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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Engineering Sciences

Doctor of Philosophy

by Laura Jane Cooper

The lymphatic system returns fluid to the blood stream from the tissues to maintain

tissue fluid homeostasis. The collecting lymphatic vessels actively pump fluid against

a body scale pressure gradient, i.e., from tissue interstitial space to the venous side

of the blood circulatory system. The collecting lymphatic vessels pass the lymphatic

fluid to lymph nodes that filter the lymph before it is returned to the circulatory

system.

This thesis presents work undertaken to create a fluid structure interaction model

of a lymph node with afferent and efferent lymphatic vessels. The model is built in

COMSOL Multiphysics, a commercial finite element software.

Four pieces of novel work are presented in this thesis. Firstly, an optimisation

method used to approximate the material properties for the collecting lymphatic

vessel from the pressure diameter behaviour. Secondly, model of the collecting

lymphatic valve with surrounding wall used to investigate valve closing behaviour.

Thirdly, an image based model of a lymph node where the material properties are

optimised to experimental data and based on selective plane illumination microscopy

images. Finally, an image based model of a lymph node based on computed

tomography images that shows how the structure within the node affects the fluid flow

pathways.
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Chapter 1

Introduction

The immune system protects the body from disease by killing pathogens, for example

viruses, bacteria, parasites or fungi, that breach the body’s physical defence barriers,

such as the skin and mucous membranes. Lymph nodes are lymphoid organs where

immune cells can gather to communicate information about and activate the necessary

response to a particular threat [Sompayrac, 2012].

The lymph nodes are components of the lymphatic system, a unidirectional drainage

network, with the primary function of maintaining fluid homoeostasis in the tissues.

The immune cells are transported between lymph nodes along with lymph, i.e. the

fluid in the lymphatic system, through collecting lymphatic vessels. Lymphocytes,

a type of immune cell, enter the lymph node, remain there for a period of time, and

then leave to continue circulating around the body. The movement of lymphocytes

is an important aspect in immune response. However the impact of the lymph

flow on the transport of these immune cells is not well understood [Nagai et al.,

2008]. A contributing factor to this lack of knowledge is the difficulty of conducting

experiments on the lymphatic system due to the size and fragility of the vessels and

nodes that it is made up of.

In the next section 1.1, an overview of the lymphatic system will be given. This

provides background information that will be used to motivate and define the aim of

the work presented in this thesis.

1.1 The Lymphatic System

The lymphatics drain fluid away from the interstitium, filter it through lymph nodes

and transport it back into the circulatory system via a junction with one of the

veins in the neck. The fluid pressure in the interstitial space is often lower than

the pressure in the veins of the neck [Aukland and Reed, 1993]. In order to absorb

1
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and transport fluid away from the tissues, the lymphatic system must work against

pressure gradients produced by the interstitial fluid, gravity and the venous system

[Nipper and Dixon, 2011].

Figure 1.1: The lymphatic system of the human body. Blue lines indicate the major
veins where lymph is returned to the blood stream. From Butler et al. [2009] ©2009
Wiley-Liss, Inc. Permission to reproduce this figure has been granted by John Wiley
and Sons.

1.1.1 Interstitial Space

The tissues of the body are made up of cells held within an extracellular matrix

(ECM). The interstitial space is the area around the blood and lymphatic vessels,

which is filled with a gel like substance called interstitium. This gel contains

interstitial fluid, which has left the capillaries by extravasation to deliver nutrients to

the cells [Swartz and Fleury, 2007]. The interstitial fluid has a similar composition

to plasma, but with a different protein concentration [Abramson and Dobrin, 1984].

As the protein concentration of plasma in the blood is higher than in the interstitial

fluid, it is impossible for the proteins in the interstitial fluid to return to the blood by

ultrafiltration. Therefore, the role of the lymphatic system is to remove this fluid and

protein solution from the interstitium [Földi et al., 2003; Aukland and Reed, 1993].

1.1.2 Lymph

The formation of lymph - the fluid in the lymphatic vessels - occurs when the

interstitial fluid, plasma proteins and cells from the interstitium enter the initial

lymphatics vessels [Abramson and Dobrin, 1984]. Lymph is generally a clear fluid,

except for chyle which is milky white because the lymph is mixed with lipids absorbed
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Interstitium

Initial
Lymphatics

Pre-collector

Collecting
Lymphatics

Contractile
Wall

Valve
Leaflet

Direction
of flow

Figure 1.2: Schematic of a section of the lymphatic system (not to scale). Fluid is
absorbed from the interstitium by the initial lymphatics. Once within the lymphatic
vessels this fluid is called lymph. The lymph is transported from the initial lymphatics
to increasingly larger vessels, which have contractile walls to propel the lymph forward
and valves to reduce the amount of backward flow. These collecting lymphatic vessels
transport the lymph through the body and return it to the blood stream.

in the small intestine [Földi et al., 2003]. The density of lymph is about 1000 kgm−3

[Mazzoni et al., 1987] and the dynamic viscosity is between 1.5 × 10−3 and 2.2 × 10−3

cP [Dixon et al., 2006; Burton-Opitz and Nemser, 1917].

1.1.3 Initial Lymphatics

The initial lymphatics are microscopic blind ended vessels, approximately 10-60 µm

in diameter [Swartz and Skobe, 2001]. The walls are a single layer of endothelial

cells with an incomplete basement membrane, a flexible sheet that separates the

endothelial cells from the surrounding tissue. The cells are tethered to the ECM at

local attachment points connecting the basement membrane to fibres in the tissue

[Schmid-Schönbein, 1990; Swartz and Skobe, 2001]. As the volume of fluid in the

interstitium increases the ECM swells. The fibres then pull the cells apart increasing

the volume of the vessel and opening the gaps between the endothelial cells, see

Figure 1.3. This creates a pressure gradient that causes interstitial fluid, particles and

proteins to flow into the vessel [Ikomi et al., 2012]. As the pressure gradient decreases
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the gaps between the cells close, stopping fluid returning to the surrounding tissue

[Swartz and Skobe, 2001].

Figure 1.3: Diagram illustrating the mechanism that allows lymph to be absorbed into
the primary lymphatics from Swartz and Skobe [2001]. Fluid collects in the interstitial
space causing the extracellular matrix (ECM) to expand. This tensions the fibres
connecting the surrounding tissue to the basement membrane of the endothelial cells
that form the wall of the vessel. This separates the cells, creates a pressure difference
with lower pressure inside the initial vessels than in the tissues, and so the fluid
flows into the lumen of the initial lymphatic. ©2001 Wiley-Liss, Inc. Permission to
reproduce this figure has been granted by John Wiley and Sons.

1.1.4 Collecting Lymphatics

As lymph flows downstream, the initial lymphatic vessels drain into the collecting

lymphatics. They are formed of a chain of lymphangions, sections of lymphatic vessel

with a valve at either end [Schmid-Schönbein, 1990; Stücker et al., 2008]. Once in

the collecting lymphatics, lymph is transported through the vessels by both active

and passive mechanisms. Lymph is actively pumped as smooth muscle cells in the

walls cause the lymphangions to contract. The valves between the segments minimise

the amount of back flow [Schmid-Schönbein, 1990]. Lymph is moved passively due

to lymph formation, gravity, pumping of nearby blood vessels and movements from

surrounding muscles and tissues [Davis et al., 2011; Nipper and Dixon, 2011].

The collecting lymphatics deliver the lymphatic fluid to lymph nodes through afferent

vessels and drain the lymph away from the node through efferent lymph vessels [Földi

et al., 2003]. The majority of the fluid then returns to the circulatory system either

via the right lymphatic duct or the thoracic duct, which empty into veins in the neck

[Földi et al., 2003].

The collecting lymphatic wall consists of several components, which are summarised in

figure 1.4.
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� Endothelial cells: flat cells found lining the inner surface of lymphatic vessels,

blood vessels and heart chambers.

� Basement membrane: a fibrous flexible sheet that separates the endothelial cells

from the surrounding wall components.

� Elastin: an extensible protein that can return to its original shape after being

stretched.

� Smooth muscle cells: these cells contract and relax in response to stimuli causing

the collecting lymphatic walls to contract and propel fluid through the vessels.

� Collagen: an inextensible protein that can resist large strains. Bundles of

collagen fibres and collagen networks are deformable.

Collagen fibre bundles

Smooth muscle cell

Elastin fibre

Discontinuous basement membrane

Endothelial cell

Lumen

Tissue

Figure 1.4: Sketch of typical collecting lymphatic wall structure, not to scale.

The lumen, the hollow centre of the vessel that is filled with fluid, of the collecting

lymphatic vessel is lined with one layer of endothelial cells, which have a discontinuous

basement membrane. This is connected to a layer of smooth muscle cell and elastin

and finally a layer of collagen fibre bundles [Gnepp and Green, 1980; Arkill et al.,

2010; Margaris and Black, 2012; Rahbar et al., 2012].

1.1.5 Lymph Nodes

A human has about 600 to 700 lymph nodes [Földi et al., 2003]. They filter the

lymph, removing harmful material so that it is not returned to the blood stream, and

provide a site for interaction between different immune cells. Lymphocytes enter the

lymph node through the afferent lymphatic vessels or through the blood vessel walls.

The lymph nodes also regulate the protein concentration of the lymph [Földi et al.,

2003].

Nodes have a high resistance to the lymphatic flow, which is dependent on the

pressure in the afferent and efferent lymphatic vessels; the size of the node; the flow
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rate and blood pressure [Schmid-Schönbein, 1990]. The flow in the lymph nodes

affects the behaviour of the cells within the nodes and the morphology of the reticular

cell network, which forms the underlying structure of the lymph node [Tomei et al.,

2009].

1.1.6 Lymphatic System Dysfunction

If the downstream collecting lymphatics are blocked, this can affect the initial

vessels. As the collecting lymphatics downstream are unable to remove the fluid, it

collects in the initial lymphatics increasing the pressure in the vessels. The vessels

distend and the endothelial cells are pulled apart so they no longer overlap, which

prevents the fluid being drained away from the tissue, so it accumulates causing

oedema [Schmid-Schönbein, 1990; Davis et al., 2011]. The causes of lymphoedema

can be blockages of the collecting vessels, such as after the removal of downstream

vessels during surgery, the result of a parasitic infection, e.g. lymphatic filariasis, or

malfunctioning collecting valves due to a genetic condition. An example of this is

lymphedema-distichiasis syndrome, which causes the valves to develop incorrectly, as

seen in figure 1.5 [Bazigou et al., 2009].

A B

C D

Figure 1.5: Images comparing healthy and deformed collecting valves from genetically
different mice [Bazigou et al., 2009]. The valves in A and C have formed normally and
in B and D are deformed. The misshapen valves are from mouse embryos deficient
in a gene that encodes a protein found in the endothelial cells of the valve leaflets.
The deformed valves are shorter than the healthy valves and cannot effectively
prevent reverse flow. In A and B, scale bar = 50 µm; in C and D, scale bar = 10 µm.
Reprinted from Bazigou et al. [2009] ©2009, with permission from Elsevier.
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Mihara et al. [2012] have studied the macroscopic anatomy of collecting lymphatic

vessels from patients at different stages of limb lymphoedema. They separated the

vessels into four types:

� Normal: several layers of contractile smooth muscle cells, endothelial cells that

extended into the lumen of the vessel and some collagen fibres.

� Ectasis: dilated lumen, thin layers of contractile smooth muscle cells and a

smooth layer of endothelial cells.

� Contraction: thick layer of synthetic smooth muscle cells (do not contract but

instead produce more smooth muscle cells and collagen fibres), narrowing of

lumen, increased thickness of collagen fibre layer.

� Sclerosis: Lumen narrowed so almost blocked or completely blocked, collagen

fibres so numerous that they push past the endothelial cells and extend into the

lumen, very thick wall.

The types of vessel are summarised in figure 1.6.

(a) Normal
(b) Ectasis

(c) Contraction (d) Sclerosis

Figure 1.6: Sketches of types of lymphatic vessels found in lymphoedema patients.
Based on descriptions and images in Mihara et al. [2012].

Mihara et al. [2012] found that in early stages of lymphoedema, when it is still

reversible, the majority of the patients vessels were of the type normal or ectasis

with a small amount of contraction vessels. However, at late stages, when the disease

cannot be reversed, all or almost all of the vessels were contraction or sclerosis.

1.2 Motivation and Hypothesis

The lymphatic system transports fluid along with particulate matter away from

the tissues and returns it to the blood stream. The effective transport of fluid in

the lymphatic system is important for preventing lymphoedema. Improving our

understanding of the fluid behaviour within the lymphatic system may lead to insights

into new ways of treating lymphoedema. It may also contribute to knowledge about
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how the lymphatics transports waste, immune cells, and proteins around the body

[Margaris and Black, 2012].

Due to the size of the lymphatic vessels and viscosity of the fluid, the valves must

function mainly due to the hydrodynamic forces. The fragility and size of the

collecting lymphatic vessels make physical study difficult. Therefore a computational

model that can recreate the physical phenomenon would be useful for investigating

valve function in more detail. A computational model of a colleting lymphatic vessel

could be used to model how the changing the material properties of the wall and the

size of the lumen affect the fluid flow. This would be useful for investitating how the

changes to lymphatic vessels that occur during lymphoedema, as discussed in section

1.1 and sketched in figure 1.6, affect the efficiently of lymph transport. Examples of

changes that could be made and compared to one another are: making the wall less

compliant, increasing or decreasing the size of the lumen, making the wall thicker

or decreasing the amount of smooth muscles cells. Understanding more about these

effects could identify possible avenues for intervention to prevent the disease from

worsening.

Lymph nodes are similarly difficult to study experimentally. To track the passage

of flow through a lymph node, the fluid has to be seeded with particles. However,

the lymph node filters particulate matter, causing particles not to follow the flow

pathways but instead directs the particles to areas of the node where foreign

particulate matter is stored and broken down.

This thesis aims to test the hypothesis that from the currently available experimental

data it is possible to construct a three dimensional fluid structure interaction model

of fluid flow entering a lymph node through an afferent lymphatic vessel and leaving

through an efferent vessel. The model will be used to investigate the effect of different

flow dynamics on the lymphatic vessels, the flow within the lymph node and provide

information about how the fluid flow may affect immune response. Creating the model

requires the gathering of relevant literature, which indicates in which areas further

experimental data is required.

The advantage of creating a computer model is that it can bring together all the data

that have been accumulated from different experimental methods. Experiments in

vivo have a more realistic environment but allow the research less control over all the

individual aspects that occur, e.g. conducting experiments of lymphatic vessels in vivo

will be affected by the behaviour of the surround tissue such as muscle movements

and the pulsating flow in the blood vessels. It can also be difficult to visualise the

object of interest within the body of a living organism and can cause distress to

the test subject, whether human or animal. Experiments carried out ex vivo can

result in important aspects being lost, e.g. in lymphatic research it is not possible

to study passive mechanisms and behaviour ex vivo. It can also be difficult to isolate
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individual effects experimentally. With a computational model it is possible to bring

together all known and suspected aspects that may affect the behaviour. Data from

in vivo and ex vivo experiments can be brought together in the same model and the

user can have complete control over all the mechanisms involved. The model can be

used to systematically investigated the significance of each factor. The model of the

collecting lymphatic vessels and lymph nodes that will be created in this thesis, will

enable the identification of the most significant traits and so will highlight areas that

require further experimental investigation to be carried out. This will also reduce

the number of animals and human participants required for experimentation as the

areas of investigation will be more specifically targeted and potential sources of error

identified before hand.

The model is created by separating it into three components that can be brought

together; the lymphatic vessel wall, valve and lymph node:

� A cylindrical model of an idealised lymphatic vessel will be created without

the valve. Appropriate material properties for modelling the vessel wall will be

found to ensure the model produces realistic biological behaviour. This model

could be used in investigate the effect of a thickening lymphatic wall, as seen

in cases of irreversible lymphoedema, and when connected to the lymph node

model the affect of the vessel behaviour on the fluid flow through the node can

be observed.

� An idealised collecting lymphatic valve will be modelled surrounded by the

lymphatic vessel that is developed. This will allow investigation into the

relationship between the valve and the wall. When connected to the lymph node

model it will be possible to observe a functioning or malfunctioning valve affects

the fluid flow pathways through the node.

� A model of a lymph node will be created based on high resolution images. Using

an image based model will improve our understanding of how the structure

of the lymph node affects the pathways of fluid flow through the node. After

gaining an insight into flow on the scale of the whole node, sections of the node

could be studied in more detail, i.e. subcapsular sinus or follicles.

In order to solve the governing equations on 3D domains discretisation must be

used. Many methods available, here three popular methods will be considered:

finite difference analysis (FDA), finite volume method (FVM) and finite element

method (FEM). FDA replaces the partial derivatives in the governing equations

with truncated series expansions. Increasing the terms in the expansion improves

the accuracy of the solution, but dramatically increases the required computational

resources. Another disadvantage of FDA is that for irregular geometries the series

expansions must be transformed and this causes many problems. FVM uses the
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assumption that the dependent variables are piecewise linear and integrates the

equations over a volume. The flux is calculated between neighbouring nodes so for

irregular geometries this requires many fluxes to be calculated. The advantage of

using fluxes is that they are understandable in a physical sense. FEM integrates

the equations over an element after multiplying them with a weight function. This

function as the same form as the shape functions that are used to represent the

dependent variables. The method is not disadvantaged when used applied to an

irregular geometry. This makes it the prefered choice for this project.

It is necessary to use different physics to model all three elements and therefore each

component is modelled using COMSOL Multiphysics, a commercial finite element

software, that allows the user to incorporate different physical phenomenon into their

model and solve these physics simultaneously using the finite element method (FEM),

also known as finite element analysis (FEA). Boundary value problems for differential

equations can be very difficult to solve analytically. COMSOL Multiphysics is a good

platform for these simulations since it has many built in definitions, equations and

settings as well as offering the possibility of adaptation and entering custom formulae.

The remaining chapters in this thesis describe the work carried out. In chapter 2 the

literature relating to the collecting lymphatic wall is reviewed and a material model

is developed that reproduces the behaviour of the passive collecting lymphatic wall

observed experimentally. The results of this model are presented and compared to

similar models in the literature. Chapter 3 contains a review of the behaviour of

collecting lymphatic valves. Three models are developed and the results compared to

experimental data to assess their validity. The chapter concludes with a comparison

of the model to previous models of collecting lymphatic valves. In chapter 4, the

structure of the lymph node is reviewed along with experimental data related to

the fluid flow dynamics. A model based on images created using selective plane

microscopy is presented and used to estimate parameters that are not available

experimentally. The validity of the parameter values found are assessed by comparison

to the relevant literature. In chapter 5, improvements to the model in chapter 4

are made by using high resolution x-ray computed tomography images and the

sensitivity of the model to some parameters is investigated. The results of the model

are compared and discussed. In the final chapter 6, the main conclusions are presented

and the future work is discussed.



Chapter 2

Development of a Non-linear

Material Model for Collecting

Lymphatic Vessel Walls

In order to construct a biologically realistic model of a collecting lymphatic vessel, it is

necessary to have an appropriate material model for the wall of the vessel. This is to

ensure that the behaviour of the wall reflects the behaviour seen in experiments over a

range of different initial conditions. The collecting lymphatic vessels display non-linear

behaviour, therefore in this chapter, a detailed description of the collecting lymphatics

is presented, followed by an example of a non-linear material model that has been

used to model biological tissues. The methods used to parametrise the material model

are described and the results are compared to example values from the literature.

Finally, the results are discussed and ideas for future work are presented.

2.1 Literature Review

The collecting lymphatic vessels are formed of chains of lymphangions, a segment of

lymphatic vessel, that actively pump to transport the fluid through the lymphatic

system. The lymphangions are divided by collecting lymphatics valves that reduce the

amount of back flow. This section begins with a review of lymphatic valve spacing,

to investigate how the length of the lymphangions vary. The section continues with

a review of the structure and function of the walls to understand more about the

behaviour of the collecting lymphatic vessel walls. It is important to consider these

experimental observations of the lymphatic vessels during the creation of the model

so that the geometry and behaviour are realistically reproduced. Following this,

estimated material parameters are presented for both the lymphatic fluid and the

vessel wall. In section 2.1.6, previous approaches to model the collecting lymphatic

11
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vessels are presented. Finally, a strain energy function is reviewed for its potential use

in the model as a material model of the collecting lymphatic wall.

2.1.1 Valve Spacing

A review of the spacing between collecting lymphatic valves was carried out. The

spacing and number of valves is species and organ specific [Shepro, 2005]. For

example, birds have a lot of valves, but less than mammals, and hedgehogs have larger

valve spacing than other mammals [Kampmeier, 1969]. The thoracic duct of the cat

has more valves than the thoracic duct of the dog [Kampmeier, 1969]. There are fewer

valves in the mesenteric vessels than skeletal muscle vessels [Shepro, 2005]. The results

are summarised in table 2.1.

In humans the lymphangion length is approximately 3 to 10 times the diameter of the

vessel [Földi et al., 2003]. The distances between valves can be irregular [Kampmeier,

1969; Zuther, 2009]. In the large collecting vessels from the fingers to the armpit of an

adult human there are 60 to 80 valves and there are 80 to 100 valves from the toes to

the groin giving an average of one valve every centimetre [Kampmeier, 1969].

In the adult human thoracic duct, the main collecting lymphatic vessel which drains

into the subclavian vein in the neck, 6 to 12 valves have been seen with the most

competent valve at or near the junction with the vein [Kampmeier, 1969]. The

valves in the human thoracic duct are usually near vessels emptying into the duct

[Kampmeier, 1969].

2.1.2 Collecting Lymphatic Wall Structure

The structure of the collecting lymphatics influence how they function. This structure

has been described by several authors including Gnepp and Green [1980]; Skalak et al.

[1984]; Mazzoni et al. [1987]; Arkill et al. [2010] and Rahbar et al. [2012]. Different

microscopy techniques were employed, such as scanning electron microscopy (SEM),

transmission electron microscopy (TEM) [Gnepp and Green, 1980; Skalak et al., 1984;

Mazzoni et al., 1987] and multimodal nonlinear microscopy [Arkill et al., 2010; Rahbar

et al., 2012], to investigate the micro-structure of the collecting lymphatics.

Gnepp and Green [1980] conducted an ultrastructural SEM study of the thoracic

duct and collecting lymphatics in dogs. They measured the smooth muscle layer to

be about 25 to 70 µm thick and the elastin layer to be approximately 5 µm [Gnepp

and Green, 1980]. The thoracic duct wall was mainly made up of smooth muscle cells

with some elastin fibres. The collecting lymphatics consisted of elastin fibres with

some smooth muscle cells, although the amount of each was found to be very variable

between vessels [Gnepp and Green, 1980].
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Mazzoni et al. [1987] looked at the lymphatics in the spinotrapizus muscle of the rat,

which is the skeletal muscle across the back of the shoulders. It is a thin sheet of flat

muscle. The lymphatics in this area are irregularly shaped and have no smooth muscle

cells in the walls [Mazzoni et al., 1987]. This may be because the vessels are able to

perform efficiently using only passive mechanisms without the need for spontaneous

contractions as the skeletal muscle is very active. The lymphatics are often close to

blood vessels and so can be stretched or compressed by the motion of nearby arterioles

or muscle fibres [Mazzoni et al., 1987; Skalak et al., 1984].

Rahbar et al. [2012] imaged rat mesenteric collecting lymphatics at a valve and at

positions upstream and downstream of it. The vessel was pressurised to 2 cmH2O

and 7 cmH2O. They found that the thickness of the elastin layer was reduced at the

higher pressures, the average thickness decreased from 11.1 µm to 8.3 µm. They also

expected the collagen layer to decrease, but found that the average remained almost

constant, which they believe could be due to the resolution of their equipment.

In the previous paragraphs, the structure and geometry of the collecting lymphatic

vessel wall has been described. In the literature cited, the composition of the

ultrastructure of the collecting lymphatic walls varies between the species and

location. There is only a small amount of information about the thickness of each

layer within the wall, particularly the amount of collagen and elastin fibres. In the

next section, the function of the wall is reviewed. This relates how the structure

contributes to the function of the vessel.

2.1.3 Vessel Wall Function

Vessels isolated from different regions of the body have been shown to behave

differently. For example, the mesenteric lymphatics, vessels from the tissue

surrounding some of the small intestine, pump more strongly than the thoracic duct

and react differently to increased shear stress [Nipper and Dixon, 2011]. As shear

stress increases the mesenteric lymphatics continue to pump where as the amplitude

and frequency of contractions decrease in the thoracic duct [Nipper and Dixon, 2011].

Experiments have been carried out by Scallan et al. [2013], Davis et al. [2011] and

Quick et al. [2007] amongst others, which aim to understand the physiology of

the collecting lymphatics. Lengths of collecting lymphatic vessels are excised and

manipulated using mechanical and biological methods [Nipper and Dixon, 2011;

Moriondo et al., 2010]. Extracting the vessels from the tissue removes the possibility

of constraints or influence from the surrounding tissue, which are considered to have

little effect on the lymph flow in collecting lymphatic vessels under physiological

conditions [Macdonald et al., 2008]. However, this restricts the type and kind of

information that can be obtained about the passive mechanisms which assist lymph
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transport. The information from the experiments is not applicable to some lymphatic

vessels, such as those found in skeletal muscle, which only use passive mechanisms

[Skalak et al., 1984].

The vessels are described as active when they are contracting and passive when they

are not. During experiments the vessels are often placed in baths of physiological

saline solution (PSS) to stop them drying out and provide the nutrition they need

to continue to function outside the body. However, the smooth muscle cells require

calcium to function. Therefore, Ca2+-free PSS is substituted for the usual PSS in

experiments to allow the investigation into the passive behaviour of the vessels [Davis

et al., 2011].

2.1.3.1 Passive Behaviour

The passive diameter change of collecting lymphatic vessels to changes in pressure

have been investigated and have been found to display nonlinear behaviour. At low

pressures the vessels are highly extensible, however as the pressure rises the stiffness

rapidly increases. Davis et al. [2011] and Rahbar et al. [2012] observed that in rat

mesenteric lymphatics this sharp change occurs at about 5 cmH2O. This can be seen

in figure 2.1. The plots show how the diameter changes as the pressure increases at

various locations along a lymphatic vessel. When the pressure is above 5 cmH2O,

the gradient of the curve is much steeper than before 5 cmH2O. The graphs are all

very similar, implying the behaviour is over the whole lymphangion length. Similar

behaviour has been observed in bovine lymphatics [Ohhashi et al., 1980; Macdonald

et al., 2008].

Arkill et al. [2010] investigated the structure of the walls of collecting lymphatics

from bovine mesentry. The authors changed the pressure within the vessel and the

longitudinal tension. Arkill et al. [2010] measured the fibre directions in four states: 1)

no tension and intraluminal pressure of 0 Pa; 2) tension and intraluminal pressure of

0 Pa; 3) tension and intraluminal pressure of 1500 Pa and 4) tension and intraluminal

pressure of 3000 Pa, to compare how the structure was altered.

In the initial state, which will be called state one, when the vessel was completely

relaxed and the pressure inside the lumen 0 Pa, the vessels, which had a 2 mm

diameter, had walls about 30 µm thick. The elastin fibres were found to occur singly,

had diameter 1 µm and mainly ran straight along the vessel length, implying that the

elastin fibres were tensioned even when the vessel was relaxed. The tension might be

necessary because elastin has a low bending modulus. The collagen spiralled around

and along the vessel’s length in two layers. The collagen layer nearest the smooth

muscle cells was composed of bundles of fibres with a diameter of 15 to 25 µm. Near
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Figure 2.1: Pressure diameter curves for a lymphatic vessel from Rahbar et al. [2012].
Region 1: 260 µm upstream of valve. Region 2: 170 µm upstream of valve. Region
3: at valve. Region 4: 200 µm downstream of valve. The diameter is normalised with
respect to the maximum diameter at 20 cmH2O. Comparison of the graphs shows that
there is little variation in the passive behaviour of the lymphangion between positions.
©2012, Mary Ann Liebert, Inc. Permission granted for use of this figure by Mary
Ann Liebert, Inc.

the outer surface of the wall the bundles had a 2 to 5 µm diameter. A graph showing

the angle of the fibres is plotted in figure 2.2a.

In state 2, when the vessel was tensioned to the in-situ length, the vessel was about

twice as long as the relaxed vessel. The collagen fibres rotated in the same direction as

the strain. The elastin fibres also turned, but to a lesser extent, as can be see in figure

2.2b [Arkill et al., 2010].

Arkill et al. [2010] showed that as the tensioned vessel was pressurised to physiological

values, the thickness of the wall halved. At 15 cmH2O the collagen and elastin fibres

turned to lie at about ±40◦ angle as measured with respect to the longitudinal axis,

see figure 2.2c. This enabled the fibres to bear stresses in both the longitudinal and

tangential directions. Arkill et al. [2010] state that at these pressures the material of

the lymphatic walls is approximately isotropic. Increasing the pressure to 30 cmH2O

did not significantly increase the fibre angle, see figure 2.2d.

The findings from Arkill et al. [2010] appear to support the idea that at lower strains

the elastin fibres take the load so the vessel can distend relatively easily and then

at higher strains the collagen takes over, resisting extreme distension of the vessel

[Macdonald et al., 2008; Arkill et al., 2010].
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Figure 2.2: Fibre angles measured with respect to the longitudinal direction of a
bovine mesenteric collecting lymphatic vessel walls from Arkill et al. [2010]. Circles
are elastin fibres, squares are collagen fibres. The mean and standard deviation are
presented in table 2.8. ©2010 The Authors. Journal compilation ©2010 Anatomical
Society of Great Britain and Ireland. Permission to reproduce this figure has been
granted by John Wiley and Sons.

2.1.3.2 Active Behaviour

The smooth muscle cells within the collecting lymphatic vessel walls contract and

relax in response to stimuli. This causes the vessels to pump fluid around the body.

The terminology to describe the pump cycle of a lymphangion is based on phrases

used to describe the phases of filling and pumping by the heart [Burton, 1972; Rowan,

1981; Schmid-Schönbein, 1990; Caro et al., 2012]:

� Systolic: Contraction phase, when fluid is pumped out.

� Diastole: Filling phase, when fluid flows in.

The collecting lymphatics are able to deal with rapidly changing loads and the

efficiency of lymph transport can be improved by optimising different aspects of the

vessel’s pumping behaviour [Nipper and Dixon, 2011]. The strength and frequency

of the contractions are affected by the pressure in the vessel, the volume of lymph,

the wall shear stress, wall tension, vibrations, the rate of deformation and the
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rate and volume of flow in the lymphatic [Nipper and Dixon, 2011; Gashev et al.,

2002, 2004; Ohhashi, 2004]. For example, Gashev et al. [2004] shows that as the

intraluminal pressure was increased from 1 cmH2O to 9 cmH2O cervical lymphatic

vessels contracted approximately 6.25 times more at higher pressure than at lower

pressures. The endothelial cells lining the vessel lumen produce nitric oxide, an agent

that regulates vasodilation, to regulate the contractions [Ohhashi, 2004].

Collecting lymphatics have been shown to constrict, the diameter over the whole

pumping cycle decreases, in response to a intraluminal pressure increase. Scallan

et al. [2013] show that this constriction is in part a decrease in diastolic diameter,

which is frequency-dependent, and a myogenic constriction, the diameter decreases

as the pressure increases. Even though the lymphangion upstream of the valve does

not experience the pressure increase caused by the accumulation of fluid in the

downstream lymphangion, the constriction still occurs in the upstream lymphangion.

Scallan et al. [2013] believe that the reason for this phenomena is to ensure that the

valve will still close while the lymphatic vessels are pumping. This should prevent

fluid flowing backwards into the initial lymphatics.

During contraction, excised vessels twist and buckle, particularly at higher pressures

[Macdonald et al., 2008; Davis et al., 2011]. This means than experiments are usually

carried out with the lymphatic vessels tensioned. Excised vessels can be about half

their in-situ length. This implies that the vessels are under constant tension in vivo

[Arkill et al., 2010].

In this section, the function of the collecting lymphatics was reviewed. The vessels

are adapted to their environment and are able to react to changes in flow behaviour

and quantity. The experiments that have been carried out show some difficulties

when studying the lymphatics ex vivo and some aspects of the set up may affect the

behaviour. These should be taken into consideration when comparing the results of a

computational model with experimental data.

In order to computationally model the collecting lymphatics, it is necessary to be able

to characterise the material properties using equations and appropriate parameters.

In the next section fluid in the lymphatics is characterised using the Reynolds number

and the methods for characterising the material of the wall are reviewed.

2.1.4 The Mechanics of the Collecting Lymphatics

2.1.4.1 Reynolds Numbers in Secondary Lymphatics

The Reynolds number, Re, is the ratio of the inertial fluid forces to viscous fluid

forces. When the Reynolds number is small the viscous forces dominate the fluid flow.

It has been noted that the Reynolds number in the collecting lymphatics is small due
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to the viscosity of the flow and the size of the vessels [Schmid-Schönbein, 1990]. It

is assumed (as in Reddy et al. [1975] and Rahbar and Moore [2011]) that the fluid is

Newtonian, i.e. the viscous stresses are proportional to the local strain rate, and that

the fluid does not contain solid particles. Similar assumptions have been made when

modelling blood in the circulatory system [Caro et al., 2012].

Reynolds numbers were collected from the literature, either directly or calculated

using the classic formula for the Reynolds number,

Re =
UL

ν
, (2.1)

where U is the characteristic velocity scale, L is the characteristic length scale and ν is

the kinematic viscosity calculated by

ν = µ/ρf ,

where ρf is the density of the fluid and µ is the dynamic viscosity [Acheson, 1990].

Unless otherwise stated, it is assumed µ = 1.5 cP [Dixon et al., 2006] and ρf = 998

kgm−3 [Macdonald et al., 2008] as this information was only included in a few papers.

This gives a kinematic viscosity of 1.503 × 10−6 m2s−1. We also assume that the

lymphangions are cylindrical for the purpose of calculating the velocity by dividing

the flow rate by the area.

Mazzoni et al. [1987] estimate a Reynolds number to be 0.0025 for the collecting

lymphatics in the spinotrapizus muscle of the rat from a mean velocity of 0.1 mm/s,

characteristic diameter 50 µm, lymph viscosity 2 cP and density 1 g/cm3.

In Olszewski and Engeset [1980] measured the pressure of the lymphatics in the

human leg. The diameter of the vessels were between 0.1 and 0.4 mm. Measurements

were taken 2 and 5 days after the vessels had been cannulated and the wound had

partially healed. The flow rate recorded, when the volunteers were lying down and

keeping their legs and feet still, was 0.25± 0.04 ml/h, and when they were flexing their

feet it was 0.57 ± 0.015 ml/h. Using a diameter of 0.25 mm gave Re = 0.235 when

there was no movement and Re =0.537 when the feet were being flexed.

More recently, Dixon et al. [2006] recorded contraction cycles of mesenteric lymphatic

vessels in a rat using high-speed video equipment. The rat was anaesthetised and

a loop of small intestine was positioned under a microscope. They recorded the

lymphatic flow for 30 second intervals and saved the footage for later analysis.

Amongst other things this was used to measure the mean diameter, 91 ± 9.0 µm, and

average volume flow rate, 13.95± 5.27 µL/h. This gives Re =0.0361.

In an experiment by Meisner et al. [2007] bovine mesenteric vessels, with no valves,

were placed into a bath. A bypass was set up, with a stopcock at each end, so that



20 Chapter 2 Non-linear Material Model for Collecting Lymphatic Vessels

the fluid was directed through the vessel or through the bypass to keep the volume of

fluid constant. The inlet pressure was set at 4 mmHg and luminal flow was controlled

at 10 ml/h using a syringe pump. A micro-syringe was used to extract or insert

fluid after it had left the vessel to vary the volume. They measured the pressure and

diameter at ten volumes in a random order. The minimum diameter 1.8 mm and the

controlled flow rate 10 ml/h give Re =1.307.

Quick et al. [2007] took bovine post-nodal mesenteric lymphatic vessels containing

two valves and submerged them in a tubular organ bath so they had an external

pressure of 1 mmHg. A video dimension analyser was used to record the diameter

and a flow meter was used to measure the flow out of the lymphangion. Each end of

the lymphatic vessel segment was collected to a fluid reservoir. Changing the height

of these reservoirs altered the pressure at the ends of the lymphatic segment so that

velocity and direction of the flow through the vessel could be controlled, i.e. if the

pressure gradient was negative, the inlet pressure was less than the outlet pressure

and vice versa. By reading the pressure and diameter values from the graphs in figure

2.3, it can be seen that when the pressure gradient was -1.5 mmHg, the diameter was

approximately 1.7 mm and the flow rate was 0.6 ml/min. This gives Re = 4.983.

When the pressure gradient was 1.5 mmHg, the diameter was approximately 1.8 mm

and the flow rate 2.9 ml/min. This gives Re = 22.747.

(a) Pressure gradient -1.5 mmHg (b) Pressure gradient 1.5 mmHg

Figure 2.3: Graphs from Quick et al. [2007] showing flow rate and diameter for
pumping bovine lymphatics with different pressure gradients. ©2007, The American
Physiological Society. Permission not required.

In another paper, Quick and his colleges describe a similar experiment [Quick et al.,

2009]. It had the same set up as Quick et al. [2007] but this time the inlet pressure
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was kept constant and the outlet pressure was adjusted. When the pressure gradient

was −1 cmH2O, inlet pressure was less than outlet pressure, the minimum flow rate

was approximately 4 ml/min, when the diameter was 4 mm. This gives Re =14.119.

When the pressure gradient was 1 cmH2O, inlet pressure was greater than outlet

pressure, the minimum flow rate was approximately 8 ml/min. when the diameter was

4 mm. This gives Re =28.238.

The review above shows that Reynolds numbers over a range of magnitudes up to

order 10 are possible in the secondary lymphatics depending on species and location,

with larger animals having a higher Reynolds number. In order to measure the flow

rate within the vessels experimentally, all the techniques described above were invasive

in some way, i.e. cannulating vessels, anaesthetising the animal or extrating the

vessels from their environment entirely. This will effect the behaviour of the lymphatic

vessels. Despite this interference, the values of the Reynolds numbers calculated are

considered to be of the correct order of magnitude. Having a good approximation of

the Reynolds number for the model is important because it is necessary to define the

equations that are most appropriate to model the fluid behaviour. Knowing the order

of magnitude of the Reynolds number is considered sufficient for the selection of the

equations as the values reported here are always in the pre-turbulent range, so the

flow can be considered laminar. The information in this section has been summarised

in table 2.2.

The low Reynolds numbers found are consistent with the descriptions in literature

and indicate that the viscous forces dominate [Schmid-Schönbein, 1990], As well as

knowing the properties of the fluid, we need to characterise the material properties of

the collecting lymphatic vessels. This is considered in the next subsection 2.1.4.2.

2.1.4.2 Material Properties of Collecting Lymphatic Vessel

The Young’s modulus, E, is the ratio of stress to strain forces and gives an indication

of the elasticity of a material.

E =
tensile stress

tensile strain
.

This has been used to evaluate the mechanical properties of the collecting lymphatic

wall. However, in the literature it has been estimated to range from 1200 Pa

[Macdonald et al., 2008] to 1.1 × 106 Pa [Reddy et al., 1975]. This may be due to size,

location, age and activity of the vessel used in these studies [Macdonald et al., 2008].

Ohhashi et al. [1980] calculated Young’s moduli between 4200 Pa and 27000 Pa. They

assumed the material was Hookean and used the equation from Azuma and Oka

[1971] for the Young’s modulus of a blood vessel wall in equilibrium calculated from
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measurements taken at two states of mechanical stress. Each state has a different

internal and external pressure. Azuma and Oka [1971] equation is given by,

E =
(P12r12 − P22r22)

(
r2

21 − r2
11

)
− (P11r11 − P21r21)

(
r2

22 − r2
12

)
(r22 − r21) (r21 − r11) [(r22 + r12)− (r21 + r11)]

, (2.2)

where, for state one, r11 is the internal radius at internal pressure P11, r21 is the

external radius at external pressure P21, and for state two in equilibrium, r12 is the

internal radius at internal pressure P12, r22 is the external radius for external pressure

P22 [Azuma and Oka, 1971]. This equation was derived from the mean circumferential

stress, τ1, for state one, which can be calculated by

τ1 =
T1

r21 − r11
, (2.3)

=
P11r11 − P21r21

r21 − r11
, (2.4)

where T1 is the state one tension. τ1 can also be calculated by

τ1 = E
(r21 + r11)− (r2 + r1)

(r2 + r1)
, (2.5)

where r1 is the internal radius as internal pressure P1j → 0 and r2 is the external

radius as external pressure P2j → 0. This leads to

P11r11 − P21r21

r21 − r11
= E

(r21 + r11)− (r2 + r1)

(r2 + r1)
. (2.6)

Doing the same for state two means that (r2 + r1) can be cancelled out. The resulting

equation, rearranged for E, is equation (2.2). This means that the vessel under no

stress does not need to be considered in order to calculate the Young’s modulus

[Azuma and Oka, 1971].

Macdonald et al. [2008] measured the external diameter of a lymphatic vessel while

changing the intraluminal pressure, the pressure in the lumen, from 0 to 1500 Pa.

They found that the diameter expands linearly as the pressure increases until it

transitions sharply to a state where the vessel stops expanding [Macdonald et al.,

2008; Davis et al., 2011]. At a strain of 1.1 ± 0.4, the Young’s modulus dramatically

increased [Macdonald et al., 2008]. Macdonald et al. [2008] suggest that initially the

smooth muscle cells and elastin are taking the majority of strain, then as the strain

increases the collagen takes more of the strain causing the Young’s modulus value to

increase.
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Macdonald et al. [2008] used the equation for a thick walled tube to estimate the

Young’s modulus, i.e.,

∆P =
E

2(1− σ2)
∆b

b2 − a2

a2b
, (2.7)

where ∆P is the difference between the pressure on the inside and on the outside, σ

is the Poisson ratio, E is the Youngs modulus, ∆b is the change in the outer radius,

b is the outer radius, a is the inner radius calculated as the outer radius minus the

thickness of the wall.

The assumptions made to derive this equation are that the material is Hookean and

the length of the tube does not change as it is inflated [Bergel, 1961]. Macdonald

et al. [2008] calculated a Young’s modulus for the period where the lymphangion

expands, before the transition at strain 1.1±0.4, as 1200 Pa, however it was difficult to

measure the wall thickness which introduced an uncertainty of ±700 Pa to this value.

Since values of Young’s moduli for the wall presented in the literature vary over a

large range and the only values found for the Young’s modulus of the valve have been

estimated for computational models not measured by mechanical testing, both of these

values have been calculated based on images.

Equations (2.2) and (2.7) were applied to data from Macdonald et al. [2008], for

bovine mesenteric vessels increasing the pressure from 0 to 215 Pa, and Davis et al.

[2011], for rat mesenteric vessels the pressure changing from 19.6 to 36.3Pa. For

equation (2.7) we assumed that the wall thickness was 0.7 times the initial inner

radius, a, so the outer radius, b, could be calculated as

b = 1.7a. (2.8)

It was also assumed that the vessels were incompressible, i.e. the Poisson ratio of the

wall was assumed to be 0.5. Both sets of data resulted in much lower Young’s moduli

being calculated by equation (2.7): Ew = 481.5 Pa for bovine and Ew = 8.67 Pa for

rat, than equation (2.2): Ew = 1283.4 Pa for bovine and Ew = 33494.3 Pa for rat.

Compared to the Young’s modulus of an endothelial cell which is 1000 Pa [Ohashi and

Sato, 2005], the values calculated from equation (2.7) do not appear to be realistic

as they are too small. The values calculated from equation (2.2) seem to be more

realistic and more in keeping with values from the literature.

However, both (2.2) and (2.7) assume the elasticity is Hookean. This is probably

not the case because it is known that the length of the vessel changes as the tube is

inflated because the lymphangion twists and buckles [Macdonald et al., 2008].

Quick et al. [2007] used time-varying elastance to estimate Young’s modulus,

E(t) =
P (t)

V (t)− V0
, (2.9)
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where P (t) is the pressure, V (t) is the volume and V0 is the volume when the pressure

is zero. This was used by Suga et al. to relate ventricular chamber pressure and

chamber volume in the heart [Quick et al., 2007; Suga and Sagawa, 1972].

2.1.5 Summary of the Mechanics of Collecting Lymphatics

The low Reynolds numbers calculated are always in the pre-turbulent range, so the

flow can be considered as laminar and that the viscous forces dominate. Therefore it

is suitable to assume that the behaviour of a solid mechanics model of the wall will be

similar to the behaviour of a fluid structure interaction model. In the next section,

2.1.6, previous computational models, which have utilised the Young’s modulus to

model the material properties of the wall, are reviewed.

2.1.6 Computational Models of Collecting Lymphatics

Since the 1970’s there have been several attempts to model aspects of the lymphatic

system. This section reviews models of the collecting lymphatics, to examine the

strengths and weaknesses of previous models, in order to avoid repetition and expand

upon them.

Reddy et al. [1975] created a one-dimensional model of a chain of lymphangions by

assuming Stoke’s flow for an incompressible Newtonian fluid in a flexible cylinder

with elastic walls. The walls were assumed to be much thinner than the length of

the vessel. They assumed Poiseuille flow throughout, except at the valves, and that

the radius and pressure were the same throughout the lymphangion. The valves

were assumed to resist the flow and not allow negative flow rates. Reddy et al. [1975]

included a strain threshold for the wall in their model which, when reached, initiated

the active contractions of the lymphangion. The duration of the contraction and

relaxation phases were both assumed to be 0.5 seconds for all the lymphagions. The

results matched the available experimental data at the time although many of the

assumptions were not realistic when considering the current knowledge of the system.

For example, it is possible for different lymphangions and even regions within the

same lymphangion to behave differently [Reddy et al., 1975]. It has since been shown

that lymphangions contract without reaching a certain strain threshold [Gashev,

2002], therefore their condition of when the lymphangion should contract is incorrect.

Reddy et al. [1977] built upon their earlier model of a single lymphangion to create a

simple model for the main lymphatic vessels of the body. The behaviour of the initial

lymphatics was lumped into one section draining into the collecting lymphatics. The

lymph nodes were modelled as lymphangions. The ratio of nodes to lymphangions

was assumed to be small. Reddy et al. [1977] used the law of mass action to model
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the rate of radial change as equal to the difference between the fluid flowing in and

that flowing out divided by the surface area. The input parameters were the boundary

conditions from the pressure in the jugular vein, arterial and venous capillary ends,

the protein concentrations and the external pressure in the lymphangions. The model

by Reddy et al. [1977] agreed with the available experimental data at the time. The

model showed that the transport of lymph was affected by the rate of distension of the

vessels [Reddy et al., 1977]. The advantages of this model were that it was relatively

simple and could model a network of vessels. The disadvantages were the unrealistic

assumptions. For example, the vessels all behave the same and the valves do not

allow back flow. This backflow has been measured by Zawieja [2009] by tracking

lymphocytes passing through a lymphatic vessel and calculating their velocity, see

figure 2.4.

Figure 2.4: Velocity of lymphatic flow calculated from lymphocyte velocity and vessel
diameter changes during three contraction cycles. Adapted from Zawieja [2009]. Note
the negative flow velocity, which occurs just before the valve closes. ©2009, Mary
Ann Liebert, Inc. Permission to used this figure granted by Mary Ann Liebert, Inc.

Macdonald et al. [2008] adapted the model by Reddy et al. [1975]. Macdonald et al.

[2008] included vessel bending and damping terms and created a wall model that

accounted for changes in the mechanical properties of the wall for the active and

passive behaviour. In the passive mode the wall acts as an elastic membrane in this

model. The active behaviour is modelled using a time varying Young’s modulus. A

minimum and maximum Young’s modulus are calculated from experimental data to

represent the wall in relaxed state, Erel, and contracted state, Econ. A time dependent

contraction function, ζ is used to increase or decrease the Young’s modulus within
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these limits. This is implemented using the equation,

E = Erel + (Econ − Erel)ζ(t) where ζ ∈ [0, 1] (2.10)

where E is the varying Young’s modulus [Macdonald et al., 2008] and t is time. The

values for Erel and Econ were found using the thick walled tube equation (2.7). Two

contraction functions were tried: a sine wave and a sine wave with a relaxation period.

Macdonald et al. [2008] modelled a 2 cm lymphangion with an unstretched radius

of 1.25 mm as six computational cells. The first and last were valve models, the

behaviour of which was defined as an input. Each cell had a length three times longer

than the diameter. The model did not include changes in the length or tension of the

vessel during pumping. This model is an improvement of the model by Reddy et al.

[1975] as it includes more realistic passive wall behaviour using two Young’s moduli

and splitting the lymphangion into separate sections allows each cell to behaviour

differently. However this model is one dimensional.

Bertram et al. [2011] modelled a one dimensional connected series of contractile vessel

segments with a valve separating each segment and a pressure reservoir at each end

of the chain. The passive diameter of the wall of the collecting lymphatic vessels was

related to the transmural pressure, ptm,

ptm = Pd

(
eD/Dd − (Dd/D)3

)
, (2.11)

where Pd and Dd are parameters defined by the authors to control the behaviour

of the wall and D is the diameter of the lymphangion. A second term was added

to incorporate vessel pumping. In order to find values of Pd and Dd that yielded

experimentally observed behaviour, the equation was fitted to experimental data

[Bertram et al., 2013b]. The pressure-diameter relationship was extrapolated to

extend the model to function under negative transmural pressure, that had not

been investigated experimentally. This model does result in biologically realistic

behaviour of the pressure-diameter relation of the lymphatic vessel wall. However, the

equation used has been chosen due to being able to match the data and no underlying

explanation related to the structure of the vessel can be deduced.

Rahbar and Moore [2011] constructed a simplified three dimensional model of a

lymphangion as a contractile cylinder with constant radius and an inlet and outlet

at each end. The lymph was modelled as an incompressible Newtonian fluid with the

density and dynamic viscosity as 0.997 g/cm3 and 0.9 cP respectively. The model

showed how the fluid was affected by the wall behaviour and showed that Poiseuille

flow was maintained during all stages of the contraction cycle [Rahbar and Moore,

2011]. However, by defining the movement of the wall, it was not possible to use the

model to investigate how the fluid affected the wall behaviour.



28 Chapter 2 Non-linear Material Model for Collecting Lymphatic Vessels

2.1.6.1 Summary

In this section, it has been shown that while various models of the collecting

lymphatics have been attempted, many of these have been one-dimensional [Reddy

et al., 1975; Macdonald et al., 2008; Bertram et al., 2011]. These models are able

to represent the overall behaviour of a lymphatic vessel or network of them but the

models are unable to show how the deformation of the vessel impacts on the flow. A

three-dimensional model has been produced to take into account the behaviour of the

wall [Rahbar and Moore, 2011], however the motion of the wall was prescribed and

therefore it was not possible to explore how the fluid affected the vessel wall.

The range of values found in the literature for the Young’s modulus may be caused by

the clearly non-linear behaviour of collecting lymphatic wall, see figure 2.1. Therefore,

using the Young’s modulus in a computational model to determine how the vessel will

behave when forces are applied to them will lead to results that do not reflect the

experimental data. Bertram et al. [2011] presented a pressure-diameter relationship

that can reproduce the experimental data, however it is not based on the underlying

structure of the vessel wall and can give no indication as to why the vessel wall

behaves as it does.

Other biological vessels, such as arteries and veins, have been modelled using strain

energy functions to define the non-linear material properties, which are developed

from an understanding of the material’s structure. In the next section, 2.1.7, an

example of a strain energy function is reviewed.

2.1.7 Strain Energy Functions

A strain energy function (SEF) relates the energy stored due to the strain in a solid

to it’s deformation. Differentiating the SEF by each of the strains results in the

expression for stress in each direction. The SEF presented by Holzapfel et al. [2000]

has been used to model arteries and veins, which have a structure similar to lymphatic

vessels. In this section the SEF is presented, it’s linear limit found and its application

in computational models is reviewed.

2.1.8 Holzapfel-Gasser-Ogden Strain-Energy Function

Holzapfel et al. [2000] developed a strain-energy function for modelling the behaviour

of the wall of an artery. The artery was modelled as a thick-walled cylinder consisting

of two nonlinearly elastic layers that represented the media and adventitia layers of

the arterial tissue. The media layer of an artery is made up of collagen, elastin and

smooth muscle cells, although in different quantities to the lymphatic vessels. Arteries
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also demonstrate the same exponential passive pressure-diameter curves. The

Holzapfel-Gasser-Ogden (HGO) SEF aims to model the behaviour of the arterial wall

under strains caused by inflation, extension and twisting.

The SEF from Holzapfel et al. [2000] takes the form

W =
c

2
(I1 − 3)︸ ︷︷ ︸

(A)

+
k1

2k2

(
exp

[
k2 (I4 − 1)2

]
− 1
)

+
k1

2k2

(
exp

[
k2 (I6 − 1)2

]
− 1
)

︸ ︷︷ ︸
(B)

, (2.12)

where c, k1 and k2 are material parameters. Term (A) is a neo-Hookean model that

describes the isotropic properties of the material. The elastic constant c is greater

than 0 and has units of stress (Pa). Term (B) models the anisotropic behaviour of

the material, assumed to be a result of the presence of collagen fibres, increasing

the stiffness as the strain increases. Parameters k1 and k2 are greater than 0; k1 has

units of stress (Pa) and k2 is dimensionless [Holzapfel et al., 2000]. The I terms are

invariants of a modified right Cauchy-Green tensor C = J2/3C where C is the right

Cauchy-Green tensor and J is the determinant of the deformation gradient. The

invariants are given by,

I1 = trC, (2.13)

I4 = C : A1, (2.14)

I6 = C : A2, (2.15)

where A1 = a1 ⊗ a1 and A2 = a2 ⊗ a2; a1 and a2 are vectors that represent the

directions of the collagen fibres. In cylindrical coordinates they are written as

a1 =

 0

cosβ1

sinβ1

 , and a2 =

 0

cosβ2

− sinβ2

 , (2.16)

where β is the angle between the circumferential direction and the fibres, as shown in

figure 2.8. It is assumed that the collagen fibres are active when extended, i.e. when

I4, I6 > 1, but inactive when compressed, i.e. when I4, I6 < 1. Taking β1 = β and

β2 = −β, we can write the invariants as

I1 = λ2
θ + λ2

z + λ2
r , (2.17)

I4 = λ2
θ cos2 (β) + λ2

θ sin2 (β) , (2.18)

I6 = λ2
θ cos2 (−β) + λ2

θ sin2 (−β) , (2.19)

where λθ, λz, and λr are the stretch ratios in the principle directions.

Holzapfel et al. [2000] assumes that the material in incompressible. This implies that

the third invariant I3 = detC = 1. However, this is not realistic for lymphatic vessels,
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since we know from experiments by Arkill et al. [2010]; Rahbar et al. [2012] that the

thickness of the walls of the vessels decrease as the vessel distends, for more detail

of these experiments see section 2.1.2 and 2.2.2.2. We include a term to model the

compressible behaviour from Doll and Schweizerhof [2000],

m
(√

I3 − 1
)

ln
(√

I3

)
, (2.20)

where m is a material parameter and

I3 = λ2
θλ

2
zλ

2
r . (2.21)

Therefore the SEF can be written as

W =
c

2
(I1 − 3) +

k1

2k2

(
exp

[
k2 (I4 − 1)2

]
− 1
)

+
k1

2k2

(
exp

[
k2 (I6 − 1)2

]
− 1
)

+m
(√

I3 − 1
)

ln
(√

I3

)
.

(2.22)

2.1.8.1 Linear Limit of Holzapfel-Gasser-Ogden Strain Energy Function

The HGO SEF, in Cartesian coordinates with an added function for compressibility

can be rewritten as,

W =
c

2
(I1 − 3) +

k1

k2

(
1

2

(
exp

[
k2 (I4 − 1)2

]
− 1
)

+
1

2

(
exp

[
k2 (I6 − 1)2

]
− 1
))

+m
(√

I3 − 1
)

ln(
√
I3), (2.23)

=
c

2
(I1 − 3) +

K

2

(
exp

[
k (I4 − 1)2

]
+ exp

[
k (I6 − 1)2

]
− 2
)

(2.24)

+m
(√

I3 − 1
)

ln(
√
I3),

where K = k1
k2

kPa, k = k2 (no units) and m kPa are parameters usually found by

data fitting. The invariants of the Cauchy strain tensor are,

I1 = λ2
x + λ2

y + λ2
z, (2.25)

I3 = λ2
xλ

2
yλ

2
z, (2.26)

I4 = λ2
x cos2 β + λ2

y sin2 β, (2.27)

I6 = λ2
x cos2 (−β) + λ2

y sin2 (−β) , (2.28)
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so I4 = I6, and λx, λy, λz are stretch ratios. Green’s strains, defined as

Ex =
1

2

(
λ2
x − 1

)
, (2.29)

Ey =
1

2

(
λ2
y − 1

)
, (2.30)

Ez =
1

2

(
λ2
z − 1

)
, (2.31)

are substituted into equation (2.24) giving,

W = c (Ex + Ey + Ez) +K
(

exp
[
k
(
2Ex cos2 β + 2Ey sin2 β

)2]− 1
)

(2.32)

+
1

2
m

(√
(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1

)
ln ((2Ex + 1) (2Ey + 1) (2Ez + 1)) .

Differentiating equation (2.33) by strains gives,

σxx =
∂W

∂Ex
= c+ 4Kk

(
2Ex cos2 β + 2Ey sin2 β

)
cos2 β exp

[
k
(
2Ex cos2 β + 2Ey sin2 β

)2]
+
m

2

(2Ey + 1) (2Ez + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.33)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ex + 1
,

σyy =
∂W

∂Ey
= c+ 4Kk

(
2Ex cos2 β + 2Ey sin2 β

)
sin2 β exp

[
k
(
2Ex cos2 β + 2Ey sin2 β

)2]
+
m

2

(2Ex + 1) (2Ez + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.34)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ey + 1
,

σzz =
∂W

∂Ez
= c+

m

2

(2Ex + 1) (2Ey + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.35)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ez + 1
.
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Assuming isotropic (i.e. K = 0),

σxx = c+
m

2

(2Ey + 1) (2Ez + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.36)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ex + 1
,

σyy = c+
m

2

(2Ex + 1) (2Ez + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.37)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ey + 1
,

σzz = c+
m

2

(2Ex + 1) (2Ey + 1) ln ((2Ex + 1) (2Ey + 1) (2Ez + 1))√
(2Ex + 1) (2Ey + 1) (2Ez + 1)

(2.38)

+
m
(√

(2Ex + 1) (2Ey + 1) (2Ez + 1)− 1
)

2Ez + 1
.

Expanding in a Taylor series and only taking the first two terms, results in a standard

linear stress-strain relation for Hooke’s Law for an isotropic material [Fung and Tong,

2005],

σxx : c+ 2mEx + 2mEy + 2mEz = λ(Ex + Ey + Ez) + 2GEx, (2.39)

σyy : c+ 2mEx + 2mEy + 2mEz = λ(Ex + Ey + Ez) + 2GEy, (2.40)

σzz : c+ 2mEx + 2mEy + 2mEz = λ(Ex + Ey + Ez) + 2GEz. (2.41)

This implies c = 0, G = 0 and 2m = λ in the linear limit of the strain energy function.

This tells us that the primary linear response assumed in HGO is volumetric stress in

response to the volumetric strain, but that the strain is negligible at the linear limit.

Holzapfel et al. [2000] have built residual stress of the material into their strain energy

function in the form of c. λ can be written as,

λ =
Eν

(1 + ν) (1− 2ν)
(2.42)

where E is the Young’s modulus and ν is Poisson’s ratio. Therefore, the HGO SEF

can be written as,

W =
c

2
(I1 − 3) +

K

2

(
exp

[
k (I4 − 1)2

]
+ exp

[
k (I6 − 1)2

]
− 2
)

(2.43)

+
Eν

2 (1 + ν) (1− 2ν)

(√
I3 − 1

)
ln(
√
I3).

2.1.8.2 Applications of Holzapfel-Gasser-Ogden Strain Energy Function

The HGO SEF has been used to model various biological tissues. A review some of

these models is presented here. The values of the parameters used are shown in table

2.3 for comparison.
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Holzapfel et al. [2000] modelled a carotid artery from a rabbit. They found different

parameter values for the adventitia and media, layers of the artery wall, the value of c

for the media was assumed to be ten times stiffer than the value of c for the adventitia

as they knew the media should be stiffer than the adventitia.

Auricchio et al. [2014] used the SEF to model an aortic valve implant in an aorta root

specific to a patient. They believe that a patient specific model would be useful for

planning operations. It was hoped that including a more accurate material model for

the leaflets would provide a better representation of the real effects of the implant.

The stentless implant valve leaflets, which they were modelling, are made from bovine

pericardium. Although this material has anisotropic mechanical properties, the

fixation process may affect this. Therefore the authors decided to compare the leaflet

behaviour modeled by the Holzapfel et al. [2000] SEF to an isotropic hyperelastic

model. The image based model of an aortic root was constructed based on a cardiac

computed tomography-angiography from a patient. Matlab and Abaqus were used

to process the images and create a 3D finite element model. The geometry of the

stentless valve was modelled on an implant called Labrosse, however the dimensions

for this particular implant were not available, so they used the dimensions of the

Freedom Solo valve implant and assumed that it was the same as a healthy human

valve [Auricchio et al., 2014]. Auricchio et al. [2014] modelled the aortic root material

as an incompressible Mooney-Rivlin model. They compared two models for the valve

leaflets: firstly, they used a hyperelastic incompressible model with Young’s modulus

8 MPa, Poisson’s ratio 0.49 and density 1100 kg/m3; secondly they used the HGO

SEF. Auricchio et al. [2014] imposed a local vector system of e1, in the base-to-apex

direction, e2, in the pericardium plane orthogonal to e1 and e3 = e1 × e2. The fibres

were considered to be organised symmetrically and ±β represented the angle from the

base-to-apex direction to the fibre. Since the fibre angle of the leaflets was unknown

it was treated as an unknown parameter. Auricchio et al. [2014] had four unknown

parameters, c, k1, k2 and β. They repeated their optimisation for a range of initial

parameters because the final result depended on the initial guess. The optimal values

were found to be c = 20.1 kPa, k1 = 54.62 kPa, k2 = 30.86 and β = 29.8 deg.

They used this model to look at how the fibres affected the leaflets. Comparing the

isotropic and anisotropic models, they found that the fibres cause the stress to be

more uniformly aligned in the direction of the fibres resulting in smaller stress values

overall. They found that the isotropic model had folds that were not biologically

realistic whereas the anisotropic model displayed behaviour that agreed with previous

computational studies. Auricchio et al. [2014] concluded that the material model

chosen had a significant effect on numerical simulations.

Zulliger et al. [2004] used the SEF from Holzapfel et al. [2000] as a basis for creating

their own SEF. They incorporated the density, mechanical properties and distribution

of the collagen and elastin fibres. They found that their SEF resulted in a better fit to
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the experimental data compared to the SEF from Holzapfel et al. [2000], however they

required additional experiments to measure the necessary information. They used two

equations to collect the information needed for the fitting,

P =

∫ ro

ri

(σθ − σr)
1

r
dr, (2.44)

where P is the intraluminal pressure, ro and ri are the outer and inner radii

respectively, σθ and σr are the local wall stresses in directions θ and r and r is the

radius of the wall.

Fz =

∫ ro

ri

σz2πrdr − Pπr2
i , (2.45)

where Fz is axial force, σz is the local wall stress in direction z. The initial diameter

was estimated so that the radius at 1.98 kPa for 100% in vivo stretch closely matched

the experimental data. The initial stretch required for 100% in vivo length is also

unknown. Therefore λz was estimated so that the force required for the stretch at

1.98 kPa for 100% in vivo stretch was close to the experimental data. This initial

diameter, 860 mm and stretch, λz = 1.21 of the untensioned vessel, were then fixed

for the kriging procedure. λz = 1.21 was assumed to be 100% of the in vivo length.

The fibre angle was fixed to 39.8◦.

Cornejo et al. [2014] applied the SEF to patient specific aneurysmal cerebral arteries

to compare the wall stress between a nonlinear isotropic model and the anisotropic

model. They found that the anisotropic model resulted in a higher maximum stress

than the isotropic model.

Sunbuloglu et al. [2013] carried out experiments to estimate the parameters for the

SEF. They used one form of the SEF for the pure elastic energy, Ψe, and another to

model the viscoelastic energy, Ψv.

Ψe = Ce1 (Ie1 − 3) +
Ce2
αe

[exp (αe (I4 − 1)n) + exp (αe (I6 − 1)n)− 2] , (2.46)

Ψv = Cv1 (Iv1 − 3) +
Cv2
αv

[exp (αv (I4 − 1)n) + exp (αv (I6 − 1)n)− 2] , (2.47)

where n is the elastic hardening power, set to be 2.5. They also included an equation

for the dissipative potential, with parameters for fibre-resolved and isotropic viscosities

and rate-hardening. They carried out experiments on ovine pulmonary arteries

assuming that the behaviour of the vessel was homogeneous. The results from these

experiments were used to estimate the parameters. They ran an experiment with a

static test with a 10 N extension force and 15 kPa pressure to estimate Ce1 , Ce2 and

αe. They ran a dynamic test with 20◦ torsion, 1 to 11 N extension at 4 Hz and and 10

kPa pressure to estimate Cv1 , Cv2 , αv and the parameters for the dissipative potential.

The parameters listed in table 2.3 are the static parameters [Sunbuloglu et al., 2013].
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Sunbuloglu et al. [2013] compared the model to experimental data for the tangential

deformation gradient over time, the axial force against the axial strain, the pressure

against the circumferential strain and torsion against time. The model matched the

experiments reasonably well although it underestimated the tangential deformation

gradient. Sunbuloglu et al. [2013] believe their procedure could be used to fit

parameters for different materials however as the experiments are performed the

behaviour of the material changes. This limits the number of times the experiments

can be repeated.

Badel et al. [2013] used the HGO SEF to model a porcine vein. They created a

computational model of a cylinder (6.5 mm diameter, 30 mm long, 0.3 mm wall

thickness) and applied different amounts of axial stretch to it. They then increased

the pressure (up to 100 mmHg) in the lumen in order to see how much the vessel

buckled. They varied the angle of the fibres, finding that as the angle increased the

vessel buckled to a lesser extent. They scaled the parameters c and k1 to show that

the vessel buckled less if the vessel was stiffer.

Sokolis [2013] carried out a parameter optimisation study for porcine jugular veins

comparing the model to the pressure-radius-force data that they had obtained from

experiments. They compared different SEFs. Although the SEF from Holzapfel et al.

[2000] could reasonably accurately recreated the pressure-diameter data, it was unable

to match the force data.

The HGO strain energy function has been used to model blood vessels. In subsection

2.1.10, lymphatic vessels are compared to blood vessels to try and approximate how

the parameters for the SEF for the lymphatic vessels may differ due to the structural

and behavioural differences between the types of vessels.

In table 2.3, it can be seen that, in general, the value of the parameters c, k1 and k2,

are one or two orders of magnitude higher for arteries than for veins. All the values of

E and ν are zero, as all these examples were assumed to be incompressible.

2.1.9 Summary

Strain energy functions have been used to model biological tissues because they are

able to model highly nonlinear behaviour that is typical of soft tissues. In the next

section 2.1.10 the structure and behaviour of lymphatic vessels are compared to blood

vessels. This enables a prediction to be made as to how the parameters for the HGO

SEF may be different for the lymphatics when compared with blood vessels. The

values may also differ due to the species and vessel size and location.
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2.1.10 Comparison to Blood Vessels

Lymphatic vessels have been compared to blood vessels, which have a different

structural composition [Nipper and Dixon, 2011]. The structure of smooth muscle,

elastin and collagen networks in the lymphatic walls are not present in blood vessels

[Gnepp and Green, 1980; Arkill et al., 2010]. This may be because the vessels are

adapted for the different luminal pressures that they have to withstand. It is not

necessary for blood vessel walls to spontaneously contract, since the heart pumps the

blood around the body. Blood vessels experience mainly radial stess. In comparison,

the lymphatic walls have to actively pump the lymph which creates longitudinal

as well as radial stresses [Arkill et al., 2010]. Lymphatic and blood vessels exhibit

different pressure diameter relationships, as shown in figure 2.5 [Rahbar et al., 2012].

Figure 2.5: Pressure diameter comparisons for an arteriole, venule and lymphatic
vessel from a rat [Rahbar et al., 2012]. Diameter normalised by maximum diameter,
which was 267 µm for the lymphatic. ©2012, Mary Ann Liebert, Inc. Permission to
use this figure granted by Mary Ann Libert, Inc.

There are much higher forces present in the vascular system than the lymphatic

system. Blood moves relatively quickly compared to lymph, a comparison of values

can be seen in table 2.4. Due to the slower velocities of the lymphatic system, the

Reynolds number is a lot lower than in the vascular system.

Mean Flow Cardiac Mesenteric

Lymph 3.0 ml/hour 0.015 ml/min/100g
Blood 40 ml/hour 50 ml/min/100g

Table 2.4: Comparison of mean blood and lymph flows [Abramson and Dobrin, 1984;
Miller et al., 1964; Lanciault and Jacobson, 1976; Vatner and McRitchie, 1975].
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2.1.10.1 Summary

As can been seen in figure 2.5, the lymphatic vessels behave similarly to venules.

Thus, it is expected that the parameters of the HGO SEF for lymphatic vessels to be

more similar to veins than arteries. This means that the expected values of c would be

of order 10−1 to 1 (kPa), k1 of order 10−1 (kPa) and k2 of order 10−1 to 1 (no units).

However, it is unknown how including the compressibility term with parameters E

(kPa) and ν will effect the final results.

2.2 Methods

2.2.1 Geometry

To estimate the geometry of the collecting lymphatic wall, two videos, 40 hires 3 and

40 hires 4, by Taija Makinen and colleagues at Cancer Research UK were used to

obtain measurements for the geometry of mouse lymphatics. The vessels were isolated

and then fixed. During the fixation process the lymphatic vessels become flattened.

40 hires 3 describes a rotating lymphatic valve from the side, see snapshots in figure

2.6a-2.6d, i.e. the buttress connection to the wall is straight on. 40 hires 4 describes a

rotating valve from the front, see snapshots in figure 2.6e-2.6i, i.e. the leaflet of the

valve is seen straight on. Measurements of the geometry of lymphatic vessels were

made from some of the frames using ImageJ software. The measurements taken from

these images can be seen in table 2.5.

Side Front

Figure 2.6a 2.6c 2.6b 2.6d 2.6e 2.6f Mean 2.6g 2.6h 2.6i Mean

Downstream
width (µm)

69.6 66.5 68.0 95.8 95.0 73.1 88.0

Upstream
width (µm)

37.8 35.3 34.9 33.6 35.4 57.8 54.0 53.4 55.1

Thickness
without

valve (µm)
6.6 7.6 7.1

Table 2.5: Measurements from images in figure 2.6. The white lines in figure 2.6
show the approximate position where the measurements were taken using ImageJ.
These measurements form the basis for the geometry of the model of the collecting
lymphatic valve and surrounding vessels. The mean values for the front and side
measurements are also recorded. All measurements are accurate to one decimal place.
The empty values could not be measured from the particular image.

In the images in figure 2.6, the wall thickness, himw , was set to be half the flattened

vessel thickness. This provided the wall thickness to external diameter ratio of

the vessel. This ratio was used to estimate the wall thickness for the vessels in the

experiments by scaling the wall thickness, hw, to the initial internal diameter, D0.
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30 µm

Upstream
width

Downstream
width

(a) 40 hires 3, frame 1

20 µm

Upstream
width

Downstream
width

(b) 40 hires 3, frame 76

20 µm
Thickness

without valve

(c) 40 hires 3, frame 53

20 µm
Thickness

without valve

(d) 40 hires 3, frame 85

15 µm

Upstream
width

(e) 40 hires 3, frame 351

15 µm

Upstream
width

(f) 40 hires 3, frame 431

40 µm

Upstream
width

Downstream
width

(g) 40 hires 4, frame 4

15 µm Upstream
width

Downstream
width

(h) 40 hires 4, frame 60

20 µm

Upstream
width

Downstream
width

(i) 40 hires 4, frame 241

Figure 2.6: Frames from videos 40 hires 3 and 40 hires 4 by Taija Makinen and
colleagues at Cancer Research UK of mouse lymphatic vessels. The white lines show
the approximate position where the measurements were taken using ImageJ.
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The wall thickness was calculated as,

hw = D0
himw
Dim

0

, (2.48)

where Dim
0 is the internal diameter from the images calculated as

Dim
0 = Dim

ext − himw , (2.49)

where Dim
ext is the external diameter measured from the image. The length, L, was

calculated to be,

L = 7D0, (2.50)

because the lymphangion length to diameter ratios reported in the literature were

between 3 and 10 [Földi et al., 2003].

As well as constructing a biologically realistic geometry, data measured in experiments

was used to optimise the parameters. Different data sets were used: pressure-diameter

and pressure-force data from Zulliger et al. [2004] and mouse and rat lymphatic

pressure-diameter data provided by Joshua Scallan at University of Missouri School

of Medicine. This is presented in the next section.

2.2.2 Experimental Data

The Kriging procedure, which will be described in section 2.2.5.2, and HGO SEF were

evaluated by using it to fit data published by Zulliger et al. [2004] for arteries and

comparing the results to those presented by the authors. Zulliger et al. [2004] used

an adapted version of the HGO SEF to model the pressure-diameter behaviour. This

comparison may lead to an insight as to the effect of the additional compressible term

and if the Kriging procedure and the SEF equation (2.43) were capable of accurately

modelling the force data as well as the pressure-radius data.

Using DataThief, experimental data for both the pressure-radius curve and the axial

force was obtained for rat carotid arteries from Zulliger et al. [2004]. Figure 2.7

shows the experimental data with the model fits presented in Zulliger et al. [2004]

using the parameters in table 2.9. It can be seen that the model fits the data well,

except for the force at 130% of the in vivo stretch. There was some variation in the

pressures measured for the data points as using DataThief gave an accuracy of ±0.2

kPa, but this is considered as small over the whole range of 30 kPa. The mean of the

pressures collected was calculated and this was assumed to be the pressure at which

the measurements of radius and force were conducted. The data points used are those

with error bars in figure 2.7.
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Figure 2.7: Graphs show experimental data (circles) for left cartoid relaxed arteries
from 8 week old Wistar rats. Error bars show standard deviation of experimental
data. The black line is the model results. The three upper graphs show pressure-
diameter curves and the lower three the axial force applied. Reprinted from Zulliger
et al. [2004] ©2004, with permission from Elsevier

In order to find parameters for the nonlinear material models that resulted in realistic

biological behaviour for the collecting lymphatic wall model, experimental data was

provided by Joshua Scallan, School of Medicine, University of Missouri. He produced

passive pressure-diameter data for isolated mouse and rat mesenteric lymphatics.

Information about the angle of the fibres in the collecting lymphatic wall was also

used based on the measurements presented in Arkill et al. [2010].

2.2.2.1 Passive Pressure-Diameter Data

The experiments were carried out by mounting sections of lymphatic vessels between

two pipettes. The pressure of each pipette would then be controlled. The pressure in

both pipettes was raised to 10 cmH2O for the mouse lymphatics and to 12 cmH2O

for the rat lymphatics. This caused the vessel to distend and buckle. The pipettes

were then moved apart until the vessel was straight. After this the pressure in both

pipettes was lowered. This prevented the vessel from moving so that the diameter

could be measured as the pressure in both pipettes was gradually increased. The

straightening of the vessel increased the length by approximately 30%, to about

the same as the in situ length. [Scallan, personal communication]. These data are

summarised in tables 2.6 and 2.7.
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Mouse 32812 32912 33012 40212a 40212b 40512 60112 61412 61512

Pressure Diameter (µm)

0.5 73 68 71 51
1 69 80 76 83 99 81 73 78 65
2 73 84 85 93 106 84 77 85 74
3 75 85 90 96 108 85 78 88 79
5 76 87 92 99 112 86 80 91 85
7 77 88 93 101 114 86 81 93 88
10 78 89 94 102 115 86 81 95 90
12 78 90 95 103 116 86 96 90

Table 2.6: Summary of passive pressure-diameter curves for mouse lymphatic vessels
from Joshua Scallan, School of Medicine, University of Missouri.

Rat 11912 20212 20612 20912a 20912b 21312a 21312b 21412 22012 22212

Pressure Diameter (µm)

0.5 116 110 133 123 114 89 115 122 125
1 168
2 188 159 129 174 172 163 174 154 148 165
4 199 167 134
6 204 169 136 183 182 178 184 165 154 176
8 208 170 138 185 185 181 185 168 156 178
12 211 170 140 186 186 187 186 169 159 180
14 214 172 141 186 186 189 187 170 160 182

Table 2.7: Summary of passive pressure-diameter curves for rat lymphatic vessels from
Joshua Scallan, School of Medicine, University of Missouri.

2.2.2.2 Fibre Angles For Holzapfel-Gasser-Ogden Strain Energy Function

The HGO SEF required the angle of the collagen fibres as a model input. The

data from Arkill et al. [2010] was used to find an approximate value for the fibre

angle, a necessary input for the HGO SEF. Arkill et al. [2010] take 180◦ as being

parallel to the longitudinal direction of the vessel. However, it is more useful to

know the angle from the circumferential direction for use with the HGO SEF, see

section 2.1.8. This was calculated as β = 90◦ − |180◦ − α|, where α is the angle

taken from the graphs in figure 2.2 using DataThief software (downloaded from

http://datathief.softpedia.com/). The mean and standard deviation of β at different

pressures and tensions are summarised in table 2.8.

Vessel
Mean β
(degrees)

Standard
Deviation
(degrees)

0 Pa Transmural pressure, no tension 55 21
0 Pa Transmural pressure, with tension 85 6

1500 Pa Transmural pressure, with tension 60 16
3000 Pa Transmural pressure, with tension 63 12

Table 2.8: Table of mean values of collagen fibre angles as measured by Arkill et al.
[2010]. The data was obtained from figure 2.2 using DataThief.

Arkill et al. [2010] show that the fibre angle changes as the pressure increases. A

linear function was fitted to the normalised pressure to mean fibre angle shown in
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2β

z

r
θ

Figure 2.8: Diagram to show angle β. The white lines represent the collagen fibres.
The black z-axis corresponds to 180◦ as measured by Arkill et al. [2010].

table 2.8 using data from Arkill et al. [2010], see figure 2.9. Therefore, β is set equal
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Figure 2.9: Fibre angle vs normalised pressure. The blue squares represent the mean
and the error bars the standard deviation. The red line represents the linear fit to the
data

to this function,

β = −21.61
p

pmax
− 80.09. (2.51)

The fibre angles in mouse mesenteric lymphatics have not been measured. Therefore

it is assumed that mean fibre angles estimated from Arkill et al. [2010] are consistent

across all species. Two cases will be considered. In the first case the fibre angle will be

assumed constant, as in Holzapfel et al. [2000]. The constant fibre angle is assumed to

be β = 60◦, the value of the mean fibre angle for 1500 Pa from table 2.8. This is the

value of the fibre angle at higher pressures, which is when the collagen fibres take the

strain. In the second case, a variable fibre angle will be considered using a linear fit to

relate the fibre angle to the pressure, i.e. as the pressure increases, β decreases.
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2.2.3 Strain Energy Functions in COMSOL Multiphysics

In the previous section 2.1.7, a SEF was reviewed. In this section, the implementation

of the SEF in COMSOL Multiphysics is presented.

COMSOL Multiphysics has many inbuilt SEFs, however the SEF by Holzapfel et al.

[2000] is not one of them. An example where the HGO SEF has been implemented

in COMSOL is available on COMSOL Multiphysics website1. The model presented

here is based on this example. To input the HGO SEF into COMSOL Multiphysics,

I4 and I6 had to be included as variables. This was done by creating variables for

each component of the vectors that define the direction of the collagen fibres, equation

(2.16). A second set of variables was created to define I4 and I6 and each component

of the strain energy function. The parameters c (kPa), k1 (kPa), k2S (no units) and E

(kPa) and ν (no units) from equation (2.43) had to be defined.

The parameters listed above are necessary to define the material properties of the

lymphatic vessel and valve. It is unknown what values these parameters should take

for the material model to reproduce the behaviour of passive collecting lymphatic

vessels in experiments. In order to find suitable parameters an iterative algorithm

called Kriging, which is presented later in subsection 2.2.5, is used to optimise

these parameters so that model behaviour reflects the experimental data in tables

2.6 and 2.7. This algorithm interpolates known function values to estimate other

optimal parameters sets. It requires the model to be run many times, so to lower the

computational time necessary for this process a 2D dimensional axisymmetric model

of the vessel wall was built in COMSOL Multiphysics.

2.2.4 2D Finite Element Wall Model

The vessel wall is modelled as a rectangle in a two dimensional axisymmetric model,

see figure 2.10a. The solution can then be rotated to form a full cylinder. This makes

the model inexpensive to compute, even with a fine mesh. The number of mesh

elements depends on the wall thickness. The width of the rectangle had a minimum

of 4 elements across it for all models. The total number of elements ranged from 1218

to 5058.

The internal diameter of the vessel was not measured experimentally at intraluminal

pressure 0 cmH2O, which is the gauge pressure. It is unknown what diameter the

stress free vessel has. This information in needed for the initial condition of the

model. Therefore the initial diameter D0 (µm) was included as an unknown parameter

for the model. β is assumed to be 60 degrees for the fixed fibre angle model and equal

to equation (2.51) for the variable fibre angle model. The Poisson’s ratio ν is assumed

1http://www.comsol.com/model/arterial-wall-mechanics-14499

http://www.comsol.com/model/arterial-wall-mechanics-14499
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(a) 2D model geometry used for Kriging
procedure to find parameters.

Ω

Displament in z direction
uz = λzZ on x ∈ ∂Ω1

Applied pressure
σ · n = −pn on x ∈ ∂Ω2

Roller condition
n · u = 0 on x ∈ ∂Ω3

Free on x ∈ ∂Ω4

(b) Sketch of model to show boundary
conditions. Not to scale.

Figure 2.10: 2D finite element model for use in Kriging

to be 0.2. There were a total of five unknown parameters for the model: c (kPa),

K = k1/k2 (kPa), k (no units), E (kPa) and D0 (µm). Several factors are neglected

in the model: growth, inertial forces, gravity and external pressure.

The equations for the force balance are,

−∇ · σ = F v, (2.52)

where σ is the stress tensor and F v is the volume force vector. σ is related to the

second Piola-Kirchhoff stress, S, by

σ = J−1USUT , (2.53)

where U is the deformation gradient given by,

U = ∇u+ I, (2.54)

with u the displacement gradient and I the identity matrix. The volume ratio

between the initial and current configuration is

J = det (U) . (2.55)

The second Piola-Kirchhoff stress is related to the SEF by differentiating by the

strains

S =
∂W

∂ε
, (2.56)
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where W is the SEF, equation (2.43), and the strains are related to the deformation

gradient by

ε =
1

2

(
F TF − I

)
. (2.57)

Assuming that the same coordinates are used for the original and the deformed body

and that the frame of reference for the deformed body can be contorted so that the

coordinates of a particle have the same coordinates both in the original and deformed

configurations, then Green’s strain tensor is equal to the Cauchy strain tensor, ε.

2.2.4.1 Boundary Conditions

We applied a prescribed displacement boundary condition to the top end of the

rectangle, see figure 2.10b. This resulted in elongation of the wall by a third, which

was approximately the amount the vessels were displaced by when straightened

before the experiments and stretch the vessel to its in vivo length [Scallan, personal

communication], i.e. the following equation was applied,

uz = λzZ on x ∈ ∂Ω1, (2.58)

where uz is the component of u in the z direction, λz is the amount of axial stretch,

in our case λz = 1.3, and Z is the material coordinate, i.e. the coordinate in the z

direction given by the initial configuration. A boundary load was applied to the inner

boundary of the rectangle.

σ · n = −pn on x ∈ ∂Ω2, (2.59)

where n is the vector in the normal direction to the boundary, outwards of the

domain, and p is the pressure applied to the boundary. The values for p were the

values of the fluid pressure at which the diameter of the vessel was measured in

experiments. A roller boundary condition is applied to the base of the rectangle,

which prevents movement in the normal direction, but allows movement in the radial

direction.

n · u = 0 on x ∈ ∂Ω3. (2.60)

The external boundary is not constrained, i.e. stress free.

For the 2D model, COMSOL completed it’s calculations in approximately 10 to 90

seconds depending on the parameter values. This was much quicker than running

a 3D model but still resulted in the same pressure-diameter behaviour. Therefore

this model could be used in the Kriging algorithm, which is described in the next

subsection 2.2.5, to estimate the material properties.
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2.2.5 Parameter Optimisation Using Kriging

Kriging is an iterative method from geostatistics [Krige, 1951]. Known function values

are interpolated to estimate the optimal parameter set that fits the model to the

observed data. Kriging is used to find the parameters for the HGO SEF with constant

fibre angle for an artery using experimental data published in Zulliger et al. [2004]

to evaluate how well it works, what the impact of including the compressible term is

and to find parameters for the HGO SEF with constant and variable fibre angles for

the experimental data summarised in tables 2.6 and 2.7. In this section, the general

Kriging algorithm will be described, followed by the procedure used for finding the

parameters.

2.2.5.1 Kriging Algorithm

The Kriging algorithm uses surrogate modelling, a model created to attempt to

fill the gaps within a data set, e.g. curve fitting, to estimate the value the model

will have for given parameters, based on the results from running the model for the

random parameters that make up a vector of random points or a Latin hypercube. A

Latin hypercube is a way of generating random initial points in a multidimensional

parameter space. The algorithm for doing this aims to create a Latin hypercube that

best fulfils the maximin criteria, i.e. the process where the minimum distance between

any two points is maximised [Morris and Mitchell, 1995]. The model is evaluated for

each of these parameter sets and the error calculated.

Next, the negative natural logarithm is minimised by searching for the minimum using

a genetic algorithm. A genetic algorithm begins with an initial population of possible

solutions each resulting in an objective function value, or error value in this case. The

parameters sets that result in these solutions are encoded as binary strings. Three

operations are then carried out. Firstly, reproduction. The strings are copied with

respect to their objective function value, e.g. strings that represent the parameter sets

that give smaller error values are more likely to be copied than strings with higher

error values. These copied strings create a new population. Secondly, crossover takes

place. The strings in the new population are divided into pairs at random. Then, for

each pair a random integer position, i, along the string is selected. The characters in

the two strings in the position i + 1 to the end are swapped creating two new strings.

Finally, mutation occurs. Occasional changes of the newly created binary strings are

made at random, i.e. change a 0 to a 1. This takes place relatively infrequently (1

in 1000 chance of a mutation occurring). These new strings can be decoded to form

parameters sets that can be evaluated [Goldberg, 1989].

The genetic algorithm is implemented to estimate the possible parameter combination

that would result in the lowest error based on the points that have already been
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calculated. This parameter combination is then input into the model and the result

is computed to find the actual value of the error. The process is repeated until the

convergence criteria are met, i.e. the value of the error falls below a threshold, or a set

number of iterations are reached for which there has been no change of the minimum

value. This means that the parameter values tested are more likely to give better

results rather than randomly choosing parameters to test. This reduces the number

of times the full model has to be run.

2.2.5.2 Kriging Procedure

A function was written in MATLAB that ran the model and then calculated the error

between the model results and the experimental data. Different error terms were

used. For the artery data from Zulliger et al. [2004], the force in the axial direction

is calculated as

Fz =

∫ ro

ri

σz2πrdr − Pπr2
i , (2.61)

where ro mm is the outer radius, ri mm is the inner radius, σz Pa is the stress in the

axial direction, r mm is the radius, P is the intraluminal pressure. The error, Fzul,

was calculated as

Fzul =
1

2

1

MN

(∑M,N
i,j (rij − rij)2

r2
MN

+

∑M,N
i,j

(
fij − f ij

)2
f2
MN

)
, (2.62)

where M is the number of different pressures, N is the number of axial stretchs, rij

and fij are the experimental radii and forces measured and rij and f ij are the model

equivalents. For the mean of the mouse lymphatic pressure diameter data the error

was calculated as

Fm =
n∑
i=1

(
Xm
i −X

m
i

)2
nS2

i

, (2.63)

where Xm
i are mean experimental results, X

m
i are the model results, n is the number

of data points and Si is the standard deviation of the diameter change for each

data point. For the individual mouse and rat pressure diameter data the error was

calculated as

Fi =

∑n
i=1

(
Xi −Xi

)2
nX2

n

. (2.64)

where Xi are the experimental results, Xi are the model results, n is the number

of data points and Xn is the maximum experimental diameter value. The Kriging

procedure was implemented in order to minimise the error. For the mean experiments

the stop condition was that all the model results were within one standard deviation

of diameter changes to the mean. For the individual experiment, the stop condition

was when the error, i.e., Fi in equation (2.64), was less than 1× 10−4.
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The Kriging procedure used here is an algorithm implemented in MATLAB using

code based on the scripts published in Forrester et al. [2008]. For the artery data the

following procedure was used:

1. Assign upper and lower bounds.

2. Run the Kriging algorithm for all parameters.

3. If the error, Fzul from equation (2.64), is above the defined error threshold the

bounds are adjusted.

4. Steps 2 and 3 are repeated until the error, Fzul, is below the threshold.

The bounds were estimated based on the values presented in Zulliger et al. [2004].

For the lymphatic mouse data it was difficult to define appropriate parameter bounds.

Therefore, a different procedure was implemented for the mean mouse data, the first

lymphatic data used:

1. Set parameters are set to K, k = 0, m and D0 as best guesses and the number of

points in the Latin hypercube to 10.

2. Find the value for c which results in the best match for the first three points

(diameters corresponding to 0.5, 1 and 2 cmH2O).

3. Hold c fixed to the value found in step 2, run Kriging to find good

approximations of K and k

4. Hold K and k fixed to the values found in step 3, run Kriging to find good

approximations of c and D0.

5. Hold c, K, k and D0 fixed, run Kriging to find good approximation of E.

6. Run the Kriging algorithm for all five parameters simultaneously with 20 points

in the Latin hypercube. The bounds are set to 10% above and below the values

found in steps 2 to 5.

7. Check to see if any of the best values for the parameters minimise to a limit. If

necessary adjust the bounds and repeat the Kriging algorithm.

8. Repeat step 7 until stop condition reached.

The idea of the steps 2 to 5 are intended to get the variables into the right ball park

before trying to find all the parameters together. This is done to help speed up the

process because the bounds on the parameter values are not certain. Otherwise the

initial bounds would need to be quite large, more points would be required in the

Latin hypercube and more iterations would be needed.
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For the individual lymph vessel data, the same procedure was used as for the artery

data with bounds based on the parameter values from fitting the average data and

the error value Fi. The Kriging procedure used was the same for both the constant

and variable fibre angle, however it was more difficult to fit the data well using the

variable fibre angle. The error threshold was 1 × 10−4 for the constant fibre angle

and 1 × 10−3 for the variable fibre angle for both rats and mice. The results of all the

fittings are shown in section 2.3.

2.3 Results

In this section the results from the parameter fitting using the methods described

above will be presented. The parameters found are compared to the literature values.

2.3.1 Artery Data

Using the kriging procedure to find all the parameters resulted in good fits for the

Zulliger et al. [2004] data, see figure 2.11. The initial diameter was set to 860 mm.

The parameters found were c = 55 kPa, k1 = 1.74 × 10−3, k2 = 33.8 and E = 173.52

kPa. The pressure-radius curves do not have such a well defined S shape as the

Zulliger et al. [2004] fits in figure 2.7, but still fit the data well. The pressure-force

curves also show a good fit, in particular for 130% axial stretch the fit is better than

the Zulliger et al. [2004] model. This shows the algorithm and procedures described

above are effective for optimising the parameters to the experimental data.

Comparing the parameters found using the Kriging algorithm to those found by

Zulliger et al. [2004], shown in table 2.3, show that the value of c is the same order

of magnitude, where as k1 is two orders of magnitude smaller and k2 is two orders of

magnitude larger than the corresponding values found by Zulliger et al. [2004].

2.3.2 Lymphatic Data with Constant Fibre Angle

Figure 2.12 compares how the fibres are arranged at the lowest internal pressure for

the mouse vessels, 0.5 cmH2O, to how they are arranged at an internal pressure of 12

cmH2O. In both images the fibre angle is the same for the constant fibre angle case.

Figure 2.13 shows that the model is able to achieve a good match with the mean

experimental data, equation (2.63) gave an error of Fm = 1.48. Initially it was

difficult to estimate the bounds for parameter values for K and E. For the parameter

optimisation for the mean data, equation (2.64) gave an error of Fi = 2.98 × 10−4.

Therefore the error threshold, i.e. the maximum value for the error, for the individuals
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Figure 2.11: Comparison of model and experimental data from using parameters
found by kriging procedure.

(a) Internal pressure 0.5 cmH2O (b) Internal pressure 12 cmH2O

Figure 2.12: Constant fibre angle at two different internal pressures.
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Figure 2.13: Comparison of model to mean difference experiments using Holzapfel
et al. [2000] SEF. Parameter values: c = 0.8334 kPa, k1 = 2.505 × 10−17, k2 = 115.6,
m = 82.93 kPa, Dint = 76.31 µm.

was set to 1 × 10−4. Table 2.9 shows the values of the parameters used for the mean

and each of the vessels. Figure 2.14 shows each of the vessels individually.

c (kPa) k1 (kPa) k2 E (kPa) D0 (µm)
Mean Data 0.8334 2.505 × 10−17 115.6 597.1 76.31
Mouse a 1.341 1.464 × 10−19 146.0 7152 70.64
Mouse b 0.5736 1.115 × 10−19 111.4 721.1 69.0
Mouse c 1.469 5.49 × 10−17 109.5 3744 80.13
Mouse d 1.25 6.298 × 10−15 94.81 3335 85.0
Mouse e 1.484 2.981 × 10−16 119.2 3272 102.6
Mouse f 0.9509 4.293 × 10−17 132.0 36010 80.44
Mouse g 0.8750 6.001 × 10−13 93.76 11620 72.19
Mouse h 0.950 1.021 × 10−13 90.68 625.5 77.54
Mouse i 0.3541 4.6553 × 10−3 7.360 295.4 49.16
Rat a 0.8182 8.740 × 10−15 87.40 360.1 160
Rat b 0.8350 8.336 × 10−19 85.50 2025 121.9
Rat c 0.5566 5.591 × 10−14 91.58 509.0 113.40
Rat d 0.7637 5.239 × 10−13 69.85 1837 141.7
Rat e 0.6111 1.711 × 10−14 59.18 697.5 125.1
Rat f 0.6725 9.567 × 10−14 56.25 288.0 120.0
Rat g 0.7149 8.779 × 10−14 25.82 3387 97.50
Rat h 0.9917 6.064 × 10−13 61.67 1754 123.7
Rat i 0.6813 5.871 × 10−13 77 1382 125.6
Rat j 0.8562 2.261 × 10−13 67 2637 133.1

Table 2.9: Table of parameter values found by the data fitting procedure described in
section 2.2.5 for constant fibre angle.

The values of c for mice and rat lymphatic vessels are similar to the c values found

by Sokolis [2013] for porcine veins, but most of the other values are very different. In

particular the majority of the values found for k1 is more than 10 orders of magnitude

smaller than the literature values. This corresponds to larger values of k2. The values

found for the Young’s modulus E are three orders of magnitude larger than the values

found for lymphatics in the literature.
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(b) Mouse b: Error=
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(c) Mouse c: Error=
6.78× 10−5.
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(d) Mouse d: Error=
6.55× 10−5.
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(e) Mouse e: Error=
9.90× 10−5.
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(f) Mouse f: Error=
9.86× 10−5.
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(g) Mouse g: Error=
4.26× 10−5.
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(h) Mouse h: Error=
9.38× 10−5.

0 2 4 6 8 10 12 14
50

60

70

80

90

100

Pressure (cmH2O)

D
ia

m
et

er
(µ

m
)

Experiment
Model

(i) Mouse i: Error=
1.49× 10−4.

Figure 2.14: Comparison of individual experiments and corresponding models for
mouse lymphatics. Experimental data provided by Joshua Scallan.

2.3.3 Lymphatic Data with Variable Fibre Angle

Figure 2.16 shows that the fibre orientations for the variable fibre angle case are

different at 0.5 cmH2O and 12 cmH2O. At the lower pressure the fibres run along the

length of the vessel. At the higher pressure the fibres have turned and become more

spread out.

The parameter values for the variable fibre angle are shown in table 2.10 and the

result for each vessel in figures 2.17 and 2.18. Although some of the values for k1

are two orders of magnitude and k2 are one order of magnitude higher, in general

the values of k1 and k2 for the variable fibre angle are more similar to the values

found in the literature than the values for the constant fibre angle. The values found

for the Young’s modulus are within the range presented for lymphatic vessels in the

literature.
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(b) Rat b: Error= 7.15 ×
10−5.
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10−5.
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(h) Rat h: Error= 7.81 ×
10−5.
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(i) Rat i: Error= 3.44×10−5.
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10−5.

Figure 2.15: Comparison of individual experiments and corresponding models for rat
lymphatics. Experimental data provided by Joshua Scallan.
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(a) Internal pressure 0.5 cmH2O (b) Internal pressure 12 cmH2O

Figure 2.16: Variable fibre angle at two different internal pressures.

c (kPa) k1 (kPa) k2 E (kPa) D0 (µm)
Mean Mouse 0.5203 13.441 2.8248 17.799 88.837

Mouse a 0.5440 16.816 3.0744 17.800 79.954
Mouse b 0.4989 14.423 3.2445 18.912 93.036
Mouse c 0.4795 12.634 2.9109 17.772 90.399
Mouse d 0.4597 12.244 3.1852 17.016 97.723
Mouse e 0.5155 14.541 3.2613 16.252 108.89
Mouse f 0.5043 16.805 3.0222 17.645 91.291
Mouse g 0.5409 15.830 3.0748 17.571 81.931
Mouse h 0.4171 12.626 3.6093 15.366 88.488
Mouse i 0.1980 4.3253 2.2164 19.266 84.959
Mean Rat 0.2732 1180.4 62.237 7.8801 165.4

Rat a 0.5439 13.045 2.7387 18.536 195.0
Rat b 0.3969 11.526 2.8083 15.853 161.2
Rat c 0.4329 12.270 2.5701 17.864 140.0
Rat d 0.3796 11.879 3.2959 16.048 181.0
Rat e 0.2955 9.8824 3.6086 15.367 186.5
Rat f 0.2147 135.50 25.500 8.3020 174.7
Rat g 0.1658 289.88 34.125 7.6810 171.9
Rat h 0.3000 410.41 27.928 8.3172 160.0
Rat i 0.2544 249.07 25.051 10.544 188.0
Rat j 0.3548 33.394 2.9881 11.876 173.1

Table 2.10: Table of parameter values based on the data fitting using a variable fibre
angle.

2.3.4 Summary

The results have shown that it is possible to use the strain energy function from

Holzapfel et al. [2000] to create a model of a collecting lymphatic wall that has the

same passive pressure-diameter behaviour as seen in experiments. The procedure

described in section 2.2.5 was shown to be an effective method for finding optimised

parameters. Optimising the model to the artery data from Zulliger et al. [2004]

showed that the HGO SEF can also reproduce the pressure-force data. Some of the

parameters found for the SEF were very different to those reported in the literature.
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Figure 2.17: Comparison of individual experiments and corresponding variable fibre
models for mouse lymphatics. Experimental data provided by Joshua Scallan

2.4 Discussion

In this chapter a 2D finite element model was created in COMSOL Multiphysics. A

Kriging algorithm was implemented in MATLAB and the COMSOL with MATLAB

LiveLink application was utilised to use the Kriging algorithm to optimise the

parameters for the HGO SEF so that the finite element model demonstrated the same
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Figure 2.18: Comparison of individual experiments and corresponding variable fibre
models for rat lymphatics. Experimental data provided by Joshua Scallan

behaviour as observed in experiments. Experimental data for rat arteries [Zulliger

et al., 2004] and mouse and rat lymphatics was used.

The SEF from Holzapfel et al. [2000] was chosen as it has been widely used to

model blood vessels, which exhibit similar behaviour to lymphatic vessels. It takes

into account the structure of the vessel by including a term for the behaviour of

the collagen fibres. This SEF was further extended by adding a term to model the

compressibility of the vessel wall using a term from Doll and Schweizerhof [2000].
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This SEF, equation (2.43), was parametrised using Kriging and was compared to

the model fit that Zulliger et al. [2004] produced for rat arteries. It was found that

they had similar values of c, but the value of k1 was two orders of magnitude smaller

and k2 was an order of magnitude larger for the Kriging fit. The inclusion of a

compressible term in the SEF lead to a better fit for the force data. The data from

Zulliger et al. [2004] shows that the longitudinal tension applied to the vessel, in this

case an artery, affects its pressure-diameter behaviour.

Assuming a constant fibre angle, the SEF was able to reproduce the pressure-diameter

plateau like curves. The compressibility term effects the values of the parameters that

are required to achieve a good match to experimental data. The parameter values

found for the SEF for individual vessels show that the values vary between different

lymphatic vessels as well as between different types of vessels.

Incorporating the variable fibre angle into the model made it more difficult to match

the experimental data. There is clearly an important relation between the fibre angle

and elastic parameters k1 and k2, as incorporating fibre angle in the fitting leads to

values more similar to other investigations.

The values of the parameters found are compared to the values from the literature in

table 2.9 and are plotted in figure 2.19. c is a stress-like material parameter, which

would be equivalent to the shear modulus if consistent with linear elasticity. The

values of c found for the mice and rats had the same order of magnitude as the values

that Sokolis [2013] and Badel et al. [2013] found for veins. The values of c for the

arteries had a higher order of magnitude. This is what we would expect since veins

are more similar to collecting lymphatic vessels and arteries are more rigid than the

other types of vessels.

The values of k1 are 10 or more orders of magnitude smaller for the mouse and

rat vessels than the values found in literature. This appears to have been caused

by the inclusion of the compressibility term. When considering the effects of each

individual parameter, it was found that k1 dictates where the pressure-diameter curve

begins to plateau and E controls the gradient of the plateau. Without E, k1 and k2

would be solely responsible for the plateau. This may explain why the values for the

incompressible models from the literature have very different k1 compared to the mice

and rats. k2 values for the mouse vessels are three to five times larger than the highest

k2 value found in the literature. The k2 values for the rats are two to three times

larger. This is probably in response to the much lower values of k1 as k1 and k2 are

closely coupled in the SEF.

The fibre rotations may be more important in lymphatics than in the arteries and

veins because collecting lymphatics have thinner, more compliant walls. Due to the

lower pressures within the collecting lymphatic vessels compared to the vascular

system, the walls do not have to be able to support as high amounts of stress for long
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Figure 2.19: Parameters found using the kriging algorithm for mouse and rat
lymphatics are compared to the values presented in Holzapfel et al. [2000]; Auricchio
et al. [2014]; Zulliger et al. [2004]; Cornejo et al. [2014]; Sunbuloglu et al. [2013] for
arteries and in Badel et al. [2013]; Sokolis [2013] for veins.

periods of time. However, the collecting lymphatics must be able to react to increases

in intraluminal pressure. The rotating fibre angles make this possible by reducing the

compliance of the wall at high internal pressures. Figure 2.19a shows clearly that the

values of k1 and k2 for the variable fibre case (circles) are much closer to the literature

values (squares) than the constant fibre case (triangles). Figure 2.19b shows that the

values for c for the lymphatics are more similar to veins (green squares) than arteries

(blue squares).

Several authors, including Reddy et al. [1975]; Ohhashi et al. [1980] and Macdonald

et al. [2008], have calculated values for the Young’s modulus of the collecting

lymphatic vessels, however the range of values spanned three orders of magnitude

from 1200 Pa to 1.1× 106 Pa.
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From the nonlinear model developed, it is possible to determine values for Young’s

modulus by finding the linear limit of equation (2.24) it was found that,

2m = λ =
Eν

(1 + ν)(1− 2ν)
. (2.65)

Assuming ν = 0.2 and a constant fibre angle of 60◦, the values calculated for the

Young’s modulus ranged from 288 kPa to 36009 kPa. These values are too high to

be biologically realistic. Assuming a fibre angle that was linearly dependent on the

intraluminal pressure resulted in values for the Young’s modulus of the collecting

lymphatic walls between 7 kPa and 19 kPa. This range is comparatively small and

is biologically realistic.

The experiments were carried out on isolated vessels, but the vessel behaviour is

influenced by its surroundings, as discussed in section 2.1.3. This means that the

behaviour observed in the experiments may not be an accurate representation of the

behaviour in vivo. It is not known how much the lymphatic vessels were tensioned

before the diameters were measured at the different pressures, in order to stop the

vessel moving so the measurements could be more accurate. In the model of the

lymphatic vessel, it is stretched by a fixed amount, i.e. 30%, as the amount the vessel

was tensioned was unknown. The amount of axial stretch would change the behaviour

of the values for the parameters as shown in Zulliger et al. [2004].

The parameter values found for the SEF for different vessels show that the values vary

between vessels. The parameters of the SEF do not have a direct physical meaning.

This means that we can use the equation to model the behaviour but we cannot use it

to make any statements about the properties of the material. We have chosen to use

the SEF from Holzapfel et al. [2000] as it has been widely used to model blood vessels

but there maybe other SEFs that could be as successful is reproducing the behaviour

from experiments. It would be useful to have more information about the directions

of the fibres at different diameters, in order to incorporate this behaviour. The fibre

angle affects the pliability of the lymphatic wall at higher pressures.

Using the Kriging method for the the parameter estimation technique made it possible

to find parameter sets that when applied in the model reproduced the experimental

behaviour. However, the method did not test the sensitivity or uniqueness of the

parameters. Therefore it is possible that some parameters have very little impact

of the final results or that different parameter sets could give the same results. It is

possible to use sensitivity analysis to investigate the significance of each parameter.

The one factor at a time method could be used, where a single parameter is changed

and the others held at a baseline value. The advantages of this method is that it

is obvious what effect each of the parameters have and if the model fails which

parameter is responsible. However, it does not demonstate how the parameters

interact when changed simultaneously. Therefore, it would be more suitable to use
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a multivarite method such as the Monte Carlo method (MCM). In this method a

matrix of possible parameters sets is created with repect to probability distributions,

or perhaps a Latin hypercube, to ensure the whole input space is explored. The

model is then run for all the parameters sets in the matrix and the output for each

set recorded. A sensitivity value is calculated at the varience of the expected value

of the output for all but one of the parameters. This will give the sensitivity of the

output to that one parameter. A sensitivity value for multiple parameters can be

calculated similarly by excluding two or more of the parameters in the calculation.

This method requires the model to be run many times but takes into account the

interaction between variables [Saltelli et al., 2002].

It should be noted that data from the lymphatics of different species were used to

determine the geometry and boundary conditions of the model. The dimensions for

the model are based on images from a mesenteric mouse lymphatic, but the pressures

used are based on measurements from both excised mouse and rat mesenteric vessels.

The fibre angle is based on measurements from bovine mesenteric lymphatic. It has

been assumed that the relation of the fibre angles to the normalised pressure, i.e.

pressure divided by the maximum pressure, is the same for all mammals.

Previous models of collecting lymphatic vessels had focus on modelling a network

of lymphatics to understand the lymphatic system as a whole [Reddy et al., 1975,

1977] and short chains of lymphangions Bertram et al. [2011]. These models have

shown the impact of the behaviour of the collecting lymphatic wall on the resulting

fluid propulsion. This problem can be overcome by defining the movement of the

lymphatic wall, but this does not allow for investigation of passive lymphatic vessels.

The material model presented in chapter 2, accurately models the passive behaviour

of the collecting lymphatic wall due to the intraluminal pressure. The determination

of parameters for modelling vessels using a strain energy function has previously been

done for arteries [Holzapfel et al., 2000; Zulliger et al., 2004; Sunbuloglu et al., 2013;

Cornejo et al., 2014] and veins [Badel et al., 2013; Sokolis, 2013] but this is the first

time that the parameters have been estimated for collecting lymphatics. This study

differs from those for arteries and veins by allowing the vessel wall to be compressible.

The material model was also extended by including a variable fibre angle, which had

parameters more comparable to veins and were biologically realistic.

Future work that could be carried out to improve the model includes:

� Use sensitivity analysis to investigate the sensitivity and uniqueness of the

parameters to identify which are most important for the proper functioning of

lymphatic vessels.

� Gather more data to determine the relationship between the diameter of

the collecting lymphatic vessels and the angle of the collagen fibres using

experiments similar to those described by Arkill et al. [2010].
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� Repeat the parameter optimisation for the nonlinear material model,

incorporating the relationship observed.

� Consider if the parameter values are realistic and how well the behaviour of the

passive collecting lymphatic wall is reproduced.

� Develop the wall model to include an active pumping phase in the wall

behaviour. This should be time dependent and also dependent on fluid volume,

wall shear stress and chemical transport.

� Investigate the parameter sensitivity of the pumping model.

� Compare the behaviour to pumping phases observed in experiments.

The techniques used to optimise the parameters to the data can be used for any

tubular geometry with non-linear material behaviour. It could be applied to modelling

the material of synthetic elastic tubing or other biological vessels. The Kriging

procedure itself could be linked to any COMSOL model, not only axisymmetric

models, to optimise parameters for other geometries. An application could be the

investigation of materials used in micro-fluid devices to model the behaviour of small

tubes under varying intraluminal pressures.

2.4.1 Summary

In this chapter, the structure and function of collecting lymphatic vessels have

been reviewed. Using this information a computational 2D axisymmetric collecting

lymphatic vessel wall model has been constructed with a nonlinear, compressible,

material model that has been optimised to match experimental data. The optimised

parameters have been compared to previous studies and potential future work has

been outlined. In the next chapter 3, the collecting lymphatic valves are reviewed and

a computational model of a collecting lymphatic vessel with valve is created.



Chapter 3

Modelling the Mechanical

Behaviour of the Collecting

Lymphatic Valve

It is now possible, from the model created and parametrised in the previous chapter

2, to replicate the behaviour of a collecting lymphatic vessel with a computational

model. However, an important aspect has been ignored. The collecting lymphatic

valves reduce the amount of back flow within the lymphatic system and are vital for

the effective operation of the system. In this chapter, the structure and function of

collecting lymphatic valves are reviewed as well as previous computational models of

a variety of biological valves, i.e. heart, vein and lymphatic. The methods used for

creating both 2D and 3D models of idealised collecting lymphatic valves are described.

Finally, the results and conclusions drawn from these models are discussed.

3.1 Literature Review

The valves that separate the lymphangions allow stepwise pressure differences between

them and reduce reverse flow [Schmid-Schönbein, 1990]. Valves with one to four

leaflets have been observed in a variety of cases [Vajda and Tomcsik, 1971; Albertine

et al., 1982; Gnepp and Green, 1980]. However, the bi-leaflet valve is observed most

often [Lauweryns and Boussauw, 1973; Mazzoni et al., 1987; Schmid-Schönbein, 1990;

Takada, 1971; Gnepp and Green, 1980; Albertine et al., 1982; Vajda and Tomcsik,

1971].

63
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3.1.1 Structure

In this section the structure of bileaflet valves is reviewed. It is important that the

construction of the idealised valve is based on the geometry observed in experiments.

It is possible to infer how the valves function from the structure.

The valve leaflets are crescent shaped and attached to the wall along an arc at the

base, the furthest upstream point of the valve, on opposite sides of the vessel [Vajda

and Tomcsik, 1971; Mazzoni et al., 1987; Albertine et al., 1982], as shown in figure

3.1. At the downstream end of the valve the edges are free and appear wavy from end

on. The leaflets are thicker at the base and thinner towards the free edge [Lauweryns

and Boussauw, 1973; Albertine et al., 1982]. At either side of the vessel, the free

edges of the valve leaflets meet together and join to the wall at a single point called a

buttress [Gnepp and Green, 1980; Mazzoni et al., 1987; Albertine et al., 1982]. This

connection to the wall makes it impossible for the valves to be reversed [Mazzoni

et al., 1987; Albertine et al., 1982]. Sinuses are formed between the valve leaflets and

the walls which can fill with fluid [Albertine et al., 1982; Mazzoni et al., 1987].

Free edge

Base

Buttress

Flow
Direction

(a) Vessel with valve within.

Free edge

Base

Buttress

Flow
Direction

(b) Valve leaflets highlighted with colour.

Figure 3.1: Image from Vajda and Tomcsik [1971]. Lymphatic valve showing curved
base where valve connects to wall and buttresses with free edges in between. ©1971,
Karger Publishers. Permission to use this figure granted by Karger Publishers.

Albertine et al. [1982] measured the distance between the buttress and base of valves

in canine lymphatics. The distance of the free edge to the furthest point on the base

was 400-600 µm, which was shorter than in the thoracic duct where they were about

500-1000 µm.

The leaflets consist of a layer of extracellular matrix between two single layers of

endothelial cells, separated by a thin basement membrane [Lauweryns and Boussauw,

1973; Mazzoni et al., 1987; Schmid-Schönbein, 1990; Takada, 1971; Vajda and

Tomcsik, 1971; Skalak et al., 1984]. Some studies have reported that the connective

tissue in the valves contains mainly collagen fibres [Lauweryns and Boussauw, 1973;

Takada, 1971], while others have observed elastin fibres with dense collagen fibres

at the connections to the wall of the lymphatic [Vajda and Tomcsik, 1971; Rahbar
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et al., 2012]. This may be due to the techniques used to image the valve leaflets or the

species and location from which the lymphatic was taken [Rahbar et al., 2012]. Vajda

and Tomcsik [1971] noted both collagen and elastin fibres in the leaflets of valves in

larger vessels from cat mesentry, as did Rahbar et al. [2012] in rat mesenteric valves.

In smaller vessels the connective tissue layer can be very thin, in some cases almost

only the two endothelial layers. There is no smooth muscle in the valve leaflets [Gnepp

and Green, 1980; Albertine et al., 1982; Takada, 1971].

Collagen fibre bundles

Smooth muscle cell

Elastin fibre

Basement membrane

Endothelial cell

Extracellular matrix

Base

Lumen

Surrounding Tissue

Valve leaflet

Free edge

Wall

Figure 3.2: Sketch of wall and valve structure, not to scale

Lauweryns and Boussauw [1973] measured the valve leaflets in adult rabbit lungs. The

thickness ranged from 0.5 µm to 6 µm. In the rabbit thoracic duct leaflets were 0.6

µm at the thinnest point and up to 7.5 µm in the thickest part. The thickness of the

connective tissue layer was 0.1-5 µm. The endothelial layer had a variable thickness,

near the nuclei it could be 3-4 µm thick, and in other areas about 0.3 µm thick. Cat

mesenteric valve leaflets were found to have a thin endothelial layer, just 0.1 µm thick

[Vajda and Tomcsik, 1971].

The structure of the collecting lymphatic valves depends on the species and their

location. However, the basic shape of the most common bileaflet valves is the same,

although the size can be different. It is important to construct a model geometry that

is based on observations of real collecting lymphatic vessels and their valves in order

for the model to yield results that can be related to vessels used in experiments. The

information reviewed here is used when constructing the three-dimensional model. It

is important to note that the valve itself does not contain any smooth muscles cells.

This implies that the valve functions as a passive structure. This will be investigated

further in the next section 3.1.2.

3.1.2 Function

From the structure of the valves, they contain no smooth muscle so must act passively,

reacting to the hydrodynamic forces. When the valve is open, fluid flows between

the free edges of the leaflet from one lymphangion to the next [Mazzoni et al., 1987].

Open valves should not resist forward flow [Albertine et al., 1982].
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The valves operate due to pressure differences across the valve leaflets. When the

pressure downstream of the valve is lower than the pressure upstream, the leaflets

are open. If the pressure downstream increases and becomes higher than upstream,

there is a pressure drop across the leaflets since the pressure in the sinuses is higher

than the pressure between the leaflets. This causes the leaflets to move inwards

until they are pushing together. This completely closes the valve and stops reverse

flow. The valve opens again when the pressure drop reverses [Mazzoni et al., 1987;

Schmid-Schönbein, 1990]. Mazzoni et al. [1987] also suggest that if tension is applied

to the valve, possibly from the tissue around the vessel, this could also cause the valve

to close. However, no literature was found where this hypothesis had been tested.

Davis et al. [2011] carried out an experiment to active study lymphatic valve

behaviour during the contraction cycle. They put a lymphangion with a valve at

either end between two pipettes and changed the pressure at each end, a sketch of the

set up is shown in figure 3.3. They considered two cases; one where the pressure at

the inlet was equal to the pressure at the outlet, 1cmH2O, the second where the outlet

pressure was increased so that it was higher than the inlet pressure.

Lymphangion

Inlet Valve Outlet Valve

Inlet Pipette Outlet Pipette

Figure 3.3: Sketch of experimental set up by Davis et al. [2011] used to investigate
valve behaviour during the collecting lymphatic contraction cycle. The pressures in
the pipettes were adjusted to investigate valve gating behaviour. Not to scale.

For the case with equal pressures, at the start of systole the inlet valve closed and

the outlet valve remained open. The inlet valve reopened at the end of systole. The

outlet valve closed as diastole began, then opened again once the pressure in the

lymphangion was equal to the pressure of the pipettes [Davis et al., 2011]. Figure 3.4

shows a sketch of this process.

For the case where the outlet pressure was higher than the inlet pressure, the outlet

valve was always closed and the inlet valve always open, except during systole when

the outlet valve opened and the inlet valve closed [Davis et al., 2011]. This is sketched

in figure 3.5. A graph showing the valve position, pressure and diameter for both cases

can be seen in figure 3.6.

Davis et al. [2011] videoed a rat mesenteric lymphatic in vivo. The lymphocytes

present in the flow made it possible to view the movement of the fluid. Frames from

the video can be seen in figure 3.7. Back flow through the valve is observed at the end

of diastole before the valve closes.
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>1cmH2O

Inlet Valve Outlet Valve

Inlet Pipette

1cmH2O

Outlet Pipette

1cmH2O

(a) During systole

Lymphangion

<1cmH2O

Inlet Valve Outlet Valve

Inlet Pipette

1cmH2O

Outlet Pipette

1cmH2O

(b) End of systole, start of diastole

Lymphangion

1cmH2O

Inlet Valve Outlet Valve

Inlet Pipette

1cmH2O

Outlet Pipette

1cmH2O

(c) Diastole when lymphangion pressure equal to pipette pressure

Figure 3.4: Sketch of valve positions during a collecting lymphatic contraction cycle
for case one with inlet and outlet pressure set at 1 cmH2O.

Lymphangion

Inlet Valve Outlet Valve

Inlet Pipette

1cmH2O

Outlet Pipette

<1cmH2O

(a) At all times, except systole

Lymphangion

Inlet Valve Outlet Valve

Inlet Pipette

1cmH2O

Outlet Pipette

<1cmH2O

(b) During systole

Figure 3.5: Sketch of valve positions during a collecting lymphatic contraction cycle
for case two with outlet pressure higher than inlet pressure.

Valves that are deformed can be ineffective at preventing reverse flow. Figure 1.5

compares deformed and healthy valves. The deformed leaflets are much shorter than

the healthy ones. They are unable to press against one another in order to close the

valve and, therefore, cannot resist reverse flow. This reduces how much fluid can be

removed from the tissue and leads to lymphoedema [Bazigou et al., 2009].

There is very little information in the literature about the pressure at which collecting

lymphatic valves close and open. The majority of the information we have about

how valves act when the vessel is passive and active is from Davis et al. [2011]. This

information is important for validating whether the valve in the model behaves in the

same way as in experiments.
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Figure 3.6: Graph showing valve position, pressure and diameter from Davis et al.
[2011]. The first minute shows the behaviour when the inlet and outlet pressures are
equal. For the next two minutes the outlet pressure is gradually increased. In the
last minute the outlet pressure is lowered and the vessel is allowed to begin pumping
again, this takes about a minute after the outlet pressure is lowered. In the diameter
trace the red line is the inner diameter of the outlet segment and the black line is the
inner diameter of the central lymphangion. Pin: inlet pipette pressure, Pout: outlet
pipette pressure, PL intraluminal pressure in lymphangion. ©2011, The American
Physiological Society. Permission not required.

3.1.3 Summary

In the previous two sections, 3.1.1 and 3.1.2, the physiological structure and function

of the collecting lymphatic valves have been reviewed. It is important to understand

the structure of the collecting lymphatics and how this contributes to valve function.

Experiments that investigated the behaviour of valves as part of the contractile

cycle show that the valves and lymphatic walls work together to ensure the forward

propulsion of fluid. Computational models are useful for investigating the collecting

lymphatic vessels because they are physically small and delicate. In the next section

3.1.4, we review previous computational models of biological valves.

3.1.4 Computational Models of Biological Valves

The most commonly modelled biological valves in the literature are the aortic and

mitral valves in the heart. This is because these valves are more susceptible to disease

that the tricuspid and pulmonic valves of the heart [Sun et al., 2014]. The geometries
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Start of systole End of systole During of diastole

End of diastole Start of systole During systole

Figure 3.7: Frames captured from video from Davis et al. [2011] of in vivo rat
mesenteric collecting lymphatic valve. The triangle shape on the centre of the image is
the leaflets and buttress. Blue arrows show direction of fluid flow, green arrows show
direction of wall motion. No arrows imply there is no movement. Those with no blue
arrows have closed lymphatic valves. ©2011, The American Physiological Society.
Permission not required.

of these valves are very different to lymphatic valves, but they are still thought to

function due to passive mechanisms [Sun et al., 2014]. Venous valves have also been

modelled, which have a similar geometry to collecting lymphatic valves, and probably

function is a similar way. Both initial and collecting lymphatic valves have been

modelled computationally.

3.1.4.1 Aortic Valve

The aortic valve has three leaflets, as shown in figure 3.8. The valve in open position

is in quasi-steady state, see figure 3.9a. As the blood flow through the valve begins

to slow, the valve leaflets begin to move inwards due to the pressure gradient created

by the different velocities of the flow though the valve and the swirling in the sinus

behind it, see figure 3.9b. The valve closes when the flow reverses and remains closed,

preventing back flow [Bellhouse and Talbott, 1969].

The model by Peskin [1982] of a heart valve leaflet has a viscous incompressible fluid

domain to represent the blood, within which there is a massless elastic boundary that
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Annulus

Leaflet

Sinus

Figure 3.8: Illustration of aortic valve.

(a) Valve in open position.
(b) Valve closing as fluid velocity through
centre of valve decreases.

Figure 3.9: Aortic valve sketch. Black lines indicate valve leaflets and vessel walls,
blue lines indicate flow direction. Sketched based on [Bellhouse and Talbott, 1969].

represents the valve leaflet. The Navier-Stokes equations are used to describe the fluid

domain in Eulerian form, i.e.

ρ
∂u

∂t
+ u · ∇u = −∇p+ µ∆u+ F , (3.1)

∇ · u = 0. (3.2)

where ρ is the density of the fluid, u is the velocity of the fluid, t is time, µ is the

viscosity of the fluid and F is an external force. In this case Peskin [1982] defines this

to be the force applied to the fluid by the immersed boundary. The Lagrangian form

used to describe the boundary configuration is X (s, t), where s = (s1, s2) describes a

material point. The boundary force is defined as,

F =

∫
B
fδ [x−X (s, t)] ds, (3.3)

where B is the immersed boundary, f is the density of the boundary force, δ

represents the δ-function and x is the point in Eulerian form. This equation couples

the solid to the fluid. A second equation is used to couple the fluid to the solid,

∂X

∂t
(s, t) =

∫
Ω
uδ [x−X (s, t)] dx. (3.4)

This defines the movement of the immersed boundary to be at local fluid velocity. The
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boundary force at any time was determined by the boundary configuration at that

time [Peskin, 1982]. A finite-difference method was implemented that required for

each time step:

1. Calculate boundary forces from boundary configuration,

2. Apply boundary forces to nearby fluid mesh points,

3. Update fluid velocity,

4. Update the boundary position by interpolating the local fluid velocity to the

points on the boundary.

Griffith [2006] developed this two dimensional model to create a three dimensional

model of the whole heart with adaptive meshing. They found that using adaptive

meshing improved the boundary layer resolution. A gap between the valve leaflets

had to be left in order for the valves to open. This is because the velocity field is

assumed to be continuous. There must be a gap between the leaflets in order to allow

the valves to open because the valve leaflets touched this would create two discrete

fluid domains, and if two material points coexist at any one time, they must coexist

for all time [Griffith, 2006]. The adaptive meshing method allowed for the size of this

gap to be smaller than in the previous models.

Hart et al. [2000] used a fictitious domain approach. The velocity of a solid, vs, is

related to its displacement, us, with a first order approximation,

vs =
us
∆t

(3.5)

where ∆t is one time step. The fluid velocity, vf , is coupled to the solid velocity on

the boundary, Γ, by the condition

vs − vf = 0. (3.6)

This condition means that the node points on the boundary must be the same for the

fluid and solid domains. To overcome this, the condition is implemented weakly using

Lagrange multiplies, λ, ∫
Γ
λ · (vs − vf ) dΓ = 0, (3.7)

[Hart et al., 2000].

Hart et al. [2000] compared the model to experiments carried out using a rubber sheet

to represent the valve leaflet. They found that for leaflet position and fluid flow the

model produced similar results to the experiments during systole. The differences

during diastole were larger and could be a result of neglecting buoyancy forces in the

numerical model. Hart et al. [2003] expands the model to three dimensions. They
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model a stented aortic valve by simulating half an aortic leaflet and introduce a

contact surface for modelling closure. Hart et al. [2000, 2003] emphasise that they are

describing the models and how they work but they do not compare the results with

physiological data and so no conclusions can be drawn to their physiological relevance.

Spühler et al. [2015] used a continuum arbitrary Lagrangian Eulerian (ALE) finite

element method to model an aortic valve, which is implemented in Unicorn, part of

the FEniCS project1. The model used the incompressible unified continuum equations,

which is expressed using Einstein summation convention as,

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂

∂xj

(
σDij − pδij

)
+ fi, (3.8)

∂uj
∂xj

= 0, (3.9)

∂θ

∂t
+ uj

∂θ

∂xj
= 0, (3.10)

where ρ is density, ui is velocity and the stress has been decomposed into deviatoric,

σDij , and pressure, pδij , parts. The stress is described by a linear θ phase function,

σ = θσf + (1− θ)σs that combines the solid stress, σs, and fluid stress, σf . The

contact condition between the valve leaflets is modelled by switching the phase from

fluid to solid depending on the distance between the two leaflets.

3.1.4.2 Mitral Valve

Figure 3.10: Illustration of mitral valve from Sun et al. [2014]. ©2014, Annual
Reviews. Permission is not required.

The mitral valve has two leaflets, each of which are attached to the papillary muscle

by chordae tendineae, see figure 3.10. These chords prevent the valve turning inside

out. The mitral valve closes due to vortices forming behind the valve cusps. As the

1www.fenicsproject.org
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(a) Flow through valve and vortex regions
results in equal pressure on both sides
of the leaflets causing to valve to remain
open.

(b) Slow flow, indicated by small central
arrow, through valve and the same
velocity in the vortex regions causing the
valve to close.

Figure 3.11: Mitral valve sketch. Black lines indicate valve leaflets, blue lines indicate
flow direction. The chordae have been neglected for clarity.

flow through the centre of the leaflets slows down, the swirling fluid behind the valve

leaflets continues at the same velocity. This velocity difference causes the pressure

between the leaflets to be lower than behind the leaflets, and the valve closes, see

figure 3.11 [Caro et al., 2012].

The method by Peskin [1982] has been used to model the mitral valve by McQueen

et al. [1982]. They modelled the valve and the left atrium and ventricle, see figure

3.12. The valve leaflets are modelled as elastic flexible membranes [McQueen et al.,

1982]. The forces applied by the papillary muscles and chordae are modelled by

tethering the ends of the leaflets, but this did not affect the flow. They also used a

cross link to represent the support provided by the mitral annulus. A source term for

the flow is located in the left atrium.

Left Atrium

Left Ventricle

Aorta

Anterior
Leaflet

Posterior
Leaflet

Papillary
Muscle

Chordea

Mitral Ring

Figure 3.12: Sketch of two dimensional geometry used to model the mitral valve, left
atrium and ventricle.
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McQueen et al. [1982] found that the flow patterns created from their model were

similar to those observed in experiments. They used the model to compare the closing

behaviour of a healthy mitral valve with mitral prolapse syndrome, reducing the

stiffness of the papillary muscle, a mitral valve with no chordae, the chordae and

papillary muscle are removed, and three types of artificial valves, which will not be

reviewed here. In the healthy valve, as the flow passes between the leaflets vortices are

formed at the leaflet tips and the shedding of these vortices causes the valve to begin

closing. As the gap between the leaflets narrows, back flow occurs in the mitral ring

area, while forward flow occurs between the leaflet tips and the valve closes. For the

mitral prolapse case, initially the closing behaviour is the same as the healthy valve,

however as the gap between the leaflets narrows there is no forward flow between the

leaflet tips causing the leaflets to fold back into the left atrium. The posterior leaflet

prolapses suddenly causing regurgitation. For the valve with no chordae, the vortices

initially form between the valve leaflets causing them to be forced wide open before

returning to equilibrium position parallel to the flow passing through the leaflets. The

valve does not close in this case [McQueen et al., 1982].

Kunzelman et al. [2007] created a fluid-structure interaction model of a mitral valve

using LS-DYNA2. They modelled half the valve to save on computational resources.

The leaflets are modelled as membranes and the chordae provided tension to the

leaflets but did not affect the fluid flow. The blood is modelled as a compressible,

Newtonian fluid. The fluid and solid were coupled by overlapping the fluid domain

with the solid domain. The interaction between the Eulerian and Lagrangian domains

is staggered by one time step:

1. Calculate the solid domain

2. Calculate the fluid behaviour using the boundary nodes from the solid domain as

a boundary condition

3. Calculate the next time step for the solid domain using the velocities and

pressures from the fluid domain as boundary conditions.

The authors used the model to investigate the amount of fluid regurgitated as the

material properties of the mitral valve were changed. Varying the amount of collagen

in the valve leaflets or the stiffness of the collagen did not greatly alter the behaviour

of the valve. Kunzelman et al. [2007] found that decreasing the fibre alignment

resulted in floppy valves that closed later and therefore there was more regurgitated

flow. They also found that increasing the stiffness of the isotropic term used to

simulate the matrix without the collagen fibres increased the amount of back flow.

Therefore, Kunzelman et al. [2007] concluded that the anisotropy of the mitral valve

material was important for the valve to function correctly.

2A commercial finite element software
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3.1.4.3 Venous Valves

A three-dimensional model of a valve from a vein has been attempted by Buxton and

Clarke [2006]. The vein valves have a similar structure to the lymphatics, i.e. they

are formed of two valve leaflets which push together to close in order to stop reverse

flow and are thought to close due to pressure gradients [Buxton and Clarke, 2006;

Qui et al., 1995]. Buxton and Clarke [2006] modelled the vein wall and valve using

the lattice spring model as curved elastic shells. The Poisson ratio of the wall and

valve was 1
3 . The wall was 0.05 cm thick and had a Young’s modulus of 1000 kNm−2.

The fluid dynamics was modelled using the lattice Boltzmann method. The blood had

density 1060 kgm−3 and viscosity 0.0027 Nsm−2. The authors used this model to look

at the flow field around the valve, the opening area of the valve, and how the flow rate

changed as the valve opened from closed position as the pressure difference across the

valve changed [Buxton and Clarke, 2006].

Narracott et al. [2010] created a three dimensional model of a venous valve in

LS-DYNA. Due to the symmetrical nature of the valve and surrounding wall, only

a quarter of the vessel had to be modelled. The vessel was 1.19 cm in diameter and

200 cm long. The valve geometry was created by curving a rectangular surface and

intersecting it with the vessel wall. The leaflet length was double the vessel diameter

and the thickness was 0.05 mm. The authors chose to apply a parabolic velocity

profile along the vessel length rather than apply a pressure condition and allowing

the flow to develop in order to save computational time. The outlet pressure was set

at zero. The ends of the vessel walls were fixed. Narracott et al. [2010] simulated

the movement as a person moved from lying to standing position by applying a

gravitational body force after an initial period of time. They used the model to

analyse how changing the elastic modulus of the wall, which was assumed to be a

linear material, altered the valve dynamics. The fluid was assumed to be compressible.

Narracott et al. [2010] found that the leaflet displacement, deformation and local

velocity field was similar, regardless of the elastic modulus of the wall for the initial

boundary conditions. After the gravitational body force was imposed, the amount

the valve closed was affected by the different elastic moduli of the wall. The model

was developed further in Narracott et al. [2015], by modelling the whole valve with

contact condition between the valve leaflets. The leaflets had a Youngs modulus of

50.7 MPa and the wall 0.507 MPa. They investigated the leaflet displacement for

different Reynolds numbers. They found that for Reynolds number 272 the simulation

compared well with the experimental data, however this required a much higher

velocity magnitude that observed in vivo. This could be a result of the assumed

material properties of the leaflets and wall and the initial position of the leaflets

[Narracott et al., 2015].
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3.1.4.4 Lymphatic Valves

Bertram et al. [2011] modelled a one dimensional series of segments separated by

valves. The valves were modelled as having variable resistance to the flow depending

on the pressure difference across the valve. They included pressure terms for when

the valve would open, a small positive value, and when it would fail, a large negative

value. Their model solved for the diameter and pressure at either end of each segment

[Bertram et al., 2011].

A few years later the model was developed by incorporating realistic parameter

values [Bertram et al., 2013b]. They considered vessels with diameter of the order

of 200 µm. In order to model the valve behaviour, the valves were set as having a

variable resistance. This was a smoothed step function, dependent on the difference

in pressure across the valve and four parameters: a closing threshold, when the valve

closes totally, an opening threshold, when the valve opens fully, a threshold pressure

drop and the gradient from open to closed state. To calculate these parameter values

realistically, experiments were carried out to measure the pressure drop across the

valve, the flow-rate and the diameter of the vessel. The resistance was then calculated

as the change of pressure across the valve differentiated by the flux. There is a

large variation in the data, so a curve fitting was used in the model. The order of

magnitude is considered to be correct even though the uncertainty is quite large

[Bertram et al., 2013a].

Bertram et al. [2013a] found that incorporating the pressure differences for opening

and closing the valve from Davis et al. [2011] resulted in inefficient pumping by

the lymphangions. They suggest that the experiments conducted overestimate the

pressure needed to close the valve, which may have occurred due to the resistance

to the flow caused by the pipettes that cannulated the vessel. They estimated the

error and using their ‘corrected’ value found the model produced more efficient

pumping. To date there have been no experiments to test this theory. It was also

found that increasing the opening threshold parameter for the valve resistance resulted

in more powerful pumping, and they speculate on the reasons for this. Another reason

their model was inefficient could be that the model is based on isolated vessels. The

collecting lymphatics are effected by their surroundings and the experiments that the

model is based on are carried out on isolated vessels. It may be that isolated vessels

are not as effective at pumping as in situ vessels. They also assume that primary

activity of the collecting lymphatics is efficient pumping but do not consider the

amount of energy that would be required to achieve this. This one dimensional model

does not give us any information about the deformation of the valve or its interaction

with the fluid. It does attempt to quantify the amount of resistance that the valve

causes to the flow.
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Wilson et al. [2013] used confocal microscopy to create a 3D model of a valve and

surrounding wall. It was used to model the nitric oxide (NO) transport around a

rigid valve. There were two recirculation areas either side of the valve although the

flow was so slow the velocity was almost zero. They found that the endothelial cells

that experience the highest wall shear stress produced NO at the highest rate, but

that the concentration of NO was highest in the sinuses around the valve as the NO

was transported to this area by the fluid flow. The strength of this model is that the

geometry is based on images of a real vessel. This was a rigid model and therefore

provides no information about the mechanical behaviour of valve with the fluid.

Wilson et al. [2015a] created a two dimensional model of the collecting lymphatic

valve and surrounding wall by capturing a series of images of an isolated pumping

lymphatic vessel over time using confocal microscopy. From each image the lumen

was segmented and meshed. The displacement between each image was discretised

and imported into Star-CCM+ as an input condition for the model. The model was

used to investigate the fluid velocity within the lymphatic vessel as the wall and

valve deformed. The study covered a time period of 0.017 seconds and captures the

expansion of the valve [Wilson et al., 2015a]

Wilson et al. [2015b] created a three dimensional collecting lymphatic valve model

based on idealised geometry. The purpose of the model was to calculate the resistance

of the valve and sinus to the lymphatic flow. To do this the modelling was conducted

as follows:

1. Compute the steady state flow around an almost closed valve (valve leaflet edges

2 µm apart).

2. Evaluate the mean pressure across each valve leaflet.

3. Apply mean pressure to structural model of the valve to cause valve to open.

4. Export the open valve geometry.

5. Import open valve geometry into fluid domain.

6. Compute steady state flow around open geometry.

7. Evaluate the resistance of the valve.

For the fluid models the inlet velocity was 1.5 mm/s and the outlet pressure was a

gauge pressure of 0. For the structural model a neo-Hookean material was used with a

shear modulus of 45 kPa and the base of the leaflets were fixed in space.

Watson et al. [2015] modelled a closing collecting lymphatic valve. The valve geometry

was created from segmented images and modelled in ANSYS as a solid mechanics

model. The leaflets were modelled as an incompressible neo-Hookean material with
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shear modulus 60 kPa. The base of the leaflets were fixed in space. The authors found

that the maximum displacement occurred at the centre of the free edge of the valve.

In this section the literature of modelling biological valves has been reviewed. Many

attempts with different techniques have been used to approach modelling problems. In

particular the closure of valves is very challenging. It is important to be able to model

biological valves because they are difficult to study experimentally, especially the

fragile lymphatic and venous valves, and are very important for the correct function

of their respective systems. In the next section, 3.2, four different approaches to

modelling collecting lymphatic valves are presented along with the respective results.

3.2 Methods and Results

In this section the methods used to create the valve model are described. To begin,

the methods of data collection to define the material properties and geometry

dimensions are presented. This is followed by four models that increase in complexity.

These models are used to investigate different aspects of the interaction between

the lymphatic valve and the fluid around it. To begin this section, the methods for

gathering the initial information for the model are described.

3.2.1 Young’s Modulus for Leaflets

From the structure of the leaflets, it is expected that the Young’s modulus of the

leaflet would be larger than an endothelial cell which is about 1000 Pa [Ohashi and

Sato, 2005; Ohashi et al., 2002]. Two equations are used to find an approximate value

for the Young’s modulus of the valve leaflets, the beam equation and equation (2.7).

Wall

Leaflet
w x p1

p2

Figure 3.13: Diagram of valve leaflet modelled as a beam. w is the vertical
displacement, x is the horizontal distance along the beam and p1 and p2 are the
pressures either side of the valve leaflet.
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The leaflet can be modelled in two dimensions using the beam equation, given in

Howell et al. [2009] by

− EI ∂
4w

∂x4
+ Tforce

∂2w

∂x2
− ρg = ρ

∂2w

∂t2
+ F, (3.11)

where EI is the bending stiffness, w is the vertical displacement, x is the horizontal

distance along the beam, Tforce is the tangential force component, ρ is the density, g

is gravity and t is time. In this case the force, F , is from the difference in pressure

across the valve leaflet, P = p1 − p2. If the valve is assumed to be a plate, the bending

stiffness is,

EI =
Elh

3
l

12(1− σ2)
, (3.12)

where El is the Young’s modulus of the valve, hl is the thickness of the valve leaflet,

σ is the Poisson ratio [Howell et al., 2009]. It is assumed there is no longitudinal

stretching displacement, gravity is neglected and only steady displacements are

considered. Hence the beam equation reduces to

d4w

dx4
=

P

Dlh
3
l

, (3.13)

where Dl = El
12(1−σ2)

. When the valve is closed it can be assumed that both ends of

the beam are clamped which gives the following boundary conditions:

w(0) = 0, w(Ll) = 0,
dw

dx

∣∣∣∣
x=0

= α,
dw

dx

∣∣∣∣
x=Ll

= β, (3.14)

where Ll is the length of the leaflet, α is the gradient the beam is clamped at x = 0

and β is the gradient the beam is clamped at x = Ll. The beam equation is integrated

four times to find,

w(x) =
P

24Dlh
3
l

x4 + C3x
3 + C2x

2 + C1x+ C0, (3.15)

where C0, C1, C2, C3 are arbitrary coefficients to be found using the boundary

conditions, i.e. for equations (3.14) and (3.15) these are given by

C0 = 0,

C1 = α,

C2 = −
24βDlh

3
l − PL3

l + 48αDlh
3
l

24Dlh
3
lLl

,

C3 = −
2PL3

l − 24βDlh
3
l + 24αDlh

3
l

24Dlh
3
lL

2
l

.
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Thus the solution is

w(x) =
P

24Dlh
3
l

x4−
2PL3

l − 24βDlh
3
l + 24αDlh

3
l

24Dlh
3
lL

2
l

x3−
24βDlh

3
l − PL3

l + 48αDlh
3
l

24Dlh
3
lLl

x2+αx.

(3.16)

In order to calculate the displacement of the valve leaflet images of an open and closed

valve from Davis et al. [2011] were used, see figure 3.14a. The images were edited so

that Matlab could be used to measure the leaflet thickness and the displacement from

open to closed state.

Closed

Open

(a) Open and closed valve [Davis
et al., 2011]. Scale bar=120 µm. Blue
and red rectangles show approximate
location where the diameter was
measured as part of the experiment.
Yellow rectangle shows where the
densitometer measured the density
of the image for analysis of whether
valve was open or closed. ©2011,
The American Physiological Society.
Permission not required.

(b) Resulting edited image for
measurements in Matlab. The colours
emphasise the open and closed positions of
the valve.

Figure 3.14: The image comparing an open and closed valve from Davis et al. [2011],
a, was edited so that the leaflet thickness and displacement of the valve could be
evaluated in MATLAB, b.

The image was edited using ImageJ. The image of the closed valve was overlaid onto

the image of the open valve. The background details were removed and the result was

rotated so that the open valve appeared horizontal. Edge detection was used before it

was converted to a binary image. A smoothing function was then applied to compare

the difference caused by the rough edges. The three final images used can be seen in

figure 3.15.

The leaflets are approximately 2.2 µm thick, based on the measurements from images

shown in figure 3.18, see section 3.2.2 for more details. In order to scale the images

the last column before the two leaflets split (indicated by the green lines in figure

3.15) is assumed to be the total thickness of two leaflets. The number of pixels in
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this column is assumed to be equivalent to 4.4 µm. This gives the ratio for scaling the

images to the physiological leaflet size.

The mean of the thickness of the leaflets was calculated based on these images. For

the initial image the thickness was 2.2 µm and for the outer and inner regions the

leaflet thickness was 1.9 µm. The displacement of the leaflet from open to closed

position was measured from the upper surface of the open leaflet to the upper surface

of the closed leaflet. Only the displacement up to the maximum point is considered, as

it is assumed that after this the two leaflets would be pressing against each other. The

assumed pressure difference across the valve leaflets that caused the valve to close was

0.17 cmH2O, indicated as the closing pressure for a valve for a low inlet pressure of 0.2

cmH2O [Davis et al., 2011].

The value of Dl was calculated as the value which gave the minimum error when the

calculated displacement was compared to the measured displacement. The plots from

this comparison can be seen in figure 3.15. For the initial image Dl = 4190 Pa. For

the outer image Dl = 2270 Pa. For the inner image Dl = 9280 Pa. If we assume

incompressibility, this gives a Young’s modulus between 252 and 1031 Pa. The larger

value is similar to the Youngs modulus of an endothelial cell, which implies that these

values are probably too low for the valve.

A supplementary video (video 3) from Davis et al. [2011] highlights that assuming the

images used are a good enough approximation of the behaviour of the centre line of

the valve is inaccurate when the valve is open. In the video it can be seen that the

upper side of the valve is above the line which was considered previously as the centre.

It can be seen fluttering and then disappearing as the valve closes. This is highlighted

with the orange box in figure 3.16 but it is difficult to see. This would increase the

displacement that the leaflet must move in order to close, which would reduce the

values calculated for Dl.

The value of Dl was calculated using the equation (2.7) for the thick walled tube.

This is the same equation that was used for the walls. ImageJ was used to take

measurements from Davis et al. [2011], as presented in figure 3.17. The displacement

of the valve leaflets was taken as the difference between the distance of the leaflet

from centre line of the vessel in open and closed position. The black lines in figure

3.17 show where the measurements were taken, slightly upstream of where the two

leaflets met, and the dashed line is the centre line of the vessel. The displacement

was calculated as 29 µm. The thickness of the leaflets was measured as 11 µm. This

gives Dl = 1.804 Pa. The value of El was calculated using equation (2.2), resulting

in El = 13.55 Pa. These values are too small to be realistic when compared to the

Young’s modulus of an endothelial cell.

The methods used here do not appear to have provided a realistic set of values for the

Young’s modulus of the valve leaflets. Instead of using the values calculated, it will be
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(a) Resulting image after editing.
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(b) Comparison of vertical displacement
calculated using the initial image after
editing, seen in figure 3.15a.

(c) Outer region after smoothing the
resulting image in 3.15a.
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(d) Comparison of vertical displacement
calculated using outer region after
smoothing, seen in figure 3.15c.

(e) Inner region after smoothing the
resulting image in 3.15a.
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(f) Comparison of vertical displacement
calculated using inner region after
smoothing, seen in figure 3.15e.

Figure 3.15: a, c and e: Images used with Matlab to find the leaflet thickness and
valve displacement from open to closed position. The green lines indicate the column
of pixels which were scaled to 4.4 µm in order to interpret the measurements made
into physiological values. The outer and inner images were used to find the error
caused by the rough edges. b, d and f: Result of calculating the value of Dl such
that the beam equation gives the minimum error when compared to the measured
values from the edited images. The blue line is the displacement measured from the
corresponding image, the red line is the displacement calculated by the beam equation
using the value of Dl which gave the minimum error when compared to the measured
values.
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Figure 3.16: Frame from video 3 in the supplementary material from Davis et al.
[2011]. The orange box highlights the upper side of the valve which flutters while the
valve is open. The darker, thicker lines, which have been assumed to represent the
behaviour of the valve leaflets, do not flutter as much, presumably because they are
attached to the wall. The part highlighted in orange displaces more between opening
and closing positions than the sides of the leaflets which were used in the calculations.
This shows that the assumption of the darker lines indicating the displacement of the
whole valve leaflet is untrue. ©2011, The American Physiological Society. Permission
not required.

14 µm

43 µm

Closed

Open

Figure 3.17: Images comparing an open and closed valve. The measurements were
used with the equation (2.7), to calculate the value of Dl. The dashed lines indicate
the centre line of the vessel. The thick lines show where the distance between the
leaflet and the centre line was measured. Image adapted from Davis et al. [2011], scale
bar=120 µm. ©2011, The American Physiological Society. Permission not required.

assumed that the Young’s modulus of the valve is 15000 Pa, about half that calculated

for the wall. The Young’s modulus of the leaflets should be lower than the Young’s

modulus of the walls because the valves do not contain smooth muscle cells.

Having established the material properties, in the next section the methods used to

determine the dimensions for the valve geometry will be presented. These values are

compared to literature values for validation.
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3.2.2 Valve Dimensions

The geometry of the valve models were based on the descriptions from literature,

as presented in subsections 2.1.2 and 3.1.1. The same frames from videos 40 hires 3

and 40 hires 4 as used in chapter 2, were used to measure the geometry of

mesenteric collecting lymphatic valve for a mouse. During the fixation process the

lymphatic vessels become flattened. The images used can be seen in figure 3.18. The

measurements taken from these images can be seen in table 3.1.

Side Front

Figure 3.18a 3.18c 3.18b 3.18d 3.18e 3.18f Mean 3.18g 3.18h 3.18i Mean

Buttresses
Width(µm)

75.2 79.5 63.8 72.8

Entrance
width (µm)

33.8 35.2 32.4 33.8 57.6 59.7 49.4 53.9

Mid-line
length
(µm)

31.9 49.0 36.0 36.9 38.4 34.4 31.1 33.5 33.3

Side length
(µm)

100.4 106 110.8 109.1 106.6 48.5 53.1 63.7 55.1

Thickness
with valve

(µm)
11.4 11.6 11.5

Table 3.1: Measurements from images in figure 3.18. They form the basis for the
geometry of the model of the collecting lymphatic valve and surrounding vessels. The
mean values for the front and side measurements are also recorded. All measurements
are accurate to one decimal place. The empty values could not be measured from the
particular image.

Using the mid-line and side lengths of the valve measured from the images in figure

3.18 resulted in very thin sections leading to the buttress, that was difficult to mesh.

Therefore, the valve length measured in subsection 3.2.1, 44 µm, was used instead.

The measurements used for the model are shown in table 3.2. All measurements are

assumed to be external. The internal dimensions are calculated by subtracting either

the wall thickness or valve thickness.

Position µm
Front upstream width 56
Front downstream width 88
Front valve entrance width 54
Side upstream width 35
Side downstream width 68
Side valve entrance width 34
Front width between valve tips 73
Valve mid-line length 33
Valve side length 44
Wall thickness 3.6
Leaflet thickness 2.2

Table 3.2: The measurements used for three-dimensional model based on
measurements in tables 2.5 and 3.1.
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30 µm

Mid-line
length

Side
length

(a) 40 hires 3, frame 1

20 µm

Mid-line
length

Side
length

Entrance
width

(b) 40 hires 3, frame 76
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Figure 3.18: Frames from videos 40 hires 3 and 40 hires 4 by Taija Makinen and
colleagues at Cancer Research UK of mouse lymphatic vessels. The white lines show
the approximate position where the measurements were taken using ImageJ.
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In order to verify that these measurements are realistic, they are compared to

values from the literature. The diameters for mouse mesenteric lymphatic vessels

in the literature were between 50 and 1170 µm, see table 2.1. Comparing the width

measurements from table 3.2 most fall into this range near at the lower end, except for

the side upstream width, which is less than 50 µm. This is not considered unrealistic

as it is still the same order of magnitude. No data was found in the literature on

the thickness of mouse mesenteric lymphatic walls and valves. However, compared

to the rat data from Rahbar et al. [2012], the wall thickness is of the same order of

magnitude although smaller for the mouse than for the rat, which is to be expected.

The valve leaflet thickness lies in the same range as the leaflets from adult rabbit lung

lymphatics measured by Lauweryns and Boussauw [1973], 0.5 to 6 µm. Therefore, the

values measured appear to be suitable when compared to the values reported in the

literature.

Having established the geometry and material properties of the model, the boundary

conditions for realistic fluid behaviour are required for the model. In the next section

the range of suitable boundary conditions used are presented.

3.2.3 Experimental data

For the fluid domain boundary conditions, the inlet and the outlet conditions need to

be defined. The values used for the models are within the range of pressures presented

by Davis et al. [2011] for the values at which the valves of a passive rat mesenteric

valve would close, see figure 3.19. The data was read from the graph using DataThief.

It is displayed in table 3.3.

Baseline pressure Pressure difference Outlet pressure
(cmH2O) (cmH2O) (cmH2O)

0.2 0.1 0.3
0.5 0.3 0.8
1.0 0.6 1.6
2.0 1.2 3.2
3.0 1.4 4.4
5.0 1.7 6.7
7.0 1.9 8.9
11.0 2.2 13.2
15.0 2.4 17.4
20.0 2.8 22.8

Table 3.3: Pressures required for valve closure read from figure 3.19 using DataThief.

3.2.4 Computational Models

In this section four models are presented: A 2D axisymmetric fluid model is used to

investigate the affect of the Reynolds number of the recirculation area in the sinus
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Figure 3.19: Graph showing pressures required for valve closure [Davis et al., 2011].
The black circles show the pressure where the valve closed, the white circles where the
valve opened and the grey line is the pressure diameter curved caused by increasing
baseline pressures. ©2011, The American Physiological Society. Permission not
required.

of the valve; a 3D fluid structure interaction model using a linear material is used to

explore if using a linear material model with the previously defined Young’s moduli for

the wall and the valve is a suitable approximation of the vessel behaviour; a 2D fluid

structure interaction model of only the valve with the nonlinear material model from

chapter 2 is used to investigate if the open area ratio of the original geometry affects

the closing pressure of the valve; finally a 3D solid mechanics nonlinear material model

is used to find the pressures required for valve closure for a particular geometry.

3.2.4.1 2D Axisymmetric Fluid Model Method

A 2D axisymmetric model of the laminar flow domain was created to investigate

whether the Reynolds number of the flow affected the shape of the recirculation

area. The geometry based on the measurements in table 3.2 were used to create a 2D

axisymmetric geometry, shown in figure 3.20. The fluid behaviour in the domain Π

was modelled using the Navier-Stokes equations for incompressible flow,

ρ (ufluid · ∇)ufluid = ∇ ·
(
−pI + µ

(
∇ufluid + (∇ufluid)T

))
+ F b, for x ∈ Π

(3.17)

ρ∇ · ufluid = 0, for x ∈ Π (3.18)

where ufluid is the velocity vector, p is pressure, I is the identity matrix, F b is body

force vector, and x represents the mesh points.
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Figure 3.20: Geometry of 2D axisymmetric model with boundaries and fluid domain
labelled.

The boundaries had no slip conditions applied to them, i.e.,

ufluid = 0, for x ∈ ∂Πi where i = 4, 5, ..., 8. (3.19)

The inlet and outlet pressures, pin and pout respectively, are assigned to either end of

the domain,

p = pin, for x ∈ ∂Π1 (3.20)(
−pI + µ

(
∇ufluid + (∇ufluid)T

))
· n = −poutn, for x ∈ ∂Π3 (3.21)

where n is the normal vector to the boundary.

This was much quicker to solve than the 3D model, but because the model is rotated

the valve is modelled as cone-shaped rather than having an elliptical shaped opening.

This was considered a good enough approximation for comparing whether the

Reynolds number of the flow affected the shape of the recirculation area.

3.2.4.2 2D Axisymmetic Fluid Model Results

Streamlines were plotted for different pressure differences. The colour bars show

the velocity non-dimensionalised by the pressure difference. The velocity was

non-dimensionalised as,
V µ

R∆P
, (3.22)
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where V is the velocity magnitude of the flow, µ is the viscosity, R = 30.4 µm is

the radius of the outlet and ∆P = pin − pout is the pressure difference between the

inlet and the outlet. The changes in pressure change the Reynolds number of the

flow, however this did not seem to alter the shape of the recirculation area, within the

biologically relevant range.

µm

µ
m

(a) Inlet 0.5 cmH2O.
Outlet 1 cmH2O.

µm

µ
m

(b) Inlet 2 cmH2O. Outlet
1 cmH2O.

µm

µ
m

(c) Inlet 12 cmH2O.
Outlet 1 cmH2O.

Figure 3.21: Streamlines with colour bars showing non-dimensionalised velocity. The
magenta arrows show flow direction.

A video was provided by Michael Davis, Medical Pharmacology and Physiology,

University of Missouri, of florescent beads in a lymphatic vessel. Some of the frames

from the video were processed to give the impression of streamlines for comparison.

The recirculation region can be seen, figure 3.22. This shows that the recirculation

regions seen in figures 3.21 can also be observed experimentally.

Figure 3.22: Overlaid frames from video by Michael Davis showing recirculation
regions.
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3.2.4.3 3D Fluid Structure Interaction Model with Linear Material

Method

The initial model geometry is presented in figure 3.23. The literature described the

valve leaflets as having a curved base and a buttress where the valve is attached to

the wall. This has been reproduced in the model. The mesh was created using the

COMSOL Multiphysics inbuilt meshing algorithm. A relatively course mesh was used

with 143597 elements.

Upstream
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Valve

∂Πup1

∂Πup2

∂Πup3

∂Πdown1

∂Πdown2

∂Πdown3

∂Πvalve1

∂Πvalve2

∂Πvalve3

(a) Fluid domain with boundaries labelled.

Upstream

Downstream
Valve

∂Γup1

∂Γup2

∂Γup3

∂Γdown1

∂Γdown2

∂Γdown3

∂Γvalve1

∂Γvalve2

∂Γvalve3

(b) Half the geometry for solid domain with boundaries labelled. The whole geometry
was modelled, half is shown here to make the boundary labels clearer.

Figure 3.23: Geometry of the 3D fluid structure interaction model with a linear
material model.

Some of the dimensions were difficult to achieve in the model due to the methods

used to construct the geometry in COMSOL Multiphysics. The valve mid-line and

upstream width were not exactly as shown in table 3.2. For example, the leaflet
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thickness is exactly 2.2 µm at the free edge, but at the base where it connects to the

wall it is slightly thicker, 2.75 µm.

The fluid domain, Π, was modelled using equations (3.17) and (3.18). For the solid

domain, Γ, the behaviour was modelled by,

−∇ · σ = F v for x ∈ Γ (3.23)

where σ is the stress tensor and F v is the volume force vector. Both the wall and

valve of the vessel had density 1500 kg/m3 and a Poisson ratio of 0.24. The vessel wall

had a Young’s modulus of 33500 Pa and the valve had a Young’s modulus of 15000

Pa.

In order to combine the behaviour of the fluid to the behaviour of the solid, the total

force, f , applied to the solid boundary by the fluid is calculated as,

f = n ·
{
−pI + µ

(
∇ufluid + (∇ufluid)T

)}
on x ∈ ∂Πup

i , ∂Πdown
i , ∂Πvalve

j (3.24)

where i = 2, 3 and j = 1, 2, 3,

where n is the normal vector pointing out of the fluid domain, p is the pressure and

I is the identity matrix. However, in COMSOL Multiphysics, the Navier-Stokes

equations are solved on the spatial frame, where as the solid equation, (3.23), is solved

on the material frame. The transform from one to another is calculated as,

F = f · dv
dV

on x ∈ ∂Πup
i , ∂Πdown

i , ∂Πvalve
j (3.25)

where i = 2, 3 and j = 1, 2, 3,

where F is the force in the material frame, f is the force in the spatial frame, dv is

the mesh element scale factor for the spatial frame and dV is the mesh element scale

factor for the material frame [COMSOL Multiphysics, 2013]. There is also a no slip

condition applied to the fluid-solid interface in all other directions. This is given by

the equation,

ufluid · t = 0 on x ∈ ∂Πup
i , ∂Πdown

i , ∂Πvalve
j where i = 2, 3 and j = 1, 2, 3, (3.26)

where t is the vector tangent to the solid domain.

The external boundary of the vessel, ∂Γ1, has no constraints. Both ends of the vessel

had a fixed constraint boundary condition

usolid = 0 on x ∈ ∂Γup1 , ∂Γdown1 . (3.27)
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∂Γ1

∂Γ9

Solid Γ

Centre line

Fluid Π

F = f · dvdVufluid · t = 0

Figure 3.24: Summary of fluid-solid interface boundary conditions, not to scale.

An inlet condition was applied to the upstream end of the fluid domain. The inlet

pressure, pin, was defined,

p = pin on x ∈ ∂Πup
1 , (3.28)[

µ
(
∇ufluid + (∇ufluid)T

)]
· n = 0 on x ∈ ∂Πup

1 . (3.29)

An outlet condition was applied to the downstream end of the fluid domain. The

outlet pressure, pout, was defined as,[
−pI + µ

(
∇ufluid + (∇ufluid)T

)]
· n = −poutn on x ∈ ∂Πdown

3 . (3.30)

3.2.4.4 3D Fluid Structure Interaction Model with Linear Material

Results

In the experiment, the change in the diameter of the vessel caused by increasing the

internal pressure from 0.2 cmH2O to 0.37 cmH2O was 2.6%. A comparison is made

to see if the finite element model exhibits the same behaviour as was seen in the

experiment. The displacement is measured approximately 100 µm downstream of the

valve.

The inlet pressure was set to 0.2 cmH2O and the outlet pressure to 0.199 cmH2O.

The inlet and outlet pressure could not be equal as this would result in having no

flow. This resulted in a diameter of 64.2 µm. The inlet pressure was then set to 0.37

cmH2O and the outlet pressure to 0.369 cmH2O. This resulted in a diameter of 66.1

µm. This gives a 2.9% diameter change. This is slightly larger than the diameter

change seen in the experiments, so the value for the Young’s modulus of the wall is

perhaps too low.

The model was only able to converge for intraluminal pressures up to 14 cmH2O. This

could be a result of using a mouse vessel geometry with rat intraluminal pressures.

In order to compare the model results with the data from Davis et al. [2011] and

Rahbar et al. [2012] the diameters were normalised by dividing by the diameter at

14 cmH2O. Figure 3.26, shows that the diameter change of the model does not have
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Inlet

Outlet

Figure 3.25: The displacement of the lymphatic wall in the model was measured at
the red point shown on the internal boundary

the steep gradient followed by the sharp transition to a shallow gradient as seen in

the experiments. The initial sharp increase between 0.2 cmH2O and 0.5 cmH2O is

probably a result of the elliptical shape of the initial geometry configuration. As the

pressure increases the vessel quickly forms a circular cross section and then expands.

As the pressure increases from 1 cmH2O to 14 cmH2O the diameter increases linearly,

as should be expected from a linear material model.
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Figure 3.26: Pressure-diameter comparison to Davis et al. [2011]; Rahbar et al. [2012].
The diameter values in the literature was normalised by the diameter at 20 cmH2O.
The model data is normalised by the diameter at 14 cmH2O.
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The behaviour of the model was investigated for the case where the outlet pressure

was fixed at 1 cmH2O as the inlet pressure increased from 0.5 cmH2O to 1.1 cmH2O

and 2 cmH2O. The results are shown in figure 3.27. For inlet pressure 0.5 cmH2O,

see figures 3.27a and 3.27b, all the flow is backwards. At a smaller pressure difference

than this the valve was shown to close in Davis et al. [2011]. The model valve does

not close. This may be because the Young’s modulus for the valve is too high or that

the diameter of the surrounding walls is too large.

The inlet pressure 1.1 cmH2O causes forward flow through the valve, as shown

in figure 3.27c, but the inlet pressure was not high enough overcome the outlet

pressure and make all the fluid flow forwards. A large recirculation region has formed

downstream of the valve, see figure 3.27d. At about 100 µm downstream the forward

flow through the valve meets the backward flow further downstream. The valve is

open wider than for inlet pressure 0.5 cmH2O.

When the inlet pressure is 2 cmH2O the majority of the fluid flows downstream, figure

3.27e. There is a small amount of reverse flow around the valve as small recirculation

areas are formed, as shown in figure 3.27f. These appear different to the regions in the

axisymetric model due to the differences in the geometries used. The valve is wider

than for inlet pressure 1.1 cmH2O.

3.2.4.5 2D Fluid Structure Interaction model of Valve with Nonlinear

Material Model Method

A simple two dimensional valve model was created in COMSOL of a beam in a

channel to investigate the affect of the initial valve opening on the pressure required

for valve closure. A diagram of the model can be seen in figure 3.28. The parameters

used for the SEF with constant fibre angle were those calculated for the mean mouse

vessel.

The height of the channel, H, was calculated by using Data thief to measure the value

of D/Dmax from Davis et al. [2011]. Dmax was assumed to be 177 µm, taken from the

maximum average rat diameter data used in chapter 2. The value for H was changed

depending on the baseline pressure being investigated. The three baseline pressures

used and their corresponding H values are shown in table 3.4. The thickness of the

Baseline Pressure (cmH2O) H (µm)

1 75
3 83
11 86.5

Table 3.4: The height of the channel was calculated from D/Dmax from Davis et al.
[2011] assuming that Dmax = 177 µm.

leaflet (beam) was approximated as 6.6 µm by measuring the thickness of the valve tip
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Figure 3.27: a,c and e: Wall and valve coloured to show displacement. Arrows
coloured to show velocity magnitude. b,d and f: Wall and valve coloured to show
displacement. Streamlines coloured to show velocity magnitude. Magenta arrows show
flow direction.
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Figure 3.28: Diagram of 2D valve model. The blue arrow below indicates the direction
of positive flow.

in the confocal image of the valve in Davis et al. [2011]. The valve length was equal to

2H, so that it would always be long enough to close for the whole range of diameters.

The angle of the valve was adjusted so that the initial ratio of vessel lumen to valve

opening was 1:7 as reported in Davis et al. [2011] for each diameter.

As in section 3.2.4.3, the fluid domain is modelled using incompressible Navier-Stokes

equations, (3.17) and (3.18). The solid domain is modelled as in section 3.2.4.3 with

equation (3.23) using the material model developed in chapter 2. The solid and fluid

domains are coupled together as described in section 3.2.4.3 on boundaries ∂Γi, where

i = 1, 2, 3, 4.

The boundary conditions were prescribed as follows. The outlet condition defined on

∂Π1 is given as,

σ · n = poutn on x ∈ ∂Π1 (3.31)

At the opposite side of the rectangular fluid domain, the inlet condition is defined as,

σ · n = −pinn on x ∈ ∂Π5 (3.32)

A symmetry condition is applied to the upper boundaries,

n · ufluid = 0 on x ∈ ∂Π2, ∂Π4 (3.33)

and the mesh on these boundaries is allow to move in the x direction, but not in y.

dx = 0 (3.34)

dy free (3.35)

A mesh displacement condition is defined on ∂Π3, the boundary from the top of the

flow domain to the top of the valve. This is present to maintain the mesh quality

as the valve is displaced and does not effect the flow behaviour. The displacement
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condition is defined as,

dx =

∫
(X − x) du (3.36)

dy free (3.37)

where X is the coordinate of the point where the boundaries ∂Γ2 and ∂Γ3 meet in

the original geometry and x is the coordinate of the same point after it has been

deformed. Indicated by a red square on the valve sketch. This means that boundary

∂Π3 remains vertical and moves horizontally as the tip of the valve moves. The

bottom of the fluid domain is fixed,

dx = 0 (3.38)

dy = 0 (3.39)

and so is the base of the valve,

σ · n = 0. (3.40)

A boundary load is applied to the tip of the valve, ∂Γ2 and ∂Γ3. The load is a

Heaviside step function dependent on the maximum vertical non-dimensionalised

position of the valve tip, H(y/1 m), that applies a large force to the tip as it nears

the upper boundary of the channel.

σ · n =

(
H(y/1 m)× 106 N/m2

H(y/1 m)× 106 N/m2

)
(3.41)

This prevents the valve from leaving the channel and prevents the valve tip from

contacting with the upper fluid boundary, which would cause numerical errors. It also

means that when the valve is in ‘closed’ position there is a small gap that allows fluid

through, however this gap is so small (< 0.5 µm) and the fluid velocity so low that the

valve is considered closed.

3.2.4.6 2D Fluid Structure Interaction model of Valve with Nonlinear

Material Results

Three instances of the closing valve can be seen in figure 3.29. The valve remains

straight until is reaches the mid-line of the vessel and then bends as the force is

applied to the upper boundary to prevent the valve leaving the fluid domain. This

bending of the valve is similar to the shape observed experimentally for a closed valve,

see figure 3.14a.

A study was carried out to see how the initial valve opening ratio alters the closure

pressure. The initial valve opening ratios were 1:7, 2:7 and 3:7 with respect to the
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(a) Outlet pressure 1.0004 cmH2O

(b) Outlet pressure 1.0009 cmH2O

(c) Outlet pressure 1.3079 cmH2O

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Velocity (m/s) ×10−5

0 1 2 3 4 5 6 7 8
Stress (N/m2) ×103

Figure 3.29: Inlet pressure 1 cmH2O, opening ratio 1:7

diameter of the lumen. The ratios were each modelled at three different baseline

pressures. The valve closure pressures are presented in figure 3.30

It can be seen in figure 3.30, that the pressure difference required for closure is five

times larger for the 3:7 opening ratio than the 1:7 opening ratio. This shows that the

original geometry of the model has a significant effect of the pressure difference for

valve closure.

The pressure differences required are also three orders of magnitude smaller for the

2D model than the experiments. This is a result of simplifying the problem to two

dimensions.
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Figure 3.30: Summary of Valve Results. The different colours represent three different
baseline pressures.

3.2.4.7 3D Solid Mechanics Nonlinear Material Model Method

The 3D geometry was simplified to include a valve within a cylindrical vessel. It was

found during the development of the model that certain features of the valve geometry

affected the closing behaviour. These are summarised in appendix A.2. Only a quarter

of this geometry was modelled in order to reduce computational time and also to

enforce four way symmetry of the problem. It was assumed that the material model

was the same for the valve and the wall. The boundaries are defined as shown in

figure 3.31.

∂Γ1∂Γ2

∂Γ3

∂Γ4

∂Γ5∂Γ6∂Γ7
∂Γ8

∂Γ9Γ
y

z

Figure 3.31: 3D model geometry of solid model, 90 degree segment of circular
lymphatic vessel with valve. Boundaries are labelled.



100 Chapter 3 Modelling the Mechanical Behaviour of the Collecting Lymphatic Valve

A prescribed displacement is applied to the downstream end of the cylinder, to stretch

the wall by a third,

ux = 0

uy = 0 on x ∈ ∂Γ5. (3.42)

uz = λzZ

where ux, uy and uz are the components of the displacement vector u. At the

opposite end, the boundary is fixed,

u = 0 on x ∈ ∂Γ3. (3.43)

The boundary load was applied to the internal wall of the cylinder, both sides of the

valve and the upper face of the valve,

σ · n = −pn on x ∈ ∂Γ6, ∂Γ7, ∂Γ8, ∂Γ9. (3.44)

In addition to these conditions, a symmetric boundary condition was applied to the

faces that would be reflected in order to create the complete cylinder,

n · u = 0 on x ∈ ∂Γ2, ∂Γ4 (3.45)

This restricts movement in the direction normal to the boundary but allows

movements in the other directions. The external boundary, ∂Γ1, is free. A boundary

load was applied to boundary ∂Γ7, similarly to the valve tip in the 2D valve model

that simulated the contact condition by applying a load as the boundary approached

the centre line. The valve length was 115 µm.

A mesh refinement study was carried out that found a mesh with maximum element

size equal to the wall thickness and a minimum element size equal to half the wall

thickness was suitable. It was accurate to a finer mesh within 1 µm

3.2.4.8 3D Solid Mechanics Nonlinear Material Model Results

The valve closure pressure is defined as the first pressure at which there is a constant

band of valve leaflet surface within 1 µm of the vessel central plane. This is evaluated

by plotting the valve leaflet with blue representing the area more than 1 µm away

from the central plane and red the area less than 1 µm away, see figure 3.32.

The three dimensional model of the collecting lymphatic valve closed at pressures

lower than the experimental results, the values are compared in figure 3.33a to the

experimental results from Davis et al. [2011]. The ratio of the inlet to outlet pressure

at valve closure is also compared to the baseline pressure in figure 3.33b. The model
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(a) Open: incomplete band of red (b) Closed: complete band of red

Figure 3.32: Comparison of open and closed valve used for evalution of pressure
difference required for valve closure.

results show that the ratio of inlet pressure to outlet pressure is constant for the

model where as it decreases for the experimental data. Both the experimental data

and the model results behaviour changes for baseline pressures less than or equal to 2

cmH2O. However, for the experimental data the ratio plateaus between 1 cmH2O and

2 cmH2O, where as the model results show the ratio decreases.
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Figure 3.33: 3D model comparison with experimental results from Davis et al. [2011]

Figure 3.34 shows the lymphatic valve when the inlet and outlet pressures are equal,

the pressure at which the valve closed, and the pressure that was reported for closure

by Davis et al. [2011]. The tips of the valve leaflets curl back on themselves due to

the buttresses being stretched by the vessel wall as it is stretched axially and as it

expands due to increasing intraluminal pressure, see figures 3.34a and 3.34d. This

means that the valve leaflet tips do not make contact first. A short distance along the
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leaflets is the first point of closure, figure 3.34e. As the pressure is increased further,

more of the valve leaflet surface comes into contact, figures 3.34c and 3.34f.

(a) Outlet Pressure 3
cmH2O

(b) Outlet Pressure
3.55 cmH2O

(c) Outlet Pressure 4.4
cmH2O

(d) Outlet Pressure 3
cmH2O

(e) Outlet Pressure
3.55 cmH2O

(f) Outlet Pressure 4.4
cmH2O

Figure 3.34: Valve results for baseline pressure 3 cmH2O. Colour bar shows
displacement in µm. Although not shown here, the lymphatic wall was also modelled.

3.2.4.9 Summary

In the previous sections, the methods and results of four models of the collecting

lymphatic valve have been presented. In the next section the implications of these

results are discussed.

3.3 Discussion

In this chapter the literature for collecting lymphatic valves and previous models have

been reviewed. Four different models of the valve have been presented incorporating

the behaviour of the wall.
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A two dimensional axisymmetric fluid model was used to investigate the effect of

changing the Reynolds number on the flow dynamics. The results showed that the

shape of the recirculation region in the sinus of the valve did not change significantly

for Reynolds numbers between 5.7 × 10−5 and 1.3 × 10−3. The recirculation region

was qualitatively compared to an image that had been obtained of the recirculation

area by introducing fluorescent beads to the flow by Micheal Davis [personal

communication including video].

A three dimensional fluid structure interaction model was used to investigate if using

a linear elastic material model would be a suitable approximation for modelling the

behaviour of the collecting lymphatic wall and valve over a range of physiologically

relevant pressures. This model did not reproduce the behaviour of the wall when

compared to the pressure-diameter curves in the literature. The initial sharp increase

in the diameter at low pressures was hypothesised to be due to the elliptical vessel

deforming to a more circular shape. The model was unable to converge for baseline

pressures higher than 14 cmH2O.

Coupling the fluid and solid behaviour together allows investigation into how the

lymph, the wall of the vessel and the valve interact. Three pressure differences were

considered. The outlet pressure is 1 cmH2O and the inlet pressures are 0.5, 1.1

and 2 cmH2O. The valve did not close for any of the pressure differences, but the

gap widened for all of them. For an inlet pressure of 0.5 cmH2O, it was shown in

experiments that the valve closes for an outlet pressure of 0.8 cmH2O [Davis et al.,

2011]. Therefore, the valve should have closed for a pressure gradient of -0.5 cmH2O.

This implies that the Young’s modulus for the model valve was too high. If the

lymphatic vessels in the body behaved in this way, lymphoedema would probably

develop as there is no way so stop the lymph flowing back towards the tissues. A

small pressure gradient of 0.1 cmH2O was not sufficient to cause all the lymph to

flow in the same direction. This is caused by the widening of the vessel around the

valve. It may be more appropriate to model a vessel with constant diameter as

this flow interaction could be causing the widening of the wall downstream of the

valve, whereas in the model the flow behaviour is a reaction to the geometry. The

model presented estimated only the passive behaviour of the vessel. An active vessel

could pump the lymph forwards, increasing the upstream pressure to overcome the

downstream pressure. The positive pressure gradient of 1 cmH2O was found to open

the valve the widest. The majority of the lymph is flowing downstream, with the

exception of the recirculation areas around the valve. An active vessel may decrease

the frequency and amplitude of contractions in this case, as they are not necessary to

ensure the fluid is drained away from the tissues.

The two dimensional fluid structure interaction model of the valve with a nonlinear

material model was used to investigate the affect of the valve opening ratio on the
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pressure required for valve closure. Increasing the opening ratio from 1:7 to 3:7 caused

a five fold increase in the pressure required for valve closure.

Figure 3.30 showed that a smaller pressure difference is necessary for valve closure for

higher baseline pressures. In contrast, the experimental results showed the opposite to

be true [Davis et al., 2011]. The pressure differences required are also three orders of

magnitude smaller for the 2D model than the experiments. The reasons for this may

be a result of simplifying the problem to two dimensions, the assumptions made for

the geometry and initial valve position and the densiometer method used to measure

the closure pressure in the experiments.

The valve closes at much lower pressures than measured in Davis et al. [2011] -

assuming it is closed when the valve tip is within 0.5 µm of the upper boundary. This

finding agrees with Bertram et al. [2013a], who also predict that the closure pressure

should be lower in order for the valves to be more efficient. However their predicted

values are still much higher than the 2D model predicts. Bertram et al. [2013a] believe

that the discrepancies between model and experimental are the result of resistance

caused by the micropipettes cannulating the vessel. A reason for the discrepancies

with the model presented above is that the closure pressure is measured when the

tip of the valve reached an upper threshold. The densiometer in the experiments is

measuring the closure pressure when the pressure is great enough to push the leaflets

flat against each other. Another reason could be that due to the flexible material of

the valve, too much of the structural strength is lost by modelling the valve in only

two dimensions.

It was not possible to model the wall and valve in two dimensions because the

non-linear material model had been developed as part of a two dimensional

axisymmetric model, which has different boundary constraints to a 2D model. This

resulted in the material model being much more flexible without the cylindrical

support. It was assumed that the valve would be less sensitive to the change to

symmetric from axisymmetric since the geometry of the valve is not axisymmetric. It

was also assumed that the valve had the same material properties as the lymphatic

wall. Assuming that the wall and valve have the same material properties implies

that it is also assumed that the angle of the collegen fibres in the wall is the same

as the angle of the collegen fibres in the valve. This is not the case. In reality, there

may only be collegen fibres where the valve joins the wall [Vajda and Tomcsik, 1971;

Rahbar et al., 2012] or the collegen fibres in the valve are aligned parallel to the face

of the valve leaflet, extending from the buttresses towards the centre line of the leaflet

[Lauweryns and Boussauw, 1973; Takada, 1971].

The three dimensional solid mechanics model of the collecting lymphatic wall and

valve with a nonlinear material closed at pressure similar to those seen experimentally.

However, during the development of the valve model, if was found that the geometry
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of the valve and it’s initial position could have a large affect on when the valve closed.

The model valve closing at similar pressures to the experiment could imply that the

final geometric arrangement is similar to a biological collecting lymphatic valve.

More recently, one dimensional models have highlighted the importance of effective

valves to the efficient functioning of chains of lymphangions [Bertram et al., 2013a].

Of particular importance is how much resistance the valve causes to the flow and

at what pressure difference the valve closes to prevent reverse flow [Bertram et al.,

2013b]. A three dimensional mathematical model is a useful tool to investigate this

phenomenon because it is difficult to make measurements experimentally without

affecting the behaviour of the valve and surrounding wall. The finite element method

has been used to model heart, venous and collecting lymphatic valves [Spühler et al.,

2015; Kunzelman et al., 2007; Narracott et al., 2010; Wilson et al., 2015a,b] and

Spühler et al. [2015]; Kunzelman et al. [2007] and Narracott et al. [2010] used the

method to create two way coupled fluid structure interaction models of arterial, mitral

and venous valves, respectively.

Using a linear approximation or even a simple nonlinear model such as the

neo-Hookean model to a non linear material restricts the range of strains at which

the model can be manipulated. Wilson et al. [2015b] used a nearly incompressible

neo-Hookean material model with a shear modulus of 45 kPa to model the collecting

lymphatic valve. The range used by Wilson et al. [2015b] was restricted to between

1 and 6 cmH2O. The HGO strain energy function parametrised in chapter 2 allows

for investigation in a range from 0.5 cmH2O to 12 cmH2O for mice and 14 cmH2O for

rats. The parameter c in the HGO SEF can be considered as the shear modulus of

the material of the lymphatic vessel wall without the collagen fibres. Compared to the

value used by Wilson et al. [2015b] for the valve leaflets the values for c are two orders

of magnitude smaller, ranging from 0.35 to 1.48 kPa for the constant fibre angle model

and 0.16 to 0.54 for the variable fibre angle model.

Wilson et al. [2015a] created an image based two dimensional model of flow around an

opening lymphatic valve by using the images to define the deformation of the domain

as the valve opened. The valve model created in section 3.2.4.5 similarly defines the

height of the channel using experimental data, however the idealised valve leaflet is

two way coupled to the fluid domain surrounding it allowing for investigation into the

closing behaviour of the valve.

Bertram et al. [2013a] hypothesised that the closing pressures differences measured by

Davis et al. [2011] overestimate the actual values. Bertram et al. [2013a] found that

incorporating the valves from Davis et al. [2011] lead to inefficient pumping in their

network model and that this could be remedied by decreasing the closing pressures

and predict that the pressure difference for valve closure should never be higher than

0.5 cmH2O. The nonlinear material model developed in chapter 2 implemented on a
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three dimensional solid only model was used to investigate this claim. It was found

that the solid model from section 3.2.4.7 estimated the pressure difference for valve

closure to be lower than measured in experiments, but higher than predicted by

Bertram et al. [2013a]. Bertram et al. [2013a] suggest the source of experimental error

could be due to the resistance caused by the tip of the micro-pipette used by Davis

et al. [2011] to calculate the vessel. An alternative reason for the difference could be

the use of the densitometer to define whether the valve is open or closed. In the model

from section 3.2.4.7 the pressure difference for closure is defined as the pressure at

which the minimum distance of the inner surface of the valve leaflet is within 1 µm

of the centre line of the vessel. The densitometer measured the mean pixel intensity

to determine if the valve was closed. It may be that the two leaflets have to be in

contact along a length of the leaflets before the densitometer registers that the valve

has closed, therefore the pressure required for valve difference is higher than found

using the model. This shows an advantage of using a computational model over

experiments as it allows for observation of the valve position from all angles as there

is no restriction due to visual obstructions as there are in the physical experiment.

In this chapter it has been shown that it is possible to create a fluid structure

interaction model of a lymphatic valve and the surrounding wall. It has also been

shown it is possible to model valve closure within finite element method if some

assumptions are made, i.e. that valve is closed when it is within a micrometer of

actual closure and the valve opening to lumen ratio is not too large. Finally, it has

been presented that incorporating a non-linear material model produces more accurate

solid behaviour, but increases the computational challenges. The initial geometry has

been found to have a significant affect on the behaviour of the model valve.

3.4 Future Work

Modelling the closing behaviour of the collecting lymphatic valve has unearthed

many necessary routes of investigation about the geometry of these valves. The

shape is very important for the valve to function correctly. This has been highlighted

previously by Bazigou et al. [2009]. It would be useful to image or measure a valve

at a good resolution during and after it has been used for valve closure experiments,

perhaps applying confocal microscopy techniques such as those used by Wilson et al.

[2015a] and Watson et al. [2015]. Discovering which aspects of the valve geometry are

important for proper functioning of the valve would be useful as effective valves could

be manufactured for use in microfluidics. The variation in geometry could be a factor

that leads to the wide variation of closure pressures seen by Bertram et al. [2013a].
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� Using the geometry and material properties from the solid only three

dimensional valve model created in chapter 3, include a fluid domain and create

a fluid structure interaction model of a passive collecting lymphatic valve.

� Compare the results of the closing pressures required to experimental data from

Davis et al. [2011].

� Perform a sensitivity analysis on the material parameters and geometry of the

valve and surrounding wall.

� Increase and decrease the inlet and outlet pressure beyond healthy physiological

values to investigate under what conditions the valve fails to prevent significant

back flow.

� Calculate the resistance to forward flow caused by the valve at different

pressures to compare how the resistance relates to changes in pressure. This

information could be used as an input to the network model developed by

Bertram et al. [2011, 2013b,a].

� Increase the stiffness of the wall to model the thickening of the lymphatic wall

which develops during lymphoedema.

� Develop an image based model using techniques such as those presented in

Wilson et al. [2015a] in order to capture the geometry of the valve as accurately

as possible.

� Investigate materials that could be used to manufacture valves for micro-fluidic

devices and apply the material properties to the model to evaluate if the

material produces a valve that functions effectively.

� Use the model to investigate on how different fluid behaviours affect the

behaviour of the pumping vessel and effective functioning of the valve.





Chapter 4

Selective Plane Illumination

Microscopy Image Based

Modelling of Lymph Nodes

4.1 Introduction

In this chapter an image based model of fluid flow through a lymph node is presented.

The transport of cells and particles through the nodes is thought to be influenced by

the fluid behaviour. In this chapter a literature review of lymph nodes is presented,

followed by a description of the methods used to create an image based model of fluid

flow through a lymph node and the results from this model.

4.2 Literature Review

The average human has about 650 lymph nodes [Földi et al., 2003]. They filter the

lymphatic fluid, facilitate the migration and production of lymphocytes and regulate

the lymph protein content. Many primary immune responses originate in lymph

nodes [Gretz et al., 2000]. Depending on their location, nodes are between 0.1 and

3 cm in diameter. Lymph nodes can be different shapes, such as spherical, oval, or

kidney-shaped [Földi et al., 2003]. Lymph nodes dissected from near the throat of 24

dogs were about 36×12×20 mm. In some cases smaller nodes were found near by with

approximate dimensions 4×8×3 mm [Belz and Heath, 1995a]. Popliteal, from the back

of the knee, nodes from mice were approximately 2 × 1 × 1 mm [Kowala and Schoefl,

1986]. A generalised description of the structure of the lymph node is presented in the

next subsection 4.2.1. There is variation among lymph nodes depending on location

and species.

109
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4.2.1 Structure

Each lymph node is contained within a capsule, which is made up of collagen, elastin

and some smooth muscle cells. Collecting lymphatics feed into the lymph node

through the capsule. One or two efferent lymph vessels lead out of the lymph node

near to where an artery enters the node and a vein leaves the node. This area of the

node is called the hilus.

Larger nodes may have more than one artery, vein and efferent lymphatic. Belz and

Heath [1995a] observed up to 10 efferent vessels leaving the node in the hilar region

of dog lymph nodes and vessels with diameter 30 µm or greater contained valves.

Kowala and Schoefl [1986] found that for majority of mouse popliteal lymph nodes

that they studied had the same number of afferent lymphatics as lobules, units within

the node, although this was not always true. The number of efferent lymphatics

varied, some having up to 5 per node [Kowala and Schoefl, 1986].

Lobule︷ ︸︸ ︷

Figure 4.1: Sketch of lymph node from Willard-Mack [2006]. Three lobules are shown.
The left lobule shows arteries (red), veins (blue) and capillary networks (purple),
although the capillary networks are neglected from the cords. The lobule in the centre
includes a representation of the reticular fibre network. The right lobule shows how
a lobule appears in a histological section from a rat mesenteric node. ©2006, SAGE
Publications. Permission to use this figure has been granted by SAGE Publications,
Inc.

The main structures that make up a lymph node are:

� Trabeculae: Collagen structures that extend into the node from the capsule

forming a skeleton for the node. Blood vessels and lymph vessels can run

through the centre.
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� Lobules: Individual units within the node, see figure 4.1.

� Superficial Cortex: Very dense lymphatic tissue near the node capsule. Also

known as the cortex.

� Follices: Spherical sections of lymphatic tissue homed to by B lymphocytes

(immune cells originating from the bone marrow, also known as B cells).

� Paracortex: Dense lymphatic tissue homed to by T lymphocytes (immune cells

originating from the thymus, also called T cells). Also known as the deep cortex

or inner cortex.

� Medulla: Less dense lymphatic tissue.

� Sinus: Cavity or channel through which the lymph flows.

– Subcapsular Sinus: Afferent lymph vessels deliver the lymph into this sinus,

which runs round the node just below the capsule. Also known as the

marginal sinus.

– Cortical sinus: Sinus which allows passage of fluid through the cortex. Also

known as intermediate sinus.

– Medullary sinus: Sinus through the medulla.

Within the antihilar side of the node, just beneath the capsule, lies the subcapsular

sinus. Below this is the superficial cortex and then the paracortex. Between the

superficial cortex and the subcapsular sinus there are occasional follices. Beneath

the paracortex is the medulla and finally the hilus. These sinuses are the primary

pathways for fluid flow through the node. In the rest of this chapter we discuss these

structures in more detail and the pathways through the node for both blood and

lymph.

The lymphatic tissue that makes up the internal structures of the lymph node is

mainly formed of lymphocytes and reticular cells surrounded by reticular fibres.

Reticular cells are a type of fibroblast. These are immature connective tissue cells

that synthesize collagen and elastin [Földi et al., 2003]. The reticular cells form a

network that is a frame work for the lymph node [Gretz et al., 2000]. This forms a

extracellular space separate from the lymphocyte spaces [Gretz et al., 2000]. Fluid

and solutes can flow through the reticular extracellular space, which may protect the

lymphocytes from certain solutes [Gretz et al., 2000]. The fluid flow through lymph

nodes has been shown to regulate the reticular cell network [Tomei et al., 2009]

Within a lymph node capsule there are one or more lobules, depending on the size

of the node [Kowala and Schoefl, 1986; Willard-Mack, 2006]. The lobules appear

bulbous near antihilar side of the node and narrow towards the hilus. The lobules are

surrounded by sinuses, see figure 4.1. Frequently the number of afferent lymphatics
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is equal to the number of lobules, but this is not always the case [Willard-Mack,

2006; Kowala and Schoefl, 1986]. It is possible that each of the lobules are exposed

to different solutes and pathogens as the lymph could have come from different areas.

4.2.2 Lymph Pathways

It is possible for some of the lymph to bypass a node completely. This is facilitated by

some afferent and efferent vessels that are connected together [Kowala and Schoefl,

1986; Földi et al., 2003]. The lymph that does enter the node through the afferent

lymph vessels flows into the subcapsular sinus.

The sinuses are channels for the lymph fluid to move through the lymph node.

They have an porous endothelial lining [Anderson and Anderson, 1975]. They exist

throughout the node, having different names depending on their location. The sinuses

in different regions of the node have different dimensions and structures.

The subcapsular sinus is traversed by reticular fibres, formed from collagen [Ohtani

et al., 2003]. These fibres form a mesh to filter the lymph. The fluid can move freely

through pores in the subcapsular sinus lining but larger particular matter cannot

[Ohtani et al., 2003]. Belz and Heath [1995a] observed that the subcapsular sinus ran

around the periphery of the node. It is assumed from the structure that lymph flows

from the subcapsular sinus into the intermediate sinuses although the intermediary

sinus is not always present [Ohtani et al., 2003]. Pores in the lining of the subcapsular

sinus allows fluid to flow into the cortex [Ohtani et al., 2003]. Particles in the lymph

that are larger than 0.05 µm do not pass from the cortical sinus into the cortical

parenchyma [Gretz et al., 1997]. This may protect the lymphatic tissue from certain

pathogens. The subcapsular sinus is also continuous with the medullary sinuses in the

hilar region so some fluid follows this pathway [Ohtani et al., 2003].

The cortical sinus, or intermediary sinus, is a network of sinuses that connect the

subcapsular sinus to the medullary sinus. Belz and Heath [1995a] saw two forms of

cortical sinuses in dog lymph nodes. Mainly in the superficial cortex around the base

of follicles they saw gaps 10 to 45 µm across with few reticular cell processes. In the

deep cortex near to high endothelial venules (HEVs), which will be discussed further

in section 4.2.3, they were 20 to 115 µm across and crossed with many processes. The

walls had holes 2 to 3.5 µm across through which cells appear to pass. Kowala and

Schoefl [1986] saw that some of the cortical sinuses in the mouse popliteal lymph node

were filled with so many lymphocytes that they resembled lymphatic tissue.

The paracortical sinuses are also known as lymphatic labyrinths and lie beneath the

follicles in rat mesenteric lymph nodes. They are a network of lymphatic vessels with

diameters less than 100 µm in rat lymph nodes that connect to the medullary sinuses

[Ohtani et al., 2003]. The paracortical sinuses contain many lymphocytes, but are not
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criss-crossed with reticular fibres and the lymphocytes can pass through the walls

[Ohtani et al., 2003]. HEVs are often located less than 10 µm away and the space

between is full of lymphocytes [Ohtani et al., 2003; Willard-Mack, 2006]. In rat lymph

nodes the sinuses formed networks around HEVs [Anderson and Anderson, 1975].

The medullary sinuses surround the medullary cords and are criss-crossed with

reticular fibres [Belz and Heath, 1995a; Ohtani et al., 2003]. The medullary sinuses

are formed of branching, tortuous channels and in the rat lymph node were large

and connected to the subcapsular sinus at the hilus [Anderson and Anderson, 1975;

Ohtani et al., 2003]. Efferent lymph vessels drained fluid from the medullary sinuses

and the subcapsular sinus near by [Belz and Heath, 1995a; Ohtani et al., 2003;

Kowala and Schoefl, 1986]. These vessels were initially 20 to 50 µm across, formed

by interlinking cell processes, 2.5 to 7.5 µm diameter [Belz and Heath, 1995a]. Closer

to the trabeculae the efferent vessel walls were more complete with holes 10 to 30 µm

diameter.

Apart from the sinuses there are other pathways for the lymph to flow through, cords,

perivenular channels, corridors, conduits and ducts. However, this a comparatively

small compared to the feature discussed above and therefore will not be included in

this review. A review of these features can be found in appendix A.3.

4.2.3 Blood Vessels

Figure 4.2: Blood vessels of a rat lymph node. A: arteries, AVC: arteriovenous
communication, MA: metarterioles, HEV: high endothelial venules, arrows: cortical
and medullary capillary arcades (×47). This image was published in Anderson and
Anderson [1975] Copyright 1975, American Society for invesitagtive pathology;
Published by Elsevier Inc; All rights reserved.
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Blood vessels in the lymph nodes form a complex network. As the arteries extend

from the hilus to the superficial cortex of dog lymph nodes they branched off and in

the cortical parenchyma joined capillary networks mainly next to the subcapsular

sinus, next to the trabecular sinuses and around secondary nodules [Belz and Heath,

1995b]. Other arteries also fed into these networks. The networks drained into venules

that were further from the sinuses or the nodules than the capillaries [Belz and Heath,

1995b]. These venules in turn drained into larger venules, into HEVs and finally into

a few larger HEVs that merged together, passing through trabeculae, so that only

2 or 3 veins left the node [Belz and Heath, 1995b]. Crivellato and Mallardi [1997]

studied lymph nodes from mice. They saw that blood vessels were surrounded by

reticular cells. More details about the blood vessels in lymph nodes can be found in

the appendix A.3

Within lymph nodes there are both high endothelial venules (HEVs) and low

endothelial venules (LEVs). HEVs appear to be the most common site for

lymphocytes to leave the blood stream. In mouse popliteal lymph nodes HEVs arise

near the subcapsular sinus and widen abruptly [Kowala and Schoefl, 1986]. Anderson

and Anderson [1975] observed a similar effect in rat lymph nodes as can be seen in

figure 4.3. LEVs and small HEVs (< 20 µm) contained few lymphocytes, large HEVs

had many lymphocytes in the walls [Kowala and Schoefl, 1986].

4.2.4 Fluid Flow through Lymph Nodes

Adair et al. [1982] and Adair and Guyton [1983, 1985] investigated the flow though

lymph nodes in dogs and found that the node acts as a fluid exchange chamber. For

each lymph node they cannulated an efferent and an afferent lymphatic, ligating other

afferent and efferent lymphatic vessels. In each experiment the change in the protein

concentration of the fluid was assessed with respect to changing different inputs. The

concentration of proteins is important because it affects the amount of fluid transfer

into and out of the blood vasculature.

Adair et al. [1982] increased and decreased the afferent flow to investigate how

this affected the protein concentration. They found that increasing the perfusion

rate, increased the amount of flow crossing the wall of the blood vessels and that

the protein concentration of the lymph leaving the node was higher than the

concentration entering the node. The authors hypothesised that 98% of the increase

in protein concentration was due to the transfer of fluid into the blood vessels.

Adair and Guyton [1983] investigated the affect of increasing the venous blood

pressure in the node. They found increased blood pressure caused an increase in

the amount of efferent flow out of the node and a decrease in the efferent protein
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Figure 4.3: Structure of blood supply to cortex in rat lymph node. Arteries are
black and high endothelial venules are stippled. The numbers indicate arteriovenous
communications. This is a tracing of a projected image of lymph node vasculature.
This image was published in Anderson and Anderson [1975] Copyright 1975,
American Society for invesitagtive pathology; Published by Elsevier Inc; All rights
reserved.

concentration. This supported deductions made in Adair et al. [1982] that fluid

transfer across the blood vessel walls caused the change to the protein concentration.

Adair and Guyton [1985] increased the pressure of the efferent flow. At efferent

pressures up to 8 mmHg the protein concentration increased. However, for efferent

pressures higher than 8 mmHg the protein concentration decreased. This implies that

under extreme conditions, such as a patient with lymphoedema, when the pressures in

the lymphatic system are much higher than under normal conditions the function of

the lymph node is impaired.

Nagai et al. [2008] carried out an experiment to investigate lymph node perfusion

properties and how these were effected when the lymph node was inflamed. Using a

set up similar to Adair et al. [1982] and Adair and Guyton [1983, 1985], they found

that increases in afferent pressure or decreases in efferent pressure caused the efferent

flow rate to increase, and that these relationships were linear, which agrees with the

findings of Adair and Guyton [1985]. To model an inflamed lymph node, the lymph

node was perfused with artificial lymph within which formyl-Met-Leu-Phe-OH was

dissolved. This produced acute inflammation in the node. As a result of this, the
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efferent outflow rate decreased, implying the inflammation caused more resistance to

flow across the blood vessel wall [Nagai et al., 2008].

These experiments are useful for deducing how the afferent and efferent flow

properties may affect fluid exchange within the node. However, they do not give

empirical information on what is occurring within the node. Other authors have

attempted to investigate this by tracing particle movement.

4.2.5 Flow of Particulate Matter through Lymph Nodes

Ikomi et al. [2012] investigated how micro-spheres travelled though a popliteal node

from a rabbit. They state that particles of 2 mm or greater rarely passed through

the node. As the particle size decreased, the amount of particles passing through the

node increased hyperbolically [Ikomi et al., 2012]. Gretz et al. [2000] showed that two

molecules with similar molecular weights, but different radii took different pathways

within the node. Gretz et al. [2000] concluded that it depends on the radius of the

molecule whether it can make it’s way into the cortex along the fibres, rather than the

molecular weight.

Ohtani et al. [2003] discuss the possibility that the lymph node may have a

macromolecule concentrating mechanism. If the interstitial fluid in the node is

absorbed into other vessels this would cause fluid in the subcapsular sinus to be

sucked through the pores into interstitial space along with molecules in the fluid

[Ohtani et al., 2003]. Guyton and Adair [1985] discuss how water can move between

blood and lymph in nodes, possibly by Starling’s hypothesis, which is discussed

section 4.2.7.

Most of the information about how fluid moves through the lymph node is inferred

from the movement of particles within the node. Particles can be used to trace the

pathways of fluid flow though lymph nodes. However, this may be biased because

lymph nodes filter the lymph and hence are able to capture particles and retain them.

4.2.6 Three Dimensional Lymph Node Imaging

Deep tissue imaging is possible through techniques such as computed tomography,

selective plane illumination microscopy (SPIM) and optical projection tomography

(OPT). Due to the small size and transparent tissue of the lymph node, it is possible

to use these techniques to image the whole organ. Computational tomography will be

covered in detail in chapter 5; here SPIM and OPT are described.

For SPIM, a cylinder of agarose gel, within which the sample to be imaged is

embedded, is immersed in fluid. The lens of the microscope objective is also in
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the fluid. A laser sheet is projected through the sample through a glass window,

orthogonal to the microscope lens [Huisken et al., 2004]. This method enables the

sample to be optically sectioned without needing to physically cut up the sample. The

laser excites the florescence in the sample and the microscope collects this florescence.

Since different florescence can be excited by changing the laser wavelength, different

stains can be used to stain various aspects within the sample. This technique has been

used by Mayer et al. [2012] to image lymph nodes, see figure 4.4. They used two stains

to highlight the high endothelial venules and dendritic cells to investigate the relation

between them.

Figure 4.4: SPIM image from Mayer et al. [2012] of high endothelial venules in red
and dendritic cells in blue. Arrow indicates approximate position of afferent lymphatic
vessel. ©2012 Jürgen Mayer et al. Permission not required.

For OPT the sample is also within a cylinder of agarose gel. The light transmitted

from the sample is collect onto a camera imaging chip. A plane through the cylinder

corresponds to a line of pixels on the detector. The projections must then be

reconstructed to create the 3D image stack. This technique has been used to image

lymph nodes by Pfeiffer et al. [2008] staining the high endothelial venules and

medullary sinuses to show that the venules did not cross the sinuses, see figure 4.5.

4.2.7 Computational Models of Porous Media

Fluid flow in porous media is modelled using Darcy’s law and conservation of mass,

u =
κ

µ
∇p, (4.1)

∇ · u = 0 (4.2)

where u is the Darcy velocity, the average fluid velocity per unit of total volume of

the material, κ is the permeability dependent on the pore size and geometry, and p is



118 Chapter 4 SPIM Image Based Modelling of Lymph Nodes

Figure 4.5: OPT image of lymph node from Pfeiffer et al. [2008]. The high endothelial
cells are stained red and the medullary sinuses are stained green. Scale bar = 200 µm.
©2008, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Permission to use this
figure has been granted by John Wiley and Sons.

the average pore pressure. Darcy’s Law is based on the assumption that the flow in

the pore spaces is at low Reynolds number so the forces are linear and instantaneous.

Biological tissue can be modelled using Darcy’s law as interstitial tissue is made up

of cells within a matrix of collagen fibres [Swartz and Fleury, 2007]. Interstitial flow

passes through the spaces between the collagen fibres and around the cells delivering

nutrients and removing waste. Some examples of biological tissues that have been

modelled using Darcy’s law include the brain [El-Bouri and Payne, 2015], tumours

[Shipley and Chapman, 2010] and bone [Li, 2013].

An important aspect of modelling fluid flow in biological tissue is that the mass of the

fluid is not necessarily conserved due to the presence of blood and lymphatic vessels.

The fluid is able to pass through the walls of the vessels depending on the hydrostatic

or colloid osmotic pressure. Starling’s equation is used to model this behaviour,

Jv = LpS [(pc − pi)− σ (πc − πi)] (4.3)

where Jv is the volume filtered per unit time, Lp is the hydraulic conductivity of

the blood vessel wall, S is the surface area of the blood vessel, pc is the pressure in

the blood vessel, pi is the pressure in the interstitium, σ is the osmotic reflection

coefficient, πc is the colloid osmotic pressure in the blood vessel and πi is the colloid

osmotic pressure in the interstitium. The transfer between blood and interstitial fluid

has been modelled either by defining phase equations, a blood phase and a tissue

phase [Causin and Malgaroli, 2015], or by explicitly defining the location of the blood

vessels [He et al., 2008].

In order to define the location of the blood vessels within a tissue, imaging techniques

are often used. Two examples are magnetic resonance imaging (MRI) [He et al., 2008]

and computational tomography [Deng et al., 2012; Li, 2013]. In theory any imaging

technique that can visualise the blood vessels can be used. In this chapter, the idea of
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using images to define the geometry of a model is extended. The images are also used

to determine the material properties of tissue by relating the grey scale of the image

to the permeability of the tissue.

Finite element [He et al., 2008], finite difference [Deng et al., 2012] and collocation [Li,

2013] methods have been used to model fluid flow through biological tissues. In this

chapter finite element modelling is used. This is because there is software available

to create a finite element mesh from images, e.g. ScanIP, a commerical software from

Simpleware1, and so that it is possible to link the lymph node with the valve model

created in chapter 3 in COMSOL Multiphysics.

Computational models of lymph nodes relate to the movement of cells within

lymph nodes. Models including the 3D Cellular Potts Model [Beltman et al., 2007],

Ornstein-Uhlenbeck process [Bogle and Dunbar, 2008], hybrid phantom [Lee et al.,

2013], random walk [Figge et al., 2008], ordinary differential equations [Chan et al.,

2013] and diffusion [Andrews and Timmis, 2006] have been implemented to model the

dynamics of the cells. No examples were found in the literature of modelling the fluid

flow through lymph nodes.

4.2.8 Summary

Lymph nodes have a complex structure. The blood vessels and lymphatic vessels do

not join directly, but lymphocytes and fluid can move between the two. The nodes

play an important role in immunity. Modelling the flow through the node could lead

to insights into the transport of material through the node that cannot easily be

investigated experimentally. For the image based model of the lymph node, COMSOL

multiphysics will be used to implement the finite element model for a geometry based

on light sheet microscope images. The permeability of the model will be determined

from the greyscale values of the images.

4.3 Method

4.3.1 Data used in this study

In the 1980’s experiments were carried out on lymph nodes to find out how the

composition of the lymph changed as it passed through the node. Adair et al. [1982]

and Adair and Guyton [1983, 1985] isolated popliteal lymph nodes from dogs and

cannulated an efferent and an afferent lymphatic to assess the flow; other afferent

and efferent lymphatics vessels were ligated. The lymph nodes were then perfused

1https://simpleware.com/software/scanip/
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at physiological flow rates through the afferent lymphatic and the efferent lymphatic

was maintained at a hydrostatic pressure 0 mmHg, considering atmospheric pressure

as gauge pressure. A branch of the lateral saphenous vein was cannulated for the

measurement and control of venous pressure.

Adair and Guyton [1985] varied the efferent lymphatic pressure to see how this

affected the protein concentration of the efferent lymph fluid. The authors also

recorded the changes in the efferent flow rate in response to changes in fluid pressure.

These results were used as inputs for the lymph node model.

For the first four nodes in the experiments presented in Adair and Guyton [1985], the

efferent lymphatic pressure was increased in 6 steps from 0 to approximately 2170

Pa. The mean values were calculated for the afferent lymphatic pressure and flow

rate, efferent lymphatic pressure and venous pressure. The mean efferent pressure,

afferent flow rate and venous pressure were used as inputs in the model. The afferent

pressure and efferent flow rate were used to estimate the unknown parameter values

that represented the permeability of the internal lymph node material, the hydraulic

conductivity of the blood vessel walls and the colloid osmotic pressure difference

across the blood vessel walls.

4.3.2 Image Processing

Images were obtained from Jürgen Mayer of mouse popliteal lymph nodes imaged

using selective plane illumination microscopy (SPIM); for more information see Mayer

et al. [2012]. In this work, two nodes, one from a wild type mouse (WT) and one from

a plt/plt mouse (PLT), a mutant mouse that lacks certain proteins in the T-cell zone,

resulting in a decreased accumulation of dendritic cells in this zone, were imaged.

Alexa594-coupled MECA-79 mAB was injected into the mouse to visualise the HEVs

[Mayer et al., 2012]. The images of the lymph nodes had a voxel size of 1.29 × 1.29 ×
5 µm and were received in 16 bit grayscale tiff format.

To create a computational mesh for finite element modelling of fluid flow through

a lymph node, the raw image data had to be segmented and smoothed. This was

achieved in the following manner: The images were processed to enable segmentation

by Avizo Fire2 and analysed as follows. The first stage of image processing was

carried out using Fiji3 [Schindelin et al., 2012] to convert the stack to 8 bit greyscale.

A mean filter with a 4 pixel radius was applied to remove noise from the images. The

brightness and contrast adjustment tool in Fiji was used in automatic model so that

the features of the node were clearer; in particular the HEVs were bright white. The

results of these processes are compared to the original image, figure 4.6a, in figure

2a commercial 3D image analysis software http://www.fei.com/software/avizo3d/
3a free, open source image processing package: http://fiji.sc/Fiji
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4.6. The end slices were removed from the stack so that the final stack only contained

images of the node.

(a) Original 16 bit image (b) Filtered 8 bit image with
auto adjusted brightness
and contrast

Figure 4.6: Comparison of original image to filtered image. The filtered image results
in more distinguishable features.

Semi-manual segmentation was carried out in Avizo Fire using the magnetic lasso

tool. The outline of the node was segmented every 20 slices, except where there were

features that required more frequent selections. The selections were then interpolated

so that the node was selected. Views from other planes were checked to confirm

the selection. This segmentation was then used to create a mask that formed the

outline of the node, see figure 4.7a. The mask stack and the filtered image stack were

imported into Fiji. Two new image stacks were created: one of the node on a black

background, by subtracting the inverted mask from the image stack; and one of the

node on a white background, by adding the inverted mask to the image stack, see

figure 4.7b.

The image stack of the node with the black background was opened in Fiji. By

selecting a line that crossed a single HEV, it was possible to plot the grey scale profile,

see figure 4.8b. From this, the approximate threshold could be found to segment out

the HEVs (140 in this case). The brightness and contrast of the image stack were

adjusted so that everything above 140 was white and everything below was black.

This resulted in another stack of images, which only showed the HEVs. The fill holes

tool was applied and then the remove outliers tool for radius 4 pixels. The erosion

tool was applied 4 times and after the dilate tool 4 times. This simplified the HEVs

structure and removed small features that would make computational mesh generation

difficult. This resulted in a mask of white HEVs on a black background. In order for

the meshing software to create a boundary between the lymph node tissue and the

HEVs, thresholding would be used. Therefore, to make the HEVs have a different grey
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(a) Node mask (b) Node with white
background

(c) Node mask with HEVs

Figure 4.7: Node mask, the mask with HEVs and the node with white background
stacks were all reduced in size by a quarter in the x and y directions.

value to the white node mask, the value of the HEVs was divided by a number, here 4

was used, to lower the value.

(a) Line across HEV (b) Grey scale profile

Figure 4.8: Greyscale profile along line over HEV.

The node mask, the node with a white background, and the mask with HEVs, figure

stacks were all reduced in size by a quarter in the x and y directions, see figure 4.7.

This resulted in the final voxel size of the images being 5.16 x 5.16 x 5 µm. The stack

of the node with a white background was saved as an image sequence of jpeg images

for use in COMSOL Multiphysics, which would be used to model the fluid flow.

In order to create surfaces that would act as the afferent and efferent vessel

connections with the node, grey areas 1 pixel thick were created. This was done by

opening the node mask in Fiji and rotating the stack 90 degrees using the TransformJ

turn tool. This stack was duplicated and the duplicate stack was eroded by 1 pixel.

The eroded stack was subtracted from the turned stack leaving a 1 pixel outline of

the node. Two circles were selected, approximately 80 µm in diameter, and everything

outside these circles was made black. The position of these circles were chosen to be

close to places where the afferent and efferent lymphatic may have entered and exited
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the node based on the original images. White pixels within the circles appear in two

sets of slices. For one circle, the set of white pixels was removed from near the top of

the stack. For the other, the set of white pixels was removed from near the bottom

of the stack. A macro was used to divide the grey scale value by half and then the

TransformJ turn tool was used to rotate the stack back to its original perspective.

This stack was then subtracted from the node mask with HEVs, creating a mask with

HEVs and thin grey areas on either side of the node. This process is summarised in

figure 4.9.

ScanIP was used to create a mesh from the edited white and grey image stack. Using

the threshold tool, three masks were created. The first selected only the pale grey

pixels that represent the HEVs, the second only the white voxels, and the third

only selected the grey voxels that represent the afferent and efferent lymphatic

boundaries. The afferent and efferent lymphatic surfaces was dilated by 1 voxel in

all directions. This creates surfaces that represent the afferent and efferent lymph

vessels. The three masks that resulted from this were then added to the model.

The model was configured to create a COMSOL mesh file using +FE Free volume

meshing. The advanced parameters, such as mesh size, target error and rate of change

of element size, were modified. Three mesh sizes were used for the mesh refinement

study. For all the meshes the target minimum edge length was set to 8.8 µm (=√
5.162 + 5.162 + 52 µm, the longest length between voxels). The maximum length

was 8.8, 17.6 or 35.2 µm for the three different meshes. The target maximum error

was set to 4.4 µm, half the minimum edge length. The size of the mesh elements on

the surface was allowed to change rapidly (set to 75 in ScanIP), because the manual

segmentation of the node outline meant a high level of detail was not appropriate.

The volume elements within the node changed more slowly (set to 30). All other

settings were left as default.

4.3.3 Model Implementation

The fluid flow is modelled as an incompressible fluid with dynamic viscosity, µ, 1.5 cP

and density, ρ, 1000 kg/m3 using Darcy’s law, i.e. equation (4.1) in the domain Ω.

The permeability, κ, was defined based on the images. A linear relation was used to

relate the grey scale of the image to the permeability, e.g. the darker the image, the

less dense the material and therefore the more permeable it is. This was implemented

in COMSOL using the Matlab Livelink application. A script was written to read in

the jpeg images for the node on the white background into the COMSOL Model. The

images were imported as functions, called imi where i was the number of the image in
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(a) Original mask (b) Rotate 90 degrees (c) Duplicate and erode by 1
pixel, then subtract the two
masks

(d) Create circle
approximately 80 µm in
diameter

(e) Find where circles intersect mask edge and on which
slices

(f) Delete every thing outside of the circles and on other
slices

(g) Rotate 270 degrees to
return to original plane

Figure 4.9: Images showing process for creating faces as afferent and efferent
boundaries.
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Afferent Vessel
Inlet
Fin

Node

Efferent Vessel
Outlet

pout

n̂in n̂out

n̂hev

∇ · κ∇p = 0
∇ · u= 0

Jvel = Lp ((pb − p)−σ (∆π))

Figure 4.10: Sketch of lymph node model. Red lines indicate HEV boundaries, Γhev,
yellow shows the interstitium of the node, Ω, the blue lines show the afferent and
efferent lymphatic boundaries, Γin and Γout respectively, and the black lines show
where the afferent and efferent vessels would be, although these are not modelled. The
arrows labelled with n̂ show the positive normal vectors to the boundary they are on.

the stack. This linear relation has the general form,

(−k0im1(x, y) + k1)× (z < 5 µm)

+ (−k0im2(x, y) + k1)× (z ≥ 5 µm)× (z < 10 µm)+ (4.4)

· · ·+ (−k0imn(x, y) + k1)× (z ≥ 5(n− 1) µm), X ∈ Ω

where k0 and k1 are constants that define the linear relation between the grey scale

of the image and the permeability4, x and y are the coordinates of the point in the

image which is to be evaluated, z is the distance along the vertical axis and n is the

total number of images. Each image is defined on a 5 µm thickness using a logical

expression, e.g. (z ≥ 5 µm) × (z < 10 µm). Due to file type the image stack required

vertical flipping to correlate with the mesh stack.

The afferent flow rate, Fin, was given in units of µL/min in Adair and Guyton [1985].

Thus it was divided by 6 × 107 (kg·min/µL·s) (= 60 min/s ×106 kg/µL) to change

units to kg/s, assuming the fluid density is 1000 kg/m3. The efferent pressure was set

to 0 mmHg. Starling’s principle, equation (4.3) was used for the boundary condition

4an extrinsic value that is a property of the porous media, independent of the fluid
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on the HEVs. Thus, the boundary condition is given by,

n̂hev · ρu = Jvel =
Jv
S

= Lp [(pv − p)− σ (∆π)] , X ∈ Γhev (4.5)

where n̂hev is the vector normal to the surface of the HEVs pointing into the node,

Jvel (m/s) is the velocity of the fluid across the boundary, Lp (m/sPa) is the hydraulic

conductivity of the HEV wall, S is the surface area of the HEVs, pv (Pa) is the venous

pressure, p (Pa) is the pressure in the node, σ (no units) is the osmotic reflection

coefficient and ∆π = πv−πn (Pa) where πv (Pa) is the plasma colloid osmotic pressure

in the HEVs, and πn (Pa) is the node colloid osmotic pressure. σ is set to be equal to

0.9 based on Levick [2009].

The condition on the afferent lymphatic boundary is given by,

n̂in · ρu =
Fin
Ain

, X ∈ Γin (4.6)

where n̂in is the vector normal to the afferent lymphatic boundary pointing into the

node, Fin is the afferent flow rate and Ain is the area of the afferent boundary. The

pressure was defined on the efferent boundary,

p = pout, X ∈ Γout (4.7)

A no flux boundary condition was applied to all other boundaries, ∂Ω. The boundary

conditions are summarised in figure 4.10. A summary of the parameters used in the

model and their approximate values from the literature are shown in table 4.1.

4.3.4 Mesh Refinement Study

A mesh refinement study was carried out to optimise the accuracy of the results verses

the computational cost, such as time and computer memory usage. A coarser mesh,

a mesh with fewer elements, produces less accurate results when compared to a fine

mesh, which has more elements, however the coarser mesh requires less computational

resources.

For the mesh refinement study, the afferent flow rate was defined as 7.58 × 10−7

kg/s, the efferent pressure was set to 0 Pa and the blood pressure was 1067 Pa.

These values were taken from the experimental data for one node from Adair and

Guyton [1985]. The hydraulic permeability of the HEVs was 3.42 × 10−10 m/(Pa·s)
[Renkin and Michel, 1984] and the colloid osmotic pressure difference was 267 Pa. The

experimental data was measured to an accuracy of 0.1 µL/min, which is equivalent to

1.67× 10−9 kg/s [Adair and Guyton, 1985].
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Parameter Symbol Unit Value Source

Afferent
lymph flow

rate
Fin kg/s 7.596× 10−7

Mean from experimental
data Adair and Guyton
[1985]

Efferent
lymph

pressure
pout Pa

0, 270, 697,
1103, 1653,

2170

Mean from experimental
data Adair and Guyton
[1985]

Blood
pressure

pv Pa 973
Mean from experimental
data Adair and Guyton
[1985]

Average
Permeability

κa m2 10−14 to
10−8

Range from Swartz and
Fleury [2007]

Varying
Permeability

k0, k2 m2 No values in literature

Fluid density ρ kg/s−3 1000
From literature Macdonald
et al. [2008]

Dynamic
viscosity

µ Pa·s 0.0015
From literature Dixon et al.
[2006]

Hydraulic
permeability

of blood
vessels

Lp m/(Pa·s)
1.02× 10−11

to
6.7× 10−10

Range from Renkin and
Michel [1984] for capillaries

Osmotic
reflection
coefficient

σ no units
0.8 to 0.95,
fixed at 0.9

From literature Levick [2009]

Colloid
osmotic
pressure

difference

∆π Pa 2080

Mean from experimental
data Adair and Guyton
[1985], calculated using
Navar equation and protein
concentrations of plasma,
afferent and efferent lymph

Table 4.1: Parameters for lymph node model.

Figures 4.11a and 4.11c show that the efferent flow rates between the course and fine

meshes were smaller than one standard deviation from the mean of the experimental

data. Figures 4.11b and 4.11d show a comparison between the pressures calculated

at the afferent boundary for each mesh size. The experimental data was accurate

to 0.1 mmHg, equivalent to 13 Pa. The differences between the pressures for the

three meshes is always below 10 Pa, which also suggests that the coarsest mesh was

sufficient to capture the relevant information within the accuracy of the experimental

measurements. Therefore, it was concluded that the results obtained from the coarse

mesh were suitable for all further analyses. Adopting the coarse mesh will enabled

calculations over a wider range of parameters within a reasonable period of time

without compromising on accuracy within the context of experimental data available.
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(a) WT comparison of efferent lymphatic flow for three meshes.
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(b) WT comparison of afferent lymphatic pressure for three meshes.
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(c) PLT comparison of efferent lymphatic flow for three meshes.
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(d) PLT comparison of afferent lymphatic pressure for three meshes.

Figure 4.11: Results of mesh refinement study. The finest mesh is 1, the coarsest mesh
is 4. The red lines shows the experimental measurement accuracy and the green lines
show ± 1 standard deviation, based on the experimental data from four nodes with
efferent lymphatic pressure 0 Pa from Adair and Guyton [1985].
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4.3.5 Parameter Optimisation

In order to estimate the values that best fit the data of Adair and Guyton [1985] for

the average permeability, κa, hydraulic conductivity, Lp, and colloid osmotic pressure

difference, ∆π, a Kriging algorithm was used. Kriging is an iterative method that

interpolates known function values to estimate an optimal parameter set [Krige,

1951]. This Kriging was implemented in Matlab [Forrester et al., 2008] and was run

using the COMSOL with Matlab LiveLink application. Initially arbitrary values

for the parameters were tested in order to approximate appropriate bounds used

within the Kriging algorithm. Three values were chosen based on these initial tests

for each of the parameters, κa, Lp and ∆π. From these, 27 sample points (27 sets of

three parameter values) were estimated in COMSOL and they provided the initial

known function values for the objective function in the Kriging algorithm. The

error/objective function, E, used two least squares terms; one for the afferent pressure

and the other for the efferent flow rate. Thus, E, was calculated as,

E =

6∑
j=1

(pjin − p̃
j
in)2(

sjp
)2 +

6∑
j=1

(F jout − F̃
j
out)

2

10
(
sjf

)2 (4.8)

where pjin is the experimental mean afferent pressure at the jth efferent pressure,

p̃jin is the afferent pressure calculated by the model for the same efferent lymphatic

pressure, sjp is the experimental standard deviation afferent pressure at the jth efferent

pressure, F jin is the experimental mean efferent flow rate for the jth efferent pressure,

F̃ jin is the efferent flow rate calculated by the model at the same efferent lymphatic

pressure, and sjf is the experimental standard deviation for the efferent flow rate at

the jth efferent lymphatic pressure. The aim of the Kriging algorithm was to minimise

the objective function over a range of values of Lp, ∆π and κa, thus minimising the

difference between the experimental data and the model results. Both the afferent

pressure and the efferent flow rate were used because the hydraulic permeability of

the blood vessels, Lp, and the colloid osmotic pressure difference, σ, had only a small

affect on the afferent pressure but a large affect on efferent flow rate. However, the

average permeability, κa, had a large affect in the afferent pressure and a small affect

on the efferent flow rate.

Two optimisation methods within the Kriging algorithm were used to estimate the

minimum function value for E. Initially, a predicted function was interpolated from

the known function values. The first method (local optimisation) found the minimum

point of the predicted function. The second method (global optimisation) found the

point at which the predicted function had the maximum estimated error. These two

new points were estimated by the COMSOL model and then the new function values

were interpolated with all of the existing points to update the predicted function (one

iteration). The number of iterations for the Kriging algorithm was fixed due to the
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computational time required. Each iteration required approximately 30 minutes run

time and the computational time for the entire process was approximately 40 hours.

This allowed 81 total sample points to be estimated. The value of E was found to

converge within the number of iterations.

Adair et al. [1982] hypothesised that the increase in protein concentration in the

interstitium of the lymph node is 98% due to fluid transfer. If we assume that 100% is

due to fluid transfer, this implies that the blood vessels within the node must absorb

fluid, in order to increase the concentration of protein in the lymph node interstitium.

This hypothesis required Jvel < 0 for which, a further assumption that colloid osmotic

pressure difference should be greater than the mean venous pressure is required. The

venous pressure was assumed to be 973 Pa, the mean venous pressure measured by

Adair and Guyton [1985]. In order for Jvel < 0, it can be seen from Starlings equation

(4.3), that (pv − p) − σ (∆π) ≤ 0, and therefore (pv − p) ≤ σ (∆π). Considering

the limit where p = 0 and σ = 1, pv ≤ ∆π. Therefore, ∆π ≤ 973 Pa. In Adair

et al. [1982], the mean equilibrium colloid osmotic pressure difference (when there was

no flow across the blood vessel walls) from eight dog lymph nodes was calculated as

1187± 279, which showed this to be a reasonable assumption.

4.3.6 Varying Lymph Node Tissue Permeability

The grey scale variations in the images contained information about the density of

the material within the lymph node. Therefore, these variations can be used as a

indicator of permeability, i.e. the lighter the grey scale the denser the material, the

lower the permeability. This was integrated into the model by relating the grey scale

to permeability, κ, with a linear relation, equation (4.4).

WT PLT
k0 k1 k0 k1

Maximum 6.2086× 10−11 6.2096× 10−11 6.8988× 10−11 6.8998× 10−11

Medium 3.1043× 10−11 4.9960× 10−11 3.4494× 10−11 5.1756× 10−11

Constant 0 3.7825× 10−11 0 3.4515× 10−11

Table 4.2: Parameters for varying permeability for nodes.

The average grey scale of the lymph node images, G (no units), was found using

Matlab. After finding the average permeability using Kriging, κa (m2), the grey scale

was related to the permeability by a linear relation that passed through the points

(G, κa) and
(
1, 10−14m2

)
. This was the maximum gradient. The medium gradient

was a linear relation that passed though (G, κa) and
(
1,
(
κa + 10−14m2

)
/2
)
. The

parameters used are shown in table 4.2 and the relations are shown in figure 4.12.

With this implementation, it was now possible to examine the flow through the
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Figure 4.12: Graphs showing permeability to grey scale relations.

lymph nodes for two different distributions of the permeability and yet ensure that

the average permeability was consistent with the results obtained using the kriging

procedure (and therefore the experimental data).

4.4 Results and Discussion

For the parameter estimation using the Kriging algorithm, the error value, E, was

used to evaluate the goodness of fit between the experimental data and the model

results. The parameter set which resulted in the lowest error value, Emin, was selected

as the optimal parameter set for the data. From the Kriging algorithm with the

assumption ∆π ≥ 973 Pa, it was found that the best fit resulted when ∆π = 973 Pa

with E = 15.8. The results for the WT node in 4.13 show that although there is good

agreement for the afferent pressure, the efferent flow has a much shallower gradient

than is observed in the experiments.

Therefore assumption that ∆π ≥ 973 Pa was relaxed to ∆π ≥ 0, i.e. the osmotic

pressure difference had to be positive. With this relaxed condition, the model

produced results that are similar to the experiments, see figure 4.14. This shows that

the results from the model at low efferent pressures and the experimental data are

not consistent with the hypothesis in Adair et al. [1982], because extravasation is

occurring across the walls of the HEVs in the model, not absorption. The optimal

value of ∆π = 341 was found by the model, with an error value is Emin = 9.

The gradient of the efferent pressure to efferent flow rate was more similar to the

experimental data. The average permeability of the lymph node tissue, κa = 3.8 ×
10−11, was 5.2% higher than the ∆π ≥ 973 Pa limited case and the hydraulic

conductivity of the HEVs was 149% higher but the same order of magnitude, 5.1 ×
10−8 m/Pa·s compared to 2× 10−8 m/Pa·s.
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Figure 4.13: Blue line shows mean values from experiments on four nodes. Error bars
show one standard deviation. Green dots show model results for case where ∆π > 973
Pa. Emin = 15.867 (no units), κa = 3.5959 × 10−11 m2, Lp = 2.0473 × 10−8 m/Pa·s,
∆π = 973 Pa
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Figure 4.14: WT node. Emin = 8.9876 (no units), κa = 3.7825 × 10−11 m2,
Lp = 5.1113 × 10−8 m/Pa·s, ∆π = 341 Pa. Blue line shows mean values from
experiments on four nodes. Error bars show one standard deviation. Green dots show
model results for limited case.

For the PLT node, the Kriging algorithm was also used for ∆π ≥ 0, with Emin = 9,

the result can be seen in figure 4.15. The values for κa and Lp were similar to the WT

node, the value of ∆π, 553 Pa, is about 200 Pa higher. The results are shown in figure

4.15.

Fluid flow stream tubes are plotted in figure 4.16 to show the flux through the

node for efferent lymphatic pressure, 0 Pa. Stream tubes are curves that the

velocity vectors are tangential to and have an area which was define, in this case,

as proportional to the fluid flux. For the highest efferent lymphatic pressure, 2170

Pa, there are fewer stream tubes at the efferent lymphatic than the node for the

lowest efferent lymphatic pressure, 0 Pa. The value of Jvel changed for the different
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Figure 4.15: PLT node. Emin = 9.0295 (no units), κa = 3.4515 × 10−11 m2,
Lp = 4.3304 × 10−8 m/Pa·s, ∆π = 553 Pa. Blue line shows mean values from
experiments on four nodes. Error bars show one standard deviation. Green dots show
model results for limited case.

Figure 4.16: Stream tubes for WT node. Efferent pressure = 0 Pa. Scale bars = 250
µm.

efferent lymphatic pressures. For the two lowest pressures, the flow direction was

out of the HEVs. For the other four pressures, the flow was into the vessels. This

implied that for some efferent lymphatic pressures 270 Pa< pout <697 Pa some flow

would be absorbed by the HEVs and some will be extravasated. It can be shown

that this occurs for all the efferent lymphatic pressures used in this study, see figure

4.17. The red HEVs surfaces show where fluid is leaving the blood vessel and entering

the lymph node, whereas the blue surfaces show where fluid is entering the blood

vessels from the interstitium. For efferent lymphatic low pressures, figures 4.17a and

4.17b, the majority of the HEVs have fluid extravasation into the node. For higher

efferent lymphatic pressures figures 4.17c to 4.17f, the majority of the HEVs have fluid
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entering the vessels from the node.

(a) Efferent pressure = 0
Pa

(b) Efferent pressure =
270 Pa

(c) Efferent pressure = 697
Pa

(d) Efferent pressure =
1103 Pa

(e) Efferent pressure =
1653 Pa

(f) Efferent pressure =
2170 Pa

Figure 4.17: Flow entering and leaving HEVs for PLT node. Red shows where fluid is
leaving the blood vessels and entering the node. Blue shows where fluid is leaving the
node and entering the blood vessels. As the efferent lymphatic pressure increases more
of the fluid is absorbed by the HEVs.

Two varying permeability cases were modelled and compared to the constant case.

The results show that the inclusion of a gradient for the permeability caused more

flow through the centre of the node and less round the outside, as seen in figure

4.18. The varying permeability cases slightly lowered the flow rate for each efferent

lymphatic pressure. This implies that the HEVs are absorbing more fluid. This is a

result of the higher permeability values for the node tissue, as shown in figure 4.19.

The average permeability of the interstitium was estimated as 10−11 m2 by optimising

the image based model of a mouse lymph node to the experimental data from canine

lymph nodes [Adair and Guyton, 1985]. This permeability was comparable to that

of mouse tail skin, blood clot and mesentery [Swartz and Fleury, 2007]. Relating

the permeability linearly to the grey scale resulted in more flow through the centre
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Figure 4.18: Comparison of the flux percentage difference though different annuli
(shown in images in pink) through central 2D plane of lymph node. Values are
normalised to constant results for comparison, hence all constant values are 0.
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Figure 4.19: WT Max Permeability. Error=9.8684

of the node than the constant permeability case. The images used to create the

model did not clearly show some of the structural detail that has been described in

the literature. Within the lymph node, beneath the capsule is the subcapsular sinus

[Ohtani and Ohtani, 2008]. This is thought to be an area of low resistance to the flow,

however it was not clearly shown in the images used for this study. To resolve this

issue a follow up study using high resolution micro computed tomography images,

which show more structural detail, is required.

The values of Lp found as part of the parameter optimisation were three orders of

magnitude higher than the values for capillaries found in Renkin and Michel [1984].

Since only the HEVs were modelled, the value of Lp had to be higher, the vessels

must allow more fluid to cross the wall, so that the same amount of flow across the

blood vessel wall in the experiment, which will have many more blood vessels, could

be achieved by the model.

Initially it was assumed that the increase in protein concentration was caused by the

fluid being absorbed into the HEVs, and therefore the value Jvel < 0. However, it was

possible to get a much better fit, Emin = 9 compared to Emin = 15, for the model

to experimental data by removing this limitation. Hence, the original assumption was

inaccurate. However, the parameter fitting had been able to account for the behaviour

of the efferent flow rate as the efferent pressure increase, however it was not able to

reproduce the curve of the efferent pressure verses efferent flow rate. This implies that

the fluid flow dominates this behaviour. The model can be extended in the future

by including a convection-diffusion expression for the proteins. This may cause the

model to exhibit the nonlinear behaviour as in the experimental data. The model can

be developed to include a convection/diffusion model for the protein transport. This

will allow investigation of the colloid osmotic pressure which it was not possible to

capture in the current model. This will also introduce a time-dependent variable to

the model, which will allow investigation of transient effects. The model does capture
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the main profiles of the afferent to efferent pressure relations and the efferent flow rate

to efferent pressure. This shows that the fluid flow is the dominant behaviour which

agrees with the hypothesis in Adair et al. [1982].

Considering the grouping Lpσ∆π (m/s) and taking the largest value of Lp = 6.7 ×
10−10 m/(Pa·s) from Renkin and Michel [1984] and σ = 0.9 from Levick [2009], the

value for the grouping is Lpσ∆π = 1.3× 10−6 m/s. For the WT node, using the values

for the optimised model, this value is Lpσ∆π = 1.57×10−5 m/s and for the PLT node,

Lpσ∆π = 2.16 × 10−5 m/s. These values found for the optimised models are an order

of magnitude larger than calculated using the values from Renkin and Michel [1984]

and Levick [2009]. In order to make the model values the same order of magnitude

as the literature, the value of σ would need to be less than 0.57 for the WT node or

0.42 for the PLT node. This implies that the HEVs are more leaky than capillaries. If

a lower value of σ were used, a higher values of ∆π would be required to achieve the

same fit to experimental data as was achieved from the Kriging algorithm. This would

mean that the model values of ∆π could be more similar to the value estimated from

Adair and Guyton [1985], 2080 Pa.

The HEVs hydrostatic pressure was fixed at 973 Pa, as calculated as the mean of the

venous pressure from the experiments from Adair and Guyton (1985). The lymph

node contains arteries, capillaries and veins, so it is expected that the hydrostatic

pressure of the blood vessels should vary throughout the node. The pressure in the

veins is lower than the pressure in the arteries, therefore, if the average blood pressure

was found within the node it is likely to be higher than the venous pressure measured.

The optimised value of Lp found by Kriging is two orders of magnitude higher than

the values recorded in literature. If the value of Lp from literature was used, the

HEVs hydrostatic pressure, pv, would need to be increased by two orders of magnitude

is order to produce the same Jvel currently implemented in the model.

4.4.1 Summary

This chapter describes an image based computational model of fluid flow through

a lymph node. The model has related the grey scale values of the images to the

permeability of the lymph node tissue with two different linear relations and these

were compared to a case where the permeability in the node interstitium was

constant.

In the next chapter 5, similar methods will be applied to computed tomography

images of lymph nodes created using synchrotron radiation. These images show more

detail of the lymph node parenchyma and this will affect the fluid flow pathways.





Chapter 5

Micro-Computed Tomography

Image Based Modelling of Lymph

Nodes

In this chapter a computational model of a fluid flow through a lymph node based on

computed tomographic images will be described. To begin, computed tomography

will be described and literature about the imaging of soft tissue using this technique

will be reviewed. Techniques for creating artificial blood vessel networks will also be

investigated. The methods used to create the model will be described and the results

presented. Finally, the results will be discussed.

5.1 Literature Review

5.1.1 Computed Tomography

Computed tomography (CT) is an imaging method that enables the user to construct

a three dimensional image stack of a sample. There are different CT systems, however

here the focus will be placed on synchrotron radiation computed tomography (SRCT).

Some applications of SRCT will be reviewed, but first SRCT will be described in more

detail and image reconstruction will be described.

A generalised SRCT set up can be seen in figure 5.1. The source emits a

monochromatic beam of x-rays, which are attenuated as they pass through the

sample and then measured by the detector. The detector is made up of two parts: a

scintillator, which converts the x-rays into visible light, and a photo detector, which

creates projections of the visible light. The sample rotates and the detector outputs

a projection for each angle. These projections are reconstructed to produce image

139
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stacks, a series of 2D images that represent the 3D image, where the grey scale of each

pixel represents the x-ray absorption of the corresponding point in the sample [Landis

and Keane, 2010].

Source

Detector

Sample

Rotation Stage

Figure 5.1: Sketch of CT set up.

Different reconstruction algorithms have been developed to convert the projections to

image stacks. Here, the concept of Filtered Back Projection (FBP) will be explained

using a simple example. Consider a sample made up of two cylinders within a third

cylinder and a detector with only one row of pixels. Two projections are made, with

the sample rotated by 90 degrees for the second projection, see figure 5.2. These

projections are projected back along the length of the beam, see figure 5.3. The

projections could then be summed together to calculate the intensities, as in figure

5.4. However, although the mathematics for this is relatively simple, it is expensive

in terms of computational time and memory. Therefore, the FBP algorithm uses a

Fourier transformation [Hsieh, 2009].

(a) Projection 1

(b) Projection 2

Figure 5.2: Two projections
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(a) Projection 1

(b) Projection 2

Figure 5.3: Back projections

Projection 1

Projection 2

Figure 5.4: Back projections summed together



142 Chapter 5 Micro-Computed Tomography Image Based Modelling of Lymph Nodes

In an ideal world, performing a Fourier transformation on a projection would result in

a line. However, this would require infinitely many scans. Therefore, when the discrete

scans are transformed into Fourier space, the scan is stretched resulting in a strip

in Fourier space. Each of these strips is weighted by a function, ω, that lowers the

intensity in the centre and increases it at the outer edge, i.e. the energy is equalised.

Once all the strips have been assembled in Fourier space, the inverse transform of

the projections in Fourier space results in the reconstruction described in figure 5.4.

The transformation to Fourier space means that at the outer edges the projections

Projection 1

Projection 2

Figure 5.5: Transform of projections into Fourier space with weight function.

are spaced further apart, they are stretched further, and this causes more errors.

Therefore, many projections must be made to reduce this source of error [Hsieh, 2009].

Producing good scans of soft tissue samples with CT is difficult due to the low

x-ray contrast of the samples. Therefore phase contrast is utilised by moving the

detector further away from the sample. As the x-rays pass through an object they are

refracted, see figure 5.6. This increases the intensity.

The phase must be retrieved before the projections are reconstructed. Several

methods have been developed for this, although they follow a similar procedure as

described by Burvall et al. [2011]:

1. Take the intensity, I(r), as a function of position, r, on the detector

2. Calculate a function, g (I(r)), which varies depending on which method is being

used

3. Calculate the Fourier transform, F , of g(I) giving F (g(I))
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Figure 5.6: Phase created by the refraction of x-rays at the edges of the object. Based
on figure from Burvall et al. [2011]

4. Multiply by a method dependent filter, H(w), where w is the spatial frequency

5. Calculate the inverse Fourier transform resulting in gF (r)

6. Calculate function f(gF ) to get the phase distribution φ(r)

7. Calculate the Fourier transform of φ(r)

8. Multiply by the function, ω

9. Calculate the inverse Fourier transform

This results in filtered back projection utilising the phase from the image. Here the

method developed by Paganin et al. [2002] is used.

SRCT has been used to visualise various biological tissues. Chugh et al. [2009] imaged

the brains of mice to investigate the cerebral blood volume. They perfused the blood

vessels with Microfil so that they contrasted with the surrounding brain tissue.

Tschanz et al. [2014] imaged the development of post natal rat lungs. They noted

that due to the embedding process the samples shrunk by an average of 63.2%. The

authors used images to measure the alveoli size at 4, 10, 21 and 60 days, applying

a correction term to account for the shrinkage. Fratini et al. [2015] used SRCT with

phase contrast to image the murine spinal cord. They were able to visualise the grey

and white matter of the spinal cord and the vascular network. Bonanno et al. [2015]

similarly used SRCT with phase contrast to image a whole mouse heart. They were

able to image the whole heart at high resolution, allowing for the identification of

structures as small as 20 µm. The authors measured the diameter and all thickness

of the coronary arteries.

5.1.2 Computational Creation of Blood Vessel Networks

In the CT scans of the lymph nodes it is not possible to trace the blood vessels

through the node. The blood vessels are an important site of fluid transfer into and
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out of the lymph node. Some methods of creating artificial blood vessel networks have

been created.

Murray [1926b] assumed that the vascular system was a series of pipes that minimised

the total work, E, required for a section of artery. The work required was assumed to

be the sum of power lost due to friction and the energy required to maintain a certain

volume of blood,

E =
f2l8η

πr4︸ ︷︷ ︸
friction

+ blπr2︸ ︷︷ ︸
maintainance

, (5.1)

where f is the rate of blood flow, l and r are the length and radius of the blood

vessel respectively, η is the viscosity of blood and b is the cost of blood maintenance.

Finding the minimum of this equation results in the relation,

b =
2f28η

π2r6
(5.2)

From this, the author determined that in order for the work to be minimised the flow

must be proportional to the radius, f = kr3 where k =
√

π2b
16eta .

θ1

θ2

r0

r1

r2

Parent

Left

Right

Figure 5.7: Sketch of blood vessel bifurcation

Consider a arterial tree of three branches, as shown in figure 5.7. The flow in the left

and right branches must be equal to the flow in the parent branch, i.e.

f0 = f1 + f2. (5.3)

It follow from this that the relationship between the radii of the branches is,

r3
0 = r3

1 + r3
2. (5.4)

By rearranging equation (5.2) for f and substituting it into (5.1), Murray [1926a] was

able to show that,

KE = lr2, (5.5)
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where K = 3
2πb.

If the length of the parent branch is extended by a short distance, δl0, the amount of

work for the parent branch increases, KE0 = l0r
2
0 + δl0r

2
0. The amount of work for the

left and right branches decreases, KE1 = l1r
2
1−δl0r2

1cosθ1 and KE2 = l2r
2
2−δl0r2

2cosθ2,

respectively. Applying a similar argument to extending the left and right branches by

δl1 and δl2 respectively, and using the principle of virtual work1, three equations are

obtained,

δl0r
2
0 = δl0r

2
1 cos θ1 + δl0r

2
2 cos θ2, (5.6)

δl1r
2
1 = −δl1r2

2 cos (θ1 + θ2) + δl1r
2
0 cos θ1, (5.7)

δl2r
2
2 = −δl2r2

1 cos (θ1 + θ2) + δl2r
2
0 cos θ2, (5.8)

which when equation (5.6) is divided by δl0, equation (5.7) is divided by δl1, and

equation (5.8) is divided by δl2, gives

r2
0 = r2

1 cos θ1 + r2
2 cos θ2, (5.9)

r2
1 = −r2

2 cos (θ1 + θ2) + r2
0 cos θ1, (5.10)

r2
2 = −r2

1 cos (θ1 + θ2) + r2
0 cos θ2. (5.11)

These equations are rearranged to find,

r2
0 = r2

1 cos θ1 + r2
2 cos θ2, (5.12)

cos θ1 =
r2

1 + r2
2 cos (θ1 + θ2)

r2
0

, (5.13)

r2
1 cos (θ1 + θ2) = r2

0 cos θ2 − r2
2. (5.14)

Substituting equation (5.13) and (5.14) into (5.12) gives,

r4
0 = r4

1 + r2
1r

2
2 cos (θ1 + θ2) + r2

0r
2
2 cos θ2, (5.15)

r4
0 = r4

1 + r2
2r

2
0 cos θ2 − r4

2 + r2
0r

2
2 cos θ2, (5.16)

2r2
2r

2
0 cos θ2 = r4

0 − r4
1 + r4

2, (5.17)

cos θ2 =
r4

0 − r4
1 + r4

2

2r2
2r

2
0

. (5.18)

1when the total work is at a minimum then a virtual change in the system does not change the
total work Murray [1926a]
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Substituting equation (5.18) into (5.14) gives,

r2
1 cos (θ1 + θ2) = r2

0

(
r4

0 − r4
1 + r4

2

2r2
2r

2
0

)
− r2

2, (5.19)

r2
1 cos (θ1 + θ2) =

r4
0 − r4

1 + r4
2

2r2
2

− r2
2, (5.20)

cos (θ1 + θ2) =
r4

0 − r4
1 + r4

2 − 2r4
2

2r2
1r

2
2

, (5.21)

cos (θ1 + θ2) =
r4

0 − r4
1 − r4

2

2r2
1r

2
2

, (5.22)

and substituting equation (5.22) into (5.13) gives,

cos θ1 =
r2

1 + r2
2 cos (θ1 + θ2)

r2
0

, (5.23)

cos θ1 =
r2

1

r2
0

+
r4

0 − r4
1 − r4

2

2r2
0r

2
1

, (5.24)

cos θ1 =
2r4

1 + r4
0 − r4

1 − r4
2

2r2
0r

2
1

, (5.25)

cos θ1 =
r4

0 + r4
1 − r4

2

2r2
0r

2
1

. (5.26)

This shows that the branching angles can be calculated from the radii of the branches

[Murray, 1926a].

Schreiner and Buxbaum [1993] create a two dimensional network of blood vessels.

The area of tissue to be perfused is defined as a circle with area Aperf and radius

rperf . They state that the total perfusion flow, Qperf should be evenly distributed

over the whole area. The authors ensure this by splitting Aperf into Nterm equally

size ‘subareas’ which represent micro-circulatory black boxes and design the network

to supply equal flow, Qterm, at equal pressure, pterm [Schreiner and Buxbaum, 1993].

In order to optimise the vessel network, Schreiner and Buxbaum [1993] minimise the

total blood volume within the tree.

Schreiner and Buxbaum [1993] define the bifurcation rule to be,

rγ(i) = (r(Li))
γ + (r(Ri))

γ (5.27)

where r(i) is the radius of branch i, γ is a constant parameter, Li and Ri are the left

and right daughter branches, respectively. If γ = 3 this is the same rule as defined by

Murray [1926b], however Schreiner and Buxbaum [1993] allow different values for this

parameter, as long as it is constant for the whole tree.

The algorithm of Schreiner and Buxbaum [1993] proceeds as follows:
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1. Scale the perfusion area down so that the area is equal to one micro-circulatory

black box, i.e. Aperf/Nterm.

2. Select a point on the boundary of the perfusion area. This will be the proximal

end of the first branch.

3. Generate a random point within the circle, which becomes the distal end of the

first branch.

4. Calculate the radius of the first branch, using Poisuille’s Law so that the flow is

equal to Qterm.

5. For i = 2 to Nterm

(a) Increase the perfusion area so it is equal to i micro-circulatory black boxes,

i.e. iAperf/Nterm, scaling the first branch, both the length and the radius,

accordingly.

(b) While d < dthresh and iter < 10.

i. Generate a random point within the perfusion area.

ii. Set iter = iter + 1

iii. Calculate the minimum distance from previous segments, d.

iv. If iter = 10, calculate dthresh = 0.9dthresh and reset iter = 1.

(c) For j = 1 to i− 1

i. Select branch j and split it in half. Name the parent of the split

branch, iold, the half still connected to the parent branch ibif and the

other half iconn, see figure 5.8.

ii. Connect the new point to the point at which branch j was split and

call this new branch inew.

iii. Calculate rγ(ibif ) = rγ(iconn) + rγ(inew) and the bifucation ratio

βl(ibif ) = r(iconn)/r(ibif ).

iv. For k = j − 1 to 1

A. Calculate bifurcation ratio βl(k), known as ‘scaling the tree’.

v. Optimise the location of the new bifurcation, ‘scaling the tree’ each

iteration, to minimise the volume.

vi. Record the optimised volume and remove the new branch.

(d) Select the branch that connects to the new point and results in the smallest

volume without intersecting any previous branches as the new branch.

(e) ‘Scale the tree’

Schreiner and Buxbaum [1993] use the model to create the vascular bed of the left

anterior descending coronary artery in humans. They repeated each model run ten
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iold

ibif

iconn

inew

Figure 5.8: Sketch to illustrate algorithm for adding a new branch, corresponds to
step 5(c)i.

times using different random numbers. They found good correlation between the mean

model diameters and diameters measured from corrosion cast for the initial branch,

the branches resulting from only 1 bifircation and the branches results from more

than 10 bifurcations. However, those from between 3 and 10 bifurcations were found

to have diameters smaller than the measured values [Schreiner and Buxbaum, 1993].

They also used the algorithm to create the vascular bed of the left anterior descending

coronary artery in cats and used this to compare the pressures within the vessels to

experimental data. The authors found that adjusting the value of γ to 2.55 caused the

pressure profile at the distal ends of the branches to be similar to experimental data.

Karch et al. [1999] developed the algorithm for three dimensions and allowed different

terminal pressures. The mean diameters of the vessels resulting from 1 to 3 and more

than 7 bifurcations showed good correlation to the experimental data, however the

branches resulting from 4 to 7 still underestimate the diameters [Karch et al., 1999].

Zamir [2001] took a different approach using a fractal Lindenmayer system (L-system).

An L-system has a collection of symbols that are combined to make strings and a

group of production rules that rewrite a symbol with a string. Before describing the

L-system designed by Zamir [2001], the parameters used are presented.

Zamir [2001] authors define a bifurcation index as,

α =
r2

r1
. (5.28)
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When α = 1 the diameters of the left and right branches are equal. Zamir [2001] used

equation (5.4) to define diameter ratios in terms of α,

λ1 =
r1

r0
=

1

(1 + α3)
1
3

(5.29)

λ2 =
r2

r0
=

α

(1 + α3)
1
3

. (5.30)

The equations for the angles θ1 and θ2, (5.26) and (5.18) can also be expressed in

terms of α,

cos θ1 =

(
1 + α3

) 4
3 + 1− α4

2 (1 + α3)
2
3

(5.31)

cos θ2 =

(
1 + α3

) 4
3 − 1 + α4

2α2 (1 + α3)
2
3

. (5.32)

The L-system created by Zamir [2001] requires the parameters: L, the length of

the branch; W , the width of the branch; and θ1 and θ2, the angle of rotation in the

clockwise and anticlockwise directions respectively. The L-system is formed of an

initial axiom, ω, and a production rule, p,

ω : X (L0,W0) (5.33)

p : X (L,W ) 7→ F (L,W ) [− (θ1)X (λ1L, λ1W )] [− (θ2)X (λ2L, λ2W )] (5.34)

where X has no graphical interpretation, it acts as a place holder, L0 and W0 are the

length and width of the first branch, respectively, which must be stored, F creates a

horizontal line of unit length, [ stores the current branching point and ] returns to

the previous branching point, + rotates the direction clockwise by the angle θ1 and

− rotates the direction anticlockwise by the angle θ2. Since λ1, λ2, θ1 and θ2 are all

functions of α, changing the value assigned to α results in different tree structures.

Galarreta-Valverde et al. [2013] extended the method from Zamir [2001] by including

two extra symbols. ∗ and / that rotates the direction clockwise and anticlockwise,

respectively in the plane orthogonal to the plane in which + and − operate. The

author’s also included a boundary within which the network could develop by

including a verification step to ensure each newly created vessel was contained within

the boundary. Galarreta-Valverde et al. [2013] used their algorithm to create synthetic

MRI scans within a liver and a thigh.
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5.1.3 Summary

In this section SRCT and two methods of reconstruction have been reviewed.

Different methods of constructing artificial blood vessels have also been reviewed. In

the next section, the methods using for imaging the lymph nodes using SRCT and

constructing blood vessel networks are described.

5.2 Methods and Results

5.2.1 Lymph Node Imaging

As preliminary work for the imaging of the lymph nodes, several scans of different

nodes were made. The nodes have been prepared in three different ways, perfused,

stained and unstained; to find the best method that would lead to a good quality

scan. The nodes were prepared by Geraldine Clough and the scans made with

Berit Plumhoff. The details of these initial scans can be found in the appendix

A.4. The unstained lymph nodes were chosen as the best option for CT scanning.

Mesenteric nodes were dissected from mice. They were fixed in formalin, dehydrated

in methylated spirit and embedded in wax. The scans were made at the SLS. Three

unstained mesenteric nodes were scanned. They had a resolution of 0.69 µm and

were imaged on the TOMCAT beamline with a propagation distance of 60 mm. The

exposure was 15 ms and 1501 projections were made for a 180◦. One of the nodes was

imaged using a 360◦ scan with 3001 projections as it was difficult to locate the node

within the wax block. The nodes were reconstructed using FBP and using Paganin

phase retrieval [Paganin et al., 2002] and then FBP. A comparison of the two results

can be seen in figure 5.9. The FBP only reconstruction shows small length features

within the node, which could possibly be the lymphocytes that make up the tissue of

the node. The higher contrast of the Paganin and FBP reconstruction shows larger

length scale features. It is possible to pick out structures that appear to be B cell

follicles, lymphatic channels, the dense cortex and less dense paracortex. It would

be necessary to preform histology on the sample to confirm these observations. It is

equally difficult in both scans to identify the blood vessels within the node, hence the

need to construct the vessels computationally.

5.2.2 Image Processing

One of the node scans was selected for image processing and modelling. The

brightness and contrast of both the absorption, reconstructed using FBP without

phase information, and phase, reconstructed using FBP with phase information

obtained using the algorithm by Paganin et al. [2002], scans were automatically
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(a) FBP only

(b) Paganin and FBP

Figure 5.9: Comparison of FBP and Paganin and FBP reconstructions of the lymph
node.

adjusted using the ImageJ tool. The whole lymph node was segmented using the

phase reconstructions using thresholding. Any additional material selected was

removed by cropping and manually removing the excess. A mask was created of the

segmented node and this was used to remove everything outside of the node from the

absorptions image stack, so that the node was on a white background. Each slice from

the absorption image stack was then saved as .png files for use in COMSOL.

During this scanning session it was found that the scintillator was bent. This caused

the lower half of the scan to be out of focus, which effected the grey scale values, see

figure 5.10. A test was carried out on the processed images to see if this would have

an affect on the final model. Results from this test are described below.

5.2.3 Scintillator Test

5.2.3.1 Method

Two cubes of 50 voxels3 were taken from the middle of the node, CC2LN, one from

within the section affected by bent scintillator and one from outside of this section, see

figure 5.11.
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Figure 5.10: Slice through node showing area where region is affected by the bent
scintillator. The background has been made white for clarity. Arrow indicated where
change occurs.

Figure 5.11: Regions used in scintillator test
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A cube of 34.5 µm3 (equivalent to 50 voxels3) was constructed in COMSOL, see figure

5.12. The cube was meshed with quadratic elements with edge length 0.69 µm. An

inlet flow rate of 5 µL/min was assigned to the top boundary and an outlet pressure

of 0 Pa was set on the base. The image stack was used to relate the grey scale to the

permeability using the values of k0 and k1 found for the PLT node in chapter 4, table

4.2.

Figure 5.12: Mesh used for scintillator test.

5.2.3.2 Results

(a) Straight (b) Bent

m/s m2

Figure 5.13: Results for comparison of straight and bent scintillator regions. Grey
colour bar shows permeability, colours show velocity magnitude.

The results from the two cubes can be seen in figure 5.13, where stream lines have

been coloured with the magnitude velocity and slices through the cubes show

the permeability. Comparing the two figures 5.13a and 5.13b, it can be seen that

the straight result spans a wider range of values than the bent results, i.e. there

are darker colours in the straight result compared to the bent. A few values were
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chosen to compare the results from the straight area and the bent area: average

velocity, average permeability, maximum velocity and outlet flow rate. The results

are presented in table 5.1. It was found that all the values varied less than 0.5%.

Therefore, the affect of the bent scintillator was considered negligible.

Average
Velocity (m/s
×10−2)

Average
Permeability
(m2 ×10−11)

Maximum
Velocity (m/s
×10−2)

Outlet Flow
Rate (kg/s
×10−8)

Straight 7.03 3.99 13.6 8.33
Bent 7.02 4.00 13.7 8.33

Percentage
Difference

with
Respect to

Straight

0.14 0.24 0.46 9.53 ×10−13

Table 5.1: Comparison of results for cube from in focus area of node (Straight) and
out of focus area (Bent) caused by bent scintillator.

5.2.4 Resolution Study

5.2.4.1 Method

There are some variations as to how the model could be set up, size of the mesh

elements, resolution of the images and the histogram of the grey scales of the images.

To explore the error resulting from these differences, a representative cube was

selected as a subsection of the whole node. This cube was selected so that it contained

one branch of a blood vessel and was 138 µm × 138 µm × 138 µm. Using a subsection

of the volume reduced the amount of computational resources required. An inlet

flow rate of 5.09619 × 104 m/s was applied to the upper face of the cube and an

outlet pressure of 204 Pa was defined on the lower face. These values were evaluated

from the two planes 138 µm apart through the WT node model in chapter 4. These

boundary conditions are illustrated in figure 5.14.

Here, the maximum size of the mesh elements, ∆x, and resolution of the images, ∆y,

is defined as a single parameter, ∆x
∆y . The minimum element edge length was set to

2.39 µm. Mesh sizes were used with ∆x
∆y = 32, 16, 8, 4, 2 and 1.

Three different grey scales were used. One created by the automatic adjustment

from the ImageJ Brightness/Contrast tool to be known as ‘Auto’, figure 5.15a,

another created by cropping the histogram so that all the channels within the node

appear black, and will therefore be assigned maximum permeability, to be known as

‘Black’, figure 5.15b, and a third, where the grey scales of the image were adjusted

so that the histogram was similar to a representative block from the wild type node
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Outlet Pressure

Inlet Flow Rate

Figure 5.14: Boundary conditions for cube model. All boundaries have no flow
condition except those labelled.

modelled in chapter 4, to be known as ‘WT’, figure 5.15c. Representative slices and

the corresponding histograms of the stacks are shown in figure 5.15.

(a) Automatic brightness and
contrast

(b) Histogram cropped so that
channel is black

(c) Adjusted so mean and
standard deviation similar
to a block from the WT node.

(d) Histogram for automatic
brightness and contrast

(e) Cropped histogram (f) Histogram similar to WT
node

Figure 5.15: Different greyscales used to evaluate the affect of different histograms on
the same image set on the flow pathways in the model
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5.2.4.2 Results

The results of the mesh refinement and using the three different grey scales from

figure 5.15 are shown in figure 5.16. The resolution ratio of the mesh to the images,

∆x/∆y, did not have a significant effect on the inlet pressure or outlet flow results.

However the midplane flow, figure 5.16d, is effected. The mesh with resolution

∆x/∆y=4 is chosen as a suitable resolution as it is the coarsest mesh to have a

difference of less than 1%. Therefore it is suitable to use the coarser resolution

∆x/∆y = 4 for all further models. Using the different grey scale values also had little

effect on the results, particularly for finer resolutions. This is due to the fact that the

average permeability for all three is equal. This means that as long as the average

permeability is correct, it is not relevant how the grey scale range has been defined.
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Figure 5.16: Results of different mesh resolutions and image stack histograms.
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5.2.5 Region Study

5.2.5.1 Method

A further study was conducted to investigate the effect of different textures within

the node. Three different regions were used. The regions are highlighted figures 5.17a

and 5.18a. The first was from a region containing channels, i.e. area not packed with

lymphocytes, to be known as ‘Channels’, figure 5.17b, the second from a densely

packed area, known as ‘Dense’, figure 5.17c, and the third a representative area from

the centre of the node, to be called ‘Medium’, figure 5.17d. Representative slices and

the corresponding histograms of the stacks are shown in figure 5.17. The same areas

were selected from the Paganin stack, see figure 5.18.

5.2.5.2 Results

Taking stacks from different areas of the absorption images of the node did not result

in much variation for the inlet pressure, figure 5.19a, outlet pressure, figure 5.19b, or

average permeability, figure 5.19c. It did have an effect on the difference through the

central cut plane, as can be seen in figure 5.19d, however it did not have the expected

effect. It was expected that the channels image stack would allow more flow through

than the medium and dense, but the results show more flow through the medium

stack. This is probably a results of the very similar histograms for the image stacks,

figures 5.17e, 5.17f and 5.17g. The grey scale of the channels does not distinguish

them as different features.

Taking stacks from different areas of the Paganin images of the node resulted in

comparatively more variation for the inlet pressure, figure 5.20a, outlet pressure,

figure 5.20b, and average permeability, figure 5.20c. It affected the flow precentage

difference through the central cut plane as was expected, see figure 5.20d, with the

most flow though the channels image stack. The histogram for the paganin channels

image stack, figure 5.18e, clearly shows two peaks, one which represents the grey scale

of the channels, and the other the greyscale of the surrounding lymphatic tissue.

5.2.6 Blood Vessel Surface Area

5.2.6.1 Method

A fractal L-system was used to create blood vessels within the node. This was

necessary because it was not possible to see many the blood vessels in the CT scans.

The vessels that could be segmented out were used as inputs to the fractal L-system.

The fractal L-system method described here is based on the methods created by



158 Chapter 5 Micro-Computed Tomography Image Based Modelling of Lymph Nodes

Channels

Dense

Medium

(a) Regions shown on absorption image stack

(b) Channels (c) Dense (d) Medium

(e) Histogram of channels (f) Histogram of dense (g) Histogram of medium

Figure 5.17: Different regions used to evaluate the effect of areas of the node on the
flow pathways in the model.
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Channels

Dense

Medium

(a) Regions shown on Paganin image stack

(b) Channels (c) Dense (d) medium

(e) Histogram of channels (f) Histogram of dense (g) Histogram of medium

Figure 5.18: Different regions used to evaluate the effect of areas of the node on the
flow pathways in the model.
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to dense image stack results, hence
dense results is zero.

Figure 5.19: Graphs show how using the image stacks from different regions of the
node from the absorption images to define the permeability affected the flow in a
subsection of the node. The inlet, outlet and average permeability are not affected,
but the flux percentage difference is.

Zamir [2001] and Galarreta-Valverde et al. [2013]. It was implemented as a MATLAB

script, which was adapted from https://courses.cit.cornell.edu/bionb441/

LSystem/Lsystem3Dtube.m.

For a fractal L-system rules are created to define the branching structure. Each

character represents an instruction. Two rules are used to describe the blood vessel

structure,

X 7→ F [−Y ][+Y ] (5.35)

Y 7→ F [/X][∗X] (5.36)

https://courses.cit.cornell.edu/bionb441/LSystem/Lsystem3Dtube.m
https://courses.cit.cornell.edu/bionb441/LSystem/Lsystem3Dtube.m
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Figure 5.20: Graphs show how using the image stacks from different regions of the
node from the Paganin images to define the permeability affected the flow in a
subsection of the node. The inlet, outlet, average permeability and flux percentage
difference are all affected.

where the characters represent the following instructions: X and Y act a place

holders, i.e. nothing happens for these characters, F mean move forward one step,

[ means save the current position, − and + mean rotate by θ degrees clockwise or

anticlockwise, respectively, in the initial plane, / and ∗ mean rotate by θ degrees

clockwise or anticlockwise, respectively, in the plane perpendicular to the initial plane

and ] means return to the previous position. θ is defined as

θ = arccos


((

1 + α3
)4/3

+ 1− α4
)

(
2 (1 + α3)2/3

)
 (5.37)

where α = 1. The points of the segmented vessels ends are used as the start points for
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growing the blood vessels trees. Another point was found approximately 10 µm back

along the vessel length and the unit vector corresponding to the vector between these

two points was defined as the heading vector.

The number of times these rules are used depends on the required number of branch

bifurcations. An example of the rules used for different branch bifurcations are shown

in table 5.2.

Bifurcations Rule

1 F [−Y ][+Y ]
2 F [−F [/X][∗X]][+F [/X][∗X]]
3 F [−F [/F [−Y ][+Y ]][∗F [−Y ][+Y ]]][+F [/F [−Y ][+Y ]][∗F [−Y ][+Y ]]]

Table 5.2: Rules used to create blood vessel trees for different numbers of bifurcations

Using an image from Anderson and Anderson [1975], the vessel length of the first

branch within in the node was estimated. Two initial branches were followed to

find the branches after the bifurcation. These were segmented out, skeletonised and

measured to calculate the length. The image was scaled into micrometers by assuming

the arteriovenous connection was 10.5 µm in diameter. The branches were calculated

to have a mean range of 328 µm. However the standard deviation is large, 288 µm.

(a) Yellow areas show vessels that were
segmented

(b) Skeleton of segmented vessels that were
measured

Figure 5.21: Image of rat lymph node was segmented and skeletonised to measure the
length of the vessels after the first branching point. AVC, arteriovenous connection,
HEV, high endothelial venule, A, artery and MA, metarterioles. Unlabelled arrows
point to cortical and medullary arteriole arcades. These images were published in
Publication title, Vol number, Author(s), Title of article, Page Nos, Copyright ©1975,
American society for investigative pathology; Published by Elsevier Inc; All rights
reserved.

Before a new branch is created, the algorithm checks whether a new end point is

inside the node by checking if the new point has the value of 1 (white) in the image

stack. The algorithm also checks to see if the new branch intersects with any other
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branches of the same tree by solving the simultaneous equations,

xstart + axend = p (5.38)

xistart + bxiend = p (5.39)

where xstart and xend are the start and end points of the new branch, respectively,

a is an unknown parameter, and p is the point of intersection, xstart and xend are

the start and end points of branch i and b is another unknown parameter. If the new

branch and branch i intersect, then p is the point of intersection and a and b are the

parameters that calculate that point. If the branches do not intersect then p, a and b

are returned as empty values.

If the branches are found to intersect it is further checked to see if this intersection

occurs at the end of branch i. If it does, then the new branch is saved and the next

iteration begins. If the new branch intersects with the beginning of branch i, another

check is made to ensure that the new branch will not be the third branch initiated

at that point, since the tree should only develop bifurcations not more. If all of these

checks are passed, the final check is to find out if the intersection occurs within the

length of the branch. The dot product of the vector between the start and end points

of branch i and between the intersection point and the start of branch i is found, i.e.,

c1 =
(
xistart − xiend

)
·
(
p− xistart

)
. (5.40)

If c1 is less than zero, the intersection occurs before the start point and the new

branch can be saved. However, if it is greater than zero, the dot product between the

start and end points of branch i and between the intersection point and the end of

branch i must also be found, i.e.,

c2 =
(
xistart − xiend

)
·
(
p− xiend

)
. (5.41)

If c1 is greater than c2, the intersection occurs after the end point and the new branch

can be saved. However, if not the intersection occurs within the length of the branch.

If the new branch fails this, or any of the previous checks the new branch is discarded

and the next new branch is initiated.

A new tree was initiated at the end points of each segmented branch. After all the

trees were segmented the start and end points of each branch were imported into

an ImageJ macro that created an image stack of the same dimensions as the image

stack of the lymph node. The 3D line tool from the 3D tools plugin was used to draw

white lines of a fixed radius on a stack of black images. The macro could then be

run in ImageJ to create an image stack of the computationally created blood vessels

that was then combined with the masks for the surfaces representing the lymphatic

vessel connections and the mask for the outline of the lymph node. Three trees were
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created of 4, 5 and 6 branches. Three other trees were created by defining start points

and heading vectors randomly. Two of these trees were created with 14 and 28 start

points, respectively, and 6 branches. The third tree was the 28 start point tree where

the diameter of the vessels were increased by 11 µm. The value of Lp for each model

was calculated from the value of Lp × S, where S is the blood vessel surface area, for

the WT node from chapter 4 by dividing by the surface area for the created blood

vessel trees. The models with different branching structures were modelled with a

constant permeability for the lymph node interstitium.

5.2.6.2 Results

The whole node model was calculated using a constant value for the permeability,

for six nodes with the same external geometry, but with different geometries of

blood vessels with different surface areas. The value of Lp for each node is shown in

figure 5.22. The value of Lp for the WT node from chapter 4 has been included for

comparison.
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Figure 5.22: Relationship of blood vessel surface area to the value of Lp, where the
value of LpS from chapter 4 has been assumed.

Figure 5.23a, shows how that inlet pressure increased as the surface area of the blood

vessels increased. This is likely to be due to more fluid being extravastated across

blood vessels with larger surface area, requiring a higher pressure to push the lymph

node interstitial flow towards the outlet or because more blood vessels are closer to

the inlet. In figure 5.23b, it can be seen that the outlet flow rate is similar for all the

blood vessel surface areas. This means that as long as the global value for Lp is chosen

correctly, it is possible to produce the same outlet flow rate regardless of how much of

the blood vessel surface area has been captured.
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Figure 5.23: Results showing how the surface area of the blood vessels affects the inlet
and outlet flow conditions.

It is interesting to note that for the blood vessels with different geometries, i.e. the 4,

5, 6 branch trees and the tree with 14 start points, that the difference is outlet flow

rate is larger than the difference in outlet flow rate between the 28 start point tree

and the 28 start point tree that has been dilated. This may imply that not only is

the surface area of the blood vessels an important factor in fluid transport through

the node, but also the geometry and position of the vessels. This requires further

investigation.

5.2.7 Comparing Image Based Permeability to Constant

Permeability

5.2.7.1 Method

The model with image defined start points and 6 branches was used to compare how

using the Paganin images affected the flow pathways in the lymph node. The same

mesh was used for both models, as well as the same parameter values. The only

difference was using a constant permeability in one model and including the images

to determine the permeability in the other model.

The computational model boundary conditions and material properties were defined

as in chapter 4 for the case where the outlet pressure was equal to atmospheric

pressure, i.e. 0 Pa.

5.2.7.2 Results

The streamtubes in figure 5.24 show that including the image based permeability

causes the velocity to be more variable through the node. Some streamtubes take a
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longer path, note the streamtube on the right of the images, which is due the flow

taking a less resistant path.

mm

mm

(a) Constant Permeability

mm

mm

(b) Image Based Permeability

Velocity

(mm/min)

Figure 5.24: Comparing streamtubes for constant permeability and image based
permeability. The colour and diameter of the streamtubes show the velocity
(mm/min). The blood vessels are coloured white if fluid is being absorbed in the
blood vessel or black if fluid is being extravasated across the walls into the lymph
node interstitium.

To compare these differences quantitatively, the flux through a plane equidistant

between the inlet and outlet, shown in figure 5.25, was evaluated. The results are

shown in figure 5.26. Figure 5.26a shows that the model which used the image based
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permeability causes more flow around the outer sections of the node than the constant

permeability. The high density material in the middle of the node is causing the flow

to take less resistant paths further out. Figure 5.26b shows the percentage of the total

flux through the plane that passes through each annuli. This shows that the annuli

with the highest percentage of flux is the middle annuli with outer radius 414 µm.

These results mean that incorporating the image based permeability into the model

does not cause the majority of the flow to pass around the outer edge of the node,

which would be expected if the subcapsular sinus is considered as the path of least

resistance.

Permability

(m2)

Figure 5.25: Image based permeability of slice through node used for comparing flux
to constant permeability node.

The pressure distribution is similar between the two models, see figure 5.27. The

pressure in the image based permeability model around the outlet is lower than the

constant permeability.

Figures 5.28, 5.29 and 5.30 compare the flow velocity within the node between the

two models. All three figures show that the direction of the flow is similar but that

the velocity of the flow is different. Figure 5.28 is a vertical plane close to the inlet

and outlet. The effect of the inlet and outlet can clearly be see in the flow velocity in

the image from the constant permeability model. The fastest flow takes a direct path

from the inlet to the outlet. The image based model similarly shows the majority of

the fast flow taking a direct path but there is more variability in the flow velocity as

certain areas provide more or less resistance.

Figures 5.29 and 5.30 compare the flow velocity in planes parallel to the plane used

in figure 5.28, but further from the inlet and outlet. The flow in these planes is slower

and it is possible to see in figure 5.29b, from the image based permeability model, that
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(a) Flux percentage difference through annuli. Values normalised to constant
permeability results for comparison, thus all constant values are 0.
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(b) Percentage of the total flux through the plane that passes through each annuli.

Figure 5.26: Comparing flux through different annuli (shown in images below graph)
through 2D plane equidistant between the inlet and outlet.
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(a) Constant Permeability

(b) Image Based Permeability

Pressure (Pa)

Figure 5.27: Pressure distribution through a plane in the lymph node model. The
high pressure, red, indicates the location of the position where the afferent lymphatic
connects to the lymph node and the low pressure, green, indicates where the efferent
lymphatic would leave the node.

near the upper surface, where there are dark areas, that the flow is faster than in the

same area in 5.29a, from the constant permeability model. From descriptions in the

literature, this area could be the subcapsular sinus and figure 5.29b shows that, if the

subcapsular sinus is visualised, using the methods described above the effect can be

captured by the model.

A similar phenomenon can be observed in figure 5.30b. The flow in the lower quarter

of the image has a higher velocity than the flow in the equivalent area of figure 5.30a.

In this area of the node, the presence of medullary sinuses is expected. Figure 5.30b

shows that if the features are visualised in the images, these can have an effect on the

flow using the methods described.
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(a) Constant Permeability

(b) Image Based Permeability

Velocity
(mm/min)

Permeability
(m2)

Figure 5.28: Plane close to inlet and outlet. Comparison of constant permeability
and image based permeability models showing flow velocity in colour of arrows which
indicate the direction of the flow overlaid on the permeability of the plane.
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(a) Constant Permeability

(b) Image Based Permeability
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Permeability
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Figure 5.29: Plane parallel to plane in figure 5.28. Comparison of constant
permeability and image based permeability models showing flow velocity in colour
of arrows which indicate the direction of the flow overlaid on the permeability of the
plane.
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(a) Constant Permeability

(b) Image Based Permeability
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Permeability
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Figure 5.30: Plane parallel to plane in figure 5.28. Comparison of constant
permeability and image based permeability models showing flow velocity in colour
of arrows which indicate the direction of the flow overlaid on the permeability of the
plane
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5.3 Discussion

In this chapter a model of a lymph node has been created using images to define

the geometry and material properties. A resolution study has been carried out,

from which is can be concluded that in order to model the effect of the image based

permeability on the flow it is necessary to have a mesh resolution of 5.5 µm. This

implies that it is not necessary to scan the sample at a voxel size smaller than this,

unless there are smaller features to be identified. It has been shown that Paganin

reconstruction produces an image stack that predicts realistic looking fluid flow

profiles. The number and position of the blood vessels does not significantly effect the

inlet and outlet conditions of the flow as long as LpS is consistent. However, it is not

clear how the position of blood vessels affects the flow direction and it is important to

investigate this further. The image based permeability resulted in more flow around

the outer sections of the node. The direction of the flow is similar in the constant and

image based permeability models however the varying permeability affects the velocity

of the flow at small scales.

Compared to the results in chapter 4, which showed the SPIM image based model

resulted in more flow through the centre of the node, the model based on CT images

shows that the structure of the node causes more flow through the outer section of the

node. In the CT images a lot more of the structure is visible compared to the SPIM

images, where only the stained areas have been visualised. Thus, the more detailed

structure from the CT scans is likely to lead to more realistic results.

After the work on this project had been completed a computational model of a

lymph node was in the final stages of being published. Jafarnejad et al. [2015] used

an idealised three dimensional geometry of a lymph node with one afferent and one

efferent lymphatic vessel. The vessels and subcapsular sinus were modelled as laminar

flow regions and the cortex, follicles and medulla were modelled as porous media using

Darcy’s law with Brinkman’s term. Jafarnejad et al. [2015] used Starling’s equation

to model the flow across the blood vessel boundaries by adapting the conservation

of mass. This was only applied to the T cell cortex area of the model. Jafarnejad

et al. [2015] used the model to investigate the sensitivity of the model parameters.

They found LpS, the hydraulic conductivity of the blood vessel wall and surface

area, increasing the value of LpS sixteen times resulted in 52.6% more fluid being

transferred across the blood vessel walls and into the blood stream. Lowering the

medulla hydraulic conductivity increased the resistance of the node to fluid flow. For

a high blood pressure of 10.5 mmHg, Jafarnejad et al. [2015] found that extravasation

occurred across the blood vessels walls. The authors found that increasing the outlet

pressure by an order of magnitude, increased the amount of flux entering the blood

vessels.
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Jafarnejad et al. [2015] make assumptions about the geometry and fluid behaviour in

the regions created in their model, i.e. they used images to inform them to create an

idealised geometry, they did not use the images directly. In the models presented in

this thesis, such assumptions are not made as the geometry and material properties of

the node are based on 3D image stacks.

The limitations of the study presented in this chapter, are that it was not possible

to visualise the blood vessels using CT scanning at this time. Another limitation is

the processing required for meshing the node results in the mesh not having exactly

the geometry of the node. Here, the solution has been to place the images on a

white background, so that any background within the meshed node presents a high

resistance to the flow. The model does not include a model for protein concentration

within the node, which would have an effect on the fluid exchange across the blood

vessel walls.

The impact of the position of the blood vessels on the flow pathways requires further

investigation. However, it was possible to visualise the blood vessels using SPIM

imaging techniques [Mayer et al., 2012]. Lymph nodes could be prepared so that the

blood vessels are stained and imaged using SPIM and then CT scanned to obtain

the structure of the node interstitium and reconstructed using the algorithm from

Paganin et al. [2002]. The two image stacks could then be combined to create a model

with realistic blood vessel geometry and variable interstitium permeability. Another

option would be to use confocal microscopy to obtain the blood vessel geometry and

confirm the locations of B cell regions [Woodruff et al., 2013]. Having obtained this

more detailed geometry, it would be possible to incorporate equations for the protein

concentration within the lymph node interstitium and investigate the effect on the

fluid crossing the blood vessels walls, and therefore on the pathways of fluid through

the lymph node.

Comparing the results in this chapter, where the model has been based on x-ray CT

images, to the results in the chapter 4, where the model was based on SPIM images,

highlights limitations of relating the permeability of the structure to the grey scale of

the images. If the lymph node is stained, as it was in the SPIM images, the amount

of staining and the areas that the stain highlights can bias the flow pathways. It

was assumed in both models that the relationship between the grey scale and the

permeability of the tissue was linear. This had to be assumed as no data was found

in the literature where the permeability of the lymph node had been measured.

Neither was data found relating x-ray CT grey levels with lymph node permeability.

A non-linear relation could create a bigger difference between the velocity of the flow

through the sinuses and the lymphatic tissue

The permeability of a tissue is dependent on pore size, tissue composition and

geometry. If the tissue is deformed, for example by hydrostatic and osmotic pressure,
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tension in the extracellular matrix or smooth muscle cells contracting, this will also

change the permeability [Swartz and Skobe, 2001]. It is difficult to experimentally

measure all of these factors and relate them to the effect on permeability. Often the

permeability is estimated assuming some ideal physical and geometry conditions,

which means that the value of permeability found is only appropriate on the

macroscale [Swartz and Skobe, 2001]. Without specific measurements for different

areas of the node it is difficult to identify an appropriate grey scale to permeability

relation or even if the flow should be modelled using Stoke’s flow rather than Darcy’s

law in the sinuses.

This chapter has shown that two methods of imaging need to be utilised in order to

gain a complete picture of the internal lymph node geometry. The necessary voxel

size for the CT images is ∼5 µm3 - using a higher resolution did not yield significantly

improved results. The resolution of SPIM or confocal microscopy imaging need to be

high enough to capture the smallest blood vessels, capillaries, which are approximate

5-10 µm in diameter. Therefore, if it is possible to visualise the capillaries it will be

necessary to have a minimum mesh element size that can capture this geometry and a

maximum element size equivalent to the voxel size of the CT images. This information

will be useful for planning further imaging and modelling work.

It can be concluded from the modelling study that the structure of the lymph node

does affect the fluid flow pathways. This has important implications for antigen,

protein and cell transport within the node. The faster flow through the centre of the

node suggests how particles in the lymphatic fluid can be passed into the T cell cortex

of the node. In the case of antigens, this would trigger an immune response within the

node.

The methods developed in the chapter are not restricted to lymph nodes. The method

can be applied to any saturated porous material that can be imaged using CT. This

could be other biological tissues, e.g. lung tissue, capillary beds; soil, rock, wood,

cement or zeolites. In soil the methods could be used to model fluid uptake by plant

roots, i.e. the plant roots would replace the blood vessels and the soil would replace

the interstitial tissue. This method would remove the need to segment out individual

soil grains, a time consuming and difficult process. It could be used in geology by

petroleum companies drilling in ocean beds to investigate the affect of drawing oil out

of rock beds or the sea water entering the space left once the oil have been removed.

5.4 Future Work

In order to capture more of the geometry of the node, SPIM and CT imaging can

be combined. This would allow for the modelling of individual nodes, using the
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techniques described in chapters 4 and 5. It would then be possible to investigate the

differences between nodes. A possible work flow could be:

� Prepare sample lymph nodes by staining the blood vessels as described in Mayer

et al. [2012] but for all blood vessels not just high endothelial venules. Image

the samples using selective plane illumination microscopy and computational

tomography. Reconstruct the CT scans using the algorithm by Paganin et al.

[2002].

� Use the SPIM images to create a mask that represents the blood vessels and use

the CT images to create a mask of the geometry of the node. Align the two

masks, so that they are both orientated in the same way. Use these overlaid

masks to create a mesh.

� Create the model of the lymph node.

� Compare results of different nodes.

It would be useful to obtain more experimental data, such as measured values for the

permeability of the lymph node tissue and the hydraulic conductivity of the blood

vessel walls. These could be used to validate the values used for the model.

The addition of a convection-diffusion expression to model the protein concentration

within the lymph node would affect the fluid exchanges. It would be interesting to

investigate the local effect of different protein concentrations on the fluid dynamics

within the lymph node.
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Conclusions and Future Work

This thesis set out to create a computational model of a lymph node with pumping

afferent and efferent collecting lymphatic vessels using experimental data published

in the literature to investigate the fluid flow through lymph nodes and how changes

in the fluid dynamics would affect the behaviour of the system. From the outset, it

was obvious that this was a challenging problem due to the lack of information about

the material properties and behaviour of the collecting lymphatic vessels and lymph

nodes. The problem was approached by separating the model into three components,

the collecting lymphatic vessel wall, collecting lymphatic valve and the lymph node.

The chapters in this thesis discuss the methodologies and findings of these individual

components.

The three dimensional models created in this thesis can be used to investigate the

functionality of collecting lymphatic vessels and lymph nodes. The lymphatic system

is composed of initial lymphatics, collecting lympahtics, the largest of which are

called ducts, and lymph nodes. Therefore, from these models it is possible to draw

conclusions about two of the three components of the system. However, it is not

computationally viable to model an entire network of collecting lymphatic vessels with

lymph nodes. Therefore, in order to understand the overall system level function it

would be necessary to use the results from the 3D models to inform exisiting network

models. Bertram et al. [2013a] have developed such a network model and identified

that the resistance to the flow caused by the valve is an important aspect of pumping

efficiency in the network. Measuring this resistance proved to be difficult and resulted

in a wide range of values. The 3D model of the lymphatic valve with surrounding

wall presented in this thesis could be used to investigate why there is such variability

between valves. This could be related to the geometry, material properties, wall

behaviour or vessel tension, all of which can be investigate with the 3D model. It

would also be possible to introduce lymph nodes into the network model, again as

causing resistance to the flow. The resistance can be predicted by the permeability

values approximated here.

177
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In chapter 2, the first material model for the collecting lympahtic wall was developed

that reproduced the experimentally observed passive behaviour. This was achieved

by combining an optimisation algorithm with a static structural finite element model

in order to optimise the parameters of a strain energy function to the experimental

data. The optimisation was carried out twice, once assuming a constant fibre angle

and a second time assuming a fibre angle that varied linearly with increasing pressure.

From this process, it was found that the varying fibre angle resulted in more realistic

parameter valves, however the constant fibre angle produced a better fit with the

experimental data. For the first time, this emphasises the importance of the fibre

behaviour and the necessity to investigate further the relationship between the

changes in diameter and fibre angle in lymphatic vessels. The technique used to find

the appropriate parameters can be applied to other problems where the behaviour of a

material is known (and nonlinear), but the material properties are not.

In chapter 3, three models of the collecting lymphatic valve were created. The first

was three dimensional, assumed linear material properties, for simplification, and

modelled the fluid structure interaction of flow though a lymphatic valve. The model

showed the fluid behaviour observed experimentally, but the solid behaviour was

incorrect, as expected due to the over simplification of the material model. The second

model was two dimensional, again to simplify the computation, and only the valve

and surrounding fluid domain were modelled. The valve was assumed to have the

same material properties as found for the wall using a constant fibre angle in chapter

2. The aim was to use the model to evaluate how similar the behaviour of the valve

was to experimental data to assess the validity of the material properties assumption

and test the hypothesis of Bertram et al. [2013a] that the experiments from Davis

et al. [2011] overestimated the pressure difference required for valve closure. The

model required pressure differences two orders of magnitude smaller than observed

experimentally and this was thought to be a result of the two dimensional assumption

and neglecting the collecting lymphatic wall. Therefore, a third model was created,

that was three dimensional and neglected the fluid domain, only modelling the static

mechanics of the valve and surrounding wall. This is the first time that a 3D model of

a collecting lymphatic vessel and valve have been modelled together using a material

model that has been shown to reproduce experimental data. The results from this

model predicted that the valve closed at pressure differences lower than observed

experimentally, however these pressures were either of the same magnitude or one

order of magnitude smaller, and were considered to be more biologically realistic.

The results from the model agree with the hypothesis in Bertram et al. [2013a], but

as this could be a result of using different geometry or different material properties, it

is not possible to confirm if the hypothesis is true. However, the model does support

the idea that assuming the same properties for the wall and the valve is a suitable

first approximation. Unlike previous one and two dimensional models, the three
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dimensional model allows for the investigation of the affects of both geometry and

material properties on fluid transport.

Chapter 4 presents the first image based model of fluid flow through a lymph node

based on images created using selective plane illumination microscopy. Only a small

amount of information was found in the literature about the material properties of the

lymph node interstitium, hydraulic conductivity of the high endothelial vessels and

colloid osmotic pressure difference in lymph nodes. The model was used to estimate

these properties by optimising the parameters that defined them to experimental

data. This demonstrated an alternative use for the techniques developed in chapter

2. The values of the parameters found were compared to those found from literature

for different tissues and were within biologically realistic values. The model was used

to investigate the fluid flow pathways through the lymph nodes. It was found that

using the grey scales from the images caused more flow through the centre of the

lymph node, which was not what was expected from the descriptions of the structure

in literature.

The work described in chapter 5 aimed to improve on the novel lymph node model

in chapter 4 by using higher resolution images, with a voxel size of 1.38 µm3, created

using x-ray computed tomography. This was the first time lymph nodes have been

imaged at high resolution. Depending on the reconstruction technique different

structures could be visualised in the three dimensional image stack. The parameters

found in chapter 4 were used and a small area of the node was modelled to assess the

sensitivity of the model to the image grey scale values, contrast, the reconstruction

techniques and mesh resolution. The important finding from this process was that

is was necessary to use the images created from Paganin et al. [2002] reconstruction

algorithm for the assumption to hold that the grey scales related to the permeability

such that dark areas were more permeable than light areas. It was also found that a

mesh resolution of 5 µm was sufficient to capture the flow pathways indicating that

for further studies the node only need be imaged at this resolution. The results from

the model show the expected result that the structure of the lymph node interstitium

directed flow around the outer sections. It was interesting to note that the majority of

the flow took a path that was neither around the outer sections or inner sections. This

could be an effect of this particular node geometry and further studies would need to

be conducted to investigate this further. The methods in this section could be used

to model flow through any porous media that have been imaged using computational

tomography images.

In summary the novel work presented in this thesis is as follows:

� A non-linear phenomenological material model has been parameterised to

reproduce the pressure-diameter behaviour of colleting lymphatic vessels as

observed in experiments. This means that the model can be used for estimate



180 Chapter 6 Conclusions and Future Work

the reaction of the collecting lymphatic vessel wall to different intraluminal

pressures.

� The non-linear material model was adapted to model the rotation of the collagen

fibres as the pressure increased. This was the first time that the experimental

data for the behaviour of collagen fibres on the microscale has been linked to

the pressure-diameter data on the macroscale for collecting lymphatic vessel

behaviour. This highlights the importance of the fibre movement.

� A model that implemented the non-linear material model in a three dimensional

computational model of a colleting lymphatic valve and surrounding wall. This

is the first time that the material properties of the wall and valve, geometry of

the valve and pressure-diameter behaviour of the wall have all been brought

together within the same model. This allows for all these aspects of the model

to be investigated within the context of the others for the first time.

� Image based models of fluid flow through a lymph node have been created for

the first time. With these models it is possible to investigate the fluid flow

pathways and estimate the velocity and pressure of the flow within a realistic

geometry using only the afferent and efferent flow properties as inputs.

� The permeability of lymph nodes has been estimated based on experimental

data of the afferent and efferent fluid flow and blood pressure. Measuring the

permeability of lymph nodes is extremely challenging due to their size, the

variability of the tissue porosity and the deformations caused by hydrostatic and

osmotic pressures and the movement of immune cells. The method presented

here enables the estimation of permeability without the need to measure it

within the lymph node.

� SPIM imaging has been used for the first time to model the fluid flow through

lymph nodes. The methods presented here show how the imaging and modelling

can be combined to predict the flow pathways through the node.

� This is the first time that lymph nodes have been modelled relating the grey

scale of the images to permeability to model the variability of the tissue within

the node and how this affects the flow pathways. Linking the grey scale with

the permeability emphasised the important of the imaging technique and image

reconstruction technique on the model resutls. Using SPIM images showed

that staining can biases the flow pathways to be through the centre of the

node. Comparing FBP and phase retrieval reconsturction techniques for x-ray

CT imaging showed that it was necessary to use phase retrieval to get enough

contrast between the lymphatic channels and surrounding tissue in order that

the highest velocity flow and the majority of the fluid passed through the

lymphatic channels as expected.
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As has been demostrated throughout this thesis, computational modelling can

be utilised to bring together experimental data measured from different samples

and species and using different techniques. This highlights how valuable having a

computational model is for drawing together all the available information, predicting

unavailable data and understanding underlying function. It is cheaper, and in many

cases faster, than conducting practical experiments and does has the advantage of

not requiring a living specimen. An important aspect of computational modelling

that has been particularly difficult in this project is the lack of experimental data

for model validation. Without validation it is difficult to prove that the model is

accurate and the conclusion drawn from it correct. It has also been necessary to make

assumptions and use parameter estimation to create material models that produce the

same behaviour as the experments. This was essential due to the lack of experimental

data available. This emphasises the areas in which further experimentation would be

useful. In the following paragraphs experiments are discussed that could fill in some of

these gaps in the current knowledge.

To approximate a material model of the collecting lymphatic vessel wall a

phenomenological was used to reproduce the pressure-diameter data measured in

experiments. The assumption that the vessels was stretched by a third before being

pressurised had to be made as there was no record as to how much tension had been

applied to the vessel. The force should be measured before, during and after the

pressurisation experiment, as in Zulliger et al. [2004] so that the effect of the tension

can be taken into account in the model or it must be consistent for all experiments

regardless of vessel size. It would also be advantageous to measure the fibre angle

position at the same time at every pressure to really understand how important fibre

orientation is to vessel behaviour.

In the valve model the material model was assumed to be the same as the wall.

This is not correct as the composition of the wall and valve is different. Therefore,

to achieve a better informed model the matieral properties of the valve need to be

measured. It would be useful if the valve properties were measured independently of

the wall and when it is connected to the wall at different pressures. When combined

in the model, this will extend the knowledge of how the valve behaves and how this

behaviour depends on the wall.

For the lymph node models it would be advantageous to have experimental data to

compare the flow pathways to. This would make it possible to validate the model

and could lead to a better understanding of how the structure of the node affects

the pathways as well as how the grey scales in the images relate to permeability. A

potential problem of tracking fluid movement is that the lymph node filters particles

from the fluid, therefore whatever method is used if particles are used to track the

flow they must have a molecular size smaller than the node can filter. This size as not

been identified in the literature. Magnetic resonance imaging (MRI) could potentially
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be useful here as the technique works by exciting water molecules. Therefore any

water in the lymph node would show up very clearly. Unfortunately, cells also contain

water and therefore the contrast between water and cells may not be big enough

to identify the pathways of flow. It may be necessary to combine several different

imaging techniques in order to create a complete picture of fluid movement through

lymph nodes.

The work presented in this thesis makes significant steps to achieve the ultimate aim

of a biologically realistic computational model of a lymph node with afferent and

efferent collecting vessels. Considering the work that has been undertaken during the

project it is possible to consider the future work to be undertaken to realise this aim.

6.1 Future Work

In this section the future work to achieve the full model of a lymph node with afferent

and efferent lymphatics using the models developed in this thesis. Finally, ideas of

how to adapt the techniques used within this thesis to other research problems are

considered.

The following bullet points describe possible stages in the development of a lymph

node with afferent and efferent collecting vessels modelled using finite element

analysis:

� Using the geometry and material properties from the solid only three

dimensional valve model created in chapter 3, include a fluid domain and create

a fluid structure interaction model of a passive collecting lymphatic valve.

� Develop the wall model surrounding the valve to include an active pumping

phase in the wall behaviour. This should be dependent on time and also on fluid

volume and wall shear stress.

� Link together two lymphatic vessels including valves with a lymph node in

between by using the outlet flow rate of the first vessel as the inlet condition

of the lymph node, the pressure at the inlet of the node would be the outlet

condition for the first vessel, the outlet flow rate of the lymph node as the inlet

condition on the second vessel, and the pressure at the inlet of the second vessel

would be the outlet condition for the lymph node. This could be done a one

large finite element model, a mesh could be created of the node with afferent

and efferent vessels, which could each be assigned different properties and

COMSOL could integrate the different physics. An iterative solver would be

used to solve all the physics. An alternative would be three individual models

where each model is given the required inlet/outlet condition after each solver

iteration, i.e.:



Chapter 6 Conclusions and Future Work 183

1. Compute one iteration for first vessel with defined inlet condition and an

estimated pressure outlet condition (e.g. half the pressure of the second

vessel outlet condition). Evaluate the convergence criteria and export the

calculated outlet flow rate.

2. Using a direct solver, calculate the flow through the lymph node using the

outlet flow rate from step 1 as a inlet condition. Estimate the pressure

at the outlet of the node (e.g. the pressure of the second vessel outlet).

Export the calculated outlet flow rate.

3. Compute one iteration for the flow though the second vessel using the

outlet flow rate from step 2 as an inlet condition and the defined outlet

condition. Export the inlet pressure.

4. Calculate the flow through the lymph node again, using the outlet flow

rate from step 1 as an inlet condition and the inlet pressure from step 3 as

an outlet pressure. Evaluate the convergence criteria and export the inlet

pressure.

5. Compute a second iteration for the first vessel using the inlet pressure from

step 4 and the defined inlet condition. Evaluate the convergence criteria

and export the calculated outlet flow rate.

6. Repeat steps 2 to 5 until both the vessels achieve convergence.

This process would be very time consuming. The lymph node requires a minimum

of 20 minutes to solve for a constant permeability and has to be solved twice each

iteration. It would require approximately 70 GBs of RAM. However, there is no

guarantee that using the iterative solver for all the components, as would occur to

modelling the whole as one model, would be any quicker as solving the lymph node

model iteratively takes much longer than using the direct solver.

These steps would enable to fluid flow to be modelled through the afferent vessel,

lymph node and efferent vessel. The inlet condition for the afferent vessel and outlet

condition for the efferent vessel could be adjusted to investigate the effect this has on

the flow through the model as a whole.

The techniques developed are also applicable to other areas of research such as soil

science, materials and micro-fluidics. Similar techniques could be used to model other

systems containing a porous media filtration or fluid exchange devices such as pond

filters, dialysis machines or micro-fluidic devices.
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Appendix

A.1 Blatz-Ko Strain Energy Function

For compressible porous rubbery materials, a SEF was developed by Blatz and Ko

[1962],

WBK (I1, I2, I3) =
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The I terms are invariants of a modified right Cauchy-Green tensor C = J2/3C where

C is the right Cauchy-Green tensor and J is the determinant of the deformation

gradient. The invariants to the Cauchy strain tensor are,

I1 = trC, (A.2)
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1
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[
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(
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, (A.3)

I3 = λ2
xλ

2
yλ

2
z, (A.4)

and λx, λy, λz are stretch ratios. G is the shear modulus, f ∈ [0, 1] and q < 0

are parameters. This has been used to model tumour growth and residual stress

development [Ambrosi and Mollica, 2002; MacLaurin et al., 2012].
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A.1.0.3 Linear Limit of Blatz-Ko Strain Energy Function

Begin by substituting the invariants into Blatz-Ko SEF,
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Substituting the Green’s strains, into the SEF gives,
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Differentiating by strains, we get
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Expanding equations (A.8)-(A.10) as Taylor series, taking only the first two terms,

and then setting this equal to Hooke’s law for an isotropic material leads to,
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This implies,

Gf

2
(−2q + 4) +

G (1− f)

2
(−2q + 4) = λ+ 2G, (A.14)

(−Gfq −G (1− f) q) = λ. (A.15)

Rearranging this gives,

−Gq + 2G = λ+ 2G, (A.16)

−Gq = λ. (A.17)

Therefore λ can be written as 2Gν
1−2ν , this implies that q = − 2ν

1−2ν and so 0 > q > −1
3 in

the linear limit.

A.1.0.4 Applications of Blatz-Ko Strain Energy Function

Ambrosi and Mollica [2002] implemented the Blatz-Ko SEF to model a growing

tumour tissue. This allowed for the possibility of modelling how a growing tumour

interacts with the surrounding tissue.

MacLaurin et al. [2012] used the Blatz-Ko SEF to model a tumour in order to

investigate the buckling of capillaries within the tumour. The capillaries were treated

as ‘tunnels in gel’ rather than as tube so the capillary wall was neglected. MacLaurin

did model the wall of the capillary as well, but found that the effects were not

significant in his case [MacLaurin, 2011]. Essentially this means the Blatz-Ko SEF

modelled the behaviour of the capillary wall and surrounding tissue. The authors

found that the capillaries buckled due to anisotropic growth.

A.1.1 Results of Parameter Optimisation for Blatz-Ko Strain Energy

Function

It was not possible to find parameters for the Blatz and Ko [1962] SEF that

adequately modelled the behaviour of the lymphatic vessel wall. It was possible to

find parameters that resulted in a slow increase in diameter for low pressures followed

by a sharp increase at high pressures, but no parameters were found that resulted

in a sharp increase in diameter followed by a plateau. The best fit achieved can be

seen in figure A.1. For these parameters, the material model is effectively linear. The

parameters that result in this behaviour are G = 5460 Pa, f = 0.492, q = −1.32 and

Dint = 101 µm. The error given by equation (2.63) is 5.365.
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Figure A.1: Comparison of model to mean difference experiments using Blatz and Ko
[1962] SEF.

A.1.1.1 Changing Parameters

In order to identify how each parameter altered the pressure-diameter results in the

model, once appropriate parameters for the mean vessel had been found, the values

were each adjusted individually by an order of magnitude to see how the behaviour

would change. The results can be seen in figure A.2. c changes the initial flexibility of

the vessel at low pressures. It appears to do this by ‘moving’ the pressure axis. As c

increases the x-axis is shifted to the left. K dictates at what pressure the plateau will

begin. Changing K by an order of magnitude does not seem to have much effect. This

may be because K is so small that increasing the magnitude by one still results in a

very small value for K. Changing K by an order of magnitude has very little effect,

therefore it must be changed by at least an order of magnitude for it to influence

the Kriging procedure. k changes the elasticity of the vessel just before the plateau.

Increasing k by an order of magnitude caused the model to fail. This could be because

the vessel become too rigid at low pressures. The parameter m alters the gradient of

the plateau.

A.2 Valve Geometry Development

An initial run of the solid model found that the idealised geometry was preventing

the valve from opening. The design of the buttress attaching the valve to the wall

was keeping the edge of the valve open, see figure A.3. The buttress geometry was

changed and the valve would be able to close, the new geometry is compared to the

old geometry in figure A.4. The new geometry corresponds to the valve buttress

described in Kampmeier [1969], where the valve leaflets intersect before connecting

to the wall. The inner edge of the valve leaflet was also filleted so that a contact

condition could be implemented.
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Figure A.2: Changing the parameters c, K, k and m by one order of magnitude
emphasises the behaviour that each parameter controls and to what extent.

The new geometry was modelled as 180 degree section with a contact condition

between the valve leaflets. The geometry is shown in figure A.5. The contact

condition is applied on boundaries ∂Γ7 and ∂Γ9, which are shown in blue.

The contact was modelled using a penalty factor,

108 Pa/Dstmin (A.18)

where Dstmin is the minimum distance between the two boundaries. This condition

essentially inserts a spring stiffness between the two boundaries. This prevents them

from intersecting.
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(a) Outlet pressure 0.5
cmH2O

(b) Outlet pressure 0.8
cmH2O

Figure A.3: End on view of solid only model, inlet pressure 0.5 cmH2O. Colour bar
shows displacement for solid in µm.

(a) Original geometry (b) New geometry

Figure A.4: Comparison of different geometries used for valve buttress.

∂Γ1

∂Γ2
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∂Γ11
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Γ

Figure A.5: Geometry of 180 degree vessel and valve section with boundaries labelled.
The blue boundaries show where the contact condition was applied.
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As a result of this change, the valve is able to close, see figure A.6. However, the

pressure required for closure must be higher than reported in Davis et al. [2011]. It

can be seen in figure A.6c that the valve is almost fully closed at outlet pressure 1.7

cmH2O. The computational model is unable to converge for higher pressures. This is

probably due to the contact condition between the two leaflets.

(a) Outlet Pressure 0.5
cmH2O

(b) Outlet Pressure 0.8
cmH2O

(c) Outlet Pressure 1.7
cmH2O

Figure A.6: Solid only model with new buttress geometry showing position of valve.
Colour bar shows displacement in µm. Although not shown here, the lymphatic wall
was also modelled.

The valve was also extended to a length of 115 µm, after preliminary tests found that

93 µm (the diameter of the vessel at 12 cmH2O) was not long enough for the valve to

close at higher pressures.

A.3 Extension to Lymph Node Literature Review

A.3.1 Pathways for Fluid

Cords are blood vessels, either a single HEV or an arteriole and venule together

[Willard-Mack, 2006], surrounded by a spiralling reticular cell networks (RCN), which

are surrounded by a cortical sinus [Gretz et al., 1997]. Lymphocytes are contained

within the chords and the diameter can change, depending on how many lymphocytes

are within the cord [Anderson and Anderson, 1975; Gretz et al., 1997]. The RCNs

surrounding the blood vessels are also referred to as reticular sheaths. The cords are

surrounded by a network of capillaries [Anderson and Anderson, 1975; Kowala and

Schoefl, 1986; Willard-Mack, 2006]. The paracortical cords, 100-200 µm diameter and

800-1500 µm in length, are part of the main structure of the rat lymph node cortex

[Gretz et al., 1997]. Generally they run from the base of follicles of the subcapsular

sinus to the medullary cords [Gretz et al., 1997]. In mouse nodes small venules (< 20
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µm) had a thin perivascular cord, large venules had a much more substantial cord

[Kowala and Schoefl, 1986].

High
Endothelial

Cell

Fibroblastic Reticular Cell

Perivenular
Channel

Sinus-Lining Cell

Corridor

Conduit

Collagen
Fibre

Complex
Junctional

HEV

Cord

Fibroblastic
Reticular

Cell Network

Figure A.7: Sketch of a cord centred around a HEV, not to scale. The blood vessel in
the centre of a cord is not always a HEV. Fluid can flow in the corridor, channel and
conduit. Based on figure from Gretz et al. [1997].

The perivenular channel is part of the HEV. It is a potential space that lies between

the endothelium and the reticular cells that surround the HEV [Gretz et al., 1997].

The majority of lymphocytes leave the blood through the walls of HEVs and move

along this space to corridors [Gretz et al., 1997; Girard et al., 2012].

The corridors are spaces between the FRCNs. They are distinct from the sinus

[Gretz et al., 1997]. They are approximately 10 to 25 µm in diameter, which is wide

enough for 2 lymphocytes to be contained next to each other [Gretz et al., 1997]. The

lymphocytes are thought to move by actively pushing themselves along the walls,

FRCNs, of the corridors rather than swimming through the fluid [Gretz et al., 1997].

The conduits are collagen fibre bundles encased by reticular cells [Gretz et al., 1997;

Roozendaal et al., 2009]. Fluid and molecules are transported through the conduits.

From the conduits moves towards and into the lumen of the HEV that the RCN

surround [Gretz et al., 1997]. Cytokines, chemokines and small protein antigens are

transported to the T and B cell areas of the node through the conduits [Gonzalez

et al., 2010]. The conduits have a diameter of 1 to 2 µm. They are criss-crossed with

collagen fibres, which only allows a spacing within of 4 to 8 nm [Gonzalez et al., 2010;

Roozendaal et al., 2009].

Reticular cells express molecules that affect how the immune cells behave and

the structure of the network that they form directs the movement of lymphocytes

[Crivellato and Mallardi, 1997]. Crivellato and Mallardi [1997] saw small ducts in the

cytoplasm of reticular cells that had openings on the surface of the cells, so they were
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(a) Image from Gonzalez et al.
[2010]. Conduit near follicle.
SCS: Subcapsular sinus, FRC:
Reticular cell. ©2010, The
American Association of
Immunologists, Inc.

Conduit

Conduit

(b) Image from Gretz et al. [1997]. Conduits in
the cortex of a rat lymph node transversely and
longitudinally. ©2006, John Wiley and Sons.
Permission granted by John Wiley and Sons.

Figure A.8: Conduits in lymph nodes.

connected to the extracellular space. This would allow fluid in the extracellular space

to access the small ducts in the reticular cells.

(a) Dark areas show network of reticular
cells. The HEV is surrounded by reticular
cells. Arrow: HEV, C: cortex, M: medulla.
Scale bar = 15 µm.

(b) The small arrows indicate the small
ducts that run through the cytoplasm of
the reticular cells. Small arrows: small
ducts, Large arrow: intra-cytoplasmic
reticulum, asterisks: meeting of two
reticular cells. n: nucleus for reticular cell.
Scale bar = 0.5 µm.

Figure A.9: From Crivellato and Mallardi [1997]. Images showing connections between
reticular cells. ©1997, Anatomical Society of Great Britain and Ireland. Permission
for use of this figure granted by John Wiley and Sons.

A.3.2 Flow of Particulate Matter through Lymph Nodes

Gretz et al. [2000] injected rat and mouse lymph nodes with various soluble molecules

and tracked their progress through the nodes. Subcapsular and medullary sinuses

were filled with fluorophore-labelled molecules. Most of the molecules did not enter
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the cortical parenchyma. The molecules were separated into sections of the T

cell-dependent areas [Gretz et al., 2000]. Molecules with molecular radius as small

as 5.5 nm did not pass into the cortex [Gretz et al., 2000]. Gretz et al. [2000] used

MHC class I antibodies as some lymphocytes express class I molecules. However the

antibody was not present in the cortex. Gretz et al. [2000] states that this may imply

there is a barrier that can limit proteins and polysaccharides from filtering through

the lymph node.

Gretz et al. [2000] showed with lectins that the lymph left the subcapsular sinus

and was transported through the node directly from the subcapsular sinus to the

medullary sinus or via the reticular fibres and HEVs. There appeared to be no flow

in the direction away from the medullary sinus along the reticular fibres.

The low molecular mass molecules were transported through the reticular network

from the subcapsular sinus to the HEVs Gretz et al. [2000]. Gretz et al. [2000] used

both 70 kD dextran and 68 kD bovine serum albumin (BSA). The two molecules

had similar molecular weights, however the molecular radii were 5.5 nm and 3.6 nm

respectively. They found that molecules with a diameter greater than 7.2 to 10.7 nm

were not able to access the reticular fibre network. The dextran was constrained to

the subcapsular sinus and medullary sinuses, but the BSA was seen along the reticular

fibres and HEVs. Hence, Gretz et al. [2000] concluded that it depends on the radius of

the molecule whether it can make it’s way into the cortex along the fibres, rather than

the molecular weight. Gretz et al. [2000] saw tracers fill reticular fibres. They claim to

have seen small molecules (302 daltons) throughout the cortex.

Figure A.10: Overlay of high molecular weight dextran after 4 hours (green) and low
molecular weight dextran (red) after 10 minutes. Both are seen in the medullary
sinus (yellow area). Arrows: subcapsular sinus, Arrowheads: HEVs. Scale bar =
50 µm. ©2000 Gretz et al. Journal of Experimental Medicine. 192:1425-1440.
doi:10.1084/jem.192.10.1425.

Figure A.10 shows that the high molecular weight molecules do collect in the cortex,

but in different locations than the low molecular weight molecules. This happens on
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different time scales, the high molecular weight molecules taking 4 hours to collect and

the low molecular weight molecules taking only 10 mins to reach their location. Both

high and low molecular weight molecules are seen in the medullary sinus. Gretz et al.

[2000] suggest that the high molecular weight molecules collect in the cortex through a

different path, possibly taken up by cells.

A.3.3 Blood Vessels

Anderson and Anderson [1975] observed that rat lymph nodes had one or two arteries

entering the node with diameter 50 to 70 µm. These repeatedly branched within

the node. For dog lymph nodes some branches of the major arteries supplying the

node entered at the hilus, although others entered elsewhere [Belz and Heath, 1995b].

Most nodes had an area that could be described as a hilus where one or more arteries

entered the node and efferent lymphatics and veins left. Belz and Heath [1995b]

occasionally saw up to 50 arteries entering a node. Some nodes had no hilus area

and the arteries entered at various points on the surface of the capsule [Belz and

Heath, 1995b]. Some of the arteries that did not enter at the hilus went through the

trabeculae and others crossed the subcapsular sinus.

For dog lymph nodes, the majority of arteries were covered with connective tissue and

entered the node into the medulla Belz and Heath [1995b]. Anderson and Anderson

[1975] observed blood vessels on the external surface of the lymph node. These were

not linked to the internal circulation. The vessels wiggles across the surface following

indents in the capsule, that occurred above points away from which the trabeculae

extended internally. Capillaries formed a network over the external surface of the node

[Anderson and Anderson, 1975].

For rat lymph nodes, some arteries were seen to enter the base of the lobules and

connected to capillary networks that surrounded germinal centres [Anderson and

Anderson, 1975]. Occasionally, capillaries and arterioles passed through germinal

centres, but lymphatic vessels were never seen in germinal centres. [Anderson and

Anderson, 1975; Belz and Heath, 1995b; Kowala and Schoefl, 1986]. The arteries

that passed through the centre formed junctions with AVCs reaching over the upper

surface of the germinal centres. They had diameters between 3 and 5 µm and were

surrounded by reticular fibres and processes [Anderson and Anderson, 1975].

Kowala and Schoefl [1986] saw most arterioles, 15-25 µm, in the hilar region and

medullary cords. Any arterioles under 15 µm were called metarterioles Kowala and

Schoefl [1986]. In the medulla of dog lymph nodes, there were networks of arterioles

along medullary chords [Belz and Heath, 1995b].

Anderson and Anderson [1975] observed that many arterioles in rat lymph nodes

looped under the subcapsular sinus and joined arteriovenous communications (AVCs),
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an image of an AVC can be seen in figure A.11. They had diameters between 6 and

15 µm. Some AVCs passed through trabeculae and joined to the vasculature of next

lymphatic lobule.

Figure A.11: AVC: Arteriovenous communications, A: artery, HEV: high endothelial
venule (×220). This image was published in Anderson and Anderson [1975] Copyright
1975, American Society for invesitagtive pathology; Published by Elsevier Inc; All
rights reserved.

Fenestrated and nonfenestrated capillaries were seen in both dog and rat lymph nodes

[Anderson and Anderson, 1975; Belz and Heath, 1995b]. In rat nodes Anderson and

Anderson [1975] observed that the fenestrated capillaries were surrounded by a thick

layer of reticular fibres. From some of the nonfenestrated capillaries there extended

pericyte processes [Anderson and Anderson, 1975]. Belz and Heath [1995b] saw that

capillaries on the surface of medulla sinuses or that coursed through the sinus itself

were nonfenestrated and that all the capillaries in the cortical parenchyma and the

subcapsular sinus of the dog lymph node were nonfenestrated.

In the cortex of rat lymph nodes, the capillaries formed complex networks between

0.5 and 5 µm below the subcapsular sinus [Anderson and Anderson, 1975]. Similar

networks were seen by Kowala and Schoefl [1986] in mouse popliteal nodes. They

also noted that the networks over the follicles were less dense and near the lobules

more dense. The capillaries were seen to drain into postcapillary venules with low

endothelium, two to five of these in turn drained into larger HEVs [Anderson and

Anderson, 1975; Kowala and Schoefl, 1986]. Capillaries were between 5 and 9 µm in

diameter in mouse popliteal lymph nodes Kowala and Schoefl [1986].

The sinuses in the rat lymph node deep cortex had capillaries around them although

the capillaries and lymphatic vessels never joined directly [Anderson and Anderson,

1975]. Anderson and Anderson [1975] also observed that capillaries near to where

the cortex met the medulla connected to small venules that lead through the cortex

to HEVs. Lower in the medulla, they connected to small venules that lead to
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segmental veins [Anderson and Anderson, 1975]. Capillary networks surrounded

medullary chords close to the medullary sinuses whereas the arterioles and venules

were positioned more centrally within the cords [Belz and Heath, 1995b; Anderson

and Anderson, 1975; Kowala and Schoefl, 1986]. The capillaries in dog lymph nodes

were seen within 20 µm of the medullary sinuses [Belz and Heath, 1995b].

Belz and Heath [1995b] observed that the blood vessels in the medulla of dog lymph

nodes drained into LEVs that ran close to the arteries. Kowala and Schoefl [1986]

observed LEVs in the lobules of the mouse popliteal lymph nodes with diameters 10

to 17 µm and 40 to 50 µm. In the medulla of the mouse popliteal lymph nodes the

LEVs were between 10 and 55 µm in diameter [Kowala and Schoefl, 1986]. In rat

lymph nodes, postcapillary venules had diameters between 8 and 12 µm. They were

separated from the intersitium by one layer of adventitial cells and reticular cell plates

Anderson and Anderson [1975].

Anderson and Anderson [1975] saw HEVs in the lymphatic lobules of rat lymph

nodes and leading from the subcapsular sinus to the medulla. Kowala and Schoefl

[1986] observed that HEVs in the mouse politeal lymph node generally ran around

the edges of lobules had diameters between 16 to 55 µm Kowala and Schoefl [1986].

The diameter of HEVs in rat lymph nodes increases beginning from about 8 µm

and reaching 30 to 40 µm near where the cortex and medulla meet [Anderson and

Anderson, 1975]. Within the deep cortex, venous plexuses drained into several vessels,

which drained into the main trunks [Anderson and Anderson, 1975]. Three to five had

high endothelium and two to three had flat endothelium [Anderson and Anderson,

1975]. In the medulla the HEVs became segmental veins with flat endothelium, which

merge to the efferent vessels close to the hilus [Anderson and Anderson, 1975]. The

diameters of the segmental veins were 50 to 150 µm and they were surrounded by a

collagenous matrix containing reticular cell processes and fibroblasts [Anderson and

Anderson, 1975].

A.4 Preliminary Imaging

The first scan of a perfused lymph node was made at the Diamond Light Source,

Oxford, on beamline I13. Unfortunately, the images had a lot of edge effects and the

node had separated from the wax. A slice from the scan can be seen in figure A.12. It

was possible to see the perfused blood vessels and some less dense areas that could be

lymph pathways.

Scans were made of the stained node using the Zeiss Xradia Versa 510 imaging system

at the University of Southampton µ-vis Facility. The Versa has different lenses and

can achieve a resolution of 700 nm. Various scans were made of the stained node,

as seen in figure A.13. All the scans were made with settings of energy 60 kV and
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Ring artifact

Edge effect

Separation from surrounding wax

Blood vessel
filled with mircrofil

Figure A.12: Scan of lymph node with Microfil made at Diamond Light Source,
Oxford. The scan was made at voltage 60 kV, current 115 µA with an exposure time
of 1 second. The node has separated from the wax that it is embedded in and there
are strong edge effects because of this. The thicker shorter bright white areas are
blood vessels filled with Microfil. A ring artefact caused by the reconstruction, can
be seen in the lower right corner. The bright white edge effects make it difficult to
segment the blood vessels because they have the same grey scale value as the Microfil.

power 5 W. The first scan with the largest field of view had a exposure time of three

seconds and used the 4X optic. The second and third scans used the 20X optic and

an exposure time of 5 seconds. The field of view was decreased and the resolution

increased for each scan by moving the detector away from the sample.

A scan was made of the perfused node using the Versa. The image was less noisy

that previous scans. It was made using a 4X magnification lens, exposure time of 3

seconds, voltage of 80 kV and power 7 W. The scan took 9 hours. It had a resolution

of 2.17 µm per pixel. The Microfil has caused streaks on the image. This scan, seen in

figure A.14, is the least noisy and the blood vessels are more visible. It is also possible

to distinguish the more dense tissue near the capsule from the less dense tissue near

the hilus.
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(a) 4X optic. Resolution
2.3799 µm. Exposure time
3 seconds. The lighter
grey areas of the node
indicate where the tissue
is more dense. This is
the cortex of the node.
The slightly darker areas
are the medulla and the
small areas that are even
darker are probably lymph
pathways but may also be
blood vessels.

(b) 20X optic. Resolution
1.4471 µm. Exposure time
5 seconds. The bright
white areas to the upper
left of the image are
probably red blood cells
that were not flushed out
during the preparation
process. It is not easy to
identify the cortex and
the medulla in this image,
but the dark areas within
the node are either lymph
pathways or blood vessels

(c) 20X optic. Resolution
0.7235 µm. Exposure
time 5 seconds. The white
streak to the right of the
centre of the image is most
probably a blood vessel.
The dark and light areas
of this scan are easy to
define, which will make
segmentation easier.

Figure A.13: Node stained with PTA and scanned with Versa at different resolutions.
All scans made with settings of energy 60 kV and power 5 W. The dark grey area
surrounding the nodes is the wax that they are embedded in.

Figure A.14: Perfused node scanned with Versa with 4X magnification lens, exposure
time of 3 seconds, voltage 80 kV and power 7 W. The bright white areas is the
Microfil in the blood vessels. Most patches of Microfil have an area of dark grey
around them, outlined by a lighter shade of grey. This shows where the Microfil has
shrunk, as the lighter shade of grey is the wall of the vessel and the dark grey is the
vessel lumen. The lymphatic tissue that makes up the node is a paler shade of grey to
the wax surrounding it.
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Higher resolution scans of the perfused, stained and unstained nodes have been

made at the TOMCAT beamline at the Swiss Light Source (SLS), Switzerland. The

resolution of the scans was 1 pixel to 0.65 µm. The lymph node in figure A.15a is

(a) Lymph node perfused with Microfil.

(b) Lymph node stained with PTA.

Figure A.15: Lymph nodes scanned at SLS with resolution 0.65 µm.
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the same node as in figure A.14 and the node in figure A.15b is the same node as in

figure A.13. The increased resolution allows us to see the internal structure much

more clearly and see the individual cells. The future work will be carried out using

these scans.
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