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Abstract—Modern mobile and embedded devices are required
to be increasingly energy-efficient while running more sophisti-
cated tasks, causing the CPU design to become more complex and
employ more energy-saving techniques. This has created a greater
need for fast and accurate power estimation frameworks for both
run-time CPU energy management and design-space exploration.
We present a statistically rigorous and novel methodology for
building accurate run-time power models using Performance
Monitoring Counters (PMCs) for mobile and embedded devices,
and demonstrate how our models make more efficient use of
limited training data and better adapt to unseen scenarios by
uniquely considering stability. Our robust model formulation
reduces multicollinearity, allows separation of static and dynamic
power, and allows a 100× reduction in experiment time while
sacrificing only 0.6% accuracy. We present a statistically detailed
evaluation of our model, highlighting and addressing the problem
of heteroscedasticity in power modeling. We present software
implementing our methodology and build power models for
ARM Cortex-A7 and Cortex-A15 CPUs, with 3.8% and 2.8%
average error, respectively. We model the behavior of the non-
ideal CPU voltage regulator under dynamic CPU activity to
improve modeling accuracy by up to 5.5% in situations where
the voltage cannot be measured. To address the lack of research
utilizing PMC data from real mobile devices, we also present our
data acquisition method and experimental platform software. We
support this work with online resources including software tools,
documentation, raw data and further results.

Index Terms—power modeling and estimation, embedded sys-
tems, performance monitoring counters, PMC event selection

I. INTRODUCTION

THE last 10 years has seen a significant shift in emphasis
from desktop and laptop computers towards mobile de-

vices such as smartphones, tablets, thinner fan-less laptops,
and, more recently, smart watches [1]. This has promoted
energy-efficiency ahead of raw performance as the main design
goal in modern CPUs [2]. Increasing the energy efficiency
of mobile CPUs not only allows the battery to last longer,
but allows these smaller, compact devices to perform more
complex tasks while remaining within their thermal design
power (TDP), enabling new and innovate applications [3].
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Fundamental to improving energy efficiency is managing
the operation of the CPU in an intelligent way. Modern CPUs
employ power-saving techniques such as dynamic voltage fre-
quency scaling (DVFS), power gating and multiple asymmetric
cores (e.g. ARM big.LITTLETM technology [4]). It has been
shown that run-time management software (or the run-time
manager) can make significant energy improvements by con-
trolling these power-saving techniques to smartly manage the
energy-performance trade-off while taking external factors into
account [5], [6]. However, run-time knowledge of the power
consumption of each CPU core in the system is paramount in
finding the optimum power/performance trade-off.

We present a novel methodology and corresponding soft-
ware tools for both characterizing the power consumption of
real mobile CPUs and producing accurate and stable run-
time power models. These models can be inserted into the
operating system to provide accurate, per-core, run-time CPU
power estimations to the run-time management software. They
can also be used as accurate and trusted reference models in
design-space exploration in conjunction with a performance
simulator, such as gem5 [7]. We focus on mobile devices
because their energy efficiency is of particular importance and
modeling their power consumption is challenging due to the
dynamic nature of their workloads. However, our proposed
modeling methodology is generic, and can be used with other
CPUs of different ISAs (instruction set architectures) or in
desktop or server systems. The resulting models themselves
are specific to a particular CPU implementation.

Our methodology employs statistical rigor throughout each
stage of the modeling process, in which we introduce novel
techniques and insights and demonstrate how they improve
the model quality. We illustrate our approach on a device
containing an ARM mobile CPU that is also found in the
Samsung Galaxy S5 smartphone (released in 2014). It utilizes
ARM’s big.LITTLETM technology, having two CPU clusters
of significantly differing microarchitectures: one optimized
for greater energy-efficiency (quad-core Cortex-A7), and one
optimized for higher performance (quad-core Cortex-A15).
We present models of both clusters, focusing on the latter to
illustrate our methodology throughout this paper.

In Section II we present a background on CPU power
modeling and review related works. In Section III we give an
overview of the three main steps of our modeling methodology
with a brief description of our key contributions in each
of them. Sections IV, V and VI describe these three steps
in detail: data acquisition, Performance Monitoring Counter
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(PMC) event selection, and model formulation and validation,
respectively. We then directly compare our model to related
work in Section VII. Section VIII highlights how the voltage
supplied to the CPU is dependent on the dynamic CPU activity
and introduces a voltage model to significantly improve the
power model accuracy in situations where the voltage cannot
be directly measured. The key contributions of this paper are:

• An automated PMC event selection methodology that
uniquely considers model stability and a demonstration
of its importance (Section V);

• A robust model formulation technique that breaks down
static and dynamic power and reduces both multi-
collinearity and experiment time (Section VI);

• A voltage model that compensates for CPU voltage de-
viations induced by CPU activity and a demonstration of
how it improves the power model accuracy (Section VIII);

• Two accurate and extensively validated run-time PMC
power models for an ARM big.LITTLE mobile platform;

• Software tools for both collecting PMC, power and volt-
age data (platform specific), and implementing our novel
modeling methodology (platform independent), available
from [8].

II. RELATED WORK

Power models for CPUs can be split into two key groups:
top-down approaches, where existing devices are characterized
experimentally; and bottom-up approaches which use theoret-
ical knowledge of each component.

Bottom-up approaches are commonly employed in design-
space exploration as they can be adapted to different design
specifications. An example of such a tool is McPAT [9],
a power, area and timing modeling framework. While this
flexibility is required for some research in system design-
space exploration, it comes at the cost of accuracy. In [10]
significant sources of errors are found in McPAT which are
largely caused by abstraction error. Rethinagiri et al. [11]
show McPAT to have average power errors of over 20% for
most of the tested workloads when comparing McPAT to a
physical ARM Cortex-A9 device. Bottom-up power models
are generally unsuitable for run-time management applications
due to their relatively poor accuracy and large computational
complexity.

Top-down CPU power models, which are built by charac-
terizing existing hardware, are more accurate but inflexible.
This lack of flexibility renders them unsuitable for some
investigations, but their trusted accuracy makes them valuable
for many others. Their low computational complexity brings
speed benefits to simulations; Isci and Martonosi [12] report
that simple run-time top-down models are vital for studies
requiring long executing times, such as thermal analysis. There
have been some attempts to combine both techniques together,
for example, Lee et al. [13] calibrate McPAT using measured
values from real hardware in order to improve its accuracy,
however, only the overall power is calibrated and the errors of
individual components are unknown.

PMC based models have long been used for top-down
CPU power estimation due to their high level of accuracy

Step 1:
Data Acquisition

Step 2:
 PMC Event 

Selection

Step 3:
 Model Formulation 

and Validation

Step 4:
 CPU Voltage 

Model
Section IV Section V Section VI Section VIII

Fig. 1. Steps of our proposed power modeling methodology

and low overhead [12], [14]–[23]. PMCs count hardware
events related to the CPU, such as instructions architecturally
executed or L2 cache misses, to give fast run-time information
for analyzing the CPU’s performance. This detailed insight
into the instantaneous operation of the processor allows power
predictions to be made. However, despite energy-efficiency
being crucial to mobile devices, there are relatively few works
that provide accurate run-time PMC-models for them using
real data.

To the best of our knowledge, [24] and [25] are the only
works that use both PMC data and measured power data
from a real device to build a run-time power model for an
ARM-based mobile CPU. This is due to the lack of a known
method of extracting PMCs on mobile platforms, where there
are more technical challenges in doing so. Rethinagiri et
al. [11] also highlight the scarcity of fast power modeling
work for mobile systems and present a tool for system-level
power estimation created by using a performance simulator, to
provide simulated PMC data, with real measured power data
from a development board. To overcome the difficulties in
obtaining PMC data, simple CPU utilization has been used to
make energy-aware run-time scheduling decisions in an ARM
big.LITTLE architecture [26]. However, using utilization re-
sults in poor accuracy as it provides no information on the
type of workload [24]. Our method of obtaining PMCs on a
mobile platform and corresponding software tools address this
problem, aiding future research.

While we have highlighted many works that utilize PMC
data to build run-time power models, we introduce several
important steps and considerations into our methodology and
illustrate their importance on the resulting model e.g. model
stability, homoscedasticity and robust model formulation. We
also show how the reported model statistics, e.g. average error,
can be misleading.

III. PROPOSED METHODOLOGY

This section gives an overview of the steps in our modeling
methodology (Fig. 1) and highlights our contributions in each.
Step 1 (described in Section IV) concerns the experimental
setup and method for acquiring the data used to build and
validate the models. We collect PMCs, CPU power and CPU
voltage from an ARM big.LITTLETM based development
platform while simultaneously exercising the CPU with a large
number of workloads, including ones that utilize parallel pro-
gramming and the NEON SIMD (single instruction, multiple
data) processing unit. To address the lack of existing works
using PMC data from real mobile platforms, we have made our
software tools available to aid and encourage future research.
The quality of the resulting models inherently depends on the
quality of data used to build them and we also demonstrate
the low overhead and precision of our experimental platform.
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Only a limited number of the many selectable PMC events
(e.g. L2 cache misses, instructions executed) can be simul-
taneously recorded; in Step 2 (described in Section V) we
present our novel PMC selection methodology that uniquely
considers the stability of the model when choosing model
inputs. Furthermore, we demonstrate how it allows a model
to better predict a wider range of workloads, even if they are
not well covered in the training data. This is a crucial quality
for real-world power models and, although it is not considered
in previous work, we show that demonstrating stability of a
model is perhaps more important than giving an average error
value.

Once the PMC events have been selected, the experiment is
run with this selection and the results used to build a linear re-
gression model to predict the CPU power. In Step 3 (described
in Section VI) we describe our robust model formulation
where we use our knowledge of how power is consumed in
CPUs, as opposed to adding regression coefficients directly to
PMC data as is typical in existing works [11], [20], [21], [24].
Our formulation reduces multicollinearity, separates dynamic
and static power consumption, works with any given voltage
and frequency, and, when combined with the added model
stability, allows the model building experiment duration to be
reduced by 100× while trading off only 0.6% error. In this
stage we also thoroughly validate our models and provide
a large set of statistical results, allowing the quality of the
model to be properly assessed. We identify the problem of
heteroscedasticity in run-time power modeling and describe
its effects and how to alleviate it.

Furthermore, we uniquely demonstrate how the dynamic
CPU activity affects the voltage being supplied to the CPU
by the non-ideal voltage regulator, which in turn affects CPU
power consumption (described in Section VIII). In run-time
management scenarios, the voltage supplied to the processor
cannot be measured and we therefore present a novel voltage
model, which takes the current frequency and modeled dy-
namic power consumption as inputs (Step 4). We demonstrate
how this improves the run-time power estimation accuracy by
as much as 5.5%.

We provide software tools to aid research related to PMCs,
power and temperature on mobile devices using real data (plat-
form dependent) and to implement our novel methodologies
described in Steps 2 and 3 (platform independent) at [8]; raw
data, additional graphs and results, model coefficients, and
software documentation are also provided.

IV. DATA ACQUISITION

As highlighted in Section II, there is very little reported
research that uses real PMC data from a mobile ARM-based
platform due to the lack of an established method of doing so.
In this section we present our experimental setup, method and
accompanying software tools for collecting PMC data, running
workloads and measuring CPU voltage and power on a mobile
platform (Step 1 of our power modeling methodology). We
also demonstrate its low overhead and high precision, which
is essential for producing accurate models.

We use an ODROID-XU3 development board by Hard-
kernel to illustrate our approach. It utilizes a Samsung

(A) Modified kernel for 
ODROID-XU3

(C) Automated 
workload, VF, core 

affinity control software

(B) PMC, power sensor 
data-logging software for 

ODROID-XU3 

(D) Execution 
information

(E) Run-time 
data

(F) Post-processing 
software

(G) Power, PMC, 
voltage, etc. for each 
workload, frequency, 

core-mask

List of workloads

Fig. 2. Simplified overview of our experimental platform software (corre-
sponding to Step 1 in Fig. 1).

Exynos 5422 SoC (System on Chip) which has an ARM
big.LITTLETM design containing two types of CPU core:
four ARM Cortex-A15s optimized for high performance and
four Cortex-A7s optimized for energy-efficiency. Each core
contains a NEON SIMD processing unit, which we account
for in our model.

We develop, and make available, software tools to stream-
line future research on mobile development boards in the
form of a customized Linux operating system image (Ubuntu
14.01.1) and programs for running experiments and capturing
data from PMCs, operating system statistics and the built-in
energy sensors on the ODROID-XU3 (Fig. 2).

We modify the kernel of the operating system (Item A in
Fig. 2) to include the userspace frequency governor so that
the frequency and voltage can be changed from userspace. We
develop a loadable kernel module (LKM) to allow userspace
access to the PMCs by setting the PMUSERENR register on
each CPU core. We write data-logging software in C and
inline assembly to access and record the PMCs, power sensor
data and operating system statistics (Item B) with a low
overhead (Fig. 3). There is no perceivable power overhead
when running the experiment with a sample frequency of 1 Hz
and a very small overhead when running the experiment at
10 Hz. The overhead does not contribute to errors because
the PMC data measures all of the CPU activity. However, for
high-quality experimental data, the effect of the experimental
software should be minimized so it does not interfere with
the workloads under test. We use a sample rate of 5 Hz
and run the workloads for an extended period of time to
gather a large number of data points to properly account for
workload phases. To test the consistency of the experimental
platform, we run our experiment 11 times and observe the
deviation. The average standard deviation of the measured
power (which deviates more than the PMC events) over all
60 workloads, whose average power ranges from 0.23 W to
1.8 W, is 0.0049 W. This indicates a high level of precision
and repeatability in our experimental setup which is necessary
for building high-quality models.

As well as recording data, the experimental software runs a
specified set of workloads (Item C, Fig. 2) over: 1) any spec-
ified list of voltage-frequency points (Cortex-A7 frequencies
and Cortex-A15 frequencies can be independently specified,
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allowing many combinations); 2) any specified set of core
masks (control of CPU affinity on both ‘big’ and ‘little’ cores);
and, 3) any specified number of simultaneous executions of
the workload (for exercising multiple cores simultaneously).
Having the ability to automatically collect data for many
combinations allows the model to be built with a wide range
of scenarios.

We use 60 workloads from a variety of sources, in-
cluding: 14 from the MiBench [27] suite; 20 from LM-
bench [28]; 11 from Roy Longbottom [29]; 1 from Me-
diaBench [30]; 5 handwritten workloads; and other work-
loads that make use of programs such as MPlayer, tar
and gcc. This set covers a large range of both realistic
and synthetic workloads, including ones that are CPU in-
tensive (e.g. bitcount, neon mul, jpeg dec, dhrystone), mem-
ory intensive (mp lp neon, lat mem rd 1 256, bw mem rd,
cache) and I/O intensive (bw mem cp 700m, par mem,
openmp mem spd). We tune some synthetic workloads to
trigger certain CPU behavior (e.g. accessing particular levels
of cache) and use PMC data to ensure the workloads achieve
the desired effects. For example, we use lat pagefault and
mp lp neon to cause a large number of TLB (translation
lookaside buffer) misses, cstm int to cause a large number
of mispredicted branch instructions, and neon add, cstm fp
and mp neon mflops to cause a large number of unaligned
accesses. In Section V we show how using a diverse subset
of these workloads results in a more robust model than when
using a more typical set (i.e. MiBench and MediaBench). In
Section VI we show how the components of the dynamic
power prediction varies significantly between different work-
loads (Fig 11).

To keep the overhead of the experiment to a minimum, the
data from both Items B and C (Fig. 2) are captured in a raw
format and then combined and processed (Item F) after the
data has been recorded. The result is a table of workloads (run
on different numbers of cores and at different DVFS levels)
against the corresponding CPU power, voltage and PMC data,
all averaged over the duration of each workload (Item G).

V. PMC EVENT SELECTION

While there are many PMC events, only a few of them can
be monitored simultaneously on mobile CPUs. On the ARM
Cortex-A7 and Cortex-A15 only four and six PMC events (in

addition to the Cycle Count) can be monitored simultaneously,
respectively. The decision of which PMC events to use as
inputs to our power model is key, as we will demonstrate.
This section presents our novel methodology for choosing
PMC events (Step 2, Fig. 1) which results in an accurate and
stable model. Furthermore, we experimentally demonstrate
the importance of stability, give insight into how many PMC
events should be used, and show how the common practice
of using a limited number of workloads for training and
validation results in a poor power model with an optimistic
reported error.

In order to analyze and compare all of the available
PMC events, we set our experimental framework to keep the
frequency and core-mask constant while running all of the
workloads multiple times and change the recorded PMC events
on each iteration to cover almost all of them; we collected
data for 39 and 66 events on the Cortex-A7 and Cortex-A15,
respectively. The large set of PMC events are then cross-
compared and analyzed in order to find an optimum selection
to use as model inputs.

An important consideration when choosing the events is
multicollinearity, which occurs when two or more independent
variables in the linear regression model have inter-correlation
(a relationship) between them. While this does not necessarily
have a direct impact on the reported accuracy or overall
fit, it causes errors in the model coefficients and makes the
model overly sensitive to changes in the inputs, resulting in
an unstable model. If a model with high multicollinearity
comes across a scenario that is not well covered in the
training data, then it likely produces inaccurate predictions,
as we demonstrate experimentally later in this section. It is
impractical to cover all of the possible behaviors that real-
world workloads may exhibit in the training workloads used
to build the model. Therefore, a stable model that is better
able to predict scenarios outside of the training set is a vital
property of a practical, real-world power model.

To quantify multicollinearity (and therefore give an indica-
tion of the stability) we calculate the VIF (variance inflation
factor) for each PMC event. To find the VIF for a particular
independent variable, we build an ordinary least squares (OLS)
linear regression model which predicts that variable using the
others. We use the resulting R2 value (indicating goodness-
of-fit) from the model to calculate the VIF:

VIF =
1

1−R2
(1)

A VIF of one, for example, indicates that there is no corre-
lation between that independent variable and the others. If an
independent variable has a VIF of 10, for example, it would
indicate that the variance of that predictor coefficient is 10×
larger (and the standard error of that predictor coefficient is
therefore 3.2× [square root of 10] larger) than if there was
no multicollinearity present. It is widely considered that, as
a general rule of thumb, a VIF over five or ten [31], [32]
indicates that there are strong multicollinearity problems.

A set of PMC events should therefore be carefully chosen to
provide the model with the largest possible amount of unique
information useful for predicting the power, without providing
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3.1 Todo:

Last updated:

Fig. 4. Correlation of each Cortex-A15 PMC event with power, grouped and colored by cluster, with PMC events chosen by our automated algorithm labeled
in bold font

duplicated information which results in multicollinearity; this
is key to building an accurate and stable model. Choosing
PMC events solely on their correlation with the overall CPU
power, for example, results in a poor model because PMC
events that correlate well with power also correlate well with
each other, starving the model from valuable information con-
tained in other events and causing multicollinearity problems.

We employ several statistical analysis techniques to develop
a deep understanding of how to select the optimum events
in order to devise a simple automated method of doing so.
We use hierarchical cluster analysis (HCA) and inspection of
the corresponding dendrograms to group similar PMC events
together into clusters (based on how they correlate with each
other). Choosing events in different clusters therefore results
in diverse information being provided to the model about
the current operation of the CPU. However, the information
does not necessarily help to predict the power consumption.
We used the Pearson product-moment correlation coefficient
to calculate the linear correlation of each PMC event with
the CPU power consumption and combined the results with
the HCA results (Fig. 4). PMC events with a very high
correlation with power (>0.75) are all in the same cluster,
highlighting how choosing PMC events on correlation alone
results in similar events, which means the model will have
intercorrelated inputs that only provide it with a narrow range
of information. A good PMC selection is made by choosing
PMC events that have a high correlation with power but
avoiding repeatedly selecting from the same cluster. However,
a decision of how many clusters to group the PMC events into
and how much to prioritize clustering or correlation has to be
made, requiring intuition and further experimentation.

We build on the knowledge from the HCA and the VIF
itself to develop a simple, two-stage, automated method for
selecting optimum PMC events that provide the model with the
largest possible amount of information for predicting power
with minimum multicollinearity. The first stage uses regression
analysis to select PMC events, one-by-one, that add the largest

1: procedure SELECT EVENTS(allEvents, no.Events)
2: selectedList ← cycleCountEvent
3: while length(selectedList) < no.Events do
4: for pmcEvent in allEvents do
5: build model(selectedList + pmcEvent)
6: if newR2 > bestR2 then
7: bestEvent ← pmcEvent
8: bestR2 ← newR2

9: end if
10: end for
11: append bestEvent to selectedList
12: end while
13: return selectedList
14: end procedure

Fig. 5. Algorithm of the first stage of our PMC event selection method

insight into power consumption given the previously selected
PMC events (Fig. 5). Our analysis shows that the Cycle
Count (0x11) should always be included in the selected set
of PMCs as it contains unique information that is useful for
predicting the power. Therefore, by adding the Cycle Count
to the list of selected PMCs first (line 2, Fig. 5) we find
a superior set of PMC events because the remainder of the
algorithm finds the optimum events given the information
in the Cycle Count. Our algorithm then finds the next best
PMC event to add to the set of model inputs by building a
regression model to predict power for each additional PMC
event with the existing selected PMC events also as inputs.
The PMC event that results in the most improved R2 value
is then added to the selection. For the Cortex-A15 example,
our algorithm chooses the seven PMC events (highlighted in
bold in Fig. 4) from five different clusters and the chosen
events do not necessarily have a high correlation with power,
with one chosen event having a correlation as low as 0.36
(UNALIGNED LDST SPEC:0X6A).
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2 Setting up the Board
Download the ubuntu-14.04.1lts-lubuntu-odroid-xu3-20150212.img.xz compressed image
from the ODROID-XU3 Software Release for Linux/Ubuntu page (it is labeled Ubuntu
14.04.01 (20150212). It is highly recommended that you use this specific version as the
LKM was compiled for the kernel version of this image. Instructions from Hardkernel to
install the image can be found here.

R2

Fig. 6. R2, Adj. R2, VIF of selected PMC events (cumulative) from Stage 1.
Also shows error and VIF after transformation in Stage 2

TABLE I
FIRST SEVEN SELECTED EVENTS FOR THE CORTEX-A15 WITH THEIR

CORRESPONDING CLUSTER NUMBER AND VIF FROM STAGE 1

Event Hex Event Name Cluster VIF

1 0x11 CYCLE COUNT 13 2.12

2 0x1B INST SPEC 13 17.5

3 0x50 L2D CACHE LD 8 1.87

4 0x6A UNALIGNED LDST SPEC 4 1.88

5 0x73 DP SPEC 13 13.3

6 0x14 L1I CACHE ACCESS 14 2.23

7 0x19 BUS ACCESS 9 1.50

Fig. 6 shows how the R2 and the Adjusted R2 (adjusted
for the number of predictors in the model) increase as each
selected PMC event is added to the model (one-by-one), while
the VIF (indicating the presence of multicollinearity) also in-
creases. After choosing the fifth event (0x73) the VIF suddenly
increases to a value over five (indicating multicollinearity
problems) while the R2 and Adjusted R2 only marginally
increase, suggesting that four PMC events (including the Cycle
Count) is an optimum number to choose. However, by not
utilizing all seven available counters the model is not making
use of all of the available information. Furthermore, from
building the model (Section VI) with different numbers of
PMC events, we found that, despite only a marginal increase in
R2, there was a significant decrease in average error between
using four and seven counters (see the Error after trans. line
in Fig. 6). To utilize the full seven available PMC events, the
multicollinearity must be further reduced.

The second stage of our PMC event selection method takes
the result of the first stage and further reduces multicollinearity
allowing the model to use as many events as possible (there-
fore obtaining as much information as possible, improving
accuracy) while maintaining stability. Table I shows the chosen
PMC events from stage 1 for the cortex-A15 model presented
in this paper, along with the VIF and cluster number for each
one, which was developed using the full set of 60 workloads.

Our method first identifies relationships between specific
PMC events that contribute significantly to the multicollinear-
ity within our chosen set of PMC events using the VIF. As each
PMC event is added to the model, the collinearity between that
event and the existing events can be understood by monitoring
the change in the individual VIFs for each PMC event. In the
example of the Cortex-A15 model, Fig. 6 shows that the VIF
rises significantly when event 0x73 (DP SPEC) is included in
the model. By looking at Table I (which shows the VIF of each
individual PMC event when all seven events are included in the
model together) it can be seen that event 0x1B and 0x73 both
have particularly high VIFs. This indicates that the increase
of the average VIF among all of the selected events is caused
by collinearity between these two events.

Once we identify strong collinearity between specific
events, we make a transformation to remove the repeated
information. In the case of our Cortex-A15 example, PMC
event 0x1B counts all instructions speculatively executed and
PMC event 0x73 counts the integer instructions speculatively
executed, which means that event 0x73 is also counted within
event 0x1B. Both events are required; one of the events cannot
be derived without the other, but the repeated information leads
to multicollinearity. We therefore transform event 0x1B into
0x1B-0x73; no information has been lost but the duplicated
information has been removed. The VIF (after trans.) line
shows how the VIF remains low (well below five) after making
this transformation, indicating that the multicollinearity has
been significantly reduced.

Reducing the multicollinearity in this second stage has made
it possible to utilize information from all six PMCs (and
the cycle counter), almost halving the average error from
over 5% to less than 3%, without sacrificing stability. Being
able to monitor only six PMC events simultaneously is not
a significant limitation; as the number of events added to
the model increases, the improvement in accuracy decreases
(Fig. 6). Our generic methodology allows an appropriate
number of PMC events for a particular CPU to be found by
measuring the trade-off between VIF and average error.

To demonstrate the importance of stability and
carefully selecting PMC events, we built a model
using a different set of PMC events that do not
consider variance inflation (CYCLE COUNT:0x11,
L1I TLB REFILL:0x02, MEM ACCESS:0x13,
L1D CACHE ACCESS:0x04, INSTR RETIRED:0x08,
ASE SPEC:0x74, VPF SPEC:0x75). These choices reflect
similar counters to those proposed in works on desktop
and server systems and appear to be reasonable, intuitive
choices [11], [21]. However, the average VIF of these
events is 1.68× 107 and the coefficients change significantly
when building the model with different sets of workloads
because they are unstable (note that the last two events
do not contribute to the multicollinearity problems). Fig. 7
compares a model built with these unstable PMC events and
an otherwise identical model built using the results from
our proposed PMC event selection method. The errors of
these two models have been calculated over a variety of
training and validation workload sets, all of which use k-fold
cross-validation with k = 10 (the building and validation
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Fig. 7. Comparison of a model with unstable PMC events and one with stable
PMC events selected with our proposed methodology. Tested with different
training and validation data sets. (S.T = small typical, S.R = small random,
F = full set of 60 workloads)

process is described in detail in Section VI).
With a limited set of 20 ‘typical’ (MiBench and Media-

Bench) training and testing workloads (a typical scenario in
related work [11], [20], [33]) both models obtain a small error
(A bars). However, when 40 unseen training workloads are
added to the validation workloads, the error of both models
increases significantly, from 1.5% to 7.2% in the case of our
‘stable’ selection (blue C bar). The small set of relatively
similar workloads does not provide either model with enough
information for predicting the full (and diverse) set of 60
workloads. This demonstrates how using a small, limited set
of workloads for both training and validation results in a poor
model which actually appears to be very accurate.

With a limited set of 20 ‘random’ (a random selection
from our diverse set of 60 workloads) training and testing
workloads, the model with an unstable (red model) PMC event
selection performs poorly compared to the model with our
stable PMC event selection (blue model) due to the diversity
in testing workloads (B bars). Furthermore, when 40 unseen
workloads are added to the training set, the red model has a
large error of 8.7% while our blue model has a small error of
just 3.4% (D bars), which is only 0.6% less than when it is
validated on the full set of 60 workloads (blue E bar).

To summarize, there are three key points from Fig. 7: 1)
training and validating with a small set of workloads results
in a poor model but with a very optimistic average error
value; 2) training with a limited set of typical and similar
workloads results in the lowest error when validated on the
same set of workloads, but the highest error when validated
on a large number of workloads (e.g. compared to a limited set
of diverse workloads); 3) our proposed stable PMC selection is
far superior at predicting a large number of diverse workloads
outside of the training dataset and it makes efficient use of a
limited, but diverse, training set. This benefit of stability comes
from the fact that the model coefficients have lower errors and
so the model better captures how each PMC event affects the
overall power individually. A stable model is therefore able to
make sensible estimation in unfamiliar situations and is less
prone to wild predictions. For example, when both models
are trained with 20 random (diverse) workloads and validated
on 60, our blue model has a maximum error of less than

15%, while the red model has a maximum error of over 45%.
Stability is a crucial quality of a run-time power model as
it is impractical to represent the vast number of real-world
applications in a training dataset.

We make available software tools for the PMC event
selection process. Our platform dependent data acquisition
software can be set to automatically collect the experimen-
tal data required for this process; it automatically repeats
the experiment while switching between PMC events and
combines the data to allow the different PMC events to be
directly compared. Our platform independent analysis software
implements our automated PMC event selection method and
also many of our analysis techniques (including correlation
analysis and hierarchical cluster analysis) which is useful
for other areas of research regarding PMC events on mobile
devices. It has a simple interface, easily allows data from other
experimental setups to be used, and clearly presents the results
with interactive graphs.

VI. MODEL FORMULATION AND VALIDATION

This section describes the model building and validating
stage which is the third step of our power modeling method-
ology (Fig. 1). Once we have obtained optimal events from
Step 2 (Section V), we use our experimental setup (Section IV)
to run our full set of 60 workloads at many DVFS levels,
with different numbers of cores being utilized, to extensively
investigate as many operating conditions as possible, on both
the ARM Cortex-A7 and Cortex-A15.

Rather than simply putting the PMC data directly into
a linear regression tool, as is the case in previous works
[11], [20], [21], [24], we combine regression analysis with
knowledge of how power is consumed within CPUs to form
an intelligent and more physically-meaningful model that
calculates static and dynamic power separately (2). We make
the CPU cluster power our dependent variable with functions
of our chosen PMC events after preprocessing (En), clock
frequency (fclk) and CPU voltage (VDD) as our independent
variables. We then perform multiple linear regression, using an
ordinary least squares (OLS) estimator [31], to calculate the
coefficients (βn) of our model. This not only allows the model
to estimate power at any given voltage or clock frequency, but
also further reduces multicollinearity and therefore improves
the model’s stability. CMOS dynamic power is proportional
to V 2

DDfclk and CMOS static power is a product of VDD

and the leakage current, which is predominantly formed of
the sub-threshold leakage and gate oxide leakage [34]. There
is a constant dynamic power component independent of the
PMC events (BG dynamic). The static power component also
absorbs the effect of varying temperature depending on the
DVFS level, a more detailed analysis of which is the topic of
future work. We experimentally found terms that were able
to accurately estimate the static power consumption across all
DVFS levels on both the Cortex-A7 and Cortex-A15 (without
overfitting and with all inputs statistically highly significant, as
described later in this section). We collect the PMC events as
counts-per-second, and their values are therefore related to the
operating frequency of the cluster (made up of four Cortex-
A7 or Cortex-A15 CPUs). To reduce multicollinearity, we then
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TABLE II
MODEL FORMULATION EXPERIMENT SPEEDUP WHEN EXPLOITING SMART

MODEL FORMULATION AND ENHANCED STABILITY

Avg. Error (%) Experiment Time (hours) Workloads

Slow 2.8 40 60

Fast 3.4 0.42 (25 min.) 30

divide each event by fclk, thus separating the clock frequency
from the event values, and add it as a separate term; the events
now give information solely on the type of workload.

Pcluster =

(
N−1∑
n=0

βnEnV
2
DDfclk

)
︸ ︷︷ ︸

dynamic activity

+ f(VDD, fclk)︸ ︷︷ ︸
static and BG dynamic

(2)

In (2), N is the total number of PMC events in the model;
n is the index of each event; E is the cluster-wide PMC event
rate (events-per-second) after being divided by the operating
frequency in MHz, fclk, and averaged across all cores; and
VDD is the cluster operating voltage. Pcluster is the power for
the overall quad-core cluster (Cortex-A7 or Cortex-A15).

Our experimental setup measures the total power of the
cluster, constituting of the four cores, their respective L1 cache
and the shared L2 cache. The model is therefore formulated
to predict the power of the overall cluster as this can be
directly validated. However, in our training set we utilize
different numbers of cores and our results show that the overall
cluster power can be estimated accurately without knowing
how much each individual core is individually utilized. The
power contribution from each core and its L1 cache (including
the effect it has on the shared L2 cache) can therefore be
calculated by substituting the cluster-wide events with the
fraction for a particular core.

Our model formulation allows us to run the workloads
at one single DVFS level and then just collect the idle
power characteristics at all of the DVFS levels; as opposed
to running the workloads at every frequency. Our enhanced
model stability also allows us to build an accurate model
using fewer workloads. We demonstrate how combining these
two qualities allows the experiment time to be reduced by
96× while only adding 0.6% error (Table II). Not only does
this demonstrate the robustness of our model formulation and
the benefit of stability, but the reduced experiment time (and
reduced amount of resulting data) has an important practical
advantage. The remainder of this section discusses our method
of evaluating our models.

A fundamental and necessary part of building linear regres-
sion models is the inspection of the residuals, which must be
done in order to determine whether the model is valid and
the assumptions for the linear regression model have been
met [35]. Yet, despite this, very few related works (the only
exception known to us is [18]) present or discuss the residuals,
which need to be checked before other model statistics can be
trusted and interpreted. Importantly, our residual plots (Fig. 8,
more plots shown at [8]) show no pattern that can be predicted
from another variable or each other, proving that the residuals
(observed errors) only represent the stochastic response of the

30/11/2015, 18:05Graph Test:Run-Time Power Modelling
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3 Summary Table
This section will contain a table of all the results.

Parameter Value

0.996753

Adjusted 0.996732

Mean Square Error (MSE) 0.00264943 

Root Mean Square Error (RMSE) 0.0514726 

Relative Error 2.79242 %

Number of Observations 2160

Model Degrees of Freedom 14

Residuals Degrees of Freedom 2145

Sum of Squared Residuals (SSR) 5.72276

Standard Error of Regression (SER) 0.0516523 

Explained Sum of Squares (ESS) 1756.63

F-Statistic 40167.5

p-Value for F-Statistic 0.00000

Average VIF (PMC events only) 2.25231

Average VIF (including V and f) 3.04081

Here are the validated results:

Parameter Value

Number of folds 10

Fold Group Size 216

Relative Error (%) 2.81429 %

Mean Squared Error (MSE) 0.00275526 

Root Mean Square Error (RMSE) 0.0613046 

4 Errors for Each Workload
Filename:
/Users/Matthew/Dropbox/ARM/ARM_XU3_Experiment/Experiments/Power_Experiment_Model_Building_128_A15_extended_WLs_arm_desk/Model_Building_Analyse_Experiment_Fold/build_and_val_all_testing_complete.csv
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Fig. 8. Plot of the model residuals against the predicted power (other residuals
plots found online [8]) before applying HC3

TABLE III
RESULTS FOR THE CORTEX-A7 AND CORTEX-A15 CPU MODELS (FINAL

MODEL, TRAINED ON ALL WORKLOADS)

Parameter A7 Value A15 Value

R2 0.993 0.997

Adjusted R2 0.993 0.997

No. Observations 1680 2160

Std Err. of Regression (SER) [W ] 0.0133 0.0517

F-Statistic 28057.2 40168

p-Value for F-Statistic p < 0.00001 p < 0.00001

Avg. VIF (PMC events only) 2.13 2.25

Avg. VIF (inc. V and f) 4.94 3.04

model and not the deterministic part, meaning that our model
captures all the necessary information from the input variables.
However, the ‘cone-shape’ of the residuals plot shows the
presence of heteroscedasticity (meaning that a key assumption
of homoscedasticity has been violated), which reduces the
accuracy of the coefficients themselves, the standard error
of the coefficients, the standard deviation of the forecast
errors and the confidence intervals [36], [37]. The problem of
heteroscedasticity is inherent in PMC-based power modeling
(there is a larger variance in power consumption between high
power-consuming workloads than workloads that consume less
power), yet, to the extent of our knowledge, this has not been
highlighted or addressed in related work.

We address this problem by using a heteroscedasticity-
consistent standard error (HCSE) estimator of OLS parameter
estimates. While the regression model itself is still estimated
using OLS (the accuracy of which is demonstrated later), the
standard error calculations no longer assume homoscedasticity.
While an explanation of heteroscedasticity and HCSE esti-
mators is well beyond the scope of this paper, Hayes and
Cai [38] give a good introduction and highlight the problem of
HCSE estimators being largely unknown outside of the fields
of statistics and econometrics and how they can eliminate the
need for researchers to worry about heteroscedasticity when
using OLS regression. The option to use HCSE estimators is
available in many statistical computing programs and we use
a HC3 estimator [39], [40] in our methodology and available
software (the statistical modeling in our software uses the
Statsmodels Python module [41]).

We publish a large number of statistical results allowing
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others to accurately assess the quality of our models and we
encourage others to do so to enable comparisons between
different models presented in different works. Both our Cortex-
A7 and Cortex-A15 models achieve an R2 value of greater
than 0.99 (Table III), showing that the fitted regression ex-
plains over 99% of the variation in the power consumption,
despite being tested on a large number of diverse workloads.
The adjusted R2 (which compensates for the number of
predictors) is less than 0.00006 lower than the R2 value,
showing that the R2 value is not inflated by the number
of predictors (independent variables) and that each predictor
adds valuable information to the model. The average VIF of
the input PMC events of both models is under 2.3, which is
thanks to the PMC event selection method (Step 2, described
in Section V), and the average VIF of all of the model inputs
(including the voltage and frequency) is less than five, thanks
to the model formulation (Step 3, described earlier in this
section). These low VIF values indicate that our model is
stable, which we also demonstrated in Section V. We also
calculate and report statistics for determining the statistical
significance in Table III. The p-Value for F-Statistic row shows
the p-value when the model is compared to a model with no
predictors. We have very small p-values of under 0.00001
for both models; meaning that if the null hypothesis is true
(there is no effect or relationship between the model inputs
and power), the observed effect would be found in less than
0.001% of the experiments run due to random sampling error.
In many scientific studies, p < 0.05 is considered borderline
statistically significant and p < 0.001 is considered borderline
statistically highly significant.

Our model equations are used to give predictions for the
power consumption given the values of the model inputs. How-
ever, despite it not being discussed in most related works, the
uncertainty of the model must also be considered when making
predictions. Our software allows the prediction intervals to
be calculated, which is a range where a new observation is
likely to fall given the predictors. While prediction intervals
have a confidence level, they should not be confused with
confidence intervals, which predict the spread of the mean
rather than individual observations. The prediction interval is
much larger than the confidence interval and takes into account
the variability and uncertainty. The prediction interval depends
on the predictors, but an approximation of the 95% prediction
interval is given by:

P.I.(95%) = ±(2× SER) (3)

The SER (standard error of regression) gives the average
distance between the observed values and the regression
line (Table III). Therefore, the approximated 95% prediction
interval for the Cortex-A15 model is ±0.10 W; we are 95%
confident that the actual power is within the predicted power
±0.10 W for the next observation.

We report the model coefficients for the Cortex-A15 model
that we have been developing throughout this paper to allow
the model to be directly implemented in other work (available
at [8]). The coefficients for the transfomed PMC events are
all positive and the voltage and frequency both have a positive
influence on the power, as expected. We also report the 95%

TABLE IV
MODEL RESULTS FROM K-FOLD CROSS-VALIDATION

Parameter A7 Value A15 Value

No. Folds (k) 10 10

Fold Group Size 168 216

Avg. Err. (MAPE) [%] 3.79 2.81

Mean Sq. Err. (MSE) [W 2] 0.000186 0.00276

Root Mean Sq. Err. (RMSE) [W ] 0.00975 0.0613

confidence intervals (C.Is) of the coefficients which take into
account the sample size and the variance in the population.
A narrow confidence interval indicates a low sampling error.
Our confidence intervals are very small, showing very low
standard error and very high statistical significance for each
coefficient. The p-values for every coefficient are very low,
far lower than 0.05, confirming the statistical significance of
every model coefficient.

The results in Table III are derived from all of the ob-
servations used to build the model. We also employ k-fold
cross validation, which involves randomizing the order of the
observations, splitting the observations into k groups, then
using k−1 of the groups to build the model (training dataset)
and the one remaining group to validate the model (testing
dataset). We repeat this process so that the model is built k
times, with each group of observations being used to validate
the model. The reported cross-validated errors (Table IV) are
the average of the testing datasets, so the model is always
predicting the power for scenarios it has not seen before.
The validated average error (mean absolute percentage error
[MAPE]) is 3.8% and 2.8% for the Cortex-A7 and Cortex-A15
model, respectively. By looking at the cross-validated average
errors for each of the 60 workloads (Fig. 9), it can be seen that
cstm bmp (a custom synthetic workload) is the only workload
with an average error of over 6.5%. The fact that there is
one significant outlier shows the need to use a large number
of workloads in power modeling. The error of our model is
very low, particularly considering the large variance in power
consumption between workloads (Fig. 10, gray bars), i.e. the
CPU is not simply being fully utilized by every workload.

Our model formulation allows us to see how the static power
(which also includes the background dynamic power) and each
PMC event contributes to the overall power (Fig. 10) and it
can be seen that the information provided by the PMC events
on the type of workload is essential to producing an accurate
model. Each PMC event makes a significant contribution to the
dynamic power prediction, working independently to identify
different workload types (Fig. 11), showing the merit of our
PMC event selection method (Step 2) and its importance.

In PMC-based models, events are sampled at intervals.
However, if the sample period is too low, the CPU frequency
is too low, and there are very low levels of activity on the
CPU core, then the PMCs may not increment fast enough
between samples to give accurate values to the power equa-
tion. To observe the point at which this phenomenon occurs,
we implement our Cortex-A15 model and run it at various
sampling frequencies while the cluster clock frequency is set
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5 Coefficients

Coefficient Weight
95% Confidence

Interval p-Value

Lower Upper

Intercept -7.526e+2 -8.858e+2 -6.193e+2 p <
.0001

EPH_0x11:Frequency_A15:Voltage_A15_Squared 5.721e-10 5.548e-10 5.895e-10 p <
.0001

EPH_0x1b_minus_EPH_0x73:Frequency_A15:Voltage_A15_Squared 7.297e-10 6.935e-10 7.659e-10 p <
.0001

EPH_0x50:Frequency_A15:Voltage_A15_Squared 8.115e-9 7.395e-9 8.835e-9 p <
.0001

EPH_0x6a:Frequency_A15:Voltage_A15_Squared 1.606e-8 1.462e-8 1.749e-8 p <
.0001

EPH_0x73:Frequency_A15:Voltage_A15_Squared 8.574e-11 6.271e-11 1.088e-10 p <
.0001

EPH_0x14:Frequency_A15:Voltage_A15_Squared 1.083e-9 9.974e-10 1.168e-9 p <
.0001

EPH_0x19:Frequency_A15:Voltage_A15_Squared 2.505e-9 2.220e-9 2.790e-9 p <
.0001

Frequency_A15 1.516e-1 1.161e-1 1.870e-1 p <
.0001

Voltage_A15 2.506e+3 2.068e+3 2.944e+3 p <
.0001

Fig. 9. Average error (mean absolute percentage error [MAPE]) across each DVFS level for all 60 workloads (Cortex-A15 CPU model)
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Voltage_A15:Voltage_A15_Squared 1.021e+3 8.468e+2 1.195e+3 .0001

Frequency_A15:Voltage_A15:Voltage_A15_Squared -3.140e-1 -3.713e-1 -2.567e-1 p <
.0001

PMC Event VIF

EPH_0x11 2.11833188098

EPH_0x1b_minus_EPH_0x73 3.96205339833

EPH_0x50 1.8709575885

EPH_0x6a 1.8807877959

EPH_0x73 2.20665240169

EPH_0x14 2.23220624596

EPH_0x19 1.49518715561

Shows how each pmc contribute to model and show static-dynamic power breakdown
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Fig. 10. Actual (measured) power vs. the predicted power for half of the considered workloads, with the predicted power broken down into its constituting
parts (Cortex-A15 CPU model)
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Fig. 11. Contribution of each PMC event to the dynamic power prediction
for six different workloads

Fig. 12. Modeled power and measured power for the ARM Cortex-A15
cluster running at 200 MHz with various sampling frequencies and no other
workloads
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to the minimum value with no workloads running, except for
the model itself and experiment monitoring software. Even in
this worst-case scenario, the model error does not increase
until the sampling frequency is beyond 500 Hz (Fig. 12).
Many techniques can, however, be employed to reduce this
effect, such as adjusting the sampling frequency with the
clock frequency, only relying on fast counters when there
are low levels of activity on the core, detecting when a
particular counter is too slow and sampling that particular
counter at a lower rate. Our proposed model formulation and
stability allows the contribution of each individual event to
be accurately known and if, for example, one PMC event is
not occurring regularly enough (event 0x19 in this case), it
can be dealt with individually with limited knock-on effects
to the other coefficients and therefore the overall power
consumption. Another source of error variance in this example
is the overhead of writing the results to a file (only required
for this experiment); as the sampling frequency increases, the
more time the CPU spends running this workload, changing
the type of workload running. The model accuracy naturally
changes with the workload (Fig. 10).

Fig. 12 also shows the worst-case power overhead, which
includes extracting and recording data from both the power
sensors and the model for evaluation purposes; this is con-
siderable compared to the overhead of the model itself. We
present a modeling methodology that can be used with a
variety of platforms and in many scenarios (both offline and
online). When implementing our model, many optimizations
and trade-offs can be made, depending on the number of
available counters, required accuracy, sample frequency, etc.
For example, with a fixed sampling frequency and known set
of DVFS levels, then many of the variables in our formula can
be pre-computed and the software using out model can simply
switch equation when changing DVFS level.

VII. COMPARISON WITH EXISTING WORKS

In this section we compare our Cortex-A15 model devel-
oped using the proposed approach to five models from four
recent works in mobile PMC-based run-time power modeling.
We implement existing works on our platform and compare
them directly. To be consistent, we re-train and implement
each model (including our proposed model), using data from
the same experiment, and calculate the coefficients using
OLS regression. Although our model formula works for any
given voltage and frequency, existing works typically consider
a single DVFS level or each one separately, and so this
comparison considers a single clock frequency of 1 GHz. This
simplification of our model causes slight discrepancies be-
tween the statistics reported in this section and those reported
in previous sections. We model the power for the quad-core
Cortex-A15 cluster and the model inputs have been calculated
considering the activity of the overall cluster. The process for
building and evaluating all of the models is identical, with
the only difference being the choice of model inputs and the
model equation.

Pricopi et al. [25] build a PMC-based power model for an
ARM Cortex-A15, considering just a single core of their multi-
core cluster (Model a, Table V). Walker et al. [24] present

TABLE V
PARAMETERS OF MODELS INCLUDED IN THIS COMPARISON

Source No. Evts. n Adj. R2 Err. [%]

a Pricopi et al. [25] 6 6 0.747 12.5

b Walker et al. [24] 4 4 0.785 12.3

c Rethinagiri et al. [11] 5 3 0.672 12.7

d Rodrigues et al. [21] 3 2 0.760 15.2

e Rodrigues et al. [21] 6 4 0.897 9.7

P Proposed 6 + C 7 0.999 2.9

equations for modeling an ARM Cortex-A8 single-core CPU
using four PMC events (Model b). We also compare against
the dual-core Cortex-A9 model presented by Rethinagiri et
al. [11], removing the frequency term as we are only consid-
ering a single clock frequency (Model c). It is not clear in the
original work whether the cache miss rate term in their model
should take the L1 instruction cache into account, however,
doing so would require more than six PMC events in total to
implement their model, which is not possible on our platform
or the ARM Cortex-A9 (the original work used a simulator
to obtain PMC data instead of recording it from a real board
directly). Rodrigues et al. [21] present several models with
varying numbers of PMC events, concluding that the same
three PMC events (number of fetched instructions, L1 cache
hits and dispatch stalls) can be used to yield an acceptable
error (< 5%) across multiple architecture types, including
both high performance and low power CPUs. They simulate
two cores representative of an Intel Nehalem and an Intel
Atom processor using SESC and Wattch. Unfortunately, on
ARM-based platforms, there is no PMC event that represents
dispatch stalls. We therefore implement their model named
Exp 2 (Model d), which does not use dispatch stalls and
uses just two model inputs (but requires three PMC events to
calculate on our platform), and Exp 6 (Model e) which uses
five model inputs events, but we omit the unavailable dispatch
stalls event, meaning our implementation of this model has
just four model inputs. Two inputs to Model e each require
two PMC event counters to derive on our platform. One term
in this model counts the L1 cache hits, which we implement
as just the L1 data cache hits as all of the limited number
of performance counters were in use. Our model uses all six
PMCs and the separate cycle counter. The number of required
PMC events (No. Evts.) and the number of model independent
variables (n) used in each model is shown in Table V.

We build these five models (a, b, c, d, e) and our proposed
(P) model using our small set of diverse workloads (discussed
in Section V) and report the adjusted R2 to measure how well
the models fit their training data (Table V). The high adjusted
R2 value achieved by our proposed model (Model P) demon-
strates how the chosen inputs and model formula captures the
largest amount of useful data for predicting power consump-
tion, allowing our model to closely fit the training data. Out of
the implemented existing models, Model e captures the largest
amount of useful information and therefore most closely fits
the dataset. We also analyzed the VIF of each independent
variable to give an indication of the model stability. Model e
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has four independent variables and two of the coefficients have
a VIF of 15.7 and 9.7, meaning that these coefficients have
a standard error 4.0× [

√
15.7] and 3.1× larger than if no

multicollinearity was present. Despite capturing more useful
data from the model inputs, our proposed model has less
variance inflation, signaling a low amount of repeated data
in our seven inputs; the highest VIF of any coefficient in our
proposed model is 4.8. The effect of errors in the coefficients
can clearly be seen in Table I of [11], where two power models
(Exp 4 and Exp 5) for the same system feature the same input
(dispatch stalls, D) but with a coefficient of +1.25 in one
model and −0.47 in the other. This shows how the modeling
methodology is not capturing how each variable individually
affects the power consumption, forming an unstable model.

We then validate the models on our full set of 60 workloads
(equivalent to the D bars in Fig. 7) and show the resulting
error distribution (Fig. 13, red and green boxes). The proposed
model best utilizes the limited number of training workloads
to achieve an average error of 2.9%; 3× smaller than the next
best model. Furthermore, the box plot in Fig. 13 shows that our
proposed model has a significantly narrower range of errors
across the 60 workloads. This means that greater confidence
can be placed in our model to contain the error within a
smaller interval. For example, the error of Model e, which
has the smallest average error out of the existing works, has
a maximum error of 49%, whereas our proposed model has
a maximum error of 13%. The approximate 95% prediction
interval (explained in Section VI) of our proposed model is
±0.014 W whereas the prediction interval for Model e is
±0.13 W.

Pricopi et al. [25] (Model a) report a low error of 2.6%.
However, they build and validate with a small number of
15 workloads and report a minimum and maximum power
consumption of 4.54 W and 5.16 W across their training
workloads, respectively; a very narrow range when compared
to many of our testing workloads (Fig. 10). We find that two
independent variables of the model have VIFs larger than 130,
contributing to the high average error across our diverse set
of 60 workloads (Fig. 13). This highlights the importance of
considering stability and validating with a large number of
diverse workloads when building reliable power models.

In Section V we highlighted how the cycle count provides

System
PMCs

Power Model
(preliminary)

Voltage ModelVoltage Table
Tgt. V

V

f
P(dyn.)

Power Model
(final)

Power

Fig. 14. Run-time power estimation setup with the voltage model

unique data to the model (it is used to determine how much
time the cores spend in a low-power [inactive cycle] state).
However, this event is not included in any of the existing
models (they either use simulated data that may not take this
feature into account or an old development board that does not
have this feature enabled). We therefore rebuilt models a, b,
c, d and e with the cycle count and named them a+, b+, c+,
d+ and e+, respectively. This improves the existing models but
the proposed model still achieves an error 50% lower than any
other model (Fig. 13, blue boxes). Note that the cycle counter
is not used to calculate the IPC (instructions-per-cycle) as it
only counts active cycles on this platform.

From implementing models of existing work on our plat-
form, we found that: 1) none of the models considered the
cycle counter, which has a significant power impact; 2) some
of the model inputs were not available in a single PMC event
and needed to be calculated from several; and, 3) in one case,
a model input could not be deduced from the available PMCs
on our platform. These three points highlight the importance of
providing a detailed and automated methodology that can be
used on CPUs with different ISA, microarchitectures and avail-
able PMC events, as we propose. The overhead between the
compared models is negligible compared to recording/using
the estimated power value; reading a PMC event counter
requires a single instruction and the simple model equations
have similar complexity, with similar number of used PMC
events and model inputs (note that models c, d and e all
required extra calculations to derive the required input on our
platform).

VIII. CPU VOLTAGE MODEL

Our power model works with any specified frequency or
voltage, which is important for design-space exploration. In
online run-time management scenarios, the voltage cannot
be directly measured and so the idle voltage for the current
operating frequency can be used. However, we find that
the static power varies between different workloads at the
same frequency because the voltage supplied by the non-ideal
voltage regulator varies with the dynamic CPU current draw.
This phenomenon greatly affects the power consumption and
needs to be taken into account when modeling the power. We
present a model built using multiple linear regression to predict
the CPU voltage from the current CPU clock frequency, target
voltage (idle CPU voltage at that frequency), and dynamic
power calculated from the PMC events (Step 4 of our power
modeling methodology, Fig. 1). We first use our power model
to perform a preliminary prediction of the dynamic power
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using the target voltage and then feeding this estimation
into our voltage model, along with the target voltage itself
(Fig. 14). This voltage model then outputs the estimated run-
time voltage and this is used as the voltage input of our main
(final) power model. This voltage model is specific to the
platform and each frequency needs to be separately considered.
To the extent of the authors’ knowledge, this is the first work
in this area to consider voltage change due to the dynamic load
and demonstrate how it can be modeled. To give an example, at
a frequency of 1800 MHz, the power model error is 2.6% when
using the measured CPU voltage. However, as the measured
voltage is not available to the run-time manager of a real
device, the target voltage is used, resulting in a significantly
larger power error value of 8.5%. If we incorporate our voltage
model, we can account for the changing run-time voltage and
reduce our power modeling error to 3.0%. We identify this
problem, quantify its effect on the error, and demonstrate how
our proposed solution is effective in mitigating it. A more
detailed analysis of this phenomenon (including the effects of
temperature) is the topic of future work.

IX. CONCLUSION

We have presented a detailed and statistically-rigorous au-
tomated methodology and corresponding software tools for
building accurate and stable PMC-based run-time power mod-
els. We illustrate our approach using measured data from two
mobile CPUs with significantly differing microarchitectures:
an ARM Cortex-A7 and ARM Cortex-A15. The resulting
models achieved an error of 3.8% and 2.8%, respectively,
and both achieved an R2 value of over 0.99. Our approach
uniquely considers model stability and we demonstrate how it
allows the resulting models to make more accurate predictions
on a vast set of diverse scenarios, even when trained on
a limited set of workloads. Furthermore, we highlight and
address the problem of heteroscedasticity and show how our
model formulation and stability allows us to reduce the model
formulation experiment time by 100× while trading off less
than 0.6% error. We implement our model on a real device
and analyse the error and overhead as a function of sample
period and we conduct a detailed comparison with the state-
of-the-art. We also highlight how the CPU voltage supplied
by the non-ideal voltage regulator is sensitive to the dynamic
activity of the CPU and we present a CPU voltage model,
which improves the accuracy of the power model by as much
as 5.5% in situations where the voltage cannot be measured. To
address the lack of an established method of collecting PMC
data on mobile devices, we present our platform dependent
experimental software tools that enables other researchers to
make use of high quality, measured data from mobile platforms
for investigations requiring measured CPU PMC, temperature,
voltage or power data. This paper is supported by online
resources (available at [8]) which include the downloadable
software tools, usage manuals, raw experimental data and
further results, graphs, analysis and explanations. We hope that
this work encourages greater statistical rigor in this research
area to allow high quality models to be created, models from
different works to be compared, and, crucially, the quality and
limitations of produced models to be trusted and known.
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