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Abstract
The coordination of multiple Unmanned Aerial Vehicles
(UAVs) to carry out surveys is a major challenge for emer-
gency responders. In particular, UAVs have to fly over
kilometre-scale areas while trying to discover casualties as
quickly as possible. However, an increase in the availabil-
ity of real-time data about a disaster from sources such as
crowd reports or satellites presents a valuable source of infor-
mation to drive the planning of UAV flight paths over a space
in order to discover people who are in danger. Nevertheless
challenges remain when planning over the very large action
spaces that result. To this end, we introduce the survivor dis-
covery problem and present as our solution, the first example
of a factored coordinated Monte Carlo tree search algorithm
to perform decentralised path planning for multiple coordi-
nated UAVs. Our evaluation against standard benchmarks
show that our algorithm, Co-MCTS, is able to find more ca-
sualties faster than standard approaches by 10% or more on
simulations with real-world data from the 2010 Haiti earth-
quake.

Introduction
The increased prevalence of low-cost, robust, commercially
available Unmanned Aerial Vehicles (UAVs) has led to con-
certed efforts to utilise these platforms in disaster response.
Specifically, UAVs have seen widespread use in recent
disasters—such as the 2010 Haiti earthquake and the 2015
Nepal earthquake—aiding first responders with collecting
imagery and other sensory data without putting human lives
at risk (Adams and Friedland 2012; Goda et al. 2015;
Meier 2015). In particular, an important body of work
has focused on developing UAVs that act as autonomous
systems to minimise the involvement of overstretched first
responders: both to conserve valuable manpower and to
ensure their safety (Crisis Mappers 2013; Murphy 2012;
United Nations Foundation 2011). Key to this work, is
the idea of enabling coordinated UAVs to explore a disaster
space to discover the spatial location of casualties: a difficult
task given the extent and large number of possible locations
to visit.

To enable this exploration, advances in data collection—
and specifically crowd-sourcing (Morrow et al. 2011; Good-
child and Glennon 2010)—have created new sources of
information about disaster scenarios that contribute to in-
creased awareness of the situation on the ground during a

disaster. Such information is vital given the size and scale of
the effects of natural disasters (Fowler 2016). For instance,
during 2010 a magnitude 7.3 earthquake struck Haiti near
the capital, Port-Au-Prince, which caused widespread de-
struction over thirty kilometres from the epicentre and re-
sulted in the destruction or damage of over three hundred
thousand homes; the death or injury of over five hundred and
twenty thousand people; and around one point three million
displaced persons needing temporary shelter (Government
of the Republic of Haiti 2014). A natural extension of the
use of UAVs in these events is to fully exploit prior data on
the extent and nature of the disaster (whether crowd-sourced
or otherwise) in order to maximise the likelihood of rescuing
or discovering casualties quickly. However, at present there
is no specific work that seeks to use spatial information on
the distribution of people and the expected danger—for in-
stance the likely rate of fatalities due to structural damage
to buildings or from the spread of radiation—to inform the
paths of UAVs through a disaster space, in order to maximise
the number of observations made of possible casualties.

Currently, the state of the art for UAV path planning al-
gorithms focuses on three main areas, the first of which is
target tracking for surveillance (Bernardini, Fox, and Long
2014; Hu et al. 2014; Kolling and Kleiner 2013). Now, al-
though these techniques are related to the exploration of a
disaster space, they are designed to find a known number of
targets that are in motion, rather than an unknown number
of survivors distributed over an area. Other developments
in path planning focus on trying to reach a set goal location
(or state) (Chen et al. 2014; Durkota and Komenda 2013;
He 2007; Kothari, Postlethwaite, and Gu 2009) or work-
ing with single autonomous UAVs (Cashmore et al. 2014;
Kothari and Postlethwaite 2012); neither of which fulfil the
need for algorithms that coordinate multiple vehicles in an
explorative traversal of the disaster space, rather than aim-
ing for a particular final location. Specific challenges exist
in coordinating multiple vehicles. For example, there is of-
ten no benefit to multiple UAVs providing imagery of the
same location: there must be coordination between the vehi-
cles to allow them to find survivors in a disaster, without all
attending the same locations.

In line with the terminology used in this field (Bry and
Roy (2011), Gan and Sukkarieh (2011), Waharte, Trigoni,
and Julier (2009) and others) we henceforth refer to data



distributed over a spatial representation of a disaster area
as a belief map. This belief map can come from different
sources, including crowd-sourcing, but we assume it has the
characteristics of mapping spatial locations onto some func-
tion that represents numerical data: for instance number of
people or radiation levels.

Our work seeks to address these challenges with the fol-
lowing three contributions:

1. We introduce a formulation of the survivor discovery
problem, informed by several datasets collected follow-
ing natural disasters;

2. We develop a decentralised algorithm that allows multi-
ple UAVs to coordinate the exploration of a large disaster
space with many states;

3. We test and evaluate our approach on real-world data sim-
ulating a very large action space, showing consistent gains
in survivor discovery of over 10% compared to bench-
marks.

The rest of the paper is organised as follows. First we dis-
cuss the background of using UAVs in disaster response and
the types of problems that existing research has focussed
on; next we describe the specifics of the problem we seek
to solve by formulating the survivor discovery problem; we
then detail our use of a coordinated Monte-Carlo tree-search
algorithm (including examples); before showing the benefits
of our implementation with three experimental scenarios us-
ing real-world datasets; and finally summarising our work
and proposing an extension of the algorithm and a removal
of some assumptions.

Background
In order to best use UAVs to aid responders in disasters
they must be able to plan paths autonomously, as a group.
Furthermore, as we have already indicated, it is benefi-
cial to use prior information about the area to inform the
flight paths of UAVs in order to maximise the likelihood
of discovering survivors. Currently, work on path plan-
ning in robotics focusses primarily on reaching goal loca-
tions and frequently formulates path planning as a control
problem (Goerzen, Kong, and Mettler 2009). Conversely,
in a disaster scenario there need not be any final end-point
to a UAV’s path planning; rather the length of the explo-
ration may be constrained by—for example—battery life,
and the number of people to be discovered must be max-
imised over the length of the path. Alternatively, much work
has also been done to enable the use of vision algorithms
and belief data to track mobile targets or map an area (Liu
and Dai 2010). However, this area of research often fo-
cusses on locating a known number of targets, or covering
a bounded space for the purposes of mapping. In contrast,
the task of searching for casualties in disaster response can
be summarised as the localisation of an unknown number of
people as quickly as possible (Fawcett and Oliveira 2000;
Chiu et al. 2002), in order to ensure quick rescue or atten-
tion by emergency services and thus the greatest chance of
survival (Macintyre, Barbera, and Petinaux 2011). Conse-
quently techniques for known numbers of targets or for map-
ping environments are not useful.

Against this background, we find closer similarities
with work on solving Markov Decision Processes (MDPs);
specifically where locality of UAVs can be used to reduce
calculation overheads. In particular, the generality of the
MDP formulation lends itself well to the construction of a
simulation environment given numerical data used for a be-
lief map, as well as having a number of well-established so-
lutions. Specifically, work by Amato and Oliehoek (2015)
utilises factored tree-searches for partially observable MDP
solutions, and demonstrates performance benefits over state
of the art un-factored solver POMCP (Silver and Veness
2010). This performance advantage is obtained by exploit-
ing problem structure to allow factorisation in a way reflec-
tive of local state spaces and interactions. In a similar way,
we use factored trees in this paper to represent the avail-
able actions of UAVs in a disaster environment, factoring the
value of locating people between UAVs within spatial prox-
imity of each other. Notably—because of the dimensions of
the physical area we consider—we deal with a very large
state-space, which must be particularly carefully sampled
since complete searches are computationally intractable. We
also include—for the first time—real data from a disaster
scenario to validate our model.

We next introduce the specific formulation of the problem
we tackle, and explain the origin of the large state-space.

The Survivor Discovery Problem
In this section to formulate the problem of finding a num-
ber of survivors in a disaster-area, with a team of coopera-
tive UAVs planning their actions and coordinating with each
other if required, in order to maximise the number of peo-
ple discovered. All of this is to be done in the presence of
a model of the danger to the casualties expressed as an es-
timated fatality rate mapped to spatial locations. As such
the problem is one of prioritising visits to areas of high ex-
pected numbers of people, while also attending areas with
high expected fatality rates as quickly as possible. We now
describe; in turn; the environment model, the behaviour of
UAVs in the simulation, and the specific problem of discov-
ering survivors. Following this we introduce the Bellman
equation (used to characterise MDPs) for our scenario.

Environment Model
We begin by discretising the search-space to allow for fast
plan creation. Specifically, we formulate the survivor dis-
covery problem as exploring a uniform x × y sized grid
world—C—formed of cells,1 cij ∈ C. Each cell cij con-
tains an unknown number of people, pij ∈ Z∗, and a scalar
value

dij ∈ [0, 1] (1)
denoting the danger in the cell as the probability of any per-
son in the cell dying during the next time step. Time steps
are denoted by an integer value t ∈ Z∗, with subsequent
steps referred to by adding integer values; for example t+1.
If a value depends on time, this is denoted in parentheses;
i.e. pij (t).
1Cells are indexed for their horizontal and vertical position respec-
tively by ij.



UAV Behaviour Formulation
The area C is explored by the set of UAVs U =
{u1, . . . , um} that traverse C from cell to cell once per
timestep. Each UAV is equipped with sensors capable of
accurately detecting people inside one cell at any given
timestep: i.e. they return the value of pij deterministically
(this is a simplifying assumption we will address in fur-
ther work). Each UAV, uk, must select its own trajectory
Tk ⊆ C with contiguous borders, through the area, form-
ing the set of all UAV trajectories T = {T1, . . . , Tm}. To
address double-counting the values in each cell,2 we in-
troduce the union of all the trajectories in the set T as
T (T) =

⋃
Tk∈T Tk. Additionally, we impose constraints

on the length of each UAV’s planned trajectory to account
for limits on battery life. If the maximum number of cells
that can be traversed due to the battery limitations of a UAV
uk is denoted bk ∈ Z+, then the maximum trajectory length
is simply | Tk |≤ bk∀k ∈ {1, . . . ,m}; which we denote f .

The action vectors enabling the UAVs to transition from
cell to cell are defined as ak = (←,→, ↑, ↓) for each UAV
uk, (each arrow representing the direction of motion: we
do not consider the UAVs remaining stationary as accord-
ing to our model this can never result in more reward than
moving). We impose the constraint that the available ac-
tions are restricted to UAVs at the edge of the grid world
(i.e. explicitly where the UAV occupies a cell cij where
i = 0 or x, or j = 0 or y) so that they do not have the ac-
tion available to cross out of the grid area. At any given
time, the vector denoting all possible UAV actions is given
by a = (a1, . . . , am), and represents all possible combi-
nations of movement available to all UAVs. The set of all
actions available to all UAVs at any arbitrary time forms
the total action space A, which we now incorporate into the
standard Bellman equation.

Exploration Problem Formulation
Having described the environment and UAV behaviour, we
formulate the multi-UAV exploration problem as a Markov
Decision Process (MDP), comprising a tuple 〈S,A,R, P 〉 of
states S, actions A, rewards R, and transition probabilities
P , which we define below. Since the UAVs are not aware
in advance of the ground-truth values of pij and dij in each
cell, computations are instead made using prior belief-data
about the expected number of people p̄ij ∈ R∗ and the ex-
pectation value of the probability of death d̄ij ∈ [0, 1] of
each person in a cell in a given time step. We also consider
a binary variable vij ∈ {0, 1} denoting the visibility of the
cell: i.e. whether it has been observed by a UAV. This allows
us to construct the tuple sij to denote the state of a cell cij :

sij = 〈p̄ij , d̄ij , vij,〉

The set of these for all cells in C forms the global state
variable s = {s00, . . . , sxy}. With this constructed, we next
formulate an update procedure for the expected value of the
2Specifically, we seek to avoid repeated observation of the same
high-value cells by different UAVs. Thus, by taking the union of
trajectories, we ensure only unique observations contribute to the
utility function.

number of people in a given cell after a time step t by com-
puting the product of the current expected number of people
and the probability of survival:

p̄ij(t+ 1) = p̄ij(t)(1− d̄ij) (2)

Here, d̄ij for the next time step is dependent on whether
a cell has been observed. If so, we consider the danger to
reduce to zero, since first responders are now be aware of
the need to rescue the people occupying that cell:

d̄ij(t+ 1) =

{
0 if vij (t) = 1

d̄ij (t) otherwise

This assumption need not hold in general. However, it is a
convenient way of indicating that no further utility can be
derived from revisiting a cell once it has been observed. In
a scenario with trapped survivors it is reasonable to assume
there will be no large-scale movement of population during
the search. Indeed, in many cases victims are often recov-
ered after being trapped in the same location for days at a
time (Macintyre, Barbera, and Petinaux 2011).

We note the logical extension of equation 2 to times at
an arbitrary point in the future t′, as required for planning
future actions:

p̄ij (t′) = p̄ij (t)
(
1− d̄ij

)t′−t
(3)

We record the set of positions of each UAV uk ∈ U at
time t as gk (t) ∈ C, which we denote as members of the
vector of all UAV positions:

g(t) = (g1(t), . . . , gm(t))

where the indices on each g correspond to the indices of
the UAV at that location. Additionally, we record the set of
unique UAV locations as the union of the elements of g as:

G (t) =

m⋃
k=1

{gk (t)}

Thus, the state of the map at a time t is a tuple comprising
the state of each cell, and the position of each UAV: s̃ (t) =
〈s (t) , g (t)〉.

As a result, we formulate the immediate reward to all
UAVs at timestep t as a function of the expected number
of people saved due to UAV observation. Specifically, this is
the product of the expected number of people in a cell mul-
tiplied by the death rate in that cell, summed over all unique
cells where a UAV is present (i.e. all members of the set G):

R (t) =
∑
G(t)

p̄ij(t)× d̄ij

Over an infinite time horizon, we consider the sum of ex-
pected rewards for each time step:

∞∑
t=0

R (t) =

∞∑
t=0

∑
cij∈G(t)

p̄ij(t)× d̄ij

Since G is itself dependent on the trajectory of each UAV
(i.e. the cell each UAV occupies at any time t) this can be
said to be equivalent to:

∞∑
t=0

R (t) =
∑

cij(t)∈T (T)

p̄ij(t)× d̄ij



Thus, R must be maximised over the trajectory of all
UAVs in order to observe (and subsequently ‘save’) the max-
imum number of people. The key challenge is to allow the
path planning to be coordinated between UAVs to maximise
global, rather than local, reward (shown explicitly by the in-
clusion of G in Equation ). We briefly discuss the implica-
tions of the UAVs detecting pij with certainty, and justify
this assumption, at the end of this section.

Bellman Equation
Having formulated the environment, the UAVs, and the dis-
covery problem; we finally formulate the standard MDP
Bellman optimality equation, where we denote R’s depen-
dence on the actions and state space (which themselves de-
pend on t):

Q(a, s) = R (a, s) +
∑
s′

P (s′ | a, s) max
a′

Q (a′, s′)

In our case, we do not require the diminishing-returns term
γ to ensure Q (a, s) is finite, since the diminishing value
of examining a cell further in the future is expressed in the
reduction of the expected number of people as a result of the
death-rate term (see Equation 2); which is incorporated in
the reward function. In other words, Q (a, s) cannot exceed
the number of people alive in the space, given s.

We also do not require the explicit sum over various states
since the transition probability P between states given a
fixed action is (as discussed below) deterministic. While this
simplifies the form of the action value function, we still re-
quire the result be optimal according to:

Q(a, s) = R (a, s) + max
a′

Q′ (a′, s′) (4)

from which we obtain the optimal action: a = arg maxaQ
to maximise current and future reward. While ostensibly a
simplification of a typical MDP formulation, the problem is
far from trivial as the joint action space a at any time step
grows as an exponent of the number m of UAVs in the sys-
tem, namely: ‖a‖ ∝ amk , while the possible combinations of
G grow proportional to:

| C |! = (x× y)! (5)

i.e. a combinatorial function of the dimensions of the envi-
ronment. The result is a state space S of extremely large
size (we give a specific example in our Results section be-
low) even before accounting for the permutations of p, d,
and v.

We now briefly discuss the implications of the discoveries
in the environment happening deterministically and how this
does not affect our planning.

Determinism in our Model
With regards to the rewards obtained in our formulation,
we note here the implications of determinism of detection
of people in our model. Whilst the construction above
relies on expected values of reward for exploration of a
cell—since we cannot in advance know the true conditions
on the ground (implied above in the unknown quantities pij

and dij)—we can still consider our MDP model determinis-
tic, with the following justification. All planning in our de-
cision making processes can only rely on the expected value
of cell reward. Once a cell has been visited, and the true re-
ward discovered, further exploration of the cell in our model
yields no further reward (see below). Furthermore, at this
stage we do not consider correlation between adjacent cells.
This is because we ensure the decomposition results in cells
encompassing entire buildings that in Haiti—and in Port au
Prince in particular—are often built sporadically and have
little relation to the structures in their surroundings (Govern-
ment of the Republic of Haiti 2014). As a result, planning
is not affected upon discovery of the true reward of visit-
ing a cell, and we can therefore consider the prediction of
future expected reward deterministic. Having clarified this
point, we now introduce our solution to the survivor discov-
ery problem in the environment model just described.

The Coordinated Monte Carlo Tree-Search
Algorithm

Our decision to base our algorithm on Monte-Carlo tree
search (MCTS) methods is due to their ability to sample very
quickly from large state spaces (traditionally used in solving
games), and the flexibility with which they can be applied
to general problems (including MDPs) (Browne et al. 2012;
Amato and Oliehoek 2015). This former point is partic-
ularly vital in our scenario as we have already noted the
extremely large number of configurations possible in the
environment (Equation 5). The principal purpose of our
algorithm is to allow UAVs to use MCTS algorithms to
calculate coordinated paths without incurring the cost de-
scribed in Equation 5. To do this we exploit locality be-
tween UAVs to factor the search space into local joint-
action trees. Furthermore, we allow trees to coordinate
over shared factors (that is, shared UAVs). To this end
we use the max-sum algorithm (Ramchurn et al. 2010;
Rogers et al. 2011) as we note its ability to guarantee neigh-
bourhood maximal rewards, and can do so in relatively few
iterations (Farinelli, Rogers, and Jennings 2014).

Specifically, we introduce an additional step to the stan-
dard MCTS process of tree growth. This growth is typically
summarised: node selection, expansion, rollout or simula-
tion, and backpropagation (Browne et al. 2012; Kocsis and
Szepesvari 2006). However, in our case we need to allow
the UAVs to search their future actions whilst also account-
ing for the actions of other UAVs and the impact they will
have on the reward obtained (that is, on the survivors discov-
ered). Most significantly, we modify the selection process to
determine which node to expand by coordinating in parallel
between trees via max-sum: resulting in an exploration al-
gorithm factored between multiple subsets of UAVs. This
represents the first time a factored tree-search has been ap-
plied to a UAV search simulation. We detail our approach in
the following subsections.

Tree Construction
At each timestep in the simulation, the coordinated MCTS
(Co-MCTS) algorithm begins by calculating which UAVs



require coordination with their neighbours, leading to the
form of the UAV-based factor graph constructed in the joint-
action creation function J (Line 3). This is performed to es-
tablish whether coordination is needed in a given UAV’s lo-
cality. In cases where a UAV is spatially isolated from neigh-
bouring UAVs, a local tree is grown. The resulting groups
of UAVs will form the basis of the factor graph used in the
max-sum calculation (Line 14 in Algorithm 1). The result of
J is represented formally by a set N = {n1, . . . , nf} that
represents the domain of the factor nodes to be coordinated.
Specifically, each member ofN contains a set of actions cor-
responding to a group of UAVs that require coordination.

In more detail, for some set of neighbouring UAVs—for
example {u1, u2, . . . , uk}—the possibility exists of
g1 (t+ 1) = g2 (t+ 1) = . . . = gk (t+ 1) at the next time
step t + 1 of a simulation.3 In this case, the corresponding
element inN—say ni—would be the set of actions available
to these UAVs: ni = {a1, a2, . . . , ak}. Notice that since a
UAV may interact (that is, potentially occupy the same cell
at a future timestep, and thus form a joint tree) with more
than one neighbour, the condition

⋃
nk∈N nk = G must

hold, whereas
⋂
nk∈N nk = ∅ will, in general, not. Trees

are grown for each ni in N , each of which in turn represents
the factors in the max-sum graph connected to the variables
representing the available actions of the UAVs. Individual
nodes in the tree ni will be indicated as n(k)

i or from any
arbitrary tree by n(k).

Having described the construction of the trees, we now
detail how each tree is grown in order to sample from the
action space.

Tree Growth
Algorithm 1 begins with the creation of the root nodes rep-
resentative of each factor seen in Line 6, which are recorded
in the set Nr (Line 4). Following this, the creation and
growth of branches is performed ∆ times inside the loop
beginning at Line 9. This begins by exploring down each
tree, starting from the root node, to determine which node
to branch on next. Similarly to standard upper confidence
bound MCTS (Kocsis and Szepesvari 2006), this begins
by selecting nodes which have hitherto not been fully ex-
panded: that is, there remain neighbouring action states that
have not yet been branched to previously. The total number
of neighbouring actions ν from a given action node is of or-
der ν =

∏
aβ∈nα | aβ | for a tree corresponding to factor

node nα, simplifying to ν =| aβ ||nα| when all UAVs in the
set have the same number of available actions.4 Thus, the
operation of the function in Line 18:

fullexp(n(k)) =

{
True if e = ν

False otherwise
where e is the number of previous expansions of that node.
Line 10 introduces the current set of nodes (across all trees)
3We note here a slight abuse of notation, since these nodes serve as
functions within a factor graph rather than simply a set of actions.
Since we factor locally, the functions depend only on the actions
in each n and so we omit the function notation for clarity.

4We use | x | on any set x to denote cardinality.

to be expanded next, Nnext, and Line 11 creates the set of
previously expanded nodes Nprev . At Line 14 the max-
sum algorithm is used to maximise the value of the ac-
tions over each ni, returning a vector of favourable actions
a∗ = (a∗1, a

∗
2, . . . , a

∗
m | a∗k ∈ ak). Since each ni depends

on a subset of actions, the function select(n(k), a∗) serves to
return only the actions corresponding to a given n(k). This
is then used as the argument to create the new expansion to
a node in Nnext in Line 17.

Algorithm 1 Coordinated MCTS
CoMCTS (G,C, t = 0)

1. for each in [1, . . . , f ]

2. //Creation of factor graphs//
3. N ← J (G)

4. Nr ← ∅
5. for ni inN
6. append(Nr)← n

(0)
i

7. endfor
8. //Loop for each iteration of tree growth//
9. for δ in [1, . . . ,∆]

10. Nnext ← Nr

11. Nprev ← ∅
12. whileNnext 6= ∅
13. //Coordination between trees for production of optimal actions//
14. a∗ ← maxsum (N,Nnext)

15. for n(k) inNnext
16. //Chooses action relevant to the tree//
17. n(k)

new ← expand
(
n(k), select

(
n(k), a∗

))
18. if fullexp

(
n(k)

)
= True

19. remove
(
n(k), Nnext

)
20. append

(
n(k), Nprev

)
21. endif
22. endfor
23. endwhile
24. for n(k) inNprev
25. //Rollout and backpropagation of values//
26. rollout(n(k)

new)

27. backpropagate(n(k)
new)

28. endfor
29. endfor
30. t← t+ 1

31. endfor
32. for ni inN
33. Return (bestactions (ni))

34. endfor

An example factor graph and trees are shown in Figure
1, for four interacting UAVs. Their actions are shared be-
tween two factor graph utility nodes, hence the two joint ac-
tion trees n1 and n2. Four expansions of the root are shown
where the action of the shared UAV—u3—has been coordi-
nated between the trees each time, thus ensuring contradic-
tory actions are not chosen for the same UAV in two dif-
ferent trees. A second depth of growth is shown in Figure
2, where coordination has resulted in a newly created node
with common action for a3 of ↑.

Rollout
The rollout portion of the MCTS is traditionally a coarse es-
timate of the affect of future actions as the result of explor-



Figure 1: Example factor graph and the first iteration of tree
growth for four interacting UAVs. Here u3 can interact with any of
the other UAVs, and is thus common to the two joint-action trees,
which coordinate in order to maximise the reward from its actions
in conjunction with the other UAVs. Factor and utility nodes are
synonymous with variable and function nodes as outlined in (Ram-
churn et al. 2010).

Figure 2: New nodes created at lower depth in the tree, where the
actions of u3 have again been coordinated to be ↑ in both cases.

ing a particular node in the action space. In this example, we
base the rollout on a random-walk through the action space
starting at the node just expanded, biased in the direction of
the last action taken. This method has the benefit of showing
not just the contribution of any random series of actions, but
of taking more actions similar to the one represented by the
frontier node (for each UAV). Intuitively, a random rollout
from one node in a joint action tree will be insignificantly
different from a rollout from any similar node because of
their spatial proximity. Conversely, our rollout policy con-
tributes to the exploration value of a node by indicating pos-
sible future reward through continued tree expansion with a
preference for repetitions of the action itself.

Results
To verify the performance of our algorithm on data rele-
vant to real-world disaster scenarios, we used data from
the Ushahidi project (Morrow et al. 2011) produced from
crowd-sourced information during the 2010 Haiti earth-
quake.5 Specifically, we extracted the level of damage and
coordinates of buildings in a 2km square centred on the cap-
ital, Port-au-Prince. Damage was rated based on crowd re-
ports on a scale from 1 to 5, with 5 being the most severe.

We then constructed a decomposed grid world of size

5Available from http://www.ushahidi.com/

200×200 of 10m cells, with UAVs traversing from the cen-
tre of one cell to the centre of an adjoining cell above, below,
or to either side at each time step. This is convenient since
assuming a UAV speed—typical of quad rotor vehicles—of
10ms−1 amounts to the traversal of one cell in one timestep
of one second.

Damaged buildings represent an estimate of the damage
in an area and thus, the danger to the victims on the ground:
buildings that have suffered more severe damage will likely
lead to more severe casualties and a higher rate of death.
We formed a belief map of danger to the populace by sum-
ming the total number of buildings above a threshold level
(set to a crowd report of damage 3 and above) in each cell,
before multiplying by a common factor to convert the data
into a map representative of expected fatalities (noting the
constraint in Equation 1). The environment is displayed in
Figure 3 with a scale showing the value of d in each location.

Figure 3: Danger as a function of position, created from Ushahidi
dataset centred over Port-au-Prince

The number of unique sets of UAV positions G (that is,
the cardinality of the state space) in this environment for
(for example) five UAVs, is of the order 8.5 × 1020 (refer-
ring to Equation 5); even without the variation in the ex-
pected number of people with time.6 Using this environ-
ment, we measure performance by evaluating the number
of survivors averaged over each UAV over each timestep.
That is: 1

f ·m
∑f
t=0

∑
cij∈G(t) p̄ij(t) where f denotes the fi-

nal time step (a stopping time introduced simply as a limit
of the simulation), and we recall that m is the total number
of UAVS, and G(t) is the unique positions of the UAVs at
time step t.

Figure 4 shows our results for an initial test of the coor-
dinated Monte Carlo tree search using randomised starting
locations for four simulated UAVs. We compare against,
a simple “lawnmower” sweep search—a typical strategy
employed in search and rescue situations (Goodrich et al.

6Calculated using standard multichoose combinatorics (Feller
1968).



2007)—as well as a typical MCTS algorithm (as per the
work of Chaslot et al. (2008)) without the factored coordi-
nation we introduce. We also demonstrate explicitly the for-
ward planning required in the survivor discovery problem,
by benchmarking against Co-MCTS without a rollout pol-
icy, and a greedy (but locally coordinated via max-sum) pol-
icy. Results demonstrate a minimum performance increase
of 10% over MCTS, and higher gains over the other bench-
marks. Errors are taken as standard error of the mean over
1000 repeats of each experiment. The poor performance of
a greedy one-step lookahead shows that even with coordina-
tion, the ability to forward-plan to account for survivor death
rates is essential to discovering casualties in our scenario.
Indeed, simple un-planned lawnmower-style sweep searches
are more successful, but still fall short of the MCTS’s ability
to plan exploration paths to target (for instance) high-danger
areas before casualty rates become too high.

Figure 4: Comparison of performance between: coordinated
MCTS, un-coordinated MCTS, simple lawnmower sweep search,
Co-MCTS with no rollout policy, greedy policy with max-sum co-
ordination. Start locations were uniformly randomised, m = 4,
f = 1000.

Additionally, we explicitly demonstrate the benefit of the
consistency afforded by our coordination in a simulation.
We do this by varying the number of UAVs present and com-
paring to the closest benchmark to Co-MCTS’s performance
from our initial simulation. Good coordination should ben-
efit the overall reward gained by the algorithm (in our case
the number of people rescued) with low diminishing returns
compared to uncoordinated approaches. Specifically, any
additional UAVs should still find close-to the same number
of casualties as other UAVs in the system, if they coordinate
the exploration task effectively as a group. If they do not,
one would expect additional UAVs would explore the same
regions of the disaster space as those already present: which,
as discussed previously, offers no benefit to the global re-
ward function. This is demonstrated in Figure 5 for varying
m, where we note performance improvements of 12% with
the inclusion of 6 UAVs (and an average of 6% across the
experiment). This is notable after 3 UAVs are introduced,
since before this point interaction (and therefore required
coordination between the UAVs) was at a minimum since
the search space was large enough to accommodate multiple

non-intersecting explorative paths. For more UAVs, coordi-
nation is more commonplace and with the successful imple-
mentation of Co-MCTS there is higher value in the inclusion
of further UAVs into the scenario, compared to a situation
without coordination.

Figure 5: Comparison of coordinated and un-coordinated MCTS
in locating survivors with additional UAVs; demonstrating a con-
sistent performance per-UAV in Co-MCTS. Initial UAV starting
locations fixed at c0,0 = [0, 0]; f = 1000.

Figure 6: Comparison of coordinated and un-coordinated MCTS
in locating survivors over varying densities of population, showing
Co-MCTS’s consistency in different forms of belief data. Here
c0,0 = [0, 0]; f = 1000; and m = 5.

Finally, we demonstrate how Co-MCTS performs con-
sistently in varying environments. For the algorithm to be
viable, it should show performance benefits in a variety of
situations with a variety of distributions of casualties to be
discovered. We achieve this by varying the relative popula-
tion over the belief-space from 1 (as above), down to 0.25 by
uniformly sampling from the Ushahidi dataset to the popu-
lation portion of the belief map. This has the effect of main-
taining our standard of using real data with a large action
space, while still allowing us to experiment over different
state spaces (S). The results presented in Figure 6 demon-
strate this consistency with an average 14% improvement
over the un-coordinated MCTS benchmark: even at low den-
sities of people; where the coordination requirements would



be intuitively less valuable. We thus provide evidence that
the performance gains of Co-MCTS are not simply a by-
product of the test environment selected.

Conclusions
Motivated by the recent increased availability of belief-data
about disaster environments, we have introduced an imple-
mentation of a decentralised, factored, coordinated Monte
Carlo tree search algorithm for the purpose of discovering
survivors in a simulated UAV path planning scenario. Tests
were carried out on real-world data from the 2010 Haiti
earthquake via the Ushahidi platform; an environment with
a very large (of order 8.5 × 1020) action space. We demon-
strated the capability of our Co-MCTS algorithm in sam-
pling this space and planning paths, and demonstrated con-
sistent performance gains in the number of survivors dis-
covered of > 10%. Future work will seek to extend these
solutions to time-varying belief maps to cope with the situ-
ation in which data is collected and updated during explo-
ration, and removing the assumption of a cellular disaster
area to tackle the issue of discretising (and therefore poten-
tially oversimplifying) the data collected.
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