
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


University of Southampton

Faculty of Engineering & Environment
Computational Engineering & Design Research Group

Coronary artery stent design for
challenging disease: insights into

patient specific modelling

by

Georgios E. Ragkousis

Thesis for the degree of Doctor of Philosophy

Supervisors:
Prof. Neil W. Bressloff

Prof. Nick Curzen

March 1, 2016





To Olga and Lefteris





“...we may never find a universe

to fit us all but the beauty lies in

the quest.”

Hainis D. Apostolakis





UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY of ENGINEERING AND THE ENVIRONMENT
Computational Engineering and Design Research Group

Doctor of Philosophy

CORONARY ARTERY STENT DESIGN FOR CHALLENGING DISEASE:
INSIGHTS INTO PATIENT SPECIFIC MODELLING

by Georgios E. Ragkousis

In the last two decades, numerical methods have been a widely recognised tool
for investigating stenting procedures. Initially, computer models of stenting were re-
stricted to ideal vessels and in some cases by two dimensional analysis due to limited
computational capabilities and resources. Nevertheless, nowadays, the increased com-
putational power along with the development of solid imaging processing techniques,
have launched a new category in computational stenting, that of imaged-based com-
putational modelling.

Recent clinical evidence has shown that new generation stents are better in terms
of in-stent restenosis and stent thrombosis. However, improving stent performance
regarding one factor can impair others and, as a result, a compromised approach is
likely to be necessary. This fact seems to be more evident in challenging anatomies
where a long and flexible stent has to be implanted. Challenging anatomies can be
characterised by long and tortuous geometry, comprising non-focal and highly calci-
fied plaque. Common complications of percutaneous coronary intervention in such
anatomies include stent malapposition and stent longitudinal deformation.

The aims of this doctoral work were (i) to reconstruct diseased patient-specific coro-
nary artery segments, (ii) simulate the deployment of state of the art stents into these
segments following model validation and verification, (iii) assess the degree of stent
malapposition and stent longitudinal deformation, (iv) design stent systems to miti-
gate the risk of stent malapposition and longitudinal deformation in these segments
and (v) analyse optimum stent deployments according to a patient-specific vessel.

Patient-specific cases were reconstructed by combining coronary angiography and
ultrasonography to an acceptable accuracy level for the computational purposes of
this project. Then, after generating contemporary virtual stent/balloon models, they
were validated/calibrated against experimental data. In addition, novel varying di-
ameter balloon models and a modified stent were generated to mitigate the risk of
stent malapposition and longitudinal deformation, respectively. After developing an
inexpensive numerical methodology for image-based stenting simulations, numerous
patient-specific structural simulations were carried out to investigate the effect of i)



different stent design in stent malapposition and longitudinal deformation and ii) dif-
ferent dilation system design in stent malapposition. Finally, a multi-objective opti-
misation framework was presented to investigate the optimum dilation protocol in a
patient-specific segment via structural and surrogate modelling.

Results indicate that stent malapposition, for the simulated patient specific cases,
is dependent on the so-called “reference diameter”. Remarkably, the proposed balloon
models demonstrated superior results of performance especially as far as stent malap-
position is concerned. In particular, they led to an approximately 40% reduction in
malapposed struts when compared with the baseline models, whilst maintaining a rela-
tively low stressed mechanical environment. As for stent longitudinal deformation, the
outcomes indicated that (i) it is significantly different between the stent platforms in
a manner consistent with physical testing in a laboratory environment, (ii) there was
a smaller range of variation for simulations of in vivo performance relative to models
of in vitro experiments, and (iii) the modified stent design demonstrated considerably
higher longitudinal integrity. Interestingly, it was shown that stent longitudinal stabil-
ity may differ significantly after a localised in vivo force compared to a distributed in
vitro force. Lastly, the multi-objective optimisation study demonstrated that given a
patient-specific vessel, different optimum dilation strategies could be extracted accord-
ing to the interventional cardiologist’s preference.

Significantly, this work computationally investigates stent longitudinal deformation
and stent malapposition of patient-specific reconstructed vessels. Such numerical mod-
els can provide three dimensional qualitative and quantitative information in the in-
vestigated clinical problems. Moreover, they may represent a potentially valuable tool
for predicting stent malapposition, avoiding stent deformations and, consequently, op-
timising the interventional protocol according to any patient-specific case.
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PROLOGUE

The human circulatory system consists of the heart, arterial, veinous and micro-

circulatory systems. The current study is carried out with respect to a human disease,

named atherosclerosis, that affects the arterial system by reducing the flow of blood

to distal tissue. Atherosclerosis occurs in almost any artery but appears with greatest

frequency in the aorta, iliac, cerebral and coronary arteries. It is primarily an intimal

disease of large and medium sized arteries and is characterized by the presence of lipid

in the intima, usually in localised form, and accompanied by inflammation, fibrosis,

and by hyperplasia in the endothelium (Nichols and O’Rourke 2005). Atherosclerosis

is the result of unusual hemodynamic conditions occurring mainly in the arteries that

can lead to abnormal biological responses. There are two principal manifestations

of atherosclerosis, occlusive (“stenosis”) disease and aneurysms. The former is the

reference point of this work.

It is well known that, across all populations (based on geographic location, race,

ethnicity, age, and sex), coronary artery disease (CAD) is the single most common

cause of death. The pathological complications of atherosclerosis remain the leading

cause of mortality in the western world. In the UK, in 2010 CAD resulted in about

80,000 deaths and every year over 100,000 percutaneous coronary intervention (PCI)

operations are carried out, more than three times the number a decade ago, resulting

in a multi-billion pound cost for the UK economy (Townsend et al. 2012).

Coronary arteries carry oxygenated blood from the left ventricle of the heart to

the myocardium. In its advanced stages, atherosclerosis can cause serious events such

as myocardium infraction (heart attack), angina and stroke. The form of the illness,

typically, is accumulation of atheromatic plaque on the walls of the arteries, restrict-

ing the flow of the blood, therefore, obstructing the physiologic oxygen supply to the

myocardium. Different stages of CAD are now well identified either by using invasive

imaging methods such as coronary angiography (CA), and intravascular ultrasound

(IVUS) or more rarely non-invasive imaging tools including cardiac computed tomog-
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raphy (CT) and positron emission tomography (PET).

In the past, CAD treatment was focused primarily on fully invasive open heart

surgery methods in which coronary artery by-pass grafting (CABG) is used to restore

the blood flow in diseased vessels (Richard and Timothy 1995). Such operations could

be very traumatic for the patient. However, nowadays catheter based operations (an-

gioplasty and stenting) have been developed. In general, there is a range of choices

for treating CAD. These choices are mainly dependent on the stage of the disease,

usually determined by visualising the diseased segments with coronary angiography or

IVUS (Berry et al. 2007), and secondly on individuality (physician’s decision). The

conservative approach is taken when the disease is at its early stage (minimal arterial

occlusion) and involves the delivery of medications such as beta-blockers, nitrates, and

calcium-channel blockers. The interventional approach, which involves percutaneous

transluminal coronary angioplasty (PTCA) was introduced in the mid 1960s. It was

first applied to the revascularization of the femoral, popliteal and renal arteries, and

finally it was adapted in the coronary arteries in the late 1970s (Htay and Liu 2005).

Since the first stent implantation in 1987 (Sigwart et al. 1987), PCI or stenting has

become the main method for treating coronary artery occlusions.

PCI involves the intra-vascular insertion of a balloon-stent catheter along a guide

wire from the femoral artery (or radial artery) to the stenotic region of the coronary

artery. The procedure ends up with the inflation of a balloon to deploy a stent which

undergoes plastic deformation to maintain an acceptable diameter of the vessel (Grech

2003). There are two main distinct categories of stents, bare-metal stents (BMS) and

drug-eluting stent (DES).

The major limitations of PCI success are stent thrombosis (ST) and in-stent resteno-

sis (ISR) a complex and incompletely understood event, in which plaque re-develops

within the vessel lumen as a result of the post-stent mechanical conditions. It is strongly

believed that ISR pathogenesis depends on three distinct processes and these include:

(1) immediate vessel recoil after stretch injury, (2) negative arterial remodeling, and

(3) neo-intimal hyperplasia (NIH) (Mudra et al. 1997).

In Rogers and Edelman (1995), it was examined how arterial expansion, stent con-

figuration, and the material in contact with the blood vessel wall each contribute to

endovascular stent-induced vascular injury and repair. The outcomes showed that

configuration dependent interactions of stent struts with vessel wall elements deter-

mine vascular injury and NIH. Stent material in contact with the vessel wall plays a

greater role in ST. Although many approaches have been investigated, including anti-

platelet pharmacological treatments and anti-proliferative drug coatings (in DES), long

term ISR rates are still under research. In one of the most famous studies concerning

ISR (Kastrati et al. 2001), 4510 patients were analysed after stent implantation and
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showed that other than vessel size, stent design is the most important factor influencing

restenosis. DES have shown to behave better in terms of ISR although they have been

associated with allergic reactions, stent malapposition (SM) and inflammation leading

to early and late ST (Cook et al. 2009).

SM is the lack of contact between struts of the stent and the underlying arterial

wall and is associated with significantly higher levels of thrombus deposition (Ozaki

et al. 2010). Recently, the occurrence of SM has been correlated with axial stent defor-

mations. Hanratty and Walsh (2011) were the first to address the event of longitudinal

compression at the proximal and distal end of a stent which has been implanted in

segments with challenging disease. This event, if it occurs, may cause very adverse

effects.

In the review by Lewis (2008), the outcomes of several studies have been outlined

in order to predict potential ISR or ST from coronary artery stent implantation. The

author considers two decades of material, fluid dynamics, and solid mechanics aspects

of coronary artery stents. It is clear that a lot of effort is being given to design stent-

catheter systems which will cause the most minimal adverse effects in short and long

term periods after implantation, often resulting from ISR and ST. Most of these studies

have outlined some of the following design recommendations: strut width must be less

than 100 µm for better flow characteristics in the vicinity of the stented vessel; to

reduce the number of connectors between the circumferential rings so as to increase

flexibility and deliverability; the strut design must be oriented in the same direction

with the direction of flow, etc.

However, improving one factor can impair other measures of stent performance.

This is more evident in diseased segments with very complex geometry. Coronary

arteries run on the surface of the heart, such that they take the curvature of the heart.

This complexity, which can include vessel tortuosity may result in very complicated and

unwanted post-operation events especially when the disease has spread all along the

vessel with highly calcified and diffuse plaques. As expected, the access to a potential

diseased site of such complex vessels is favoured by very flexible and deliverable systems.

In general, long diseased tortuous vessels with non-focal and highly calcified plaque,

which represent the so-called “challenging disease”, often require post-dilation of a

second balloon for better stent apposition and/or to achieve uniform and consistent

lumen area. As a result of such manoeuvrings, longitudinal stresses may occur following

compression or elongation of the two ends of the stents dislocating the stent. This

complication is addressed as longitudinal stent deformation (LSD) provoked by SM.
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Aims and objectives

In this work, SM and LSD are the major investigated clinical complications in PCI.

The main aim of this work was to investigate the development of stent-system models

and deployment techniques to simulate the treatment of patient-specific vessels with

challenging disease, while minimising the potential for ISR and ST. For the purposes

of this doctoral work, vessel reconstructions were carried out by combining CA with

IVUS. Latest generation virtual stent/balloon computer-aided design (CAD) mod-

els were generated. Thereafter, finite element analysis (FEA) studies quantitatively

evaluated the performance of the latest generation stent systems implanted in patient-

specific geometries. The FEA was based on model definitions through the application

of representative constitutive laws which describe the hyper-elastic behaviour of the

arterial walls, and the elastoplastic behaviour of coronary stents.

To summarise, the objectives of this work were:

• develop a method to reconstruct patient-specific models

• design parameterised virtual models of contemporary generation stent systems

• design parameterised virtual models of realistic folded dilation systems

• generate FEA models to investigate numerically the performance of stent deploy-

ment in reconstructed segments

• investigate which features of the stent-system influence SM and LSD

• provide recommendations for optimum stent-systems and dilation protocols to

minimise SM, and consequently, avoid LSD

Organisation of the doctoral thesis

The content of the current doctoral work is outlined in each chapter as follows:

• In Chapter 1, the anatomy along with the physiology of human coronary arteries

is introduced. Atherosclerosis and its development stages are briefly presented.

Different procedures which have been used to treat CAD during the last decades

are outlined, with special focus on the evolution of PCI during the last years.

Then, the clinical problems of SM and LSD are presented and discussed.

• A literature review of FEA stent studies is carried out in Chapter 2. Firstly,

a brief description of the fundamental principles in a FEA package is provided.
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Then, the most popular and state-of-the-art computational studies (to the au-

thor’s judgement) are introduced to indicate the capabilities of FEA simulations

to predict, guide and improve the PCI procedure.

• The three dimensional (3D) reconstruction process which has been followed to

reconstruct the vessels is presented in Chapter 3. Firstly, a brief overview of

CA and IVUS is presented to provide an overall knowledge of these medical

imaging modalities. Then, the steps along with the mathematical concepts for

vessel reconstruction are presented and discussed. Finally, the limitations of the

process are outlined to indicate potential future improvements.

• Chapter 4 describes the design methodology followed to generate stent and bal-

loon virtual models. In the beginning, a brief overview of stent/balloon features

is provided following the analytic description of CAD construction methods of

contemporary coronary artery stents and parametrised dilation catheter systems.

• Chapter 5 presents the developed FEA methods used in this doctoral work along

with validation and verification of the (mesh) discretised virtual space compris-

ing the stent system (stent and dilation catheter system) and the reconstructed

coronary artery segment. Furthermore, a description of setting up the FEA pa-

rameters to run quasi-static simulations is provided. Finally, limitations of the

presented FEA models are presented and elaborated upon.

• In Chapter 6, patient-specific simulations of LSD and SM are presented between

different contemporary stent devices implanted in a reconstructed patient-specific

right coronary artery (RCA). The longitudinal compression behaviour of the in-

vestigated stents are validated against compression charts obtained after experi-

mental testing in the respective commercial devices by Ormiston et al. (2011).

• The first computational study investigating non-uniform dilation systems im-

planted in patient-specific arteries is presented in Chapter 7. In particular, two re-

constructed vessels are modelled, one RCA and one left main bifurcation (LMB),

representing challenging cases in PCI practice. The performance of the proposed

dilation systems is quantitatively measured by different indices characterising i)

the induced mechanical environment after stenting, ii) the average malapposed

struts after stent expansion and iii) the geometrical configuration of the vessel

after balloon inflation.

• Chapter 8 introduces the first multi-objective optimisation study of the stent di-

lation strategy in a patient-specific RCA. In the work presented in this chapter,

the dilation strategy is parametrised by the balloon inflation pressure and the
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balloon unpressurised diameter. The objectives functions; or figures of merit,

are characterised by three indices which stand for i) the mechanical induced en-

vironment during the maximum balloon inflation, ii) the average malapposition

and iii) the average drug diffusion in the vessel walls after stent implantation.

Gaussian process (GP) models were implemented to construct response surfaces,

model uncertainty and improvement. Then, the non-sorting genetic algorithm

(NSGA-II) was implemented to search for potential updates and objective func-

tion improvement.

• Finally, Chapter 9 is the epilogue of this doctoral work. Specifically, in this con-

tent, an outline is provided with the contributions and conclusions made from

this work, concerning: i) patient-specific modelling and new simulation design

methodologies, ii) stent system design regarding the investigated clinical com-

plications of SM and LSD, and iii) multi-objective optimisation of stent dilation

strategy in patient-specific vessels via surrogate and structural modelling.
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Chapter 1

INTRODUCTION

C
AD, caused by atherosclerosis is one of the main causes of death in the Western

World. The coronary arteries that surround the heart carry oxygenated blood

and other nutrients to the heart muscle for normal function. CAD occurs when the

inner walls of the coronary arteries thicken due to a buildup of cholesterol, fatty de-

posits, calcium, and other elements. This substance is known as plaque. As plaque

develops, the vessel narrows, blood flow through the vessel is reduced and less oxygen

and other nutrients reach the heart muscle. Obstruction of a coronary artery can result

in a heart attack. This chapter provides a basic description of the anatomy and phys-

iology of coronary arteries, the mechanisms behind the development of CAD, different

treatments during recent decades and the PCI evolution. At the end, the investigated

clinical problems of SM and LSD are introduced and illustrated via clinical studies and

cartoon images to enable the reader to obtain a clear view of these complications.

1.1 Coronary arteries

The adult human heart, which has a mass of 250 to 350 g, has three main arteries: the

RCA, the left anterior descending (LAD) and the circumflex (Cx) (Smith and Kampine

1990). The latter two represents the left coronary artery (LCA).

The RCA and LCA take their origin from the aorta at the base of the sinuses of

Valsalva behind the cups of the aortic valve. Figure 1.1 illustrates how the RCA runs

in the coronary sulcus along the diaphragmatic surface of the heart before descending

toward the apex. It gives off branches to the right atrium, to the free wall of the

right ventricle, and to a variable extent to the posterior third of the ventricular septum

and posterior wall of the left ventricle. In about 70% of hearts, these latter structures

receive most of their blood supply from the RCA (Robert 1981). In 50 − 60% the first

branch of the RCA is the small conus branch, that supplies the right ventricle outflow

tract. In 20 − 30% the conus branch arises directly from the aorta. In 60% a sinus

1



2 1.2. PHYSIOLOGY OF CORONARY ARTERIES

node artery arises as second branch of the RCA, that runs posteriorly to the sinoatrial

node node (in 40% it originates from the Cx) (Smithuis and Willems 2008).

Figure 1.1: Coronary arteries (Medchrome 2012)

The LCA divides soon after it leaves the aorta and forms the left Cx artery and the

LAD. It supplies the left atrium and the lateral wall of the left ventricle. In addition,

it shares with the RCA the provision of blood to the posterior wall of the left ventricle.

In about 10% of human hearts, the LCA becomes the dominant vessel and supplies all

or nearly all of this part of the heart. The LAD continues as an extension of the main

vessel before turning down in the interventricular groove toward the apex. It supplies

the free wall of the left ventricle, the ventricular septum, and, to a limited extent, the

anterior wall of the right ventricle (Rushmer 1976, Smithuis and Willems 2008).

1.2 Physiology of coronary arteries

In general, the arteries of the human body depending on the composition of the con-

stituents, the relative diameter and the distance from the heart are divided into two

types: elastic and muscular arteries (Mazumdar 1998). The macroscopic structure of

elastic and muscular arterial walls is composed of three different layers (c.f. Figure

1.2). The innermost layer is the tunica intima. The middle layer is the tunica media

and the outermost layer is the tunica adventitia. Elastic arteries have relatively larger

diameter than muscular arteries, and are located close to the heart (for instance, the
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aorta, carotid, and illiac). In contrast, muscular arteries are located more peripher-

ally (except in the case of coronary arteries) (Holzapfel et al. 2000). Elastic arteries

experience the greatest pressure as the heart forces blood into them. Moreover, in

elastic arteries the elastin is abundant in tunica media, enabling them to expand to

larger diameters. On the other hand, in muscular arteries, the tunica media comprises

mainly of smooth muscle cells. This enables them to actively constrict and relax.

Figure 1.2: Schematic view of medium muscular artery (Fishbein 2014)

Intima, the innermost layer, consists of endothelium, the basement membrane, the

sub-endothelial layer and the internal elastic lamina. The internal elastic lamina joins

the media and a thin layer of epithelial cells that lie adjacent to the blood. This provides

a smooth and slippery inner surface for the vessel and as long as it remains intact, and

prevents blood clotting (Mazumdar 1998). Media, the middle layer, is constituted

principally of smooth muscle cells, elastin, and collagen fibres, supplying mechanical

strength to the intimal layer. As stated above, according to the relative composition

of these cells and fibers, arteries are classified either as elastic or muscular. Adventitia,

the outermost layer, is constituted of connective tissue, fibroblasts, collagen and elastic
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fibers (Bernard and Alain 1999), forming a protective layer around the vessel. The walls

of elastic arteries are generally thinner than those of smaller muscular arteries and the

walls of some large thick-walled arteries have their own blood supply (Mazumdar 1998).

1.3 Atherosclerosis

Atherosclerosis is an arterial inflammatory disease which is widespread in the Western

world and shows increasing prevalence in developing nations (Townsend et al. 2012). It

is the most common cardiovascular cause of death and commonly resulting in serious

events, including heart attack (myocardial infraction), angina and stroke. Atheroscle-

rosis is primarily an intimal disease of large and medium-sized elastic and muscular

arteries (e.g. coronary arteries, carotid arteries) and is characterised by the presence

of lipid in the intima accompanied by inflammation, fibrosis and by hyperplasia of the

endothelium (Figure 1.3). In most cases the disease extends into the arterial lumen

obstructing the physiologic rheology of blood flow. The latter process, is referred to as

stenosis (rightmost panel of Figure 1.3).
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Figure 1.3: Progression of atherosclerosis in coronary arteries: from normal artery (left
panel) to severe atherosclerosis (rightmost panel) (Berkeley-Heart-Lab 2015)

The inflammatory nature of atherosclerosis plays the main role in CAD pathogene-

sis. Its immune mechanisms interact with metabolic risk factors to initiate, propagate,
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and activate lesions in the arterial tree. Inflammatory immune activation initiates

acute coronary syndromes in which the circulating levels of inflammatory markers are

used to evaluate the clinical outcome of the condition. In Hansson (2005), it is stated

that there are several different inflammatory markers, with different biologic activi-

ties contributing to CAD. This fact makes the clarification and contribution of these

molecules in CAD very difficult to define. However, in this section, the basic idea of

atherosclerosis development and its role in CAD pathogenesis is outlined.

Possible causes of endothelial dysfunction which leads to atherosclerosis include el-

evated and modified low density lipoprotein (LDL), genetic alterations, age and male

sex, hypertension, cigarrete smoking, diabetes mellitus, elevated plasma homocysteine

concentrations, infectious microorganisms such as herpesviruses or Chlamydia pneu-

moniae, physical inactivity, adiposity and race (Ross 1999). Additionally, there have

been outlined some other more specific risk factors, including reduced high density

lipoprotein cholesterol, excess oxidative stress, elevated C-reactive protein and elevated

homocystine level (Nichols and O’Rourke 2005).

Three circulatory components (monocytes, platelets, T-lymphocytes) together with

two arterial wall cells (endothelial, smooth muscle cells) and LDL-cholesterol interact

in multiple ways in generating atherosclerotic lesions (Osterud and Bjorklid 2003).

In Ross (1999), atherosclerosis development is defined by four stages: (i) endothelial

dysfunction, (ii) fatty-streak formation, (iii) formation of an advanced and complicated

lesion, and (iv) unstable fibrous plaque. As shown in Figure 1.3, the earliest event in

atherosclerosis takes place in the endothelium where its permeability to lipoproteins

and other plasma constituents changes. The second stage, fatty-streak formation,

include smooth-muscle migration, foam cell formation (which is mediated by oxidized

LDL, T-cell activation, and the adherence and migration of leukocytes because of

the permeability of the endothelium. As fatty streaks progress to intermediate and

advanced lesions, they tend to form a fibrous cap that walls off the lession from the

lumen. Finally, the last stage involves the rupture of the fibrous cap or ulceration of

the fibrous plaque which can lead to thrombosis and usually occurs at sites of thinning

of the fibrous cap that covers advanced lesions.

Mechanical factors such as flow oscillations and low shear stress in parallel to in-

creased risk factors as hypertension, smoking, increased cholesterol levels in a spe-

cific arterial site can potentially lead to atherogenesis. Atherogenesis develops into

atherothrombosis which results in vascular remodelling. This vascular remodelling is

either outward or inward. Here, only inward remodelling or “stenosis” is being consid-

ered.
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1.4 Interventional Cardiology

Depending on the stage of disease, coronary artery stenosis is treated by CABG, PTCA,

or PCI. A brief description of each procedure is provided in the following sections.

1.4.1 Coronary artery by-pass grafting

The first CABG operation was successfully performed by Robert H. Goetz at the Albert

Einstein College of Medicine-Bronx Municipal Hospital Center (Konstantinov 2000).

CABG operations are performed in order to relieve angina and heart disease in cases

where medical therapy has failed and PCI and PTCA are not appropriate. CABG

is ideal for patients with multiple narrowings in different coronary artery branches,

a phenomenon mostly observed in patients with diabetes. With bypass surgery the

flow over a stenosed segment is restored by the transplantation of a healthy blood

vessel, as shown in Figure 1.4. Bypass surgery, improves blood supply to the heart

muscle directly by the aorta, going around the obstruction of the vessels. In almost all

cases, CABG access is achieved by a sternotomy. Operation of CABG has been shown

to improve long-term survival of patients with severe and multiple blockages. Such

operations take about three to four hours to complete.

Left internal

mammary 

artery bypass

Plaque blockages in coronary arteries

Saphenous vein 

bypasss

Figure 1.4: Coronary artery bypass grafting (Sharecare 2012)
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1.4.2 Percutaneous transluminal coronary angioplasty

PTCA (c.f. Figure 1.5) is a minimally invasive technique in which a balloon is inserted

in a diseased site through a catheter and then is dilated to unblock the narrowing of

the vessel in order to recover physiological blood flow to the heart muscle. The very

first PTCA was performed in 1977 at St. Mary’s Hospital in San Francisco by Richard

and Timothy (1995). Since then, the use of this technique has been developed and

used broadly throughout those years. Relative to bypass surgery, minimal invasive

techniques such as PTCA can reduce the risks, costs, hospital accommodation and

patient recovery time always depending on the severity of the disease. In brief, the

catheter-balloon system is driven through a guide wire to the plaque site inserted usu-

ally from the radial, femoral and in some cases from the brachial artery. The procedure

is visualised by fluoroscopic means enabling the desired position of the balloon into the

blockage. Although improved blood flow can be restored, PTCA has been shown to

result in vessel recoil, arterial dissections and high restenosis rates (Schwartz et al.

1990). Vessel recoil is noticed when the balloon is removed due to the energy released

by the elastic fibers in the vessel wall. Dissections have been reported in regions where

shear forces from dilation are high (Redwood et al. 2010). Restenosis occurs in long

term basis (1-12 months), and three of its major contributors have been identified as

the vessel recoil, plaque persistence and dissections. Restenosis occurs in about one

out of three successful angioplasty operations (Hamon et al. 1995). Nowadays, PTCA

has been replaced by PCI where a stent is implanted in order to avoid the elastic recoil

of the artery.

1.4.3 Percutaneous coronary intervention and stents

PCI or “stenting” is the most mildly invasive procedure undertaken in order to unblock

narrowings or blockages in diseased coronary arteries. This operation has now become

the main method of treating coronary occlusions. It involves the intra-vascular inser-

tion (typically, through the groin or the femoral artery) and deployment of a stent on

a balloon-catheter-guidewire system (c.f. Figure 1.5). Before “stenting”, CA is under-

taken to estimate how many vessels have been affected, and subsequently, the degree

of the blockage. In cases where the physician is not able to evaluate the condition and

make a decision on how the case will be treated, IVUS can be used. IVUS is usually

used pre-operationally and in cases of uncertain stent apposition, it can be performed

post-operationally to evaluate potential suboptimal stent delivery and assist in further

procedural planing.

The characteristic element of PCI is the so-called stent. Stents are small cylindri-

cally metal mesh shape devices that scaffold the artery walls and restore the physiologic
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Figure 1.5: Schematic diagrams of PTCA (upper panel) and PCI (lower panel) (NMA
2008)

blood flow through vessels. In PCI, a stent system consists of a stent that has been

crimped on the outer surface of a balloon which in turn is attached at the end of a

catheter shaft, Figure 1.5. When the system is placed at the correct position then,

with a specific pressure, the balloon is inflated to expand the stent to a diameter which

for most stent systems is in proportion to the dilation pressure. The balloon then is

deflated and removed leaving the stent in place permanently (c.f. Figure 1.5). Within

several weeks, the artery wall heals around the stent.

In general, stents can be classified as BMS, DES, and bioabsorbable stents. BMS

consist of a metallic platform. On the other hand, DES consist of a metallic alloy

serving as the system’s substrate and a drug coating which is normally bounded to

the substrate with a polymer. Bioabsorbable stents are made from biodegradable

materials, and they can be coated with drug such as Poly-L-lactic-acid or without drug

as magnesium or iron alloys. Stents are also categorised according to their expansion

mechanism, geometrical shape, materials, and manufacturing process. Concerning their

expansion mechanism, stents can be divided into two main categories, that of self-

expanding stents and balloon expanded stents (c.f. Figure 1.6). Self-expanding stents

are manufactured mainly from Nickel-Titanium or Nitinol, a material that can undergo

large deformations and recover back to its manufactured shape. Their implantation

process involves a restraining catheter shaft which, when removed, the stent expands

to the required diameter. Balloon expanded stents are those that undergo large plastic
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deformations. Initially, nearly all balloon expandable stents were made of 316L stainless

steel. However, most of the contemporary devices are made of cobalt-chromium (CoCr)

alloys to allow relatively thinner struts without downgrading the radial stiffness of the

stent. Recently, platinum-chromium (PtCr) alloy has been used to manufacture more

radiopaque devices (O’Brien et al. 2010). The majority of stents implanted in PCI are

balloon expandable and crimped on folded balloons to obtain low crossing profiles for

increased deliverability. In Konig et al. (2002), a self-expanding stent and a balloon

expandable stent were compared and it was shown that, depending on the expansion

mechanism, NIH and late stent expansion results differ. Specifically, the neo-intima

formation was significantly higher in self-expanding segments (4.23 +/- 2.07 vs. 2.22

+/- 2.22 mm) resulted by the exaggerated stent expansion in the medial segment.

Secondly, in terms of geometrical design, stents can be classified into the follow-

ing classes: coil designs, modular open-cell designs, and multi-cell closed-cell designs.

As far as the process of stent manufacture is concerned, stents can be divided into

wound coils, woven mesh designs, and laser cut designs. More information on stent

characterisation can be found in Lally et al. (2006) and Butany et al. (2005).

(a) Balloon expandable stent system
(Medtronic-Inc 2014)

(b) Self expanding stent system (Blockwise-
Engineering 2015)

Figure 1.6: Expansion Mechanisms

The vessel response to stent implantation can be characterised as a wound healing

process and consists of four stages: thrombosis, inflammation, cellular proliferation

and vessel remodeling (Edelman and Rogers 1998). Excessive cellular proliferation

results in NIH, a remodelling process that occurs due to changes in the biomechanical

environment to which the intervened vessels adapts (Keller et al. 2014, Timmins et al.

2011). In particular, studies have revealed that there is a strong correlation between

the stent induced biomechanical environment and the NIH formation (Keller et al.

2014, Li et al. 2002, Moore and Berry 2002, Rachev et al. 2000, Timmins et al. 2011).

In a recent IVUS study (Hoffmann et al. 2001) a six-month post-stenting follow up in

131 patients was conducted in order to examine the impact of the stent design on NIH

and ISR. The outcomes showed that NIH and as a result ISR depend on stent design,

surface material, and vessel damage related to the implantation procedure (Hoffmann

et al. 2002, Rogers and Edelman 1995). Collectively, in-vivo (Hoffmann et al. 2001,

Kastrati et al. 2001, Keller et al. 2014, Li et al. 2002, Timmins et al. 2011) and in-silico
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(Berry et al. 2002, Conway et al. 2012, Keller et al. 2014, Lally et al. 2005, Martin and

Boyle 2015, Timmins et al. 2011) data reveal that stents systems that result in minimal

biomechanical vessel state alteration to the homeostatic, will have greater long-term

success. Moreover, alloys with enhanced material properties have led to increasingly

thinner struts and, hence, greater possibility to SM (Mortier et al. 2011a).

Although stents reduce restenosis rates compared to PTCA, ISR remains a draw-

back when BMS are implanted in patients with CAD (Kastrati et al. 2001, Serruys

et al. 2006). In response to NIH and ISR, manufacturers have been producing DES

from the early 2000s. DES can reduce ISR and subsequently, repeated revasculari-

sation by delivering an anti-proliferative and anti-inflammatory drug exactly at the

site of vessel injury (Serruys et al. 2006). DES have a drug coating, often sirolimus

or placlitaxel which inhibits potential NIH formation by preventing the progression

of smooth muscle cell proliferation which is the main cellular process in ISR (Lally

et al. 2006). The drug is released by most DES within 30 days and involves the use

of a polymer matrix. Although DES have shown to behave better in terms of ISR,

those devices are correlated with allergic reactions, SM, and inflammation leading to

early and late ST (Joner et al. 2006). In an IVUS study (Takebayashi et al. 2004) it

was found that ISR pathogenesis after sirolimus stents can be partially related to the

non-uniform strut distribution.

Ideally, a stent should have enhanced radial stiffness, great flexibility and at the

same time minimise arterial injury, elute uniform drug distribution and minimise hemo-

dynamic alteration. The radial stiffness provides a solid substrate to the vessel and

minimises the vessel recoil. The flexibility enables the stent to be advanced to com-

plex regions characterised by tortuous and long geometry containing diffuse, non-focal

plaques. A stent should minimise arterial injury and hemodynamic alteration and

maximise the drug distribution to eliminate ISR.

1.5 PCI evolution, SM and LSD

In the early days of PCI, stainless steel alloys were used as the stent platform for BMS

differing in the manufacture process, stent cell geometry, and strut dimensions. Over

the years, researchers have focused on different areas of stent development in order to

improve both clinical outcomes and physicians convenience. As a result, simultaneously

to stent development, PCI as a whole procedure has been improved considerably.

Nowadays, physicians prefer to implant longer stents. As a result, longer and

more challenging (in terms of both vessel geometry and decease) segments can be

accessed. Therefore, the current engineering design trends in PCI are characterised

by longer, thinner, and more flexible stent platforms which can be implanted into the
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most challenging diseased vessel segments.

Engineers face a lot of difficulties when trying to optimise the stent design. By

altering one stent parameter other stent characteristics can be affected resulting in

unwanted clinical outcomes. For instance, while thinner struts and in general a lower

profile can lead to good results in terms of ISR, such alteration could downgrade the

radial strength. Likewise, reducing the number of connectors between the circumfer-

ential rings and increasing the area between the struts, the risk of ISR can be reduced

significantly, although, this has been shown to affect the longitudinal stent strength.

This is a reason why a current design trend concerns the way connectors are distributed

along the longitudinal stent length. For instance, longitudinal stent integrity is a new

concern about stent performance in interventional cardiology and occurring most times

as a result of SM.

Late ST has been proven clinically to be linked to SM (Cook et al. 2007, Ozaki et al.

2010). When a stent is malapposed (see left panel of Figure 1.7), an event observed

primarily in eccentric plaques and developed mainly on the disease-free side of vessel

wall (Redwood et al. 2010), additional practices need to be carried out such as balloon

post-dilation and/or another stent implantation. These methods, requiring additional

manoeuvrings by the physician, can result in stent distortion. This unwanted event

occurs more frequently at the proximal edge of the stent resulting in longitudinal

compression and/or elongation stresses. These stresses are usually imposed by balloon

and/or IVUS guide catheters, multiple balloon post-dilations, aggressive guide catheter

manipulations, bifurcation stent techniques, and rotational atherectomy (Hanratty and

Walsh 2011). In Figure 1.8, a cartoon image demonstrates the event of proximal stent

edge deformation by the contact of a dilation catheter with the malapposed struts. An

IVUS image is also attached to demonstrate how the clinical problem can be diagnosed.

1.6 Clinical studies reporting SM and LSD

Stent malapposition

In Shah et al. (2002), 206 patients who were implanted with BMS, were studied

after the first 6 ± 3 month post-operative period and in nine (4.4%) of them, late

malapposition was found. In this study, SM was defined as the separation of at least

one stent strut from the arterial wall (intima) and by observing a speckling behind the

malapposed strut. Interestingly, in 8 of 9 patients, the location of late SM was the

stent edge. Four years later, Hong et al. (2006), investigated the incidence, predictors,

and long term prognosis of stent malapposition after DES implantation in 557 patients.

They found that SM occurs in 12% of cases after DES implantation, and one of the
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Figure 1.7: Stent-related complications after stent deployment. Reused from (Yoon
and Hur 2012), with permission from Korean Association of Internal Medicine.

predictors was the total stent length.

In Cook et al. (2007), 13 patients with late ST (> 1year), after DES implantation

underwent IVUS, and their results were compared with a control group of patients

with no late ST within a period of more than two years after DES implantation. The

comparative study showed that late ST occurred in patients with longer lesions, longer

stents, more stents, and stent overlap. SM was more frequent-77% versus 12%-in

patients with late ST compared with controls.

Using IVUS, van der Hoeven et al. (2008b) studied the incidence of acute SM and

late SM after implanting sirolimus eluting stents and BMS in patients with heart at-

tack. Acute SM occurred in 38% of sirolimus eluting stent patients and 33.8% of BMS

patients while late SM occurred in 37.5% of sirolimus eluting stent patients and 12.5%

of BMS patients. The predictors of acute SM were the reference diameter and the

balloon pressure, while for late SM they were the diabetes, reference diameter and the

maximum balloon pressure. The results show that acute SM is not dependent on the

type of the stent in comparison to late SM where it seems to occur more frequently

when a sirolimus eluting stent is implanted. Finally, Guo et al. (2010) studied the inci-

dence and mechanics after paclitaxel-eluting and BMS implantation in 241 patients and

found that post-intervention acute SM occurred in 34.3% in paclitaxel-eluting stents,

and 40.3% in BMS. Late SM occurred in higher frequency for paclitaxel-eluting stents

(46.8%) than BMS (30.8%).
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Figure 1.8: Longitudianl stent deformation as a result of contact interaction between
balloon catheter tip and malapposed struts (Boston-Scientific 2011). The IVUS image
on the bottom right panel depicts clearly the clinical complication (strut protrusion in
the vessel lumen)

Longitudinal Stent Deformation

Thirteen real cases where stent deformation occurred as a result of SM have been

reported in three recent studies (Hanratty and Walsh 2011, Robinson et al. 2011,

Williams et al. 2012). Eleven cases concerned proximal stent crush, only one distal

crush, and one both distal and proximal. Eight cases were caused by guide catheter,

guide catheter extension, or proximal embolic protection catheter, and five cases were

caused by the contact between post-dilation balloons and proximal malapposed stent

struts. Five different stent platforms were involved in those cases with an average

length of 30.7mm. Longitudinal deformation was identified by angiography in all cases

except one case where distorted struts were identified by IVUS (Hanratty and Walsh

2011). This is due to the increased radio-opacity of the implanted stents (in last gener-

ation stents, alloys with increased atomic number -Z- are used so as to be easily visible

by angiographic means). Most cases (seven out of twelve) involved a stent platform

with very thin struts (81µm) and open cell design, characteristics that may result in

device deformations (Promus Element stent, Boston Scientific, MA, USA., c.f. sec-

tion 4.2.1). Decreasing strut thickness and increasing the area which is surrounded by

struts (open cell stent), improves deliverability, flexibility, and conformability. How-
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ever, even though the radial strength is maintained, the longitudinal integrity may

not be efficient to resist compression and/or elongation stresses. The authors believe

that those kind of deformations have more potential to occur either during vein graft

interventions (after CABG operation) where the vessel wall does not provide a good

substrate for deployed stents or when the proximal and distal stent struts are malap-

posed. Therefore, attention should be given when the interventional cardiologist feels

resistance during catheter withdrawals or post-dilation balloon catheter insertion. As

a consequence, longitudinal deformation must be identified as soon as possible in order

to avoid undesired results potentially leading to ST.

It is observed that LSD was addressed for the first time in 2004 and Hanratty and

Walsh (2011) were not the first to state this complication. Mamas and Williams (2012),

searched the FDA MAUDE database (from 2004 to 2011) in order to investigate cases

that resulted in such complications and investigate further its mechanistic reasons. A

total of 57 unique cases of longitudinal deformation were found (first in 2004), 90%

reported from 2010 to 2011. LSD were experienced with six different platforms. LSD

occurred due to the attempt of passing or withdrawing of secondary devices as unde-

ployed post-dilation balloons, IVUS catheters, undeployed stents or protection devices

through a previously deployed stent. LSD was shown to be connected with mortality

results in eight cases. In most cases, the treatment involved the use of a second stent

or balloon post-dilation. Two cases could not be treated because it was impossible

to withdraw the distorted devices, and so, CABG was performed to revascularise the

vessel. In general, adverse clinical outcomes including emergent cardiac surgery and

acute and sub-acute ST occurred in eight cases. All 57 cases were experienced in long

lesions with highly calcified and tortuous geometry, representing challenging disease.

1.7 Experimental studies investigating SM & LSD

Stent malapposition

Mortier et al. (2011b) investigated SM of two contemporary stent devices in two

idealised coronary bifurcations. Rapid prototyping techniques were used to build the

silicone models in which the two investigated devices were implanted. Two stent sam-

ples of each stent were deployed at room temperature in the silicone bifurcation mod-

els which were submerged in a “Ringer’s lactate solution”. Then, optical coherence

tomography (OCT) was used to measure and identify malapposed struts. OCT was

performed pre-stenting, post-stenting and after post-dilating the proximal main vessel.

The results showed different average values of SM between the stents and, for both

platforms, increased malapposition occurred in the proximal part of the stent. For
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(a) Stent shortening (millimeters) against force (Newtons) for 3 exam-
ples of the 7 stent designs. Compression graphs are not smooth but are
complicated because of strut collision and over-ride

(b) The most easily deformed stents were the Omega and Driver. The
force in Newtons to elongate stents by 1 mm was least for the Omega
(0.19 ±0.01 N) and Driver (0.20 ± 0.03 mm, p = NS). That to elongate
Liberte (0.36±0.07 N) was not different from the Integrity (0.37±0.04 N)
but significantly more than for the Driver (p = 0.023). Force to elongate
the MultiLink 8 (0.54±0.02 N) by 1 mm was not different from the Vision
(0.56 ± 0.08 N), but significantly more than for Integrity (p = 0.02) and
significantly less than the Cypher Select (0.8 ± 0.08 N , p < 0.001). For
elongation of 5 mm, the force required did not differ between Driver
(0.43 ± 0.01 N), Omega (0.72 ± 0.01 N), Liberte (0.80 ± 0.1 N), Integrity
(0.81 ± 0.11 N), Vision (1.32 ± 0.11 N), and Multilink 8 (1.34 ± 0.12 N).
However, the force for the Cypher Select (5.7 ± 3.46 N) was significantly
more that for the other stents (p values ranged between 0.015 and 0.006).

Figure 1.9: Experimental results on longitudinal integrity of contemporary stent plat-
forms. Images reused from Ormiston et al. (2011), with permission from Elsevier.
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both stents, the extent of malapposition was significantly decreased after post-dilating

the proximal vessel with a second balloon. Interestingly, the authors constructed com-

putational models in correspondence with the experimental ones to compare the results

from both methods. They highlighted the fact that the computational models can pre-

dict equivalent values of malapposition and, more importantly, malapposed struts can

be visualised in full model dimensionality.

Longitudinal Stent Deformation

Two recent experimental studies (Ormiston et al. 2011, Prabhu et al. 2012) shed

light on the increasingly recognised clinical problem of LSD arising from malapposed

stent struts. In particular, the longitudinal integrity of the latest generation stent

platforms that were examined in those two studies seems to correlate with the number

of the connectors between the circumferential rings of each device. The device with

two connectors between two sequential circumferential rings (Omega/Promus Element

in Figure 1.9a, 1.9b), has a poor behaviour, always in terms of longitudinal integrity

and, in general, it is connected with possible stent distortion. In contrast, devices with

more than two connectors demonstrate lower longitudinal deformation. Moreover, it

is assumed that in addition to the number of connectors, an important role is played

by the angulation of connectors according to the long axis of the platform. Connectors

with perfect alignment to the stent longitudinal axis seem to provide integrity to the

device in order to resist compression and elongation stresses (e.g Multilink 8, and

Vision Xience V on Figure 1.9a, 1.9b). Noteworthy, in Ormiston et al. (2011), the test

experiments suggested that device deformations are often accompanied by protrusion

of struts into the lumen and, as a result, this event complicates the passage of any

secondary device (e.g post-dilation balloon) through the deployed stent.

1.8 Summary

An introduction to coronary artery disease, its PCI treatment procedures and further

complications has been provided. As discussed, poor procedural outcomes leading to

suboptimal minimum lumen area (MLA) often include SM that can lead to ST. ISR is

a more complex multi-factorial problem that has been lessened with second generation

DES. However, the endothelialisation is compromised by DES increasing the likelihood

of ST. Moreover, biomechanical factors affecting the disease localisation and growth

along with factors influencing the post-stenting outcome were reported and discussed.

It was shown that investigating the structural factors resulting in unwanted clinical

events is of importance for both device and procedure optimisation.
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Following SM and LSD description, clinical studies reporting these complications

were presented and elaborated. It can be noted that in most cases, SM and stent defor-

mations occurred in anatomies with challenging disease (tortuous, long, and non-focal

disease). This can be explained by the fact that in such segments, the diseased regions

are not easily accessible, therefore, additional manoeuvrings from the interventional

cardiologist have to be conducted to treat the site effectively. New generation stents

have been designed in a way to provide high flexibility and deliverability in order to

be implanted in such complex vessel lesions and cover the whole length of the disease.

As a result, these devices can easily result in SM and experience possible deformations

leading to unwanted events and suboptimal stent delivery.

Interestingly, SM and LSD are typically diagnosed and visualised using IVUS (Han-

ratty and Walsh 2011, Redwood et al. 2010), CA (Hanratty and Walsh 2011, Robinson

et al. 2011, Williams et al. 2012), and OCT (Mortier et al. 2011b). Although these

imaging modalities have been considered as golden standards in guiding the PCI pro-

cedure, a more sophisticated tool is needed. This tool ideally could fuse information

from contemporary imaging modalities and provide full 3D computer models to assist

in the diagnosis, treatment and procedure planning.
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Chapter 2

STENTS STRUCTURAL MODELING: A

REVIEW

M
odelling! During the last decade, computer modelling of PCI have become

very popular due to advantages in terms of cost, high flexibility of changing

problem parameters and visualisation. Firstly, the virtual models concerned the stent

itself, in particular, the researchers developed structural models to investigate the

expansion mechanics of stent in terms of deformations, stresses, recoil, and flexibility.

However, with the increase of computer power and resources, nowadays, numerical

simulations include the complex interactions of the stent with the dilation system

and the coronary artery walls investigating the induced biomechanical environment

of a vessel after stent deployment. In parallel, computational fluid mechanics (CFD)

models have been developed to analyse the flow characteristics after stent implantation

and its effect on the flow patterns in terms of wall shear stresses and recirculation zones

(believed to be major contributors in the development of ISR). These models have also

been used to investigate the drug elution characteristics of different coronary artery

stent platforms. Recently, fluid-structure interaction (FSI) models have been developed

to couple the principles of structural models to that of fluid models and investigate the

interaction between these two types of phenomena. The capabilities of the above

methods are hardly achievable by experimental or clinical studies. Therefore, such

models are now required by official organisations (e.g. FDA) to approve the production

of cardiovascular devices. In this chapter, since in the current work only structural

models are concerned, a literature review of FEA studies is provided to describe the

recent advances in this field and highlight areas of further research (especially with

respect to patient-specific vessels with challenging disease).

19
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2.1 FEA modelling

A finite element model is characterised by the definition of its geometry, material

properties, loads, and boundary conditions. Three distinct steps can be categorised,

pre-processing, analysis, and post-processing. In pre-processing, the continuum is di-

vided into a finite number of discrete regions (elements), connected by nodes. The

partitioning of the continuum, the definition of loads and boundary conditions are

initially attained by a graphical user interface.

In the analysis step, the data defined by the pre-processing step are used as input

to automated finite element codes which construct and solve a system of linear or

non-linear equations. The general equation of a static analysis problem is

Ku = f (2.1.1)

where u and f are the nodal displacement vector and external forces vector, respectively,

and K is a stiffness matrix dependent on the given problem (e.g. linear or non-linear

analysis). An approximate solution is obtained by the collection of the behaviours

of the individual elements. Each element behaviour is characterised in turn by its

nodal behaviour. Usually, in static problems, the nodal displacements are obtained

at the first stage, and then the stresses can be described by means of the material

constitutive law. For smooth non-linear static, quasi-static and dynamic problems

an implicit iterative solver can be used. Usually the iterative process for static or

quasi-static regards a Newton-Raphson method where the initial displacement value

is approximated to iterate until convergence criteria are fully met. Eq. 2.1.1 can be

rearranged as (Harewood and McHugh 2007)

G(ut+∆t) = Kut+∆t − f = 0 (2.1.2)

where G is the out of balance residual force. Then, the Newton-Raphson method for

the ith iteration and for the t+ ∆t increment expressed as

ut+∆t
i+1 = ut+∆t

i −
[

∂G(ut+∆t
i )

∂u

]−1

G(ut+∆t
i ) (2.1.3)

and after rearranging

δui+1 = ut+∆t
i+1 − ut+∆t

i = −
[

∂G(ut+∆t
i )

∂u

]−1

G(ut+∆t
i ) (2.1.4)

with

R(ut+∆t
i )−1 =

[

∂G(ut+∆t
i )

∂u

]−1

(2.1.5)
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where R is the tangent stiffness matrix or the Jacobian matrix of the governing equa-

tions. Therefore, the equation to be solved for each iteration for change in incremental

displacements is

R(ut+∆t
i )δui+1 = −G(ut+∆t

i ) (2.1.6)

In Eq. 2.1.6, R and G must be solved for each iteration. In order to solve for δui+1,

the tangent stiffness matrix must be inverted. This is why the implicit method can be

computationally expensive. However, through the iteration process a large increment

size can be used while maintaining accuracy of the results. After the ith iteration,

δui+1 is calculated which in turn results in a better approximation of the solution,

ut+∆t
i+1 (Eq. 2.1.4). This becomes the current approximation of the solution in the

subsequent iterative step i+ 1.

In the case of dynamic problems, the nodal displacements with their second time

derivatives (accelerations), are considered. Then, the nodal forces are obtained by

integrating the stresses over the volume of elements (weak formulation) satisfying the

balance of momentum. Very often, in stent modelling, a non-linear analysis explicit

solver is used. The general equation of a viscously damped multi-degree of freedom

dynamical system is

Mü + Cu̇ + Ku = f(t) (2.1.7)

where M is the global mass matrix, C is the global damping matrix, f(t) is the time-

dependant load vector, and u, u̇, and ü are the nodal displacement, velocity and

acceleration vectors, respectively. In an explicit analysis, the load is applied in different

time increments and the solution is obtained by a central difference rule which is

implemented to integrate the equations of motion through time. Thus, the solution

marches through time. If Eq. 2.1.7 is rearranged as

üi = M−1[f(t)i − Cu̇i− 1
2

− Kui] (2.1.8)

then, the central differentiation scheme (half-step implementation) can be expressed as

u̇i+ 1
2

= u̇i− 1
2

+
∆ti+1 + ∆ti

2
üi (2.1.9)

ui+1 = ui + ∆ti+1u̇i+ 1
2

(2.1.10)

The local truncation error of this method is O(∆t2). In this method, a very important

consideration is that the time increment ∆t should be smaller than a critical value,
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∆tcritical, which is limited by the highest frequency of the discrete system ωmax, where

∆t ≤ ∆tcritical ≤
2

ωmax
(2.1.11)

If the time step is larger than the critical increment, then, the solution is unstable,

resulting in round off error by the integration scheme and making the dynamic response

calculation questionable.

To model structural problems which are considered as quasi-static (e.g. metal

forming, stent deployment), both implicit and explicit solvers can be used. However,

depending on the complexity of each problem, careful consideration should be made

regarding the solver choice. As seen above, both solvers provide the solution response

incrementally. However, where with the implicit method the solution of finite element

equations is obtained by iterating within an increment ∆t (until a convergence crite-

rion is fully met), in the explicit solver, the solution is advanced from the previous to

the next increment without iterating, by formulating the finite element equations in

dynamic state. Therefore, the implicit method is effective when the analysis can be

performed in relatively few time increments. Moreover, while for the explicit solver the

cost of one increment is approximately proportional to the model size, for the implicit

approach the cost increases more steeply. Different studies have been published com-

paring implicit to explicit approach and discussing the advantages and disadvantages of

each method (Choi et al. 2002, Harewood and McHugh 2007, Sun et al. 2000). These

studies concerned the performance of each solver in metal forming processes and in

crystal plasticity. It has been shown that the implicit solver performs well for simpler

loading conditions and smaller models. When the loading conditions involve contact

and large deformations, then, explicit solver is more efficient. Further, due to the emer-

gence of highly vectorised finite element software, the explicit methods have become

more attractive. The latter was evident from the Harewood and McHugh (2007) study,

in which the explicit method demonstrated constantly high levels of parallelisation ef-

ficiency compared to the implicit method using multiple processors. Contemporary

sophisticated FEA software (e.g. ABAQUS, Simulia, Dassault Systemes, Waltham,

MA, USA) can automatically decompose the model into a number of topological do-

mains and assign each domain to a processor. Thus, the problem is solved in different

blocks (domains) by multiple processors operating simultaneously.

Finally, the post-processing step consists of the visualisation of the results which

usually are represented in graphical form. A typical commercially available FEA post-

processor has the ability to display the deformed shape of the continuum with the

displacement, stress, strain and force field in colour contours or vectors.
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2.2 Balloon expandable stent FEA studies

The reliability of a numerical study on PCI by using FEA depends on the virtual

representation of the stent system (its geometry), and the definition of its material

properties. Moreover, the structural representation of the “stenotic” vessel in which the

stent is implanted and that of the plaque should be defined with material constitutive

models that describe realistic material behaviour.

The basic principles of stent FEA models are well described by Perry et al. (2002). It

is stated that a stent FEA model should be subjected to loads and boundary conditions

that represent the actual loading of the stent. In other words, the real life loading on an

implanted stent has to be simulated incorporating the crimping, recoil, positioning and,

finally, the deployment process in which the final recoil should be considered as well.

Ideally, the cyclic real life loading of the stent should also be simulated to investigate

its fatigue.

In the following sections, some of the most pioneering studies with high impact on

stent modelling are described and elaborated. To the author’s judgement, these studies

(when published) represented the state-of-the-art and their outcomes provided signif-

icant contributions for further research. Furthermore, some of the presented method-

ologies that have been used in these studies were adopted in the current doctoral work

to model stenting procedures in patient-specific vessels with challenging disease.

2.2.1 Structural studies of stent free expansion

Studies without considering the presence of a balloon model

The first structural study was carried out by Dumoulin and Cochelin (2000), in-

vestigating the free expansion along with the long-term mechanical behaviour of a

tubular peripheral P308 (Palmaz, 1998) stainless steel stent. In particular, the authors

presented a methodology to evaluate and characterise numerically different mechan-

ical properties of the investigated stent. These properties concerned the expansion

behaviour (shortening percentage of the device during deployment), the elastic recoil

(degrees of radial and longitudinal recoil after deployment), the resistance to defor-

mation under external pressure (the pressure beyond which the stent can experience

buckling) and at last, the life endurance of the device (fatigue analysis). An internal

uniform radial pressure was used to expand the different size stents. The authors vali-

dated their method against experimental data provided by the manufacturers demon-

strating very satisfactory correspondence (discrepancy < 0.5% on the lengths of the

stent after deployment). Therefore, the authors demonstrated that certain mechanical
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properties of balloon expandable stents can be investigated by FEA studies.

One year later, Etave et al. (2001) introduced a finite element methodology to com-

pare two stents, one tubular Palmaz-Schatz stent (Johnson & Johnson, NJ, USA) and

one coil Freedom stent (Global Therapeutics Inc., CO, USA). The choice for the in-

vestigated stents was justified by the argument that in that period these devices were

demonstrating the most extreme mechanical properties of the respective types. More-

over, except for the stent type comparison, each stent was modified along the geometric

characteristic which, according to authors, had the greatest impact on the stent’s me-

chanical properties. The modelling strategy consisted of three different phases (free

expansion of the stent, stent compression, and stent conformability) resulting in seven

different mechanical metrics (pressure necessary for stent deployment, elastic recoil,

stent resistance to stent compression, etc.). Stent free deployment was driven by con-

trolled incremental radial displacements (0.5 mm). It was demonstrated that the coil

stent had an overall better mechanical performance with respect to the investigated fig-

ures of merit. The numerical findings were not validated against experimental results.

Interestingly, at the end of the paper, the authors state that the presented numerical

results contributed to the design and manufacture of a new stent, underlying the finite

element potential to stent evolution.

The next pioneering study was published by Migliavacca et al. (2002). The au-

thors presented an analytical study which implemented FEA to optimise the design

of coronary artery stents. The objectives of this study were i) to understand the ef-

fects of different geometrical stent parameters (metal-to-artery ratio1, strut length,

free metal strut length) on the device mechanical performance (radial and longitudinal

recoil, foreshortening and dogboning), ii) to compare the response of different actual

stent models when loaded by internal pressure and iii) propose suggestions of opti-

mised shape and performance. The results demonstrated that i) the metal-to-artery

ratio is directly proportional to dogboning and inversely proportional to radial and

longitudinal recoil and ii) the thickness influences foreshortening, longitudinal recoil

and dogboning. The stent virtual model expansion was carried out by uniform internal

pressure and for different metal-to-artery ratios the functional relationship between the

applied pressure and the deployment diameter was reported. This was the first study

which reported numerical stent compliance charts. Such compliance charts are used to

calibrate/validate the virtual balloon-stent models simulated in the current doctoral

work (see section 5.2.3).

Two years later, McGarry et al. (2004) published the first computational study

considering the micro-mechanical behaviour of a balloon expandable coronary artery

1metal-to-stent ratio is the fraction between the metallic circumferential length of a single stent
strut and the circumferential length of the gap between two sequential stent struts.
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stent (NIR stent, Medicon/Boston Scientific, MA, USA). A two-dimensional unit cell

model extracted from the stent was expanded by prescribed boundary conditions. The

authors implemented a crystal plasticity theory to describe the plastic deformation of

the stent material and they made numerical comparisons of stent performance (stent

recoil, foreshortening, fatigue) against results obtained by the classical continuum plas-

ticity theory, the J2 flow theory. In particular, the study consisted of three steps: i)

deployment of the stent, ii) recoil of the stent, and iii) cyclic loading of the stent. The

former step was carried out by applying localised and concentrated loads to the outer

ends of the struts representing the load applied by a pressure cardiac pulse. The re-

sults obtained by the cardiac cycle load were used as the basis of an elementary fatigue

analysis and were presented by Goodman diagrams2. Interestingly, the Goodman dia-

grams demonstrated higher factors of safety for the crystal plasticity comparing to that

of the J2 flow theory postulating that this could inhibit any stent “over-design” that

might result from simpler constitute descriptions. The outcomes indicate that when

investigating stent performance (especially for stent recoil) by computational models,

the micro-mechanical behaviour of stent material should be taken into account, and

by implementing the crystal plasticity theory, more accurate results can be obtained.

Moreover, the study highlighted the existence of non-uniform and localised stress and

strain fields in the material micro-structure described by the crystal plasticity theory

as opposed to the uniform and smooth fields predicted by the continuum approach.

Nevertheless, the authors state that in order to improve the presented models, three-

dimensional modelling should be performed to enhance the accuracy of predicting the

stent recoil, foreshortening and fatigue.

The next novel study was presented by Migliavacca et al. (2005). They published a

structural computer model investigating the mechanical behaviour of the “Cordis BX

Velocity” stent (Johnson & Johnson, NJ, USA). The stent was modelled in its complete

3D geometry and the deployment to its nominal diameter was carried out by applying

a uniform internal pressure on the inner surface of the stent. After the expansion, dif-

ferent quantities were calculated to evaluate its mechanical performance. Noteworthy,

this study was the first to compare the virtual stent compliance with corresponding

experimental and manufacturer’s test data (c.f. Figure 2.1). Via this validation test, it

was shown that there is a big difference between the numerical transient stent expan-

sion behaviour with that occurring in reality. The authors stated that this discrepancy

was due to the absence of a balloon model suggesting that accurate prediction of tran-

sient stent deployment should include a model of the balloon. Thus, in the current

doctoral work, sophisticated folded balloons were used to deploy the stents at certain

2Goodman diagrams are commonly used to quantify the combined effect of mean and alternating
stresses on the fatigue life of the material.
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diameters after calibrating/validating their numerical compliance charts against the

respective commercial ones (see section 5.2.3).

Figure 2.1: Results from the FEM analysis (empty triangle), from the experimental
test (solid squares) and data provided by the company (empty squares). The dotted
lines represent the unload history at different values of inflating pressures both for the
FEM and the experimental analyses. It should be noted that at 0.5 MPa the diameter
reached by the stent is similar in the FEM simulation and the experimental test. Image
reused from Migliavacca et al. (2005), with permission from Elsevier.

Studies considering the presence of a balloon model

In Wang et al. (2006), six different balloon stent models were simulated to elim-

inate the dog-boning effect during stent expansion. The balloon was modelled as an

idealised cylinder characterised by a linear isotropic behaviour. The simulation out-

comes demonstrated that the dog-boning effect was highly correlated to the proximal

and distal stent strut width and the length of the balloon. In particular, it was shown

that dog-boning can be reduced by increasing the stiffness of the stent both proximally

and distally (e.g. increase the strut width) and decreasing the length of the balloon.

The authors provided qualitatively validation of the virtual transient stent expansions

by recording the corresponding actual deployment process and measuring the outer

stent diameter along with the stent length at different inflation pressures.

The work by De Beule et al. (2008) represented a ground-breaking development in

modelling realistic balloon-stent deployments. In this study, the transient expansion

behaviour of the balloon expandable Cypher stent (Johnson & Johnson, NJ, USA) was

investigated by three different loading scenarios. The different approaches to deploy
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the stent to its nominal diameter were by applying: i) an internal uniform pressure

to the inner surface of the stent, ii) controlled radial displacements to the nodes of

a deformable cylindrical surface and iii) a uniform pressure to the inner surface of

a tri-folded sophisticated balloon. In Figure 2.2, the initial, intermediate and final

state of the transient stent expansion by the three different approaches are illustrated.

As can be observed, only the third sophisticated approach can capture the actual

transient deployment behaviour of the investigated platform. Thus, it was further

confirmed that when investigating the transient behaviour of balloon expandable stents,

realistic balloon models should be included in the expansion simulations. The limitation

of the sophisticated model was the fact that the tapered ends of the balloon were

not taken into account. Instead, appropriate boundary conditions were applied to

represent the axial stretching imposed by the balloon ends. The results extracted by

the numerical simulations for the tri-folded balloon were validated against an actual

compliance chart provided by the manufacturers. It was noted that the predicted

numerical results accomplished an extremely close agreement with the actual pressure-

diameter measurements. Since then, this validation methodology has been used in

many recent studies (Conway et al. 2012, Foin et al. 2012, Grogan et al. 2011, 2013,

Martin and Boyle 2013, Mortier et al. 2014, Pant et al. 2011) to model realistic balloon

models. Following this, the same group (Mortier et al. 2008), presented another study

investigating the effects of different balloon parameters on the transient stent expansion

behaviour. It was demonstrated that changing the folding configuration, balloon length

and the relative position of the stent on the catheter have a considerable influence

on the uniformity, symmetry and transient behaviour of stent deployment. In this

doctoral thesis, a similar balloon technology (see section 4.3) was developed to construct

parameterised multi-folded balloon models for realistic stenting simulation in vessels

with challenging anatomy.

Figure 2.2: Stent deployment patterns resulting from (i) “no balloon” scenario (left),
(ii) “cylindrical balloon” scenario (middle) and (iii) “trifolded balloon” scenario (right)
prior to (top), during (centre) and after (bottom) the transient expansion. Image
reused from De Beule et al. (2008), with permission from Elsevier.
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In the same period, Gervaso et al. (2008), carried out a very similar study inves-

tigating the effects from different simulation strategies for balloon-expandable stents.

The half part of this study concerned the free expansion of a small segment of the

Cordis Bx-Velocity stent (Johnson & Johnson, NJ, USA) by an internal pressure, a

deformable surface and an idealised-folded balloon system. From the numerical sim-

ulations it was demonstrated that all three means of virtual deployment result in the

same outcomes regarding the foreshortening, maximum von Mises stresses and stress

localisation regions. However, the final deformed stent shape was not the same be-

tween the different scenarios. Only the idealised-folded balloon captured the effect of

dog-boning.

A year later, Kiousis et al. (2009) presented a novel study investigating the tran-

sient inflation behaviour of interventional peripheral balloon and stent models by ex-

perimental and numerical analyses. The authors were supplied with six stent systems

from three stent manufacturers (two systems from each) for mechanical in vitro bench

testing. After studying the transient compliance behaviour with respect to pressure

and diameter diagrams, they developed a computational model to mimic the actual

inflation behaviour of stent systems. Moreover, mechanical properties of the investi-

gated stents (dog-boning, foreshortening, radial recoil) were recorded experimentally in

different phases of deployment. In the numerical model, the stent was described by an

elasto-plastic material model whereas the balloon was characterised by a cylindrically

orthotropic material. The numerical results showed an overall satisfactory agreement

with the experimental results (c.f. Figure 2.3). However, it was noted that some phases

of the transient stent expansion could not be captured (see c and d regions in Figure

2.3).

Martin and Boyle (2013) carried out a study looking at the effects of three different

balloon configurations on the deployment of a stent. This study consisted of two parts.

One part was carried out without the vessel presence and the other with an idealised

vessel. Both the stent free-deployment (c.f. Figure 2.4) and its deployment within the

vessel were investigated using: i) an idealised non-folded balloon, ii) an idealised-folded

model and iii) a state-of-the-art folded model. As with the free expansion results, it

was shown that balloon folding configuration has no impact on the final stent shape

but does have a significant impact on the transient behaviour of a coronary artery stent

during its expansion.

2.2.2 Structural studies of stent expansion in vessels

Studies without considering the presence of a balloon model
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Figure 2.3: Comparison of the experimental and the numerical results for the dilation
of the Bridge Assurant balloon-stent system; change of the inner balloon pressure pb vs.
the central diameter Dst,c (I), and the distal diameter Dst,d (II). Overall, the numerical
results (solid curves) are in satisfactory agreement with the experimental data. Image
reused from Kiousis et al. (2009), with permission of Springer.

Auricchio et al. (2001), published the first pioneering study of a balloon-expandable

stent implanted in an idealised stenotic artery. The mechanical behaviour of the slotted

tube Palmaz-Schatz stent (Johnson & Johnson, NJ, USA) was studied both after free

expansion and after its deployment in the idealised vessel. Then, a modified device

was examined seeking to improve the uniform stent deployment. In addition, typical

mechanical properties were assessed (elastic recoil, foreshortening, residual stenosis,

etc.). It is noteworthy that for the baseline stent, elastic recoil, foreshortening and

metal-to-artery surface ratio agreed with previously published experimental data. The

constitutive behaviour of the idealised vessel was assumed to be hyperelastic isotropic

described by a reduced polynomial strain energy function after validating the model

against published experimental (ex-vivo) results.

A novel study regarding the parametric modelling of balloon expandable stents

virtually implanted in patient-specific segments was presented by Holzapfel et al.

(2005b). The stenotic arterial segment which was used in this study concerned an

iliac artery comprising eight different arterial tissues. The constitutive model param-

eters of each layer were derived after in-vitro mechanical testing. Three stent models

were parametrised and compared, i) the Multi-Link Tetra (Guidant, IN, USA), ii)

NIROYAL-Elite stent (Boston-Scientific, MA, USA) and iii) InFlow-Gold-Flex stent

(InFlow Dynamics, Munich, Germany). In this work, the authors presented the first

computational framework to i) investigate the three-dimensional interaction between

modern stent designs and patient-specific wall models by considering image data and
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Balloon B Balloon C

Figure 2.4: Stent transient expansion behaviour by balloon models with different fold-
ing configurations. Left panel, configuration of the stent (a) prior to loading, (b) during
loading, (c) at maximum loading and (d) at unloading of (left) balloon A, (middle)
balloon B and (right) balloon C during the free-deployment analyses. Right panel,
pressure-diameter response of the stent during the free-deployment analyses compared
with manufacturer’s compliance data for the BX-Velocity stent. Images reused from
Martin and Boyle (2013), with permission from John Wiley and Sons.

mechanical tests, ii) derive and use novel scalar indicators and quantify the mechani-

cal performance of parametrised stent models, and iii) compare the effects of different

parameters and identify optimal stent designs. To simplify the deployment process,

the stents were deployed by applying a pressure load directly on the stent struts. It

was demonstrated that scalar indicators can guide parametric studies towards optimal

stent designs aiming to eliminate ISR rates. Where possible, the authors compared

their findings against clinical studies to support their principal arguments that for a

given lumen gain, an optimal stent design should result in a relatively low induced

mechanical environment (regarding the wall circumferential stresses and lumen-strut

contact pressure).

In the same period, Lally et al. (2005) conducted a structural study to compare

two balloon expandable stents, the S7 platform (Medtronic, MN, USA) and the NIR

platform (Boston Scientific, MA, USA). In their study, a straight idealised arterial

segment with a stenosis in its middle part was used to record the wall stresses imposed

by the stent-artery contact. The stents were modeled in their expanded state and

the stent-artery contact was established in two steps: i) the vessel was inflated by an

internal pressure and ii) the vessel internal pressure was reduced gradually to 13.3 kPa

(mean blood pressure of 100 mmHg). As a result, the vessel contracted around the

stent which in turn behaved as a scaffold within the vessel. The authors reported higher

stresses for the NIR stent and they referred to published clinical studies reporting that

NIR stent results in higher restenosis rates. Thus, they claimed that such numerical
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models could predict the wall stresses imposed by different stent designs and correlate

them to the potential of ISR.

The first patient-specific coronary artery computational model was presented by

Gijsen et al. (2008). A RCA patient-specific segment was reconstructed by fusing CA

and IVUS images. Within the virtual vessel, a stent with varying strut thickness was

deployed by a uniform pressure applied to the inner surface of the device. The vessel

wall stresses along with the von Mises stresses in the stent struts were recorded after

each deployment. It was shown that the arterial damage was correlated with the thick-

ness of the stent. In particular, by decreasing the strut thickness, the arterial damage

was reduced while the von Mises stresses in the stent did not change significantly. It is

noteworthy that the vessel reconstruction method presented by the authors, have been

implemented in the current doctoral work to model stenting in three patient-specific

cases with challenging disease (see Chapter 3).

Three years later, Timmins et al. (2011) published a work in which outcomes from in

vivo analysis were correlated to results revealed from computational models of stenting.

In particular, the authors’ main objective was to provide a rationale for the observed

clinical differences in restenosis rates between two different stent designs implanted in

porcine arteries. Firstly, the arterial response of two different stent designs in vivo in

terms of 28-day NIH formation were investigated. Then, respective computer models

were generated to investigate numerically the mechanical environment induced by these

stents. The results indicated that the stress values had a strong correlation with the

observed data of neointimal thickening. As expected, the stent which induced higher

stresses provoke a more aggressive pathobiological environment. Thus, in the current

doctoral work, stent-systems which resulted in relatively higher stresses were evaluated

as non-desirable when implanted in patient-specific challenging vessels (see Chapters 7

and 8).

Studies considering the presence of a balloon model

The first structural study which considered the balloon interaction with the ves-

sel wall was the work by Rogers et al. (1999). In this work, the authors presented a

two-dimensional FEA model to study the balloon-vessel interaction during stent de-

ployment. In particular, they investigated how different stent-strut geometries, balloon

compliance and inflation pressure result in higher contact stresses between stent-struts,

and subsequently, in vessel injury. It was shown that higher inflation pressures, wider

stent-strut opening and more compliant balloons impose significantly higher stresses

on the vessel wall, increasing the risk of ISR.

In the innovative study by Holzapfel et al. (2002), both balloon angioplasty and
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balloon expandable stenting were modelled in an eight-layer patient-specific iliac artery

reconstructed by high resolution magnetic resonance imaging (hrMRI) in vitro. The

balloon was modelled as a rigid cylinder with the justification that interventional di-

lation systems inflated at their nominal diameters behave as non-compliant tubular

structures. The reconstructed arterial segment was modelled as in Holzapfel et al.

(2005b). The authors demonstrated that via such studies, optimal procedural protocols

could be defined for certain disease morphologies to minimise the medial overstretch

and vessel injury while maximising the luminal gain. In Figure 2.5, a cross-section of

the virtually intervened iliac segment is illustrated and the differences in circumfer-

ential stresses between the pre- and post-operation configurations are mapped to the

different tissue components of the walls. As expected, the average stress is elevated as a

result of the luminal gain. Thus, by investigating the impact of different interventional

protocols in such models, optimal approaches could be derived to avoid re-narrowing

of the lumen due to NIH formation. The latter was one of the motivations for the

study presented in Chapter 8 where the optimum dilation strategy in a patient-specific

artery was studied via mathematical multi-objective optimisation.

Figure 2.5: Differences in circumferential stresses (postangioplasty stresses minus pre-
angioplasty stresses at 13.3 kPa) for a cross section (z = 6.0 mm) after a full expansion
of the angioplasty balloon with a diameter of d = 10.0 mm. Stresses are plotted onto
the postangioplasty configuration at 13.3 kPa. The shape before angioplasty at 13.3
kPa is indicated by a dashed curve. Image reused from Holzapfel et al. (2002), with
permission of Springer.

Later, the work by Kiousis et al. (2007) was published, investigating the interaction
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of vascular stents with a human atherosclerotic reconstructed iliac artery segment.

The arterial segment used in the simulations was 1.4 mm long, an adequate length

to host a whole circumferential stent ring. It consisted of four different layers, the

intima, the media, the adventitia and the lipid pool. The authors also introduced

initial tears to model dissection during the deployment. Four different simulations run

in this study, one with balloon inflation only and three with stent deployment by a

balloon model. In the last three simulations, the baseline model of the investigated

stent along with two modified designs (one with thinner struts and one with fewer

struts) were modelled. The performance of each model was evaluated quantitatively

by three scalars representing contact pressure and circumferential wall stresses imposed

on the vessel by each device deployment and the lumen gain after each intervention

(the scalar index for the circumferential wall stresses quantification was adapted in the

studies presented in Chapters 7 and 8). The outcomes showed a strong correlation

between the lumen gain and the induced stress level. Thus, the most appropriate

approach strongly depends on the optimisation criterion.

Mortier et al. (2010) presented a novel simulation strategy to model stent insertion

and deployment in a patient-specific reconstructed coronary bifurcation. The authors

presented a detailed simulation methodology to capture the whole PCI procedure, from

stent crimping to stent deployment and catheter removal. They compared three differ-

ent second generation DES designs, the Cypher stent (Johnson & Johnson, NJ, USA),

the Endeavor stent (Medtronic, MN, USA) and the Taxus Liberte stent (Boston Sci-

entific, MA, USA). For the stent deployment, sophisticated tri-folded balloon models

were used, as proposed by Laroche et al. (2006). The virtual bench test predicted dif-

ferent circumferential wall stress distributions, especially, at the edges of the expanded

platforms (c.f. Figure 2.6). Moreover, in order to improve the outcomes, the authors

presented simulations of two modified models of the Cypher stent. One design had

thinner struts and one had narrowed struts at both stent edges. The results from these

simulations showed that especially for the proximal stented region, the stress peaks

reduced considerably. Interestingly, in this doctoral work, their proposed detailed sim-

ulation strategy was compared with a new less expensive simulation method in which

the stent system was geometrically translated to the reconstructed IVUS line (see Ap-

pendix C). It was shown that outcomes with respect to final stent deformation and,

consequently, the resultant SM were in close agreement for both investigated meth-

ods. Hence, the second less expensive approach was implemented to model stenting

in patient-specific challenging cases. This was very important for the multi-objective

optimisation study presented in Chapter 8, in which numerous simulations were run to

extract optimum stent expansion in a subject-specific RCA vessel.

In 2010, Gastaldi et al. (2010) presented a study investigating i) the effects of stent
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Figure 2.6: Comparison of the circumferential (Cauchy) stress distribution after im-
plantation of the Cypher Select, the Endeavor and the Taxus Liberte stents, with
maximal stresses of 0.38, 0.15, and 0.15 MPa from left to right. Image reused from
Mortier et al. (2010), with permission of Elsevier.

positioning on provisional bifurcation stenting, and ii) two different post-provisional

stenting procedures, the final kissing balloon and the re-dilation of the main branch.

The computer models comprised an idealised bifurcation, idealised folded balloon mod-

els and a vitual model of a Cordis BX Velocity stent (Johnson & Johnson, NJ, USA),

see Figure 2.7. Noteworthy, the authors validated their results qualitatively against

experimental results. The outcomes revealed significant differences between the in-

vestigated scenarios. Thus, they proposed that their model can be used for further

numerical studies to allow stent designers to optimise devices or techniques in treating

bifurcations. Subsequently, the same group (Morlacchi et al. 2011) implemented these

structural models to create fluid domains to analyse further the induced biomechanical

environment of different post-provisional bifurcation techniques.

A ground-breaking study in design optimisation of coronary artery stents was pre-

sented by Pant et al. (2011). In this study, advanced mathematical optimisation con-

cepts were implemented to investigate the mechanical performance of a parameterised

Cypher stent (Johnson & Johnson) implanted in a stenosed idealised vessel. A three

variable geometry parameterisation of the investigated platform was used to explore

the performance of each design in terms of six different figures of merit (represent-

ing the objective functions) extracted from structural and fluid dynamics simulations.

For this multi-objective problem, GP models were constructed for each objective at

four different stages: an initial design of experiment (DoE) followed by three update

stages. The update points were defined after searching the surrogate models using a

dedicated population genetic algorithm. The results demonstrated the existence of a
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Figure 2.7: Provisional side-branch-stenting simulation steps. Initial position (a) bal-
loon expansion (b) and recoil (c) of the system in the MB. Insertion of a balloon in
the SB through a cell of the stent (d), balloon expansion (e) and elastic recoil of the
system (f). Image reused from Gastaldi et al. (2010), with permission of Springer.

complex interplay between stent design and stent performance (always with respect

to the investigated objective functions, see Fifure 2.8). Similar surrogate models and

multi-objective optimisation techniques were implemented in the study presented in

Chapter 8 to optimise the stent deployment in a patient-specific vessel with challeng-

ing disease.

Figure 2.8: Final Pareto front (non-dominated solutions) slice showing the trade-off
between volume average stress (VAS) and acute recoil (Recoil). Image reused from
Pant et al. (2011), with permission from Elsevier.

Foin et al. (2012) presented sophisticated computer models to investigate post-

provisional bifurcation stenting techniques. In this work, apart from numerical sim-

ulations, experimental testing was also carried out to investigate in vitro bifurcation
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procedures. After provisional stenting in idealised vessels, two different strategies were

compared both computationally and experimentally. Firstly, a final kissing balloon

strategy was modelled and, secondly, a more conservative approach was simulated in

which a post dilation balloon was inflated only in the main branch to further expand

regions of malapposed struts. The results demonstrated that the second approach

resulted in better overall outcomes. Especially for the final kissing balloon scenario,

the structural models demonstrated a much higher induced mechanical environment

increasing the risk of vessel injury (c.f. Figure 2.9). The latter is very important

especially in vessels with challenging disease, where if possible, complex stenting tech-

niques should be avoided and PCI should be limited in a single-operational procedure

(see Chapter 7).

Figure 2.9: Simulation of post-dilation with kissing balloon (A) showing the resulting
high strains proximal to the SB created by the 2 overlapping balloons simultaneously
inflated (B). Sequential SB-MV post-dilation (C) results in the circular expansion of
the stent and significantly more homogeneous strain distribution proximal to the SB
(D). Image reused from Foin et al. (2012), with permission from Elsevier.

Recently, a state-of-the-art numerical study was published by Morlacchi et al. (2014)

to investigate three different bifurcation stenting techniques. The authors used struc-

tural, fluid dynamics and drug elution analyses to compare the different stenting sce-

narios. The results from this virtual numerical study showed substantially different

patterns of wall and stent deformations, shear stress and drug elution among the simu-

lated techniques. Thus, such models can serve as a complementary tool to traditional in

vitro approaches to study stenting procedures and guide engineers towards optimised

devices and procedure protocols. In the same year, state-of-the-art computational

structural models were published by Mortier et al. (2014) to: i) study the effects of
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stent design, and ii) compare two different kissing balloon inflation strategies in three

different idealised bifurcation vessels. The authors demonstrated with clarity that the

proposed modified final kissing balloon strategy reduced the elliptical stent deforma-

tion and optimised side branch access. Interestingly, the number of malapposed struts

was not influenced by the kissing balloon strategy. As it will be shown in Chapter

7, SM can be eliminated by single-step procedural approaches in which novel varying

diameter dilation systems are used to deploy the stent in a patient-specific challenging

bifurcation segment.

2.2.3 Numerical Studies of Stent Malapposition

Mortier et al. (2011a), conducted a numerical study comparing six common coronary

artery stents in terms of incomplete stent apposition and stent induced vessel wall

stresses. In order to evaluate each platform concerning incomplete stent apposition,

a criterion was used which was based on a threshold value of 10 µm representing the

distance between the centre of the outer strut surface and the inner surface of the

vessel wall. In Figure 2.10, the outcomes of this study concerning strut malapposition

are illustrated. The red colour represents those areas with high strut malapposition,

while the blue colour signifies struts perfectly apposed to the vessel walls. The device

with two connectors showed the higher amount of SM (resulting in 43%) for wall-to-

strut distance larger than 0.01 mm. Interestingly, the higher amount of malapposed

struts were observed at the shoulders of the plaque (in healthy vessel wall surfaces),

suggesting that segments with luminal variations (highly calcified, non-focal plaque)

are more prone to incomplete strut apposition. In the same year, the same group

publised a similar study investigating SM of two contemporary stents implanted in an

idealised coronary bifurcation (Mortier et al. 2011b). The authors showed increased

SM in the proximal end of the devices due to the diameter mismatch along the length

of the vessel. Noteworthy, proximal malapposition was also evident after the computer

simulations of stenting in patient-specific vessels with challenging disease, presented in

Chapters 6, 7 and 8. Therefore, lessening the malapposed struts in the proximal end

of stent device was one of the main objectives of the studies presented in 7 and 8.

2.3 Summary

In this chapter, a brief description of the fundamental principles governing the formu-

lation of FEA stent modelling was carried out followed by a literature review that high-

lighted numerical studies of balloon expandable stents. The review progressed gradu-

ally from early structural studies to the most recent sophisticated numerical models.
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Figure 2.10: Contour plot of the strut apposition of the different stent designs. The
plots show the distance between the centreline on the outer strut surface and the inner
surface of the arterial wall. A nonlinear colour scale has been used, with red reflecting
values between 0.04 and 0.15 mm, in order to obtain a better differentiation at lower
values. Image reprinted from Mortier et al. (2011a), with permission from Europa
Digital & Publishing.

According to the author’s judgement, every computational study reported, represented

state-of-the-art work in the period which was published. From each study, the method-

ology along with the most valuable results was outlined and, where appropriate, special

references were provided with respect to the current thesis. In particular, the ratio-

nale was to outline (where possible) how a certain computational study contributed

to the current doctoral work especially in the attempt to optimise stent implantation

in patient-specific vessels with challenging disease. Moreover, the presented studies

highlight the need for further computational research on a subject-specific basis with

models directly derived from real clinical cases. As presented in the following chap-

ters, the latter provides more realistic computational models when trying to eliminate

certain clinical complications (e.g. SM and LSD).

Numerical studies can provide quantitative outcomes on the mechanical behaviour

of stent platforms when implanted in very complicated geometries and they can give

not only numerical outcomes as far as SM is concerned but they can provide 3D in-

formation in contrast to the two dimensional IVUS and OCT images. Stent-to-artery

wall distance can be calculated and visualised over the complete stent length easily in

contrast to common methods where IVUS cross section images can only measure and

visualise the particular area. This method could be used to investigate and quantify
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not only stent performance but it can facilitate numerical studies of different pro-

cedural strategies. Prior to the current work, only two numerical studies (Mortier

et al. 2011a,b) have been carried out investigating the impact of last generation stent

platforms to SM. Furthermore, no computational study investigating the longitudinal

integrity of coronary artery stents has been reported. Thus, this thesis has focused on

sophisticated computational studies investigating the mechanical behaviour of contem-

porary coronary artery stent systems regarding SM and LSD in patient-specific vessels

with challenging disease. Such numerical studies can shed light both on optimisation

of stent design and the improvement of interventional procedures.
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Chapter 3

3D PATIENT-SPECIFIC VESSEL

RECONSTRUCTION

R
econstructions! There has been much effort over the last decade to develop

methods for the reconstruction of coronary arteries to be modelled in computa-

tional studies. Such reconstructions are difficult since these segments are small (2-4

mm in diameter), tortuous, complex, and continuously in motion. Moreover, coronary

artery geometries are characterised by non-planarity in 3D space. For coronary imag-

ing, CA is the golden-standard in PCI practice. More recently, other tomographic and

imaging systems such as CT angiography, magnetic resonance imaging (MRI), IVUS

and OCT have been developed and used for coronary imaging. This chapter focuses

on CA and IVUS imaging, which when fused, 3D vessel models can be obtained. In

particular, after a brief overview of CA and IVUS image modalities, the methodology

which was developed to reconstruct vessels with challenging disease is presented. These

challenging vessels are to be simulated in the following chapters to investigate methods

for minimising the risk of SM and, consequently, LSD.

3.1 Coronary Angiography

3.1.1 Fundamentals of coronary angiography

CA uses x-rays to view coronary vessels. In Figure 3.1, a cartoon image of a typical

C-arm machine is depicted. According to the examined vessel the machine is rotating

around the patient at certain angles to optimise the vessel visualisation. In CA, a

long, flexible tube (catheter) is inserted through either the femoral or radial artery

and administers a contrast agent (clear dye) into the area which is under examination

(c.f. Figure 3.2). In this way, the morphology and anatomy of coronary arteries can be

monitored and, as a result, potential pathogenic events can be diagnosed. Complete

41
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blockages, significant narrowing, mild irregularities or no disease at all are the range of

possible findings from this test. However, angiography lacks the capability of providing

a more analytical description of vessel wall structure. As a result, it can misguide

intervention cardiologists in the procedure. Despite this drawback, it is considered to

be the most robust and convenient method for monitoring PCI.

Figure 3.1: Cartoon image of CA procedure: patient centrally positioned on the table
of a C-arm machine. The C-arm machine rotates at certain angles around the patient
to visualise specific coronary arteries (Berkeley-Heart-Lab 2015)

3.1.1.1 Coronary angiographic views

As stated above, in coronary angiography, different fluoroscopic views are used in order

to visualise certain coronary vessels. The angiogram image intensifier rotates according

to the operator’s preferable angle around the patient so as to visualise different vessels

and either the distal or proximal parts of each vessel. The main categories of image

intensifier rotation is the left anterior oblique (LAO) and the right anterior oblique

(RAO). In these three categories an additional rotation according to either caudal or

cranial angulation might be operated.

During CA, each examined vessel can be evaluated from different angles (usually

two orthogonal views) in order to avoid possible artifacts from spine, diaphragm, and

vessel overlap and visualise clearer all important side branches (Askari et al. 2011).

In Figure 3.3, image intensifier LAO and RAO directions are illustrated. In the LAO

projection, the image intensifier is to the left of the patient while in the RAO projection

it is to the right as viewed from above. In the LAO image, the spine is always to the
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Figure 3.2: CA: schematic representation of cardiac catheterisation (NMA 2008) (left
panel) and CA image of left coronary artery (right panel)

right while in the RAO image it is always to the left. In general, cranial angulation is

ideal for distal vessel portions while caudal views are ideal for proximal portions.

Figure 3.4 illustrates four commonly used angiographic views. In Figure 3.4a, the

3D diagram (left side) and angiogram (right side) of the 45◦ LAO-20◦ cranial view

of the left coronary artery is illustrated. As can be seen, the LAD and its diagonal

branches can be evaluated easily from this view. The catheter and the spine are to the

right side of the heart. Figure 3.4b shows the 20◦ RAO-20◦ caudal view of the LCA.

The left main and the Cx are visualised by this view. As can be observed, the caudal

angulation projects the proximal portions of these vessels. As in all RAO projections,

the spine and the catheter are to the left side of the heart. Similarly, Figures 3.4c

and 3.4d illustrate the corresponding 3D diagrams (left side) and angiograms (right

side) of the right coronary artery. The 35◦ LAO view is ideal for the visualisation of

the proximal and mid right coronary artery and the acute marginal branch and 30◦

RAO view for the proximal and mid right coronary artery and the posterior descending

artery.

Figure 3.3: Angiographic image intensifier rotation around the patient
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(a) 45◦LAO-20◦ cranial view of the left coronary
artery

(b) 20◦RAO-20◦ caudal view of left coronary artery

(c) 35◦LAO view of the right coronary artery

(d) 30◦RAO of the right coronary artery

Figure 3.4: Orthogonal angiographic views of LCA & RCA. Image reused with per-
mission from (Askari et al. 2011).
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3.2 Intravascular ultrasonography

As stated before, despite the fact that angiography represents a very robust monitoring

tool for interventional cardiologists it lacks the ability to provide adequate information

as far as vessel wall structure is concerned and can give a misleading representation

of human area. In contrast, IVUS has been used so far as the only tool to directly

visualise atherosclerosis and other pathologic conditions within the vessel wall. Its

ability to monitor in real time the entire cross section area of the examined vessels

provide a better understanding of possible pathologic events and their distribution

within the vessel wall. IVUS also provides a better information concerning arterial

morphometry (for instance, lumen and wall area calculation) and morphology.

IVUS imaging systems emit ultrasound waves with centre frequencies ranging from

20 to 45 MH and use the reflected sound waves to visualise the vessel wall in a two

dimensional, tomographic format, analogous to a histologic cross-section. The IVUS

catheter is approximately 1 mm in diameter and its design is either mechanical or

solid-state, both generating 360◦ cross sectional plane images at 30 frames per second

perpendicular to the catheter tip, Figure 3.5. The mechanical catheter uses a higher

frequency ultrasound transducer (up to 45 MH) while the solid-state device uses a

lower ultrasound transducer (up to 20 MH). More detailed information on IVUS can

be found in Chapter 10 of Redwood et al. (2010).

As can be noted in Figure 3.5, the visualisation of the three different wall layers in

an IVUS image can be characterised by a bright-dark-bright appearance. The media

which contains less echo-reflective material (e.g. collagen and elastin) is represented as

a thin dark layer in contrast to the intima and adventitia which are represented as the

two bright areas.

3.3 3D Vessel Reconstructions

For the purposes of the current doctoral work, “challenging” geometry segments have

been reconstructed by fusing CA and IVUS. The reconstruction of the vessel is based

on the analysis of CA and IVUS images through accurate vessel wall segmentation

and IVUS catheter (pull-back path) detection. The data was provided by Prof Nick

Curzen and were acquired at the University Hospital Southampton. In particular, three

coronary arteries, two RCA segments and one left main bifurcation (LMB), were re-

constructed. Each of the reconstructed cases represents “challenging diseased vessels”,

which during the PCI, were assessed multiple times by the interventional cardiologist

to optimise the stent delivery. Therefore, these challenging cases were modelled in

Chapters 6, 7 and 8 to investigate novel stent-system designs and/or optimum dilation
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Figure 3.5: Real IVUS cross-sectional histologic plane

protocols according to patient-specificity. The rationale was to propose technology for

single-operational PCI procedures to mitigate the risk of SM and LSD in the presented

challenging reconstructed segments1.

3.3.1 Introduction

3D vessel reconstruction has been used so far in order to capture morphologic areas and

volumes (either lumen or wall layers) and for simulating the endo-coronary blood flow

in order to predict hemodynamic factors (g.e. wall shear stresses) (Chatzizisis et al.

2007). While rigid wall assumption in CFD studies require only the lumen volume of

the vessel, more complex studies such as imaged based structural simulations require

more spatial information, like arterial wall thickness, the presence of atherosclerotic

plaques and tissue characterisation. This data cannot be obtained by an individual

imaging technique, therefore, methods which combine different techniques have been

developed (Doulaverakis et al. 2013, Wahle et al. 1999).

Many previous studies (Foin et al. 2012, Morlacchi et al. 2014, Mortier et al. 2011a,

2014, Pant et al. 2011, Zunino et al. 2009) regarding stent deployment, ideal vessel tubes

have been used for stent expansions. In contrast, this project aims to conduct numerical

1A part of the content of this section was presented in the 1st UK National Conference on Patient-
Specific Modelling & Translational Research: 3D Challenging Disease Reconstruction, G. Ragk-
ousis, N. Curzen, N. Bressloff., 9 & 10 January 2013, Cardiff, UK
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studies by modelling realistic stent expansions in 3D reconstructed coronary arteries

with challenging disease. This can provide insights in how the clinical problems of SM

and LSD can be lessened in such challenging anatomies via patient-specific modelling.

As stated in the preceding sections, the reconstruction has been managed by the

fusion of CA with IVUS cross sectional plane images. The reconstructing process

has been undertaken in IVUS Angio-Tool 2.1, an open source software (Doulaverakis

et al. 2013) and in Rhinoceros 5.0 (Robert McNeel, Seattle, WA, USA), a commercial

non-uniform rational B-spline (NURBS) package. The main steps required for the re-

construction of an image-based coronary vessel with challenging disease to be modelled

in structural simulations are:

• the selection of two bi-plane CA images

• the selection of several IVUS frames

• the bi-planar IVUS catheter path definition

• the extraction of the vessel center-line

• the vessel lumen and wall extraction via IVUS image segmentation

• the geometrical correct placement and orientation of the extracted IVUS contours

onto the 3D catheter path

• the generation of the internal/external surfaces from NURBS curves

• the discretisation of the reconstructed model into a computational mesh

3.3.2 Material & Methods

In total, three patient-specific segments with challenging disease were supplied for

the purposes of this doctoral thesis. In the first case, a RCA was blocked along the

second segment of its length. PCI was undertaken and one 3.5 × 16 mm stent was

implanted along the stenosed length followed by post-balloon dilation to further expand

malapposed struts in the proximal end of the stent. In the second case, a more complex

and longer RCA segment was provided and the disease along its length had been spread

more widely on its wall. The patient underwent PCI which involved three implanted

stents, one 4 × 20 mm distal, one 4.5 × 32 mm in the middle, and one 4.5 × 16 mm

proximal segment of RCA. The third case concerns a LMB with a stenosis in the

proximal part of the LAD after balloon pre-dilation. The patient underwent PCI and

both segments were stented. This case represents one of the most challenging situations
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that an interventional cardiologist might encounter. The major difficulty of such a case

is the size discrepancy between the left main and the LAD.

For each vessel reconstruction, several IVUS frames and two bi-plane CA images

were collected and imported into the IVUS Angio-Tool where the catheter path def-

inition and the lumen with the vessel wall segmentation were defined. The catheter

path was defined by both LAO and RAO angiographic images which differ by approx-

imately 90◦; the LAO and RAO are shown in Figure 3.6a & b. The segmentation of

lumen and media-adventitia border contours was carried out by active contours models

(Giannoglou et al. 2007), see Appendix A and Figure 3.6c. The contours information

was then written as a point-cloud which was imported into Rhinoceros 5.0 for further

processing. In Rhinoceros 5.0, the realistic 3D IVUS pull-back path was reconstructed

as the intersection of the two bi-plane orthogonal curve extrusions. The resultant curve

was scaled to its real dimensions according to2

a b c

d e f

Figure 3.6: Framework for 3D vessel reconstruction: a) catheter path definition in
LAO, b) catheter path definition in RAO, c) extraction of lumen and intima-media
boundaries, d) Frenet trihedron calculation at finite locations on the IVUS catheter
curve, e) orientation of the contour sets (each one comprised of lumen and intima-media
border contours) on the catheter line, and f) interpolation of NURBS surfaces to the
oriented contour sets.

2By selecting one frame every sixty frames, 1 mm of the IVUS length is covered.
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Livus =
[

Nframes

facq

]

Spullback (3.1)

where, facq = 30 frames/sec, Spullback = 0.5 mm/sec and Nframes denotes the number

of frames.

This curve comprises the backbone on which the lumen and the wall contours are

positioned after being converted into real dimensions calculated from the IVUS-Angio

Tool. At each location point on the curve, the Frenet trihedron is calculated, Figure

3.6d.

3.3.2.1 Frenet frame

The reconstructed IVUS pull-back is a line in space which can be geometrically char-

acterised using classical differential geometry of curves. Let c(t) ∈ [0, L] → R3 and

c(t) = [x(t), y(t), z(t)] be the pull-back path of the IVUS transducer as a function of

an arbitrary parameter t. The local behaviour of the curve C can be described by

the moving frame or Frenet frame (Millman and Parker 1977), a right handed trihe-

dron of three orthonormal vectors t, n, and b representing the tangential, the normal

and the bi-normal unit vector, respectively, at each location on the curve. The Frenet

orthonormal vectors are defined as:

t =
c′(t)

‖c′(t)‖
(3.2)

n =
(c′(t) × c′′(t)) × c′(t)

‖c′(t) × c′′(t)‖ · ‖c′(t)‖
(3.3)

b =
c′(t) × c′′(t)

‖(c′(t) × c′′(t)‖
(3.4)

where c′(t) is the derivative of c(t) with respect to an arbitrary parameter t.

Along with the orthonormal Frenet unit vectors, two scalar quantities, the curvature

and the torsion are used to characterise the local behaviour of a 3D curve. Curvature,

k(t), measures the deviation of the curve from a straight line and it is always posi-

tive whereas torsion, τ(t), measures how much the curve declines from being planar.

Assuming an arbitrary parametrisation, these scalar quantities are calculated from

k(t) =
‖c′(t) × c′′(t)‖

‖c′(t)‖3
(3.5)

τ(t) =
(c′(t) × c′′(t)) · c′′′(t)

‖c′(t) × c′′(t)‖2
(3.6)
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(3.7)

The precise position of the IVUS contours on the catheter line is formulated by

orientating the contours at each location point with geometrical transformations which

map three units vectors [x,y, z] (defined on each cross section contour) to the Frenet

trihedron [t,n,b] (at each location point).

3.3.2.2 Position and Orientation according to the Frenet trihedron

As discussed in the preceding section, the segmented contours representing the lu-

men and the walls, need to be positioned onto the catheter path curve according to

the Frenet trihedron. This was accomplished by homogeneous matrix transformations

(Theoharis et al. 2008). A local orthonormal coordinate system [x,y, z] was defined at

each cross section on a control point which represented the centre of the IVUS trans-

ducer. Then, each cross section was transformed by a geometrical mapping of its local

coordinate system [x,y, z] to the corresponding local Frenet orthonormal coordinate

system [t,n,b] at each location point on the curve. When an object was to be trans-

formed, individual homogeneous matrices were created for each step of transformation

(e.g. translation, rotation, shearing, etc.). The steps used here were as follows:

1. The contours were first translated to the global origin [0, 0, 0]T according to

T(p)−1 =

















1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

















(3.8)

or T(p)−1 = I(−p), where −p is the translational vector −p = [−px,−py,−pz]T

which translates the cross sections to the origin and I is the identity matrix.

2. Then, the contour cross sections were rotated around z axis3. The rotation matrix

was

Rz(θ) =

















cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

















(3.9)

3the z axis will be mapped to the tangential axis t of the Frenet system
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with θ being the clockwise angle of rotation of x and y axis around z

3. The rotated contours were transformed to the [t,n,b] orthonormal system with

the corresponding matrix being

F(t,n,b) =

















nx bx tx 0

ny by ty 0

nz bz tz 0

0 0 0 1

















(3.10)

or F(t,n,b) = [n,b, t, 1]. The transformation matrix F(t,n,b) maps the x with

n, y with b, and z with t.

4. Within the Frenet system, the contours have to be displaced to the location

points on the curve. For each contour, the displacement vector corresponded to

the position vector of each location point on the curve. Thus, the translational

matrix was

T(c0)curve =

















1 0 0 c0x

0 1 0 c0y

0 0 1 c0z

0 0 0 1

















(3.11)

or T(c0)curve = I(c0) with c0 = [c0x, c0y, c0z]T being the position vector of each

location point on the curve.

5. Finally, the above transformation and rotation matrices could be combined into

single matrix equivalent to

Mglobal = (T(c0)curve)(F(t,n,b))(Rz(θ))(T(p)−1) (3.12)

or

Mglobal =

















Ax Bx tx −px(ax) + py(bx) − pz(tx) + c0x

Ay By ty −px(ay) + py(by) − pz(ty) + c0y

Az Bz tz −px(az) + py(bz) − pz(tz) + c0z

0 0 0 1

















(3.13)

with Ai = ni cos θ + bi sin θ and Bi = −ni sin θ + bi cos θ with i = x, y, z.

The final step comprised the definition of a certain angle which the contours were

rotated around t such that when re-projecting the reconstructed vessel onto either the
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C

t

b

n

cp

c

Q

P

R

Figure 3.7: Lumen and normal plane intersection along a point t in the parametrised
IVUS pull-back curve: t, n, and b is the tangential, the normal and the bi-normal
vector at any c(t) point of the arbitrary parametrised curve C, respectively. cp(t) is
the centre of area of each R(t) created by the intersection of the normal plane P(t)
and the volume Q. CP is the interpolated curve passing through all the cp(t) points.

RAO or LAO view, a satisfactory match was accomplished (c.f. Figures 3.6e & f).

The process of reconstruction was completed by interpolating internal (for the lumen

borders) and external (for the media borders) NURBS surfaces through the oriented

IVUS contours.

3.3.2.3 Centreline calculation

As the vessel was reconstructed, the IVUS pull-back line was used as a reference to

calculate the vessel centre line. In particular, the IVUS pull-back line was sampled

across its length and at each sampling point the Frenet frame was re-calculated. Then,

the Frenet frame of the IVUS parametrised curve was used to segment the vessel

according to the normal moving plane, expressed as

(x(t) − c(t)) · t = 0 (3.14)



3.3. 3D VESSEL RECONSTRUCTIONS 53

with x(t) a position vector of a point x on the normal plane. At each location point c(t)

a planar closed curve (cross section) R(t) is defined as the intersection of the normal

plane P(t) with the volume of the lumen, V (Q) (c.f Figure 3.7), expressed by

R(t) = V (Q) ∩ P(t) (3.15)

Alternatively, the cross section R(t) of V (Q) at a point t on curve C is the region lying

in P(t), or

R(t) = rn(t) + pb(t) (3.16)

with r and p real numbers lying in a region D(t) of the r-p plane (England and Miller

2001). Then, providing that, for any set of points c(t) and c(t+ dt), the cross sections

R(t) and R(t+ dt) do not intersect, the centre of area of each cross section , cp(t), is

calculated. A smooth curve at least C2 differentiable has been interpolated through all

the calculated cp(t) points, see Figure 3.7 and 3.8.

The centre line was served to partition the reconstructed vessels and enable solid

hexahedral structured mesh discretisation of the volume comprising the vessel walls.

By this method, uniform small segments were created along the entire length of each

model enabling fast and accurate mesh discretisation. Specifically, each vessel was

partitioned along its length by the Frenet planes defined on the centre line of each

lumen. The Frenet planes are as follows:

p

C

Figure 3.8: Normal cross sectioning of the RCA segment from the C IVUS line to
compute the CP centre line of the lumen
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• the osculating plane, O(t), expressed as

(x(t) − c(t)) · b = 0 (3.17)

with x(t) a position vector of a point x on the osculating plane.

• the rectifying plane, Re(t), expressed as

(x(t) − c(t)) · n = 0 (3.18)

with x(t) a position vector of a point x on the rectifying plane.

• and, finally, the normal plane, P(t), defined by Eq. 3.14

The Frenet planes in local point of a parameterised curve are illustrated in Figure

3.9.

n

t

b

C

Figure 3.9: Frenet planes calculated on a local point, c(t), of a parametrised curve:
P(t) is the normal plane, Re(t) is the rectifying plane and O(t) is the osculating plane.

Furthermore, as presented in Chapter 7 (see section 7.2.1.3), the geometrical lo-

cal properties of the centre line were used to derive scalar indices to geometrically
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(a) Final reconstructed lumen surface
from LAO and RAO

(b) Resultant RCA reconstructed vessel including the ar-
terial walls

(c) Structured hexahedral element mesh for the first RCA case

Figure 3.10: 3D reconstruction and computational mesh generation of the first RCA
segment
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characterise the reconstructed vessels and quantify pre and post-stenting outcomes.

3.3.3 Results

For the first case, Figure 3.10a shows the 3D realistic representations of the recon-

structed lumen from LAO and RAO projections. In Figure 3.10b, the solid model of

the reconstructed RCA is illustrated including the arterial walls (extracted from the

IVUS image segmentation, see Figure 3.6c). The NURBS surfaces were smoothed to

enable a better mesh discretisation quality, Figure 3.10c. This was accomplished by

decreasing the number of control points of the NURBS curves which were used to make

up (loft) the lumen and the wall surfaces.

For the second case, Figure 3.11a illustrates the resultant lumen surface back-

projected to the corresponding bi-plane CA view. For our computational purposes,

there was a satisfactory fit between the bi-plane lumen and the reconstructed surface

in this case. Figure 3.11b and 3.11c depict the reconstructed smoothed RCA solid

model including the arterial walls and the generated computational mesh of the model,

respectively.

Finally, the reconstruction results of the third case are illustrated in Figure 3.12.

In particular, two IVUS sequences were used to reconstruct the bifurcated vessel. One

sequence was the IVUS pull-back run from the Cx to the proximal part of the left

main and the second was the pull-back run carried out in the LAD after pre-dilating

the ostium. Therefore, two different segments were reconstructed by each run and then

they were merged to comprise the bifurcated vessel. At the end of the process, this

model was extended to 5 mm along its edges for the purposes of the work presented in

Chapter 7 (to host the entire stent-system in vessel wall vicinity). In Figure 3.12a, the

lumen of the reconstructed bifurcated model is back-projected onto the RAO image.

The wall composition of the segment and the volumetric mesh discretisation of the

model are illustrated in Figure 3.12b and 3.12c, respectively.

3.3.4 Discussion

In this chapter, a framework has been presented for the geometrically correct 3D re-

construction of three human coronary arteries by fusion of IVUS and biplane CA. The

CA images, as shown, provide the spatial trajectory of the IVUS catheter, representing

the backbone on which the IVUS segments contours are placed and oriented in space.

Orthogonal projections are desirable, due to a higher amount of spatial information

as compared to low inclination angles, but are not required (Wahle et al. 1999). The

lumen and the walls were segmented with active contours which are implemented in

IVUS Angio-Tool. The algorithms of this open source software were developed to auto-
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(a) Lumen and border surface superimposed on
the LAO image

(b) Solid virtual model of the RCA reconstructed
segment

(c) Structured hexahedral element mesh for the second RCA case

Figure 3.11: 3D reconstruction and computational mesh generation of the second RCA
segment
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mate the segmentation process (Giannoglou et al. 2007), although, it seems that their

accuracy is limited. Thus, the frames were manually segmented to improve the final

outcomes.

For the qualitative validation of the reconstructed models, the reconstructed lumen

were back-projected onto the angiographic images. Ideally, the back-projected luminal

surfaces should be in perfect agreement with the actual angiographic ones. However,

this was not the case for all the three segments. The discrepancy might occur due

to vessel foreshortening, the continuous motion of the vessels, and the difficulty in

detecting the IVUS catheter and the luminal edges in angiograms with absolute accu-

racy. Nonetheless, it has been shown (Chatzizisis et al. 2006), that the method exhibits

slightly less accuracy in reconstruction of RCA than LCA. Additionally, since the IVUS

transducer is not electrocardiogram gated, it was impossible to filter the IVUS frames

according to the R wave4. However, for the imaged-based computation purposes of

this project, the reconstruction results are considered to be satisfactory.

3.3.4.1 Limitations

The major drawback of the proposed methodology is that it requires time to reconstruct

a whole vessel. The segmentation of IVUS images was performed manually, which is

a time consuming procedure with results affected by the user. Furthermore, in order

to reduce the reconstruction time, the IVUS contours were positioned equidistantly

onto the catheter line, although it would be more accurate to position each one on the

pull-back path according to their specific location, calculated from its known identical

number, pull-back velocity and frame rate (Wahle et al. 1999) given by Eq. 3.1. Finally,

it was assumed that the speed of the pull-back is constant. However, in reality, the

catheter sometimes might be delayed during the pull-back (Chatzizisis et al. 2006) due

to vessel complexity (e.g. increased tortuosity, curvature, plaque morphology, etc.).

3.3.5 Summary

The fusion of CA bi-plane images and several IVUS frames can be used for 3D ves-

sel reconstruction of patient-specific arteries. From this method, planarity, curvature,

torsion and wall constitution can be obtained with relatively accurate spatial represen-

tation, suitable for simulations of PCI procedure especially in vessels with challenging

disease. Such reconstructed models can provide 3D information along the entire model

length, and in addition, different cross sections and volumes (regions of interest) can be

extracted from the virtual space. This can assist the physician to plan the procedure

more effectively; and as a result, optimise the stent delivery.

4R wave corresponds to the end diastolic phase of the cardiac cycle
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(a) Reconstructed lumen surface of the LMB
vessel superimposed on the RAO image

(b) Solid virtual model of the bifurcated recon-
structed model

(c) Structured hexahedral element mesh for the LMB case

Figure 3.12: 3D reconstruction and computational mesh generation of the LMB model
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The reconstructed vessels presented in this chapter were simulated in Chapters 6,

7, and 8. All models are characterised by diameter discrepancy along their length,

tortuous geometry and, finally different degree of stenosis. Therefore, each patient-

specific vessel represents different degree of challenging disease. In particular, the first

case constitutes the least challenging case characterised by tortuous geometry with a

focal plaque in the middle part of its length. It was modelled in the work presented in

Chapter 6 to investigate the mechanical performance of different contemporary coro-

nary artery stents with respect to SM and LSD. The second case represents greater

clinical challenge due to the increased geometrical complexity (longer segment, higher

tortuosity and curvature) and the non-focal state of the disease. This vessel was mod-

elled in the work presented i) in Chapter 7 to investigate the mechanical performance

of tapered delivery systems with respect to SM and the imposed stress environment

and ii) in Chapter 8 to search for several optimum dilation protocols (via mathemat-

ical optimisation) with respect to SM, drug deliverability and tissue stress according

to the interventional cardiologist’s preference. Finally, the reconstructed bifurcated

vessel represents the most challenging case characterised by a sharp change of lumen

diameter (∼ 50%) along the length of the intervened vessel. This vessel was modelled

in the work presented in Chapter 7 to investigate the mechanical performance of a

novel stepped delivery system with respect to SM and tissue stresses.



Chapter 4

3D STENT & BALLOON DESIGN

C
omputer aided design! Virtual models of different latest generation balloon

expandable stents have been constructed for the purposes of the current doctoral

thesis. The stents represent commercial devices which have been used broadly in PCI

procedure during the last few years. This chapter provides a description concerning the

methodology used for the 3D virtual design of the stent systems which were modelled

in this thesis. Then, a description is provided regarding the computer aided design

generation of realistic multi-folded balloons used for stent deployment. All the virtual

models presented in the following content were modelled in the studies presented in

Chapters 6, 7 and 8 to investigate their mechanical performance (with respect to SM,

LSD and tissue stresses) when implanted in reconstructed vessels with challenging

disease (presented in Chapter 3).

4.1 Introduction

Commercially available stents come in a variety of shapes and sizes depending on the

application and the target site in which they are to be implanted. In reality, laser-

cut tubular stent platforms are designed in tube dimensions. Lacking the analytical

dimensions of the tube from which stents are cut, an ideal representation of the real

stent is compromised. However, being aware of the analytical dimensions of a crimped

stent in accordance with the knowledge of stent features (number of struts along a

circumferential ring, number of connectors, and number of circumferential rings along

stent length), the prediction of stent dimensions of the tube diameter have to be ap-

proximated.

Figure 4.1 depicts a typical two dimensional (2D) drawing of a stent platform

designed in its minimum diameter (semi-crimped dimensions). Ls is the length of the

stent, Lc (or Xbridge) is the length of a connector, Ws is the width of the stent struts, Lr

(or Xstrut) is the axial length of a circumferential ring, and finally, Wappex is the width
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Figure 4.1: A 2D unrolled stent with its characteristic platform dimensions: Ls is the
length of the stent, Lc is the length of a connector, Ws is the width of the stent struts,
Lr is the axial length of a circumferential ring, and finally, Wappex is the width of a
peak.

of a peak. StentCirc is equal to the circumference of the tube that the stent is wrapped

around in order to represent a 3D tubular model. rtube denotes the outer radius of

the tube. Therefore, being aware of the diameter of a stent-system profile, rtube, the

number of the struts in a circumferential ring, Nstruts, and the width of the struts, Ws,

a reliable representation of the stent along its circumference can be obtained by

StentCirc = 2πrtube = Nstruts(Ws +Wspace) (4.1)

where Wspace, the vertical distance between two sequential struts.

The longitudinal length of a stent can be expressed as

Ls = NringsLr + (Nrings − 1)Lc (4.2)

where Nrings, the number of circumferential strut rings along the stent length. Since

Lc and Lr are not always known, they can be derived by their fraction estimated by a

commercially available image. Specifically, being aware of Lc/Lr along with Eq. 4.2, a

linear system with two unknowns can be easily solved.
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4.2 Stent Computer Aided Design

4.2.1 Stent A: Promus Element (Boston Scientific, Boston,

MA, USA)

The Promus Element stent incorporates a uniform pattern of serpentine segments, each

with two offset connectors, that reverse the direction of alternate rows. The connectors

are placed helically around the longitudinal axis of the stent. Moreover, it has short

ring segments and the peaks are wider than the general width of the struts. Each

two sequential circumferential rings differ slightly in phase allowing the device to bend

without allowing its rings to overlap. This platform comes in different sizes ranging

from 2.25 mm to 4.0 mm in deployed diameter, and 8 mm to 32 mm in length. Stent

thickness is 81 µm and the strut width is 91 µm. More information about different

commercially available sizes of the Promus platform and its manufacturing process can

be found in O’Brien et al. (2010).

In the current work, a 3D design of the Promus platform in its tube dimensions is

worked out. Since its analytical dimensional data are not available, the computer aided

design of this platform is based on some assumptions. However, as already mentioned

above, in case some general features of the stent are known, a reliable design of a stent

platform can be carried out. In O’Brien et al. (2010), the manufacturing process is

described and the outer diameter of the tube (which the stent is cut from) is given as

1.83 mm and its wall thickness as 107 µm. In parallel, given the strut thickness, it is

possible to easily predict the inner and the outer diameter of the stent in its tubular

state.

According to the given information and having provided the web released picture

(BostonScientific 2009) on the left panel of Figure 4.2, the 2D drawing of Promus

Element was created as illustrated in the right picture of Figure 4.2. In particular, the

assumptions of dimensional details for this 3.5 × 16 mm stent are as follows:

• Dtube
inner = Dtube

outer −2(Thtube), where Dtube
inner is the inner diameter of the tube, Dtube

outer

is the outer diameter of the tube, and Thtube is the wall thickness of the tube

• Ds = Dtube
inner + Thstruts, where Ds is the diameter of the stent and Thstruts, the

thickness of the stent struts

• StentCirc = πDs, where StentCirc is the circumference of the 2D stent drawing,

Figure 4.2

• Ystrut = StentCirc

Nstruts
, with Ystrut the vertical length of one strut along the circumfer-

ential axis
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Figure 4.2: 2D drawing of Promus Element: On the left panel, Promus Element as
depicted in a commercial leaflet (BostonScientific 2009) and, on the right panel, Promus
Element as generated in Rhinoceros.

• according to equation 4.2 along with the ratio Xstrut/Xbridge (estimated in a

commercial image of the stent), a linear system with two unknowns is generated.

Solving the linear system, the two unknowns Xstrut and Xbridge are given

• Lstrut =
√

(Xstrut)2 + (Ystrut)2, where Lstrut is the diagonal length of a unit strut,

Figure 4.2

• finally, the diagonal Lstrut is offset by Ws to build the unit strut, Figure 4.3

Thereupon the unit strut formation, a mirror function is used with respect to the

circumferential axis, θ, so as to form a pair of struts. Then, copying the pair object

along the circumferential axis, θ, according to Npeaks, a unit circumferential ring is

created which in turn is copied along the z axis and offset along the θ axis to represent

the pair of two sequential ring as depicted on the top right of Figure 4.3. Then,

the circumferential pair is copied according to (Nrings)/2, and each copied object is

placed at a Xbridge distance from the other. The connectors are designed by straight

lines between the peak and the tangent points of two opposite appexes/peaks and are

smoothed by a blend arc function. The final 2D drawing of the Promus Element is

illustrated in the bottom part of Figure 4.3. At the end, the planar design is joined

and extruded in both sides along the R axis by (Thstruts)/2 and wrapped into a tubular

surface with circumference equal to StentCirc. The final 3D tubular virtual model of
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Figure 4.3: 2D design methodology followed for Promus Element CAD generation.

Promus Element is depicted in Figure 4.4a. The stent was designed with an outer

diameter of 1.77835 mm, strut thickness (Thstruts) of 81 µm and a strut width (Ws) of

91 µm. The respective commercial stent system (actual) is illustrated in Figure 4.4b.

4.2.2 Stent B: XIENCE (Abbott Vascular, Chicago, IL, USA)

XIENCE is laser-cut from a cobalt chromium alloy (L605). This stent features alter-

nating crown heights and wavy struts. The device consists of three connectors between

adjacent circumferential rings. This platform comes in different sizes ranging from 2.75

mm to 4.0mm in diameter, and 8mm to 28mm in length. Stent thickness is 81 µm and

the strut width is 91 µm (AbbotVascular 2008). The procedure followed for the overall

stent configuration is exactly the same as that of the Promus Element (see section

4.2.1). However, in order to capture the wavy characteristics of the device, the stent

struts were generated by NURBS curves. In particular, after deriving Xstrut, Ystrut,

Xbridge, and Ybridge, the construction of the unit cell with degree 5 NURBS1 was carried

out. The curve representing the unit cell has to occupy the Xstrut × Ystrut rectangle,

1Degree 5 NURBS was chosen to enhance the local control of the curve in the design phase. This
means that the curve could be modified locally without changing its entire shape (global shape of the
curve).
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(a) 3D virtual model of Promus Element

(b) Commercial device of Promus Element stent system (BostonScientific 2009)

Figure 4.4: Promus Element stent platform
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whereas the curve representing the unit connector has to occupy the Xbridge × Ybridge

rectangle. Then, the control points of the curves were displaced appropriately in order

to capture the wavy features of the struts (according to commercial images), Figure

4.5.
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Figure 4.5: Unit cell and connector generation by degree 5 NURBS curves

Thereafter, the 3D stent generation was performed by the same methodology as

that described for the Promus stent. The final solid CAD model of the Multi-Link

coronary stent is depicted in figure 4.6a. The respective commercial stent system

(actual) is illustrated in Figure 4.6b.

4.2.3 Stent C: Modified Stent

In order to improve the longitudinal integrity of Promus Element (see section 1.6), a

variant of the Promus platform was constructed with two additional connectors in each

of the first two proximal hoops. The planar sketch of the modified design is depicted

in Figure 4.7. The circles illustrate the four additional connectors proximally on the

device.
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(a) 3D virtual model of Xience

(b) Commercial device of Xience stent system (AbbotVascular 2008)

Figure 4.6: XIENCE stent platform
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Figure 4.7: Planar sketch of the modified Promus Element (Stent C in Chapter 6). In
total, four additional connectors were constructed at the proximal end of the device.

4.2.4 Stent D: CYPHER (Johnson & Johnson co., New Brunswick,

NJ, USA)

For the purposes of the work presented in Chapter 6, the CYPHER stent was con-

structed. This closed-cell type stent represents an old “workhorse” device in PCI. It

was characterised by very thick struts (140 µm) and its platform was manufactured by

stainless steel (SS) (316L alloy). To generate the virtual model of the CYPHER stent

the algorithm developed in Pant et al. (2011) was implemented. The solid CAD model

of the CYPHER coronary stent is depicted in figure 4.8a. The respective commercial

stent system (actual) is illustrated in Figure 4.8b.

4.3 Multi-folded balloon models

Multi-folded balloon models were developed in order to conduct realistic stent deploy-

ment simulations. As discussed in section 2.2.1, such balloon models were first used by

De Beule (2008) (where the folding patterns of an interventional balloon model were

considered) followed by Mortier et al. (2008) in which it was revealed that changing

balloon’s geometrical characteristics (number of folds, balloon length and the relative

position of the stent on the balloon) had a great impact on certain outcomes of stent

deployment (uniformity, symmetry and transient behaviour). However, in these stud-

ies, the tapered ends of these models were neglected by applying appropriate boundary

conditions at the proximal and distal nodes. Thus, the methodology was lacking a

technique to develop multi-folded balloons with tapered ends along with information

on how to control the initial diameter of the balloon2. In Grogan et al. (2013), a 3.00

2As will be shown in section 5.2.3, the initial diameter is the diameter of the un-folded balloon
configuration at zero pressure
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(a) 3D virtual model of CYPHER stent

(b) Commercial device of CYPHER stent system (Lesiak 2004)

Figure 4.8: CYPHER stent platform
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mm diameter balloon model with tapered ends was presented. The tapered ends were

created by using the loft function of Abaqus/CAE. However, there was no information

on how such a balloon can be parameterised with respect to different design variables.

For the purposes of this doctoral work, an algorithm was developed which can

parameterise multiple balloon geometrical characteristics along with its tapered ends.

This was very important when trying to optimise the dilation protocol (or optimising

the balloon profile) in patient-specific vessels with challenging disease (see Chapter 8)

where multiple different balloon models had to be generated and simulated. Further-

more, as presented in Chapter 7, novel varying diameter balloon models were generated

by this algorithm to mitigate the risk of SM in vessels with diameter discrepancy along

the intervened lesion length (cases 2 & 3 in Chapter 3).

4.3.1 Methodology

Figure 4.9 illustrates the crossing profile of a virtual five-folded balloon before a stent

has been crimped onto it. Such a model can be designed by using five concentric circles.

Each circle differs from the next by D0+2C0, where D0 is the diameter of the first circle

(slightly larger than the diameter of the catheter shaft), and C0 is the constant distance

between two sequential circles. In order to control the final diameter of any multi-folded

balloon, an algorithm was developed which can parameterise the number/configuration

of the folds and the unpressurised diameter of the balloon (see appendix D). The balloon

models have been generated in Rhinoceros 5.0 (Robert McNeel & Associates, Seattle,

WA, USA). Since the balloon was designed as a NURBS surface, a clearance (i.e. C0)

greater than the balloon thickness should always be ensured between the folds.

The basic steps of the trigonometric algorithm are as follows:

• the sum of the circumferences of the five circles is calculated in terms of C0 as

Ct = 5π(D0 + 4C0) (4.1)

• the total length of the three arcs, St123, subtracted by the angle θ (to be subtracted

from the final profile) is

St123 = 1.5θ(D0 + 2C0) (4.2)

• similarly, for the total arc length St45, from angle φ, the corresponding relation-

ship in terms of C0 is

St45 = φ(D0 + 7C0) (4.3)
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• the lengths L1, L2, L3 are derived as

L1 =
√

[0.5(D0 + 4C0) − 0.5D0 cos θ]2 + (0.5D0 sin θ)2 (4.4)

L2 =
√

[0.5(D0 + 6C0) − 0.5(D0 + 2C0) cos θ]2 + [0.5(D0 + 2C0) sin θ]2 (4.5)

L3 =
√

[0.5(D0 + 8C0) − 0.5(D0 + 4C0) cos θ]2 + [0.5(D0 + 4C0) sin θ]2 (4.6)

• the general relation between the concentric circles and the profile of the multi-

folded balloon in terms of C0, is expressed by

Ct + 2NfoldsC0 +Nfolds(L1 + L2 + L3) −NfoldsSt123 −NfoldsSt45 −Cb = 0 (4.7)

where Ct is the desired unpressurised balloon circumference, Ct = πDb0, and Db0

denotes the diameter of the unpressurised balloon and Nfolds specifies the number

of balloon folds

• substitute eq. 4.1 –4.6 the eq. 4.7

• specify D0, θ, and φ, and calculate C0

The final step of a virtual multi-folded balloon construction was to create the ta-

pered ends. Therefore, the balloons’ tapered ends were generated by gradually reducing

the size of the balloon wings from the initial profile (c.f Figure 4.9) to circular profiles

with diameter equal to that of the catheter tip. This was accomplished by the loft

command implemented in Rhinoceros.

As it will be shown in Chapter 7, balloon models with varying diameter along their

length were constructed to optimise stent expansion in tapering vessels. To construct

such balloons, different sized balloon profiles (c.f. Figure 4.9) were generated along the

balloon length. As for the tapered ends, the Rhinoceros loft command was implemented

to interpolate NURBS surfaces between the different profiles.

4.3.2 Results

As can be observed in Figure 4.9, an idealised profile is generated first with the desired

clearance C0. Then, the profile is modified by decreasing the control points of the
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the interpolated five degree NURBS curve. The final NURBS close curve has the

same length with the idealised profile. In Figure 4.10, for the same catheter shaft size

and initial diameter, Db0, balloon models with different number of folds, Nfolds, are

depicted.

S

S

S

Figure 4.9: A sample CAD sketch of a five-folded balloon model: constant distance
between two sequential circles, C0, lengths connecting different balloon layers, L1, L2

and L3, the three arc lengths (comprising St123), St1, St2 and St3 subtracted from angle
θ and the two arc lengths (comprising St45), St4 and St5 subtracted by the angle φ.

In Figure 4.11, a CAD model of a multi-folded stepped balloon is illustrated. As for

the uniform balloon models, NURBS surfaces were interpolated through the different

sized balloon profiles.

4.3.3 Discussion

A methodology was developed for the accurate and fast design of multi-folded balloon

models. Being aware of the catheter shaft diameter, multi-folded balloon models with

different numbers of folds, and folding angles can be easily generated. The choice of

the folding angles is dependent on the designer and, as shown in Figure 4.10, the angles
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Figure 4.10: Multi-folded balloon models

of the folds directly affects the outer folding diameter (crossing profile of the balloon).

Such models, are used in the next chapter, to simulate realistic stent deployments.

Interestingly, this algorithm can significantly reduce the cross sectional folded profile

when the number of the folds is to be increased.

Figure 4.11: A CAD design of a stepped multi-folded balloon model

4.4 Summary

In this chapter, the methodology followed to design and generate virtual contemporary

stent systems was presented. All the models were parameterised and their generation
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was accomplished by the execution of python numerical scripts to ensure fast and accu-

rate model construction. Especially for the generation of virtual multi-folded dilation

systems, a trigonometric algorithm was developed to control the unpressurised diam-

eter, the folding configuration and the number of the folds. This is essential when:

i) investigating non-uniform dilation systems (see chapter 7) with varying diameter

along their length, and ii) running optimisation studies (see chapter 8) in which many

different models have to be generated to derive the optimum dilation strategy.
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Chapter 5

FEA METHODS

F
EA! The stenting simulation methods used in this thesis are presented in this

chapter. Up-to-date of structural computational models of coronary stenting

along with the description of the simulation parameters are presented in the follow-

ing content. Where possible, verification and validation of the FEA models is also

presented. At the end of this chapter, potential limitations arising from the material

properties assigned to the presented FEA models are outlined and elaborated upon.

5.1 Introduction

In this doctoral thesis, the first step to simulate the stenting procedure in patient-

specific vessels with challenging disease was the construction of the virtual space. This

comprised the reconstructed arterial segments, as presented in Chapter 3 and the gener-

ated stent systems presented in Chapter 4. Then, different structural simulations were

carried out to i) evaluate the longitudinal integrity of contemporary coronary artery

stents, ii) calibrate/validate the balloon-stent expansion behaviour for different sizes

of balloon models, iii) investigate the mechanical performance of novel stent-systems

when implanted in patient-specific cases with challenging disease and iv) to optimise

the stent expansion according to subject-specificity. Therefore, different FEA models

and simulation parameters were used in each kind of simulation.

In the following content, the FEA methods used for the structural simulations

carried out in this thesis are presented. Furthermore, where possible, the validation

and the verification of FEA models is presented. Finally, the method of defining

appropriate simulation parameters to run stable and reliable numerical simulations are

analytically described.

77
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5.2 FEA models

5.2.1 Reconstructed vessel models

5.2.1.1 Vessel material properties

For the reconstructed patient-specific vessels presented in Chapter 3, the walls com-

prise: i) the intima-media layer extracted from the IVUS images for the first RCA

case and ii) the intima-media layer (extracted from the IVUS images) along with the

adventitia which was generated by assuming a scaling factor of 1.6 to non-diseased

lumen areas (Holzapfel et al. 2005a, Mortier et al. 2010) for the second RCA and the

third LMB case. Many constitutive models have been used to characterise arteries

with the most representative being that reported by Holzapfel et al. (2005a). Clinical

and experimental studies (Cook et al. 2009, van der Hoeven et al. 2008b, Hong et al.

2006, Ormiston et al. 2011) showed high correlation of SM and LSD with the stent

system, the vessel size and the vessel complexity (tortuosity and plaque composition).

Therefore, in order to simplify numerical analyses of patient-specific simulations, the

wall of the vessel were modelled as follows:

• a hyperelastic, neo-Hookean strain energy function for the intima-

media layer: the assumption was based on the fact that the average material of

the vessel wall is plaque and the difficulty to extract the plaque composition from

the IVUS images; therefore, constitutive parameters for a relatively soft plaque

were selected. The latter is proposed by Wong et al. (2009) and its parameters

were used within this group previously (Pant et al. 2012). Thus, the strain energy

per unit of reference volume is:

U = C10(Ī1 − 3) +
1
D1

(J − 1)2 (5.1)

where J is the total volume ratio, C10 and D1 are material parameters related to

the shear and bulk moduli (µ0 = 2C10 and K0 = 2
D1

), and Ī1 is the first invariant

of the deviatoric Cauchy-Green deformation tensor, defined as

Ī1 = λ̄1
2

+ λ̄2
2

+ λ̄3
2

(5.2)

with the deviatoric stretches λ̄i defined as

λ̄i = J −1/3λi (5.3)
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and λi are the principal stretches, and J is the total volume ratio, expressed as

J = det(F) (5.4)

with F being the deformation gradient.

• an isotropic hyperelastic constitutive model described by a sixth-order

reduced polynomial strain energy function for the adventitia layer: the

material parameters were defined by Holzapfel et al. (2005a) and they have been

used within our group previously (Pant et al. 2011). The sixth order reduced

polynomial strain energy function is expressed as

U = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3 + C40(Ī1 − 3)4

+ C50(Ī1 − 3)5 + C60(Ī1 − 3)6 +
1
D1

(J − 1)2
(5.5)

In Holzapfel et al. (2005a), the deformation behaviour of 13 non-stenotic human

left anterior descending arteries were studied and a constitutive model for each of

the three layers was proposed. Their results were implemented for the sixth order

reduced polynomial strain energy density function, equation 5.5, by Gervaso et al.

(2008), Zunino et al. (2009), and recently by Pant et al. (2011). The six material

parameters that were used to define the adventitia layer, are depicted in table

5.1.

Table 5.1: Constitutive material parameters of the adventitia layer (Gervaso et al.
2008, Zunino et al. 2009)

Layer C10(MPa) C20(MPa) C30(MPa) C40(MPa) C50(MPa) C60(MPa)
Adventitia 8.27 × 10−3 1.20 × 10−1 5.20 × 10−1 −5.63 21.44 0.00

The hyperelastic materials were modelled as nearly incompressible with Poisson’s

ratio, ν = 0.495016. As recommended in ABAQUS User’s manual (SIMULIA 2013),

for Explicit analyses, an upper ratio limit of 100 was used between the bulk modulus,

K0 and the shear modulus, µ0. The theoretical material behaviour of the intima-media

and the adventitia layer as evaluated in ABAQUS is depicted in Figure 5.1a and 5.1b,

respectively. To validate the accuracy of the hyperelastic models (with respect to

incompressibility), preliminary computational analyses of a single-continuum element

(C3D8R) uniaxial tension test were performed. As shown in Figure 5.1, the theoretical

response of the fitted hyperelastic material models were in good agreement with the

respective numerical behaviour.
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(a) Intima-media layer (Neo-Hookean model)

(b) Adventitia layer (Six order reduced polynomial model)

Figure 5.1: Uniaxial tensile stress-stretch theoretical response for vessel wall layers
(solid red lines) compared against the respective numerical response of a single-element
(C3D8R) uniaxial tension test (squared data points)
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5.2.1.2 Mesh convergence test

The vessels were meshed with solid hexahedral structured mesh (see section 3.3.3) by

using eight node linear brick elements with hourglass control (ABAQUS element type

C3D8R). To test the quality of the mesh resolution which was used to discretise the

vessels, a mesh verification test was carried out for the first RCA vessel. The mesh size

was selected after simulating stent deployment in the RCA segment and by comparing

a baseline seed-sized mesh (based on previous studies of this group) against a finer

mesh. Differences less than 0.5% were recorded in the mesh-independence test (c.f.

Figure 5.2). Therefore, based on this test, the total number of elements which were

used for the first, the second and the third reconstructed case was 21, 214, 110, 200 and

196, 052, respectively.

Figure 5.2: Mesh independence test for the first reconstructed vessel: differences less
than 0.5% were recorded in a cross-section in the middle of the segment.

5.2.2 Stent models

5.2.2.1 Stent material properties

The stents were modelled as rate-independent isotropic elastic-plastic materials with

isotropic hardening. Their material properties have been adopted by O’Brien et al.

(2010) (c.f. Table 5.2). Bilinear functions were implemented to describe the material
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behaviour of the Pt-Cr, CoCr and SS alloy as depicted in Figure 5.3a, 5.3b and 5.3c,

respectively.

Table 5.2: Material properties of the investigated stents adopted by O’Brien et al.
(2010)

Stent Alloy
Elastic
modulus
(GPa)

0.2% Yield
Strength
(MPa)

Tensile
Strength
(MPa)

Elongation (%)
Density
(g/cm3)

Pt-Cr 203 480 834 45 9.9
Co-Cr L605 243 500 1000 50 9.1

316L SS 193 275 595 60 8.0

5.2.2.2 Mesh convergence test

To create a reliable stent FEA model, the initial prerequisite is to discretise it with a

high quality mesh. Therefore, after generating the computer aided design instances

representing the stent platforms, solid hexahedral elements were used for meshing

(ABAQUS element type C3D8R). In order to verify the mesh quality, different numbers

of elements were assigned to the Promus Element model through its strut thickness and

width increasing the total mesh density. The mesh convergence test was carried out

after crimping and expanding the device (Promus Element) by deformable cylindrical

surfaces (c.f. Figure 5.4).

Thereafter, a quantitative comparison was carried out between the different meshes

by monitoring the displacement values in a cross section segment in the central part of

its length. In Figure 5.5, bar plots of the displacement values within this cross section

are depicted. The discrepancy produced by the Mesh 1 and Mesh 2 and 3, is in the

acceptable range of 2.5%. Therefore, the coarser mesh comprising 36, 944 elements was

picked for the numerical analysis. This mesh was generated by assigning two elements

along the stent strut thickness and three elements along the stent strut width. Accord-

ing to this mesh size (element dimensions), respective mesh discretisation of the other

stent models was carried out. In particular, the XIENCE, and the modified Promus

Element stent were discretised by assigning two elements along the strut thickness and

three elements along the strut width resulting in 46, 216 and 37, 286 elements, respec-

tively. The CYPHER stent was discretised by assigning four elements along the strut

thickness (due to the increased thickness of its platform) and three elements along the

strut width resulting in 76, 352 elements. The mesh resolution of the CYPHER stent

was in agreement with that used in Pant et al. (2011).
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(a) Elastic-plastic stress strain response of the Pt-Cr alloy

(b) Elastic-plastic stress strain response of the Co-Cr alloy

(c) Elastic-plastic stress strain response of the SS alloy

Figure 5.3: Constitutive behaviour of the investigated stents
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Figure 5.4: Initial assembly of the mesh convergence simulation test. An external
surface is controlled by pre-defined displacement to crimp the stent onto the internal
surface. Then, the internal surface expands the stent to its nominal diameter

5.2.3 Delivery system models

5.2.3.1 Balloon material properties derivation

In this work, after developing a design framework for the realistic balloon construction

(see section 4.3), appropriate balloon material properties were defined. In particular,

the balloon material properties were derived from the compliance chart (provided by the

manufacturer), the thickness of the balloon, and the diameter of the catheter shaft as

described by De Beule (2008) and is based on thin shell membrane theory (Timoshenko

1955). Under this theory a balloon can be modelled as thin-walled pressure vessel

having a wall thickness less than 0.1 of its inner radius. The balloon material is to

be assumed linear elastic, isotropic and homogeneous and is in a state of plane stress.

Since the relationship between the pressure and the diameter is not linear (i.e balloon

inflation in large diameters, the presence of a stent and friction during the transient

unfolding of the balloon), different values of the initial diameter Db0 (see section 4.3 for

Db0 definition) were tested to obtain the best fit (between the actual and the virtual

compliance charts). For all the virtual balloons modelled in this work, a Young’s

modulus E = 888.52 MPa and a Poisson ratio ν = 0.4 was defined to describe their

constitutive material behaviour.

The catheter shaft and tips were modelled as elastic isotropic material manufac-

tured from high density polyethylene. The guide wire was considered to be elastic

isotropic, manufactured from nitinol. The superelastic properties of nitinol were ne-

glected because the guide wire deformations were negligible. The material properties
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of catheter shaft/tips and guide wire are depicted in table 5.3.

Figure 5.5: Mesh quality verification test: displacement values

Table 5.3: Material properties of catheter system

Material
Elastic
Modulus(MPa)

Poisson’s
Ratio

Density
(tonne/mm3)

Guide Wire Nitinol 62E+003 0.3 6.5E-009
Catheter shaft/tips PEHD 1000 0.4 9.7E-010

5.2.3.2 Numerical aspects and mesh convergence test

The mesh discretisation was carried out in ABAQUS CAE. The catheter shaft has been

meshed by four node linear quadrilateral shell elements of type S4R. The catheter tips

and the guide wire have been modelled by three-dimensional 8-node brick “reduced-

integration” elements of type C3D8R. The folded balloon models were discretised by

four node quadrilateral membrane elements of type M3D4R. The number of elements

varies depending on the balloon length and the folding configuration. However, for each

instance, the seed size on the edges was selected according to a mesh independence test.

This was carried out for a virtual balloon by simulating free stent balloon expansions.
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Figure 5.6: Mesh independence test for a balloon model: differences less than 2% in
the transient expansion diameter were recorded in the middle part of the model

Specifically, a baseline size-mesh (based on previous study of this group) was tested

against a finer mesh and differences between expansion diameter remained less than

2% throughout the transient analysis (c.f. Figure 5.6).

The balloon’s fixation to the catheter was modelled by tie constraints. The catheter

tips along with the catheter shaft were fully constrained proximally and distally. The

free stent-balloon expansion simulations were carried out in ABAQUS/Explicit. Con-

tacts between the balloon internal surface and the catheter shaft were implemented

with the general contact algorithm, imposing a hard frictionless contact. The balloon

was inflated by a smooth pressure applied incrementally to its inner surface. During

the inflation step, the central ring’s nodal coordinates were monitored to calculate the

radial displacements. For both the stent and balloon models, a self contact was de-

fined by the general contact algorithm. A surface-to-surface contact was defined for

the balloon-stent pair. The tangential contact behaviour was characterised by a 0.2

friction coefficient as suggested elsewhere (De Beule et al. 2008).

5.2.3.3 Balloon calibration/validation

Figure 5.7 depicts a compliance chart for a 3.5 mm balloon model (with/without

mounted stent) with 0.02 mm wall thickness and 3.383 mm initial diameter. Fig-

ure 5.8 depicts the transient unfolding of a six-folded balloon during its free expansion
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Figure 5.7: Calibration of the virtual behaviour of a 3.5 mm balloon model: Simulation
balloon compliance charts for a 6-folded balloon configuration superimposed on the
manufacturer’s data (AbbotVascular 2008)

simulation. By way of calibration/validation, the virtual balloon is pressurised at a

range of pressures and shown to closely follow the expansion behaviour of the actual

interventional balloon especially at nominal pressures (0.8 − 1.2 MPa). For each bal-

loon model which was used in this doctoral work, respective calibration/validation tests

were carried out to ensure that under a certain pressure the model would be deployed

at the desired diameter.

5.3 Definition of the parameters of FEA simula-

tions

For the numerical simulations, the commercially available FEA solver, ABAQUS (Simu-

lia, Dassault Systemes, Waltham, MA, USA) was used. The ABAQUS FEA package

provides two different tools to solve structural problems; ABAQUS/Standard (solves

for static and dynamic equilibrium) and ABAQUS/Explicit (solves for dynamic equi-

librium). Each of the solvers has its own advantages and disadvantages and several
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Figure 5.8: Cross sections of a six-folded balloon model: transient unfolding during the
free expansion simulation

studies have been recently published to compare the two strategies (Harewood and

McHugh 2007, Sun et al. 2000) (see also section 2.1). For the purposes of this thesis,

three different problems were simulated: i) stent longitudinal compressions, ii) free

balloon-stent expansions and iii) balloon-stent expansions in the reconstructed vessels.

All of these kinds of simulations were characterised by a large number of degrees of free-

dom, self-contact and multiple contact conditions between the simulated instances and,

finally, large and highly nonlinear deformations. Thus, the extremely robust contact

algorithms available in ABAQUS/Explicit provide a clear advantage over the Standard

method.

5.3.1 Stability of the solution scheme

ABAQUS/Explicit solver uses a central difference rule to integrate the equations of

motion explicity through time. As discussed in section 2.1, the time increment ∆t

which drives the analysis duration must be small enough to provide a stable solution.

This ∆t depends on the characteristic element length, Le, density, ρ, and the material

properties (Young’s modulus, E) of the simulated structure. An estimate of the stable
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time increment size is given by the formula

∆tstable =
Le

cd
(5.1)

where cd is the dilation wave speed of the material. For a linear elastic material, the

dilation wave speed is given by

cd =

√

E

ρ
(5.2)

Essentially, ∆tstable changes when i) different mesh size is used to discretise the models

and/or ii) different material properties are defined for the structure which is to be

modelled. In this doctoral work, since the simulations comprised different models (e.g.

stent, balloon, artery, etc.) the ∆tstable was dependent on the stent structure which

had the most “critical” elements (having the minimum ∆tstable).

5.3.2 Time scale definition of the simulations

Quasi-static conditions were ensured by implementing all the appropriate actions in

order to eliminate the inertial forces to that of the deformation of the structure only.

Throughout the whole period of each step, the kinetic and internal energies of deforming

materials were monitored so as to keep their ratio less than 5%, as recommended for a

quasi-static event (SIMULIA 2013). Since it is computationally impractical to model

the process in its natural time period (literally millions of time increments would be

required), the speed of the process in the simulation was artificially increased to obtain

an economical solution. The goal was to model the process in the shortest time period

in which inertia forces are still insignificant. This was achieved by increasing the loading

rate. The time scale of the analyses was based on the extraction of the fundamental

frequency (first structural mode) of the stent models by running frequency analysis in

ABAQUS/Standard (SIMULIA 2013). As an example, in Figure 5.9, the fundamental

frequency extraction of the Promus Element stent is depicted.

Thereafter, the frequency of this mode was used to estimate the impact velocity

using the following steps:

• calculate the corresponding time period (T ) using the first natural frequency by

T =
1
f

(5.3)

• estimate the global deflection (target displacement required in the compression

simulations), Dglobal, in the impact direction of the model.
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Figure 5.9: Fundamental frequency extraction of the Promus stent design

• calculate the impact velocity (Vimpact) from

Vimpact =
Dglobal

T
(5.4)

A general recommendation is to limit the impact velocity to less than 1% of the

wave speed of the material (typically, the wave speed in metals is usually close to

5000 m/s) and it is recommended that the load to be applied over a period calculated

from the fundamental frequency, has to be ten to fifty times longer than the lowest

frequency1 (SIMULIA 2013).

Finally, the chosen loading rate was based on a period sensitivity test. Figures 5.10a

and 5.10b depict the maximum values of kinetic energy and displacement during stent

deformation. The time periods chosen ranged from 0.04 to 0.24 sec2. It was observed

that after 0.16 sec, the differences of the kinetic energy and the displacement values

are converged.

Figure 5.11 illustrates the kinetic and the internal energy of the stent during the

crimping, expansion and deformation phase. The ratio of internal to kinetic energy

is also depicted. As seen, a steep initial high ratio occurs in the first increments of

the simulation. This is mainly due to the fact that inertial effects cause increased

(non-structural) resistance to initial deformation.

1Attention should be paid to how the loading is applied. Instantaneous loading may induce the
propagation of a stress wave through the model, producing undesired results. Again, it is recommended
to ramp up the loading gradually from zero so as to minimise these adverse effects

2Note that the time scale in x-axis of the figures includes the two additional steps of crimping and
expansion of the stent to its nominal diameter
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(a) Maximum Kinetic Energy during the stent deformation for T : 0.04, 0.06, 0.08, 0.10, 0.12,
0.16, and 0.24 sec

(b) Maximum displacement during the stent deformation for Tf : 0.04, 0.06, 0.08, 0.10, 0.12,
0.16, and 0.24 sec

Figure 5.10: Period sensitivity test
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Figure 5.11: Internal and Kinetic Energy for a total simulation time period of 0.16 sec.
The ratio of kinetic to the internal energy is also depicted

5.4 Limitations of the FEA models

The major limitation of the presented FEA models is the constitutive laws characteris-

ing the material behaviour of the vessel walls. More advanced constitutive models have

been used in the literature with the most representative being the one implemented in

Mortier et al. (2010) and Conway et al. (2012). In this hyperelastic anisotropic model

introduced in Holzapfel et al. (2005a), the fibre orientation and dispersion are taken

into account with respect to a reference orthonormal coordinate system defined in each

element of the mesh. For each layer, different scalar parameters are defined, derived

by experimental testing. However, in order to implement advanced constitutive mod-

els, the calibration of the parameters is essential. Moreover, the fibre orientation and

dispersion in a severely diseased vessel and in a bifurcation would be really difficult to

obtain, especially by using available clinical data. In addition, the vessel description

lacks a constitutive model for the plaque composition. This is due to the fact that our

reconstruction method is based on IVUS and CA from which the plaque composition

is difficult to accurately define and orientate. A multilayer model would definitely have

some influence on the stress values and the overall deformations of the walls. How-

ever, due to the comparative nature of the studies which are presented in the following
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chapters, simpler models can still provide valuable results especially for indicating the

non-physiological stress state in regions interacting with the stent system. For this

reason, other aspects regarding the arterial wall conditions were also neglected such as

tissue pre-stretch and arterial blood pressure.

An additional limitation of this work is that the balloon material behaviour is char-

acterised by an isotropic and linear elastic model with the thickness of the balloon being

constant. In reality, modern balloon models are dual layer composites. Therefore, bal-

loons can be characterised by different anisotropic and hyperelastic models (Holzapfel

2000). Moreover, in clinical practice, the balloon is expanded via a hydraulic pressure

resulting from inserting a certain volume of liquid into the balloon. Thus, the ac-

tual problem of a balloon expansion can only be modelled as a complex FSI problem.

However, since the balloon models have been compared to real compliance charts, the

virtual expansion behaviour should closely match that which occurs in clinical practice,

especially at nominal pressures.

Finally, the material properties assigned to the stent models were taken from

O’Brien et al. (2010) and bilinear functions were implemented to describe their elasto-

plastic behaviour. Therefore, they might not fully reflect the mechanical behaviour of

the respective commercial devices (especially for the plastic region in the stress-strain

curves of the alloys).

5.5 Summary

In this chapter, a description of the FEA models which have been used in the current

doctoral work was provided. This description was with respect to the material consti-

tutive laws used to carry out stenting simulations along with the mesh resolution that

discretised the virtual spaces. Further, a general overview of the methods used to set

appropriate simulation parameters for the explicit solver was supplied.

Several FEA models were simulated for the purposes of this doctoral work. The

mesh resolution of each numerical model differed according to its size. However, each

instance was meshed with a specific mesh resolution (element dimensions) extracted

after running mesh verification tests. Similarly, the simulation parameters for each

kind of simulation (g.e. balloon-stent expansion, stenting in the reconstructed vessels,

etc.) were based on appropriate tests to avoid numerical instability and ensure quasi-

staticity.

The content of the preceding sections considered the implemented FEA methodol-

ogy. Additionally, multiple methods were used to carry out the studies presented in

the following three chapters. Each of the following three chapters begins with a brief

introduction of the investigated clinical problems along with the description of the
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objectives. Then, different implemented methods to carry out the simulations and to

extract quantitatively and qualitatively information are reported. Finally, the results

followed by a discussion are presented.



Chapter 6

SIMULATIONS OF LSD AND STENT

MALAPPOSITION IN A PATIENT

SPECIFIC CORONARY ARTERY

P
CI modelling! The aim of the work presented in this chapter was to assess

the longitudinal integrity of first and second generation drug eluting stents in

a patient specific coronary artery segment and to compare the range of variation of

applied loads with those reported elsewhere. Computational models of three drug-

eluting stent designs (described in sections 4.2.1, 4.2.2 and 4.2.4) when assessed for

longitudinal deformation were successfully validated. Then, the first reconstructed

patient-specific stenosed right coronary artery segment, described in section 3.3, was

used for the simulations. Within this model the mechanical behaviour of the same

stents along with a modified device (see section 4.2.3) was compared. Specifically,

after the deployment of each device, a compressive point load of 0.3 N was applied on

the most malapposed strut proximally to the models. Results indicate that predicted

stent longitudinal strength (i) is significantly different between the stent platforms

in a manner consistent with physical testing in a laboratory environment, (ii) shows a

smaller range of variation for simulations of in vivo performance relative to models of in

vitro experiments, and (iii) the modified stent design demonstrated considerably higher

longitudinal integrity. Interestingly, stent longitudinal stability may differ drastically

after a localised in vivo force compared to a distributed in vitro force1, 2.

1A part of the content of this chapter was presented in the ASME Summer Bioengineering Con-
ference:Patient-Specific Stent Malapposition in Challenging Anatomy: An FEA method-

ology to understand numerically the extend of malapposition of latest generation stents,
G. Ragkousis, N. Curzen, N. Bressloff., 26-29 June 2013, Oregon, USA

2The content of this chapter has been published in the Journal of Medical Engineering &
Physics: Simulation of longitudinal stent deformation in a patient-specific coronary artery,
G.Ragkousis, N. Curzen, N. Bressloff., Vol.36, 2014 (pp 467-476)

95
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6.1 Introduction

As discussed in chapter 1, PCI is now the dominant method of revascularisation, with

proven symptomatic and prognostic efficacy. Since the introduction of DES, there has

been a marked reduction in events associated with stent failure, in particular ISR.

However, DES have been associated with allergic reactions, stent malapposition and

inflammation leading to early and late ST (Cook et al. 2009). Furthermore, there are

on-going concerns about the attritional nature of the potential sources of failure of

PCI, including ISR, ST and, more recently, LSD.

Clinical studies (Cook et al. 2007, van der Hoeven et al. 2008b, Hong et al. 2006),

have shown that malapposition is connected with several factors, such as reference

diameter, balloon pressure, longer lesions, longer stents, more than one stent or stent

overlap. In those studies stent malapposition was investigated by intravascular means

such as IVUS or OCT. When malapposition is observed clinically, post stent deploy-

ment with a non-compliant balloon dilation is used to further reshape the stent. Such

post-deployment techniques, including also re-wiring or IVUS, can potentially con-

tribute to stent distortion. Studies indicate that those deformations are more likely to

occur when the proximal struts are incompletely apposed (Hanratty and Walsh 2011,

Robinson et al. 2011, Williams et al. 2012).

It is apparent that the iterative process of design in DES has led to reduced ISR

(along with anti-inflammatory stent coatings) with reduction in strut thickness, but

that an increased reporting of LSD may be a consequence of this evolution (Hanratty

and Walsh 2011, Mortier and De Beule 2011, Robinson et al. 2011, Williams et al.

2012). It is therefore important that new stent designs are tested as thoroughly as

possible to detect potential flaws.

As discussed in section 1.7, to date, there have been two experimental (engineering)

studies shedding light on LSD (Ormiston et al. 2011, Prabhu et al. 2012). However, no

patient-specific computational studies have been reported. It is likely that sophisticated

computer modelling will play an increasing role in this process of validation and testing.

In the work presented in this chapter, the first reconstructed RCA segment pre-

sented in Chapter 3 was simulated; a computer model was developed for the deploy-

ment in this segment of different coronary stent architectures based upon one first

generation and two second generation DES; post-deployment malapposition was as-

sessed; and the effect of stent malapposition and stent architecture on the response of

the devices to a compressive longitudinal force was modelled. The proposed approach

allows quantification and 3D visualisation of LSD along the entire length of the model,

in contrast to the currently used LSD measurement techniques based on IVUS cross

sectional images. It was shown to validate this model as a potential tool for assessment
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of stent design behaviour and to test it using previously reported physical bench testing

data.

6.2 Materials and Methods

6.2.1 Geometry, meshes and constitutive models

The vessel reconstruction procedure has been presented in detail in section 3.3. For the

stents, firstly two balloon expandable stent models were generated whose architecture is

closely based upon contemporary stent designs used in the clinical arena (see sections

4.2.1 and 4.2.2). Of the stents studies here, Stent A, that resembles the Promus

Element (Boston Scientific, Boston, MA, USA), is an “offset peak to peak stent” and

stent B, that resembles XIENCE (Abbott Lab., Chicago, IL, USA), is an “in-phase,

peak to valley stent design” as categorised in Prabhu et al. (2012). Also, Stent A

was modified by constructing two additional connectors between the first two proximal

hoops (see section 4.2.3) and an old out-of-phase, peak-to-peak device was modelled

which resembles the CYPHER platform (Johnson & Johnson co., New Brunswick, NJ,

USA), used by this group previously (Pant et al. 2011) (see section 4.2.4).

Figure 6.1: Stent A translated onto the 3D reconstructed IVUS pull-back catheter path
(red line)

The simulation design approach used in this work was to geometrically transform

the stents on to the reconstructed catheter line so as to avoid the additional numerical

analysis step of stent implantation and positioning. This method showed that there
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was no significant difference in the stresses and the final deformed configuration of the

expanded stent when compared with the method in which the stent has to be positioned

by FEA analysis (see Appendix B). In Figure 6.1, the entire virtual space for Stent A is

illustrated. Table 6.1 provides information about the stent designs, alloys and number

of links which were assumed for the investigated devices.

Table 6.1: Stent length, stent alloy and the number of connectors between the circum-
ferential rings of the four investigated devices are outlined. Stent family as categorised
in Prabhu et al. (2012) is also reported in the second column of the table.

BMS Stent Family
Nominal Length/
Uncrimped external
diameter (mm)

Strut thickness/
width

Alloy Number of
links

Stent A
(based on
Promus)

offset
peak-to-peak

16/1.78 81/91 Platinum
Chromium

2

Stent B
(based on
XIENCE)

In-phase,
peak-to-valley

18/1.78 81/91 Cobalt
Chromium

3

Stent C
(Modified
Promus)

offset
peak-to-peak

16/1.78 81/91 Platinum
Chromium

4-proximally/2-
along its length

Stent D
(based on
CYPHER)

out-of-phase,
peak-to-peak

16/1.78 140/130 Stainless
Steel

6

The constitutive material models along with the mesh resolution information of the

reconstructed challenging RCA vessel and the stents was provided in section 5.2.1 and

5.2.2, respectively. No balloon model was used for the purposes of the current work

after comparing two expansion techniques in order to simplify the deployment step

(see Appendix C). Thus, the deployment of the stents was carried out by a cylindrical

deformable surface discretised by 248 linear quadrilateral elements of type SFM3D4R.

6.2.2 FEA Simulations

Appropriate simulation parameters were set according to section 5.3 to avoid numer-

ical instabilities and ensure that for all the presented simulations, the inertia forces

arise only from the deformation of structure and are not dominating in the analysis

(condition for quasi-static events).

6.2.2.1 Simulated bench test validation

In order to validate the ability of the model to detect and/or reproduce longitudinal

compression, previously published (Ormiston et al. 2011) physical bench testing was

simulated in which a compressive force was applied as a distributed longitudinal load.
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Figure 6.2: Stent pre-flown on the catheter shaft (left), stent crimped on the catheter
shaft (centre) and stent expanded from the 3D reconstructed catheter line (right). The
imposed compressive load, CL (white arrow), proximally to the model with respect to
a reference coordinate system and the cross-sectional image at the proximal edge of
the stent are depicted (right)

In order to mimic the experimental method, the devices were constrained distally dur-

ing the compression test and only 10 mm of their length was exposed to the compressive

load. The load was imposed proximally to the devices and distributed on the edges

of the circumferential crowns. The stents were first crimped and then expanded to

their nominal diameter with deformable surfaces. The LSD was calculated from the

displacements of the nodes on which the distributed load was imposed.

6.2.2.2 Virtual stent expansion in the reconstructed vessel

Stents were implanted in the reconstructed vessel at the same location, aligned at

the proximal ends. Then, the devices were crimped and expanded by deformable

surfaces with controlled predefined displacement, and shown in Figure 6.2. The vessel

ends were constrained in the circumferential along with the longitudinal directions of

cylindrical coordinate systems defined on planes parallel to their faces. Surface-to-

surface contact definition was used for the contact pair of catheter shaft-guide wire,

with contact properties defined as tangential and frictionless. A surface-to-surface

contact algorithm was used for the stent-vessel pair, and a friction coefficient of 0.05

was defined for the tangential contact property (Auricchio et al. 2011, Dunn et al. 2007).

All other contacts (including self-contacts) were modelled with 0.2 friction coefficient

for the tangential contact behaviour (De Beule et al. 2008, Mortier et al. 2010). At the
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end of the expansion step, the relative stent malapposition was evaluated by measuring

the minimum distance between the upper nodes of the stent and the inner nodes of the

vessel.

6.2.2.3 Virtual longitudinal deformation of stents

To undertake the virtual assessment of longitudinal integrity of the stents, following

deployment, a compressive load of 0.3 N (a value close to the clinically relevant lon-

gitudinal compression force which a deployed stent may be subjected to as measured

in Prabhu et al. (2012)) was imposed on the stent strut that was most malapposed,

labelled as CL in Figure 6.2. This strut was chosen because it represents the area

most likely to come into contact with the leading edge of a post stent device moving

forwards on the coronary line. The direction of the compressive load is represented by

the white arrow in Figure 6.2. The LSD was calculated from the displacement of the

node to which the localised load was imposed.

6.3 Results

6.3.1 Validation of the stent longitudinal behavior

Figure 6.3 depicts images of the investigated stents expanded to a diameter of 3.00

mm and deformed by a compressive load applied proximally to each device. The stent

compression (millimeters) against the compressive force (Newton) for the investigated

devices is depicted in Figure 6.4. Stent A was compressed with 0.4 N and Stent

B was compressed with 1.2 N resulting in displacements of 4.75 mm and 5.14 mm,

respectively.

This numerical bench test shows that the modelled stents, A & B, demonstrated

similar longitudinal deformation to that presented by Ormiston et al. (2011), and their

experimental results for corresponding devices are superimposed on the same figure

(c.f. Figure 6.4). Therefore, one can observe that the numerical bench test is well

matched with the experimental results within the acceptable range of 2.8% to 5% of

the final displacement. Stents C and D were compressed with 1 N and 3 N resulting

in displacements of 4.80 mm and 1.16 mm, respectively.

6.3.2 Stent Malapposition

The contour plots of the 3D stent malapposition along with cross sectional images

proximal, middle and distal to the devices (broken lines) are depicted in Figure 6.5.

All the devices show similar results in this regard: specifically, stent malapposition
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Figure 6.3: Virtual bench test validating the longitudinal integrity of the investigated
stents. The devices were expanded to a nominal diameter of 3 mm and were constrained
along their length so that 10 mm of the stents were exposed to the distributed load
(broken lines)

occurs predominantly towards the proximal ends of the stents. The maximum distance

between a stent node and a vessel wall node is 0.3775 mm, 0.3483 mm, 0.3329 mm,

and 0.3325 mm for Stents A, B, C, and D, respectively.

6.3.3 LSD within the reconstructed coronary segment

Relative performance between the stents can be assessed by considering the force

needed to displace by 0.5 mm the node at which the load is applied. This displace-

ment also coincides with the onset of noticeable protrusion of struts in the lumen as

depicted in the insets of Figure 6.6 (cross-sectional images are depicted proximally to

the model-broken lines-where significant strut protrusion for Stents A and B occurs

due to the LSD). In Figure 6.7 the longitudinal deformation is depicted with respect

to the compressive load. Forces of 0.19 N and 0.29 N , respectively, are needed for

stents A and B. In contrast, Stent C does not deform significantly in terms of strut

protrusion (Figure 6.5) in the lumen although the node at which the load is applied

almost reaches a displacement of 0.5 mm at the peak load of 0.3 N (Figure 6.6). Stent

D shows negligible compression both in terms of strut protrusion or displacement (c.f.

Figures 6.6 and 6.7).
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6.4 Discussion

In Mortier et al. (2011a), a new methodology was developed to study stent malapposi-

tion numerically with finite element analysis. In the work presented in this chapter, a

similar technique was used to calculate stent malapposition numerically. The technique

was based on calculating the shortest distance between the nodes that lie on the outer

surface of the stent and the nodes that lie on the inner surface of the reconstructed

vessel (relative malapposition). The results showed that, for this patient-specific case,

stent malapposition is similar for all the investigated devices. This suggests that the

proximal malapposition is primarily dependent on the variation in vessel diameter and

the associated diameter mismatch that occurs when sizing the stent on the distal di-

ameter.

Figure 6.4: Compressive force and stent longitudinal deformation after numerical bench
test. Superimposed experimental results (*) published by Ormiston et al. (2011) show-
ing LSD in good agreement with the numerical results.
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Longitudinal deformation results in protrusion of stent struts in the lumen (c.f.

Figure 6.6) hence potentially obstructing further manipulation(Mortier and De Beule

2011). Most reported cases of LSD involve very thin device platforms with open cell

designs (offset peak to peak). Whilst reducing strut thickness and increasing the area

between the struts improve the stent flexibility, stent deliverability and stent conforma-

bility, the subsequent compromise of stent longitudinal integrity may produce reduced

resistance to potential compression loads. Two recent experimental studies (Ormiston

et al. 2011, Prabhu et al. 2012) that have investigated current generation stents have

reported similar results and have emphasised the importance of the number and the

angulation of the connectors between the hoops to resist compression. Specifically, the

offset peak to peak device with the open cell design had the poorest behaviour in lon-

gitudinal integrity. In contrast, devices with more than two connectors were relatively

resistant to compressive loads.

In this computational modelling work, from the compression simulations, it was

observed that Stent A with two connectors (with 45◦ connector angulation) showed

significantly less longitudinal strength than Stent B with three connectors (aligned with

the longitudinal axis of the device). This is consistent with the concept that stents

with two connectors are more susceptible to LSD than devices with three connectors.

At the other end of the spectrum, considerable resistance to LSD was observed in a

closed cell stent with six connectors (Stent D) in which a force of 3 N compresses the

stent only 1 mm. From the LSD-graph (c.f. Figure 6.4) Stent A seems to have a more

linear behaviour than stent B which demonstrates an initial "hardening" to the first

2 mm. This behaviour is consistent with the experimental laboratory-derived results

taken from Ormiston et al. (2011) and the virtual LSD simulations extracted from

the present work, shown in Figure 6.7. Stent C demonstrated a significantly stiffer

response than Stent A to compressive loads but inferior to Stent B. Modifying Stent A

by constructing additional connectors proximally, the longitudinal integrity increases

significantly (more than double the force was required for a 5 mm compression, see

Figure 6.4). Also, it is observed that the proximal end of the modified stent is not

distorted by the compression (c.f. Figure 6.3), a fact that can explain the “hardening”

of the stent’s response between 4 mm and 4.5 mm in Figure 6.4.

Interestingly, the computer simulations of deformation in the RCA segment (c.f.

Figure 6.7) indicate that devices A, B and C do not oppose the load in the same manner

with the bench tests (c.f. Figure 6.7). Only Stent D shows similar stiff behaviour in

both cases. The virtual compressive simulations indicate that Stent C opposes the

compressive force successfully and no significant distortion of the device was observed

(c.f. Figures 6.6 and 6.7). Also, in contrast to the bench test, Stent C demonstrates

higher resistance than Stent B (c.f. Figures 6.4 and 6.7). This indicates that in contrast
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Figure 6.5: Stent malapposition (mm) after the expansion of the investigated devices. For each device, cross sectional images
were taken at the proximal, middle and distal area (broken lines) of the model
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Figure 6.6: Stent computer models cut longitudinally after they had been compressed by a 0.3 N localised load at the most malapposed
strut proximally to the device. For each model, a cross sectional image was taken proximally (broken lines) so as to identify potential
strut protrusion due to stent deformation
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to bench tests, in vivo failure of different stent devices may not occur at such drastically

different localised loads.

From the compression simulations (both bench test and deployment stent simula-

tions), it is clear that LSD is dependent on the number of the stent connectors and their

angulation with the stent longitudinal axis. Apart from the number of the connectors,

considerations should be made on the phase angle between stents’ sequential hoops.

Out-of-phase devices seem to resist more under compressive loads. Further research

is needed to investigate variations in the proximal phase angle of the circumferential

rings in the offset peak-to-peak device.

Figure 6.7: Stent compression (mm) against a compressive point load. For all devices,
a 0.3 N load was applied smoothly so as to evaluate longitudinal resistance.

As far as is known, the work presented in this chapter is the first to investigate

longitudinal deformation and stent malapposition virtually in a patient-specific re-

constructed vessel. Such numerical studies for research purposes can provide useful
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information in 3D along the entire length of the models. Figures 6.5 and 6.6 illustrate

very clearly the investigated clinical problems and it is strongly believed that such

quantitative information can predict and further improve the associated complications

by optimising the implanted device in any given challenging geometry.

6.4.1 Limitations

The work presented in this chapter has some limitations. First, only one patient-

specific case was used and therefore the results cannot necessarily be generalised to

other lesions (especially for SM quantification). Second, the vessel wall is assumed to

be hyperelastic and isotropic comprising a single layer. This is due to the fact that the

reconstruction method is based on IVUS images from which the plaque composition is

difficult to extract. Deformable surfaces were used to expand the stents instead of a

balloon model. However, for this patient-specific model, the stent malapposition was

compared after the surface expansion with a realistic five folded balloon expansion and

similar results were obtained in terms of stent malapposition (see Appendix C). This

method also generated similar computational results (final stent shape) with a balloon

expansion strategy as shown in previous studies (De Beule et al. 2008, Grogan et al.

2012).

6.5 Conclusions

A computational engineering model of a coronary lesion has been used to simulate

stent malapposition and LSD for three stent designs and a modified device that are

based upon one first generation and two second generation DESs. The results are

consistent with previous laboratory based experiments of LSD. Also, the simulations

suggest that the threshold at which the stent loses its longitudinal resistance may differ

in vivo compared to in vitro, particularly with respect to the range of variation in loads

needed to deform second generation drug eluting coronary stents. Therefore, after this

study, better in vitro tests could be carried out for testing actual stents’ behaviour

under potential loads during PCI procedures. Finally, it is speculated that such a

model may provide a useful tool for testing the integrity and validation of new stent

designs.
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Chapter 7

COMPUTATIONAL MODELLING OF

NOVEL MULTI-FOLDED BALLOON

DELIVERY SYSTEMS FOR CORONARY

ARTERY STENTING: INSIGHTS INTO

PATIENT-SPECIFIC STENT

MALAPPOSITION

B
alloons! This chapter presents how virtual multi-folded balloon models have

been developed for simulated deployment in both constant and varying diameter

challenging vessels under uniform pressure. The virtual balloons have been compared to

available compliance charts to ensure realistic inflation pressure at nominal pressures,

as shown in section 5.2.3. Thereafter, patient-specific simulations of stenting in the

second and the third reconstructed challenging cases (described in Chapter 3) have

been conducted aiming to reduce SM. Different scalar indicators, which allow a more

global quantitative judgement of the mechanical performance of each delivery system,

have been implemented. The results indicate that at constant pressure, the proposed

balloon models can increase the minimum stent lumen area and thereby significantly

decrease SM1,2.

1A part of the content of this chapter was presented in the 12thInternational Symposium in Com-
puter Methods in Biomechanics and Biomedical Engineering: Patient-specific simulations to

improve coronary artery stent malapposition, G. Ragkousis, N. Curzen, N. Bressloff., 13-15
October 2014, Amsterdam, Netherlands

2The content of this chapter has been published in the Annals of Biomedical Engineering Journal:
Computational modelling of multi-folded balloon delivery systems for coronary artery

stenting: Insights into patient-specific stent malapposition, G.Ragkousis, N. Curzen, N.
Bressloff., 2015
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7.1 Introduction

In “virtual” studies, qualitative and quantitative information can be easily accessed

in full model dimensionality that would be hardly detectable in in vitro and in vivo

studies. Recently, novel stent designs and stenting techniques (especially for bifurcated

vessels) have been investigated and proposed through very elegant virtual bench testing

studies (Foin et al. 2012, Morlacchi et al. 2014, Mortier et al. 2014).

FEA is one of the dominant tools for numerical studies, shedding light on the struc-

tural response of the arterial walls during/after stent implantation. To date, several

FEA studies have been conducted providing scientific evidence for PCI procedures

(Morlacchi and Migliavacca 2013). Although the majority of FEA studies have focused

on the stent platform, there has been a paucity of research on the design of the delivery

system. The modelling of balloon expansion has always been a challenging task due to

its complex shape configuration and the complicated contact interaction with the stent.

The first analytical balloon model was presented by Laroche et al. (2006) in which the

balloon was numerically folded by mapping its nodes in the unfolded configuration to

a folded configuration. This methodology was successfully adopted by Mortier et al.

(2010) to simulate patient-specific coronary bifurcation stenting. In Gervaso et al.

(2008), a three folded balloon was modelled for free stent expansion. The balloon was

folded by running a pre-expansion simulation, in which it was deflated by a negative

pressure and, after assigning specific boundary condition, the balloon configured by

three folds. At the same time, the work by De Beule et al. (2008) was published (see

section 2.2.1). However, as the folded models did not have tapered ends boundary

conditions were implemented to the balloon ends to the catheter shaft during inflation.

More recently, Zahedmanesh et al. (2010) presented a dual step numerical methodol-

ogy to fold the virtual balloon to the catheter shaft by deflating a balloon to three

unfolded wings and then wrapping the wings around the catheter shaft. However, this

approach has some limitations. The numerical folding can be carried out easily only for

non-curved and planar expansions and it is computationally expensive. Additionally,

the idealised models lack realistic characteristics which may affect the final result. As

for the material model to describe the inflation behaviour of a balloon, different models

have been used in the literature during the last decade. In particular, a two parameter

Mooney-Rivlin model was used by Chua et al. (2003). Liang et al. (2005) adopted a

hyperelastic model to describe the transient expansion of the balloon. Laroche et al.

(2006) implemented an Ogden hyperelastic model. Later, Kiousis et al. (2007) used a

cylindrically orthotropic constitutive model to simulate balloon-stent expansions. In

De Beule et al. (2008), a method for mimicking the actual compliance of a specific size

balloon was introduced. The constitutive model was assumed to be linear isotropic
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and the Young’s modulus was extracted from the actual compliance charts provided

by the manufacturers. This method has been implemented broadly during recent years

in many state-of-the-art numerical studies (Conway et al. 2012, Foin et al. 2012, Gro-

gan et al. 2011, 2013, Martin and Boyle 2013, Mortier et al. 2008, 2010, 2011a, 2014,

Pant et al. 2011). Interestingly, there are also many other studies using isotropic,

linear-elastic models to characterise the balloon inflation(Gastaldi et al. 2010, Gervaso

et al. 2008, Lim et al. 2008, Morlacchi et al. 2011, 2014, Zahedmanesh et al. 2010).

Although the actual inflation of an angioplasty balloon is characterised by anisotropic

and hyperelastic behaviour, a linear isotropic model can adequately approximate the

response of the balloon especially for nominal pressures. Beyond nominal pressures,

and depending on balloon material and geometric characteristics, the balloon stiffening

is more rapid and demonstrates a higher non-linear behaviour. Thus, to simulate the

full transient response of an angioplasty balloon under a large range of pressures, a

linear elastic model cannot be representative.

In this chapter, multi-folded balloon models were developed to mitigate the risk of

SM. All virtual balloon models were calibrated and compared to manufacturer com-

pliance charts to mimic actual compliance behaviour (especially at target diameters)

as shown in section 5.2.3. The virtual delivery systems were then applied to patient-

specific simulations of stent deployment. For the purposes of this work, the second and

the third reconstructed patient-specific challenging segments (second RCA and the

LMB case) presented in Chapter 3 were simulated. In particular, the major challenge

in these cases was to cover disease running from larger diameters into smaller diame-

ters with only a single procedural approach3 so as to avoid prolonged and technically

challenging procedures that may result in further complications. The main objective

of the work presented in this chapter was to compare different balloon delivery systems

particularly with respect to increasing the minimum lumen area and complete strut

apposition on the vessel walls under uniform balloon pressure. The authors believe

that the investigated clinical problem of SM is highly correlated with the balloon me-

chanical performance. Specifically, it is dependent on the diameter and the pressure of

the balloon.

3single procedural approach is the deployment of the stent without post dilation to reshape its
malapposed struts
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7.2 Materials and methods

7.2.1 Geometry meshes and constitutive models

7.2.1.1 Multi-folded balloon models

The multi-folded balloon models which were used were constructed as shown in section

4.3. The constitutive material models along with the mesh resolution information of

the delivery system FEA models was provided in section 5.2.3.

Delivery models for patient-specific simulations In the simulations that were

conducted, the uniform balloons along with the tapered model were generated with six

folds. As shown by Mortier et al. (2008), six folded balloons can demonstrate more

uniform and symmetric stent expansions, especially in cases where the deployment di-

ameter is not constant along the length of the stent system (tapered balloon). However,

the stepped balloon was designed with 12 folds since the diameter discrepancy between

the proximal and the distal initial profile was ∼ 1.3 mm. The material of the balloon

is significantly increased for a 4.5 mm balloon, therefore, a twelve folded balloon can

result in lower delivery system profile than a six fold (as can be noted from Figure

4.10). As a result, especially for computational purposes, the semi-crimped stent can

be mounted on the balloon more easily.

7.2.1.2 Patient-specific vessels & stent model

For the purposes of the simulations in this chapter, the second and the third recon-

structed patient-specific vessels presented in Chapter 3 were used. Only one stent

model was simulated. This was representative of the XIENCE platform (Abbott Lab.,

IL, USA) generated as shown in section 4.2.2. The constitutive material models along

with the mesh resolution information of the reconstructed challenging vessels and the

stent model was provided in section 5.2.1 and 5.2.2, respectively. All the simulations

were considered to be quasi-static and their parameters were set as shown in section

5.3.

Figure 7.1a and 7.1b illustrate the virtual space for the reconstructed RCA and

the LMB, respectively. The mesh resolution for the RCA and the LMB assembly is

depicted in Figure 7.1c and 7.1d, respectively.

7.2.1.3 Indicators of stenting

To quantify the performance of stenting in the patient-specific cases, different mea-

surements are defined. Some of the metrics are based on the geometric properties of
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the vessels and others on the structural response of the vessel walls. The metrics that

are dependent on the geometrical characteristics of the deformed vessels have been

calculated by using the vessel centre curve, CP , which is defined in section 3.3.2.3.

(a) Virtual RCA model (b) Virtual LMB model

(c) Structured hex mesh for RCA generated
in ABAQUS

(d) Structured hex mesh for LMB generated in
ABAQUS

Figure 7.1: Virtual reconstructed models back-projected to the CA images and numer-
ical mesh discretisation for the RCA case

Total Average Curvature (TAC) A scalar metric is proposed to quantify the

global curvature of the central curve, CP , pre and post-stenting. This metric, TAC,

was defined as

TAC =

∫

t
k(t)CP ‖cp′(t)‖dt

∫

t
‖cp′(t)‖dt

(7.1)

Since the curve has been sampled and parametrised along its length, TAC can be
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calculated using

TAC =

i=nt
∑

i=1
kcpi

δcp′
i

i=nt
∑

i=1
δcp′

i

(7.2)

where nt is the total number of curve sampling points, kcpi
is the local curvature4 of

the central curve at the ith sampling point and δcp′
i is the magnitude of the cp′ at the

ith sampling point.

Total Average Torsion (TAT) Similarly to TAC, TAT , is a global metric for the

pre and post-stenting central curve torsion and was defined as

TAT =

∫

t
τ(t)CP ‖cp′(t)‖dt

∫

t
‖cp′(t)‖dt

(7.3)

Again, since the curve has been sampled over its length, TAT can be calculated

from

TAT =

i=nt
∑

i=1
τcpi

δcp′
i

i=nt
∑

i=1
δcp′

i

(7.4)

where τcpi
is the local torsion5 of the central curve at the ith sampling point.

Volume Average Stress (VAS) V AS represents the average change in the stress

environment induced by the stent implantation. It was firstly proposed by Holzapfel

et al. (2005b) and later adopted by Pant et al. (2012). The V AS formula was defined

as

V AS =
∫

V σdV
∫

V dV
(7.5)

where, σ represents the circumferential stresses, and the integrals are calculated over

the volumes, V , of intima and media. Since the volume has been discretised by finite

elements, the formula is rearranged as

V AS =

i=nv
∑

i=1
σiδVi

i=nv
∑

i=1
δVi

(7.6)

4for the definition of curvature look Eq. 3.5
5for the definition of torsion look Eq. 3.6
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where nv is the total number of elements within the intima-media volume, σi represents

the circumferential stress in the ith element of the volume, and δVi is the volume of

the ith element.

Spatial Quantification of SM To quantify the spatial variation of SM the outer

surface of each stent was extracted and represented by a triangulated mesh. The SM

along the outer surface of each stent were calculated as

di = ‖xi − yi‖ (7.7)

where the di is the Euclidean distance between the xi vertex of the triangulated mesh

and its projected yi point to the lumen surface (c.f. Figure 7.2).

yi

xi

di

Figure 7.2: Demonstration of the spatial variation of stent malapposition quantifica-
tion: a vertex point xi lying on the outer surface of the stent is projected to the vessel
surface (yi)

Area Average Stent Malapposition (AASM) Similarly to V AS, a metric for

calculating the average malapposition was used post operatively. The AASM can be

expressed as

AASM =
∫

A SMdA
∫

A dA
(7.8)
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with A the area of the upper stent surface, and SM the stent malapposition. Since the

surface is meshed by triangulated elements, eq. 7.8 can be rearranged to

AASM =

i=ns
∑

i=1
SMiδAi

i=ns
∑

i=1
δAi

(7.9)

where ns is the total number of the triangulated elements, SMi is the malapposition

in the ith element given by eq. 7.7 with xi the centre point of the ith element and yi

its projection to the lumen surface. δAi is the area of the ith element expressed as

δAi =
1
2

‖(v3 − v1) × (v2 − v1)‖ (7.10)

where vj (j = 1, 3) denote the position vectors of the vertices of each element.

Minimum Lumen Area (MLA) & Volume Gain (VG) For each cross section,

R(t)CP
6 (c.f. Figure 3.7), the area is calculated as

A(t) =
∫∫

D(t)

dA(r, p) (7.11)

The MLA is identified as the minimum area, A(t)min, of a cross section R(t)CP

lying on the normal plane P(t)CP for all t. Moreover, the lumen volume V (Q) was

calculated. According to a technical note published by England and Miller (2001),

the volume of an object V (Q) (c.f. Figure 3.7) which contains a curve arbitrarily

parametrised can be calculated by

V (Q) =
∫

t

A(t)(1 − k(t)r(t))‖c′(t)‖dt (7.12)

where r(t) is the n(t) coordinate of the centroid of the cross section of the solid Q at

c(t). Since the central point was calculated for each R(t), and the solid central curve

was interpolated through these points, by taking the CP curve, r(t) was zero and V (Q)

was given by

V (Q) =
∫

t

A(t)‖c′(t)‖dt (7.13)

and V G was calculated as

V G =
V (Q) − V (Q)0

V (Q)0
(7.14)

6for the definition of a cross section R(t)CP , see Eq. 3.16
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with V (Q)0 and V (Q) the volume of the investigated vessel segment before and after

stenting, respectively.

7.3 Results

7.3.1 Multi-folded balloon simulations

7.3.1.1 Tapered balloon free expansion

The transient expansion of the tapered balloon model is depicted in Figure 7.3a. The

six-folded balloon is characterised by a uniform stent expansion with its proximal and

distal segment expanded to 3.5 mm and 4.25 mm, respectively. In Figure 7.4a, the

virtual balloon compliance is illustrated. As can be observed, the balloon transient

diameter variation has been recorded with or without the mounted stent and there was

no significant expansion diameter discrepancy (< 2%). The pressure has been applied

uniformly by a smooth curve up to 0.842 MPa along the entire inner surface of the

balloon. The balloon was designed with a proximal unpressurised diameter, Db0, of

3.33 mm gradually increased to 4.04 mm distally along the length of the balloon.

7.3.1.2 Stepped balloon free expansion

Frames at certain times in the stepped balloon expansion have been captured in Figure

7.3b. On the left panel, the full stepped stent-catheter system is depicted whereas

on the right, cross sections centrally to the model are illustrated demonstrating the

transient unfolding of a twelve-folded balloon. The virtual stepped balloon was then

designed with proximal and distal unpressurised diameters, Db0, of 2.80 mm and 4.1

mm, respectively, and target diameters 3.02 mm and 4.46 mm. Figure 7.4b depicts

how these are obtained by applying a uniform pressure of 1.012 MPa. Similarly to the

tapered model, the virtual compliance was extracted for the stepped balloon with or

without stent and discrepancies below 2% were recorded for the expansion diameter.

7.3.2 Patient-specific simulations

7.3.2.1 RCA “stenting”

On the left panel of Figure 7.5, the expansion simulations using a uniform balloon of

3.5 mm and the tapered balloon (section 7.3.1.1) are illustrated. Frames have been

captured at specific times to demonstrate critical steps of the expansion simulations.

The steps demonstrate (i) & (ii) the duration of the dog-boning phase, (iii) the max-

imum inflation of each balloon up to 0.842 MPa and (iv) the final configuration of
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T = 0.0024 sec

T = 0.0372 sec

T = 0.06 sec

T = 0.12 sec

(a)

T = 0.0024 sec

T = 0.0372 sec

T = 0.06 sec

T = 0.12 sec

(b)

Figure 7.3: Transient inflation of varying diameter virtual balloon models. (a) Tran-
sient free stent expansion with a tapered balloon. On the right, cross sections centrally
to the model (dashed line) are extracted to illustrate the transient unfolding of the
six-folded balloon. (b) Transient free stent expansion with a stepped balloon.
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(a)

(b)

Figure 7.4: Virtual compliance charts for varying diameter delivery systems with-
out/with mounted stents. (a) Virtual compliance for a tapered balloon: proximal and
distal target diameters of 3.5 mm and 4.25 mm, respectively. (b) Virtual compliance
for a stepped balloon: proximal and distal target diameters of 3.02 mm and 4.46 mm,
respectively.
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the model after the deflation of the balloon. On the right panel, cross sections in the

proximal portion of the vessel are illustrated to show the transient unfolding of the

balloon model within the artery. Moreover, in the cross section images, regions with

SM can be clearly observed. To quantify the better apposition produced by the tapered

balloon evidenced in Figures 7.5 and 7.6a, a more analytical quantification is given by

the cumulative distribution function (CDF) as shown in Figure 7.7a. In particular,

the CDF plots demonstrate the possibility of a range of SM within the vessel7 (spatial

quantification of SM calculated on the vertices of the upper triangulated stent surface).

For instance, strut malapposition within a range of 0.00 − 0.025 mm is approximately

66% and 74% for the uniform and the tapered balloon, respectively. Moreover, values

of SM within a range of 0.00 − 0.05 mm occur for 75% and 83% of stent outer surface

for the uniform and tapered models, respectively. The greatest value of SM occurs

in the proximal part of the uniform model and is calculated to be 0.715 mm, a gap

which is approximately equal to the difference between the balloon and the vessel di-

ameter. Importantly, high values of SM can be observed in both segments close to the

middle of the vessel length. However, this is due to some aneurysmatic regions of the

diseased reconstructed segment. In Table 7.1, the scalar “stenting” indicators for the

RCA case are reported. The values show that the tapered model has significantly de-

creased the overall SM. At the same time, the MLA and the volume of the lumen have

been significantly increased. The MLA relative to the reference model (pre-stenting)

has been increased by 130% and 132% for the uniform and the tapered model, respec-

tively. Correspondingly, the volume has increased by 4% and 12.8%. The TAC index

indicates that the tapered balloon has been shown not to affect the curvature of the

vessel. However, the tapered model does have a considerable impact on the planarity

of the segment, as indicated by the TAT index. As far as the average stresses are

concerned, the V AS index indicates that the tapered model has resulted in relatively

higher stresses. The latter could be explained by the fact that the stent interacts with

more volumetric mesh of the arterial walls, especially in the proximal portion of the

vessel. As a result more stresses contribute to the calculation of the V AS index (higher

V AS numerator).

7.3.2.2 LM bifurcation “stenting”

Figure 7.8 illustrates different frames of the transient stent expansion simulation by an

under-sized, an over-sized and a stepped balloon model (from left to right) presented

in section 7.3.1.2. As for the RCA case, the frames have been captured at specific

7In CDF graphs, a higher percentage of malapposed stent struts within a low malapposition range
(e.g. 0.00 − 0.05 mm) indicates that the investigated device perform better (with respect to SM) than
a stent with smaller percentage of malapposed struts within the same range.
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T = 0.12 sec

T = 0.2 sec

T = 0.048 sec

T = 0.042 sec

Figure 7.5: Transient patient-specific RCA stent expansion with a non-tapered and a
tapered balloon: From top to bottom, the steps demonstrate (i) & (ii) the duration of
the dog-boning phase, (iii) the maximum inflation of each balloon up to 0.842 MPa
and (iv) the final configuration of the model after the deflation of the balloon. On the
right panel, cross sections in the proximal portion of the vessel are illustrated.
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(a)

(b)

Figure 7.6: Patient-specific spatial stent malapposition after stent deployment. (a)
Actual stent malapposition after stent deployment in the RCA case. (b) Actual stent
malapposition after stent deployment in the LMB case. Areas of stent with the red
colour are incomplete apposed to the lumen walls. The higher the intensity of red, the
higher the amount of malapposition.
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Table 7.1: “Stenting indicators” for the RCA segment

Model VAS TAC TAT AASM MLA (mm2) VG

RCA reference - 0.139 0.224 - 3.714 -
RCA stented by uniform model 0.019 0.110 0.224 0.053 8.557 0.040
RCA stented by tapered model 0.025 0.110 0.144 0.031 8.601 0.128

times of the deployment simulations demonstrating clearly transient model deforma-

tions throughout the entire period of the expansion simulations. In particular, the

steps demonstrate (i) & (ii) the duration of the dog-boning phase, (iii) the maximum

inflation of each balloon up to 1.012 MPa and (iv) the final configuration of the model

after the balloon deflation. On the right panel of Figure 7.8, cross sections in the

middle of the stented region have been extracted. As can be observed, the stepped

balloon provides very similar strut apposition with an oversized balloon based on the

AASM index (c.f. Table 7.2) whereas the undersized balloon results in significant

malapposition. The highest value of malapposition has been identified in the left main

of the under-expanded model (∼ 1.5 mm). As can be observed, high SM values are

identified in the ostium of the Cx for all models due to the fact that the struts facing

the Cx ostium are “wall-free” (Figure 7.6b and 7.8). A more analytical description of

SM can be given by the CDF shown in Figure 7.7b. The percentage of strut malappo-

sition within a range of 0.00 − 0.025 mm is approximately 43%, 52% and 57% for the

under-sized, stepped-sized and over-sized models, respectively. High values of SM for

all the models is due to the Cx ostium. The percentage of exposed struts in a range of

0.00 − 0.1 mm SM is ∼ 63%, ∼ 75% and ∼ 83% for the under-sized, the stepped-sized

and the over-sized model, respectively. The stenting indicators for the LMB case are

reported in Table 7.2. The MLA relative to the reference vessel is 1.6%, 3.6% and 2.3%

higher for the under, over and stepped-sized approach, respectively. The volume gain

relative to to the reference model is 2.1%, 19.8% and 3.5%. However, it can be ob-

served that the stepped model provides a better approach compared to the undersized

and the oversized delivery systems. In particular, the average malapposition has been

decreased by half relative to the undersized approach and V AS is 65% less than that

produced by the oversized balloon. Also, TAC and TAT indicate that the stepped ap-

proach is closer to the geometrical properties of the reference vessel especially relative

to the over-sized balloon model.
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Table 7.2: “Stenting indicators” for the LM bifurcation

Model VAS TAC TAT AASM MLA (mm2) VG

LM bifurcation reference - 0.061 0.217 - 4.929 -
LM bifurcation stented by under-sized model 0.004 0.059 0.175 0.445 5.010 0.021
LM bifurcation stented by over-sized model 0.020 0.050 0.059 0.228 5.108 0.198
LM bifurcation stented by stepped-sized model 0.007 0.058 0.216 0.230 5.044 0.035

7.4 Discussion

In the present work, the modelling strategy for the delivery system has been based

on the parametric design of virtual balloons following comparison to commercially

available compliance charts. As shown by Mortier et al. (2008), changing the balloon

parameters (model length, the folding pattern and the relative position of stent on

the catheter) can significantly affect the symmetry and uniformity of the transient

expansion especially when the expansion target diameter is inconsistent. In particular,

for large diameter transitions, the number of the folds has to be increased for ensuring

expansion uniformity. The latter has been observed by the expansion of a twelve-

folded balloon in the bifurcation case where the proximal and distal diameters differ by

approximately 1.5 mm (c.f. Figure 7.3b and 7.8). On the other hand, for a diameter

difference of 0.7 mm, the deployment of a six-folded balloon resulted in relatively

uniform expansion (c.f. Figure 7.3a and 7.5).

Furthermore, this work has introduced several numerical indices quantifying and

identifying local and global values of the investigated problem along with geomet-

ric characterisation of the vessels pre and post-stenting. These indices can provide a

general idea of the procedural outcomes and, hopefully, in the future, could help to

inform coronary interventions. The results demonstrate clearly that non-uniform de-

livery systems can significantly increase the MLA and in parallel decrease the overall

SM, especially, proximally to the stented segment, a region which is highly correlated

with further unwanted procedural events (Hanratty and Walsh 2011, Williams et al.

2012) and ST. This is illustrated in Figures 7.6a and 7.6b where the proximal stent

segments are completely apposed to the vessel walls for the tapered and the stepped

balloons. Also, the cross section images, Figures 7.5 and 7.8, indicate clearly the supe-

rior outcomes of the proposed deployments which could avoid the need for post-stenting

dilation using a non-compliant balloon. Especially for the bifurcation, it is well estab-

lished that single stent procedures are preferable (Al Suwaidi et al. 2001, Hildick-Smith

et al. 2010, Pan et al. 2004). The suboptimal apposition of the stent struts to the prox-

imal part of the main vessel could be solved by a provisional optimisation technique

(Lefevre et al. 2010). This would require an additional procedural step. Therefore, the
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(a)

(b)

Figure 7.7: Cumulative distribution functions for patient-specific spatial SM after each
expansion step. (a) CDF graphs of virtual stent malapposition within the RCA seg-
ment. (b) CDF graphs of virtual stent malapposition within the LM bifurcation seg-
ment.
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proposed virtual balloons could potentially limit the procedure to a single step and,

under a specific folding configuration, these models can be optimised for vessel stent-

ing. In addition, the wall stresses induced by non uniform balloons are kept within

acceptable ranges (c.f. Tables 7.1 and 7.2) in comparison to the standard models. This

has also been numerically demonstrated in Morlacchi et al. (2011), in which a tapered

balloon resulted in reduced circumferential stresses after kissing balloon dilation in a

bifurcated vessel. This is significant since high stress values have been shown to result

in cellular proliferation (Wang et al. 1995).

When the PCI operator is aware that the proximal part of the stent is malapposed,

the recommended action is to post-dilate the malapposed struts with a non compliant

balloon. However, SM is frequently not detected using angiography alone. Given the

low overall use of IVUS/OCT imaging in most catheterisation laboratories, it is likely

that the incidence of SM in lesions other than those of short length is relatively high.

Our results indicate that a dedicated delivery system chosen by patient-specific criteria

could help to avoid this procedural limitation by improving stent deployment in a single

step. Importantly, it has been shown that under a specific pressure, non-uniform virtual

balloon expansions can result in lumen gain by increasing the overall area along the

entire length of the vessel. In contrast, by post-dilating only proximally malapposed

struts, the MLA and the overall volume of the vessel are not likely to be significantly

increased (always relatively to a non-uniform deployment) along the entire length of

the stented segment.

The reconstructed vessels represent two real cases that include challenges frequently

seen in clinical practice. Both segments are characterised by significant diameter dis-

crepancy (> 0.5mm) along their lengths. It has been shown that analytical geometrical

quantification of the vessels can drive PCI with very good outcomes especially in im-

proving the investigated complications. In particular, after calculating cross sectional

areas along the intervened region, multi-folded balloons can be designed according to

the desired inflation pressure and the diameter variation. This is very important for

adequate stent expansion as has been shown in Tables 7.1 and 7.2. Specifically, the

stepped balloon which has been designed for the bifurcated vessel provided superior

performance compared to both the under-sized and the over-sized balloons as indi-

cated by the indices. For almost the same average complete stent apposition with the

over-sized balloon, it resulted in considerably less average stress, whereas the indices of

TAC and TAT indicate that the stepped balloon has not changed the global geometri-

cal properties of the intervened segment. Recently, a dedicated stent platform mounted

on a semi-compliant stepped balloon has been developed (Magro and van Geuns 2010)

demonstrating impressive clinical outcomes (Fysal et al. 2014, Pleva et al. 2014). As for

the tapered expansion, both MLA and VG were increased and at the same time AASM
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T = 0.03 sec

T = 0.04 sec

T = 0.12 sec

T = 0.2 sec

Figure 7.8: Transient patient-specific bifurcation stent expansion with undersized, over-
sized and a stepped balloon model: From top to bottom, the steps demonstrate (i) &
(ii) the duration of the dog-boning phase, (iii) the maximum inflation of each bal-
loon up to 1.012 MPa and (iv) the final configuration of the model after the balloon
deflation. On the right panel, cross sections in the middle of the stented region are
illustrated.
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was decreased. Interestingly, the TAC index indicates clearly that the tapered model

does not have any additional influence in the curvature of the vessel when compared

with the standard model. However, it does have an impact on the planarity of the

vessel. This could be explained by the fact that the tapered model attaches the stent

to more volumetric elements (constituting the walls), especially in the proximal region

of the vessel. The latter might be the reason for experiencing higher VAS in the RCA

vessel expanded by the tapered balloon model.

7.4.1 Limitations

The major limitation of the work presented in this chapter is the constitutive laws

characterising the material behaviour of the vessel walls and the balloon models. These

limitations have been discussed in section 5.4. In particular, the discrete values of the

numerical indices used in this study would be different if the constitutive laws describing

the vessel walls and the plaque incorporated anisotropy and plasticity, respectively.

Moreover, these indices cannot be generalised to other patient-specific cases but the

ones investigated in this chapter. However, due to the comparative nature of the

current study, the utility of using these indices is still important. Furthermore, these

numerical indices which were used to evaluate the performance of each delivery system

have not been validated in clinical practice. Therefore, there is no knowledge of any

index critical value. Hence, the evaluation of the extracted indices in this chapter was

based on assumptions.

7.5 Conclusions

Numerical modelling by means of FEA can provide comprehensive and useful results for

analytical investigation of stent deployment in PCI that could lead to the avoidance of

complications in clinical practice. Although ideal vessels can serve as a general tool for

investigating clinical issues, patient-specific simulations provide a more realistic quan-

tification (especially with respect to the vessel’s topology) of the investigated clinical

issues and allow for subject-specific potential solutions. In this chapter, a framework

has been developed in which virtual balloon models have been proposed to mitigate the

risk of SM in two patient-specific reconstructed vessels. Where a single step approach is

to be followed, such delivery systems could potentially ensure optimal strut apposition

to the walls of the vessel. Scalar metrics based on the geometrical properties and the

induced mechanical environment have been implemented to demonstrate numerically

the pre- and post-stenting vessel state. These metrics can direct more analytic opti-

misation studies and guide procedural planning (as it is demonstrated in Chapter 8).



7.5. CONCLUSIONS 129

As far as is known, this work is the first computational investigation of patient-specific

“stenting” purely focused on the delivery system. The outcomes indicate that under

constant pressure, non-uniform balloon models can result in better strut apposition

and simultaneously increase the MLA and the vessel volume. Also, it has been shown

that the geometrical properties of the stented segment do not alter significantly and

the vessel is not exposed to higher stresses. Finally, whilst it should be emphasised that

the comparisons herein are very specific to the investigated vessels, it may be possible

to derive more general delivery system definitions using population based studies and

optimisation. Thus, for any given patient-specific vessel, optimum delivery system can

be derived according to its its geometrical and morphological properties.
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Chapter 8

MULTI-OBJECTIVE OPTIMISATION

OF STENT DILATION STRATEGY IN A

PATIENT-SPECIFIC CORONARY

ARTERY VIA COMPUTATIONAL AND

SURROGATE MODELLING

O
ptimisation! Although contemporary stents have been shown to improve short

and long term clinical outcomes, the optimum dilation protocol is still uncertain

in challenging cases characterised by long, highly calcified and tortuous anatomy. Re-

cent clinical studies have revealed that in these cases, sub-optimal delivery can result in

ST and/or neointimal thickening as a result of SM and/or severe vessel trauma. One of

the major contributors to vessel trauma is the damage caused by balloon dilation dur-

ing stent deployment. In the work presented in this chapter, a Kriging based response

surface modelling approach was implemented to search for optimum stent deployment

strategies in a clinically challenging, patient-specific diseased coronary artery. In par-

ticular, the aims of this work were: i) to understand the impact of the balloon pressure

and unpressurised diameter on stent malapposition, drug distribution and wall stresses

via computer simulations and ii) obtain potentially optimal dilation protocols to si-

multaneously minimise stent malapposition and tissue wall stresses and maximise drug

diffusion in the tissue. The results indicate that SM is inversely proportional to tissue

stresses and drug deliverability. After analytical multi-objective optimisation, a set

of “non-dominated” dilation scenarios was proposed as a post-optimisation method-

ology for protocol selection. Using this method, it has been shown that, for a given

patient-specific model, optimal stent expansion can be predicted. Such a framework

could potentially be used by interventional cardiologists to minimise stent malappo-

sition and tissue stresses whilst maximising drug deliverability in any patient-specific

131
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case1,2.

8.1 Introduction

Clinical studies have revealed that contemporary devices, especially DES, demonstrate

better short and long term outcomes than BMS (Stefanini and Holmes 2013) and the

second and the third generation DES are critically superior to first generation DES.

However, clinical complications have been reported which are associated with the recent

advances in stent design, the implantation protocol and the complexity of the treated

vessel (Cook et al. 2007, Hanratty and Walsh 2011, van der Hoeven et al. 2008a, Hong

et al. 2006, Williams et al. 2012).

As seen in Chapters 6 and 7, one of the adverse outcomes in such challenging cases

is SM which is largely dependent on multiple factors including the so-called “reference

diameter”3, plaque morphology, lesion length, stent length and the balloon inflation

pressure (Cook et al. 2007, van der Hoeven et al. 2008a). Depending on the vessel

length and its anatomy, reference diameter is normally calculated in the distal end of

the target lesion. This often results in malapposed struts in the proximal end of the

stented segment particularly in a longer lesion, which has a diameter discrepancy be-

tween the proximal and distal end. When SM is detected, a non-compliant balloon is

inflated in the malapposed region to reshape the stent and increase the stent area. How-

ever, such post-stenting procedures may trigger further clinical complications including

vessel wall dissection or stent fracture (Hanratty and Walsh 2011). Therefore, in such

challenging vessels, it is preferable to limit stenting to a single step approach resulting

in i) maximum stent strut apposition, ii) minimum vessel stress and iii) maximum drug

diffusion to the vessel walls.

In the current work, the optimal dilation strategy in a patient-specific RCA with

challenging disease (second reconstructed RCA case presented in Chapter 3) was inves-

tigated by FEA and surrogate modelling. Firstly, twenty different dilation protocols

were defined with respect to the balloon unpressurised diameter and the balloon pres-

sure following their simulation. The performance of each protocol was measured by

three figures of merit (objective functions) representing i) tissue stresses, ii) SM and

1A part of the following content has been published in the Annals of Biomedical Engineering
Journal: Design optimisation of coronary artery stent systems, N. Bressloff, G.Ragkousis, N.
Curzen, 2015

2The content of this chapter has been published in the Journal of Biomechanics: Multi-objective

optimisation of stent dilation strategy in a patient-specific coronary artery via compu-

tational and surrogate modelling, G. Ragkousis, N. Curzen, N. Bressloff., 2015
3Reference diameter is defined as the diameter of a healthy arterial cross section along the length of

the intervened segment. Interventional cardiologists size the stent which is to be implanted according
to the non-diseased diameter in the distal part of the segment.
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iii) drug delivery. Surrogate models were constructed for each objective function to de-

scribe the functional relationship between the input parameters and the performance.

Then, based on a dedicated population based algorithm, non-dominated designs (op-

timum dilation protocols) were obtained. Three update points were taken along the

Pareto front of the objective function space and further computer simulations were

carried out to enhance the surrogates and improve the optimal responses. This process

was repeated until a stopping criterion was satisfied.

8.2 Materials and methods

The pyKriging package (http://www.pyKriging.com/) (Paulson and Ragkousis 2015)

was used to construct the surrogates and guide the multi-objective optimization study.

A validation of the algorithms that were used in this chapter is presented in Appendix

E. A non-sorting genetic algorithm (NSGA-II) (Deb 2001), as implemented in pyOpt

(http://www.pyopt.org/) (Perez et al. 2012) was used to extract the optimal Pareto

front after each optimisation phase4.

8.2.1 Geometry & mesh discretisation

8.2.1.1 Vessel, dilation catheter and stent platform

For the purposes of the simulations in this chapter, the second reconstructed patient-

specific vessel presented in Chapter 3 was simulated. One representative XIENCE

(Abbott Lab., IL, USA) stent model was used (c.f. section 4.2.2). The constitutive

material models along with the mesh resolution information of the reconstructed chal-

lenging vessel and the stent model was provided in section 5.2.1 and 5.2.2, respectively.

Six-folded balloon models were used, constructed as shown in section 4.3. The con-

stitutive material models along with the mesh resolution information of the delivery

system FEA models was provided in section 5.2.3. In Figure 8.1, the CAD assembly

of a baseline model along with its mesh discretisation is depicted.

8.2.1.2 Dilation strategy parametrisation

The balloon profile and the inflation pressure were taken as the design variables of this

optimisation problem. Although, all the balloons were six-folded, depending on the

parameterised balloon-profile length (unpressurised diameter), the folding configura-

tion was varied to fit in the semi-crimped stent. The design space was defined by: i)

4In appendix G, the multi-objective optimisation algorithm (developed for the purposes of this
work) is presented. In particular, the python class is presented followed by a script to call this class.

http://www.pyKriging.com/
http://www.pyopt.org/
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Figure 8.1: Baseline model: virtual model assembly of the reconstructed artery and
structured mesh discretisation

the initial diameter sampled around ±20% of the baseline model and ii) the inflation

pressure varying between 0.6 − 1.5 MPa, a range widely used in stenting practice.

8.2.2 Simulations

8.2.2.1 Stent crimping and expansion

For the baseline model, the design variables were chosen according to the reference

diameter measured in the distal part of the reconstructed segment. Then, a virtual

balloon was generated and calibrated as shown in section 5.2.3. For each model, the

stenting process comprised two steps: i) the stent system was mapped to the catheter

line and then, the stent was crimped on the shaft and ii) the expansion of the stent

by a six-folded balloon. Both of these steps were conducted in ABAQUS using the

explicit solver to overcome convergence issues related to large element deformation

and highly non-linear contact between surface pair interactions. All the simulations

were considered to be quasi-static and their parameters were set as shown in section

5.3. In Figure 8.2, the transient expansion of the baseline point simulation is depicted.
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Figure 8.2: Baseline point simulation: from left to right, crimping and positioning
of the stent system in the intervened region, dog-boning phase during the expansion,
inflation of the balloon to the target diameter and balloon deflation

8.2.2.2 Drug release

After stent deployment, the deformed artery and stent geometry was used to simulate

drug release in the walls of the vessel. A heat transfer solution scheme was used as an

analogue of the drug delivery process similarly to the work presented by Hose et al.

(2004). The release of the drug was simulated as a steady state event by using the forced

heat convection analysis capability of ABAQUS/Standard. The boundary conditions

for the transport simulation were defined as in other studies (Feenstra and Taylor 2009,

Hose et al. 2004, Pant et al. 2012, Zunino 2004). In brief, the boundary conditions were:

i) zero flux at the outer part of the vessel, ii) zero flux at the luminal part of the vessel

that is not in contact with the stent, iii) zero concentration at both ends of the vessel

and iv) a unity concentration on the stent boundaries. By disregarding the porosity

field, the diffusivity and the conductivity values were adopted from Feenstra and Taylor

(2009).

8.2.3 Objective functions

8.2.3.1 VAS

To evaluate numerically the mechanical environment induced by each of the interven-

tional protocols, the V AS index was implemented. For further information on the
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V AS metric, see section 7.2.1.3.

8.2.3.2 AASM

To calculate the performance of each dilation strategy regarding SM, the AASM metric

was implemented. For further information on the AASM index, see section 7.2.1.3.

8.2.3.3 VAD

Similarly to the V AS index, a volume average index for drug release was proposed by

Pant et al. (2012) to measure the amount of drug transported into the tissue. The

V AD index is numerically expressed as

V AD =
∫

V cdV
∫

V dV
(8.1)

where, c represents the drug concentration in the wall region, and the integrals

are calculated over the volumes of intima and media. The volume for which was

reconstructed by the IVUS images. Since the volume has been discretised by finite

elements, the formula is rearranged as

V AD =

i=nv
∑

i=1
ciδVi

i=nv
∑

i=1
δVi

(8.2)

where nv is the total number of elements within the intima-media volume, ci rep-

resents the drug concentration in the ith element of the volume, and δVi is the volume

of the ith element.

8.2.4 Optimisation problem & solution methodology

The multi-objective optimisation problem was formulated as follows:

Minimise V AS(d, p) (8.3)

Minimise AASM(d, p) (8.4)

Minimise − V AD(d, p) (8.5)

such that

2.672 ≤ d ≤ 4.008 (8.6)
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0.6 ≤ p ≤ 1.5 (8.7)

where d and p are the diameter and the pressure parameters, respectively. Note that

−V AD index should be maximised. However, the negative sign was included so that

lower values of −V AD indicate better performance. Therefore, the aim was to minimise

−V AD.

In Figure 8.3, a flow chart detailing the optimisation process is depicted. The

process commenced with the optimal distribution of the initial sampling points in the

design space, followed by structural and drug simulations for each design configuration.

Discrete values of the performance metrics were extracted to construct Kriging response

surface models for each metric. The models were then searched by a population-based

algorithm (NSGA-II) to obtain optimum solutions for surrogate model improvement.

From the optimum set, three points were selected as infill points to the initial sampling

plan or the previous optimisation step. The process stopped when the stopping criterion

was satisfied (see section 8.2.4.2).

8.2.4.1 Sampling plan

The initial two-dimensional design space consisted of twenty points optimally dis-

tributed as a function of balloon unpressurised diameter and balloon pressure. This

represents the sampling plan or DoE. The DoE was constructed by an optimised Latin

hyper-cube (LHC) ensuring the maximum space filling (Morris and Mitchell 1995).

Optimised LHCs can maximise the minimum distance between each pair of points. In

Figure 8.4, the optimised initial DoE is depicted against a non-optimised LHC. Notice

the smaller Φ value which is the scalar-valued criterion function used to rank different

sampling plans (Forrester et al. 2008, Morris and Mitchell 1995).

8.2.4.2 Surrogate modelling, NSGA-II & infill strategy

Surrogate models

To model the response of each objective function to variations in balloon pressure

and unpressurised diameter a GP methodology, known as Kriging, was used. Appendix

F contains the basic equations for Kriging model construction. For detailed derivation,

consult the work by Jones (2001) and Forrester et al. (2008). Kriging models have been

also implemented successfully in previous studies on stent optimisation, such as in Pant

et al. (2011) and Gundert et al. (2012). For a detailed overview in recent optimisation

and surrogate modelling studies, consult the review paper by Bressloff et al. (2015),

including reference to earlier studies such as the one by Timmins et al. (2007).
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START

Definition of design variables

Sampling plan (DOE) by

optimised LHC

STOP

Analysis for each point in DoE

Construct surrogate models /

Kriging interpolation

Run NSGA-II on the E[I(X)]

calculated in each Kriging /

Obtain the pareto front

Select update points based on

infill strategy

Run the updates

Stopping

criteria met?

CAD model

generation

Patient-specific

simulations

Drug

diffusion

analysis

Post-processing

Extract VAS,

AASM,

-VAD indices

Figure 8.3: Flow chart on the description of the adopted optimisation methodology of
this work
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Figure 8.4: DoE obtained from an optimised LHC. An arbitrary LHC (top panel) with
Φ value equal to 32.618 and the optimised LHC used in this work with Φ value equal
to 27.12.
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Validation of surrogates

Once the surrogates are built, validation has to be carried out to ensure that the

model predicts well the actual function. One obvious solution would be to select and

run additional points to check the correlation of the surrogate at these points. However,

this would be computationally impractical given the available computational budget.

This has led to the development of other methods to validate the surrogate models

(Jones et al. 1998, Kolachalama et al. 2007). One of these methods is the SCV R, and

is defined as

SCV Ri =
y(x(i)) − ŷ−i(x(i))

√

C−i(x(i),x(i))
(8.8)

where y is the observed value at the ith point (point that is left out), ŷ−i denotes the

prediction of the ith left out point and C−i is the posterior variance of the prediction at

the left out point. The model is valid when all SCV Ri discrete points lie in [−3,+3].

This can be interpreted as that each of the predictions lie between plus or minus three

standard errors (99.7% confidence). Further, a “leave-one-out” method was used to test

for model reliability (Jones et al. 1998). Again, for each surrogate model, one point

of the DoE was left out and a surrogate model with constant parameters constructed

for the remaining sampling points. Then, a prediction was made at the point that was

left out and compared to the actual value. This process was repeated for all the points

that comprise the DoE and a correlation residual was calculated for each model.

NSGA-II

The superiority of GP models is the fact that such surrogates contain the estimation

of model uncertainty, expressed by the mean square error (MSE). This allows the

calculation of an estimated error in the model. Therefore, it is possible to use MSE

to position infill points where the uncertainty in the predictions of the model is the

highest. The MSE in a Gaussian process is expressed as

ŝ2(x) = σ2

[

1 − ψΨ−1ψ +
(1 − 1T Ψ−1ψ)2

1T Ψ−11

]

(8.9)

where σ2 is the process variance, Ψ is the correlation matrix, and ψ is a vector of

correlations between the observed data and the new predictions (see Appendix F).

Additionally, a highly attractive tool in stochastic optimisation is the expected

improvement (EI) (Jones et al. 1998), which indicates the magnitude of improvement
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towards the optimum solution. It is expressed as

E [I(x)] =











(ymin − ŷ(x))Φ(ymin−ŷ(x)
ŝ(x)

) + ŝφ(ymin−ŷ(x)
ŝ(x)

), if ŝ > 0

0, if ŝ = 0
(8.10)

where Φ and φ are the probability distribution and probability density functions, re-

spectively; ymin is the minimum value evaluated in the sampling plan thus far and

ŷ(x) is the prediction in a sampling point x. Since the EI can be evaluated for each

objective function, NSGA-II was used to search the Pareto front for maximisation of

the multi-objective EI. NSGA-II was run for 130 generations, each generation having

a population size of 100 resulting in 13100 function evaluations per search.

Infill strategy and convergence criterion

In each optimisation phase, two steps were performed to select update points. In

the first step, three points were selected with two of the points positioned at the ends

and a third point located in the middle of the Pareto front. The second step comprised

the mapping of these points to the design space to check their shortest distance with

respect to the initial/previous sampled points. Around each update point, a circle with

radius equal to 1% of the variable range (0.01 here since the variables were normalised

in the range [0 − 1]2) was constructed and if there was no point already sampled in

this circle, the selection was approved. Otherwise, the point was rejected and the

next closest non-dominated point was selected. This two-step procedure ensured both

exploration and exploitation. The first step ensured exploitation while the second step

contributed to the exploration (very essential in a mathematical optimisation routine).

Due to the high computational cost for each simulation (average point simulation

duration was approximately 160 hours on a 32 GB RAM node, split over 32 domains),

a convergence criterion was set to avoid a large number of optimisation iterations.

In particular, in each step, updated surrogates were constructed containing the infill

points from the previous iteration and a second NSGA-II search (this time on the

updated response surfaces of the prediction) were carried out. Then, an optimum

point was calculated as the Pareto front point with the minimum Euclidean distance

from the ideal vector/“utopia” point. More specifically, the obtained Pareto front was

normalised with respect to the utopia (ideal vector) and the nadir (maximum objective

function vector) point as

f̄i(x) =
fi(x) − z∗

i

n∗
i − z∗

i

(8.11)
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where fi(x), z∗
i , and n∗

i , the non-normalised objective function value, the minimum

objective function value and the maximum objective function value of the ith model,

respectively (Miettinen 1998). Then, the minimum Euclidean distance was calculated

from the weighted l2 −metric proposed by Miettinen (1998) as

minimise d2(f , z,w) = (
k

∑

i=1

wi|fi(x) − z∗
i |2)

1
2

subject to x ∈ S

(8.12)

with S being the entire search space and
∑k

i=1 wi = 1. When the predicted optimum

point (with w1, w2, w3 = 1/3) was the same in two subsequent iterations, the optimi-

sation process was terminated.

8.3 Results & discussion

8.3.1 Baseline and DoE point simulations and Kriging inter-

polation

The results for the baseline model are reported in the first row of Table 8.1. From

the second to the last row of Table 8.1, the discrete objective function evaluations of

the initial DoE are reported. Surrogate models were constructed for each objective

function. The response surfaces along with the MSE and the EI of the surrogates

are depicted in Figure 8.5. The x-axis and the y-axis represent the normalised balloon

diameter and pressure, respectively. It can be noted that the diameter parameter has a

stronger effect than the pressure for all models. This is expected since larger diameters

result in higher surface area interaction (between the balloon and vessel walls) and,

subsequently, less SM and higher circumferential stresses imposed to the vessel walls. In

the first column of Figure 8.5, the model predictions indicate that stent malapposition

is inversely proportional to tissue stress and drug diffusion (note that drug diffusion

contours or +VAD, would have the opposite behaviour from −V AD). Consequently,

V AS is competing against both AASM and −V AD. This can be explained by the

fact that when SM decreases, more stent struts interact with the vessel walls and

higher tissue stresses are imposed by the stent, especially when using higher balloon

pressures. Moreover, since more struts interact with the wall, the drug diffusion is

increased. In contrast, when malapposition increases, the drug diffusion is decreased

(−V AD is increased) as a result of the reduced wall-stent interaction. In the second

column of Figure 8.5, MSE error indicates that high uncertainty exists in the corners
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for all the surrogates. This is expected as, in this optimisation work, LHC was used

to generate the initial DoE leaving the corners and the edges of the design space un-

sampled. Finally, in the third column, the EI indicates where model improvement

can be obtained via infilling the design space in regions where EI is maximum. In

general, the EI tends to be large in regions where the predicted value is larger than

the minimum actual value (extracted by the simulations) and/or there is a high level

of uncertainty associated with the prediction. As stated by Sobester et al. (2005), EI

is a balance between seeking promising areas of the design space and the uncertainty

in the model.

Table 8.1: Baseline, DoE point parameters and objective function evaluations

Design Diameter Pressure Diameter Pressure VAS AASM -VAD
X1 (0 - 1) X2 (0 - 1) X1 (mm) X2 (MPa)

Baseline 0.532 0.268 3.383 0.842 0.01999 0.05313 -0.0786
DOE_01 0.625 0.525 3.507 1.0725 0.026465 0.040062 -0.08594
DOE_02 0.474 0.025 3.306 0.622 0.01727 0.084921 -0.06723
DOE_03 0.275 0.174 3.039 0.757 0.015359 0.088589 -0.06306
DOE_04 0.174 0.775 2.905 1.297 0.014705 0.096926 -0.06100
DOE_05 0.325 0.925 3.106 1.432 0.019671 0.063213 -0.07577
DOE_06 0.925 0.125 3.907 0.712 0.038519 0.024668 -0.09277
DOE_07 0.074 0.574 2.772 1.117 0.011525 0.141287 -0.04639
DOE_08 0.974 0.724 3.974 1.252 0.045297 0.023369 -0.09267
DOE_09 0.025 0.275 2.705 0.847 0.008847 0.203502 -0.03103
DOE_10 0.125 0.074 2.838 0.667 0.010284 0.16601 -0.03772
DOE_11 0.824 0.875 3.774 1.387 0.039838 0.026552 -0.09127
DOE_12 0.724 0.675 3.64 1.207 0.034793 0.026546 -0.09148
DOE_13 0.525 0.824 3.373 1.342 0.02745 0.039425 -0.08733
DOE_14 0.574 0.225 3.44 0.802 0.024807 0.044335 -0.08335
DOE_15 0.375 0.625 3.173 1.162 0.019721 0.064665 -0.07467
DOE_16 0.775 0.325 3.707 0.892 0.033875 0.029117 -0.09065
DOE_17 0.424 0.375 3.239 0.937 0.017456 0.074464 -0.06904
DOE_18 0.875 0.474 3.841 1.027 0.039197 0.023864 -0.09244
DOE_19 0.225 0.424 2.972 0.982 0.013872 0.11152 -0.05528
DOE_20 0.675 0.974 3.573 1.477 0.032538 0.030896 -0.09075

8.3.2 Validation of the surrogates

On the left column of Figure 8.6, the SCV R for all the Kriging models are shown.

It can be observed that all points lie within the interval [−3,+3] for all the surrogate

models. Consequently, the interpolated models predict with 99.7% confidence. The

leave-one-out plots are depicted in the right column of Figure 8.6. As can be observed,

all the surrogate models predict close function values to their corresponding “actual”

values (extracted by the computational analyses). This is evident by the fact that

all leave-one-out plots have approximately linear behaviour (R2 was 0.97, 0.92 and
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Figure 8.5: Surrogate models interpolated to the objective function evaluations after
the initial DoE. From up to bottom, surrogates for VAS, AASM, and -VAD are de-
picted. The x-axis and y-axis represent the normalised balloon diameter and pressure.
From left to right, Kriging interpolation surface of the prediction, MSE and EI for each
model
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0.95 for V AS, AASM and −V AD, respectively). Therefore, all the surrogates can be

considered to be sufficiently reliable.

8.3.3 Infill point simulations, update Kriging construction and

selection criteria

Three update cycles were performed before satisfying the convergence criterion. The

resulting nine infill point parameter values along with the objective function evaluations

at each point are reported in Table 8.2. The corresponding updated surrogates in each

optimisation iteration are depicted in Figure 8.7. It can be noted that the maximum

and minimum values of all the surrogates appear to be close to convergence from the

second optimisation iteration. In Figure 8.8, the EI of each model from the initial

step (first row), to the last optimisation step (last row) are depicted. The implemented

algorithm selects points on the Pareto front where the EI is the maximum. Since two of

the objectives (AASM and −V AD) have relatively similar behaviour, the first update

is chosen based on both maximum EI values. The second update is selected where the

EI for V AS is the maximum and the third update is selected in the middle part of

the Pareto front. As can be observed in Figure 8.8, all the update points, meet the

filtration criterion of the 0.01 radius. As discussed in section 8.2.4.2, the optimisation

process is stopped when the convergence criterion is met. In the last two optimisation

steps the Pareto front obtained by NSGA-II run using the prediction surfaces is not

significantly changed. Consequently, the same optimum point is predicted.

Table 8.2: Infill point parameters and objective function evaluations

Design Diameter Pressure Diameter Pressure VAS AASM -VAD
X1 (0 - 1) X2 (0 - 1) X1 (mm) X2 (MPa)

UPD_01 0 0 2.672 0.6 0.008702 0.211611 -0.02916
UPD_02 0.935 0.176 3.921 0.758 0.038047 0.02439 -0.09234
UPD_03 0.715 0 3.627 0.6 0.02765 0.039457 -0.08616
UPD_11 0.028 0 2.71 0.6 0.008942 0.205837 -0.03044
UPD_12 0.897 0.767 3.87 1.291 0.046635 0.022709 -0.09294
UPD_13 0.262 0.761 3.022 1.285 0.017237 0.083795 -0.06794
UPD_21 0 0.367 2.672 0.931 0.008782 0.213357 -0.02949
UPD_22 0.901 0.617 3.876 1.156 0.042577 0.022664 -0.09209
UPD_23 0.651 0.145 3.541 0.731 0.026895 0.040592 -0.08517

8.3.4 Visualisation of the simulated sampling points

In Figures 8.9 and 8.10, spatial SM and wall circumferential stress contours, respec-

tively, are mapped to the deformed simulated models. It is evident that models with
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Figure 8.6: Surrogate model validation: On the left panel, SCVR values for all models
(rows). On the right panel, leave-one-out plots for all models (rows). Predicted y
stands for values extracted from the surrogates while y stands for values extracted
from the computational analyses.



8.3. RESULTS & DISCUSSION 147

fi
rs
t
it
er
at
io
n

se
co
n
d
it
er
at
io
n

th
ir
d
it
er
at
io
n

-
-

-

Figure 8.7: GP interpolation surfaces for the three models (columns) after each opti-
misation iteration (rows).
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Figure 8.8: NSGA-II search in the EI of the GP models (columns) in the initial DoE
and each optimisation iteration (rows). The Pareto non-dominated solutions along
with the update points are also mapped onto the design space to ensure exploitation
and exploration.
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reduced SM result in higher tissue stresses (c.f. Tables 8.1 and 8.2), for instance

DoE_08, DoE_11, DoE_12, DoE_16, DoE_18, UPD_12, and UPD_22. This is

expected from the fact that luminal gain leads to higher stresses in the arterial wall.

Especially in DoE_08, DoE_11, UPD_12 and UPD_22, the increased V AS index

is as a result of stent over-expansion. Interestingly, while dilation scenarios, DoE_11

and DoE_12, have similar strut apposition results, the V AS index for the DoE_11

is 12.66% higher. Such stress differences between models may lead to biomechanical

responses which in turn may result in different restenosis rates in the dilated segment.

This has been shown in recent studies (Keller et al. 2014, Timmins et al. 2011) report-

ing localised biological response as a result of mechanical forces imposed by the stent

system during deployment and, consequently, the radial compression of the arterial

wall. On the other hand, models with low induced mechanical environment are as a

result of suboptimal stent and wall interaction or stent under-expansion. This is well

demonstrated in models DoE_02, DoE_09, UPD_11 and UPD_21 where, especially

for the proximal parts, severe stent malapposition is observed which, in clinical prac-

tice, would likely necessitate post-operational manoeuvrings to restore the malapposed

struts. These findings suggest that a dilation protocol should be used that balances

lumen gain and the imposed mechanical stress environment for a given specific case.

8.3.5 Post-optimisation point selection

Generally, once a final Pareto front is obtained, the weighted l2 − metric can be im-

plemented to locate optimum points according to the user’s preference. This post-

optimisation technique, which is also known as “compromise programming”, picks a

solution which is minimally located from a given reference point (Deb 2001). Then,

according to the user’s judgement and the given patient-specific case, corresponding

weights to each objective function can be applied and, by minimising the weighted

l2 −metric, the optimum point can be located. Using the ideal vector (utopia point),

the first point selected was the closest Pareto front point to the ideal vector. To locate

this point, equal weights were used in Eq. 8.12.

In Figure 8.11, the final Pareto front obtained by a NSGA-II search of the prediction

models is depicted. The Pareto front is normalised according to the nadir and utopia

point (see eq. 8.11). The minimum Euclidean distance, or alternatively, the weighted

l2 − metric is the same in the last two iterations. Consequently, the same optimum

point is predicted. In Figure 8.11a, the sphere represents equal weighted l2 − metric

(with w1, w2, w3 = 1/3), and its radius is tangent to the Pareto front point which in

turn is the closest point to the utopia point. In Figure 8.11b, the elliptical sphere

represents a non-equal weighted l2 −metric. By way of example, the weights that were
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Figure 8.9: Spatial SM superimposed on the deformed stent models after balloon de-
flation: the spatial SM was calculated as the Euclidean distance between triangulated
vertex points on the external surface of the deformed stent and their normal projections
to the deformed lumen surface after the virtual expansion.
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surface after balloon deflation.



152
8.3.

R
E

SU
LT

S
&

D
ISC

U
SSIO

N

w1=1/ w2=1/ w3 =1/ w1=0.1 w2=0.8 w3 =0.0a b

-

-

Figure 8.11: Final Pareto front obtained by NSGA-II search in the final surrogate: a) the optimum point is selected
according to the minimum distance from utopia criterion, by applying equal wi to the weighted l2 − metric. b)
optimum point selected by setting w1 = 0.15, w2 = 0.8, w3 = 0.05



8.3. RESULTS & DISCUSSION 153

applied to the minimisation problem were w1 = 0.15, w2 = 0.8, w3 = 0.05. Its long axis

is equal to the Euclidean distance between the ideal vector and the point for which

the weighted l2 − metric is the minimum. Its short axes are equal to the minimum

weighted l2 −metric. Therefore, with this method, a Pareto front point can be easily

located in which an objective function is made to have higher importance than the

others. In Figure 8.11b, AASM has been assigned a greater weight to locate a dilation

protocol for which stent malapposition is of greater importance.

8.3.6 A set of optimum points

In Figure 8.12, results of SM and circumferential wall stresses are illustrated as ex-

tracted from the FEA simulations of the Pareto optimum point OPT_01 (according

to the minimisation problem of Eq. 8.12). The discrete values of the objective func-

tions for this model as extracted from the computational analysis are reported in Table

8.3.
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Figure 8.12: Results extracted from the FEA simulations of the OPT_01 point: a)
Spatial SM and b) maximum principal stresses superimposed on the deformed lumen
surface after balloon deflation.

In Table 8.4, a set of Pareto optimum points are reported (according to the min-

imisation problem of Eq. 8.12) along with their discrete values of the objective metrics

as predicted by the final surrogates. The predicted values for OPT_01 (c.f. Table

8.4) are within an acceptable difference of ±5% with the respective values extracted

from the computational analysis (c.f. in Table 8.3). As it can be observed, signif-
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Table 8.3: Values for objective metrics extracted from computational analysis for
Pareto optimum point, OPT_01.

Design w1 w2 w3 Diameter Pressure VAS AASM -VAD
X1 (mm) X2 (MPa)

OPT_01 0.15 0.8 0.05 3.412 1.077 0.0247300 0.0436589 -0.084500

icant improvement in AASM and −V AD (compared to the BASELINE point) can

be accomplished when selecting the OPT_01 interventional protocol. The OPT_02

point is the dilation strategy in which all the investigated objectives are of the same

importance. Interestingly, compared to the BASELINE point, a general improvement

of SM and −V AD index has been made. Contrarily, in OPT_03, the V AS metric

has been improved while the AASM and −V AD were compromised. At last, the op-

timum scenarios of OPT_04 and OPT_05 represent the cases in which the AASM

and V AS, respectively, has the maximum importance. As expected, OPT_04 and

OPT_05, result in the lowest AASM and V AS index, respectively.

Table 8.4: A set of optimum points selected according to the weighted l2 −metric and
their mechanical performance predicted by the final surrogates.

Design w1 w2 w3 Diameter Pressure VAS AASM -VAD
X1 (mm) X2 (MPa)

OPT_01 0.15 0.8 0.05 3.412 1.077 0.0233370 0.0420568 -0.08476108
OPT_02 1/3 1/3 1/3 3.338 1.075 0.0211685 0.0500785 -0.0815423
OPT_03 0.4 0.4 0.2 3.153 1.090 0.0174181 0.0661508 -0.07158087
OPT_04 0 1.0 0 3.925 1.500 0.0429983 0.0214624 -0.09061541
OPT_05 1.0 0 0 2.672 0.622 0.0084910 0.2125050 -0.02778052

8.3.7 Model limitations

The presented multi-objective optimisation process searched for optimum dilation pro-

tocols in the design space created by the two-variable parameterisation used. Moreover,

this search was carried out only for one patient-specific case. Therefore, a more “rich”

optimisation (involving more parameters), for delivery system (e.g. compliance, length,

etc.) and/or for the investigated vessel (e.g. stiffness of the plaque, geometry of the

vessel, etc.) could provide better outcomes when searching optimum dilation strate-

gies in patient-specific vessels with challenging disease. An additional limitation of this

work is the fact that more sophisticated constitutive models (especially for the vessel)

might result in different realisations of objective functions (scalar indices). However,

due to the comparative nature of the current work along with the fact that there is
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no clinical record of the investigated performance indices, the implemented constitu-

tive models can still provide valuable and potentially reliable results (especially in the

effort to indicate the non-physiologic stress state in regions interacting with the stent

system).

8.4 Conclusion

The work presented in this chapter investigated the optimisation of a dilation protocol

in a patient-specific RCA using balloon pressure and unpressurised balloon diameter as

variables. In particular, the mechanical performance of a modest number of protocol

realisations was predicted for metrics that quantify tissue stress, stent strut malappo-

sition and drug delivery. Due to the expense of FEA simulations for each realisation,

a Kriging surrogate modelling approach was employed using updates selected from the

multi-objective Pareto front derived from the expected improvement of each objective

function. Then, a post-optimisation method was used to demonstrate how, interven-

tional protocols can be derived for the selection of a patient-specific device, balancing

the competing objectives of minimised tissue stress and strut malapposition. The pro-

posed approach thus provides a tool for dilation system selection (e.g. alternative size

balloons and compliance charts could be supplied for a given stent) and design op-

timization of lesion-specific dilation systems, a process that will become realizable in

non-urgent cases with increases in computer power.
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Chapter 9

FINAL REMARKS

C
onclusions! The following content addresses the main findings, and conse-

quently, the major contributions made by this doctoral work. The current chapter

closes with recommendations on future work.

9.1 Conclusions

9.1.1 Knowledge from previous studies

In Chapters 1 and 2, recent contributions in PCI evolution are presented and elabo-

rated. These developments regard information extracted by clinical, experimental and

numerical studies that were carried out during the last two decades. It is clear that the

majority of these studies focused on the investigation of PCI evolution potentially with

respect to ISR and ST. After defining the major factors associated with these complica-

tions, numerous studies conducted to refine the stent systems, and consequently, the in

vivo biomechanical performance. Remarkably, the outcomes of this exhaustive research

by both clinicians and engineers demonstrate that contemporary coronary artery stents

can now be safer in short and long-term basis, especially as far as ISR is concerned. On

the other hand, the refinement of stents seems to be connected with “new generation”

clinical complications particularly after DES implantation and/or when the intervened

lesion is characterised by tortuous and long geometry with diameter discrepancy along

its length (“challenging disease”).

Despite consensus on stent design to improve its clinical performance with respect

to ISR has been reached, numerous issues associated with SM are still debatable. This

is more evident in the so-called “challenging cases” where optimum treatment solutions

have not yet been established. In particular, scientific evidence on the optimal stent

dilation protocol is still lacking and, as a result, SM and/or vessel trauma have been

extensively reported recently in clinical studies. Thus, the motive of this thesis was

157
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directed by the need to elucidate or trigger the scientific community with state-of-the-

art patient-specific numerical studies investigating how to optimise the delivery system

to refine (and ultimately eliminate) the clinical problem of SM, and consequently, LSD.

The work in this thesis represents the first numerical investigation of i) patient-specific

SM and LSD, ii) the mechanical performance of multi-folded and non-uniform diameter

dilation systems and iii) optimum dilation protocols in patient-specific reconstructed

arteries.

9.1.2 Main conclusions

The literature review of structural studies presented in Chapter 2 reveals the capa-

bilities of the finite element method in the optimisation of the stent design and the

procedural techniques in bifurcated vessels. In particular, the latest studies on bifur-

cation stenting (Foin et al. 2012, Morlacchi et al. 2014, Mortier et al. 2014) along with

the optimisation studies carried out by Pant et al. (2011) and Grogan et al. (2013)

represented state-of-the-art in the computational interventional cardiology modelling.

The authors of these studies constructed very elegant structural models to investigate

various bifurcation techniques and optimum designs of certain stents with respect to

different performance metrics. However, these studies would not have been feasible

without the publication of earlier studies shedding light on the fundamentals of stent

mechanics (Auricchio et al. 2001, Holzapfel et al. 2000, Migliavacca et al. 2002) and

the recent advances in high performance computing power.

Nowadays, it is accepted by all authors in computational biomechanics that the

most essential elements to built credibility and confidence for presented models are i)

verification and ii) validation. These two prerequisites, within the range of possibility,

are now indispensable to be presented prior to the outcomes. In Henninger et al. (2010),

it stated that “...regardless of the use, confidence in computational simulations is only

possible if the investigator has verified the mathematical foundation of the model and

validated the results against sound experimental data...”. Schwer (2006) defines verifi-

cation as “the process of determining that a computational model accurately represents

the underlying mathematical model” and validation as “the process of determining the

degree to which a model is an accurate representation of the real world”.

Succinctly, verification is the process carried out to ensure that the implemented

mathematical equations are solved correctly and that the numerical mesh resolution

does not result in a compromised computed solution. The latter has now been con-

sidered as a conventional process which is satisfied by numerical mesh convergence

tests. The former is usually satisfied by the so-called “code verification”, literally, the

testing of the computer algorithms used to solve the mathematical equations. In the
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current doctoral work, the commercial software ABAQUS (Simulia, Dassault Systemes,

Waltham, MA, USA) was used for the structural simulations. Therefore, it has been

verified by the code developers. Regarding the mesh resolution, mesh convergence tests

were presented in section 5.2. In addition to the mesh resolution, since the stent event

cannot be modelled in the duration of the actual time period, a sensitivity analysis was

conducted to ensure that the selected time period did not affect the numerical solution.

This was presented in section 5.3.

On the other hand, validation is the process to ensure that the implemented math-

ematical assumptions are valid to describe the actual physical system. This process is

the most demanding and it can be categorised into two predominant types, direct and

indirect validation (Henninger et al. 2010). Direct validation is the process in which

the investigator is setting an experiment that closely matches the numerical simulation

so that each material behaviour and the applied boundary conditions are incorporated.

Indirect validation is when the researcher is implementing experimental results from

the literature, therefore, he cannot control them. Amongst the two, indirect validation

seems to be unavoidable for numerical models of stenting for which the direct validation

is a costly, time consuming process and faces some challenging problems (e.g. high com-

plexity and variability of the biological system). The latter is the main reason why only

indirect validation was carried out in this doctoral thesis. In particular, experimental

data was used to ensure that the virtual balloon-stent models have a realistic inflation

behaviour. The data used compliance charts provided by the manufacturers (Abbot-

Vascular 2008, BostonScientific 2011) and were compared against virtual compliance

charts extracted by the numerical simulations (see sections 5.2.3, 7.3.1.1 and 7.3.1.2).

As for the investigated stents, experimental data published by Ormiston et al. (2011)

was used to test whether the virtual compression of the investigated devices matches

with that of the actual behaviour reported in that study.

The verification tests demonstrate that the selected mesh resolutions did not have

any impact to the final solution. In addition, the validation tests showed that the

investigated virtual model behaviour was in good agreement with the actual one. Thus,

it can be noted that these two prerequisites were satisfied, consequently, the numerical

results presented here can be considered as reliable and accurate especially for the

comparative nature of this work.

The main hypothesis in this thesis is that patient-specific vessels can be recon-

structed prior to PCI and following the extraction of vessel geometric characteristics,

optimum stent delivery can be accomplished to eliminate the incidence of SM and

further complications such as LSD. This has the potential to assist PCI planning, ac-

curate sizing of the stent system and, consequently, optimisation of stent deployment.

Therefore, virtual spaces were generated and, via the finite element method, computer
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simulations were carried out to investigate the mechanical performance of i) contem-

porary stents and ii) dilation systems with respect to SM and LSD in reconstructed

vessels with challenging disease.

The reconstruction process was presented in Chapter 3, and the methodology was

based on the fusion of CA and IVUS. Despite the fact that only CA has been used in

the majority of the PCI procedures, recent scientific clinical studies (Redwood et al.

2010, Takumi et al. 2014, Yoon and Hur 2012) confirm the importance of utilizing IVUS

as a supplementary tool especially in challenging cases. One of the major advantages

of IVUS is the ability to provide anatomic information, such as exact diameter, lumen

area, wall thickness and disease distribution in any cross section along the intervened le-

sion. Furthermore, IVUS can detect sub-optimal stent delivery such as SM (c.f. Figure

1.7) and LSD (c.f. Figure 1.8). For these reasons, many interventional cardiologists are

now using IVUS pre and post-operatively to size the stent and ensure optimum stent

delivery, respectively. This is the rationale of the presented reconstruction methodol-

ogy, from which not only the 3D geometry of the vessel but the volumetric substance

of the vessel wall can be extracted.

Chapter 6 proceeded with the first computational work investigating the mechani-

cal performance of three commercial stents along with a modified platform (ultimately

adopted by the company) with respect to SM, and subsequently, LSD in a reconstructed

challenging RCA case. The proposed model demonstrated i) the spatial SM, ii) the

integrity and iii) the validation of contemporary stent designs. Regarding SM, all the

devices had almost similar results, with sub-optimal stent apposition in the proximal

part of the vessel. This agrees with the hypothesis that proximal malapposition is

primarily dependent on the variation in vessel diameter and the associated diameter

mismatch that occurs when sizing the stent on the distal diameter. These malapposed

regions are prone to further complications such as ST (Cook et al. 2009) if not de-

tected immediately or LSD in the attempt to restore the malapposed struts (Hanratty

and Walsh 2011) when malapposed struts are detected immediately after stenting. On

the other hand, the compression simulations demonstrated that there is a significant

difference in stent integrity between the investigated devices. Interestingly, the results

revealed that the deformation response of a stent exposed in a localised load differ

to the deformation response of a device which is exposed to a distributed load. In

particular, the modified stent which was proposed showed significantly higher longitu-

dinal resistance in a localised load than a distributed load. This suggests that stent in

vitro performance can differ significantly from that in vivo. Unsurprisingly, the tested

workhorse stent (Stent D; CYPHER stent) demonstrated drastically higher stiffness.

This can be explained by the fact that this platform is characterised by thick struts

and many connectors between the stent rings. However, as has been shown in previous
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studies, such thick devices impose high stresses on the vessel walls (Timmins et al.

2011) and non-physiologic flow patterns (Foin et al. 2014) leading to vessel trauma and

ISR. They are also relatively inflexible. The previous studies conclude that although

a thinner platform is preferable, attention should be paid to potential flows that can

be generated by finer stents. Therefore, it was speculated that by modifying a con-

temporary stent design just in the very proximal part, its stiffness can be significantly

improved, consequently, avoiding the potential of stent strut protrusion in the lumen.

As a result of the observations made in Chapter 6 (especially the outcomes of SM),

this work moved forward to investigate how SM can be prevented by novel non-uniform

and multi-folded dilation systems. In Chapter 7, the first structural work investigat-

ing SM in varying diameter patient-specific vessels was presented. In particular, the

aim was to minimise the average SM with a single-step procedural protocol. The hy-

pothesis was that optimum delivery in challenging cases should be accomplished by a

single-step approach, thus minimising the potential of further clinical complications as

a result of SM. It was demonstrated that the proposed delivery systems can mitigate

possible malapposed struts in the proximal part of the intervened vessels whilst main-

taining a relatively low induced stress environment. Arithmetic metrics were derived

to evaluate the performance of each simulated system with respect to SM, wall cir-

cumferential stresses and geometrical vessel changes. The results indicate that there

was a 41.5% and 48.31% decrease in average stent strut malapposition for the RCA

segment and bifurcated vessel, respectively. Furthermore, these systems can increase

both the MLA and the V G when compared with the baseline models (uniform dilation

systems). More specifically, in the vessel with 20% diameter variation between the

proximal and the distal part (second RCA segment), the increase in MLA and V G

was 2% and 8.8%, respectively. For the bifurcated vessel with 50% diameter difference

between the proximal and the distal ends, the increase in MLA and V G was 0.7% and

1.4%, respectively. The fact that the MLA is maximised by the proposed systems is

very important for the success of the PCI procedure where the general aim is to max-

imise minimum lumen area. Furthermore, the global geometric characteristics of the

intervened vessels did not alter significantly. Therefore, there was no observation of

the so-called “vessel strengthening” which results in tissue prolapse and higher stresses

in the inner curvature of the vessel, and consequently, in ISR (Wu et al. 2007). So, this

clinically motivated work, shed light on the potential for changing direction from the

current trend in computational studies in which the major focus is the refinement of

the stent platform. Thus, the general prospect was that optimum stent delivery could

potentially be achieved by alternative delivery systems that can result in complete stent

expansion, optimum stent apposition, complete lesion coverage and low vessel stress

environment.
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Finally, the first multi-objective optimisation study on dilation system was pre-

sented in Chapter 8. It was shown that via structural and surrogate modelling, op-

timum dilation scenarios in patient-specific challenging vessels can be devised. The

optimum performance was derived with respect to average malapposition, tissue stress

and drug diffusion in the vessel walls. The work was parametrised in a two-dimensional

design space, comprising the balloon unpressurised diameter (initial profile length) and

the nominal pressure applied to the inner surface of the balloon. As for the study

parameters, the results indicated that the balloon initial diameter made stronger con-

tribution than the applied pressure for all the investigated metrics of performance.

The constructed surrogates demonstrated that stent malapposition was inversely pro-

portional to tissue stress and drug diffusion. Aiming to identify multiple optimum

design models lying on the so-called “Pareto front” the NSGA-II algorithm was imple-

mented in a novel multi-objective optimisation routine which updates the surrogates

by locating regions in the design space where the EI would be maximum. Finally, a

post-optimisation strategy demonstrated how different optimum points can be selected

according to the importance of each performance metric. The latter could potentially

be used as a useful tool in PCI planning and assist interventional cardiologists to select

optimum patient-specific dilation strategies.

9.1.3 Contributions

The most significant contributions made by this thesis are:

• it was shown that patient-specific stent malapposition in the proximal part of the

intervened lesion was dependent on the variation of vessel diameter and not on

different stent platforms.

• it was shown that longitudinal stent deformation is significantly different between

different stent platforms. In particular, the results indicated that stent longitudi-

nal integrity depends on the number of the connectors between the circumferential

rings. The proposed modified stent demonstrated a high longitudinal strength

and, as result, its axial resistance prevented any stent protrusion in the vessel

lumen.

• the patient-specific simulations revealed that the threshold where contemporary

stents lose their longitudinal resistance may differ in vivo compared to in vitro.

• it was demonstrated that variable diameter dilation systems can result in more

than a 40% decrease in average malapposition relative to currently used systems.

In parallel, the proposed systems did not alter significantly the stress environment
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such that the risk of vessel trauma, tissue prolapse and, consequently, restenosis

is assumed to be minimised.

• it was shown that i) the initial balloon profile length plays a far more important

role than the applied pressure when average malapposition, tissue stress and drug

diffusion are considered and ii) stent malapposition is inversely proportional to

tissue stress and drug deliverability.

• it was demonstrated that the proposed multi-objective optimisation algorithm

can ensure both exploitation and exploration during the update steps. As a

result, the surrogates can be improved both globally and locally and the final

solution can be achieved in an effective way. Furthermore, the proposed post-

optimisation method can locate optimum points by both “deterministic” and

“heuristic” means.

9.2 Recommendations for future directions

At present, it is well known that numerous computational studies on stenting have

been conducted by different research groups both in academia and industry. Therefore,

innovations/ideas are still needed for procedural evolution. This evolution concerns i)

further stent refinement, ii) development of new dilation systems and iii) insights on

the optimisation of the procedural steps.

The methods and the outcomes presented in this doctoral work can be used as

a reference point in future computational studies (both structural and optimisation)

for coronary artery subject-specific modelling. Below, from the author’s perspective,

suggestions for future work are given. In addition several recommendations to improve

the techniques and methodologies applied in this thesis are also provided.

In general, the most significant improvements that can be achieved in future studies

are outlined below, and they can be classified into two main categories:

1. Suggestions for improvement in stent modelling

• improvements in subject-specific modelling (morphological and constitutive)

• development of methods for computational virtual space validation

• development of transient computational models

• improvements in dilation system modelling

2. Suggestions for improvement in multi-objective optimisation studies

• introduction of new design variables and objective functions
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• refinement of the objective functions for constrained optimisation

• population based studies to optimise stent dilation protocols according to

any patient-specific vessel

9.2.1 Suggestions for improvement in stent modelling

9.2.1.1 Improvements in subject-specific modelling

In this thesis, the reconstructed vessels were modelled by an isotropic hyperelastic

material. In reality, all human coronary arteries are anisotropic. A more sophisticated

constitutive model was proposed by Holzapfel et al. (2005a). This model is more

realistic since it considers the collagen fiber orientation and dispersion in each layer

representing heterogeneous and anisotropic behaviour. Over the last five years, this

model has been successfully implemented by Mortier et al. (2011a), Mortier et al.

(2010) and Conway et al. (2012). However, Holzapfel et al. (2005a) investigated the

passive mechanical properties of different arterial layer strips. The interconnection

of the layers was not investigated and the experimental tests concerned only small

arterial segments. Moreover, the segments which were investigated were extracted by

only thirteen coronary arteries. Therefore, to fill the gap between clinical findings and

computational results, future studies could potentially aim to consider subject-specific

constitutive parameters derived from the whole length of the investigated segment.

Furthermore, an essential development in the upcoming computational models could

be the inclusion of i) the plaque composition variation and ii) the residual stresses

before stenting.

9.2.1.2 Development of validation methods

Mortier et al. (2011a) built silicon vessel models to validate their numerical models.

Although an overall satisfactory agreement was achieved, specific discrepancies between

the numerical and the experimental outcomes were reported. These discrepancies would

have been higher if the modelled vessels were not idealised but their geometry would

have been obtained from patient-specific vessels. Therefore, silicon models might serve

as a good experimental tool for conducting studies of a comparative nature. However,

more sophisticated materials could provide a more reliable tool when the focus is on

the deformation of the vessel walls.

9.2.1.3 Development of transient computational models

All the structural simulations presented in this doctoral work were considered as quasi-

static. The quasi-staticity was ensured by eliminating the inertial forces to that of the
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deformation of structure only. The time period was defined by frequency analysis (see

section 5.3). Therefore, in all the patient-specific simulations, approximately the same

time period was used. Interestingly, Kawasaki et al. (2009) investigated the impact of

DES delivery inflation time in eighty-one coronary lesions. By means of IVUS, it was

shown that the prolonged delivery time duration resulted in better stent expansion (see

Figure 9.1). Therefore, it would be of real interest to include the parameter of time in

future structural simulation particularly when stent optimum expansion is considered.

Furthermore, in the optimisation study presented in Chapter 8, the drug diffusion was

modelled as time independent. In reality, the problem of drug transport is transient.

Future studies investigating drug deliverability could take into account the parameter

of time. Ideally, an exponential function could be derived to describe the drug release

from the stent to the vessel walls. Finally, the remodelling of the vessel wall as a

function of time could be a potential area of investigation in future studies.

Figure 9.1: Comparison of stent deployment for 20 sec duration with that of additional
stent inflation for 60 sec: A 61-year-old male with 99% stenosis of the distal left
circumflex underwent recanalization therapy with a 2.5 mm sirolimus-eluting stent.
IVUS imaging showed that the stent cross-sectional area at the lesion increased from
4.2 mm2 after inflation for 20 sec to 5.5 mm2 after the additional inflation for 60 sec.
As a result, the stent expansion ratio also clearly increased from 70.7 to 92.6%. Image
reused from Kawasaki et al. (2009), with permission from John Wiley and Sons.
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9.2.1.4 Improvements in the dilation system modelling

As stated in section 5.4, one of the major limitations in the presented deployment

simulations is the constitutive model which was used to describe the balloon models.

In reality, instead of isotropic, and linear elastic, the balloons used in interventional

cardiology are considered as cylindrically orthotropic as described in Holzapfel (2000)

and successfully implemented in Kiousis et al. (2009). Interestingly, from Figure 9.2, it

can be observed that the overall numerical compliance behaviour presented in Kiousis

et al. (2009) is very similar with those presented in Chapters 5 (c.f. Figure 5.7) and

7 (c.f. Figure 7.4). Therefore, when the focus of the numerical study is the final

deformation of the balloon; especially at nominal pressures, the assumptions made

in this doctoral work are still acceptable. On the other hand, if numerical studies

investigate the transient inflation behaviour of balloon models used in interventional

cardiology, more advanced constitutive models should be adopted. Additionally, a very

interesting contribution in the effort to optimise dilation models would be to model the

manufacturing process that has a direct impact on the final balloon inflation behaviour.

Figure 9.2: Experimental results in comparison with results obtained from a finite
element simulation of the dilation pro-ess of the Bridge Assurant balloon analyzed
with the material model (6). Inner balloon pressure pb vs. central balloon diameter.
Up to about pb = 0.5 bar the balloon diameter increases considerably and beyond
that pressure the balloon stiffens circumferentially. The computational model shows
good agreement with the experiments. Image reused from Kiousis et al. (2009), with
permission of Springer.
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9.2.2 Improvements in multi-objective optimisation studies

9.2.2.1 Introduction of new design variables and objective functions

Design variables

In the multi-objective optimisation study (Chapter 8) the design space comprised

two design variables: the initial balloon diameter and the applied pressure to expand

the stent to a certain diameter. In reality, the optimisation of the dilation strategy

depends on other parameters as well, such as the compliance of the balloon, the infla-

tion time (Kawasaki et al. 2009) and finally, the vessel resistance to stent deployment.

Therefore, future optimisation studies could include one or more of the additional de-

sign parameters to optimise the dilation strategy and evaluate the contribution of each

design variable to each of the objective functions.

Objective functions

Three objective functions were implemented to search for optimum dilation scenar-

ios. These objectives are based on average values derived as a function of wall vessel

volume and stent surface area. However, there is not yet any information from clinical

studies on such objective functions. Although increased stress values and vessel over-

stretching are highly associated with ISR (Keller et al. 2014, Timmins et al. 2011),

there is no clinical evidence whether these stresses concern average values or peak val-

ues. Similarly, even though it has been found that SM is correlated to ST (Cook et al.

2007), it is still questionable whether this regards overall or localised strut malappo-

sition. Also, complications from suboptimal drug deliverability might be associated

with specific regions where the drug is not diffused and not with the overall intervened

volumetric wall region. Therefore, if future clinical studies can provide quantitative

information on stent performance, next computational studies could consider this data

as objective functions and/or as threshold values to set constraints in multi-objective

optimisation studies.

9.2.2.2 Introduction of population based studies

Although the current doctoral work indicated favourable results compared to standard

practice, the outcomes cannot, at this stage, be generalised for all cases. The results are

specific to the few patient cases considered in this work. Thus, the main aim of future

research could be to perform population based studies in which many tens of patient

cases will be processed to generate data for geometry characterisation, classification

and uncertainty. This has the potential to assist interventional cardiologists to optimise
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stent delivery in any patient-specific case based on surrogate models constructed after

numerous multi-objective optimisation studies.



Appendices

169





Appendix A

LUMEN AND WALL SEGMENTATION

The second step of this reconstruction methodology concerns the definition of lumen

and media-adventitia border contours. This is performed by an interactive segmenta-

tion process which is based on active contour models (snakes). Snakes have been used

broadly for edge detection within the medical image processing. A snake is nothing

more than an ordered set of points (snaxels), and the aim is to minimise the energy

(equation A.1) of a parametric close curve by external forces, which has to be initially

defined on the image plane. The general definition of the minimising energy function

is

Esnake = Eint + Eext (A.1)

where Eint is the internal energy formed by the snake configuration itself and Eext

is the external energy formed by external forces affecting the snake. In the IVUS

Angio-Tool approach, the energy functional A.1 is defined as

Esnake = Econt + Ecurv + Eimage (A.2)

where Econt and Ecurv represents the internal energy, while Eimage corresponds to

the external energy. In more detail a linear combination of the equation A.2 is used,

having the following form

Esnake,i = αsEcont,i + βsEcurv,i + γsEimage,i (A.3)

where αs, βs, γs are weighting factors controlling the relative influence between the

terms. All the above are more analytically explained in (Giannoglou et al. 2007) and

(Papadogiorgaki et al. 2008).
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Appendix B

SIMULATION DESIGN

METHODOLOGIES

Simulation set up

In order to reduce the computational time in simulations of stent deployment in the

reconstructed vessels, two methodologies were compared in which stenting procedure

was simulated in the first RCA case presented in Chapter 3. The first methodol-

ogy consisted of three steps (crimping, positioning, and expansion), whilst the second

consisted of two steps (crimping, expansion). Figure B.1 illustrates the different ap-

proaches followed. Specifically, in the first approach (from the top left and anticlock-

wise), the positioning of the stent into the diseased site was undertaken using FEA,

a fact that increases the total computational time. On the other hand, the second

approach (from the top left and clockwise) positioned the stent system into the ves-

sel within the CAD software with geometrical transformation which maps the central

axis of the stent system on the reconstructed IVUS catheter line. The displacement

of the stent-catheter shaft into the stenotic section of the RCA (expensive approach)

was managed by the application of a longitudinal smooth load displacement on the

distal nodes of the catheter shaft. Surface-to-surface contact definition was used for

the contact pair of catheter shaft-guide wire, with contact properties defined as tan-

gential and frictionless. To ensure that the stent stays positioned on the catheter shaft,

a continuous pressure load (≈ 0.01 MPa) throughout the step was applied on its outer

surface, while its contact with the catheter shaft was modified as tangential and rough.

To expand the stent, a deformable cylinder was used. A surface-to-surface contact

algorithm was used for the stent-vessel pair, and a friction of 0.05 was defined for the

tangential contact property (Auricchio et al. 2011, Dunn et al. 2007). All other contacts

(including self-contacts) were modelled with 0.2 friction coefficient for the tangential

contact behaviour (De Beule et al. 2008, Mortier et al. 2010).

173



174

Results

The simulation steps for both design methodologies are illustrated in Figure B.2.

On the bottom right, it can be observed that the final configuration of the stent is well

matched between the two approaches.

In Figure B.3, boxplots of the average nodal von Mises stresses of the stent, for the

two simulation methodologies, are illustrated indicating almost identical results at the

end of the stent expansion. The discrepancy of maximum, minimum and average von

Mises stress yield values within the acceptable range of 0.7 − 3.7% (see Table B.1).

Table B.1: Quantitative comparison of the two simulation design strategies

Simulation
Strategy

Max. Mises
Value (MPa)

Min. Mises
Value (MPa)

Average Mises
Value (MPa)

Approach 1 454.934 9.9261 134.5239

Approach 2 451.4660 9.7938 129.5348

Relative difference (%) 0.7 1.3 3.7
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Figure B.1: Illustration of the two simulation design strategies. Approach 1, from the top left and anticlockwise to
the bottom right. Approach 2, from the top left and clockwise to the bottom right.
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Figure B.2: Qualitative comparison of two design methodologies: Top, the first simulation approach is depicted. The
method consisted of three steps. Bottom, the second simulation approach is depicted which consisted of two steps. Bottom
right, the deformed stents are superimposed from the two investigated approaches after the deployment steps
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Figure B.3: Boxplots of the average von Mises distribution of the expanded stent
between the two simulation approaches
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Appendix C

SIMPLIFICATION OF THE

EXPANSION METHOD

For the purposes of the study presented in Chapter 6, stent deployment was performed

with a deformable surface and a realistic five folded balloon. The deformable surface

expanded the stent to its nominal diameter with predefined displacement while the

balloon deployment was conducted by a gradual applied internal pressure to the inner

surface of the balloon. At the end of each expansion, the nodal distances between the

upper surface of the stent and the inner surface of the vessel were calculated with a

python script developed for post-processing in ABAQUS.

Figure C.1 illustrates stent deployment by a deformable surface (left) and by a

realistic five folded balloon (right). The CDF graphs of the resulting malapposition at

the end of the expansion steps were plotted, figure C.2) . The CDF graphs indicate

that for both expansion methods in this patient specific case, the stent malapposition

is identical following device deployment.

As previously discussed, consideration should be taken into the simulation of a vir-

tual stent deployment step. It has been shown (De Beule et al. 2008, Gervaso et al.

2008, Grogan et al. 2012) that when simulating free stent expansion, the balloon model

can be replaced by a deformable surface. On the other hand, Gervaso et al. (2008)

raised reservations on whether the balloon could be excluded from a stent deployment

in a vessel. So, taking into consideration those recent studies, a qualitative and quan-

titative comparison between two different expansion methods as described in section

C was conducted. The objective to be evaluated was the clinical complication of stent

malapposition. For this patient specific case, it was found out that the methods yielded

almost identical results, Figure C.2. From the CDF graphs, the stent malapposition

(nodal euclidean distance after the deployment) values are evenly distributed in both

expansion techniques. Therefore, for simulating stent deployment in this patient spe-

cific vessel, as an optimal choice, the surface expansion was selected.
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Despite the fact that it was managed to minimise the computational cost (∼ 70%

reduction in the time duration of the entire 8-domain parallel simulation) of the stent

deployment step, the deformable surface is not recommended without investigating

its accuracy. For a more challenging case (e.g case 2 and 3 in Chapter 3), the de-

formable surface is expected to provide unrealistic results. Balloon expansion causes

straightening of the vessel, an effect which has been shown to be a key reason for

further clinical complications. On the other hand, the deformable surface does not

straighten the artery and the stent seems to take the curvature of the vessel. Thus, be-

fore implementing an alternative expansion method from the golden standard (balloon

expansion), carefully qualitative and quantitative comparisons should be conducted.
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Figure C.1: Illustration of stent expansion with a deformable surface (left) and a realistic five folded balloon (right). Cross
sections of the expansion means are depicted next to each model
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Figure C.2: CDF were plotted after each expansion step measuring the stent malap-
position. The CDF graphs are almost identical demonstrating that for this patient
specific case, a deformable surface could be used for simplicity
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MULTI-FOLDED BALLOON

GENERATION

D.1 Main script

Balloon_Model_Fun.py

# \ Balloon_Model_Fun .py

__author__ = ’GiorgosRagkousis ’

import clr

clr . AddReference ("mtrand ")

import numpy as np

import rhinoscriptsyntax as rs

import subprocess

rs. CurrentView ("Right ")

# the Catheter_Diameter defines the outer diameter of the catheter /

# maximum tip diameter

Catheter_Diameter = 0.89

# the N_Circles is the number of the concentric circles for the folded balloon

# construction

N_Circles = 5

# L_straight_body is the axial balloon length , without the balloon tapered ends

L_straigh_body = 14.0

# L_tappered_ends is the length of each tapered balloon end

L_tappered_ends = 2.

# the following parameter defines the drag seam parameter

N_seam = 7

# catheter_shaft_diameter is the outer diameter of the catheter shaft

catheter_shaft_diameter = 0.45

# the following part defines the MultiFoldProfile function which will generate

# the crossing profiles it takes two arguments , one is the position along the

# longitudinal axis and the other is the sympy file path which calculates the

# profile

def MultiFoldProfile (position , input_filename ):

# pass the variables of the python sympy script to the IronPython Rhino

result = subprocess . check_output ([ input_filename ])

x = result.split ("\n")

t = float(x[2])

D_initial = float(x[3])

First_angle = float(x[4])

Second_angle = float(x[5])

Circumference = float(x[6])

N_f = int (x[7])

# create empty lists for importing the curves and the points

pts_1 = []

cocentrics = None
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pts_Guid = []

pts_Guid_first_angle_list = []

pts_Guid_second_angle_list = []

parameter = []

parameter_ = []

parameter__ = []

Curves_1 = []

Curves_2 = []

Curves_3 = []

# This loop will split the circumference of each circle to generate the

# desired profile

for i in range(int ( N_Circles )):

cocentrics = rs. AddCircle (rs.WorldYZPlane (),

(0.5*( D_initial +2* i*(t))))

points_ = rs. DivideCurve (cocentrics , N_f , create_points =False ,

return_points =True )

pts_1 . append( points_ )

for j in points_ :

parameter . append (rs. CurveClosestPoint (cocentrics , str (j)))

Curves_1 . append (rs. SplitCurve (cocentrics , parameter ))

pts_Guid = rs. AddPoints ( points_ )

pts_Guid_first_angle = rs. RotateObjects (pts_Guid , (0, 0, 0) ,

First_angle , copy =True )

pts_Guid_first_angle_list . append (pts_Guid_first_angle )

if i >= 3 and Second_angle != 0:

pts_Guid_second_angle = rs. RotateObjects (pts_Guid , (0, 0, 0),

Second_angle ,

copy =True )

pts_Guid_second_angle_list . append( pts_Guid_second_angle )

elif i >= 3 and Second_angle == 0:

pts_Guid_second_angle = None

parameter = []

arrpts_Guid_first_angle = np.array ( pts_Guid_first_angle_list )

arrpts_Guid_second_angle = np.array ( pts_Guid_second_angle_list )

arrpts_1 = np.array (pts_1 )

# first angle point segmentation

# insert the pts into a list and take their coordinates

pts = []

for row in arrpts_Guid_first_angle :

for k in row :

pts .append (rs. PointCoordinates (k))

# convert the curves_1 list into a numpy array

Curves_1arr = np.array ( Curves_1 )

Curves_1arr = np. reshape (Curves_1arr , (5* N_f ,))

# convert the pts list to a numpy array

arrpts = np.array (pts )

# import both arrays into a (25 ,2) array

M_1 = np.array ([Curves_1arr , arrpts ]).T

# split the circles along with the rotated points ( first angle)

for ii in range(len (M_1 )):

parameter_ . append(rs.CurveClosestPoint (M_1 [ii , 0], str (M_1 [ii , 1]) ))

Curves_2 . append (rs. SplitCurve (M_1 [ii , 0], parameter_ [ii ]))

# second angle point segmentation

# create an empty list for points_ ( points of the second angle)

pts_ = []

for row in arrpts_Guid_second_angle :

for k in row :

pts_ . append (rs. PointCoordinates (k))

# convert the Curves_2 list to an numpy array

Curves_2arr = np.array ( Curves_2 )

# Curves_1arr = np. reshape ( Curves_1arr , (25 ,))

# convert the pts_ list to a numpy array

arrpts_ = np.array (pts_ )

# extract only the two outer arcs of the circles to be segmented

listwing_ends = []

for v in range(len ( Curves_2arr )):

if v >= 3* N_f :

listwing_ends . append (np.array ( Curves_2arr [v, 1]) )

# delete the arcs for the first angle

if v >= 0:

rs. DeleteObject ( Curves_2arr [v, 0])

# convert the list with the curve segment to a numpy array (10 ,)

arrwing_ends = np.array ( listwing_ends )

# create a (10 ,2) array with the curves guids and the point coordinates

M_2 = np.array ([ arrwing_ends , arrpts_ ]).T
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# iterate through the numpy array and split the curve segments with the

# points

# put the segmented curves into a list Curves_3

for i in range(len (M_2 )):

parameter__ . append (rs. CurveClosestPoint (str (M_2 [i, 0]) ,

str (M_2 [i, 1]) ))

Curves_3 . append(rs.SplitCurve (str (M_2 [i, 0]) , parameter__ [i]))

arrCurves_3 = np.array (Curves_3 )

# Delete the arcs for the second angle

for i in range(len (arrCurves_3 )):

rs. DeleteObject ( arrCurves_3 [i, 0])

# Create arrays for each set of points , arrpts_1 , arrpts_2 , and arrpts_3

# arrpts_1 . shape = (25 ,25) arrpts_2 = (25 ,25) arrpts_3 = (2 ,5)

arrpts_2 = np.reshape (arrpts , (5, N_f ))

arrpts_3 = np.reshape (arrpts_ , (2, N_f ))

# This loop creates the straight line segment to connect the arcs

for a in range(N_f ):

# small segments connecting the coecentric arcs

rs. AddLine ( arrpts_1 [0, a], arrpts_1 [1, a])

rs. AddLine ( arrpts_3 [0, a], arrpts_3 [1, a])

for i in range(len (arrpts_2 )):

for j in range(len (arrpts_1 )):

if i == 0:

if j == 2:

rs.AddLine (arrpts_2 [i, a], arrpts_1 [j, a])

elif i == 1:

if j == 3:

rs.AddLine (arrpts_2 [i, a], arrpts_1 [j, a])

elif i == 2:

if j == 4:

rs.AddLine (arrpts_2 [i, a], arrpts_1 [j, a])

# select all the curves and join them in a single object Profile_Proximal

rs. Command (’_SelAll ’, echo =True )

# join all the selected curves

rs. Command (’_Join ’, echo =True )

Profile_Proximal = rs. LastCreatedObjects ()

rs. UnselectObject ( Profile_Proximal )

# smooth the curves

rs. RebuildCurve (rs.coerceguid ( Profile_Proximal ), degree=5, point_count =150)

# scale the smoothed curve profiles

length_proximal = rs. CurveLength ( Profile_Proximal )

scale_f_pro = Circumference / length_proximal

Profile_Proximal = rs. ScaleObject ( Profile_Proximal , (0, 0, 0) ,

(scale_f_pro , scale_f_pro , scale_f_pro ),

copy =False )

arrStart = (0, 0, 0)

arrEnd = (position , 0, 0)

arrVector = rs. VectorCreate (arrEnd , arrStart )

Profile_Proximal = rs. MoveObject ( Profile_Proximal , arrVector )

return Profile_Proximal

# ##------------ function for the catheter system ----------###

def catheter_system ():

circle_cap_proximal = rs. AddCircle (rs. WorldYZPlane (),

0.5* Catheter_Diameter )

circle_cap_proximal = rs. MoveObject ( circle_cap_proximal ,

(-( L_tappered_ends +1.0) , 0, 0))

circle_cap_proximal_ = rs. AddCircle (rs.WorldYZPlane () ,

0.5* catheter_shaft_diameter )

circle_cap_proximal_ = rs. MoveObject ( circle_cap_proximal_ ,

(-( L_tappered_ends +1.0) , 0, 0))

circle_cap_proximal_1 = rs.CopyObject ( circle_cap_proximal_ , (-2, 0, 0))

circle_cap_proximal_1_ = rs. OffsetCurve ( circle_cap_proximal_1 , (0, 0, 1) ,

0.08)

circle_cap_distal = rs.AddCircle (rs. WorldYZPlane (), 0.5* Catheter_Diameter )

circle_cap_distal = rs.MoveObject ( circle_cap_distal ,

(( L_straigh_body +( L_tappered_ends -1.0) ),

0, 0))

circle_cap_distal_ = rs. AddCircle (rs. WorldYZPlane (),

0.5* catheter_shaft_diameter )

circle_cap_distal_ = rs. MoveObject (circle_cap_distal_ ,

(( L_straigh_body +( L_tappered_ends -1.0) ),

0, 0))
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circle_cap_distal_1 = rs.CopyObject ( circle_cap_distal , (2, 0, 0))

circle_cap_distal_1_ = rs. CopyObject (circle_cap_distal_ , (2, 0, 0))

outer_prox = rs.AddLoftSrf ([ circle_cap_proximal_1_ , circle_cap_proximal ])

inner_prox = rs.AddLoftSrf ([ circle_cap_proximal_1 , circle_cap_proximal_ ])

cap_inner_prox = rs.CapPlanarHoles ( inner_prox )

cap_outer_prox = rs.CapPlanarHoles ( outer_prox )

tip_proximal = rs. BooleanDifference (outer_prox , inner_prox ,

delete_input =True )

outer_dist = rs.AddLoftSrf ([ circle_cap_distal_1_ , circle_cap_distal_ ])

inner_dist = rs.AddLoftSrf ([ circle_cap_distal_1 , circle_cap_distal ])

cap_inner_dist = rs.CapPlanarHoles ( inner_dist )

cap_outer_dist = rs.CapPlanarHoles ( outer_dist )

tip_distal = rs.BooleanDifference (inner_dist , outer_dist ,

delete_input =True )

circle_shaft = rs. AddCircle (rs. WorldYZPlane (), 0.5* catheter_shaft_diameter )

circle_shaft = rs. MoveObject (circle_shaft ,

(-( L_tappered_ends +1.0) , 0, 0))

path_id = rs. AddLine ((-( L_tappered_ends +1.0) , 0, 0),

(( L_straigh_body +( L_tappered_ends -1.0) ), 0, 0))

Catheter_shaft = rs.ExtrudeCurve (circle_shaft , path_id )

return [ Catheter_shaft , tip_distal , tip_proximal ]

if __name__ == ’__main__ ’:

# generate the balloon crossing profiles proximally and distally for the

# (non ) tapered balloon

Profile_Proximal = MultiFoldProfile (0, r"..\ sympyp_proximal .cmd ")

Profile_Distal = MultiFoldProfile ( L_straigh_body , r"..\ sympyp_distal .cmd ")

# Create two circles , one for the proximal end , and the other for the

# distal end

# define points for vector creation

Start_vector_prox = (0, 0, 0)

End_vector_prox = (0 - L_tappered_ends , 0, 0)

End_vector_distal = ( L_straigh_body + L_tappered_ends , 0, 0)

# create translation vectors

vector_prox = rs. VectorCreate ( End_vector_prox , Start_vector_prox )

vector_distal = rs. VectorCreate ( End_vector_distal , Start_vector_prox )

# create the circles for closing the balloon ends

End_circles = rs. AddCircle (rs. WorldYZPlane (), Catheter_Diameter /2.0)

Proximal_circle = rs. CopyObject (End_circles , vector_prox )

Distal_circle = rs. CopyObject (End_circles , vector_distal )

# create a list with all the curve profiles

Curve_List = [ Proximal_circle , Profile_Proximal , Profile_Distal ,

Distal_circle ]

# change the curve seams of the crossing profiles

Profile_list = [ Profile_Proximal , Profile_Distal ]

i = 0

for i in Profile_list :

domain = rs.CurveDomain (i)

parameter = ( domain [0] + domain [1]) /( N_seam -1)

rs. CurveSeam (i, parameter )

# loft the NURBS profiles

Balloon_srf = rs. AddLoftSrf (Curve_List , loft_type =2)

Balloon_srf = rs. MoveObject (Balloon_srf , (-1, 0, 0))

Balloon_catheter = catheter_system ()

D.2 Input script

calculate_balloon_profile.py
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# \ calculate_balloon_profile .py

__author__ = ’GiorgosRagkousis ’

import sympy as syp

import math as m

import cmath as cm

# this is the unknown variable that it has to be calculated . C0 is the gap

# between each concentric circle.

C0 = syp . Symbol(’C0’, real =True )

# initial diameter , circumference of the unloaded balloon

D_s = 2.798

Circ = m.pi*D_s

# number of folds

N_f = 6

# Diameter of the catheter shaft , note this is not the diameter of the

# catheter profile

D0 = 0.6

# angles controlling the folded balloon profile , and outer folded diameter

# (fi is controlling the outer profile )

theta2 = 30.0

fi2 = 59.0

theta1 = ( theta2 /180.0) *syp .pi

fi1 = (fi2 /180.0) *syp .pi

# Definitions of 6 different equations all of them in respect to CO.

C_t = 5.0* syp .pi *(D0 +4.0* C0)

St123 = 1.5* theta1 *( D0 +2.0* C0)

St45 = fi1 *( D0+7.0* C0)

l1 = (syp .sqrt ((0.5*( D0+4.0* C0) -0.5* D0*cm.cos ( theta1))**2 +

(0.5* D0*cm.sin ( theta1))**2) )

l2 = (syp .sqrt ((0.5*( D0+6* C0) -0.5*( D0 +2.0* C0)*cm.cos ( theta1))**2 +

(0.5*( D0+2.0* C0)*cm.sin ( theta1))**2) )

l3 = (syp .sqrt ((0.5*( D0+8.0* C0) -0.5*( D0+4* C0)*cm.cos ( theta1))**2 +

(0.5*( D0+4* C0)*cm.sin ( theta1 ))**2) )

# Definition of the general relationship between the above functions .

# Here C0 is unknown and C_b

C_b = C_t + 2* N_f *C0 + N_f *(l1+l2+l3) - N_f *St123 - N_f *St45

# for C_b = 10.4866 , find C0

f = syp . nsolve(C_b - Circ , C0 , 1)

# print values as output so as to be accessible by the rhino script

print f

print D0

print theta2

print fi2

print Circ

print N_f

print D0 +2* f

print D0 +4* f

print D0 +6* f

print D0 +8* f
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Appendix E

SURROGATE MODELLING

ALGORITHM VALIDATION

The following section describes the validation of the algorithms used to construct the

surrogates and guide the multi-objective optimisation problem. Moreover, the rationale

of using twenty points in the initial DoE along with the utility of the EI is outlined.

In particular, a multi-modal two-parameter analytical function, known as the mod-

ified version of Branin function (Forrester et al. 2008), was used to ensure that the

algorithms implemented in this study can predict with high accuracy the global min-

imum of a given function by using the EI. The modified Branin function is expressed

as

f(x) = (x2 −
5.1
4π2

x2 +
5
π
x1 − 6)2 + 10

[

(1 −
1

8π
) cosx1 + 1

]

+ 5x1

with x1 ∈ [−5, 10] , x2 ∈ [0, 15]
(E.1)

Firstly, different sampling plans (carried out by optimised LHC) were tested to eval-

uate how many points are needed as a first approximation in a multi-modal two-variable

function such as the Branin. Fig. E.1 demonstrates the Kriging models interpolated

after evaluating different number of points in each sampling plan. The contours of

the analytical function are superimposed on the Kriging model to highlight the dif-

ference between the surrogate and the actual function. It can be noted that from the

nineteen-point DoE, the surrogate is well approximating the overall landscape of the

real function.

Furthermore, the θ tuning value was recorded to evaluate its convergence through-

out different sampling plans. The plot of the θ convergence is depicted in Fig. E.2. It

is well demonstrated that from the nineteen-point sampling plan, the θ parameter is

converged.

Therefore, for a multi-modal two-parameter function, a twenty-point sampling plan
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Figure E.1: Construction of Kriging models for different sampling plans of the modified Branin function. The actual contours of
the Branin function are superimposed on the surrogate interpolation
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Figure E.2: θ tuning parameter convergence for different sampling plans

could provide an accurate initial approximation of the overall function landscape and

then serve as a solid platform to drive the search of the global minimum. This has

been proved in Fig. E.3, where the global minimum is located after five infill iterations.

In particular, the optimisation is stopped for a given tolerance between the function

evaluation in the nth infill point and the true global optimum calculated by setting

[∂f/∂x1, ∂f/∂x2]T = 0 (E.2)

The optimisation iterations are guided by the EI of the Kriging model. In each

step, an infill point is selected where the EI is the maximum.
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Figure E.3: Search of the global minimum of the modified Branin function guided by
the EI. The global minimum is located after five infill iterations.



Appendix F

BASIC CONCEPTS FOR KRIGING

CONSTRUCTION

In the following, the basic mathematical concepts for constructing a Kriging model are

described:

Firstly, let our initial geometry parameterisation be:

X =
[

x(1),x(2), ....,x(n)
]T

(F.1)

and the objective function evaluations be

y =
[

y(1), y(2), ...., y(n)
]T

(F.2)

Kriging modelling assumes that any number of objective function values y(1), y(2), ...., y(n)

evaluated at n points x(1),x(2), ....,x(n) are random variables which are realisation of

the Gaussian random field. The general Gaussian Process model can be expressed as

Y (x) = β + Z(x) (F.3)

where β, the mean of the random field, and Z(x) is a Gaussian Process with zero

mean the following covariance

Cov(Y, Y ) = Γ(Y, Y ) = σ2Ψ (F.4)

where σ2 is the process variance and Ψ is the parameterised correlation matrix,
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given by

Ψ =

















R(Y (x(1)), Y (x(1))) R(Y (x(1)), Y (x(2))) · · · R(Y (x(1)), Y (x(n)))

R(Y (x(2)), Y (x(1))) R(Y (x(2)), Y (x(2))) · · · R(Y (x(2)), Y (x(n)))
...

... . . . ...

R(Y (x(n)), Y (x(1))) R(Y (x(n)), Y (x(2))) · · · R(Y (x(n)), Y (x(n)))

















(F.5)

and correlation function

R(Y (x(i)), Y (x(l))) = exp−
∑k

j=1
θj |x

(i)
j

−x
(l)
j

|pj

(F.6)

with θj ≥ 0 and 0 < pj ≤ 2. The θj and pj are known as the hyper-parameters

and determine the rate of correlation decrease and the degree of smoothness in the

jth direction, respectively. These hyper-parameters are optimised to maximise the

concentrated ln-likelihood function

ln(L) = −
n

2
ln(σ2) − 0.5 ln |Ψ| −

(y − 1β)T Ψ−1(y − 1β)
2σ2

(F.7)

Optimal values of β and σ2 can be derived by taking the partial derivatives of the

equation F.7 with respect to β and σ2 and setting to zero. This yields to a mean

β̂ =
1T Ψ−1y

1T Ψ−11
(F.8)

and variance

σ̂2 =
1
n

(y − 1β̂)T Ψ−1(y − 1β̂) (F.9)

where 1 is a n × 1 vector of ones. Thus, the concentrated likelihood function will

then be

ln(L) ≈ −
n

2
ln(σ̂2) − 0.5 ln |Ψ| (F.10)

which depends on the symmetric matrix, Ψ, therefore, on the hyper-parameters

which are in turn optimised to maximise the equation. At last, for each set of in-

put data, the hyper-parameters are optimised tuned to build a surrogate model which

predicts the response landscape of the objective function and guides the search to-

wards the global minimum (optimum). Given a new input geometry sample x(n+1) =

[x1, x2, ...., xk], the posterior mean and covariance can be computed as

ŷ(x) = β̂ + ψ(x)T Ψ−1(y − 1β̂) (F.11)
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and

Cov(x,xn+1) = σ2(Ψ(x,xn+1) − ψ(x)T Ψ−1ψ(x)) (F.12)
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Appendix G

MULTI-OBJECTIVE OPTIMISATION

ALGORITHM

G.1 Class for MOO

MooNSGAII.py

# \ MooNSGAII .py

__author__ = ’GiorgosRagkousis ’

import numpy as np

from pylab import rc

from pyOpt import Optimization

from pyOpt import NSGA2

import matplotlib .pyplot as plt

from mpl_toolkits .mplot3d import Axes3D , proj3d

rc(’text ’, usetex =True )

rc(’font ’, **{ ’family ’: ’serif ’, ’serif ’: [’Computer Modern ’]})

class MOO ():

def __init__ (self , Model_X , Model_y , trained , name ):

self . Model_X = Model_X

self . Model_y = Model_y

self . trained = trained

self .name = name

self .n, self .k = np.shape (self .Model_X )

self .l = len ( Model_y )

self . KrigingModels = []

self . Models = []

self . Ranges = None

self . max_weights = None

self . utopia = None

self . zenith = None

self .nadir = None

self . zenith_n = None

self . nadir_n = None

self .GC = None

self . sphere_radi = None

self . PF_norm = None

self . curvature_sphere = None

self .R = None

self .index = None

self . weights = None

self . infill_errweights = None

self . infill_wei = None

self . sortarr = None

self . mofWeights = []
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def pyOpt_Read_Output (self , datafile , columns ):

"""

this function is for reading the data output from the NSGA -II

algorithm . In particular , it return the best pop from the NSGA -II. It

can be used for plotting the pareto front . It returns the desired

columns in floats

Input :

datafile - the datafile with the data

columns - a list with integers , indicating the columns with the

obj fun

Output :

the objfun eval

"""

best_final_pop = open (datafile , "r")

lines = best_final_pop . readlines ()[2: -1]

best_final_pop .close ()

list_columns = []

for i, j in enumerate ( columns ):

list_columns . append ([])

for ind in lines :

x = ind .split ()

list_columns [i]. append( float(x[j]))

return list_columns

def normalise (self , x):

’’’ Normalise an array of data from 0-1 ’’’

x_normalised = (x - np.min (x)) / (np.max (x) - np.min (x))

return x_normalised

def normaliseX (self , x, X):

’’’ Normalise an array of data from 0-1 ’’’

if type (X) == list :

X = np.array (X)

x_normalised = (x - X[0]) / (X[1] - X[0])

else :

x_normalised = (x - X[0]) / (X[1] - X[0])

return x_normalised

def normalise_PF (self , PF , zenith , nadir ):

’’’ Normalise the pareto front according to the zenith & nadir point ’’’

return (PF - zenith ) / ( nadir - zenith)

def euclidean_dis (self , x, y):

""" Function to calculate the Euclidean distance between two points """

n = len (x)

dist = []

for i in range(n):

dist . append ((x[i] - y[i]) **2.)

return np.sqrt (sum (dist ))

def gradient3D (self , pointA , pointB ):

""" Function to calculate the 3D spatial gradient between two points """

return ((( pointA [2] - pointB [2]) ) / (np.sqrt (( pointA [0] -

pointB [0]) **2. + ( pointA [1] - pointB [1]) **2.) ))

def gradient2D (self , pointA , pointB ):

""" Function to calculate the 2D spatial gradient between two points """

return (( pointA [1] - pointB [1]) / ( pointA [0] - pointB [0]) )

def training (self ):

""" Train the input models (hyper -parameter optimisation ) """

for i in range(len (self . Model_y )):

# the following is applied when we want to train the models

# self . Models. append ( kriging (self .Model_X , self . Model_y [i],

# name =’Model_ %d’ % i))

# we append the trained models

self . Models .append (self . trained [i])

def plot_KrigeModels (self ):

""" Plot the trained Kriges """

for i in range(len (self . Models)):

self . Models [i]. plot ()

def SEI (self ):

""" Calculate the Expected Improvement of the Surrogates """

self . Ranges = self . Models [0]. __range__ ()

sei = np.ones (( self .n, self .l))

Model_X_norm = np.ones (self . Model_X .shape )
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for k in range(self .k):

Model_X_norm [:, k] = self . normaliseX (self . Model_X [:, k],

self . Ranges[k])

for i in range(self .n):

for j in range(self .l):

sei [i, j] = self . Models[j]. expimp ( Model_X_norm [i, :])

return sei

def SEI_NSGA_II (self , model , individual ):

""" Calculate the Expected Improvement of a discrete point """

# self .Ranges = self . Models [0]. __range__ ()

l = len ( individual )

individual_Norm = []

for k in range(l):

individual_Norm . append (self . normaliseX (individual [k],

self . Ranges [k]))

sei = model . expimp (individual_Norm )

return sei

def insert_weights (self , weights ):

""" Insert weights for each Objective """

l = len ( weights )

for i in range(l):

self . mofWeights . append (weights [i])

def mof (self , individual ):

"""

In case of multi - objective optimisation with numerical objective

function evaluation , mof function is returning the RSMs after

kriging interpolation

Input :

individual - the generation values of the GA (NSGA -II)

Models - A list consisting of two models after kriging .train

(e.g. [VASModel , AASMModel ])

Output:

the objective function evaluation for f1 , f2 based on the

kriging interpolation

"""

f = [0.0]* len (self .Models )

for i in range(len (self . Models )):

f[i] = self . Models [i]. predict ( individual )

g = [0]

fail = 0

print f

return f, g, fail

def mofEI (self , individual ):

"""

In case of multi - objective optimisation with numerical objective

function evaluation , mofEI function is returning the RSMs of EI after

kriging interpolation

Input :

individual - the generation values of the GA (NSGA -II)

Models - A list consisting of two models after kriging .train

(e.g. [VASModel , AASMModel ])

Output:

EI objective function evaluation for f1 , f2 based on the

kriging interpolation

"""

f = [0.0]* len (self .Models )

for i in range(len (self . Models )):

expIMP = self . SEI_NSGA_II (self .Models [i], individual )

f[i] = ( -1.) * expIMP

g = [0]

fail = 0

print f

return f, g, fail

def Weightedmof (self , individual ):

"""

In case of multi - objective optimisation with numerical objective

function evaluation , Weightedmof function is returning the RSMs of

Weighted Objective functions after kriging interpolation .

Input :

individual - the generation values of the GA (NSGA -II)

Models - A list consisting of two models after kriging .train

(e.g. [VASModel , AASMModel ])

Output:
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the weighted objective function evaluation for f1 , f2 based on the

kriging interpolation

"""

f = [0.0]*1

summ = 0

for i in range(len (self . Models)):

f[0] = sum ([self .mofWeights [i]* self . Models[i]. predict ( individual ),

summ ])

summ = f[0]

g = [0]

fail = 0

print f

return f, g, fail

def NSGA_II_search (self , X_variables , Y_objectives , minimum , maximum ,

_fun_ =’mof ’):

""" Set the NSGA -II method for searching the surrogates """

if _fun_ == ’mof ’:

opt_prob = Optimization (’Pareto ’, self .mof )

for i, j in enumerate ( X_variables ):

opt_prob . addVar (j, ’c’, lower = minimum [i],

upper = maximum [i])

for j in Y_objectives :

opt_prob . addObj (j)

opt_prob . addCon (’g’, ’i’)

print opt_prob

# Global Optimization

# __________________________________________________ #

# ---------------- Compute Solution ----------------#

nsga2 = NSGA2 ()

nsga2 . setOption (’PopSize ’, 80)

nsga2 . setOption (’PrintOut ’, 1)

# here we define the max Generations

# nsga2.setOption (’ maxGen ’, 135)

nsga2 (opt_prob , store_hst =True )

print opt_prob . solution (0)

elif _fun_ == ’mofEI ’:

opt_prob = Optimization (’Pareto ’, self .mofEI )

for i, j in enumerate ( X_variables ):

opt_prob . addVar (j, ’c’, lower = minimum [i],

upper = maximum [i])

for j in Y_objectives :

opt_prob . addObj (j)

opt_prob . addCon (’g’, ’i’)

print opt_prob

# Global Optimization

# __________________________________________________ #

# ---------------- Compute Solution ----------------#

nsga2 = NSGA2 ()

nsga2 . setOption (’PopSize ’, 100)

nsga2 . setOption (’PrintOut ’, 1)

# nsga2.setOption (’ maxGen ’, 135)

nsga2 (opt_prob , store_hst =True )

print opt_prob . solution (0)

elif _fun_ == ’Weightedmof ’:

opt_prob = Optimization (’Pareto ’, self . Weightedmof )

for i, j in enumerate ( X_variables ):

opt_prob . addVar (j, ’c’, lower = minimum [i],

upper = maximum [i])

opt_prob . addObj (’f1 ’)

opt_prob . addCon (’g’, ’i’)

print opt_prob

# Global Optimization

# __________________________________________________ #

# ---------------- Compute Solution ----------------#

nsga2 = NSGA2 ()

nsga2 . setOption (’PopSize ’, 100)

nsga2 . setOption (’PrintOut ’, 1)

# nsga2.setOption (’ maxGen ’, 135)

nsga2 (opt_prob , store_hst =True )

print opt_prob . solution (0)

def global_criterion (self ):

""" Returns the point defined according to the global criterion

set in the multi -Objective optimisation routine """

data_output = " nsga2_final_pop .out "

ParetoFront = self . pyOpt_Read_Output (data_output , [i for i in

range(len (self . Model_y ))])
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PF = np.array ( ParetoFront ).T

if len (self . Model_y ) == 3:

x, y, z = PF[:, 0], PF[:, 1], PF[:, 2]

self . zenith = np.array ([np.min (x), np.min (y), np.min (z)]).T

self .nadir = np.array ([np.max (x), np.max (y), np.max (z)]).T

self . PF_norm = self . normalise_PF (PF , self .zenith , self .nadir )

xx = self . PF_norm [:, 0]

yy = self . PF_norm [:, 1]

zz = self . PF_norm [:, 2]

self . zenith_n = np.array ([ np.min (xx), np.min (yy),

np.min (zz)]).T

self . nadir_n = np.array ([ np.max (xx), np.max (yy), np.max (zz)]).T

elif len (self . Model_y ) == 2:

x, y = PF[:, 0], PF[:, 1]

self . zenith = np.array ([np.min (x), np.min (y)]).T

self .nadir = np.array ([np.max (x), np.max (y)]).T

self . PF_norm = self . normalise_PF (PF , self .zenith , self .nadir )

xx = self . PF_norm [:, 0]

yy = self . PF_norm [:, 1]

self . zenith_n = np.array ([ np.min (xx), np.min (yy)]).T

self . nadir_n = np.array ([ np.max (xx), np.max (yy)]).T

self .GC = np.ones ((len (self . PF_norm [:, 0]) ))

for i in range(len (self . PF_norm [:, 0]) ):

if len (self . Model_y ) == 3:

self .GC[i] = np.sqrt (( self .PF_norm [i, 0] -

self . zenith_n [0]) **2. +

(self .PF_norm [i, 1] -

self . zenith_n [1]) **2. +

(self .PF_norm [i, 2] -

self . zenith_n [2]) **2.)

elif len (self . Model_y ) == 2:

self .GC[i] = np.sqrt (( self .PF_norm [i, 0] -

self . zenith_n [0]) **2.

+ (self . PF_norm [i, 1] -

self . zenith_n [1]) **2.)

self . sphere_radi = np.min (self .GC)

return np.min (self .GC), self .GC , self .GC. argmin () , self .PF_norm

def global_criterion_weighted (self , weights ):

""" Returns the weighted point defined according to the global criterion

set in the multi - Objective optimisation routine ( weighted L -2 metric)"""

data_output = "nsga2_final_pop .out "

ParetoFront = self .pyOpt_Read_Output (data_output , [i for i in

range(len (self . Model_y ))])

PF = np.array ( ParetoFront ).T

if len (self . Model_y ) == 3:

x, y, z = PF[:, 0], PF[:, 1], PF[:, 2]

self . zenith = np.array ([np.min (x), np.min (y), np.min (z)]).T

self .nadir = np.array ([np.max (x), np.max (y), np.max (z)]).T

self . PF_norm = self . normalise_PF (PF , self .zenith , self .nadir )

xx = self . PF_norm [:, 0]

yy = self . PF_norm [:, 1]

zz = self . PF_norm [:, 2]

self . zenith_n = np.array ([ np.min (xx), np.min (yy),

np.min (zz)]).T

self . nadir_n = np.array ([ np.max (xx), np.max (yy), np.max (zz)]).T

elif len (self . Model_y ) == 2:

x, y = PF[:, 0], PF[:, 1]

self . zenith = np.array ([np.min (x), np.min (y)]).T

self .nadir = np.array ([np.max (x), np.max (y)]).T

self . PF_norm = self . normalise_PF (PF , self .zenith , self .nadir )

xx = self . PF_norm [:, 0]

yy = self . PF_norm [:, 1]

self . zenith_n = np.array ([ np.min (xx), np.min (yy)]).T

self . nadir_n = np.array ([ np.max (xx), np.max (yy)]).T

self .GC = np.ones ((len (self . PF_norm [:, 0]) ))

for i in range(len (self . PF_norm [:, 0]) ):

if len (self . Model_y ) == 3:

self .GC[i] = np.sqrt ( weights [0]* abs (self . PF_norm [i, 0] -

self . zenith_n [0]) **2. +

weights [1]* abs (self . PF_norm [i, 1] -

self . zenith_n [1]) **2. +

weights [2]* abs (self . PF_norm [i, 2] -

self . zenith_n [2]) **2.)

elif len (self . Model_y ) == 2:

self .GC[i] = np.sqrt ( weights [0]*( self . PF_norm [i, 0] -

self . zenith_n [0]) **2.

+ weights [1]*( self . PF_norm [i, 1] -
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self . zenith_n [1]) **2.)

self . sphere_radi = np.sqrt (sum ([ self .PF_norm [self .GC.argmin (), i]**2.

for i in range(self .l)]))

return np.min (self .GC), self .GC , self .GC.argmin (), self . PF_norm

def pareto_sort (self ):

""" Sort the Pareto front points (Descending order )"""

if len (self .Model_y ) >= 2:

self . sortarr = self . PF_norm [np. lexsort (

np. transpose (self . PF_norm )[:: -1]) ]

def pareto_gradients (self ):

""" For continuous Pareto front , calculate the gradients of Pareto points """

if len (self .Model_y ) == 3:

x = self . sortarr [:, 0]

y = self . sortarr [:, 1]

z = self . sortarr [:, 2]

# first gradients of the curve points

dx = np.gradient (x)

dy = np.gradient (y)

dz = np.gradient (z)

# c ’(t)

dr = np.array ([dx , dy , dz], np. float).T

# second gradients of the curve points

ddx = np. gradient (dx)

ddy = np. gradient (dy)

ddz = np. gradient (dz)

# c ’’(t)

ddr = np.array ([ddx , ddy , ddz ], np. float).T

# ||c ’(t)||

dr_n = np.sum (np.abs (dr)**2. , axis =1) **(1./2.)

dr_n = np. reshape (dr_n , (len (dr_n ), 1))

# ||c ’’(t)||

ddr_n = np.sum (np.abs (ddr )**2. , axis =1) **(1./2.)

ddr_n = np. reshape (ddr_n , (len (ddr_n ), 1))

# Tangent (T) (unit )

T = dr/dr_n

# Curvature k of the curve

# c ’(t) x c ’’(t)

k_cross = np.cross (dr , ddr , axisa =1, axisb =1)

# ||c ’(t) x c ’’(t)||

k_cross_num = np.sum (np.abs ( k_cross )**2. , axis =1) **(1./2.)

k_cross_num = np.reshape (k_cross_num , (len ( k_cross_num ), 1))

# ||c ’(t) ||^3.

k_cross_den = dr_n **3.

# k = ||c ’(t) x c ’’(t)|| / ||c ’(t) ||^3.

k = k_cross_num / k_cross_den

# n = ( ( c ’(t) x c ’’(t) ) x c ’(t) ) /

# ||( c ’(t) x c ’’(t) ) ||.||c ’(t)||

n_num = np.cross (k_cross , dr , axisa =1, axisb =1)

n_den = k_cross_num * dr_n

N = n_num / n_den

# radius of curvature (R = 1/k)

self .R = 1/k

for i in range(len (self . sortarr [:, 0]) ):

if np. array_equal (self . sortarr [i, :],

self . PF_norm [self .GC. argmin (), :]) is True :

self .index = i

else :

pass

self . curvature_sphere = (( self . sortarr [self .index , :]) +

(self .R[self .index , :] *

N[self .index , :]) )

elif len (self . Model_y ) == 2:

x = self . sortarr [:, 0]

y = self . sortarr [:, 1]

# first gradients of the curve points

dx = np.gradient (x)

dy = np.gradient (y)

# c ’(t)

dr = np.array ([dx , dy], np. float).T

# second gradients of the curve points

ddx = np. gradient (dx)

ddy = np. gradient (dy)

# c ’’(t)

ddr = np.array ([ddx , ddy ], np. float).T

k = (dx*ddy - dy*ddx ) / (dx **2 + dy **2) **(3/2.)

nx = - dy / np.sqrt (dx**2 + dy**2)
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ny = dx / np.sqrt (dx**2 + dy**2)

N = np.array ([nx , ny], np. float).T

# radius of curvature (R = 1/k)

self .R = 1/k

for i in range(len (self . sortarr [:, 0]) ):

if np. array_equal (self .sortarr [i, :],

self .PF_norm [self .GC.argmin (), :]) is True :

self .index = i

else :

pass

self . curvature_sphere = (( self .sortarr [self .index , :]) +

(self .R[self .index ] * N[self .index , :]) )

def pareto_infill_Voutchkov (self , sequence ):

""" Function for extraction infill points according to the multi -Objective

optimisation of EI (Dr. Ivan Voutchkon , Rolls Royce , UTC , University of Southampton )"""

data_output = "nsga2_final_pop .out "

l = len ( sequence )

if self .l == 3:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 4) for i

in range(self .k)])

elif self .l == 2:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 3) for i

in range(self .k)])

n = len (self . PF_norm [:, 0])

ParetoFront_x = np.array ( ParetoFront_x ).T

indices = []

Voutchkov = np.ones ((l + 1, self .k))

for ind in sequence :

for i in range(n):

if np. array_equal (self .PF_norm [i, :],

self .sortarr [ind , :]) is True :

index = i

indices . append (index )

else :

pass

Voutchkov [0, :] = ParetoFront_x [self .GC. argmin (), :]

for i in range(l):

Voutchkov [i + 1, :] = ParetoFront_x [ indices [i], :]

return Voutchkov

def check_colinearity (self ):

""" This method checks whether nadir , zenith and pareto optimum point

are colinear """

if self .l == 3:

if self . gradient3D (self .zenith_n ,

self . PF_norm [self .GC. argmin (), :]) == \

self . gradient3D (self . PF_norm [self .GC. argmin (), :],

self . curvature_sphere ):

print ’The lines are co - linear ’

else :

print ’The lines are not co - linear ’

print [self . gradient3D (self .zenith_n ,

self . PF_norm [self .GC. argmin (), :]) ,

self . gradient3D (self . PF_norm [self .GC. argmin (), :],

self . curvature_sphere )]

elif self .l == 2:

if self . gradient2D (self .zenith_n ,

self . PF_norm [self .GC. argmin (), :]) == \

self . gradient2D (self . PF_norm [self .GC. argmin (), :],

self . curvature_sphere ):

print ’The lines are co - linear ’

else :

print ’The lines are not co - linear ’

print [self . gradient2D (self .zenith_n ,

self . PF_norm [self .GC. argmin (), :]) ,

self . gradient2D (self . PF_norm [self .GC. argmin (), :],

self . curvature_sphere )]

def calculate_angles (self , output =’Rxz ’):

""" Method for calculating transformations matrices """

r = self . sphere_radi

x = self . PF_norm [self .GC. argmin (), 0]

y = self . PF_norm [self .GC. argmin (), 1]

z = self . PF_norm [self .GC. argmin (), 2]

alpha = np. arccos (x/r)

beta = np.arccos (y/r)

gamma = np. arccos (z/r)
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fi = np.arctan (x/y)

zz = np.sqrt (x**2. + y**2.)

theta = np. arccos(zz/r)

Rxz = np.array ([[ np.cos (fi), -np.sin (fi), 0., 0.], [np.cos (theta ) *

np.sin (fi), np.cos (theta )*np.cos (fi),

-np.sin (theta ), 0.], [np.sin (theta )*np.sin (fi),

np.sin (theta )*np.cos (fi), np.cos (theta ), 0.],

[0., 0., 0., 1.]])

Ryx = np.array ([[ np.cos (beta ), np.sin (beta )*np.sin (alpha ),

np.sin (beta )*np.cos (alpha ), 0.], [0, np.cos (alpha ),

-np.sin (alpha ), 0.], [- np.sin (beta ), np.cos (beta ) *

np.sin (alpha ), np.cos (beta )*np.cos (alpha ), 0.],

[0., 0., 0., 1.]])

Ryz = np.array ([[ np.cos (theta )*np.cos (fi), -np.cos (theta )*np.sin (fi),

np.sin (theta ), 0.], [np.sin (fi), np.cos (fi), 0.,

0.], [- np.sin (theta )*np.cos (fi), np.sin (theta ) *

np.sin (fi), np.cos (theta ), 0.],

[0., 0., 0., 1.]])

Rzyx = np.array ([[ np.cos (beta )*np.cos (gamma ), np.cos (gamma ) *

np.sin (alpha )* np.sin (beta )-np.cos (alpha ) *

np.sin (gamma ), np.cos (alpha )*np.cos (gamma ) *

np.sin (beta )+np.sin (alpha )*np.sin (gamma ), 0.],

[np.cos (beta )*np.sin (gamma ), np.cos (alpha ) *

np.cos (gamma )+np.sin (alpha )*np.sin (beta ) *

np.sin (gamma ), -np.cos (gamma )*np.sin (alpha ) +

np.cos (alpha )*np.sin (beta )*np.sin (gamma ), 0.],

[- np.sin (beta ), np.cos (beta )*np.sin (alpha ),

np.cos (alpha )*np.cos (beta ), 0.], [0., 0., 0., 1.]])

Rxyz = np.array ([[ np.cos (beta )*np.cos (gamma ), -np.cos (beta ) *

np.sin (gamma ), np.sin (beta ), 0.],

[np.cos (alpha )*np.sin (gamma )+np.sin (alpha ) *

np.sin (beta )*np.cos (gamma ), np.cos (alpha ) *

np.cos (gamma )-np.sin (alpha )*np.sin (beta ) *

np.sin (gamma ), -np.sin (alpha )*np.cos (beta ), 0.],

[np.sin (alpha )*np.sin (gamma )-np.cos (alpha ) *

np.sin (beta )*np.cos (gamma ), np.sin (alpha ) *

np.cos (gamma )+np.cos (alpha )*np.sin (beta ) *

np.sin (gamma ),

np.cos (alpha )*np.cos (beta ), 0.], [0., 0., 0., 1.]])

Rx = np.array ([[1. , 0., 0., 0.], [0., np.cos (alpha ), -np.sin (alpha ),

0.], [0, np.sin (alpha ), np.cos (alpha ), 0.], [0., 0., 0.,

1.]])

# return the transformation matrix defined in the output

if output == ’Rxz ’:

return Rxz

elif output == ’Ryx ’:

return Ryx

elif output == ’Ryz ’:

return Ryz

elif output == ’Rzyx ’:

return Rzyx

elif output == ’Rxyz ’:

return Rxyz

elif output == ’Rx ’:

return Rx

def point_weights (self ):

""" Method for calculating the weights of Pareto points with respect to

objective functions """

f_max , f_min = [], []

for i in range(self .l):

f_max . append(np.max (self .PF_norm [:, i]))

f_min . append(np.min (self .PF_norm [:, i]))

self . weights = np.ones (( len (self .PF_norm [:, 0]) , self .l))

for i in range(len (self . PF_norm [:, 0]) ):

for j in range(self .l):

if self .l == 2:

self . weights [i, j] = ((( f_max [j] - self . PF_norm [i, j]) /

(f_max [j] - f_min [j])) /

(sum ([( f_max [0] - self .PF_norm [i, 0])

/ (f_max [0] - f_min [0]) ,

( f_max [1] - self . PF_norm [i, 1]) /

( f_max [1] - f_min [1]) ])))

elif self .l == 3:

self . weights [i, j] = ((( f_max [j] - self . PF_norm [i, j]) /

(f_max [j] - f_min [j])) /

(sum ([( f_max [0] - self .PF_norm [i, 0])

/ (f_max [0] - f_min [0]) ,
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(f_max [1] - self . PF_norm [i, 1]) /

(f_max [1] - f_min [1]) ,

(f_max [2] - self . PF_norm [i, 2]) /

(f_max [2] - f_min [2]) ])))

return self . weights

def updatepoints_weights (self ):

""" Method to return the points with the maximum weights """

self . max_weights = np.ones ((self .l + 1))

for i in range(self .l):

self . max_weights [i] = self .weights [:, i]. argmax ()

self . max_weights [self .l] = self .GC.argmin ()

return self . max_weights

def infillerrweights (self ):

""" Infill DoE according to point weights """

data_output = "nsga2_final_pop .out "

if self .l == 3:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 4) for i

in range(self .k)])

elif self .l == 2:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 3) for i

in range(self .k)])

if self .k == 2:

samplePoints = []

Update_samplePoints = []

for i in range(self .k):

samplePoints . append(self . normaliseX (self . Model_X [:, i],

self . Ranges [i]))

Update_samplePoints . append (self . normaliseX (ParetoFront_x [i],

self .Ranges [i]))

# pick the update points

arrUpdate_samplePoints = np.array ( Update_samplePoints ).T

pred_err = np.ones ((len ( arrUpdate_samplePoints [:, 0]) , self .l))

self . infill_errweights = np.ones (( len ( arrUpdate_samplePoints [:, 0])

))

for i in range(len (arrUpdate_samplePoints [:, 0]) ):

for j in range(self .l):

pred_err [i, j] = (self .Models [j]. predicterr_normalized (

[ arrUpdate_samplePoints [i, :]]) )

self . infill_errweights [i] = (np.sum ( pred_err [i, :] *

self . weights [i, :]) )

return self . infill_errweights

def WEI (self ):

""" Calculate the weighted EI"""

data_output = "nsga2_final_pop .out "

if self .l == 3:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 4) for i

in range(self .k)])

elif self .l == 2:

ParetoFront_x = self . pyOpt_Read_Output (data_output , [(i + 3) for i

in range(self .k)])

samplePoints = []

Update_samplePoints = []

for i in range(self .k):

samplePoints . append(self . normaliseX (self . Model_X [:, i],

self . Ranges[i]))

Update_samplePoints . append (self . normaliseX (ParetoFront_x [i],

self . Ranges [i]))

arrUpdate_samplePoints = np.array ( Update_samplePoints ).T

pred_ei = np.ones ((len (arrUpdate_samplePoints [:, 0]) , self .l))

self . infill_wei = np.ones ((len (arrUpdate_samplePoints [:, 0]) ))

for i in range(len (arrUpdate_samplePoints [:, 0]) ):

for j in range(self .l):

pred_ei [i, j] = (self . Models[j]. weightedexpimp (

[ arrUpdate_samplePoints [i, :]],

self . weights [i, j]))

self . infill_wei [i] = ( np.sum ( pred_ei [i, :]) )

return self . infill_wei

# =============================================================================== #

# PLOTTING METHODS #

# =============================================================================== #

def plot_ParetoFront_Weighted (self ):

if self .l == 3:

u = np. linspace (0, 2 * np.pi , 100)

v = np. linspace (0, np.pi , 100)
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x_s = self . zenith_n [0] + self . sphere_radi * np.outer (np.cos (u),

np.sin (v))

y_s = self . zenith_n [1] + np.min (self .GC) * np.outer (np.sin (u),

np.sin (v))

z_s = self . zenith_n [2] + np.min (self .GC) * np.outer (np.ones (

np.size (u)),

np.cos (v))

Ryz = self . calculate_angles ()

h_s = np.ones (x_s .shape )

n, k = np.shape (x_s )

xyz = np.array ([x_s , y_s , z_s , h_s ])

for i in range(n):

for j in range(k):

xyz [:, i, j] = np.dot (Ryz , xyz [:, i, j])

x_ss = xyz [0, :, :]

y_ss = xyz [1, :, :]

z_ss = xyz [2, :, :]

figg = plt . figure( figsize =(12 , 12) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

figg . suptitle (’3d normalised pareto front ’)

axx = figg . add_subplot (1, 1, 1, projection =’3d’)

axx .plot (self . PF_norm [:, 0], self . PF_norm [:, 1],

self . PF_norm [:, 2], linestyle =’’,

label =" Pareto front ",

alpha =0.5 , markerfacecolor =’r’, markeredgecolor =’k’,

marker =’o’, markersize =5)

axx .plot ([ self . zenith_n [0]] , [self . zenith_n [1]] ,

[self . zenith_n [2]] ,

linestyle =’’, markerfacecolor =’g’,

markeredgecolor =’k’,

marker =’o’, markersize =5, alpha =1.,

label =" zenith point ")

axx .plot_wireframe (x_ss , y_ss , z_ss , rstride =1, cstride =1,

color =’b’, alpha =0.1 , label =" zenith sphere ")

axx .plot ([ self . PF_norm [self .GC. argmin (), 0], self . zenith_n [0]] ,

[self . PF_norm [self .GC. argmin (), 1],

self . zenith_n [1]] , [self . PF_norm [self .GC. argmin (), 2],

self . zenith_n [2]] , ’k’,

label =’Min Euclidean distance ’)

axx .set_xlabel (self .name [0])

axx .set_ylabel (self .name [1])

axx .set_zlabel (self .name [2])

axx .legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) ,

fancybox =True , shadow =True )

figg = plt .show ()

def plot_ParetoFront (self , nsgaII=’Objective ’):

data_output = " nsga2_final_pop .out "

ParetoFront = self . pyOpt_Read_Output (data_output , [i for i in

range(self .l)])

if self .l == 3:

u = np. linspace (0, 2 * np.pi , 100)

v = np. linspace (0, np.pi , 100)

x_s = self . zenith_n [0] + self . sphere_radi * np.outer (np.cos (u),

np.sin (v))

y_s = self . zenith_n [1] + self . sphere_radi * np.outer (np.sin (u),

np.sin (v))

z_s = self . zenith_n [2] + self . sphere_radi * np.outer (np.ones (

np.size (u)),

np.cos (v))

xc_s = (self . curvature_sphere [0] + self .R[self .index ] *

np.outer (np.cos (u), np.sin (v)))

yc_s = (self . curvature_sphere [1] + self .R[self .index ] *

np.outer (np.sin (u), np.sin (v)))

zc_s = (self . curvature_sphere [2] + self .R[self .index ] *

np.outer (np.ones (np.size (u)), np.cos (v)))

if nsgaII == ’Objective ’:

# ## __________________________________________________ #

# ## #

# ## -------------- plot pareto ----------------------- #

fig = plt . figure (figsize =(16 , 16) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

fig .suptitle (’3d pareto front ’)

ax = fig . add_subplot (2, 1, 1, projection =’3d’)

ax. scatter (self . Model_y [0], self .Model_y [1], self . Model_y [2],
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label =" Evaluation points", alpha =1.,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax. scatter (ParetoFront [0], ParetoFront [1], ParetoFront [2],

label =" Pareto front ", alpha =1., edgecolor =’black ’,

facecolor =’r’, linewidth =2.)

ax. scatter (self . zenith [0], self . zenith [1], self .zenith [2],

label =" zenith point ", alpha =1., edgecolor =’black ’,

facecolor =’g’, linewidth =2.)

ax. scatter (self .nadir [0], self .nadir [1], self .nadir [2],

label ="nadir point ", alpha =1., edgecolor =’black ’,

facecolor =’k’, linewidth =2.)

ax. set_xlabel (self .name [0])

ax. set_ylabel (self .name [1])

ax. set_zlabel (self .name [2])

ax1 = fig . add_subplot (2, 3, 4)

ax1 . scatter (self . Model_y [0], self . Model_y [2],

label ="Evaluation points", alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax1 . scatter ( ParetoFront [0], ParetoFront [2],

label ="Pareto front ",

alpha =0.5 , edgecolor =’black ’, facecolor =’r’,

linewidth =2.)

ax1 . scatter (self . zenith [0], self . zenith [2],

label ="zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax1 . scatter (self .nadir [0], self .nadir [2], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)

ax1 . set_xlabel (self .name [0])

ax1 . set_ylabel (self .name [2])

ax1 . legend (loc =’upper center ’, scatterpoints =1, ncol =4,

bbox_to_anchor =(1.75 , -0.09) ,

fancybox =True , shadow=True )

ax2 = fig . add_subplot (2, 3, 5)

ax2 . scatter (self . Model_y [1], self . Model_y [2], alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax2 . scatter ( ParetoFront [1], ParetoFront [2], alpha =0.5 ,

edgecolor =’black ’, facecolor =’r’, linewidth =2.)

ax2 . scatter (self . zenith [1], self . zenith [2],

label ="zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax2 . scatter (self .nadir [1], self .nadir [2], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)

ax2 . set_xlabel (self .name [1])

ax2 . set_ylabel (self .name [2])

ax3 = fig . add_subplot (2, 3, 6)

ax3 . scatter (self . Model_y [1], self . Model_y [0], alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax3 . scatter ( ParetoFront [1], ParetoFront [0], alpha =0.5 ,

edgecolor =’black ’, facecolor =’r’, linewidth =2.)

ax3 . scatter (self . zenith [1], self . zenith [0],

label ="zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax3 . scatter (self .nadir [1], self .nadir [0], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)

ax3 . set_xlabel (self .name [1])

ax3 . set_ylabel (self .name [0])

plt .show ()

figg = plt .figure ( figsize =(12 , 12) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

figg . suptitle (’3d normalised pareto front ’)

axx = figg .add_subplot (1, 1, 1, projection =’3d’)

axx .plot (self . PF_norm [:, 0], self . PF_norm [:, 1],

self . PF_norm [:, 2], linestyle =’’,

label =" Pareto front ",

alpha =0.5 , markerfacecolor =’r’, markeredgecolor =’k’,

marker=’o’, markersize =5)

axx .plot ([ self .zenith_n [0]] , [self .zenith_n [1]] ,

[ self .zenith_n [2]] ,
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linestyle =’’, markerfacecolor =’g’,

markeredgecolor =’k’,

marker =’o’, markersize =5, alpha =1.,

label =" zenith point ")

axx .plot_wireframe (x_s , y_s , z_s , rstride =1, cstride =1,

color =’b’, alpha =0.1 , label =" zenith sphere ")

axx .plot ([ self . PF_norm [self .GC. argmin (), 0], self . zenith_n [0]] ,

[self . PF_norm [self .GC. argmin (), 1],

self . zenith_n [1]] , [self . PF_norm [self .GC. argmin (), 2],

self . zenith_n [2]] , ’k’,

label =’Min Euclidean distance ’)

axx .set_xlabel (self .name [0])

axx .set_ylabel (self .name [1])

axx .set_zlabel (self .name [2])

axx .legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) ,

fancybox =True , shadow =True )

figg = plt .show ()

elif nsgaII == ’Expected Improvement ’:

EXPIMP = self .SEI ()

EXPIMP = ( -1.) * EXPIMP

# ## __________________________________________________ #

# ## #

# ## -------------- plot pareto ----------------------- #

fig = plt . figure (figsize =(16 , 16) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

fig .suptitle (’3d pareto front ’)

ax = fig . add_subplot (2, 1, 1, projection =’3d’)

ax. scatter ( EXPIMP[:, 0], EXPIMP [:, 1], EXPIMP[:, 2],

label =" Evaluation points ", alpha =1.,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax. scatter ( ParetoFront [0], ParetoFront [1], ParetoFront [2],

label =" Pareto front ", alpha =1., edgecolor =’black ’,

facecolor =’r’, linewidth =2.)

ax. scatter (self . zenith [0], self . zenith [1], self . zenith [2],

label =" zenith point ", alpha =1., edgecolor =’black ’,

facecolor =’g’, linewidth =2.)

ax. scatter (self .nadir [0], self .nadir [1], self .nadir [2],

label ="nadir point ", alpha =1., edgecolor =’black ’,

facecolor =’k’, linewidth =2.)

ax. set_xlabel (self .name [0])

ax. set_ylabel (self .name [1])

ax. set_zlabel (self .name [2])

ax1 = fig . add_subplot (2, 3, 4)

ax1 .scatter ( EXPIMP[:, 0], EXPIMP [:, 2],

label =" Evaluation points ", alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax1 .scatter ( ParetoFront [0], ParetoFront [2],

label =" Pareto front ",

alpha =0.5 , edgecolor =’black ’, facecolor =’r’,

linewidth =2.)

ax1 .scatter (self .zenith [0], self .zenith [2],

label =" zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax1 .scatter (self .nadir [0], self .nadir [2], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)

ax1 .set_xlabel (self .name [0])

ax1 .set_ylabel (self .name [2])

ax1 .legend (loc =’upper center ’, scatterpoints =1, ncol =4,

bbox_to_anchor =(1.75 , -0.09) ,

fancybox =True , shadow =True )

ax2 = fig . add_subplot (2, 3, 5)

ax2 .scatter ( EXPIMP[:, 1], EXPIMP [:, 2], alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax2 .scatter ( ParetoFront [1], ParetoFront [2], alpha =0.5 ,

edgecolor =’black ’, facecolor =’r’, linewidth =2.)

ax2 .scatter (self .zenith [1], self .zenith [2],

label =" zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax2 .scatter (self .nadir [1], self .nadir [2], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)
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ax2 . set_xlabel (self .name [1])

ax2 . set_ylabel (self .name [2])

ax3 = fig . add_subplot (2, 3, 6)

ax3 . scatter ( EXPIMP [:, 1], EXPIMP[:, 0], alpha =0.5 ,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax3 . scatter ( ParetoFront [1], ParetoFront [0], alpha =0.5 ,

edgecolor =’black ’, facecolor =’r’, linewidth =2.)

ax3 . scatter (self . zenith [1], self . zenith [0],

label ="zenith point ",

alpha =1., edgecolor =’black ’, facecolor =’g’,

linewidth =2.)

ax3 . scatter (self .nadir [1], self .nadir [0], label ="nadir point ",

alpha =1., edgecolor =’black ’, facecolor =’k’,

linewidth =2.)

ax3 . set_xlabel (self .name [1])

ax3 . set_ylabel (self .name [0])

plt .show ()

figg = plt .figure ( figsize =(12 , 12) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

figg . suptitle (’3d normalised pareto front ’)

axx = figg .add_subplot (1, 1, 1, projection =’3d’)

axx .plot (self . PF_norm [:, 0], self . PF_norm [:, 1],

self . PF_norm [:, 2], linestyle =’’,

label =" Pareto front ",

alpha =0.5 , markerfacecolor =’r’, markeredgecolor =’k’,

marker=’o’, markersize =5)

axx .plot ([ self .zenith_n [0]] , [self .zenith_n [1]] ,

[ self .zenith_n [2]] ,

linestyle =’’, markerfacecolor =’g’,

markeredgecolor =’k’,

marker=’o’, markersize =5, alpha =1.,

label =" zenith point ")

axx . plot_wireframe (x_s , y_s , z_s , rstride =1, cstride =1,

color =’b’, alpha =0.1 , label ="zenith sphere")

axx .plot ([ self .PF_norm [self .GC.argmin (), 0], self . zenith_n [0]] ,

[ self .PF_norm [self .GC.argmin (), 1],

self . zenith_n [1]] , [self . PF_norm [self .GC. argmin (), 2],

self . zenith_n [2]] , ’k’,

label =’Min Euclidean distance ’)

axx . set_xlabel (self .name [0])

axx . set_ylabel (self .name [1])

axx . set_zlabel (self .name [2])

axx . legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) ,

fancybox =True , shadow=True )

figg = plt .show ()

elif self .l == 2:

if nsgaII == ’Objective ’:

u = np.linspace (0, 2 * np.pi , 100)

x_s = self .zenith_n [0] + self . sphere_radi * np.cos (u)

y_s = self .zenith_n [1] + self . sphere_radi * np.sin (u)

# ## __________________________________________________ #

# ## #

# ## -------------- plot pareto ----------------------- #

fig = plt . figure( figsize =(8, 8) , facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

fig . suptitle (’pareto front ’)

ax = fig . add_subplot (1, 1, 1)

ax. scatter (self . Model_y [0], self . Model_y [1],

label =" Evaluation points", alpha =1.,

edgecolor =’black ’, facecolor =’b’, linewidth =2.)

ax. scatter (ParetoFront [0], ParetoFront [1],

label =" Pareto front ", alpha =1., edgecolor =’black ’,

facecolor =’r’, linewidth =2.)

ax. scatter (self . zenith [0], self . zenith [1],

label =" zenith point ", alpha =1., edgecolor =’black ’,

facecolor =’g’, linewidth =2.)

ax. scatter (self .nadir [0], self .nadir [1],

label ="nadir point ", alpha =1., edgecolor =’black ’,

facecolor =’k’, linewidth =2.)

ax. set_xlabel (self .name [0])

ax. set_ylabel (self .name [1])

ax. legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,
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shadow =True )

plt .show ()

figg = plt . figure( figsize =(8, 8), facecolor =’w’,

edgecolor =’k’, linewidth = 2.0, frameon =True )

figg . suptitle (’normalised pareto front ’)

axx = figg . add_subplot (1, 1, 1)

axx .plot (self . PF_norm [:, 0], self . PF_norm [:, 1],

linestyle =’’, label =" Pareto front ", alpha =0.5 ,

markerfacecolor =’r’, markeredgecolor =’k’,

marker =’o’, markersize =5)

axx .plot ([ self . zenith_n [0]] , [self . zenith_n [1]] , linestyle =’’,

markerfacecolor =’g’, markeredgecolor =’k’,

marker =’o’, markersize =5, alpha =1.,

label =" zenith point ")

axx .plot (x_s , y_s , color =’b’, label ="zenith circle")

axx .plot ([ self . curvature_sphere [0]] ,

[self . curvature_sphere [1]] , linestyle =’’,

markerfacecolor =’b’, markeredgecolor =’k’, marker =’o’,

markersize =5, alpha =1., label =" center of curvature ")

axx .plot ([ self . curvature_sphere [0], self .PF_norm [

self .GC. argmin (), 0], self .zenith_n [0]] , [

self . curvature_sphere [1],

self . PF_norm [self .GC. argmin (), 1],

self . zenith_n [1]] , ’k’,

label =’Co - linear curve ’)

axx .set_xlabel (self .name [0])

axx .set_ylabel (self .name [1])

axx .legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) ,

fancybox =True , shadow =True )

figg = plt .show ()

def visualise_updates (self , plot =’Kriges ’, _print_ =True ):

data_output = " nsga2_final_pop .out "

ParetoFront_x = self .pyOpt_Read_Output (data_output , [(i + 4) for i in

range(self .k)])

if self .k == 2:

samplePoints = []

Update_samplePoints = []

Point_dist = np.ones ((len (self . PF_norm [:, 0]) , self .n))

Max_dist = np.ones (( len (self .PF_norm [:, 0]) ))

Max_dist_ind = np.ones (( len (self .PF_norm [:, 0]) ))

for i in range(self .k):

samplePoints .append (self .normaliseX (self .Model_X [:, i],

self .Ranges [i]))

Update_samplePoints . append(self . normaliseX ( ParetoFront_x [i],

self . Ranges[i]))

# pick the update points

arrsamplePoints = np.array ( samplePoints ).T

arrUpdate_samplePoints = np.array ( Update_samplePoints ).T

for i in range(len (self . PF_norm [:, 0]) ):

for j in range(self .n):

Point_dist [i, j] = ( self .euclidean_dis (

arrUpdate_samplePoints [i, :],

arrsamplePoints [j, :]) )

Max_dist [i] = np.max (Point_dist [i, :])

Max_dist_ind [i] = Point_dist [i, :]. argmax ()

# this needs improvement

indices_max = np.ones ((5) , int )

Max_dist_copy = np.copy ( Max_dist )

for i in range (5) :

idx = Max_dist_copy . argmax ()

indices_max [i] = idx

Max_dist_copy [idx ] = 0.

# Create a set of data to plot

plotgrid = 100

x = np. linspace (0, 1, num = plotgrid )

y = np. linspace (0, 1, num = plotgrid )

X, Y = np. meshgrid (x, y)

contour_levels = 15

# Predict based on the optimized results

for i in range(self .l):

zs = np.array ([ self . Models[i]. predict_normalized ([x, y])

for x, y in zip (np.ravel (X), np.ravel (Y))])

Z = zs. reshape (X.shape )

Z = ((Z*(np.max (self .Model_y [i]) -

np.min (self . Model_y [i]))) +



G.1. CLASS FOR MOO 211

np.min (self . Model_y [i]))

if plot == ’Kriges ’:

plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto points ’)

plt . contourf (X, Y, Z, contour_levels )

cb = plt . colorbar ()

cb.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’,

label =’DoE ’)

plt .plot ( Update_samplePoints [0], Update_samplePoints [1],

linestyle =’’, color =’w’, marker=’v’,

markerfacecolor =’white ’, markersize =8, alpha =.8,

label =’Pareto front ’)

plt . legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow =True )

plt .show ()

elif plot == ’Weights ’:

plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto Weights ’)

plt . contourf (X, Y, Z, contour_levels )

co = plt . colorbar ()

co.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’,

label =’DoE ’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [0]] ,

Update_samplePoints [1][ self . max_weights [0]] ,

alpha =1., c=’g’, marker=’o’, s=40,

label =’Max weight f1’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [1]] ,

Update_samplePoints [1][ self . max_weights [1]] ,

alpha =1., c=’b’, marker=’o’, s=40,

label =’Max weight f2’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [2]] ,

Update_samplePoints [1][ self . max_weights [2]] ,

alpha =1., c=’k’, marker=’o’, s=40,

label =’Max weight f3’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [3]] ,

Update_samplePoints [1][ self . max_weights [3]] ,

alpha =1., c=’r’, marker=’o’, s=60,

label =’Max weight ’)

plt . legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow =True )

plt .show ()

elif plot == ’Euclidean distance ’:

plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto maximum Euclidean distance ’)

plt . contourf (X, Y, Z, contour_levels )

cr = plt . colorbar ()

cr.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’,

label =’DoE ’)

plt . scatter ( Update_samplePoints [0][ indices_max [0]] ,

Update_samplePoints [1][ indices_max [0]] ,

alpha =1., c=’r’, marker=’H’, s=40,

label =’Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [1]] ,

Update_samplePoints [1][ indices_max [1]] ,

alpha =1., c=’b’, marker=’p’, s=40,

label =’2nd Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [2]] ,

Update_samplePoints [1][ indices_max [2]] ,

alpha =0.5 , c=’g’, marker=’H’, s=40,

label =’3rd Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [3]] ,

Update_samplePoints [1][ indices_max [3]] ,

alpha =1., c=’k’, marker=’p’, s=40,

label =’4th Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [4]] ,

Update_samplePoints [1][ indices_max [4]] ,

alpha =1., c=’c’, marker=’p’, s=40,
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label =’5th Max distance ’)

plt .legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow=True )

plt .show ()

if _print_ is True :

print [[ ParetoFront_x [0][ int (self . max_weights [i])],

ParetoFront_x [1][ int (self .max_weights [i])]] for i in

range (4)]

def visualise_updates_err (self , plot =’MSE ’, _print_ =True ):

data_output = " nsga2_final_pop .out "

ParetoFront_x = self .pyOpt_Read_Output (data_output , [(i + 4) for i in

range(self .k)])

if self .k == 2:

samplePoints = []

Update_samplePoints = []

Point_dist = np.ones ((len (self . PF_norm [:, 0]) , self .n))

Max_dist = np.ones (( len (self .PF_norm [:, 0]) ))

Max_dist_ind = np.ones (( len (self .PF_norm [:, 0]) ))

for i in range(self .k):

samplePoints .append (self .normaliseX (self .Model_X [:, i],

self .Ranges [i]))

Update_samplePoints . append(self . normaliseX ( ParetoFront_x [i],

self . Ranges[i]))

# pick the update points

arrsamplePoints = np.array ( samplePoints ).T

arrUpdate_samplePoints = np.array ( Update_samplePoints ).T

for i in range(len (self . PF_norm [:, 0]) ):

for j in range(self .n):

Point_dist [i, j] = ( self .euclidean_dis (

arrUpdate_samplePoints [i, :],

arrsamplePoints [j, :]) )

Max_dist [i] = np.max (Point_dist [i, :])

Max_dist_ind [i] = Point_dist [i, :]. argmax ()

indices_max = np.ones ((5) , int )

Max_dist_copy = np.copy ( Max_dist )

for i in range (5) :

idx = Max_dist_copy . argmax ()

indices_max [i] = idx

Max_dist_copy [idx ] = 0.

indices_max_ = np.ones ((5) , int )

Max_copy = np.copy (self . infill_errweights )

for i in range (5) :

idx = Max_copy . argmax ()

indices_max_ [i] = idx

Max_copy [idx ] = 0.

# Create a set of data to plot

plotgrid = 100

x = np. linspace (0, 1, num = plotgrid )

y = np. linspace (0, 1, num = plotgrid )

X, Y = np. meshgrid (x, y)

contour_levels = 15

# Predict based on the optimized results

for i in range(self .l):

# Calculate errors

zse = np.array ([ self .Models [i]. predicterr_normalized ([x, y])

for x, y in zip (np.ravel (X), np.ravel (Y))])

Ze = zse . reshape (X.shape )

if plot == ’MSE ’:

plt .figure ( figsize =(8, 8) , facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto points ’)

plt .contourf (X, Y, Ze , contour_levels )

co = plt .colorbar ()

co. set_label (self .name [i])

plt .plot (samplePoints [0], samplePoints [1], ’ow’)

plt .plot (Update_samplePoints [0], Update_samplePoints [1],

linestyle =’’, color =’w’, marker =’v’,

markerfacecolor =’white ’, markersize =8, alpha =.8)

plt .legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow=True )

plt .show ()

elif plot == ’Weights ’:

plt .figure ( figsize =(8, 8) , facecolor =’w’, edgecolor =’k’,
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linewidth = 2.0, frameon =True )

plt .title (’Pareto Weights ’)

plt . contourf (X, Y, Ze , contour_levels )

cb = plt . colorbar ()

cb.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [0]] ,

Update_samplePoints [1][ self . max_weights [0]] ,

alpha =1., c=’c’, marker=’o’, s=40,

label =’max weight f1’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [1]] ,

Update_samplePoints [1][ self . max_weights [1]] ,

alpha =1., c=’k’, marker=’o’, s=40,

label =’max weight f2’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [2]] ,

Update_samplePoints [1][ self . max_weights [2]] ,

alpha =1., c=’g’, marker=’o’, s=40,

label =’max weight f3’)

plt . scatter ( Update_samplePoints [0][ self . max_weights [3]] ,

Update_samplePoints [1][ self . max_weights [3]] ,

alpha =1., c=’r’, marker=’o’, s=60,

label =’max weight F’)

plt . legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow =True )

plt .show ()

elif plot == ’Euclidean distance ’:

plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto maximum Euclidean distance ’)

plt . contourf (X, Y, Ze , contour_levels )

cf = plt . colorbar ()

cf.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’)

plt . scatter ( Update_samplePoints [0][ indices_max [0]] ,

Update_samplePoints [1][ indices_max [0]] ,

alpha =0.5 , c=’r’, marker=’H’, s=40,

label =’Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [1]] ,

Update_samplePoints [1][ indices_max [1]] ,

alpha =1., c=’r’, marker=’p’, s=40,

label =’2nd Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [2]] ,

Update_samplePoints [1][ indices_max [2]] ,

alpha =0.5 , c=’r’, marker=’H’, s=40,

label =’3rd Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [3]] ,

Update_samplePoints [1][ indices_max [3]] ,

alpha =1., c=’r’, marker=’p’, s=40,

label =’4th Max distance ’)

plt . scatter ( Update_samplePoints [0][ indices_max [4]] ,

Update_samplePoints [1][ indices_max [4]] ,

alpha =1., c=’r’, marker=’p’, s=40,

label =’5th Max distance ’)

plt . legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow =True )

plt .show ()

elif plot == ’WMSE ’:

plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto maximum WMSE ’)

plt . contourf (X, Y, Ze , contour_levels )

cv = plt . colorbar ()

cv.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’)

plt . scatter ( Update_samplePoints [0][ indices_max_ [0]] ,

Update_samplePoints [1][ indices_max_ [0]] ,

alpha =1., c=’w’, marker=’D’, s=40,

label =’1st Max WMSE ’)

plt . scatter ( Update_samplePoints [0][ indices_max_ [1]] ,

Update_samplePoints [1][ indices_max_ [1]] ,

alpha =1., c=’w’, marker=’D’, s=40,

label =’2nd Max WMSE ’)

plt . scatter ( Update_samplePoints [0][ indices_max_ [2]] ,

Update_samplePoints [1][ indices_max_ [2]] ,
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alpha =1., c=’w’, marker =’D’, s=40,

label =’3rd Max WMSE ’)

plt .scatter ( Update_samplePoints [0][ indices_max_ [3]] ,

Update_samplePoints [1][ indices_max_ [3]] ,

alpha =1., c=’w’, marker =’D’, s=40,

label =’4th Max WMSE ’)

plt .scatter ( Update_samplePoints [0][ indices_max_ [4]] ,

Update_samplePoints [1][ indices_max_ [4]] ,

alpha =1., c=’w’, marker =’D’, s=40,

label =’5th Max WMSE ’)

plt .legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow=True )

plt .show ()

if _print_ is True :

print [[ ParetoFront_x [0][ int (indices_max_ [i])],

ParetoFront_x [1][ int ( indices_max_ [i])]] for i in

range (5)]

def visualise_updates_wei (self , plot =’EI ’, _print_ =True ):

data_output = " nsga2_final_pop .out "

ParetoFront_x = self .pyOpt_Read_Output (data_output , [(i + 4) for i in

range(self .k)])

if self .k == 2:

samplePoints = []

Update_samplePoints = []

for i in range(self .k):

samplePoints .append (self .normaliseX (self .Model_X [:, i],

self .Ranges [i]))

Update_samplePoints . append(self . normaliseX ( ParetoFront_x [i],

self . Ranges[i]))

indices_max = np.ones ((5) , int )

Max_copy = np.copy (self . infill_wei )

for i in range (5) :

idx = Max_copy . argmax ()

indices_max [i] = idx

Max_copy [idx ] = 0.

# Create a set of data to plot

plotgrid = 100

x = np. linspace (0, 1, num = plotgrid )

y = np. linspace (0, 1, num = plotgrid )

X, Y = np. meshgrid (x, y)

contour_levels = 15

# Predict based on the optimized results

for i in range(self .l):

# Calculate errors

zei = np.array ([ self .Models [i]. expimp ([x, y])

for x, y in zip (np.ravel (X), np.ravel (Y))])

Zei = zei . reshape (X.shape )

if plot == ’EI’:

infill = self . pareto_infill_Voutchkov ([0, -1])

# infill = np.array( infill)

for k in range(len ( infill[0, :]) ):

infill [:, k] = self . normaliseX ( infill[:, k],

self . Ranges[k])

plt .figure ( figsize =(8, 8) , facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto points -EI ’)

plt .contourf (X, Y, Zei , contour_levels )

ca = plt .colorbar ()

ca. set_label (self .name [i])

plt .plot (samplePoints [0], samplePoints [1], ’ow’,

label =’DoE ’)

plt .plot (Update_samplePoints [0], Update_samplePoints [1],

linestyle =’’, color =’w’, marker =’v’,

markerfacecolor =’white ’, markersize =8, alpha =.8,

label =’Pareto front ’)

plt .plot (infill [:, 0], infill[:, 1],

linestyle =’’, color =’k’, marker =’^’,

markerfacecolor =’k’, markersize =16, alpha =1.,

label =’infill points ’)

plt .legend (loc =’upper center ’, numpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow=True )

plt .show ()

elif plot == ’WEI ’:
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plt . figure (figsize =(8, 8), facecolor =’w’, edgecolor =’k’,

linewidth = 2.0, frameon =True )

plt .title (’Pareto maximum Weighted EI ’)

plt . contourf (X, Y, Zei , contour_levels )

ci = plt . colorbar ()

ci.set_label (self .name [i])

plt .plot ( samplePoints [0], samplePoints [1], ’ow ’)

plt . scatter ( Update_samplePoints [0][ indices_max [0]] ,

Update_samplePoints [1][ indices_max [0]] ,

alpha =1., c=’r’, marker=’D’, s=40,

label =’Max WEI 1st point ’)

plt . scatter ( Update_samplePoints [0][ indices_max [1]] ,

Update_samplePoints [1][ indices_max [1]] ,

alpha =1., c=’g’, marker=’D’, s=40,

label =’Max WEI 2nd point ’)

plt . scatter ( Update_samplePoints [0][ indices_max [2]] ,

Update_samplePoints [1][ indices_max [2]] ,

alpha =1., c=’b’, marker=’D’, s=40,

label =’Max WEI 3rd point ’)

plt . scatter ( Update_samplePoints [0][ indices_max [3]] ,

Update_samplePoints [1][ indices_max [3]] ,

alpha =1., c=’k’, marker=’D’, s=40,

label =’Max WEI 4th point ’)

plt . scatter ( Update_samplePoints [0][ indices_max [4]] ,

Update_samplePoints [1][ indices_max [4]] ,

alpha =1., c=’c’, marker=’D’, s=40,

label =’Max WEI 5th point ’)

plt . legend (loc =’upper center ’, scatterpoints =1, ncol =3,

bbox_to_anchor =(0.5 , -0.03) , fancybox =True ,

shadow =True )

plt .show ()

if _print_ is True :

return [[ ParetoFront_x [0][ indices_max [i]],

ParetoFront_x [1][ indices_max [i]]] for i in range (5) ]

G.2 Call the MOO class

run_MOO_class.py

# / run_MOO_class .py

__author__ = ’GiorgosRagkousis ’

import pyKrige . utilities as utilities

import numpy as np

from MooNSGAII import MOO

dataFile = ’OpLHC_DOE_Obj_Fun .txt ’

data = np.genfromtxt (dataFile , delimiter =’ ’, invalid_raise =False )

X = data [:, [3, 4]]

VAS = data [:, [5]][: , 0]

AASM = data [:, [6]][: , 0]

VAD = data [:, [7]][: , 0]

DEV = data [:, [8]][: , 0]

# load the surrogate models

VAS_Model = utilities . loadModel (’VAS_Model .pkl ’)

AASM_Model = utilities .loadModel (’AASM_Model .pkl ’)

VAD_Model = utilities . loadModel (’VAD_Model .pkl ’)

# import the tuned surrogates in the class and define the DoE limits

MOO_PF = MOO (X, [VAS , AASM , VAD ], [VAS_Model , AASM_Model , VAD_Model ],

[’VAS ’, ’AASM ’, ’VAD ’])

# load the trained models in the class

train = MOO_PF. training ()

# calculate the expected improvement

sei = MOO_PF .SEI ()

# plot the surrogates

plotKriging = MOO_PF . plot_KrigeModels ()

# search the surrogates with NSGA -II

NSGA = MOO_PF .NSGA_II_search ([ ’diameter ’, ’pressure ’],

[ ’f1 ’, ’f2’, ’f3 ’], [2.672 , 0.6] , [4.008 , 1.5] ,
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’mofEI ’)

# global criterion , find the closest point to the ideal vector

minGC , GC , indi , PF = MOO_PF .global_criterion ()

# sort the Pareto front

PF_s = MOO_PF. pareto_sort ()

# calculate the pareto gradients

gradients = MOO_PF . pareto_gradients ()

# define infill points according to Voutchkov criterion

Voutchkov = MOO_PF . pareto_infill_Voutchkov ()

# check the colinearity of the ideal vector with its closest Pareto point

MOO_PF . check_colinearity ()

# calculate the weights of the Pareto front

weights = MOO_PF. point_weights ()

# take update points according to weights

updateweights = MOO_PF . updatepoints_weights ()

# take update points according to weighted errors

weights_error = MOO_PF . infillerrweights ()

# take update points according to weighted EI

mWEI = MOO_PF.WEI ()

# plot pareto front of the expected improvement

plotPF = MOO_PF .plot_ParetoFront (’Expected Improvement ’)

# visualisation of the updates superimposed to response surfaces

plotupdates = MOO_PF. visualise_updates (’Kriges ’, True )

# visualisation of the updates superimposed to MSE

# plotupdateserror = MOO_PF . visualise_updates_err (’WMSE ’)

# visualisation of the updates superimposed to EI

plotWEI = MOO_PF. visualise_updates_wei ()
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