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Abstract: We present a comprehensive study of the electromagnetic form factor, the

decay constant and the mass of the pion computed in lattice QCD with two degenerate

O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05− 0.08 fm

and pion masses between 280 and 630 MeV at mπ L ≥ 4. Using partially twisted boundary

conditions and stochastic estimators, we obtain a dense set of precise data points for the

form factor at very small momentum transfers, allowing for a model-independent extraction

of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model

lattice artefacts is then compared to the data. At next-to-leading order the effective theory

fails to produce a consistent description of the full set of pion observables but describes

the data well when only the decay constant and mass are considered. By contrast, using

the next-to-next-to-leading order expressions to perform global fits result in a consistent

description of all data. We obtain
〈
r2
π

〉
= 0.481(33)(13) fm2 as our final result for the

charge radius at the physical point. Our calculation also yields estimates for the pion decay

constant in the chiral limit, Fπ/F = 1.080(16)(6), the quark condensate, Σ
1/3

MS
(2 GeV) =

261(13)(1) MeV and several low-energy constants of SU(2) ChPT.
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1 Introduction

Thanks to the continued progress in improving numerical and field theoretical tech-

niques [1–8], computer simulations of QCD on a Euclidean space-time lattice are suffi-

ciently advanced to produce reliable results for a number of phenomenologically important

quantities (see for example the FLAG-summary [9]). Some of these results are postdictions

which can serve as a test of lattice QCD as a tool, other results are real predictions which
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can be used to address the validity of the Standard Model. In both cases the estimation

of systematic uncertainties is a crucial but often delicate issue.

In the case at hand, i.e. the pion electromagnetic form factor, the dominant systematic

in recent calculations [10–15] is due to its strong quark-mass dependence which complicates

the extrapolation from unphysically heavy quark masses to the physical point. Chiral

perturbation theory can provide guidance here. The corresponding expressions for the

form factor as a function of the quark mass have been worked out up to NNLO [16–19].

However, concerning the effective theory’s validity, a particular concern here is the tree-

level contribution of vector degrees of freedom which can couple to the probing photon.

In the effective theory these have been integrated out and enter only passively through

the low-energy parameters in the effective Lagrangian. The scale separation between the

Goldstone bosons (π, K, η) and the vector bosons (ρ, ω) is, however, not large, and one

may be worried about the applicability of the low-energy effective theory. Other interesting

observables like the hadronic vacuum polarisation do also receive tree-level contributions

from vector particles, and similar concerns can be raised [20–24].

From a lattice practitioners point of view the mere evaluation of the pion form factor on

a given lattice ensemble is a rather straightforward task, and therefore this quantity serves

as an ideal laboratory for studying the above questions. Our strategy is to compare lattice

QCD results to the predictions of chiral effective theory for the pion form factor and charge

radius, the pion decay constant and its mass. For the pion mass and decay constant the

expressions of ChPT are known to provide a good description of lattice data in the range

of quark masses studied in this work (see [9]). In the same spirit we have concentrated

on producing data for the form factor for very small space-like photon momenta, in order

to remain in the realm of chiral perturbation theory. To this end we made extensive use

of partially twisted fermionic boundary conditions [25–28], which allowed us to induce

small pion momenta despite simulating in a finite lattice volume. Thereby we were able

to determine the pion charge radius in a quasi model-independent way. By comparing a

variety of fit ansätze based on Chiral Perturbation Theory (ChPT) at NLO and NNLO

respectively, we investigated whether different fits provide a consistent description of the

data and lead to reliable results for the pion charge radius and decay constant. For our

final estimates we have performed an elaborate analysis of systematic uncertainties arising

from lattice artefacts and finite-volume effects. As a byproduct we have determined the

relevant low-energy constants (LECs) of two-flavour QCD at NNLO.

We briefly anticipate the core results: on a qualitative level we note that a joint

description of our data for the pion mass, decay constant and form factor in terms of ChPT

at NLO fails, while a consistent description of all three quantities in terms of ChPT can

only be achieved at NNLO. We stress that the validity of this statement must be monitored

as the pion mass is further decreased. In fact, our findings emphasise the importance of

performing simulations at or very near the physical point.
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Our final results for decay constants, LECs and the charge radius are

Fπ = 90(8)(2) MeV , F = 84(8)(2) MeV ,

Fπ/F = 1.080(16)(6) , Σ1/3 = 261 (13)(1) MeV , from NLO fit ,
¯̀
3 = 3.0(7)(5) , ¯̀

4 = 4.7(4)(1) ,〈
r2
π

〉
= 0.481(33)(13) fm2,

from NNLO fit ,¯̀
6 = 15.5(1.7)(1.3),

(1.1)

where the quark condensate Σ is defined in the MS-scheme at a renormalisation scale

of 2 GeV.

The outline of this paper is as follows: in section 2 we introduce the basic definitions and

our computational setup. Simulation details and lattice results are presented in section 3,

followed by their discussion in terms of fits and extrapolations in section 4. Our conclusions

are presented in section 5. Preliminary reports of the results included in this paper have

appeared in [15, 29–31].

2 Computational strategy

In this section we define the pion decay constant Fπ, the pion mass mπ and the pion charge

radius
〈
r2
π

〉
in terms of Euclidean two- and three-point functions.

The electromagnetic form factor in two-flavour QCD is defined by〈
π+(pf )|23 ūγµu− 1

3 d̄γµd|π+(pi)
〉

= (pf + pi)µ fππ(q2) , (2.1)

where q2 = (pf − pi)2 is the space-like momentum transfer, −q2 ≡ Q2 ≥ 0. Near vanishing

momentum transfer, the form factor can be expanded in powers of q2. By convention, the

linear term defines the charge radius, 〈r2
π〉, i.e.

fππ(q2) = 1− 1

6
〈r2
π〉q2 + O(q4), 〈r2

π〉 = 6
dfππ(q2)

dq2

∣∣∣∣
q2=0

. (2.2)

Simulations of lattice QCD are necessarily performed in a finite volume, and hence the

accessible range of momentum transfers is rather limited. In a conventional setting (peri-

odic fermionic boundary conditions) the initial and final pions can only assume the Fourier

momenta, n 2π/L, where n is a vector of integers. Unless one can afford to simulate very

large box sizes L, the lowest non-zero value of Q2 can be rather sizeable. It is then doubtful

whether the charge radius can be determined in a model-independent fashion, e.g. from

the linear slope of the form factor near vanishing Q2.

Partially flavour-twisted boundary conditions [25–28, 32] have by now become a stan-

dard tool to overcome this problem. By imposing periodicity on the quark fields in the

spatial directions up to a phase factor, i.e.

ψ(x+ êjL) = ψ(x)eiθj/L j = 1, 2, 3, (2.3)

it was shown in [12] that the momentum transfer satisfies

−Q2 ≡ q2 =(pf−pi)2 =

[
Eπ

(
pf+

θf
L

)
−Eπ

(
pi+

θi
L

)]2

−
[(
pf +

θf
L

)
−
(
pi+

θi
L

)]2

. (2.4)
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Here, θi and θf denote the vectors of twist angles applied to the quark probed by the

electromagnetic current in the initial and final pion, respectively, and

Eπ(p) =
√
m2
π + p2 , (2.5)

is the pion dispersion relation [32]. In this work we have paid particular attention to

choosing twist angles which result in a very dense set of data points in the immediate

vicinity ofQ2 = 0, such that the charge radius could be determined by means of a discretised

derivative of the form factor.

2.1 Euclidean correlation functions

All our calculations have been performed in two-flavour QCD, employing O(a) improved

Wilson fermions [33]. We have used the non-perturbative determination [34] of the im-

provement coefficient csw which multiplies the Sheikholeslami-Wohlert term.

In this work we consider correlation functions of the non-singlet, O(a) improved axial

current and pseudoscalar density [35],

AIµ(x) = ū(x)γµγ5d(x) + acA∂̃µP (x) , (2.6)

P (x) = ū(x)γ5d(x), (2.7)

as well as the O(a) improved electromagnetic current, i.e.

V I
µ (x) = Vµ(x) + acV∂̃νTµν(x) . (2.8)

Since we are simulating mass-degenerate light quarks it is sufficient to consider only the

local vector and tensor currents Vµ(x) = d̄(x)γ5u(x) and Tµν(x) = iq̄(x)σµνq(x), respec-

tively. In the above expressions, ∂̃µ is the symmetrised discrete derivative in direction µ.

The improvement coefficient cA ≡ cA(g0) has been computed non-perturbatively in two-

flavour QCD in [36] for a range of bare couplings g0 (see also table 1) and cV has been

computed in one-loop perturbation theory [37] but at the end of this section we will argue

that it is of little relevance here. Note that the hadronic matrix elements of the currents

must still be renormalised in order to yield physical observables.

We compute the following two-point functions

CPP (t,p) =
∑
x

eip·x〈P (t,x)P †(0,0) 〉 ' |ZP |
2

2E(p)

(
e−E(p) t + e−E(p) (T−t)

)
CPA(t,p) =

∑
x

eip·x〈P (t,x) (AI0)†(0,0) 〉 ' ZPZ
∗
A

2E(p)

(
e−E(p) t − e−E(p) (T−t)

)
, (2.9)

where T denotes the temporal extent of the lattice and where we have already indicated

the asymptotic behaviour for large Euclidean time separations with the ground state ma-

trix elements

ZP = 〈0 |P (0)|π(p)〉 , ZA =
〈
0
∣∣(AI0)(0)

∣∣π(p)
〉
. (2.10)
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The electromagnetic form factor is extracted from the three-point function

C3(t, tf ,pi,pf ) =
∑
xf ,x

eipf ·(xf−x)eipi·x 〈P (tf ,xf )V I
0 (t,x)P †(0,0) 〉

' |ZP |2
4 E(pi) E(pf )

〈
π(pf )|V I

0 (0)|π(pi)
〉

(2.11)

×
[
Θ(tf − t) e−E(pi) t−E(pf ) (tf−t) −Θ(t− tf ) e−E(pi) (T−t)−E(pf ) (t−tf )

]
.

In these formulae the initial pion source is located on the first timeslice, while t is the

temporal position of the insertion of the vector current and tf corresponds to the position

of the sink.

The calculation of matrix elements of the O(a) improved vector current in the pres-

ence of twisted boundary conditions merits special attention, due to the presence of the

derivative of the tensor current in eq. (2.8). The contribution from the term proportional

to cV to the three-point correlation function in eq. (2.11) reads

CPTP(t, tf ,pi,pf ) = a

3∑
ν=0

∂̃ν
∑
xf ,x

eipf ·xf e−i(pf−pi)·x 〈P (tf ,xf )T0ν(t,x)P †(0,0) 〉 , (2.12)

where xf = (tf ,xf ) and x = (t,x). Since T00 ≡ 0 only spatial derivatives yield

non-vanishing contributions. Moreover, when periodic boundary conditions are im-

posed in the spatial directions, the discretised derivatives vanish exactly, owing to

translational invariance.

In the presence of twisted boundary conditions this is no longer true. The appearance

of phase factors implies that uncancelled contributions from the spatial boundary arise. A

few lines of algebra then yield the expression for CPTP, i.e.

CPTP(t, tf ,pi,pf ) =
1

2

∑
xf

eipf ·xf
3∑

m=1

∑
x

e−i(pf−pi)·x 〈P (tf ,xf )T0m(t,x)P †(0,0) 〉

×
{(
e−i(θf−θi)m − 1

)
δxm,L−1 −

(
ei(θf−θi)m − 1

)
δxm,0

}
, (2.13)

where xm denotes the mth component of x, while θi, θf are the twist angles applied to

the initial and final pions, respectively. This term vanishes by construction for Q2 = 0,

where the form factor is constrained to fππ(0) = 1 by symmetry. Later we will provide

numerical evidence that the contribution of the improvement term is negligible within the

statistical uncertainties.

2.2 The pion form factor, the decay constant and the light quark mass

From now on we set tf = T/2 and drop the corresponding argument in correlation functions.

Following ref. [28] one can extract fππ(Q2) from ratios of correlation functions such as

R1(t,pi,pf ) = 4Zeff
V

√
E(pi) E(pf )

√
C3(t,pi,pf ) C3(t,pf ,pi)

CPP (T/2,pi) CPP (T/2,pf )
,

R2(t,pi,pf ) = 2
√
E(pi) E(pf )

√
C3(t,pi,pf ) C3(t,pf ,pi)

C3(t,pi,pi) C3(t,pf ,pf )
. (2.14)
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β ZA [39, 40] ZP [39, 41] cA [36] bA − bP [38]

5.2 0.771(6) 0.518(5) −0.0641 −0.1079

5.3 0.778(9) 0.518(5) −0.0506 −0.0992

5.5 0.793(5) 0.518(5) −0.0361 −0.0848

Table 1. Non-perturbative estimates of renormalisation factors and improvement coefficients, as

used in our analysis.

While any multiplicative renormalisation of the vector current cancels in R2, the ratio R1

is renormalised by the factor Zeff
V . The form factor fππ(Q2) can then be determined via

Rk(t,pi,pf ) = fππ(Q2)
(
E(pi) + E(pf )

)
, k = 1, 2, (2.15)

where it should be kept in mind that this relation is valid for the time component of

the vector current and up to corrections induced by excited state contributions. The

renormalisation factor Zeff
V of the vector current has been determined by imposing electric

charge conservation, which implies fππ(0) = 1, at every value of the lattice spacing. At the

non-perturbative level Zeff
V is obtained by evaluating

Zeff
V =

CPP (T/2,0)

2 C3(t,0,0)
. (2.16)

We have also computed the renormalised and O(a) improved current quark mass de-

fined by the PCAC relation

m̂ ≡ ZA

ZP
(1 + [bA − bP] amq)mPCAC, mPCAC =

1

2

〈∂̃0A
I
0(x)P †(0)〉

〈P (x)P †(0)〉 , (2.17)

where the bare subtracted quark mass is given by

amq =
1

2

(
1

κ
− 1

κc

)
. (2.18)

For the critical hopping parameter κc we use the results listed in table 2. The difference

(bA−bP) is taken from [38], and for ZA and ZP we use the non-perturbative results from [39],

which update the earlier determinations from [40] and [41]. The numerical values of the

improvement coefficients and renormalisation factors ZA and ZP are listed table 1.

We use the definition

F bare
π =

√
2 |ZP|2

mPCAC

m2
π

. (2.19)

for the pion decay constant (e.g. [42]). Note, that our normalisation for pseudoscalar decay

constants corresponds to a physical value of Fπ = 92.2 MeV [43].

2.3 Ratios of correlation functions and excited states

As explained in the previous sections the pion form factor can be determined from the

asymptotic form of the ratios (2.14) of two- and three-point correlation functions (2.9)

and (2.11), i.e. for large Euclidean time separations between the operator insertions.
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One can study the contribution of excited states to the ratios analytically by inserting

the spectral decomposition of the two- and three-point functions. We have looked at terms

up to and including the first excited state which causes exponentially suppressed deviations

from the constant behaviour expected for the ground state (cf. also the study in [10]).

The behaviour is the same for R1 and R2. We control these contributions by choosing tf
sufficiently large for all our measurements and by tuning the fit window for every individual

result for the ratio such that exponential contaminations are sufficiently decayed.

There is a further, time-independent contamination proportional to e−∆tf/2, where ∆

is the energy gap between the ground- and first excited state. We are not able to remove

this contribution in our analysis because we do not have data for different choices of tf .

Under the assumption that ∆ ≈ 2mπ and for our simulation parameters as summarised

table 2, this contribution is however highly suppressed and it is therefore safe to neglect it.

Note also that due to current conservation at Q2 = 0, which implies fππ(0) = 1, the

contribution from the first excited state cancels exactly between numerator and denomi-

nator. For Q2 > 0 the cancellation is no longer exact, but since it is smoothly connected

to vanishing momentum transfer, it is reasonable to assume that excited state contamina-

tions are rather small in the region that is particularly relevant for the determination of

the charge radius.

We also note that techniques for a systematic reduction of excited state contaminations

have been developed and applied in [44, 45]. They will allow for a more precise estimation

of residual effects in future calculations of meson form factors.

3 Lattice simulation and results

3.1 Simulation parameters

All our calculations are based on the CLS1 ensembles generated with two dynamical flavours

of non-perturbatively O(a) improved Wilson fermions. The simulation parameters, i.e. the

bare coupling and the hopping parameter are listed alongside the values of some basic

observables in table 2. Gauge ensembles were generated using the DD-HMC [2, 5, 6] and

MP-HMC [8] algorithms.

To convert to physical units we use the Sommer scale r0 [46], which was recently

determined on the CLS ensembles [39, 47]. By computing the kaon decay constant in units

of r0, i.e. (fK r0), taking the continuum limit and combining it with the experimental value

of fK, one obtains r0 = 0.503(10) fm [39]. This value is consistent with the scale setting

procedure based on the mass of the Ω-baryon described in [48], provided that the updated

results for r0 from [39] are used. Hence, the three lattice spacings of the ensembles used

here are in the range 0.05 fm – 0.08 fm.

We have evaluated all two- and three-point correlation functions using two hits of

stochastic Z2×Z2 wall sources [49–52]. For each configuration subsequent hits were evalu-

ated on two different timeslices which we separated in time by T/2, except for ensemble A5

where we applied hits on four timeslices separated by T/4. The pion mass, the pion decay

1https://twiki.cern.ch/twiki/bin/view/CLS/WebHome.
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Ncfg T × L3 β r0/a κcrit. κsea mπ[MeV] mπL

A3 132 64× 323 5.2 6.15(6) 0.136055(4) 0.13580 470 6.0

A4 175 0.13590 365 4.7

A5 108 0.13594 310 4.0

E4 81 64× 323 5.3 7.26(7) 0.136457(4) 0.13610 605 6.2

E5 119 0.13625 450 4.6

F6 233 96× 483 0.13635 325 5.0

F7 250 0.13638 280 4.3

N3 98 96× 483 5.5 10.00(11) 0.1367749(8) 0.13640 630 7.6

N4 117 0.13650 535 6.5

N5 189 0.13660 425 5.2

Table 2. Summary of properties of the gauge ensembles. The results for the Sommer scale r0/a

and for the critical hopping parameter κcrit. are taken from [39]. We also list approximate values

for the pion masses in physical units.

constant, the PCAC quark mass and the pion vector form factor were evaluated in this way

on the ensemble of gauge configurations as summarised in table 4. Our ensembles cover a

large range of quark masses and lattice spacings. As a safeguard against large finite-size

effects, we have kept mπL ≥ 4 on all ensembles. Our parameter choice thus allows for a

comprehensive study of systematic effects, relating to chiral and continuum extrapolations.

As motivated above, we are particularly interested in the region of small momentum

transfers. We have therefore tuned the twist angles specifically to achieve a high resolution

for small values of Q2, using eq. (2.4) and a first rough determination of the pion mass on

all ensembles. Twisted boundary conditions were applied in the x-direction to the pions

in both the initial and final states, see figure 1, whilst projecting on vanishing Fourier

momenta, pi = pf = 0. Table 3 contains the full set of angles used in our simulations.

Correlation functions for the pion vector form factor were generated simultaneously with

those required for the computation of the K → π semi-leptonic form factor. For the latter,

partially twisted boundary conditions allow for simulating directly at the phenomenologi-

cally relevant kinematical point of vanishing momentum transfer [28, 53] between the kaon

and the pion. The angles θ1, . . . , θ4 in table 3 have been tuned such as to realise Q2 = 0

for the K → π matrix elements. We added one extra twist angle θ5 which was chosen such

as to yield a dense set of data points for small momentum transfers.

On each of the ensembles listed in table 2 we have computed the ratios R1 and R2 in

eq. (2.14) for all possible combinations of twists applied to the valence quark being probed

by the vector current.

3.2 Data analysis and fitting procedure

All error estimates are computed by resampling using the bootstrap procedure [54] with

1000 bins. Masses, decay constants, form factor and other quantities have been extracted
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set θ0 θ1 θ2 θ3 θ4 θ5

A4 0.0 ±2.2658 ±1.8438 ±1.3582 ±0.7745 ±2.5

A5 0.0 ±2.4380 ±2.0281 ±1.5544 ±0.9777 ±2.5

E4 0.0 ±1.6799 ±1.2748 ±0.8195 ±0.2969 ±2.5

E5 0.0 ±2.1728 ±1.7866 ±1.3476 ±0.8344 ±2.5

F6 0.0 ±3.2455 ±2.9371 ±2.6028 ±2.2355 ±1.5

F7 0.0 ±3.7892 ±3.5196 ±3.2323 ±2.9231 ±2.0

N3 0.0 ±0.7538 ±0.3777 ±0.4935 ±1.0146 ±4.0

N4 0.0 ±1.2730 ±0.8936 ±0.4726 ±0.5443 ±3.9

N5 0.0 ±1.7513 ±1.3942 ±0.9945 ±0.5311 ±3.2

Table 3. The choice of twist angles applied to the initial and final mesons in the x-direction.

Figure 1. Graphical representation of 3pt-function C3 with explanation of twist angles.

from correlation functions via suitable fits. While simulation data from a given ensemble

are correlated, it is often difficult to obtain sufficiently precise estimates of the full covari-

ance matrix based on a finite set of gauge configurations. As a consequence, numerical

instabilities can occur in the least-square minimisations (see for example [55]). We have

therefore chosen to quote our main results from uncorrelated fits.

The quantities which we fitted to ChPT often contain input parameters such as renor-

malisation factors, which have their own intrinsic uncertainties. In order to take the latter

into account we have folded them into our analysis via the following procedure: first we

generated a pseudo-bootstrap distribution with 1000 bins for the input quantity, whose

width was designed such that it reproduced the quoted uncertainty. We checked explicitly

that the bootstrap error obtained for the combination of distributions was compatible with

the corresponding estimate determined via the usual error propagation.

This procedure was also applied in combinations such as mπr0, despite the fact that

the determination of r0 was mostly performed on the same ensembles. However, since the

set of configurations used to compute the pion form factor did not exactly coincide with

those used in the calculation of r0, we chose to ignore the partial correlation of r0 with our

data, although this results in a larger overall uncertainty.

3.2.1 Pion mass and decay constant

We extracted the pion energy from a cosh-fit to the two-point function CPP(t,p), after

checking that the results with our choice of fit-ranges remain unchanged when a three-pion

state is included as the first excited state, as suggested in [42]. We obtained the current

quark mass mPCAC from a constant fit to the ratio in eq. (2.17). The bare pion decay
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ensemble r0 mπ r0 fπ r0 m̂ Zeff
V 〈r2

π〉/r2
0

A3 1.161(12) 0.280( 8) 0.090(3) 0.73228( 7) 1.14 ( 5)

A4 0.895(11) 0.247(12) 0.052(3) 0.72885(12) 1.20 ( 7)

A5 0.761(11) 0.251(14) 0.040(2) 0.72731(10) 1.48 ( 9)

E4 1.406(16) 0.287(10) 0.128(5) 0.74962( 8) 0.98 ( 4)

E5 1.048(13) 0.271(11) 0.078(4) 0.74461( 8) 1.18 ( 5)

F6 0.752( 8) 0.254( 8) 0.041(2) 0.74119( 4) 1.37 ( 6)

F7 0.646( 7) 0.237( 8) 0.029(1) 0.74030( 5) 1.61 (10)

N3 1.593(18) 0.329( 7) 0.188(5) 0.77162( 3) 0.90 ( 3)

N4 1.360(16) 0.304( 9) 0.139(4) 0.76855( 3) 1.04 ( 3)

N5 1.080(13) 0.291( 8) 0.091(3) 0.76543( 3) 1.17 ( 4)

Table 4. Results for basic quantities.

0.01
0.011
0.012
0.013
0.014
0.015
0.016
0.017

0 0.001 0.002 0.003 0.004 0.005

(a
E

π
)2

(θ
)

(θ a/L)2

E2
π(θ) = m2

π + (θ/L)2

Figure 2. The pion dispersion relation with partially twisted boundary conditions compared to

the continuum dispersion relation, eq. (2.5). The vertical axis shows the interval of squared pion

momenta up to about 40 MeV2.

constant was then determined from eq. (2.19), using the result for ZP and mπ from the

above cosh-fit and mPCAC. The fit-results in units of r0 are summarised in table 4. They

are in agreement with the results obtained in [39].2

Up to cut-off and exponentially suppressed finite-volume effects, the pion energy obeys

the dispersion relation (2.5) where p is the difference of the twist angles applied to the

pion’s valence quarks [27, 32, 56] divided by the spatial extent L of the lattice. As an

example for how well the continuum dispersion relation is reproduced by our data we show

the numerical results on ensemble F6 together with eq. (2.5) in figure 2. Note that for

these small momenta the difference between continuum and lattice dispersion relations is

negligible. In the remainder of the analysis we use eq. (2.5), i.e. we always determine the

kinematics in terms of the pion energy at rest together with the exactly know twist angles.

2Note that the analysis in [39] was done using different numbers of measurements, source positions and

also fitting strategies.
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Figure 3. Ratio R1 computed on ensemble A5 for twists θi = 2.5 and θf = 0.0 with and without

inclusion of the O(a) improvement term. The data is slightly shifted for clarity. The red band

indicates the result from the fit to the plateau region.

3.2.2 Form factor

We have determined the form factor from the plateau of suitable ratios of two- and three-

point functions, R1 and R2, defined in eq. (2.14). By an appropriate choice of twist

angles, these ratios were computed for about 60 different kinematical points, and a typical

example is shown in figure 3. We observed that the data for ratio R1 generally showed more

pronounced plateaus, and we decided to use that ratio in the subsequent analysis. We have

confirmed however, that using R2 instead leads to the same results and conclusions. An

important question concerns the influence of the O(a) improvement term in eq. (2.8) on the

plateau from which the form factor is determined (see the discussion in section 2.1). The

comparison in figure 3 shows that this contribution is tiny, especially when compared to

the typical statistical error. We conclude that the improvement term in the vector current

can be safely neglected in the extraction of the form factor and its slope.

Figure 4 shows the form factor as obtained on all our ensembles from ratio R1. The

small inset provides a more detailed view of the region of very small Q2, which we are

concentrating on in this work.

As we will explain in the following, due to kinematical cuts in the data-analysis and

since the analytical finite volume corrections which we wish to apply are only known for

certain kinematical situations the following analysis is restricted to a subset of the gener-

ated points. We note that in one case, ensemble N5 with one pion at rest and the other one

twisted with the largest angle on that ensemble, |θ| = 3.2, large statistical fluctuations in

the ratio made the unambiguous determination of a plateau range impossible and we de-

cided to discard the data. This data point would only have entered the chiral fits to the pion

form factor but not the fits to the charge radius from which we determine our final results.

In figure 5 we compare our results for the two lightest pions (ensembles F6 and F7) to

the experimental measurement, as well as to results of two other lattice collaborations in the

region of small Q2. The plot illustrates nicely that partially twisted boundary conditions

are a powerful method for isolating the low-momentum behaviour of the form factor.
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Figure 4. Results for the pion form factor for all ensembles. The inset shows a zoom into the

region of small Q2.
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Figure 5. Compilation of results for the pion form factor in dynamical lattice QCD [11, 12, 14, 28]

and as determined from experiment [57].

3.3 Discretisation effects and finite volume corrections

We have seen from figure 3 that the contribution from the O(a)-improvement term in

the vector current is between one and two orders of magnitude smaller than the statistical

errors of the ratios from which the form factor and its slope is determined. This is observed

for our coarsest lattice spacing and the largest value of the twist angle, for which the effect

arising from the improvement term is expected to be maximal. In the following we therefore

assume that the leading cutoff effects are proportional to a2 in all quantities. Below we

discuss the parameterisation of lattice artefacts in the combined chiral and continuum

fits. The corresponding expressions are listed in appendix B.3. For the pion mass, decay
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constant and charge radius they are obtained by adding a term proportional to a2 to the

relevant ChPT expression for each of these quantities. The case of the form factor is more

involved, since it depends on the momentum transfer Q2. The ansatz of eq. (B.14) contains

a term proportional to a2Q2, whose coefficient must be identical to that which appears in

the expression of the charge radius. Furthermore, we have included a term proportional

to a2Q4 in the combined NNLO chiral and continuum fits to the form factor.3 However,

we found the associated coefficient, α
(2)
r , to vanish within errors, while the central values

of all other fit parameters did not change appreciably. The term proportional to a2Q4 was

therefore neglected in all fits discussed in detail in section 4. Moreover, we note that our

data are not sensitive to higher-order lattice artefacts, since the coefficients multiplying

terms of order a4 were found to vanish.

Finite volume effects for the quantities considered here are expected to be suppressed

exponentially ∝ e−mπL. In order to keep these effects small we have used only ensembles

for which mπ L ≥ 4 (cf. table 2) but we have also made the effort to remove residual

effects systematically. This was not possible directly using simulation data since we do

not have results for different volumes at fixed pion mass at our disposal. Instead we

have used predictions of chiral perturbation theory. The corresponding expressions have

been derived in [58] for the pion mass and the pion decay constant. Remarkably, the full

expressions at NNLO contain only the low-energy constants (LECs) which appear at NLO,

which has been referred to as the “elevator-effect” in [58]. For the vector form factor with

partially twisted boundary conditions, finite-volume effects have been computed in NLO

chiral perturbation theory [56], for the case that either θi = 0 or θf = 0, and in [59] for

the Breit-frame θi = −θf .

In order to evaluate finite-volume effects in ChPT, we initially fixed the relevant LECs

in the same way as Colangelo, Dürr and Häfeli [58], who took their values from [60].

To become independent of external input quantities, we performed the following iterative

procedure: first, we applied the finite-volume correction based on ChPT and the LECs

from [60] as input. The subsequent fits of the chiral behaviour of the lattice data to the

expressions of ChPT described in the following section provide us with predictions for the

LECs from which the finite-volume shift is re-computed. After repeating this procedure

twice no significant change in the output LECs was observed. We note that the estimates

after the final iteration are well compatible with the values of [60].

Despite the fact that the ChPT estimates of finite-volume effects turn out to be nu-

merically small, we apply these corrections to the lattice data prior to any subsequent

analysis. In the case of the form factor we restrict ourselves in the following to only those

kinematical situations where predictions of finite volume effects are available.

3.4 Extraction of the charge radius

The charge radius of the pion is defined as the derivative of the form factor with respect

to the momentum transfer at Q2 = 0 (cf. eq. (2.2)). In practice, and this also affects the

3Note, that in our NLO ChPT fits the Q2-cut is chosen to be in the range where only linear terms in

Q2 contribute, so that the additional term does not have to be considered in this case.
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Figure 6. The squared charge radius for a pion mass of about 325 MeV (ensemble F6), plotted

versus the maximum value of the Q2-interval entering the fit, in units of r0. Labels P2 and P3

denote the results of a fit to polynomials of degree two and three, respectively, and the results

denoted by VPD are the results of a fit to the form in eq. (3.1).

determination from experimental data for the form factor, one fits a model for the Q2-

dependence to the data (e.g. pole- or polynomial ansatz) and extracts the charge radius in

terms of the slope at the origin. Until recently, data from both experiment and lattice QCD

did not cover the region of very low momentum transfer Q2 < 0.013 GeV2, which is where

one would ideally like to extract the slope. Studies of the systematics introduced by the

fit-ansatz were therefore very limited.

The high density of data points for fππ(Q2) near Q2 = 0 — shown for all ensembles

in figure 4 — allows us to constrain the functional form of the form factor very accurately

and to reduce any model dependence in the extraction of the charge radius to a minimum.

In practice we compare radii as extracted from linear fits in Q2, polynomial fits, as well as

pole fits of the form

fππ(Q2)
∣∣
VPD

=

(
1−

〈
r2
π

〉
VPD

6
Q2

)−1

. (3.1)

The latter was already employed in [57] to determine the charge radius from experimental

data and is usually used in the determination from lattice data (e.g. [11, 12, 14, 28]).

Figure 6 shows a representative example of the charge radius on ensemble F6, which

corresponds to a pion mass of 325 MeV. Data points were obtained by fitting the Q2-

dependence of the form factor to a particular ansatz within an interval 0 ≤ Q2 ≤ Q2
max.

The resulting estimates for the squared charge radius are then plotted versus the value of

Q2
max used in the fit. In order to compare results for different mass and lattice spacing, we

express all dimensionful quantities in units of r0. In the regime of low Q2, one observes

good agreement between different types of fits. Interestingly, higher orders in Q2 turn out

to become relevant very early as can be seen from an increasing discrepancy between the

linear fit on the one hand, and the polynomial and pole fits on the other.
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Figure 7. Compilation of results for the pion charge radius in dynamical lattice QCD [11, 12, 14, 28]

and the value quoted by the particle data group [43]. Most of the lattice data is extracted from a

single pole fit except for the data from RBC/UKQCD and the data from this study, for which we

show the quadratic fit based on an identical Q2-cut at (Qmax r0)2 ≈ 0.034 GeV2.

In the following we will use the result of the fit using a second order polynomial

(P2), imposing a cut at (Qmax r0)2 ≈ 0.22, which in physical units corresponds to about

0.034 GeV2. In this range all our ansätze are mutually compatible. We prefer the second-

order polynomial over the linear fit, since it yields consistent results over a larger range of

Q2
max. The results for 〈r2

π〉 on all ensembles are listed in table 4, and a comparison with

results from other collaborations is provided in figure 7.

Our lattice data suggest that the form factor can be represented very well by a second-

order polynomial up to values of the momentum transfer which have been probed by the

NA7-experiment [57].

4 Chiral and continuum extrapolations

Table 4 summarises our results for the pion mass, the pion decay constant and the charge

radius. We refrain from presenting the abundant numerical data on the form factor itself

but will use it for some of the discussions that follow. In this section we present our

attempts at parameterising the lattice data and also at extrapolating it to the physical

point, i.e. to the physical quark mass and to the continuum and infinite volume limits.

4.1 Fits guided by chiral perturbation theory

Chiral perturbation theory [16, 17, 61] provides a comprehensive effective theory framework

for describing the low-energy dynamics of QCD. Its predictions for the functional form of

the mass-, momentum- and cutoff dependence of low-energy observables are a standard

tool in lattice QCD for extrapolating lattice data in parameter space (volume, quark mass,

lattice spacing, momentum). For the two flavour theory the expressions for the pion mass,

the decay constant and the pion form factor, and consequently also its charge radius, have
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been computed within this framework at NLO [17, 61] and at NNLO [18, 62–64]. We

summarise the corresponding formulae in appendix A and B. The terms modelling cutoff

effects are introduced in appendix B.3. As discussed in section 2, all observables included

in the chiral extrapolation are either fully O(a) improved or we have shown that the O(a)

improvement term is negligible, so that cutoff effects can be assumed to appear starting

at O(a2). In the formulae we have included the leading order term (∼ a2) only, since the

quality of our data does not allow to constrain any higher order terms. We will give an

estimate for the size of higher order corrections in section 4.3. For the form factor we have

included a term ∼ a2 Q2 which exactly coincides with the a2 term in the expression for

the charge radius. As discussed in section 3.3, other possible terms in the Q2 expansion of

the from factor proportional to a2 Q2n are negligible for the range of momentum transfers

considered in this section.

At each order in the expansion new mass- and momentum-independent LECs appear.

They are a priori unknown parameters, unconstrained by symmetry, yet they can be

determined from lattice QCD data (for a summary of recent results see ref. [9]). Some

LECs contribute to the chiral expansion of more than one quantity which can be exploited

for correlations and consistency checks. These correlations motivate simultaneous analyses

of more than one observable to gain better control over the chiral extrapolations. Here we

compare the following fits:

• individual fits to m2
π, Fπ, fππ and

〈
r2
π

〉
at NLO

• joint fits to (m2
π, Fπ) at NLO and NNLO

• joint fits to (m2
π, Fπ, fππ) at NLO and NNLO

• joint fits to (m2
π, Fπ,

〈
r2
π

〉
) at NLO and NNLO.

Since the chiral series is expected to provide a good representation of QCD only up to a

certain low-energy scale we repeat all fits three times including, respectively, all data points

for pion masses up to about 430 MeV, 560 MeV and 630 MeV, while monitoring whether

the results depend on the choice of the mass cutoff. We have to be less worried about the

range of the momentum transfers which enter the fits: the use of partially twisted boundary

conditions provides us with many data points well within the realm of chiral perturbation

theory. We have extracted the charge radius at very small momentum transfers of up to

(r0Q)2 = 0.22 which in physical units corresponds to about (190 MeV)2. For fits to the

form factor our choice for the momentum cut is (r0Q)2 = 0.1 (about (120 MeV)2) for NLO

fits, where the Q2-dependence of fππ is mostly linear (cf. figure 6), and (r0Q)2 = 0.5 (about

(300 MeV)2) for NNLO fits.

Before discussing the various fits we have performed, it is instructive to recall earlier

determinations of low-energy parameters in lattice QCD. The FLAG review [9] quotes

global estimates of Fπ/F = 1.073(15) and ¯̀
3 = 3.2(8), while typical results for the LECs

¯̀
4 and ¯̀

6 can be summarised as ¯̀
4 ≈ 4 and ¯̀

6 = 12− 16, respectively.
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mcut
π χ2/dof r0F r0B ¯̀

3
¯̀
4

¯̀
6 αm αf αr

NLO Fπ

all 0.8 0.225(15) 4.6(1) −1.3(6)

560 MeV 0.6 0.226(16) 4.5(2) −1.2(6)

430 MeV 0.5 0.220(17) 4.7(3) −1.2(6)

NLO m2
π fixed Fπ

all 2.1 6.0(4) 2.6(5) −5(1)

560 MeV 2.0 6.0(4) 2.3(6) −5(1)

430 MeV 1.2 6.2(5) 3.0(8) −4(1)

NLO fππ

all 1.0 0.135( 6) 6.7(3) −2(3)

560 MeV 0.9 0.140( 7) 7.0(4) −2(3)

430 MeV 0.8 0.142( 8) 7.0(4) −0(3)

NLO
〈
r2π

〉
all 0.8 0.136( 6) 6.7(3) −1(3)

560 MeV 0.9 0.137( 7) 6.8(4) −1(3)

430 MeV 1.2 0.137(12) 6.7(7) 0(3)

NLO 〈r2π〉 fixed Fπ

all 6.8 12.0(5) 8(3)

560 MeV 6.1 12.7(5) 4(3)

427 MeV 4.1 13.6(7) 1(3)

Table 5. Fit results for individual observables based on ChPT at NLO. The coefficients αm, αf
and αr parameterise lattice artefacts. For full expressions see appendix B.

4.1.1 NLO chiral fits

All our fit results are compiled in tables 5 and 6. Fits to individual observables using

ChPT at NLO are listed in table 5, while table 6 contains results of joint fits to more

than one observable, employing both NLO and NNLO expressions. First we note that

individual NLO fits to the pion decay constant and mass yield estimates for F as well

as the LECs ¯̀
3 and ¯̀

4, which are in the same ballpark than the lattice and non-lattice

determinations compiled in the FLAG report (despite the fact that fitting the pion mass

with the decay constant fixed at its physical value gives relatively large values of χ2/dof).

In particular, we find r0F = 0.22 − 0.23 which, using r0 = 0.503 fm from [38], translates

into F = 86 − 90 MeV. Given that the PDG quotes the physical pion decay constant as

F phys
π = 92.2 MeV, we find that the ratio Fπ/F determined in this way is completely in

line with the global FLAG estimate for this quantity.

However, there is a significant downward shift of about 60% for r0F when the lattice

data for the pion form factor or, alternatively, the charge radius are fitted to the NLO

formulae. This very low estimate for F is accompanied by a much smaller value for the

LEC ¯̀
6 compared to the range quoted in the FLAG report. Taken at face value, such

fits would suggest chiral corrections as large as 60− 70% between the pseudoscalar decay

constant in the chiral limit and at the physical pion mass. Such a scenario contradicts

completely the experience gained in lattice calculations and effective field theory analyses

over many years. Therefore, despite the fact that NLO fits to the form factor and the charge
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radius have good χ2/dof, we conclude that the results make no sense. If — on the other

hand — one constrains the pion decay constant to its physical value, one finds estimates

for ¯̀
6 which are actually compatible with previous results. However, such fits are not very

plausible since their χ2/dof is unacceptably large. In this situation it is not sufficient to

judge the quality of a particular fit solely on the basis of χ2/dof. Our findings then indicate

that one either has to accept the complete breakdown of chiral dynamics, or that the pion

mass range considered in this paper does not allow to make contact between the data for

the pion form factor and the corresponding expressions of ChPT at NLO, possibly due to

slow convergence. The fact that NLO ChPT describes the data for the pion decay constant

well does not contradict this conclusion, since the convergence properties of ChPT are not

universal and may therefore differ for a variety of quantities.

The failure of the NLO formulae to describe the data for either the form factor or

the charge radius in a meaningful way is also manifest in the modelling of cutoff effects of

order a2. For instance, the value of the coefficient αf determined from a fit to the decay

constant Fπ agrees with the result from a joint fit to both Fπ and m2
π (see the corresponding

entries marked “NLO” in tables 5 and 6). When either fππ or 〈r2
π〉 is included into a joint

NLO fit the coefficient αf changes its sign and becomes positive. As can be clearly seen

from figure 8, a positive value of αf is incompatible with the observation that Fπ increases

as the lattice spacing is reduced.

To summarise: chiral Perturbation Theory at NLO fails to produce a consistent de-

scription of our lattice data for the entire set of pion observables within the mass range

considered in this paper. While individual and joint fits to the pion mass and the pion de-

cay constant lead to a coherent picture, inconsistencies arise when comparing or combining

the fits with the data for the form factor or the charge radius.

4.1.2 NNLO chiral fits

From the discussion above it is clear that a consistent description of our data may be

obtained either by extending the pion mass range to smaller values or by going beyond

NLO in ChPT. The NNLO expressions for Fπ and mπ together contain eight LECs plus

two parameters associated with cutoff effects. After including fππ or 〈r2
π〉 the number

of parameters increases to 14 and 13, respectively (cf. B). We are thus faced with the

problem of having to constrain a large number of parameters with a limited set of data

points. It is then not surprising that all our attempts at determining the full set of low-

energy parameters were unsuccessful. We note that similar difficulties were encountered

by the ETM Collaboration in their two-flavour study of the pion form factor [11]. We

therefore decided to stabilise the fits by fixing two of the LECs, ¯̀
1 and ¯̀

2, to the values

determined from ππ-scattering [60], i.e.

¯̀
1 = −0.4(5) and ¯̀

2 = 4.3(1) . (4.1)

In the expressions for m2
π, Fπ and fππ or 〈r2

π〉 these LECs appear only at NNLO. We checked

explicitly that our results do not change significantly when the central values of ¯̀
1 and ¯̀

2

are varied by 100%. Moreover, the uncertainties for both LECs are fully included in the
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Figure 8. Results from the global fit to the data of fππ, Fπ and mπ to ChPT at NNLO with

a mass cut at 560 MeV. Shown are the chiral extrapolations for
〈
r2π
〉
, Fπ and mπ (from top to

bottom). The red band represents the chiral behaviour of the quantity associated with the plot and

the different solid lines are the results for the three different lattice spacings.

analysis, by employing the same procedure described in section 3.2. Even after reducing

the number of free parameters we found that only the joint fits to (Fπ,m
2
π) on the one hand

and either (Fπ,m
2
π, fππ) or (Fπ,m

2
π, 〈r2

π〉) on the other led to stable and consistent results,

which are summarised in table 6. Figures 8 and 9 show the chiral extrapolations with Fπ,

m2
π and fππ or

〈
r2
π

〉
, respectively, with a mass cut at 560 MeV. The statistical uncertainty

on the LECs increases noticeably as the upper mass cut is lowered and less data points are

allowed to constrain the fit.

To summarise, the chiral expansion at NNLO provides a consistent description of the

data for Fπ, m2
π, fππ and

〈
r2
π

〉
. At the current level of precision we do not observe severe

inconsistencies like in the case of NLO fits, and thus the results of the NNLO fits appear

more trustworthy.
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Figure 9. Results from the global fit to the data of
〈
r2π
〉
, Fπ and mπ (from top to bottom) to

ChPT at NNLO. The legend is the same as in figure 8.

4.1.3 NLO and NNLO chiral fits: final results

In general, all fits based on the NNLO formulae are of reasonable quality in terms of

χ2/dof. However, for a mass cut as low as 430 MeV the fit ceases to be meaningful, as

the central values become volatile while the statistical errors increase significantly. We

therefore decided to take the simultaneous fit of Fπ, m2
π and

〈
r2
π

〉
at NNLO with an upper

mass cut of mcut
π = 560 MeV as our reference result. Successful fits to NLO expressions

can only be achieved by excluding the data for the form factor or charge radius, and we

regard the joint fits to Fπ and m2
π for a mass cut of 430 MeV as our NLO reference results.

Table 7 summarises our best fits based on both NLO and NNLO Chiral Pertubation Theory

expressions. The LECs extracted from either NLO or NNLO are compatible. Owing to the

better statistical accuracy, we take our final results for F , B, ¯̀
3 and ¯̀

4 obtained from NLO

ChPT as our best overall estimates. The LEC ¯̀
6 is extracted from the global NNLO fit.
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mcut
π χ2/dof r0F r0B ¯̀

3
¯̀
4

¯̀
6

NLO Fπ, m2
π 430 MeV 0.8 0.213(17) 6.3(5) 3.0( 6) 4.7(3)

NNLO Fπ, m2
π,
〈
r2π
〉

560 MeV 1.3 0.213(14) 6.1(5) 4.0(13) 5.3(8) 15.5(15)

Table 7. Summary of best fits with NLO and NNLO chiral perturbation theory formulae.

Order mcut
π b0 ba b1 b2 χ2/dof

m4
π all 1.68 ( 9) −1 (3) −0.50 (10) 0.08 ( 3) 1.4

560 MeV 1.77 (13) −2 (3) −0.67 (19) 0.15 ( 7) 1.4

430 MeV 2.20 (27) −2 (4) −1.70 (57) 0.72 (32) 1.0

m6
π all 1.92 (19) −1 (3) −1.1 (4) 0.5 (3) 1.1

560 MeV 2.44 (32) −0 (3) −2.8 (10) 2.1 (9) 0.6

430 MeV 3.08 (87) 1 (5) −5.3 (35) 5.0 (41) 0.9

Table 8. Results for the coefficients of the naive polynomial model for
〈
r2π
〉

as defined via eq. (4.2).

4.2 Fits guided by polynomial models

All fits to the lattice data carried out so far took advantage of a firm theoretical prediction,

based on chiral dynamics, for the dependence of several observables on the pion mass and

momentum transfer, in terms of a common set of low-energy parameters. Nevertheless,

it is interesting to study the ability of simple fit ansätze, for which the expansion is not

constrained by symmetries, to describe the data. One such model is a simple polynomial

in the square of the pion mass. Clearly, in the absence of an underlying dynamical theory

which relates different observables, a global fit to, say, 〈r2
π〉, fπ and m2

π makes little sense.

Here we only consider 〈r2
π〉 using the ansatz

〈
r2
π

〉
r2

0

= b0 + ba

(
a

r0

)2

+ b1 (r0mπ)2 + b2 (r0mπ)4 + . . . , (4.2)

where we have scaled all dimensionful quantities in units of r0. The results are summarised

in table 8. As indicated by the value of χ2/dof, the fits are of reasonable quality, despite

the fact that, contrary to the ansätze used in the previous sections, no chiral logarithms are

taken into account. We do, however, find an unsatisfactory dependence of the extrapolated

charge radius, when the mass cut is lowered to 430 MeV. This may be ascribed to the

stronger sensitivity of polynomial fits to fluctuations in the data near the physical pion

mass. We note that an additional term b3 in the fit including a m6
π-term is not properly

determined by our data set. Figure 10 illustrates the extrapolations via polynomials for

the cases of a polynomial to O(m4
π) with all data points and also for a mass cut imposed at

560 MeV. As can be seen, both extrapolations describe the data well and yield compatible

results for the whole range of pion masses.
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Figure 10. Result for the fit to the form in eq. (4.2) to order m4
π, including lattice artefacts. The

red band is the result for the fit in the continuum to all data points and the blue band is the result

for the fit with a mass cut of 560 MeV. The different colours emphasise different lattice spacings.

The solid and dashed lines are the fit result for the different lattice spacings and all data points

and the mass cut at 560 MeV, respectively. For the results at the different lattice spacings the error

bars are left out for the purpose of visibility.

4.3 Results at the physical point

We can now use the fit results from the previous section to determine the pion charge

radius and decay constant in the continuum limit and at the physical pion mass. The

latter is understood as the mass of the charged pion in QCD, (mπ+)QCD, i.e. with the

electromagnetic contributions subtracted. Following the discussion in section 3.1 of the

FLAG report [9], we find that (mπ+)QCD is, to a good approximation, given by the physical

mass of the neutral pion, i.e.

(mπ+)QCD ' mπ0 = 135 MeV. (4.3)

The combined chiral and continuum fits yield the values of the fit parameters in the con-

tinuum limit. Furthermore, we have corrected our input data for finite-size effects, as

described in section 3.3.

The results are summarised in table 9, where we have only included those fits, for

which the ratio Fπ/F does not deviate from unity by more than 10% and which also have

acceptable values of χ2/dof. We find that the estimates for the physical pion decay constant

and charge radius show practically no variation outside the quoted statistical errors, with

the possible exception of the charge radius extracted from polynomial fits. As the mass

cut is decreased to 430 MeV, the statistical accuracy of NNLO fits deteriorates.

In the following we discuss the various sources of systematic error. We note that the

uncertainties of input parameters, such as renormalisation factors or the estimates for the

LECs ¯̀
1 and ¯̀

2 were folded into the analysis.
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fit mcut
π Fπ r0 〈r2

π〉/r2
0

NLO Fπ all 0.241 (14)

NLO Fπ,mπ 0.237 (14)

NNLO Fπ,mπ 0.241 (13)

NNLO Fπ,mπ, 〈r2
π〉 0.240 (11) 1.85 ( 9)

NNLO Fπ,mπ, fππ 0.248 (17) 1.82 (10)

poly 〈r2
π〉,O(m4

π) 1.62 ( 8)

NLO Fπ 560 MeV 0.241 (15)

NLO Fπ,mπ 0.233 (16)

NNLO Fπ,mπ 0.233 (15)

NNLO Fπ,mπ, 〈r2
π〉 0.231 (12) 1.90 (10)

NNLO Fπ,mπ, fππ 0.231 (20) 1.90 (12)

poly 〈r2
π〉,O(m4

π) 1.70 (11)

NLO Fπ 430 MeV 0.236 (15)

NLO Fπ,mπ 0.230 (16)

NNLO Fπ,mπ 0.235 (22)

NNLO Fπ,mπ, 〈r2
π〉 0.219 (32) 1.89 (29)

NNLO Fπ,mπ, fππ 0.186 (20) 2.30 (34)

poly 〈r2
π〉,O(m4

π) 2.00 (21)

PDG 0.235( 4) 1.79( 5)

Table 9. Results for the pion decay constant and charge radius at the physical point in units of

r0. The PDG values have been converted using r0 = 0.503(10) fm [39].

Cutoff effects. Our data are compatible with ansätze assuming a linear dependence

on a2, and at the current level of precision we are not sensitive to higher-order lattice

artefacts. In order to estimate the size of residual discretisation errors of order a4 we

make the following exercise. First, we note that the global fit to m2
π, Fπ and

〈
r2
π

〉
with

mcut
π = 560 MeV suggests that the corrections of order a2, estimated as the difference

between the continuum limit and the coarsest lattice spacing, amount to 10% for the

pion decay constant and 7% for the charge radius. This is in the same ballpark than

the crude estimate of O(a2) lattice artefacts of (ΛQCDa)2 ≈ 4% (where we have used

ΛQCD ≈ 500 MeV). By the same argument one can give a rough estimate of O(a4) cutoff

effects, which then amounts to 0.2%. Compared to the typical statistical accuracy this

error is negligible.

Finite size effects. All our ensembles satisfy mπL > 4, which has often been considered

sufficient to guarantee small effects due to the finiteness of the box size. In addition, we

have corrected for finite-volume effects on the pion mass and decay constant using ChPT

at NNLO and ChPT at NLO for the form factor and charge radius. We believe that the

residual finite volume effects are negligible.

– 24 –



J
H
E
P
1
1
(
2
0
1
3
)
0
3
4

Chiral extrapolation. The only globally consistent extrapolation of the lattice data was

achieved using NNLO chiral perturbation theory, while NLO turned out to be sufficient

when fitting only Fπ and mπ. We estimated the residual uncertainty due to chiral extrap-

olation from the spread of results obtained considering different mass cuts. For the results

covered by the NLO extrapolation (i.e. F , Fπ, ¯̀
3, ¯̀

4 and B) we used the difference between

mcut
π = 430 MeV and 560 MeV as the symmetric systematic error due to the chiral extrapo-

lation. For 〈r2
π〉 and ¯̀

6 determined via the NNLO fit we use the spread between the central

value between the fit over all data and the one with an upper mass cutoff of 560 MeV.

Scale setting. The Sommer scale [46] was used to combine data obtained at different

values of the lattice spacing and to convert to physical units. The absolute physical scale

was set by the kaon leptonic decay constant [39], and the result for the scale is fully

compatible with the independent determination using the mass of the Omega baryon [48].

The associated errors were folded into the analysis during the resampling (cf. section 3.2).

Critical slowing down. It has been known for some time that simulations of lattice

QCD suffer from critical slowing down, which rapidly accelerates when approaching the

continuum limit [65–67]. While promising ideas for reducing the severity of the problem in

future simulations have by now been developed [68, 69], we cannot exclude the possibility

that the results of this paper which are based on the ensembles at our finest lattice spacing

(N3, N4 and N5) are affected. One consequence for the data analysis, the underestima-

tion of autocorrelations and hence the underestimation of statistical errors, was studied

in [67] where a procedure for estimating this effect has been devised. The limited number

of measurements in the present work, however, do not allow for a similar treatment of the

observables considered here. In this situation we have mimicked the effect of an underes-

timation of the statistical error in all results generated from ensembles N3, N4 and N5, by

inflating the statistical error by a factor of two prior to all subsequent analysis. The size

of the inflated error is suggested by the findings of [39, 67]. In general, the central values

of the final results hardly change, and only the statistical error increases slightly. In the

following we adopt this statistical error when quoting the final results but keep the central

values from the analysis without the inflated error.

We now summarise our final results. Since the combined NLO fits to the pion decay

constant and the pion mass are of good quality and statistical accuracy, we use it to

quote final results for the bulk of the fitted low-energy parameters, imposing a mass cut of

430 MeV:
Fπ = 90(8)(2) MeV, F = 84(8)(2) MeV,

Fπ/F = 1.080(16)(6), B = 2.5(3)(1) GeV,
¯̀
3 = 3.0(7)(5), ¯̀

4 = 4.7(4)(1).

(4.4)

Note that the low energy constant B depends on the renormalisation scheme. Here we

quote the result in the MS-scheme at µ = 2 GeV. Since the product of B and the current

(PCAC) quark mass is scale and scheme independent, the LEC B in the MS-scheme is

obtained after dividing by the renormalisation factor of the quark mass. For our chosen

discretisation, this factor (0.968(20)) is easily determined using the results of refs. [39, 41].
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For the pion charge radius and the LEC ¯̀
6 we take the results from the combined

NNLO-fit to the pion decay constant, the pion mass and the pion charge radius,〈
r2
π

〉
= 0.481(34)(13) fm2,

¯̀
6 = 15.5(1.7)(1.3).

(4.5)

In each case the first error is statistical and the second one is due to the chiral extrapolation,

as explained above. Other systematic effects are much smaller and have therefore not

been specified.

We end this section with the observation that our results for Fπ/F, ¯̀
3 and ¯̀

4 are in very

good agreement with the values listed in section 4 of the FLAG report [9]. Furthermore,

we can use the well-known Gell-Mann-Oakes-Renner (GMOR) relation [70]

Σ = F 2 B , (4.6)

which relates the LECs B and F to the quark condensate Σ. Our result for the condensate

in the MS-scheme at a renormalisation scale of µ = 2 GeV is

Σ1/3 = 261 (13)(1) MeV , (4.7)

which is also in good agreement with the results listed in [9].

5 Conclusions and outlook

We have presented the first determination of the iso-vector electromagnetic form factor

which does not rely on any particular model for the Q2-dependence of the form factor.

Our study in two-flavour QCD has full control over the main systematic uncertainties,

except isospin breaking effects. A crucial ingredient was the extensive use of partially

twisted boundary conditions, which allowed us to achieve a high resolution of data points

for the form factor close to Q2 = 0, thereby enabling a model-independent determination

of the charge radius.

Our data for the pion mass, decay constant, form factor and charge radius were then

subjected to extensive fits to ChPT at NLO and NNLO, augmented by terms which param-

eterise leading lattice artefacts. While the NLO expressions failed to produce a consistent

description of all observables, individual or joint fits to the data of the decay constant

and mass lead to a coherent picture. This indicates a problem with the effective theory

description of the form factor at NLO at least for the range of quark masses conisdered

here. At the level of statistical precision of the lattice data achieved here the NNLO ex-

pressions on the other hand allow for a fully consistent description of all observables. The

proliferation of free parameters at NNLO could be dealt with by fixing two LECs, ¯̀
1 and

¯̀
2, from ππ scattering.

The ability of ChPT to describe lattice data generally depends on the mass range

considered in simulations. We note that our conclusions have been reached for pion masses

between 280 and 540 MeV. It will be interesting to study whether ChPT at NLO can be

successfully fitted to the data including the form factor or the charge radius, when data at

or near the physical pion mass become available.

– 26 –



J
H
E
P
1
1
(
2
0
1
3
)
0
3
4

ref. Nf chiral extrapolation
〈
r2π

〉
extr.

〈
r2π

〉
/r20

〈
r2π

〉
[fm2]

this study 2 NNLO ChPT (
〈
r2π

〉
, Fπ, mπ) poly. O(q4) 1.90(11) 0.481(33)(13)

QCDSF [10] 2 poly. for Mpole pole 2.027(89) 0.442(19)

ETMC [11] 2 NNLO ChPT (
〈
r2π

〉
, Fπ, mπ) pole 0.456(30)(24)

JLQCD/TWQCD [13] 2 NNLO ChPT (
〈
r2π

〉
, Fπ, mπ) pole 1.703(96) 0.409(23)(37)

RBC/UKQCD [12] 2+1 NLO ChPT (fππ(Q2)) NLO 0.418(31)

Nguyen et al. [14] 2+1 NNLO ChPT (
〈
r2π

〉
, Fπ, mπ) pole 0.441(46)

PDG [43] — — gl. av. 0.452(11)

Amendolia et al. [57] — — pole 0.439(8)

BCT [18] — — NNLO 0.437(16)

Table 10. Compilation of results for the charge radius at the physical point from lattice

QCD [10–14, 28], including this study, experiment [43, 57] and ChPT to NNLO for the experi-

mental data [18]. See also scatter plot in figure 11.
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Figure 11. Comparison of results for the charge radius, cf. table 10.

In table 10 and figure 11 we compare our result for the charge radius to those from

other lattice simulations, experimental determinations, as well as results from a ChPT

description of experimental data. Despite the relatively good agreement between the

various lattice estimates and the value quoted by the PDG [43], one observes a certain

spread among the lattice results, with the result of this study at the upper end. In some

cases the differences can be traced to the scale setting procedure.4 It is then clear that

4For instance, the QCDSF Collaboration quotes r0 = 0.467 fm, while we take the more recent determi-

nation of ref. [39], i.e. r0 = 0.503(10) fm.
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further efforts in lattice QCD are required to pin down the pion charge radius with better

overall accuracy. The need for additional simulations — preferably at the physical pion

mass — is further highlighted by the difficulties which we encountered in obtaining a

consistent ChPT description of the data for the form factor and charge radius.

Acknowledgments

We are grateful to our colleagues within the CLS project for sharing gauge ensembles. Cal-

culations of correlation functions were performed on the dedicated QCD platform “Wilson”

at the Institute for Nuclear Physics, University of Mainz and on the QCD HPC “thqcd2”

cluster at CERN. We thank Dalibor Djukanovic for technical support. This work was sup-

ported by DFG (SFB443 and SFB TR55 “Hadron Physics from Lattice QCD”) and the

Research Center EMG funded by Forschungsinitiative Rheinland-Pfalz. The research lead-

ing to these results has also received funding from the European Research Council under

the European Community’s Seventh Framework Programme (FP7/2007-2013) ERC grant

agreement No 279757.

A Chiral perturbation theory to NNLO

For the purpose of performing a global fit to the data of mπ, fπ and fππ(Q2) (or
〈
r2
π

〉
alternatively) we first review the formulae of chiral perturbation theory to NNLO as given

in [18]. For convenience we adopt their notation and define the quantities

x2 ≡ m2
π

f2π
m0 ≡ 2B m̂ q̄2 ≡ q2

m2
π

N ≡ 16 π2 L ≡ 1

N
ln

(
m2
π

µ2

)
(A.1)

Here µ is the renormalisation scale which we set to µ = mphys
ρ = 0.77 GeV [43] and m̂ is the

renormalised bare quark mass. Note that a different renormalisation of m̂ is absorbed in a

different renormalisation of the LEC B. The LECs that are scale-independent are denoted

as ¯̀
i and are given in terms of the renormalised LECs at the physical pion mass. For these

we define the related scale-dependent quantities

`ri ≡
γi

2N

(
¯̀
i +N L|

mphys
π

)
and ki ≡ (4 `ri − γi L) L (A.2)

which appear in the formulae. Here γi are the anomalous dimensions, given by

γ1 = 1/3 , γ2 = 2/3 , γ3 = −1/2 , γ4 = 2 , γ6 = −1/3 , (A.3)
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and L|
mphys
π

denotes the chiral logarithm with the physical pion mass in the numerator.

We further define the functions

J(q̄2) ≡
√
z

N
ln

(√
z − 1√
z + 1

)
+

2

N

K1(q̄2) ≡ z h2(q̄2)

K2(q̄2) ≡ z2 h2(q̄2)− 4

N2

K3(q̄2) ≡ N z

q̄2
h3(q̄2) +

π2 h(q̄2)

N q̄2
− π2

2N2

K4(q̄2) ≡ 1

q̄2 z

(
1

2
K1(q̄2) +

1

3
K3(q̄2) +

1

N
J(q̄2) +

(π2 − 6) q̄2

12N2

)
,

(A.4)

with

z ≡ 1− 4

q̄2
and h(q̄2) ≡ 1

N
√
z

ln

(√
z − 1√
z + 1

)
(A.5)

Using these quantities the pion mass and the pion decay constant to NNLO are given by

m2
π = m0

{
1 + x2 [mπ]1 + x2

2 [mπ]2
}

and fπ = F
{

1 + x2 [fπ]1 + x2
2 [fπ]2

}
(A.6)

where

[mπ]1 ≡ 2 `r3 +
1

2
L

[mπ]2 ≡
1

N

(
`r1 + 2 `r2 −

13

3
L

)
+

163

96N2
− 7

2
k1 − 2 k2 − 4 (`r3)2 + 4 `r3 `

r
4

−9

4
k3 +

1

4
k4 + rrm

[fπ]1 ≡ `r4 − L
[fπ]2 ≡ 1

N

(
−1

2 `
r
1 − `r2 + 29

12 L
)
− 13

192N2 + 7
4 k1 + k2 − 2 `r3 `

r
4

+2 (`r4)2 − 5

4
k4 + rrf

(A.7)

Here rrm and rrf are constants stemming from the O(p6) Lagrangian after minimal subtrac-

tion and F is the pion decay constant in the chiral limit. For the form factor the expansion

is written as

fππ(q̄2) = 1 + x2 [fππ]1 + x2
2

(
P

(2)
V + U

(2)
V

)
. (A.8)

Here [fππ]1 is given by

[fππ]1 ≡
1

6

(
q̄2 − 4

)
J(q̄2) + q̄2

(
−`r6 −

1

6
L− 1

18N

)
(A.9)
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and P
(2)
V and U

(2)
V are the polynomial and dispersive NNLO piece respectively, given by

P
(2)
V = q̄4

[
1

12
k1 −

1

24
k2 +

1

24
k6

+
1

9N

(
`r1 −

1

2
`r2 +

1

2
`r6 −

1

12
L− 1

384
− 47

192N

)
+ rrV 2

]
+q̄2

[
−1

2
k1 +

1

4
k2 −

1

12
k4 +

1

2
k6 − `r4

(
2 `r6 +

1

9N

)
+

23

36

L

N
+

5

576N
+

37

864N2
+ rrV 1

]
U

(2)
V = J(q̄2)

[
1

3
`r1
(
−q̄4 + 4 q̄2

)
+

1

6
`r2
(
q̄4 − 4 q̄2

)
+

1

3
`r4
(
q̄2 − 4

)
+

1

6
`r6
(
−q̄4 + 4 q̄2

)
− 1

36
L
(
q̄4 + 8 q̄2 − 48

)
+

1

N

(
7

108
q̄4 − 97

108
q̄2 +

3

4

)]
+

1

9
K1(q̄2)

+
1

9
K2(q̄2)

(
1

8
q̄4 − q̄2 + 4

)
+

1

6
K3(q̄2)

(
q̄2 − 1

3

)
− 5

3
K4(q̄2) .

(A.10)

rrV 1 and rrV 2 are again coming from the O(p6) Lagrangian.

B Reformulation of ChPT to NNLO for global fits

For the intended fits as discussed in section 4 it is necessary to reorganize the chiral ex-

pansion, since the right hand sides depend on mπ and fπ themselves. In this appendix we

describe the necessary replacements and list the results.

B.1 Conventions and necessary replacements

For the fits including fππ(Q2) it is convenient to define the new fit parameter

˜̀≡ `r1 −
1

2
`r2 (B.1)

which replaces the fit parameters `r1 and `r2 completely in eq. (A.10). We also use ˜̀ instead

`r2 in m2
π and fπ to have a consistent set of fit parameters.

To make the fit formulae self-consistent we have to replace mπ and fπ in each formula

with the expressions in eq. (A.6) and keep all terms to O(x2
2). In practice this means we

have to replace mπ and fπ with its NLO expressions in each NLO term. In the course of

this replacement the parameters

x2 , L , q̄2 , and J(q̄2) (B.2)
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are modified. In the results similar parameters appear with the first order parameters m0

and F instead of m2
π and fπ. We thus define:

x̂2 ≡
m0

F 2
; q̂2 ≡ q2

m0
;

L̂ ; ≡ 1

N
ln

(
m0

µ2

)
; ˆ̀r

i ≡
γi

2N

(
¯̀
i +N L̂

)
;

k̂i ≡
(

4 ˆ̀r
i − γi L̂

)
L̂ ; ẑ ≡ 1− 4

q̂2
.

(B.3)

As shorthand notation we further define

∆m ≡ 2 ˆ̀r
3 +

1

2
L̂ and ∆f ≡ ˆ̀r

4 − L̂ . (B.4)

This is convenient, since in the following one just has to set ∆m and ∆f to zero to obtain

the NNLO formulae of the previous appendix.

Most of the replacements are straight-forward. The only more complicated replacement

is the one for the function J(q̄2), since it is a non-trivial function of z. We write the result as

J(q̄2) = J(q̂2)− x̂2
∆m

q̂2 − 4

(
2 J(q̂2)− q̂2

N

)
. (B.5)

B.2 Reformulated formulae

We now list the reformulated formulae for m2
π, fπ and fππ(Q2). The pion mass is given by

m2
π = m0

{
1 + x̂2 [mπ]1 + x̂2

2

(
[mπ]2 + ∆m [∆m − 2 ∆f ] +

∆m

2N

)}
, (B.6)

where [mπ]1 and [mπ]2 are defined as in eq. (A.7) with every quantity replaced by its

modified version from eq. (B.3). Similarly the modified ChPT expression for the pion

decay constant is

fπ = F

{
1 + x̂2 [fπ]1 + x̂2

2

(
[fπ]2 + ∆f [∆m − 2 ∆f ]− ∆m

N

)}
, (B.7)

where again the replacements in [fπ]1 and [fπ]2 are implied. For fππ(q̂2) we obtain

fππ(q̄2) = 1 + x̂2 [fππ]1 + x̂2
2

(
P

(2)
V + U

(2)
V

)
+x̂2

2

[
−∆m J(q̂2)− 2 ∆f

(
1
6

(
q̂2 − 4

)
J(q̂2)− q̂2

[
ˆ̀r
6 + 1

6 L̂+ 1
18N

])] (B.8)

with implied replacements in [fππ]1, P
(2)
V and U

(2)
V .

For the pion charge radius as defined in eq. (2.2) the results above yield〈
r2
π

〉
=

1

m0

{
x̂2

[〈
r2
π

〉]
1

+ x̂2
2

([〈
r2
π

〉]
2
− 2 ∆F

[〈
r2
π

〉]
1
− ∆m

N

)}
(B.9)

where
[〈
r2
π

〉]
1

is the NLO part as given in [18],

[〈
r2
π

〉]
1

= −
(

6 ˆ̀r
6 + L̂+

1

N

)
, (B.10)
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and
[〈
r2
π

〉]
2

the usual NNLO part,

[〈
r2
π

〉]
2

= −12L̂ ˜̀−1

2
k4+3k6−12ˆ̀r

4
ˆ̀r
6+

1

N

(
−2 ˆ̀r

4 +
31

6
L̂+

13

192
− 181

48N

)
+6rrV 1 . (B.11)

Note, that the results discussed above are in agreement with the ones listed in [11].

B.3 Inclusion of lattice artefacts

Since the data indicates the presence of residual lattice artefacts it is desirable to include

these effects in the chiral extrapolation. To this end we extend the formulae from the last

section of the appendix used for the global fits to the more general form:(
mπ

[
1 + αm

a2

r2
0

])2

= (B.6) ; (B.12)

fπ = (B.7) + αf
a2

r2
0

; (B.13)

fππ(q̂2) = (B.8) + αr
a2

r2
0

m0 q̂
2

6
+ α(2)

r

a2

r2
0

m2
0 q̂

4

6
; (B.14)

〈
r2
π

〉
= (B.9) + αr

a2

r2
0

. (B.15)

Note that for mπ the lattice artefacts are expected to be of O(a2) for the mass itself and

thus should be included on the left hand side. For the form factor additional discretisation

effects can appear that are proportional to a2 Q2n with n = 3, . . . ,∞. However, they

will be negligible for the range of momentum transfers considered in this study (see the

discussion in section 3.3).
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[10] QCDSF/UKQCD collaboration, D. Brömmel et al., The Pion form-factor from lattice QCD

with two dynamical flavours, Eur. Phys. J. C 51 (2007) 335 [hep-lat/0608021] [INSPIRE].

[11] ETM collaboration, R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of

the pion from twisted-mass lattice QCD at N(f) = 2, Phys. Rev. D 79 (2009) 074506

[arXiv:0812.4042] [INSPIRE].

[12] P. Boyle et al., The Pion’s electromagnetic form-factor at small momentum transfer in full

lattice QCD, JHEP 07 (2008) 112 [arXiv:0804.3971] [INSPIRE].

[13] JLQCD Collaboration, TWQCD collaboration, S. Aoki et al., Pion form factors from

two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 80 (2009) 034508

[arXiv:0905.2465] [INSPIRE].

[14] O.H. Nguyen, K.-I. Ishikawa, A. Ukawa and N. Ukita, Electromagnetic form factor of pion

from Nf = 2 + 1 dynamical flavor QCD, JHEP 04 (2011) 122 [arXiv:1102.3652] [INSPIRE].

[15] B.B. Brandt, A. Juttner and H. Wittig, Calculation of the pion electromagnetic form factor

from lattice QCD, arXiv:1109.0196 [INSPIRE].

[16] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the

Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

[17] J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B

250 (1985) 517 [INSPIRE].

[18] J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form-factors of the pion to

two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [INSPIRE].

[19] J. Bijnens and P. Talavera, Pion and kaon electromagnetic form-factors, JHEP 03 (2002)

046 [hep-ph/0203049] [INSPIRE].

[20] C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic

contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys.

Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].

[21] X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton

magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107

(2011) 081802 [arXiv:1103.4818] [INSPIRE].

[22] P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice Determination of the Hadronic

Contribution to the Muon g − 2 using Dynamical Domain Wall Fermions, Phys. Rev. D 85

(2012) 074504 [arXiv:1107.1497] [INSPIRE].
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