8(a)). The
sample was mounted on this step. In this way we applied the field at angles 6 relatively
to the crystal c-axis between 0° and 20°, the uncertainty in the angle being less than
0.5°. The applied field H, is rotated in the plane defined by the c-axis and the normal to

the twin planes, as depicted in figure 4.8(b).

— ]
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Figure 4.8: Representation of (a) a sample mounted in the quartz tube for the
SQUID measurements and (b) of the way the magnetic field H, was tilted for the

measurements (out of the twin planes).

Crystals D and E were used (table 4.1). In the simply twinned crystal E the twin
planes make an angle of 45° to the samples edges. In order to avoid problems of field
inhomogeneity the measurements were performed using an excursion length of the

sample equal to the minimum available, namely 1 cm.
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Figure 4.9: Isothermal magnetisation M(H) at the indicated temperatures and

angles for microtwinned crystal E.

Figure 4.9 [31] represents a detailed angular analysis of the magnetisation, for crystal

E. When H, is tilted away from the c-axis the measured magnetisation M arises mainly
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from the projection of the component along the c-axis of the magnetisation, M, [38]. It

is given by:
M(H,)=M, (H,cos0) cosO (4.8)

Thus, figure 4.9 shows M, =M / cosB as a function of the component of H, along the c-

axis, H, = H, cosB, at the indicated angles and temperatures.

Indeed, consistently with the idea of channeling, at a given temperature and in the
field region where the hysteresis flattening occurs, the width AM increases as H, is tilted
away from the planar defects. As we will explain, this is expected from the theoretical
predictions [6] for the existence of a kinked structure. It is important to emphasize that
in our case the locked-in situation and the kinked structure are revealed through
channeling of the trapped vortex segments in the twin planes, thereby leading to a

depression of the magnetisation.

From fig.4.9 two characteristic angles of the applied field with respect to the planar
defects can be defined: an angle 6; above which AM starts to increase and an angle O
above which AM stops increasing with the tilt angle. At small tilt angles between H, and
the c-axis, 6 < 0, lock-in of vortices to twin planes is expected [6]; twin planes trap the
whole length of a vortex and exert on it a pinning force fp(0<0;) = f;p(0). Theoretically
[6], a region of kinked vortices follows; in our measurements this is demonstrated via
the increasing of the magnetisation with 0, for 6; <6 < 6y. The channel produced by the
twin planes will obviously be less effective when vortices are only partly trapped. The
kinks [39] organise themselves into chains so that the twin boundaries are still fully
occupied, but this time by vortex segments. Vortex segments, which feel an increased
pinning force in the twin planes since they are anchored by the parts of the vortices
which lie in the untwinned regions, with the stronger pinning force f,. Finally, at still
larger tilt angles, © > Ok, vortices intersect twin planes at points, the magnetisation
saturates and thereafter the untwinned regions are expected to dominate the crystal’s
magnetic response. Let us emphasize the fact that this was the first work, at the time, to
produce experimental evidence for the (theoretically predicted) existence of two critical

angles, the lock-in angle 6; and the trapping angle 6¢. Until then only one of these two
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angles was experimentally reported, which sometimes carried the meaning of 6; and

sometimes the meaning of Oy (e.g. ref.[22]).
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Figure 4.10: (a) Temperature dependence of the hysteresis width at the indicated
angles and at a constant applied field of 4 T along the c-axis. (B) A comparison

between twinned crystal E for 6 > 0 (T) and the detwinned crystal D for 6 = 0°

Figure 4.10(a) presents the temperature dependence of the hysteresis width AM at the
indicated angles and at the applied field of 4 T. As the angle 6 increases, the temperature
dependence of AM(T) evolves gradually into the curve for 6 = 19.6°. It is clear that by
removing the effect of the planar defects the critical current gradually builds up. It is
worth noticing that the value of 8¢ above which the magnetisation saturates, increases
with decreasing temperature, i.e. with increasing the pinning force in the untwinned

regions f, «« AM(Bg). Our results show' that at 5 K, Ok is approximately 12° whereas at

1 See also figure 4.11(a).
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30 K it becomes equal to 7.9° and at 60 K it is a mere 3.7°. Going back to fig.4.9, we
have observed a similar magnetic field dependence of Oy, its value increasing with f,
increasing: the angle Oy increases as the difference between the outer hysteresis loop
(6 > 06y) and the inner hysteresis loop (0 = 0) increases, i.e. with the increase of

AM(0 = B¢) - AM(D = 0). This behavior is clearly seen at T =30 K.

For 6 < 6, not only the hysteresis width is reduced due to channeling, but also its
temperature dependence is deteriorating, as 0 tends to 0°. The weakest temperature
dependence of AM is observed at 6 = 0°. This supports earlier theoretical investigations
of the twin boundaries [6]. The twin planes are planar defects and therefore the pinning
potential along them is less sensitive to thermal fluctuations: twin planes are expected to
reduce the dimensionality of thermal fluctuations, restricting fluctuating vortices in 2D.
As a result the critical current’s decrease with temperature is expected to obey a power
law [5,6]. On the contrary, for random point disorder, due to the 3D character of thermal
fluctuations, this decrease is theoretically expected [6] and experimentally observed [40]

to be exponential with T.

The observed decrease of channeling with the reduction of f,, with temperature, is in
agreement with a later report on computer simulations by Groth et al. [41], who verified
the critical role of the relative strength of f;p and f, on the vortex motion along the twin
planes. The results of Groth and coworkers suggest that due to the reduced
dimensionality of thermal fluctuations in the twin planes, a temperature increase will
have a much more dramatic effect on f, and therefore, above a certain “threshold”
temperature, channeling will cease. As seen in fig.4.10(a), our measurements show
vortex channeling up to a temperature of around 70 K; thus, according to what was
mentioned, above this temperature regime we expect f, to become small enough for the
twins to no longer provide an easy and preferable vortex path. The same conclusions on
the relative temperature sensitivity of fyp and f, were also drawn in a number of other

theoretical [42] and experimental works [20,43].

Also illustrated in fig 4.10(b) is a comparison of the temperature dependence of the
width of the hysteresis for microtwinned crystal E, at 6 = 19.6°, and detwinned crystal
D, at 6 = 0°, for the same applied field of 4 T. Normalization of the data of detwinned D

to the size of twinned E allows a direct comparison to be made. As seen in fig.4.10(b),
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although there is some extra amount of disorder in the case of the microtwinned crystal,
once © > Oy the magnetic behavior of the twinned sample is dominated by the
untwinned regions, and we get a close quantitative and qualitative match with the

behavior of the detwinned sample.

Even more revealing is figure 4.11(a) [31], shown below. It shows the angular
dependence of the magnetic hysteresis width AM(8) at low (5 K), intermediate (30 K)
and high (60 K) temperatures, at a constant applied field of 4 T along the c-axis. For
each temperature the respective critical angles, 6; and Oy, are shown; data are

normalised by the maximum hysteresis width, AM,,,, obtained for 6 > 6.

Figure 4.11(a) supports what was stated above: the trapping angle O increases as the
pinning force in the untwinned regions f,, increases, when temperature is lowered. This
temperature dependence is an important experimental finding. Previous theoretical
investigations of the interaction of vortices with twin planes [13,39,44] showed that as
the order parameter is suppressed within the extended defect, there exists an energy
barrier epp which impedes transverse motion. Because of this barrier [13,6] vortices are
locked-in for angles of the applied field relatively to the twins smaller than the lock-in
angle; for larger angles, yet lower than the trapping angle, it is epp that causes the kinked
structure. On the other hand, the trapping angle 6x has been theoretically estimated [6]
to vary as (STP)O'S (see relations (4.1) and (4.4)) and to depend weakly on temperature, in
the temperature regime that we study; this temperature dependence becomes stronger
only when approaching T, [6]. What our results strongly suggest, however, is a fairly

strong temperature dependence of the trapping angle.
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Figure 4.11: (a) Angular dependence of the normalised AM to its maximum value,
at the indicated temperamres and at the fixed applied field of p,H,cos0 =4T.
Note the existence of two characteristic angles 0, and Og. (b) Scaling of the
curves illustrated in (a), with dy being the relative decrease of AM (see text). The

lines are a guide to the eye.
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Figure 4.12: Similar analysis for a constant temperature of 30K at the indicated
applied fields. (a) The angular dependence of the normalised to its maximum
value AM and (b) scaling of the represented in (a) curves with [AM(GK)]O‘S. The

lines are a guide to the eye.
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As clearly seen in fig.4.11(a), the hysteresis width AM(0) varies linearly with 6 for
0, < 6 < Og. In order to understand this, we must recall that at this stage, the kinked
structure stage, fractional vortices feel an increased pinning force due to their parts lying
in the untwinned regions. The average force per unit length exerted on the vortices will
increase with the number of kinks, produced by the increase of 0 as predicted by
equation (4.2). This is a direct result of the decrease of the size of the trapped segments
in the twin planes [6]. We can express this force in terms of the relative variation of the
length of the trapped segments 8L / L, where L is the initial trapped length for the limit
6=0,=0and 8L =L - L(O):

oL
fTP(e)_fTP(eL) ~ [fTP(GK)_fTP(eL)]'T 4.9

In relation (4.9) f1p(6g) = £, the pinning force in the untwinned regions, is assumed
to be angle independent, since in the magnetic field range of interest and for small
angles only the component along the c-axis is relevant for the magnetic response of the
untwinned regions [38]. For the angular variations considered here and from simple

geometrical reasoning (fig.4.1(b)), 8L / L can be approximated as:

SL  tan® 0
o By 2 (4.10)

In addition, the relative decrease of the width of the magnetisation can be writen as:

_ AM(9)-AM(8,)
 AM(8y )- AM(6, )

8y 4.11)

Thus, combining relations (4.9) - (4.11) and taking into account that f, o« AM(6y),
f1p(01) o AM(8;) and f1p(0) o« AM(D), one finds that:

5, ~ fTP(e)_fTP(eL)_lz.E._l (4.12)
fu _fTP(eL) eK

in agreement with the experimentally observed linear behavior of &g depicted in

fig.4.11(a).

Figure 4.11(b), on the other hand, shows a striking scaling of the curves represented
in fig.4.11(a). The relative decrease 8y, as defined by eq.(4.11), is plotted as a function

of 6/ [AM(GK)]O‘5 at the indicated temperatures. As shown, also, in figure 4.12, a similar
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analysis at T = 30 K for various applied fields leads to the same results. All the curves at

all the temperatures for magnetic fields above 2 T converge into one.

From the above it is evident that ©; and Oy have the same temperature and field
dependence. Furthermore, the successful scaling with AM(8) o f, proves that the two
critical angles depend only on the disorder in the untwinned regions. This behavior
further supports that only the current density flowing in the untwinned regions, J, is
relevant for the effectiveness of the trapping potential of the twin planes. It seems that
the increase or decrease of the strength of the point disorder in the untwinned regions
and consequently of f,, is followed by changes in the effective potential barrier

produced by the twin planes.

Vortex dynamics in the presence of extended defects has been the focus of a number
of important, recent, theoretical works [10,12,13,39,44-49]. As discussed before, point
disorder is theoretically expected to promote flux line wandering, while correlated
disorder' to “inhibit wandering and promote localisation” [13], establishing the Bose
Glass phase. In particular, in the case these two kinds of disorder coexist, weak random
point disorder has been shown to destabilise the Bose Glass phase, inducing roughening
of vortices. The angular study we performed is the indicated tool to distinguish which is
the dominant pinning structure [13]. Nelson and Vinokur [13] but also Brandt [44]
showed that in the presence of a Lorentz force perpendicular to a twin plane, segments
of a vortex can be unpinned, forming half loops. These half loops extend for a distance

Lyand L, in the directions parallel and perpendicular to the twin boundary, see fig.4.13.

Our experimental data verifies these theoretical predictions. Indeed, if w is the width
of the potential barrier epp of the twin plane, when we consider that a vortex is confined
to a width L, instead of w, we can renormalise grp [50]. Thus the effective potential

barrier responsible for the vortex lock-in, is now:

' W
€1 =Erp (L—) (4.13)
1

I For directions of the applied field parallel to the extended defects.

68



Chapter 4: Vortex Channeling

Figure 4.13: Schematic representation of the half loop excitation of a vortex line

out of a twin plane.

Recalling the theoretical dependence of 6 on epp as found by Blatter et al. [6],

Oy o (STP)O'S, but using the effective potential barrier we have:

0.5
0, oc(gn, i"iJ (4.14)
L

Furthermore, Nelson and Vinokur [13] demonstrated that the perpendicular
confinement length is inversely proportional to the current density J which produces the
Lorentz force exerted on the trapped vortex (in our case J is the current density in the

untwinned regions, J o« AM(6g)), L, o« 1/]. Relation (4.14) then automatically gives,

O o I = 0 oc[AM(8,)] (4.15)

explaining the expirementally observed scaling. Consequently, our data verified for the
first time, the theoretical predictions for the behavior of a vortex localised in an

extended defect, in the presence of random point disorder.

Finally, the importance of the pinning strength in the untwinned regions f, for vortex
channeling means that there should be two consequences. First, at low fields, at the
magnetisation’s neck, one should not expect channeling to be favorable, due to the
much smaller value of £, (of the hysteresis width). We have seen before that indeed this

seem to be the case (fig.4.6(a)), but it is difficult to easily distinguish any effects there,
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since the hysteresis “neck” extends up to only about 1 T. Thus, we carried out
measurements on the simply twinned crystal L (table 4.1), with an oxygen content of
6.96 (T, = 93.4 K). For this crystal the low field part of the hysteresis extends up to
around 3 T, for a temperature bf 50 K. The twin planes are at 45° to the sample’s edges.
We compared three different orientations of the applied field": parallel to the c-axis,
tilted at 7° within the twin planes (denoted as ‘in’) and tilted at 7° in the plane defined
by c-axis and the normal to the twin planes (denoted ‘out’). As our previous results
showed, a measuring angle of 7° is higher than the trapping angle at 50 K; thus, we can
make a safe comparison of the aligned to the extended defects vortices case with the
response of the bulk. Figure 4.14 presents the magnetic hysteresis of L at 50 K, for the
three orientations. The contrast of the lower field behavior to that of the field region
around the peak effect is clear. Tilting the applied field in the twin planes leaves
unaffected the hysteresis width throughout the whole field range from 0 to 12 T, since
the trapped in the twin planes vortices do not experience any change of the pinning
force exerted on them. However, by tilting the applied field out of the twin planes, there
is a double change. At fields above 3.6 T and around the peak effect vortex channeling
is stalled, returning the pronounced magnetisation peak. However, at low fields, below
around 3.6 T, AM and consequently the critical current are decreased, demonstrating

that as expected twin planes act as strong pinning centres in this low f, regime.

The second consequence the critical role of f, on channeling should have, is that we
should be able to observe pronounced changes on the vortex channeling mechanism in
the same sample, by altering the oxygen concentration. Indeed, it has been shown (for
example ref.[51,52]) that for high quality, pure samples the dominant pinning centres
are oxygen vacancies; thus, an increased oxygen content reduces the existing
microscopic point defects and, consequently, pinning in the untwinned regions, f,. As a
result, one should expect that in the field and temperature regime channeling is observed

in a certain sample, this to be quenched with an adequate reduction of f, by doping.

1 See figure 3.2 for a schematic represantation of the sampleholder.
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Figure 4.14: Magnetic hysteresis of simply twinned crystal L for three different
orientations of H, in respect to the twin planes: at 0° aligned with them, tilted at

7¢ within the planar defects and tilted at 7° in the normal to the twins plane.

To verify this, we have changed by annealing the oxygen content of twinned crystal
A3 which exhibits vortex channeling. Figure 4.15(a) shows the isothermal magnetic
hysteresis of sample A3 at 60 K for an oxygen content of 7-6 = 6.90 where channeling
clearly occurs. Increasing the oxygen content to 6.96, as fig.4.15(a) vividly
demonstrates, vortex channeling disappears. For comparison, scaled to size data of the
detwinned crystal F at the same oxygen contents are presented. According to what was
stated before, for a given oxygen content of a sample (and thus for A3 with the new
oxygen content of 6.96) we can strengthen the pinning force f,, of the untwinned regions
by lowering the temperature (as discussed before, due to the screening of thermal
fluctuations by twin planes f1p is much less sensitive to temperature variations than f,).
As a result, an adequate decrease of temperature should introduce again the flattening of
the magnetic hysteresis (vortex channeling) in our results. Indeed, by lowering now the

temperature from 60 K down to 40 K for sample A3 at the oxygen content of 6.96, the
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characteristic for vortex channeling shape of the magnetic hysteresis depression appears

again, as figure 4.15(b) shows.
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Figure 4.15: Hysteresis loops (a) at 60 K for oxygen contents of 7-6 = 6.90 and
6.96 for A3 and F (see text) (b) at 60 K and 40 K for A3 with an oxygen content
7-86 = 6.96.

Unavoidably, our measurements led to the clarification of the seemingly
contradicting previous works. Thus, the strong pinning behavior of twin planes as this

was demonstrated in transport measurements [21,22] can be easily explained in
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accordance to the discussion above, in terms of the competition of the pinning force in
the untwinned regions and in the twin planes. It is important to note the restriction of the
magnetotransport measurements at high temperatures, around 85 - 90 K. At the elevated
temperatures the transport technique is employed, f, is expected to be much weaker than
f1p and therefore channeling is not feasible. On the other hand, previous works based on
magnetisation measurements did not consider the strong pinning role of the intersections
of different twin planes domains [18] or focused in the temperature and field regimes
where channeling is not anticipated [19]. Furthermore, under the light of the undeniable
existence of vortex channeling and in an effort to bridge the initial discrepancy of their
results [25-28], the Argonne-Chernogolovka and the Bell groups in more recent
magneto-optical reports [53-55] attributed this discrepancy to the angle of the twin
planes with the natural flux gradient. For flux entering the sample, i.e. applied fields
near H;,, twin boundaries can prohibit or facilitate vortex motion depending on their
angle to the edge of the sample and thus to the flux gradient; late numerical results by

Groth et al. [41] backed their conclusion.

4.4 CONCLUSIONS

By studying the magnetisation of YBa,Cu;0, single crystals in a broad regime of
temperature, magnetic field and angle, we have shown that twin planes can indeed act as
channels for easier vortex motion and consequently limit pinning and critical currents.
This depression of the magnetic hysteresis width due to vortex channeling is favorable
only when the pinning force in the untwinned regions is stronger than the pinning force
in the twin planes, up to a temperature of the order of 70 K and at fields centered around
the magnetisation peak. At low applied fields, away from the peak region, twin planes
enhance both pinning and critical current density. Of major importance is also the
existence of intersections of different domains of twin boundaries in the sample, which
can provide strong columnar-like pinning centres, inhibiting channeling and hence

preventing the decrease of the critical current.

Our results present clear experimental evidence for the existence of two critical

angles. Below a lock-in angle 6, vortices are locked-in to the twin planes while above a
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trapping angle 8¢ (6, < 6y) point defects dominate pinning. In the case of fractional
vortices (8, < 8 < 0x) AM grows linearly with 6. Our results demonstrate that as the
pinning force in the untwinned regions increases, either by temperature or by field, 6

increases.

We demonstrate that the two characteristic angles 0; and Ok scale with the hysteresis
width obtained for © > O¢. This scaling suggests that contrary to theoretical
expectations, the two critical angles depend critically on the disorder in the untwinned
regions. The scaling of the data can be explained in terms of vortices being localised in
a width larger than the potential well produced by the twin planes and fixed by the

current flowing in the untwinned regions.
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5. THE YBA,CU3;0,_; PHASE DIAGRAM

5.1 THEORETICAL BACKGROUND

The conventional mean field vortex phase diagram for a pure system consists merely
of a Meissner phase for H, < H,, and a mixed (Shubnikov) phase for H;; < H, < H,.
Above H,, the superconducting-to-normal transition occurs. Continuous second order

phase transitions were predicted at H;; and H, (figure 5.1).

A

H
Normal Phase

Mixed Phase

Meissner Phase

>

Figure 5.1: Phase diagram for conventional type II superconductors.

T

In this rather simplified picture, thermal fluctuations and their effects on the vortex
matter were ignored. Indeed, though it was early conceived that thermal fluctuations can
melt the Abrikosov lattice [1], at the time of the low temperature type II

superconductors this melting line H, (T) lied unobservably close to H,,(T) [2,3].

However, in high temperature superconductors, due to the higher anisotropies, the
high operating temperatures, the shorter coherence lengths and the nonlocality of the
vortex-vortex interactions, the role of thermal energy becomes pivotal and is manifested
in an enhanced value of the Ginzburg number Gi. Consequently [2] the destruction of

the Abrikosov lattice due to thermal agitation in the H-T phase diagram occurs much
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deeper in the Shubnikov phase, being clearly distinguishable and far from the
superconducting-to-normal transition. This possibility was first expressed by Brezin er

al. [4] and by Nelson [5].

Theoretically, the destruction of the Abrikosov lattice via melting has certain
characteristics: total loss of translational order and a vanishing shear modulus [2].
However, a complete melting theory is still not available [2,6]. Similarly, the position
and the shape of the melting line in the H-T diagram cannot be predicted. It is only the
semiquantitative criterion of melting, expressed by Lindemann [7] in 1910 for a

crystalline lattice, which covers this theoretical gap of understanding.

According to the Lindemann criterion, a crystalline lattice looses its stability under
the influence of thermal fluctuations of its constitutive elements (which can be atoms,
vortex lines, etc.) and melts when the mean-squared amplitude of fluctuations <u2(T)>ﬂ1

increases beyond a certain fraction ¢, of the lattice constant o,:
2 2.2
<u (Tm)>th ~CL o (51)

The same criterion has been used first by Houghton et al [8] and since then
established to estimate the melting temperature of the vortex line lattice. The so called
Lindemann number c; has an approximate value of ¢c; ~ 0.1 - 0.2; this value of ¢; should

depend only weakly on the specific material of the crystalline lattice [2].

In addition, the Lindemann criterion can be expressed in terms of characteristic
energies. The vortex lattice undergoes a melting transition when the thermal agitation
energy equals the elastic energy barriers keeping vortices confined in the cage their

nearest neighbours produce, at the lattice equilibrium positions (figure 5.2):
Kp Tm = Eel (52)

Nevertheless, there are serious questions concerning not only the order of this
melting transition but also the vortex phases it separates; recently these problems have

been the subject of a hot debate.
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Figure 5.2: A vortex confined in the cage potential produced by its nearest

neighbours: visualisation of the Lindemann criterion.

In a clean system, above the melting transition there exists a vortex liquid phase,

consisting of weakly confined vortex lines and exhibiting linear I-V characteristics.

Vortex motion yields the well known flux flow resistivity (eq.(2.2)) which is a field

dependent fraction of the normal resistivity and thus the vortex liquid state cannot be

characterised as a truly superconducting

liquid phase is still an open experimental

state. The exact description of vortices in the

and theoretical question with possibilities such

as entangled or disentangled vortices, pinned or unpinned liquid arising [2].

solid phase

{

|
|

\ |

\ | H(T
\Hym | e
A\

4
i

\ |
\\ liquid

Figure 5.3: A general form of the H-T diagram in the case of high temperature

superconductors.
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Below the melting transition, always considering the clean limit, vortices freeze in
the usual hexagonal Abrikosov lattice configuration (see figure 5.3). Brezin et al. [4]
predicted that a transition of this kind is a first order transition. Strong numerical
evidence for a first order melting transition was given by the Monte Carlo simulations

of Hetzel et al. [9].

Making use of the Lindemann criterion at moderate magnetic fields
H,, <<H, << H,,, Blatter et al. [2,10] estimated the temperature dependence of the
melting line, H(T). They achieved this by determining the mean-squared amplitude of
fluctuations <u2(T)>th using the shear and tilt elastic moduli as given in chapter 2. The

estimated temperature dependence of the melting line is then [2]:

4

T n
Hm(T) ~ Bm ' %LI I_Ic2(0)[1 - ?J (53)

where [3,, ~ 5.6. Blatter ef al. [2] derived an exponent n ~ 2, i.e. a quadratic dependence
of H,, on T, - T, valid as long as the temperature T lies outside the fluctuation regime
[2], that is 1 -t2>Gi, with t=T/T.. In addition, for YBa,Cu;0.5 the simple square
power-law relation (5.3) holds only several kelvin below T, as Blatter and Ivlev [11]
have shown, due to the approach at lower temperatures of the melting line close to H,

and the subsequent suppression of the order parameter.

The introduction of disorder in the system complicates the problem. Weak, random,
point disorderl, which is present in all the “real life” high temperature superconductors,
should alter the low temperature Abrikosov lattice - but how? The Vortex Glass model,
described in chapter 2, was believed to give a satisfying answer to the above question
[12-15]. Pinning causes an exponential decay of translational order and destroys the
long range periodicity of the lattice, producing a Vortex Glass phase. Simultaneously
lattice dislocation defects are favored by disorder [13-15]. However, shear stiffness
survives and thus critical currents too. A similar glassy behavior, as we have seen, was
predicted by Feigel’'man er al. [16] in the frame of the collective creep model.
Nevertheless, soon a numBer of contradictions emerged. Noteably, decoration

experiments of the vortex lattice revealed large dislocations-free regions [17].

I Which will be the case in this chapter.
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Simultaneously, new theoretical calculations suggested a slower (logarithmic) growth of

disorder induced deformations [18].

Giamarchi and Le Doussal have recently proposed a new possibility for the low
temperature solid phase [19,20]. They demonstrated that while disorder induces an
algebraic growth of displacements at short length scales, when the lattice’s periodicity is
correctly taken into account, it takes over at large length scales and leads to a decay of
the translational order at most algebraic. Furthermore, the authors [20] demonstrated
that for weak disorder in the 3 dimensional case, dislocations are not favorable. The
result is a solid phase which is free of dislocations, retains quasi-long range order and
which is predicted to exhibit Bragg peaks in neutron scattering experiments. This weak
glass state was therefore termed Bragg Glass phase. In agreement with the above, a
number of other recent theoretical works verify the existence of this “rather ordered
quasilattice” at low fields and temperatures, for example the works of Ertas e al. [21]

and of Vinokur et al. [22].

A reference should be made to a few theoretical works which seem opposed to the
streamline acceptance of a solid-to-liquid first order transition in the vortex phase
diagram. Most notable, Radzihovsky [23,24] shows that the transition at H,,(T) should
be continuous. Also Moore [25] suggests that the observed first order transition is in fact
a crossover from 3D to 2D behavior once the phase correlation length along the field
direction in the liquid' state becomes comparable to the sample’s dimensions. Finally in
a very recent work, Carruzzo et al. [26] give an elegant alternative interpretation of this

first order transition as a supersoftening transition of the vortex lattice®.

I According to Moore [25] the liquid phase exists over the whole mixed state in the H- T diagram.

2 According to Carruzzo er al. [26] the solid phase exists over the whole mixed state in the H - T diagram.
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5.2 EXPERIMENTAL EVIDENCE OF A MELTING TRANSITION

5.2.1 YBCO

The first evidence of a melting transition came from Gammel ef al. [27], in vibrating
reed experiments on YBa,Cu;0,5 crystals, where they found a sharp peak in the
damping of the oscillatory motion, along a field dependent line in the phase diagram,
T,(H). However, it was shown that such results can also be explained naturally, by
thermally activated depinning [28]. In this early time of rather dirty samples, transport
and ac susceptibility measurements of Worthington ef al. [29], and low-frequency
torsional oscillator data of Farrell et al. [30] and Beck ef al. [31], also gave useful hints

about a possible melting transition.

An important step of understanding came with the transport data of Charalambous er
al. [32], Safar et al. [33], and Kwok ef al. [34], on high quality single crystals. A series
of reproducible jumps in the resistive transition at low currents, accompanied by
hysteresis in the temperature dependence were the first signs of a first order transition.
At these jumps (or kinks) the resistivity sharply drops to zero (upon freezing) within a
temperature interval of a width of the order of 100 mK. This transition is shown to be

suppressed by extended defects such as the twin planes [34,35].

Safar et al. [36], found in high field transport measurements in untwinned samples, a
well defined point H, in the phase diagram, on the H,(T) line, above which, H > H,
the resistive transition broadens and the melting line becomes voltage criteria
dependent. The magnetic field H, plays the role of a multicritical point where the first
order transition terminates, being replaced by a continuous, possibly second order,

solid-to-liquid transition [36].

With the same technique, Kwok et al. [37] demonstrated an asymmetric hysteresis
behavior at H,, which they attributed to the different way the melting and the freezing
mechanisms are realised within a pure enough sample. In a following work, Kwok et al.
[38] detected a precursor to the melting transition peak effect. Upon melting, just below

the solid-to-liquid transition, the resistivity decreases before it sharply increases to the
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flux flow value p; (see eq.2.2). They interpreted this as a result of shear softening of the
solid prior to melting and of the better adjustment of vortices to the pinning sites - a
rather classical explanation [39]. Fendrich ef al. [40], demonstrated how the first order
transition can be suppressed by increasing point disorder. In high quality samples with a
sharp liquid-to-solid phase transition, controlled point defects were introduced by 1
MeV electron irradiation. The result was a smearing out of the resistive transition and

vanishing of the resistive hysteresis.

However, in some nice work by Jiang ef al. [41], it was shown that since resistivity is
not a thermodynamic quantity, it cannot be a safe criterion of a first order transition.
They demonstrated that the observed resistive hysteresis can in fact be attributed to a
current-induced nonequilibrium effect rather than to a first order transition. Indeed, if
the scenario of a first order transition were true convincing thermodynamic evidence
like a discontinuity of the entropy S(T,H) and of the magnetisation M(T,H), both first

derivatives of the Gibbs free energy G, should be forced out of hiding.

The first unambiguous such evidence came from Liang ef al. [42] who reported a
discontinuity of reversible magnetisation in untwinned YBa,Cu;0,5 single crystals, by
means of SQUID magnetometry. The sample was moved in a minimum length of 1 cm.
Liang et al. estimated the entropy jumps ASy per vortex per CuO, layer in units of kg
and found good agreement with the numerical results of Hetzel ef al. [9]. It is:

AM dH, ®,-d
H, dT «g

m

AS, = (5.4)

where d is the c-axis lattice constant and H,, the melting field. Hetzel et al. [9]
numerically estimated a value of ASy = 0.3k at H,, = 10 T, while Liang and coworkers

estimated that at melting fields of 1 and 4 T, ASy, is respectively 0.8xp and 0.6xp.

Welp et al. [43] using SQUID magnetometry showed that the discontinuous jumps of
the magnetisation, found in high quality untwinned YBa,Cu;0,5 single crystals,
coincide in the H - T plane with the position of the resistive kinks, convincingly
supporting the existence of a melting transition in the vortex phase diagram of
YBa,Cu30,.5. In order to get these results, Welp ef al. [43] used not only moving but

also stationary-sample SQUID magnetometry, by measuring the SQUID voltage as the
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temperature of the sample drifts, showing that the observed magnetisation jumps are not
a side effect of any field inhomogeneities. Remarkably, Welp and coworkers found that
the solid phase becomes denser on melting: this “icelike” melting can be due to the
entropy gain of flexible entangled vortices in a denser liquid with long range
interactions [44,45]. They estimated a constant with temperature value of ASy = 0.65%g

below 88 K, which rapidly decreased to zero above this threshold temperature.

The most direct and impressive evidence of a first order transition, however, came by
Schilling et al. [46], who performed calorimetric measurements in a high purity
untwinned YBa,Cu;0,.5 single crystal and observed an entropy discontinuity (latent
heat) which appears as a peak in the measured specific heat C. Schilling ef al. estimated
the entropy jumps ASy per vortex per superconducting layer and found close agreement
with the values extracted in the same sample by the magnetisation measurements of

Welp et al. [43] (fig.5.4). An approximately constant value of ASy, = 0.45xy was found.
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Figure 5.4: Entropy jump AS (in text ASy) per vortex per superconducting layer

as estimated by Schilling et al. [46] for YBa,Cu;04.5.

A region of solid and liquid coexistence was found by Fendrich er al. [47], who
carried out simultaneous magnetisation (stationary-sample SQUID magnetometry) and
transport measurements in the same sample. This region is enclosed in the width of the
magnetic transition. The magnetic and resistive melting transitions are shown to start,

upon freezing, at the same temperature; however the first is completed at a much lower
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temperature than the second one. Authors based their interpretation on the influence of
the existing chemical inhomogeneities in the sample. They also showed that the melting

transition is independent of the motion of the vortex matter.

Finally Wu er al. [48], attempted to investigate the ¢4 collapse at the first order
transition, by measuring the complex resistivity of the vortex system. Modelling of their

results gave a collapse of the shear modulus at H,, by a factor of 400.

5.2.2 BSCCO

Together with YBa,Cu30,5, Bi,Sr,CaCu,Og is the only high temperature
superconductor whose the phase diagram has been the focus of so many experimental
and theoretical studies. The essential difference in this case is that Bi,Sr,CaCu,0Oq has a
substantially greater anisotropy y than YBa,Cu;0,5. Because of the large anisotropy the
various phase transitions in the Bi,Sr,CaCu,0Og4 phase diagram occur at particularly low
fields, compared to YBa,Cu;0-, of the order of a few hundred Oe. Furthermore, while
for YBa,Cu;0,5, as we have seen, the first order transition is theoretically and
experimentally considered to be a solid-to-liquid melting of vortex lines, in

Bi,Sr,CaCu,Oyg other possibilities also arise.

Theoretically, Glazman and Koshelev [49] proposed the existence of a temperature
independent critical field, B,p. Below B, pancake vortices in different layers coupled
via electromagnetic (EM) and Josephson interactions, are lined up and form vortex
lines. Above B, the energetic cost of in-plane shear deformation is bigger than that of a
tilt deformation on the scale of the interlayer distance d [49,50] and the flux lattice
decomposes into weakly interacting 2D lattices. Taking the parameter K, ~ 1/, it 1S

[6,49]:

CDO ’ ln(y i kmax ) d)
,YZ . d2

B,, =27 (5.5)

In addition, Glazman and Koshelev [49] predicted that for strongly layered
superconductors and B < B,p, with increasing temperature first a 3D solid-to-liquid

melting transition occurs followed by a decoupling transition from a vortex line liquid
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to uncorrelated vortex pancakes. The latter marks the vanishing of the tilt modulus cy,.
For fields higher than B,y where 2D lattices exist, a melting transition to a hexatic phase
is predicted with simultaneous vanishing of c,4 and cgg - this hexatic phase is turned into

a liquid at higher temperatures.

Experiments of small-angle neutron diffraction (SANS) by Cubitt e al. [51] were the
first to show a flux line lattice in Bi,Sr,CaCu,0q and a rapid drop of the diffraction
intensity at T,,(H) with a simultaneous appearance of finite resistance in the mixed state.
At the time this result was interpreted as a 3D vortex lattice melting. The diffraction
intensity disappeared also at low temperatures with increasing the applied field, due to

the flux lattice decomposition above a field B,y as described earlier.

LUSR measurements by Lee ef al. [52] also showed a sharp transition of the flux line
lattice, determined from a sudden sign change of the asymmetry of the field distribution,
which they associated with flux lattice melting. In addition the low temperature

decomposition transition in field was observed.

Magnetic and susceptibility measurements of Pastoriza et al. [53] gave the first
thermodynamic evidence for the order of the observed transition. An abrupt change in
the magnetisation and a frequency and amplitude independent peak of the in-phase
component of the ac susceptibility witness a first order transition. The authors found
good agreement of their results with the Glazman-Koshelev model [49] and they
attributed the first order transition to decoupling. They estimate a ASy ~ 0.06xp. Similar
work by Doyle et al. [54] with a miniature mutual inductance technique led to the same

conclusion.

In an elegant work, Pastoriza and Kes [55] suggested that in Bi,Sr,CaCu,Og melting
and decoupling can be a simultaneous event. Using a partially masked and irradiated
crystal they detected a sharp voltage drop at the freezing temperature T, due to the

appearance of shear vortex-vortex interactions.

An important step was taken by Zeldov et al. [56] who used miniature Hall probes to
measure the local vortex density. They have shown a discontinuous field and
temperature dependent decrease of a thermodynamic quantity, the flux density (dc

magnetic induction) which can be directly attributed to a first order transition. Zeldov et
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al. found an unexplained flattening of the transition line at low temperatures and further
down its termination in a critical point. They also observed the freezing expansion of
vortex matter and estimated a value of ASy, which increased with temperature, figure
5.5. They attributed the transition to sublimation, that is simultaneous melting and

decoupling of a solid lattice to uncorrelated pancakes.
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Figure 5.5: The entropy jump AS (in text ASy) per vortex per superconducting
layer as estimated by Zeldov et al. [56] for Bi,Sr,CaCu,Oyg .

It is worth mentioning that the thermodynamic origin of the results of Zeldov and his
coworkers was challenged by Farrell et al. [57], who claimed that the observed jump in
local and global magnetisation can be attributed (in the case of Bi,Sr,CaCu,0Og only) to
artifacts such as flux inhomogeneities caused by geometrical barriers. Farrell and
coworkers demonstrated that the entropy jump is controlled by the magnetic

irreversibility, making it difficult to relate it to a true phase transition.

Finally, it was shown by Blatter et al. [10] that when one incorporates the EM
interactions in the study of the vortex system at high anisotropies, as in the case of

Bi,Sr,CaCu, 0y, the transition is best described by the power law of eq.(5.3) with n=3/2:

4

T 3/2
H,(D) ~B, - ch(0>-(1——T-—J (5.6)
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5.3 PEAK EFFECT

Another intriguing feature is the magnetic hysteresis anomaly observed in these high
temperature superconducting oxides, namely the increase of the magnetisation with the
magnetic field. Contrary to the peak effect in conventional superconductors, observed

close to H,, in the high-T oxides the anomaly is evident well below Hy,.

In the past, proposed explanations have attributed this peak in the magnetisation to a
percolating network of normal zones, like Dacumling et al. [58], or reversible zones,
like Klein et al. [59]. Sample inhomogeneities provide new pinning centers and cause
the increase of the critical current with the field. After the peak maximum they turn
normal or reversible, the crystal acquires a granular structure and the magnetisation

decreases.

A 3D to 2D vortex lattice transition has been also considered, e.g. by Hardy et al. in
Tl-based single crystals [60]. G. Yang et al. [61], working in Bi,Sr,CaCu,Og suggest a
matching effect between the decoupled 2D pancake vortices and dislocations networks
present in the crystal, to be the cause of the observed peak effect. Another possible
explanation was a crossover between bulk pinning and surface barriers, as Kopylov et

al. [62] have proposed.

Other possible interpretations of the peak effect are based on the clasical approach of
Pippard where the increase of current with magnetic field is due to an improved
adjustment of vortices to the pinning potential. This can be a result of elastic softening

of the vortex lattice (e.g. work by Zhukov et al. [63]).

It was only recently that the peak effect was attributed to a sharp phase transition by
Khaykovich et al. [64]. As we will analyse in the next session, in their study of the
vortex phase diagram in Bi,Sr,CaCu,Os, the authors suggest that the peak effect there
is produced by an unprecedented thermodynamic phase transition of the flux line lattice,

between two distinct solid phases.

Coming to the specific case of the less anisotropic YBa,Cu;0,5 the peak in the
magnetisation reported until now, commonly called the “fishtail” peak, has two main

characteristics: firstly, it is very broad and thus unlikely to result from a relatively sharp
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thermodynamic vortex phase transition and secondly, its field position H,(T) decreases

with temperature.

5.4 RESULTS AND DISCUSSION

Magnetic measurements were performed in the 12 T VSM in Southampton [65].
Transport measurements were carried out in the cryostat of the VSM [65]. The samples
were zero field cooled at the desired temperature and then the magnetic moment was
measured as a function of the magnetic field, which was applied at a constant sweep

rate.

Transport measurements were performed by S. Pinfold. A conventional four point
AC method was used, with an AC current source and a Stanford SR530/830 Lock-in
Amplifier to measure the voltage drop. The technique had a resolution of 5 nV and was
applied in a field range up to 12 T. Contacts to the samples were made by applying
narrow pads of Ag epoxy on the crystal, after its thorough cleaning. The epoxy was
Dupont silver conductive composite 7838. For a four point measurement, the current
pads covered the two opposite edges of the crystal, so as to provide a uniform current
density. The voltage pads were placed on the upper surface of the crystal. Care was
taken to avoid any contact between the different pads. The crystal was then placed in the
furnace with an oxygen flow. The curing temperature was chosen equal to the annealing
temperature, in order to prevent any change of oxygen content. After curing for 1 h the
crystal was quenched to room temperature. Gold wires of 50 pm diameter were attached
to the pads with Ag epoxy and then dried at 120° C. The resistance of the contacts is
typically less than 1 Q. For the measurements we used a transport current of 0.1 mA. A
schematic representation of a crystal with the employed electrical contact configuration

can be seen in figure 5.6.

Details of the crystals used can be found in table 5.1, below. DT and TW stands for
detwinned and twinned crystals, respectively; o, is the length, o, the width and o, the
thickness of the sample. As explained in section 3.5, to produce oxygen concentrations
of 7-8 = 6.90, 6.93, 6.96 we annealled the samples at 520°, 475° and 450° C

respectively, in the presence of oxygen flow.
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Figure 5.6: A schematic representation of a sample with the attached electrical

contacts for resistive measurements.

Crystals o, (mm) o, (mm) o,(m) mug) 7-8 T,

DT1A 1.04 0.80 52 293 6.90 926
DT1B 1 1 / / 6.93 938
DT1C " " " /" 6.96 934
DT2 1.52 0.85 65 495 691 93.6
DT3B 0.70 0.70 52 179 693 93.8
DT3C /" /! // 1 696 934
TWI1 23 0.80 38 478 691 93.6
TW2 1.16 1.00 287 2267 691 936
TW3 0.58 0.45 180 319 691 93.6

Table 3.1: The studied YBa,Cu;0,5 crystals; DT stands for detwinned, TW for twinned.
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Figure 5.7(a) [65] shows magnetic isotherms for crystal DT1A, from 60 K to 78 K in
steps of 2 K and for magnetic field H, || c-axis, up to 12 T. These data are consistent
with all previous reports for the magnetisation peak effect in YBa,Cu;0-, ¢.g. ref.[66-
69]. The position of the, broad, main peak in magnetisation goes to lower magnetic field

values with increasing temperature.
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Figure 5.7: Magnetic isotherms at the indicated temperatures with a step of 2 K
for an oxygen content of (a) 6.90 and (b) 6.93. Arrows indicate the temperature

dependence of the magnetisation peak field position, H,,
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Figure 5.7(b) shows similar data for the same crystal but with a higher oxygen
concentration (DT1B). The hysteresis loops in this case are taken from 60 K to 72 K,
again in 2 K steps. The magnetisation peak position occurs at higher field values as
compared to figure 5.7(a). At T = 60 K the peak position is shifted by as much as 2 T;
this large variation is a result of only a small change in the oxygen concentration. In
addition, at high temperatures and at fields lower than the position ofithe main peak, H,,

another smallish peak P, in the magnetisation appears. A “bump” appearing at 66 K
marks the “birth” of peak P, At a temperature higher by 2 K, the new peak is clearly
distinguishable. For detwinned crystals P, is observed only in a narrow temperature

range, approximately 4 K. But what is more surprising in the data of fig.5.7(b), is that

the main magnetisation peak (which we call hereafter P, - high field peak), narrows
h g

with increasing temperature and its position shifts to higher magnetic field values.

TWI1

Figure 5.8: Hysteresis width vs applied field at the indicated temperatures for
sample TW1.

Figure 5.8 demonstrates how the fishtail magnetisation evolves with increasing

temperature for the twinned crystal TW1. As depicted, the magnetic field anomaly is a
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two step process. We see how the two peaks P, and P, evolve with decreasing
temperature. Contrary to detwinned crystals, the peak P, in microtwinned samples is
more prominent; it survives and is observed in a broader temperature range, in some
cases up to 5 K below T..

A closer look at the main magnetisation peak P, reveals some impressive features.
Figure 5.9 [65] illustrates the temperature impact on P, . It represents the magnetisation
peak at T=72K and T = 74 K. The peaks are remarkably sharp for global
magnetisation measurements and the maximum hysteresis width, which is proportional
to the critical current density J, is strongly temperature dependent:

AM . (72K)

~ (5.7)
AM__ (74K)

Figure 5.9: Hysteresis loops for DTIB at 72, 74 K. The globally measured
magnetisation peak appears only after 6 T and is sharper than anything shown

before for YBa,Cu;0

Figure 5.10 [65] depicts the width of the magnetic moment, Am, for three hysteresis

loops of crystal DT2, at a temperature of 74 K and 76 K. These loops were performed
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LT

0 2 4 6 10 12

Figure 5.10: Hysteresis width vs applied field for three different magnetic field
sweep rates (voltage criteria) at (a) 74 K and (b) 76 K, for crystal DT2.
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Figure 5.11: Hysteresis width for two different sweep rates, for crystal TW2.

with different sweep rates: 3, 10 and 20 mT/s. Due to the equivalence of applied field
sweep rate and electric field, dH,/dt « E, these three loops correspond to different

voltage criteria. As is clearly seen, the peak P, separates two different relaxation
regimes. However the position of the remarkably sharp high field peak P, is voltage

criteria independent. Furthermore, the maximum magnetic moment producing the peak

P, is not only temperature dependent, as we have shown in fig.5.9, but also bears a

h

strong time dependence. Figure 5.11 exhibits an identical response of the two peaks, but
for a twinned crystal. In our measurements we have varied the field sweep rate in the
maximum available window, 3 to 20 mT/s, obtaining always the same result: the lower

field peak P; marks the onset of an increased relaxation rate, while the position of the

high field peak P, is independent of the voltage criteria.

In contrast to our studies, previous studies on YBa,Cu;0-._5 reported either resistivity
measurements where a sudden resistivity drop at T, was found due to vortex

solidification, or magnetic measurements which showed a “fishtail” peak in the
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magnetisation. It is one of the key features of the present work that for the first time

both techniques have been combined to study the same crystals.

Shown in figure 5.12 are the magnetisation peak positions of detwinned and
microtwinned crystals with the same oxygen concentration, namely 7-6 = 6.91. In
agreement with the discussion in chapter 4 concerning the suppression of the
magnetisation peak due to vortex channelling, in order to get the magnetic peak
positions of microtwinned crystals at low temperatures, T < 65 K, hysteresis loops have
been carried out with a magnetic field tilted away from the twin planes by an angle of
10°. As we have shown, this angle is enough at this temperature range for vortices to
break loose from twin planes and interact with them at points. At high temperatures the

positions of both peaks P, and P, are represented.

Also shown in figure 5.12 is the melting line of crystal DT2 deduced from
magnetotransport measurements, as done by Safar ef al. [33]: a rapid drop of resistance
observed at a well defined point (H,,, T;)) in the H - T plane for H, < H,, was assigned
to a first order transition. We also find a critical point Hy, where the first order transition
terminates, being replaced by a continuous, probably second order, solid-to-liquid
transition [22,33,70]. For applied fields larger than H,, similarly to Safar and coworkers
[70] we observe a broadening of the resistive transition, and the melting line becomes
voltage criteria dependent. Furthermore, the expression (5.3) gives an excellent fit to the

experimental melting line, for a fitting exponent n = 1.45:

T 145
H (T) ~ 132-(1—?) (5.8)

C

This exponent is in the range estimated in previous published works: with an upper
limit of n = 2 [30] from Farrell’s torque data, a fit to Safar’s transport data [33,34] gives
n = 1.39 and similarly to Kwok’s transport data [34] n= 1.41. From magnetisation
measurements, Liang et al. [42] find a melting exponent n = 1.34 while Welp et al. [43]

estimate n =1.36.

As illustrated in fig.5.12, for crystal DT2 the broadening of the resistive transition
takes place at fields above o H, = 4.5 T. We observe that this value is about the same

as the magnetic field position of the peak P, close to the melting line. This is a result
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which has not been previously reported for YBa,Cu;0,5. Measurements on twinned
crystals, but with H, tilted away from twin boundaries by an angle of 7.5° for the

reasons explained above, lead to similar results.

Figure 5.12: H,(T) line for DT2, defined with different voltage criteria (0.05,
0.15, 0.3 uV) and the magnetisation peak line for TW and DT crystals of the same
oxygen content, 7-6 = 6.91. Arrows indicate the critical point Hy, above which

H,(T) becomes voltage criteria dependent and the last data point of H(T) for
DT2.

Recently it was shown experimentally that the peak effect in YBa,Cu;0,; is due to
an elastic to plastic creep crossover [71], marking the activation of topological defects in
the vortex system. These authors considered dislocation mediated plastic creep of
vortices, similar to the diffusion of dislocations in atomic solids [72]. In this frame, the
plastic deformations of the flux line lattice are due to the motion of dislocations over the
Peierls barriers associated with the periodic structure of the lattice [72]. This is not
expected to be a thermodynamic transition [73]. Our results clarify even further the

situation. As shown in figure 5.13(a), we obtained a perfect fit for the position of the
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peak P, in the phase diagram, with the theoretical temperature dependence of the peak

position resulting from this dislocations mediated plastic creep model [71], with o = 2:

@ F()=8.5(1-t*)?
=I/T

~ c

06 0.8 | 1.0

Figure 5.13: Fitting of data for crystal TW2 with the dislocations mediated
plastic creep model, eq.(5.9). The fit shown by the dashed line, (a) is nearly

perfect for the peak P, (b) but it is totally unsuccessful with the main

magnetisation peak, P .
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)|
H,(T) « {1-(—5} } (5.9)

However, the fit is unsuccessful at lower temperatures, before the splitting of the
fishtail peak (fig.5.13(b)). Indeed, Abulafia et al [71], who used weakly twinned

crystals [73], considered the model in the temperature regime that only the peak P,

appears, that is above 80 K, as our data in twinned crystals show.

Thus, it becomes clear that the aforementioned model cannot account for the

appearance of the peak at lower temperatures, before its splitting, and P ;- This resulting

crossover line in the vortex phase diagram, Hy(T), exhibits on its own a surprising
similarity with the equivalent peak effect line in Bi,Sr,CaCu,0y. Lately it has been
proposed [19-22] that the Bragg Glass can be “melted” not only by thermal fluctuations,
but also by quenched disorder. In this picture, H,(T) separates two distinct solid phases:
a weakly disordered quasilattice associated with the Bragg Glass phase [19,20] and a
highly disordered solid at higher fields [21,22]. These two phases, together with the
liquid phase connect to a multicritical point (H, T,,) [21,22]. In Bi,Sr,CaCu,Og, due to
the sharpness of this vertical transition it was suggested that it represents a second order
thermodynamic transition [64]. As further evidence, it was also shown by Khaykovich
et al. [64] that the magnetisation peak correlates to the multicritical point. The same
impressive results in Bi,Sr,CaCu,O; were produced by Tanegai ef al. 74] and Ooi et al.
[75], with local magnetisation measurements. Coming back to our particular case, the
additional observation of a voltage criteria independent peak, which also correlates to

the multicritical point, seems to reinforce this scenario.

In the comparison with Bi,Sr,CaCu,0Oj5 one should also take into account the striking
similarity in the temperature behaviour of H(T) in the phase diagram (fig.5.13). As in
Bi,Sr,CaCu, 04 [64] the same non-monotonic temperature dependence is observed. The
astonishing similarity of the temperature dependence between the peak effect in
YBa,Cu;0,5 and in  Bi,Sr,CaCu,Oy4 is more apparent when one compares with the

results in the latter compound presented in refs.[74,75].

To test this observed identical behaviour of Hy(T) in YBCO and in Bi:2212, we went

further and studied its response to different oxygen stoichiometry. Oxygen doping
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decreases the out-of-plane anisotropy vy, leading to more isotropic samples. It has been
also shown that it can affect the microscopic pinning, by reducing the number of oxygen
vacancies [63,76]. In Bi,Sr,CaCu,QOy it was demonstrated by Khaykovich et al. [64] that
oxygen doping shifts both the first order transition line and H,(T) to higher fields in the
phase diagram. Numerous other reports have since then confirmed this result for

Bi,Sr,CaCu,04 [74,75,77,78].
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Figure 5.14: Position in the H-T plane of the magnetisation peak line, Hy(T), and
the melting line terminated at the multicritical point, for crystals with different

oxygen concentration.

Figure 5.14 [65] illustrates the magnetic peak positions in the phase diagram for
different oxygen concentrations. Data are from (two) crystals DT1A, DT1B, DT1C and
DT2. As depicted, H,(T) shifts systematically and reversibly up and down in magnetic
field, with the oxygen concentration increasing and decreasing respectively. As for
Bi,Sr,CaCu,0g, the non-monotonic temperature dependence of Hy(T) strengthens with
oxygen doping. Also in fig. 5.14 is the melting line for two different oxygen
concentrations of crystal DT3: DT3B and DT3C. At an oxygen content of 6.93 the

multicritical point is found at 7 T, in agreement with H,(T). By doping the melting line
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is pushed upwards. We varied the field up to 11T; however, no sign of broadening of the
resistive drop at the first order transition was observed. Identically with
Bi,Sr,CaCu,04, Hy(T) is pushed by oxygen doping upwards in the vortex phase
diagram coherently with the multicritical point. This response provides impressive
evidence for the universality of the phase diagram in the high-T, superconducting

oxides with weak random point disorder.

Theoretically, the field-driven transition of the vortex lattice between a quasi-ordered
and a highly disordered solid phase is still not fully understood [21,22,79,80]. At some
characteristic field the pinning energy becomes equal to the elastic energy barriers of the

vortex lattice:
Epin = Eel (5 1 0)

At this point the destruction of the quasilattice occurs. At the present [20,21]
suggestions are that it involves disorder induced relative displacements (transverse
wanderings) of the order of a,, the vortex lattice spacing, and finally permutation of
neighbouring vortices. The resulting frozen configuration of twisted vortices can be
characterised as an entangled solid, see fig.5.15 [21,22]. Loss of translational and
topological order of the vortex matter leads to the domination of dislocations. On the
contrary, the existing Bragg Glass phase below the transition retains translational order
at long distances and perfect topological order [19,20,79,80]. Using the relation (5.10),
Vinokur and coworkers [22] have shown explicitly that for YBa,Cu;0,.5 the magnetic
field values at which this transition is expected to occur vary proportionally to (y A)'2 ,
where v is the anisotropy and A is the strength of the point disorder, in agreement with

the obtained experimental results [65].

Very recently it was pointed out that for the destruction of the Bragg Glass not only
the appearance of dislocations is important, but also the length scales at which these
dislocations appear relatively to o, [81]; in this frame, a scenario was proposed for
YBa,Cu;0,_5 which explains the peak effect at fields lower than the multicritical point.
Our measurements strongly suggest that exactly as predicted by Giamarchi et al. [81], at

high temperatures, thermally induced unbound dislocations can invade' the vortex

1 1f the translational order is sufficiently weak.
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system first at large length scales compared to o, affecting the critical current and

producing a peak effect (P). However, the first order transition and the field-driven

transition to the entangled state remain unaffected, since the relevant and important
length scale for these transitions is o,,. In any case, at higher fields, massive large scale
plasticity due to multiple creation of topological defects at the disorder induced field-
driven transition occurs, with destruction of the quasi-ordered lattice at all length scales,
down to o, The main magnetisation peak (Pl) marks the transition to the highly
disordered vortex state. The picture of this field-driven transition is similar to the one
given by numerical simulations results of Ryu et al. [82], who found a highly disordered
solid phase above a threshold field, with an “explosive invasion of infinite defect loops

meandering across the layers and colliding with each other” [82].

@ (b)

Figure 5.15: The mechanical entanglement transition: increasing the external
field the initially confined in its cage potential vortex (a), switches positions and

twists with its neighbours (b), ending up in a configuration of entangled flux lines.

Since the necessary condition for both the first order and the field-driven transition is
the existence of the basic hexagonal vortex lattice cell, extended defects such as the twin
planes should not affect the position in the H - T plane of H,(T). Indeed, this is evident
in figure 5.12, where we observe H,(T) to be the same for detwinned and twinned
crystals, with the same oxygen content. For the transition to the “frozen liquid” (i.e.

entangled solid) to occur, the relative displacements of the nearest neighbors in the cage
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potential have to be of the order of o, [22,81]. Twin planes pin a certain number of
vortices and enhance the critical current; however their pinning range is quite limited,
10-50 A, see for example ref.[83]. Unlike point defects such as oxygen vacancies which
are randomly distributed, a relatively low density of twins cannot affect the decisive
local ordering and therefore twins can leave the field-driven transition unaffected [84].
As mentioned in section 4.3, the distance between the twin planes dp varies in our
samples between 0.5 and 5 pm. Thus, for example, at a field of H, = 4 T, the vortex
lattice constant is o, ~ 22.7 nm. Considering an average value of dyp ~ 2 um, means that
the untwinned region between two adjacent twin boundaries can accomodate across its
width around 90 delocalised vortices, which are positioned in a proper hexagonal lattice
formation and undergo the transitions. On the other hand, the presence of extended
defect structures (e.g. twins) is predicted to weaken the translational order [84,85]
making the quasi-ordered Bragg Glass more unstable to dislocations. This explains what

we observe as an enhancement of P ] in the twinned samples.

In agreement to the above, the non-monotonic temperature dependence of Hy(T) can
be naturally understood by considering the combined effect of disorder induced
wandering and thermal fluctuations displacements on vortices [21,22]: the decrease of
the pinning energy E,;, with temperature, due to the softening of the pinning potential in
the presence of thermal fluctuations, leads to an increase of the solid-to-solid transition
fields [21,22]. This increase occurs above a certain temperature T  which is equal to the
depinning temperature [21]. Our results (fig.5.13) show a T ~70K, in good agreement
with the theoretical estimations for the depinning temperature in YBa,Cu;0,5 (for

example Blatter et al. [2]), see figure 5.16.

Our phase diagram depicted in fig.5.16(b) is in accordance with the recent theoretical
suggestions [20-22,79-82]. Two solid phases, a quasi-ordered Bragg Glass phase and a
highly disordered entangled solid phase, are separated by an entanglement transition,
see figure 5.16(a). Liquidification occurs via two different transitions: a first order
transition for the Bragg Glass and a second order transition for the entangled solid. All

phases, solid and liquid, meet in a critical point.
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Figure 5.16: (a) Schematic phase diagram after Ertas and Nelson, ref.[21] (b)
Phase diagram for DT2 as derived by our combined magnetic and fransport

measurements.
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5.5 CONCLUSIONS

In conclusion, our results in high purity single crystals of YBa,Cu;0,.5 reveal the
existence of a sharp, voltage criteria independent magnetisation peak. The magnetisation
width at the peak is observed to be strongly dependent on temperature and sweep rate.
Combining transport and magnetic data we have shown that the resulting magnetisation
peak line H,(T) in the vortex phase diagram of YBa,Cu;0_5 represents a well defined
crossover which shifts to higher fields with increasing oxygen doping and temperature,

always correlating with the multicritical point.

We have shown that our results can naturally be fitted in the recently suggested
picture of the existence of two distinct solid phases, a quasi-ordered lattice at low fields
and a highly disordered solid at higher fields. By its turn, this picture suggests the
existence of a generic phase diagram for all the high temperature superconductors.
Moving in this direction, our results show an apparent and remarkable similarity with

results obtained for the highly anisotropic Bi,Sr,CaCu,Ox.

Finally, our results demonstrate that low densities of extended defects, in this case
twin boundaries, cannot affect the position of the field-driven transition in the vortex
phase diagram, or suppress it. This transition is based on the existence of a quasi-
ordered vortex lattice in the presence of random, weak, point defects such as oxygen
vacancies. Given the limited pinning range of twin planes, these conditions are still met
in the untwinned regions, that is the regions enclosed between a pair of planar defects.
Consequently, the resulting magnetisation peak line H,(T) in the phase diagram remains

for detwinned and twinned crystals of equal oxygen content, virtually the same.
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6. LOCK-IN OSCILLATIONS

6.1 VORTEX STRUCTURE PARALLEL TO THE LAYERS

In a layered structure of Josephson coupled superconducting planes, the interlayer
distance d is by far the most important length scale when considering the vortex

structure. As predicted back in the seventies [1,2], when &, is smaller than the interlayer

distance d (more precisely when & (T) < d/ V2 ) the assumption of a smooth variance of
the order parameter W from layer to layer is not valid and new effects are expected. The

temperature at which this dimensional crossover occurs is denoted as T ; in

YBa,Cu; 055 the condition £(T) < d/ V2 is valid for temperatures up to 80K [3]. As a
result, the 3D anisotropic Ginzburg-Landau and London models become inapplicable,
since they describe anisotropic but uniform superconductors, ignoring any effects of
discreteness. Thus the need for a new model emerges, a model that will implement the

discrete nature of the order parameter.

A simple model of this type is the Lawrence-Doniach (LD) model, which describes a

stack of superconducting layers weakly connected via Josephson coupling [1].

Containing the 3D anisotropic models as a limiting case for &, > d/+/2, the LD model
assumes a 2D order parameter W, (x,y) which does not vary smoothly from one layer to
the other but on the contrary vanishes in the region between the layers [4]. In this
approach, the layered structure can be visualised as a stack of alternating
superconducting and insulating planes (SIS structure) [3,5]. Thus, in the free energy
functional, the LD model replaces the gradient of the order parameter along the z axis
by a finite difference. The LD model introduces a new length scale, which depends on
the anisotropy v, the Josephson length ;= yd. The Josephson length is a measure of the
“shear stiffness” of the order parameter, ¥, large differences of the order parameter

between two adjacent layers, ‘¥, ,;-'¥, are allowed only within a range equal to A;.

The free energy functional in the anisotropic Ginzburg-Landau case reads [3,6]:
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I 1 7 2e s
a(m¥| + =p(T)¥| + (iV,, + —A/,)\P
; 2 4m 7 , B’
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h’ 2e ’ 2,
+ (iVZ + -———AZ)“P
| 4m A |
(6.1)

where a(T) and B(T) are two temperature dependent coefficients, A the vector potential,

A= (A, A, 0) and B = curlA. Instead, within the LD frame, taking into account the

Josephson coupling of the léyers f;, the proposed phenomenological functional now
becomes:
1 0 2e g
a(T)]\Pn o EB(T)]Tn " 4 (ivl/ + 7‘&//) P,
2
F = dJ-d3r ’ ) + jd3r B
Zie (n+1)d 2“0
+1,W,,, — VY, exp| — J-Azdz
nd
|
|
(6.2) ‘

leading to some important conclusions. First and foremost, it was realised that the
modulation of the order parameter along the c-axis gives to the layers the features of a
periodic pinning structure of extended defects [7]. Thus, secondly, the direction of the
applied field H, with respect to the layers is crucial for the structure and the

characteristics of vortices.

Indeed, for fields applied at an angle © with the ab plane below a critical angle 0,
vortices lock-in between the layers, running parallel to them [3]. Lock-in is
accompanied by a “transverse Meissner effect”: contrary to the predictions of the 3D
anisotropic models, the component of B perpendicular to the planes is zero [3], resulting
in a complete screening of the perpendicular component of the applied field. In this
locked-in situation, the strength of the interlayer superconducting coupling, as
characterised by &, affects crucially the structure of the vortex core. The resulting
vortices are called Josephson vortices or Josephson strings [4]. Compared to Abrikosov

vortices, Josephson strings are similar but with a different core size and structure. The
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vortex core prefers to run parallel and in-between the layers, having a width parallel and
perpendicular to the planes equal respectively to A; and d [8], figure 6.1. This
confinement in between two adjacent superconducting layers, grants to the string a 2D
morphology. The usual Ginsburg-Landau (normal) core is absent and the amplitude of
the order parameter in the adjacent layers is either not at all suppressed or merely
weakly suppressed but not zero, depending on temperature [3,8,9]. These new cores are
called Josephson cores or nuclei or phase cores since they sustain large layer-to-layer
phase differences. Surrounding the core, similarly to Abrikosov vortices, there is a
region of exponentially decaying screening currents flowing around the axis of the

string at lengths A,, and A, perpendicular and parallel to the ab plane, respectively.

di

Figure 6.1: Structure of the Josephson vortex lattice - the case of a parallel to the

layers applied field. Dark areas represent the section of the Josephson nuclei.

In the case of a magnetic field applied at angles larger than 0", a staircase structure
succeeds the locked-in state. Vortices consist of 2D pancake vortices on each layer, with
the usual normal core, connected via portions of Josephson-like cores with width
parallel to the planes equal to A; [8]. With the direction of the applied field approaching

even closer to the c-axis, the staircase structure gives in to a tilted vortex lattice [3,8,9].

Above T one enters the quasi-3D regime. The coherence length perpendicular to the

layers is large enough (€, > d/ V2 ) for the discreteness of the layered structure to weaken

but not completely disappear and an effective anisotropic 3D description to be
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applicable again. As in the quasi-2D case, the centre of the vortex core prefers to be
positioned between the layers. The essential difference is that the core now consists of
two components: a normal core of section &€&, including in its centre a Josephson
nucleus of cross section Ajd [3]. The amplitude of the order parameter is now readily

suppressed in the layers, within the complex core section of &g,&, [3], figure 6.2.

M
<>
A A
Ec
¢
\ 4 4
< >
E_;ab

Figure 6.2: Vortex core structure for a parallel to the layers external field, in the
case of elevated temperatures, T > T (stable configuration). Bold lines show the

reduced order parameter on the layers, the dark area is the Josephson nucleus.

6.2 EXPERIMENTAL EVIDENCE OF LOCK-IN

In this frame new, exotic vortex structures and lattices have been predicted, leading
to a very rich phenomenology. The existence of vortex chains, for example, has been
theoretically discussed [10,11] and experimentally observed [12,13] for magnetic fields
close to H;, applied at an angle to the c-axis. Predictions of a decomposed or a

combined lattice [14-16] have also been experimentally verified [13,17].

A great deal of experimental interest has been directed at detecting the locked-in
vortex state with the theoretically predicted, accompanying, intrinsic pinning. An
anomaly in torque measurements, observed on an untwinned YBa,Cu;07_ single crystal

by Farrell et al. [18], was attributed to a transition to the locked-in state [19]. More
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precisely, as the applied field H,, rotates towards the ab plane, at 8" due to the lock-in of
the vortices their angle with H, increases, resulting in a torque larger than the
conventional anisotropic London model predicts [8]. A similar anomaly was observed in
single crystals of Bi,Sr,CaCu,Og by Steinmeyer et al. [20] and of Tl,Ba,CaCu,Og by
Chung et al. [21]. Transport rﬁeasurements in YBa,Cu307.5 on the other hand, exhibit an
abrupt, impressive drop of resistivity for fields applied in the ab plane and flux motion
geometry vertical to the layers [22,23], due to intrinsic pinning. In detecting the lock-in
transition, vector magnetisation measurements [24,25] can be also useful, by monitoring

the accompanying transverse Meissner effect.

The aforementioned techniques have certain limitations. Torque measurements are
unable to give any essential information on the dynamics that govern the behavior of
locked-in vortices. Even their apparent use in finding out the angular boundaries of the
locked-in state can be restricted due to thermal fluctuations and extrinsic pinning effects
which can mask or extinguish the transition [26,27]. Coming to magnetotransport
studies, their confinement to high temperatures, above 80 K, makes the study of the
quasi-2D regime and consequently the detection of the 2D to 3D transition temperature
T impossible. Furthermore, in interpreting a transverse Meissner effect one has to be
aware of possible electrodynamic and not thermodynamic (vortex lock-in) origins [25].
In any case, these techniques, for different reasons, were not in a position to enlighten us
about the behavior of the 2D Josephson strings system or verify the existing theories for

the vortex lattice structure and behavior in the quasi-2D regime.

6.3 RESULTS AND DISCUSSION

We investigated high purity untwinned YBa,Cu30.5 single crystals with an oxygen
content 7-8& = 6.91. Magnetic hysteresis measurements were carried out on the 12 T
Vibrating Sample Magnetometer in Southampton, in collaboration with Dr. M. Oussena.
Samples were first zero field cooled at the desired temperature and then subjected to a
magnetic field H,. Unless specified, in our measurements the direction of H, is in the

plane defined by either the a-axis or the b-axis and the normal to the ab plane. The angle
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that H, makes with the basal plane is measured with the accuracy of our setup, 6 < 1°.

Measurements were performed with a constant sweep rate of 5 mT/sec.

Table 6.1 shows the relevant details of the studied YBa,Cu;0_5 samples.

Crystals o, (mm) o, (mm) o, (um) mug) 7-8 T(K)

DTO 1.45 1.2 125 1479 6.91 93.6

DT3 1.69 1.08 91 1129 6.91 93.6

Table 6.1: Details of the two crystals used in our experimental studies with a,, o, and o, being

the length, width and thickness, respectively.

In the locked-in state the known shape of the magnetic hysteresis changes
fundamentally, as first observed by Oussena et al. [28]. Shown in figure 6.3 are the
magnetisation curves at different temperatures, up to 60 K, for crystal DTO, in an
increasing applied field up to H, = 12 T. The applied field is parallel to one of the
principal axis of the ab plane (each separate case is indicated on fig.6.3); in order to see
the effects clearly we shifted the curves along the vertical axis, a procedure that does not
qualitatively affect the signall As it is clear, the magnetic isotherms exhibit a strong
oscillatory behavior, with oscillations whose periodicity increases with field. As
demonstrated in fig.6.3, and below we will show in much more detail, the maxima of
these oscillations are temperature independent. The observed oscillations are a direct
consequence of the interaction of the locked-in Josephson vortex lattice with the
periodic pinning structure that the layers represent and hence we will refer to them as
lock-in oscillations. The observation of lock-in oscillations allows us to probe the nature
of the lattice and the mechanism of vortex motion at the low temperature quasi-2D

regime.

Here we give a full account of the mechanism, pictured in fig.6.4, comparing the
theoretical predictions to the experimental results as mapped in figure 6.3 [29]. The

anisotropic London model predicts for nearly parallel fields a hexagonal vortex lattice
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compressed along the c-axis and expanded in the plane direction of the crystal [3,30],

with a field independent ratio a/l = 2y/ /3, see also fig.6.1. Here a and ] stand for the

average vortex distance parallel and perpendicular to the ab plane, respectively, see
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Figure 6.3: Magnetisation results for an increasing up to 12 T applied field in the

ab plane, at the indicated temperatures, for crystal DTO0.

fig.6.4(a). The vortex lattice with the a/l ratio predicted by the anisotropic London
model is a state of minimum vortex-vortex interaction energy. This state in the layered

cuprate superconductors will be commensurate with the order parameter modulation
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along the c-axis, for certain only values of the applied field, H,. For H, = H,, / = nd,
where n = 1, 2, 3... and the cores of the strings, members of the compressed hexagonal
lattice, lie in between the layers. This is the case in the dips of the magnetic hysteresis

(e.g. points A and E in figure 6.3).

Increasing H, but staying near H,, any changes in the vortex density can be
accommodated with motion of the cores parallel to the layers (fig.6.4(b)). There are only
two factors opposing such a guided motion: firstly the repulsive vortex-vortex
interaction, which initially, for the commensurate values of a, is expected to be
minimum and secondly the pinning of Josephson vortices by extrinsic defects. Taking
into account the absence of a normal core, one expects Josephson strings to be much
less effectively pinned by extrinsic defects; this was explicitly shown by Blatter et al.
[6], who demonstrated the reduction of the elementary pinning force acting on a
Josephson vortex, compared with the force acting on an Abrikosov one, by a factor of
approximately (&ab/Kj)3, both for 8T, and 6] pinning. We should also remember that as
analysed in section 2.2 (eq.2.16) for the case of vortices laying parallel to the layers
there is a dramatic softening of the component of the shear modulus parallel to the basal
plane, cl,. Due to the aforementioned reasons, the motion of the strings is facilitated for
directions parallel to the layers. This explains the extremely weak irreversibility
measured for the field lying in the ab plane: the scaled to size width of the hysteresis for
transverse geometry (H, // c-axis) increases up to around 30 times. Thus, returning to
our description, any increase of H, will lead to a decrease of the vortex spacing a and an
accompanying enhancement of the mutual repulsion of the strings (points of upward

curvature like B in figure 6.3).

Nevertheless, in order to proceed from one commensurate state, H,,; with / = (n+1)d,
to the next, H, with / = nd , changes in / have to occur for field values in the
intermediate region of H,,; and H,. This is illustrated in figure 6.4(c) and has been a
theoretical suggestion long before the observation of lock-in oscillations [3,31]. The
increase of H, leads to a point where the parallel motion of the cores is prohibited due to
strong repulsion applied by the other cores in the same “channel”; now it is favorable
for the nuclei to actually cross the CuO, layers by the creation and motion of pairs of

kinks and antikinks. A fast reorganisation of vortices from the n+l to the n
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commensurate state begins. In the quasi-2D regime, which is the case for the
temperature regime discussed here, the kink - antikink pair is a 2D Abrikosov vortex -
antivortex pair in the ab plane‘ [3]. In this incommensurate state, the pair has to face the
enhanced pinning interactions present in the CuO, plane. Thus, one expects the effective
pinning force to maximise resulting to a peak in the magnetic hysteresis. This is the case

in our lock-in oscillations for points as C in figure 6.3.

As it is obvious from the geometry of the problem [3], the kink-antikink pair faces a
force parallel to the ab plane and once it is nucleated, it also moves in the direction
parallel to the layers (points of downward curvature like D in fig.6.3). In this way, the
whole vortex line is “transported” to the neighbouring interlayer spacing. Finally the
vortex system arrives at the new commensurate state and the circle is then repeated

(fig.6.4(d)).

— —w—  (a) Commensurate
[ I - state n=4

increasing - < (b) Vortices between
field planes are only
¥ weakly pinned.

l (¢) Formation of
kinks and anti-

i kinks: domains

with n=4 and

- —.— n=3 .

L (d) Commensurate
state n=3

Figure 6.4: A schematic representation of the transition between two successive

commensurate states, producing the observed lock-in oscillations.

Interestingly, the above description is valid up to magnetic fields of the order of
H, = @ /yd* ~ 200 T, in YBa,Cu;0,5. Above H,, all the interlayer spaces are occupied
and any further increase of H, results to a mere further stacking of nuclei in each of the

interlayer spaces [3,15].
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Figure 6.5: Magnetic hysteresis loops for H, // b-axis and two orientations 0,, 0,
(see text) for (a) T = 60K and (b)) T =5 K.

Figure 6.5 [29] illustrates the competitive nature of point disorder and layered
structure, critical for the appearance of the lock-in transition. Pictured are the magnetic
hysteresis loops for crystal DTO, for two different temperatures, 5 K and 60 K. H, is
parallel to the b-axis. In one case the misalignment from the ab plane is 6; < 1° while in
the other we intentionally created a misalignment of 0, ~ 2°. For 0, lock-in oscillations
appear at 60 K, indicating that we are below the critical angle for lock-in, 0". On the
other hand, for 6 = 0, at 60 K the absence of oscillations in the magnetic hysteresis

verifies that this second angle is above the critical one. As Blatter et al. [6] have shown,

120



Chapter 6: Lock-In Oscillations

0" can be considered either temperature independent, or even weakly increasing with
decreasing temperature. Therefore, we expect to observe lock-in oscillations also at 5 K,
for 6 = 6,. However, as fig.6.5(b) shows, no oscillations appear at this temperature and
the magnetic hysteresis is essentially the same as for the second, misaligned, orientation.
At these very low temperatures, even for our high purity samples, the pinning energy of
the random point disorder background is quite large and, as Tachiki [32] predicted,
kinks can be nucleated at the defects. The creation of such kinks destroys the alignment
of vortices [32] and spoils the lock-in transition between the layers [3] and hence the
absence of oscillations. The purity of the samples is therefore an important factor in the

determination of the lock-in transition and the observation of lock-in oscillations.

One has to note that the theoretical prediction of jumps in the magnetisation existed
long before their observation in our group. They were one of the possible consequences
considered of commensurability effects between the interlayer distance and the vortex
lattice spacing along the c-axis [3,31,33] . Bulaevskii and Clem [31] estimated, using
the anisotropic London model, the field dependence of / to be:

12 -2

I=(@3/2) B, (6.3)

with B, = p,H . Considering, next, the existence of the layered structure and

incorporating their results in the LD model, they predicted that the transition from one
commensurate to another commensurate state by jumps in / (and consequen‘cly1 in a), 1s
accompanied by jumps in the measured magnetisation. In addition, lock-in oscillations
allow us to monitor the position of the Josephson strings along the c-axis in the sample

in a very accurate way. From eq.(6.3) it is straightforward to show that:

1/2
(‘GH°) =n (6.4)

2H,

Taking, for example, the data for crystal DTO (pictured in figure 6.3), we find one of
the commensurate states at T = 50 K, for H, parallel to the a-axis, at H, = 3.45 T. For
this value equation (6.4) gives n = 7.94 that is, by taking the integer part of the result,

n = 8. This means that the Josephson vortex lattice has a spacing perpendicular to the ab

1 The unit cell of the Josephson vortex lattice is given by al = ®o/H, [31].
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plane of / = 8d; in other words a buffer zone of 7 empty interlayer spaces separates

every occupied one.
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Figure 6.6: Lock-in oscillations for DT0, for H, along the a-axis (a) and along the
b-axis (b).

The periodicity that characterises the layered structure and the succession of the
commensurate states, together with the field dependence of / as given by eq.(6.3), are

-172

the reasons for the periodicity of the magnetisation in the H, '“ space, as depicted in

figure 6.6. Data are for DTO, at temperatures of 30, 40, 50 and 60 K with H, applied
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paralle] to a-axis and b-axis and increasing (data corresponds to these of figure 6.3).
Again the curves have been‘moved vertically for clarity. We observe a remarkable
periodicity of the lock-in oscillations with their period being the same for all
temperatures. The temperature independence of the periodicity of the lock-in
oscillations is in agreement with the case of pinning caused by matching of the

perpendicular vortex lattice spacing / with the layered structure.

We should mention that the magnetic loops for T = 60 K display some additional
characteristics, namely a slight shift of lock-in oscillations towards lower fields, which
we discuss below, and the appearance of additional peaks at high fields (e.g. between
0.345 and 0.414 T for H, // a-axis). The existence of these additional peaks has not
yet been elucidated. They are observed for any orientation of the applied field within the
ab plane. They are also observed at field values comparable to the VSM’s accessible
range, around 10 T (fig.6.3), which makes their study problematic. Though one could

speculate that at this point other regular vortex structures which do not have minimal

free energy (with o/l ratio other than 2y/ V3 ) become energetically favorable, in the field

range we can access these extra peaks appear only when increasing the magnetic field.

Importantly, lock-in oscillations can be used as an accurate tool for measuring
essential physical parameters of YBa,Cu;0,5 as is the out-of plane and in-plane
anisotropy. From eq.(6.3) and the periodicity of the lock-in oscillations in the Ha“U2

space, it 1s straightforward to extract y as:
2
\/§ A Ba—]/Z

In eq.(6.5), we took into account that in each period of the magnetisation oscillations
A[Ba'” %), 1is changing by d. Using the reported value at T=120 K of d = 1.164 x 10° m
[34], ®, = 2.067 x 10 Vs and that for crystal DTO A[B, ] is equal to 0.069 and
0.065 T for the direction of the applied field parallel to the a-axis and b-axis,

respectively, we end up with:

Vo = e _ 6340, H, // a-axis (6.6)

my

123



Chapter 6: Lock-In Oscillations

m
Vo= — =56201 H, // b-axis 6.7)

a

The difference of the anisotropy factors y,, and y., expected from the observed
difference of the periodicity .of the lock-in oscillations for H, // a and H, // b-axis
(fig.6.6), verifies previous measurements of in-plane anisotropy in YBa,Cu;0,5 [12],
where by a Bitter decoration technique a factor y,, ranging from 1.11 to 1.15 was

obtained. In our case v, is estimated as the ratio of y./y., and is equal to 1.13 + 0.04.

The values of the out-of-plane anisotropy parameter reported in the literature until
now for YBa,Cu;0,5 by means of various techniques, are scattered between 3-10 [35-
39]. One of the techniques for extracting v, suffering by fewer ambiguities, has proved
to be measurements of torque magnetisation [40]. Based on torque measurements,
reports in the literature give for YBa,Cu;0, single crystals of similar critical
temperature with the ones presented here (T, > 90 K, near the optimum doped regime)

values of y between 4-10 [39,40].

While our out-of-plane and in-plane y values, extracted from lock-in oscillations, are
in good agreement with all the aforementioned cases, we went further and performed
another check: we carried out measurements of torque magnetometry on one of the
crystals which exhibited lock-in oscillations, namely crystal DT3. For this reason, we
collaborated with Dr. Luc Friichter, in the Université Paris-Sud in Orsay, who has a long
standing expertise in torque measurements in YBa,Cu;0,5 and other layered high

temperature superconductors [41,42].

As Kogan [43] pointed out, the fact that in high-T, oxides the screening current loops
have the tendency to flow preferentially close to the ab plane has an important
consequence: the magnetisation has a normal to the applied field component. The result

is the existence of an anisotropy torque T given by:

ﬂ\%’l:fmﬁa (6.8)

V is the volume of the sample-and ¢ is the angle between the external field H, and the c-
axis. For temperatures close to T, by an anisotropic London treatment, equation (6.8)

can be translated to a more practical relation, yielding the angular dependence of the
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reversible torque [43]:

W) @, H, -sin(2¢)-(vz—1)_1H(B'Hi2(T)-vJ 69)

V o 64-17 22, (T) €(0)-y H, -&(¢)

where [3 is a constant of the order unity, H,(T) the upper critical field measured along

the c-axis, perpendicularly to the layers, and &(¢) = \/sin2 d+7y*-cos’ . As Farrell has
demonstrated [18] in YBa,Cu30,; the above equation is valid for temperatures
T > 80 K; there is also a field requirement [43], namely H, >> H_,. In our measurements
we worked in temperatures T > 87 K with an applied field H, = 1 T, satisfying both

conditions.

Figure 6.7 [29] shows torque data for sample DT3. In the case of fig.6.7(a) H, was
rotated from the c to the a-axis, while in fig.6.7(b) to the b-axis. For each orientation
7(¢) was measured at a number of different temperatures, in the [0°,90°] interval. The
measurement regime is completely reversible. To eliminate the contribution of the
normal state, arising from the normal susceptibility of the sample and the sampleholder,
we used the usual procedure: we subtracted from the raw signal the measured torque in

the same applied field, but at a temperature T = 99 K.

To deduce the anisotropy, we fitted each of the experimental curves of fig.6.7 with
eq.(6.9), using as fitting parameters vy, A,,(0) and BHL,(T). As clearly seen, eq.(6.9)
provides an excellent fit. The resulting values for y, for both orientations, are shown in
figure 6.8. For rotation of H, in the ca plane, we find [43] an average anisotropy factor
Yep = 7.56 + 0.14 while for rotation in the cb plane the average out-of-plane anisotropy is
Yea = 0.51 £ 0.22. This leads to an in-plane anisotropy y,, = 1.16 = 0.05. On the other

hand, for the same crystal, we find the periodicity of the lock-in oscillations to be 0.071

and 0.063 T-”2 for H, // a and H, // b-axis, respectively (see also fig.6.9). From eq.(6.4)
we estimate the anisotropy factors to be, correspondingly, v, = 6.57 + 0.20 and
Yea = 3.24 £ 0.20, i.e. an in-plane anisotropy of y,, = 1.22 + 0.06. The results are in
reasonable agreement with those obtained by torque with the maximum deviation from
them being ~ 14% in the case of y,,. It is interesting to note that this small deviation
may point towards a possible temperature dependence of y. The slightly increased y

values come from torque, which was employed in the temperature regime around 90 K,
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whereas we extract y from lock-in oscillations at much lower temperatures. A similar

temperature dependence ofiy for YBa,Cu;0;.5 single crystals with T, = 91 K was found

by Pugnat er al. [44], from magnetisation vector measurements. However, further

systematic studies are needed to examine this possibility.

¢ (deg.)

The measured torque for the indicated temperatures and H, rotated in

Figure 6.7
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Chapter 6: Lock-In Oscillations

Thus, lock-in oscillations provide an alternative reliable way of estimating the in-
plane and out-of-plane anisotropy factors for YBa,Cu;0,.5. Due to the great impact of
the anisotropy parameters on vortex dynamics (e.g. elastic moduli), it is obvious that the
lock-in oscillations can be extremely useful in extracting valuable information on a
variety of other research problems (e.g. the phase diagram of Abrikosov vortices); this is
especially true in YBa,Cu30;5 where the additional complication of in-plane

anisotropy can introduce new effects.
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Figure 6.8: The anisotropy values extracted from fitting the experimental data of
fig.6.7 with eq.(6.9).

Figure 6.9 displays lock-in oscillations for DT3, at 60 K and H, // ab plane, at 3
different orientations: for the applied field along the two principal axes (a and b) of the
basal plane and at an angle of 41° + 2° with the b-axis [29]. For the last orientation of
the applied field, tilted at an angle 3 (in our case 9 = 41°) from the b-axis within the ab
plane, and the geometry of the flowing supercurrents the relevant effective mass will be

an average of m, and my, [43]:
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Figure 6.9: Lock-in oscillations for DT3, with H, in the ab plane and (a) parallel

to the a-axis (b) parallel to the b-axis and (c) in an angle 8 ~ 41 °with the b-axis.

m(9)=m, -cos’% +m, -sin*9 (6.10)

2 2

mc ’Yca"ch
= = 6.11
Yo =4 m@r) \/yib-cos241+y§a-sm241 6.11)
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Taking into account that, as mentioned before, the values of the anisotropy
parameters extracted from the oscillations are yy, = 6.57 = 0.20 and v, = 5.24 * 0.20,

from eq.(6.11), one expects 7, to be approximately equal to 5.71 + 0.15. From lock-in

-172
oscillations now, we find the periodicity for (H,, b-axis) =41° £ 2°to be 0.067 T ,i.e.

using eq.(6.5) y4; = 5.95 £ 0.20, in good agreement with the expected result.

Since, according to the above, the periodicity of the lock-in oscillations depends only
on the characteristics of the layered structure, it should be unaffected by the angle of the
applied field with the ab plane, as long as this remains below the critical angle 0.
Figure 6.10 illustrates magnetic hysteresis loops at 60 K, for crystal DTO, with H,
parallel to the b-axis and at three different angles with the ab plane. Angles 6, and 6, are
all less than 1° In all these measurements lock-in oscillations are present. We also
created a misalignment between the sample and the layered structure of 65 =2° £ 0.5%
as seen in figure 6.10, for this angle the oscillations disappear. Thus, our results indicate
the existence of a critical angle of the order of 1°. Furthermore, figure 6.10 verifies the
independence of the position of the maxima and minima of the oscillations from the

orientation of H,, in the locked-in state.

Figure 6.10: Lock-in oscillations for different angles (see text), at 60K, for DT0
and H, // b-axis.
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In figure 6.11 we present for the first time [29] the temperature development of the
magnetisation lock-in oscillations for crystal DT3, with H, along the a-axis, at an angle
6 smaller than 1° from the ab plane. Measurements for temperatures up to 80 K are

pictured.

Between 30K and 40 K the width of the hysteresis Am is decreasing with
temperature; the oscillations are weak. They appear, with a small amplitude, at high
magnetic fields larger than approximately 6 T. As demonstrated before, at lower
temperatures the pinning energies of the random point disorder prevent vortices from
being locked between the CuO, planes; kinks consisting of 2D vortex pancakes with
normal cores are created in the ab planes and pinned by point defects [32]. As a result,

the oscillations are expected in this case to be either absent or weak.

In the temperature interval 42-52 K two are the major findings. First, we observe an
enhancement in the amplitude of the oscillations. This is expected: having moved away
from low temperatures, in this temperature regime, the creation of kinks at the point
defects is less favorable due to the depression of the elementary pinning energies.
Therefore, an increased number of vortices becomes now locked-in. This increased
number of locked-in vortices can account for the increase in the amplitude of the

oscillations.

However, we also find that the total width Am of the hysteresis unexpectedly
increases with temperature. Indeed, figure 6.12 depicts the temperature dependence of
the width of the magnetic hysteresis Am (proportional to the critical current) for two
constant applied fields of 3.3 T and 8.4 T. We verified this result for all crystals that
give lock-in oscillations and for both orientations of the applied field within the ab
plane, i.e. parallel to both principal axes, a and b. For the increase of the total width of
the hysteresis, one has to consider another possible effect. For a parallel to the layers
applied field H,, due to the easy entrance of vortex cores between the layers, the
irreversibility measured by magnetisation is weak and reflects the extrinsic pinning, i.e.
pinning of the Josephson cores from the extrinsic defects [3]. As we mentioned before,
this pinning for Josephson vortices is, in the absence of a normal core, also weak.
Feinberg theoretically predicts that raising the temperature this source of pinning can

actually strengthen, due to the increased suppression of the order parameter in the phase
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core, leading to an increase of the measured magnetic hysteresis width. Indeed, Blatter
et al. [6], have calculated that the suppression of the order parameter in the centre of a
Josephson nucleus increases with temperature proportionally to iabz. Thus, we consider
our results to be the first experimental evidence in single crystals, of the J, anomaly
predicted by Feinberg [3]. In addition, one can take into account that the layered
structure offers now to an increased number of locked-in strings an enhanced screening
of thermal fluctuations and effectively makes these fluctuations 2D (vortex waving

between two adjacent layers), restricting dissipation.

Increasing the temperature further, Am is reduced. At these elevated temperatures,
the energy to create kinks is reduced [3,6]. Thermal energy is now sufficiently strong to
spontaneously activate vortex kinks-antikinks pairs, introducing another important
mechanism of dissipation [3,8]. Experimentally, the oscillations are no longer observed
above 80 K. Taking this temperature as the temperature T" at which vortices enter the

quasi-3D regime and the lock-in transition is not any more realisable due to the increase

of &, above the d/+2 limit [18,25], one can extract £.(T=0) from the temperature

dependence of the transverse coherence length [3,6,8]:

T -1/2
E.(D)= éc(O)-(l—-lr) (6.12)

4

For T=T we have <‘;C(T*) =d/\2.In YBa,Cu;0,5, with the spacing between the
superconducting layers being equal to d = 11.64 A [33], we estimate from eq.(6.12) that
£.(0)=3.14 A. The result agrees with estimations of £.,(0) by other methods. For
example, estimating £,(0) from the thermodynamic critical field H, derived from
specific heat measurements, results in a value of £,(0) = 3.2 A [45]. Welp et al. [46]

using dc magnetisation measurements have found &,(0) =3 A.
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Figure 6.11: Temperature development of the lock-in oscillations in the range 30-

80 K, for crystal DT3, H, // a-axis.
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Figure 6.12: Temperature dependence of the width of the magnetisation at two
different applied fields, 3.3 and 8.4 T, as derived for the data depicted in fig.6.11.
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Figure 6.13: A slight shift of the period of the lock-in oscillations at elevated

temperatures. Data are for DT3, with H, // a-axis.
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Finally, figure 6.13 [29] offers a closer look at the data presented in fig.6.11 for
crystal DT3 and H,// a-axis, at elevated temperatures. As mentioned before the
magnetisation isotherms at higher temperatures, T > 50 K, display a slight shift of the
lock-in oscillations at lower fields. This is because at elevated temperatures and as the
temperature rises, the periodic pinning potential of the layered structure weakens [3,33]
and the nucleation of pairs of kinks, necessary condition for the crossing of the layers, is
now favorable for the Josephson cores at slightly lower fields. Note that in a recent
numerical study of the lock-in oscillations, Ichioka [47] verified this slight lowering of

the critical fields H, with the increase of temperature.

6.4 CONCLUSIONS

To conclude, we have presented a magnetic study for a large range of magnetic fields
and temperatures, using longitudinal geometry, i.e. with the external field in the basal
plane of the samples. We have demonstrated that, for fields applied parallel to the
layers, the observation of lock-in oscillations in the magnetic hysteresis loops of
YBa,Cu;0,5 can be a powerful tool for the study of the low temperature quasi-2D

regime.

The method offers considerable advantages over other techniques, especially since it
covers an extended temperature regime. We can accurately map the position of
Josephson vortices - their spacing along the c-axis - in the sample and the structure of
the Josephson strings lattice. We can reliably extract essential parameters, such as the
out-of-plane and in-plane anisotropy, £.(0) and the temperature T" the dimensional

crossover from the quasi-2D to the quasi-3D region occurs.

We have also illustrated the competing nature of point disorder and layered structure.
The first tends to destroy the lock-in transition and quench lock-in oscillations, by
offering to vortices favorable locations for the creation of kinks and spoiling their
perfect alignment between the layers, even for an external field applied at an angle
below the lock-in critical angle. Thus, the need for high purity samples is essential in

order to observe the magnetisation oscillations.
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Finally, we have presented the temperature dependence of lock-in oscillations up to a
temperature of 80 K. Our results show a surprising non-monotonic temperature
dependence of the width of the magnetisation curve and consequently of the measured
critical current: these two - proportional - quantities increase with temperature, at
intermediate temperatures. Our results can be explained by considering the interaction
of Josephson vortices with extrinsic pinning centres, as random point defects, together

with the reduced thermal dimensionality of the locked-in vortices.
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7. SUMMARY

The measurements described in this thesis represent an investigation into the
magnetic phase diagram and pinning properties of high purity YBa,Cu;0,.; single
crystals, in the vortex phase. The use of a high field Vibrating Sample Magnetometer
(VSM) allowed the study of this compound in applied fields up to 12 T and in a large
temperature regime. A 6 T SQUID magnetometer was also employed, while torque data
was obtained for one of the samples. This chapter reiterates and collects together the

main conclusions of our research in a brief summary.

7.1 VORTEX CHANNELING

By measuring the dc magnetisation of YBa,Cu;0,5 single crystals in a broad
temperature and magnetic field regime, we demonstrate that, contrary to previous
reports, twin planes can actually decrease the magnetic hysteresis width and the critical
current density, by providing easy paths for vortex motion. Our measurements show that
of major importance is the existence of intersections of different colonies of twin planes
in the samples, which provide strong columnar-like defects and prevent vortex

channeling.

We illustrate that channeling of vortices along the twin planes occurs only when the
pinning force in the untwinned regions is stronger than the pinning force in the twin
planes. When this condition is not met, twin planes enhance the critical current by

acting as strong pinning centres.

By measuring the magnetisation for different angles 6 of the applied field with the
twin planes, we experimentally demonstrate, for the first time, the existence of fwo
critical angles, a lock-in angle 6; and a trapping angle Oy. For 6 < 6 vortices are
locked-in the twin planes. For 0; < 6 < 0 vortices form a kinked structure with parts

lying in the untwinned regions and parts locked in the twin planes; in this phase the
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Figure 7.1: (a) Angular dependence of the normalised AM to its maximum value,
at the indicated temperatures and at a fixed applied field of p,H,cos0 = 4 T along
the c-axis. Note the existence of two characteristic angles 0, and 0. (b) Scaling
of the curves illustrated in (a), with 8y being the relative decrease of AM. The

lines are a guide to the eye.
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width of the magnetisation grows linearly with 6. Finally, for 6 > 0y vortices intersect

twin planes at points and the influence of twin boundaries is negligible.

Furthermore, our results show that both these two angles, 0, and 0, have the same
temperature and field dependence and evidently they are controlled by the disorder in
the untwinned regions. We show that the two critical angles surprisingly scale with the
hysteresis width obtained for 6 > Oy (fig.7.1). Our results verify the theoretical
predictions for the existence, in the case of vortices trapped in the twin planes, of a

localisation width larger than the width of the twin boundaries.

7.2 THE YBA,CU;0, 5 VORTEX PHASE DIAGRAM

Our results demonstrate the existence of a remarkably sharp, voltage criteria
independent magnetisation peak in YBa,Cu;0,5. We show that the magnetic field
values this peak occurs when mapped onto the vortex phase diagram result to a well
defined crossover line, H(T). This line exhibits a surprising non-monotonic temperature

dependence, shifting to higher fields at elevated temperatures.

By using magnetotransport measurements, we also detect the solid-to-liquid first
order transition in the phase diagram, which terminates in a critical point. Combining
resistivity and magnetisation data, we demonstrate that H(T) correlates to this critical
point. By oxygen doping we observe both the magnetisation peak line in the phase

diagram H,(T) and the critical point to shift upwards maintaining their correlation.

We show that our data verify and can naturally fit in the newly proposed frame of the
coexistence of two distinct solid phases: a well ordered solid phase at lower fields,
associated with the Bragg Glass phase, and a highly disordered solid phase at higher
fields, associated with a mechanically entangled vortex phase. Theoretical reasoning
suggests that these two phases together with a liquid phase connect, in the vortex phase

diagram, at the critical point, in agreement with our results (fig.7.2).
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Figure 7.2: (a) Theoretical vortex phase diagram for high temperature
superconductors, after Ertas and Nelson. (b) Phase diagram for YBa,Cu;045 as

derived by our combined magnetic and transport measurements.

This picture suggests the existence of a generic vortex phase diagram for all the high
temperature superconductors. Unification of the phase diagrams of all layered
superconductors in a single picture has been a major challenge for vortex physics, for
years now. Our results, moving in this direction, provide strong evidence on the

existence of such a phase diagram. Indeed, our data in the moderately anisotropic
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YBa,Cu;0,.5 exhibit a surprising qualitative similarity and agreement with recent

results for the very anisotropic Bi,Sr,CaCu,Og compound.

Finally, since the existence of a well ordered hexagonal lattice in the presence of
random point disorder is the reason of the observed field-driven transition, extended
defects at low densities should not suppress this vertical crossover. Our results
demonstrate that in the pl'esénce of twin planes the position of Hy(T) in the phase

diagram remains virtually the same.

7.3 LOCK-IN OSCILLATIONS

For an applied field H, parallel to the CuO, layers, oscillations are observed in the
measured magnetisation. We show that these oscillations are temperature and
orientation independent and that they are induced by a succession of transitions between
states for which the vortex lattice is commensurate with the layered structure of
YBa,Cu;0,. Due to the restriction of the quasi-2D regime at low temperatures, the
observation of lock-in oscillations in the magnetisation is a valuable tool for the study of

Josephson vortices.

Indeed, our measurements- verify the existence of a compressed Josephson vortex
lattice, with the predicted by the the anisotropic London model vortex lattice spacings
parallel and perpendicular to the c-axis. Furthermore, for every value of the magnetic

field we can map the position of the 2D Josephson vortices along the c-axis.

Even more important is the fact that using the theoretically expected and
experimentally exhibited periodicity of lock-in oscillations in Ha'l/2 we can estimate
essential physical parameters. We demonstrate that lock-in oscillations are a reliable
tool for the calculation of both the out-of-plane and in-plane anisotropy factors. In
addition, lock-in oscillations indicate the temperature at which the dimensional
crossover from the quasi-2D to the quasi-3D regime occurs. This allows us an accurate

estimation of the zero temperature transverse coherence length, &.(0).

Our data illustrates the competing nature of point defects and layered structure in the

lock-in transition. The first destroy the vortex alignment between the layers and
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consequently the lock-in state, by offering favorable sites for the creation of kinks.
Therefore, purity is a basic condition for the experimental observation of lock-in

oscillations.

Finally, we present a systematic study of the temperature dependence of the
magnetisation in the longitudinal geometry, in a large temperature regime. Our results
show a surprising J, anomaly at intermediate temperatures: the critical current increases
with temperature. We explain our results considering the interaction of the Josephson
cores (appropriate in the case of parallel fields) with the extrinsic (point) defects and the

reduced thermal dimensionality of the locked-in vortices.
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